
Chapter 6
Improving Programming Skills Through
an Innovative Collaborative
Programming Model: A Case Study

Abstract In recent years, education has put considerable emphasis on the develop-
ment of programming skills. However, students, especially, pupils often face chal-
lenges in programming. This study aims to improve pupils’ programming skills
through an innovative collaborative programming model. This model includes six
phases, namely, understanding, designing, programming, sharing, evaluating, and
refining. A case study was conducted to get a better understanding of participants’
perceptions, programming skills, and collaborative problem-solving abilities. The
results indicated that participantswere interested in programming, and their program-
ming skills as well as problem-solving abilities were improved. The implications for
teachers and practitioners are also discussed in depth.

Keywords Collaborative programming · Collaborative problem solving ·
Programming skills

6.1 Introduction

The development of advanced technologies requires lots of human resources in
programming skills (Lu et al., 2017). Computer science education has become more
andmore important in recent years (Chen et al., 2017). Thus, computer programming
course has been a very fundamental course at all levels (Gordon & Brayshaw, 2008).
Vaca-Ca´rdenas et al. (2015) proposed that programming skills are very crucial for
preparing students for twenty-first-century success. Therefore, there is an urgent need
to improve learners’ programming skills.

Previous studies reported many strategies for improving computer programming
skills, such as the use of robot (Noh & Lee, 2020), problem posing-based strategy
(Wang & Hwang, 2017), developing a groupware system (Bravo et al., 2013), and
flipped classroom model (Durak, 2020). However, the effectiveness of these strate-
gies for pupils need to be investigated further. In addition, novice programmers like
pupils encountered a number of problems and challenges. It was found that the
first programming experience affected the interest and willingness of programming
(Uysal, 2014). Therefore, it is necessary to develop a holistic model to help novice

© Springer Nature Singapore Pte Ltd. 2021
L. Zheng, Data-Driven Design for Computer-Supported Collaborative Learning,
Lecture Notes in Educational Technology,
https://doi.org/10.1007/978-981-16-1718-8_6

75

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-16-1718-8_6&domain=pdf
https://doi.org/10.1007/978-981-16-1718-8_6


76 6 Improving Programming Skills Through an Innovative …

programmers to improve their programming skills. This study sought to propose
an innovative model to help pupils to improve collaborative programming skills in
an Arduino course. The present study also validated the feasibility of the proposed
model through a case study. Arduino provided an introduction to microcontrollers,
and the graphical languages made it accessible to non-programmers (Reas & Fry,
2014). The following sections will illustrate literature review, method, results, and
conclusions.

6.2 Literature Review

Collaborative programming has been considered as a very effective strategy for
improving programming skills (Bailey & Mentz, 2017). Kanika et al. (2020) found
that collaborative programming enabled students to learn from peers and write effi-
cient programs. Teague and Roe (2008) believed that collaborative programming
was very helpful for novice programmers in terms of establishing collective under-
standing of problems, receiving peers’ feedback, and building knowledge. Many
scholars investigated on how to improving programming skills through collaborative
programming. For example, Lu et al. (2017) applied learning analytics to improve
programming skills in a MOOCs collaborative programming course. Chorfi et al.
(2020) adopted a computer-supported collaborative learning-based groupware to
improve programming skills. Lu et al. (2020) proposed that a continuous inspection
paradigm can serve as an effective method to ensure coding quality and improve
programming skills. Wei et al. (2020) proposed a partial pair programming method,
and they found that elementary school students’ computational thinking skills and
self-efficacy improved through the partial pair programming method.

In addition, it was found that computer programming is a problem-solving task
(Piteira & Costa, 2013), and programming skills are closed related to problem-
solving skills (Fessakis et al. 2013). Previous studies also indicated that problem-
solving is a crucial aspect of programming (Deek et al., 1999; Shi et al., 2019).
Beck and Chizhik (2013) proposed that collaborative programming helped learners
to develop confidence in problem-solving abilities. Sun et al. (2020) analyzed three
contrasting pairs’ collaborative programming processes, and they demonstrated the
complex relations among collaborative behaviors, discourses, and performances.
However, most studies implemented collaborative programming in higher education
context. Fewstudies conducted collaborative programmingamongelementary school
students. To close this gap, this study aims to improve pupils’ programming skills
through the proposed model. The following sections will illustrate the proposed
model in depth.



6.3 The Model of Collaborative Programming 77

6.3 The Model of Collaborative Programming

This study proposed an innovative model of collaborative programming, including
understanding, designing, programming, sharing, evaluating, and refining. This
model aims to improve learners’ collaborative problem-solving skills and program-
ming skills, as shown in Fig. 6.1. It is a cycle, and there are six phases. The first phase
is to understand the context, task requirements, and learning objectives of program-
ming. The second phase is to design how to program and draw the flowchart to
represent the thoughts. The third phase is to program collaboratively through online
programming tools. In this phase, learners need to program and debug the code. The
fourth phase is to share the group products with peers and teachers. The fifth phase
is to evaluate the quality of group products by teachers and peers. The final phase is
to refine and revise the program further based on teachers’ and peers’ suggestions.

Fig. 6.1 The model of collaborative programming



78 6 Improving Programming Skills Through an Innovative …

6.4 Method

6.4.1 Participants

This study enrolled 9 pupils to voluntarily participate in this study.All the participants
were divided into 4 groups of two or three students. Groups 1 and 3 were composed
of girls. Groups 2 and 4 were composed of boys. The average age was 11 years. They
were from the same elementary school. However, they had never collaboratively
programmed before. They did not know how to program.

6.4.2 The Introduction to the Program

The tasks of the program were to make a fortune cat through a steering engine. The
learning objectives of this program were to understand the principles and control
method of a steering engine as well as acquire the applications of random number
and key module. After participation in this study, students’ interest in programming
and programming skills was expected to be enhanced further. The learning mate-
rials include lecture notes, Arduino tools, the examples of programming, computers,
scissors, gummed tape, colored paper, and colored pencil.

6.4.3 Procedures

This study followed the proposed collaborative programming model to design and
implement the collaborative programming activities. Table 6.1 shows the procedures
of the learning activity.

6.5 Results

6.5.1 Analysis of Programming Skills

Since each group collaboratively programmed and programming was the final group
product, the rubric was designed to evaluate the programming skills. Table 6.2 shows
the rubric of group products, and Table 6.3 shows the assessment results. It was found
that group 4 achieved the highest score, followed by group 3, group 2, and group
1. Compared with previous programming skills, all the participants’ programming
skills were significantly improved (Fig. 6.2).



6.5 Results 79

Ta
bl
e
6.
1

T
he

pr
oc
ed
ur
e
of

th
e
fir
st
le
ar
ni
ng

ac
tiv

ity

Ph
as
es

Te
ac
he
rs
’
be
ha
vi
or
s

St
ud
en
ts
’
be
ha
vi
or
s

1.
U
nd
er
st
an
d

1.
T
he

te
ac
he
r
de
m
on
st
ra
te
d
th
e
pi
ct
ur
es

of
va
ri
ou
s
ki
nd
s
of

ca
ts
an
d

as
ke
d
a
qu
es
tio

n
“D

o
yo
u
kn
ow

ab
ou
tt
he

fo
rt
un
e
ca
t?
”

2.
T
he

te
ac
he
r
as
ke
d,
“W

ha
ta
re

th
e
m
aj
or

di
ff
er
en
ce
s
in

th
es
e

fo
rt
un
e
ca
ts
?”

3.
T
he

te
ac
he
r
in
tr
od
uc
ed

th
e
ta
sk

an
d
de
m
on
st
ra
te
d
th
e

fu
nc
tio

na
lit
ie
s
of

m
ad
e
fo
rt
un
e
ca
t.
T
he

pr
in
ci
pl
es

an
d
co
nt
ro
l

m
et
ho
ds

of
a
st
ee
ri
ng

en
gi
ne

as
w
el
la
s
ho
w
to

dr
aw

flo
w
ch
ar
t

w
er
e
al
so

in
tr
od
uc
ed

by
th
e
te
ac
he
r.

1.
T
he

st
ud
en
ts
an
sw

er
ed

th
e
qu
es
tio

n
an
d
lin

ke
d
it
w
ith

th
ei
r
pr
io
r

kn
ow

le
dg
e
an
d
ex
pe
ri
en
ce
.

2.
T
he

gr
ou
p
m
em

be
rs
se
ar
ch
ed

fo
r
in
fo
rm

at
io
n
fr
om

th
e
In
te
rn
et

an
d
an
sw

er
ed

th
e
qu
es
tio

n.
3.

T
he

st
ud
en
ts
ob
se
rv
ed

th
e
m
ad
e
fo
rt
un
e
ca
t,
un
de
rs
to
od

th
e
ta
sk
,

an
d
le
ar
ne
d
ab
ou
tt
he

ta
rg
et
kn
ow

le
dg
e.

2.
D
es
ig
n

1.
T
he

te
ac
he
r
en
ga
ge
d
st
ud
en
ts
in

de
si
gn
in
g
th
e
ap
pe
ar
an
ce

of
th
e

fo
rt
un
e
ca
t.

2.
T
he

te
ac
he
r
en
ga
ge
d
st
ud
en
ts
in

de
si
gn
in
g
th
e
flo

w
ch
ar
to

f
th
e

pr
og
ra
m
.

1.
T
he

gr
ou
p
m
em

be
rs
co
nd
uc
te
d
co
lla
bo
ra
tiv

e
le
ar
ni
ng

to
dr
aw

th
e

fo
rt
un
e
ca
tt
og
et
he
r.

2.
T
he

gr
ou
p
m
em

be
rs
co
nd
uc
te
d
co
lla
bo
ra
tiv

e
le
ar
ni
ng

to
dr
aw

th
e

flo
w
ch
ar
to

f
th
e
pr
og
ra
m

to
ge
th
er
.

3.
Pr
og
ra
m

T
he

te
ac
he
r
in
tr
od
uc
ed

ho
w
to

pr
og
ra
m

th
ro
ug
h
th
e
M
IX

LY
(a
n

op
en
-s
ou
rc
e
so
ft
w
ar
e)

an
d
th
e
ha
rd
w
ar
e.

1.
T
he

gr
ou
p
m
em

be
rs
co
lla
bo
ra
tiv

el
y
pr
og
ra
m

to
m
ak
e
a
fo
rt
un
e
ca
t

th
at
ca
n
sw

in
g
th
e
ar
m
s.

2.
O
nc
e
th
ey

fin
is
he
d,

th
ey

co
nn
ec
te
d
th
e
ha
rd
w
ar
e
to

te
st
.

4.
Sh

ar
e

T
he

te
ac
he
r
or
ga
ni
ze
d
th
e
st
ud
en
ts
to

sh
ar
e
th
ei
r
gr
ou
p
pr
od
uc
ts
an
d

di
sc
us
s
am

on
g
al
lp

ar
tic

ip
an
ts
.

E
ac
h
gr
ou
p
sh
ar
ed

th
ei
r
gr
ou
p
pr
od
uc
ts
an
d
di
sc
us
se
d
w
ith

pe
er
s.

5.
E
va
lu
at
e

T
he

te
ac
he
r
ev
al
ua
te
d
th
e
gr
ou
p
pr
od
uc
to

f
ea
ch

gr
ou
p.

E
ac
h
gr
ou
p
re
fle
ct
ed

an
d
th
ou
gh
to

n
ho
w
to

im
pr
ov
e
th
e
gr
ou
p

pr
od
uc
ts
.

6.
R
efi
ne

T
he

te
ac
he
r
su
m
m
ar
iz
ed

an
d
pr
ov
id
ed

th
ei
r
su
gg
es
tio

ns
to

re
fin

e
th
e

gr
ou
p
pr
od
uc
ts
.

E
ac
h
gr
ou
p
re
fin

ed
th
e
gr
ou
p
pr
od
uc
ts
fu
rt
he
r
an
d
de
m
on
st
ra
te
d
th
e

re
vi
se
d
gr
ou
p
pr
od
uc
ts
.



80 6 Improving Programming Skills Through an Innovative …

Table 6.2 The rubric of group products

Dimensions Explanations (10) Explanations (15) Explanations (20)

Originality (20) The group product is
not original and just
followed the teachers’
model.

The group product is a
little bit innovative.

The group product is
very original and
innovative.

Programming (20) The flowchart is
incomplete, and there
are some errors in
programming.

The flowchart is
complete and there is
no error in
programming.

The flowchart is
perfect and the
programming works
well.

Hands-on skills (20) The hands-on skills are
low and the connection
of hardware is loose
and in chaos.

The hands-on skills are
medium, and the
connection of hardware
is in order.

The hands-on skills
are high, and the
connection of
hardware is firm and
perfect.

Collaboration (20) There is no
communication and
collaboration.

There is little bit
communication and
collaboration.

The group members
communicated and
collaborated closely.

Functionality (20) The group product did
not achieve the
expected
functionalities.

The group product
achieved the expected
functionalities.

The group product
achieved the expected
functionalities, and
several new
functionalities were
added.

Table 6.3 The results of group products

Groups Originality Programming
skills

Hands-on skills Collaboration Functionality Total

Group 1 18 10 14 12 15 69

Group 2 15 18 16 13 15 77

Group 3 17 16 16 14 15 78

Group 4 17 18 18 17 15 85

6.5.2 Analysis of Collaborative Problem Solving

This study adopted the collaborative problem-solving framework developed by
PISA (2017) to evaluate collaborative problem-solving competency. This assessment



6.5 Results 81

framework is a matrix which is composed of vertical components and horizontal
components. The vertical components were coded as (A) explore and understand (20
scores), (B) represent and formulate (25 scores), (C) plan and execute (30 scores),
and (D) monitor and reflect (25 scores) (PISA, 2017; Song, 2018). The horizontal
components were coded as (1) establish and maintain shared understanding (45
scores), (2) take appropriate action to solve the problem (25 scores), and (3) establish
and maintain team organization (30 scores) (PISA, 2017; Song, 2018). The result of
the collaborative problem-solving competency was the matrix of ABCD1, ABCD2,
and ABCD3. Table 6.4 shows the results of collaborative problem solving for
four groups. It was found that group 4 achieved the highest score in collaborative
problem-solving competency, followed by group 3, group 2, and group 1.

Fig. 6.2 The programming of group 4

Table 6.4 The results of collaborative problem solving

Groups Matrix1 Matrix2 Matrix3 Total

Group 1 31 12 20 63

Group 2 33 18 22 73

Group 3 35 20 25 80

Group 4 39 23 27 89



82 6 Improving Programming Skills Through an Innovative …

6.5.3 Interview Results

To get a better understanding of the participants’ perceptions, all the participants
were interviewed by researchers. The interview results indicated that participants
were more interested in programming, and their programming skills as well as
collaborative problem-solving skills were improved further.

First, the participants of the four groups addressed that this activity was very
interesting, and their interests in programming increased. For example, one student
said that “Before I believed that programming is very difficult. But now I believe
that programming is very interesting and not difficult because I can program through
the graph programming tool. The text programming tool is very boring.” Another
student also addressed that “I like this activity very much. I benefit a lot from it. I
have a strong sense of fulfilment when I finish program. I feel very exciting when
the fortune cat can swing the arms.”

Second, the participants of four groups believed that the proposed model can
improve their programming skills. For example, one student stated that “Before, I
just programming directlywithout design. I never revise the program before. But now
I learn how to programming in a proper way. I understand the task and requirements
of program, then I begin to design the flow chart. And then our group program
and share with peers.” Another student also revealed that “Understanding, design,
programming, sharing, evaluation, and refinement are very scientific and useful for
improving programming skills. I learn a lot from this model.”

Third, the participants of the four groups believed that the proposed model
improved their collaborative problem-solving skills. As one student said “Initially,
there are some grammar errors in programming. Later our group members collabo-
ratively corrected the errors and tested again. Finally, the fortune cat’s arms swing.”
Another student revealed that “I believe the evaluating and refining group products
is very important for improving problem solving skills. I learn a lot from refinement
and solve several problems.”

6.5.4 Implications

This study had several implications for teachers and practitioners. First, the proposed
collaborative programming model was very effective and useful for improving
programming skills. This model includes six phases, namely, understanding,
designing, programming, sharing, evaluating, and refining. These six phases were
an iterative cycle with the aim of improving programming skills. Among these
six phases, programming and refining programming are very important. In addi-
tion, debugging is a fundamental skill of programming (Beller et al., 2018), and
novice programmers took significantly more time in debugging (Chiu & Huang,
2015). Therefore, teachers and practitioners should allocate enough time to debug
for programmers.



6.5 Results 83

Second, novice programmers need help from teachers or experts. Therefore, it is
suggested that teachers guide novice programmers to follow the model to improve
programming skills step by step. In addition, novice programmers may encounter
various kinds of problems. Teachers should provide real-time feedback for novice
programmers, including emotional and cognitive feedback. For example, Fwa (2018)
developed an affective tutoring system to help novice programmers to regulate their
negative affect.

Third, learning activities about programming need to be elaborately designed
before implementation since programming is considered to be a creative activity
(Grover & Pea, 2013). The programming tasks, requirements, questions, interactive
strategies, programming environments, learning materials, and assessment methods
need to be designed carefully. It was found that visual presentation (diagrams, video,
animation) and verbal explanation contributed to learning programming (Zhang
et al., 2014). The drag and drop type applications can help younger students to
learn computer science and informatics concepts (Kalelioğlu, 2015). Therefore,
appropriate and smart programming environments are very crucial for improving
programming skills.

6.6 Conclusions

This study investigated how to improve programming skills through an innovative
collaborative programming model. This model included six steps, namely, under-
standing, designing, programming, sharing, evaluating, and refining. A case study
was conducted to examine the feasibility and effectiveness of this model. The results
indicated that the proposed model was very helpful and insightful for improving
programming skills. The best group achieved the highest scores in terms of group
product’s quality and collaborative problem-solving skills. The interview results
revealed that all the participants were very interested in programming, and their
programming skills as well as collaborative problem-solving skills improved further.

However, this studywas constrained by several limitations. First, only four groups
participated in this study. Therefore, cautions should be exercised when general-
izing the results. Future study will expand the sample size to conduct the empirical
study. Second, this study only examined the group product quality and collabora-
tive problem-solving abilities. Future study will examine the effectiveness of the
proposed model from other perspectives.

References

Bailey, R., &Mentz, E. (2017). The value of pair programming in the IT classroom.The Independent
Journal of Teaching and Learning, 12(1), 90–103.



84 6 Improving Programming Skills Through an Innovative …

Beck, L., & Chizhik, A. (2013). Cooperative learning instructional methods for CS1: Design,
implementation, and evaluation. ACM Transactions on Computing Education (TOCE), 13(3),
1–21.

Beller,M., Spruit, N., Spinellis, D., &Zaidman, A. (2018). On the dichotomy of debugging behavior
among programmers. In Proceedings of the 40thInternational Conference on Software Engi-
neering (pp. 572–583). https://www.spinellis.gr/pubs/conf/2018-ICSE-debugging-analysis/html/
BSSZ18.pdf.

Bravo, C., Duque, R., & Gallardo, J. (2013). A groupware system to support collaborative
programming: Design and experiences. Journal of Systems and Software, 86(7), 1759–1771.

Chen, G., Shen, J., Barth-Cohen, L., Jiang, S., Huang, X., & Eltoukhy, M. (2017). Assessing
elementary students’ computational thinking in everyday reasoning and robotics programming.
Computers & Education, 109, 162–175.

Chorfi, A., Hedjazi, D., Aouag, S., & Boubiche, D. (2020). Problem-based collaborative learning
groupware to improve computer programming skills.Behaviour& Information Technology, 1–20.
https://doi.org/10.1080/0144929X.2020.1795263.

Chiu, C. F., & Huang, H. Y. (2015). Guided debugging practices of game based programming
for novice programmers. International Journal of Information and Education Technology, 5(5),
343–347.

Deek, F. P., Turoff,M., &McHugh, J. A. (1999). A commonmodel for problem solving and program
development. IEEE Transactions on Education, 42(4), 331–336.

Durak, H. Y. (2020). Modeling different variables in learning basic concepts of programming in
flipped classrooms. Journal of Educational Computing Research, 58(1), 160–199.

Fessakis, G., Gouli, E., & Mavroudi, E. (2013). Problem solving by 5–6 years old kindergarten
children in a computer programming environment: A case study. Computers & Education, 63,
87–97.

Fwa, H. L. (2018). An architectural design and evaluation of an affective tutoring system for novice
programmers. International Journal of Educational Technology in Higher Education, 15(1), 38.
https://doi.org/10.1186/s41239-018-0121-2.

Gordon, N. A., & Brayshaw, M. (2008). Inquiry-based learning in computer science teaching in
higher education. Innovations in Teaching and Learning in Information and Computer Sciences,
7(1), 22–33.

Grover, S., & Pea, R. (2013). Computational thinking in K–12: A review of the state of the field.
Educational Researcher, 42(1), 38–43.

Kalelioğlu, F. (2015). A new way of teaching programming skills to K-12 students: Code. org.
Computers in Human Behavior, 52, 200–210.

Kanika, Chakraverty, S., & Chakraborty, P. (2020). Tools and techniques for teaching computer
programming: A review. Journal of Educational Technology Systems, 49 (2), 170–198. https://
doi.org/10.1177/0047239520926971.

Lu,O.H.,Huang, J.C.,Huang,A.Y.,&Yang,S. J. (2017).Applying learning analytics for improving
students engagement and learning outcomes in an MOOCs enabled collaborative programming
course. Interactive Learning Environments, 25(2), 220–234.

Lu, Y., Mao, X., Wang, T., Yin, G., & Li, Z. (2020). Improving students’ programming quality with
the continuous inspection process: a social coding perspective. Frontiers of Computer Science,
14(5), 1–18.

Noh, J., & Lee, J. (2020). Effects of robotics programming on the computational thinking and
creativity of elementary school students. Educational Technology Research and Development,
68(1), 463–484.

PISA. (2017). PISA 2015 collaborative problem-solving framework. Retrieved from https://www.
goo.gl/Yp6j8L.

Piteira, M., & Costa, C. (2013). Learning computer programming: study of difficulties in learning
programming. In Proceedings of the 2013 International Conference on Information Systems and
Design of Communication (pp. 75–80). ACM.

https://www.spinellis.gr/pubs/conf/2018-ICSE-debugging-analysis/html/BSSZ18.pdf
https://doi.org/10.1080/0144929X.2020.1795263
https://doi.org/10.1186/s41239-018-0121-2
https://doi.org/10.1177/0047239520926971
https://www.goo.gl/Yp6j8L


References 85

Reas, C., & Fry, B. (2014). Processing: A programming handbook for visual designers and artists
(2nd ed.). Cambridge, MA, USA: MIT Press.

Shi, J., Shah, A., Hedman, G., & O’Rourke, E. (2019). Pyrus: Designing a collaborative program-
ming game to promote problem solving behaviors. In Proceedings of the 2019 CHI Conference
on Human Factors in Computing Systems (pp. 1–12). https://library.usc.edu.ph/ACM/CHI2019/
1proc/paper656.pdf.

Song, Y. (2018). Improving primary students’ collaborative problem solving competency in project-
based science learning with productive failure instructional design in a seamless learning
environment. Educational Technology Research and Development, 66(4), 979–1008.

Sun, D., Ouyang, F., Li, Y., & Chen, H. (2020). Three contrasting pairs’ collaborative programming
processes in China’s secondary education. Journal of Educational Computing Research. https://
doi.org/10.1177/0735633120973430.

Teague, D., & Roe, P. (2008). Collaborative learning: Towards a solution for novice programmers.
Paper presented at the tenth conference on Australasian computing education. Retrieved from
https://eprints.qut.edu.au/17818/1/c17818.pdf.

Uysal, M. P. (2014). Improving first computer programming experiences: The case of adapting a
web-supported and well-structured problem-solving method to a traditional course. Contempo-
rary Educational Technology, 5(3), 198–217.

Vaca-Ca´rdenas, L. A., Bertacchini, F., Tavernise, A., Gabriele, L., Valenti, A., Olmedo, D.E, . .
. E. Bilotta (2015). Coding with Scratch: The design of an educational setting for Elementary
pre-service teachers. In 2015 International Conference on Interactive Collaborative Learning
(ICL) (pp. 1171–1177). IEEE. Florence, Italy.

Wang, X. M., & Hwang, G. J. (2017). A problem posing-based practicing strategy for facilitating
students’ computer programming skills in the team-based learningmode.Educational Technology
Research and Development, 65(6), 1655–1671.

Wei, X., Lin, L., Meng, N., Tan, W., & Kong, S. C. (2020). The effectiveness of partial pair
programming on elementary school students’ Computational Thinking skills and self-efficacy.
Computers & Education, 160, 104023.

Zhang, J. X., Liu, L., Ordóñez de Pablos, P., & She, J. (2014). The auxiliary role of information
technology in teaching: Enhancing programming course using alice. International Journal of
Engineering Education, 30(3), 560–565.

https://library.usc.edu.ph/ACM/CHI2019/1proc/paper656.pdf
https://doi.org/10.1177/0735633120973430
https://eprints.qut.edu.au/17818/1/c17818.pdf

	6 Improving Programming Skills Through an Innovative Collaborative Programming Model: A Case Study
	6.1 Introduction
	6.2 Literature Review
	6.3 The Model of Collaborative Programming
	6.4 Method
	6.4.1 Participants
	6.4.2 The Introduction to the Program
	6.4.3 Procedures

	6.5 Results
	6.5.1 Analysis of Programming Skills
	6.5.2 Analysis of Collaborative Problem Solving
	6.5.3 Interview Results
	6.5.4 Implications

	6.6 Conclusions
	References




