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Abstract Carbon nanotube has attracted many researchers from last two decades
due to its exceptional mechanical and multiuse properties. In this article, a semi-
analytical study is performed to determine the dynamic instability of a Functionally
Graded Carbon Nanotube Reinforced Composite (FG-CNTRC) plate exposed to
uniform and various non-uniform in-plane loadings. The efficient mechanical prop-
erties for the plate are estimated using rule of mixture where CNTs are distributed
aligned and distributed across the plates’ thickness such as Uniformly distributed
(UD) and Functionally Graded (FG-X and FG-O). Here, The FG-CNTRC plate is
modeled by means of higher order shear deformation theory (HSDT) and the stress
distributions (σ xx, σ yy, τ xy) within the plate because of non-uniform loadings are
calculated using Airy’s stress method. Then, the Hamilton’s principle is applied to
obtain the governing partial differential equations of the FG-CNTRCplate, andwhich
is later solved with the help of Galerkin’s method to convert it to ordinary (Mathieu
type) differential equations.Next, theseMathieu type equations are solved employing
Bolotin’s method to trace the instability boundaries corresponding to period 2T. At
last, the consequence of different parameters like volume fraction of CNT, types of
non-uniform loading, static load factor, types of CNTs distribution on instability of
the FG-CNTRC plate are examined.

Keywords FG-CNTRC · Galerkin’s method · Bolotin’s method · Non-uniform
loading

1 Introduction

Carbon nanotubes (CNT), because of its versatile nature in different applications has
drawn the attention ofmany investigators after its discovery by scientist Iijima (1991)
and which is due to its very effective thermal, electrical, and mechanical properties
(Ciecierska et al. 2013). CNTs when mixed with polymer epoxy is found to be

V. Singh · R. Kumar (B) · S. N. Patel
Department of Civil Engineering, Birla Institute of Technology and Science, Pilani 333031, India
e-mail: rajesh.kr@pilani.bits-pilani.ac.in

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2021
S. B. Singh et al. (eds.), Emerging Trends of Advanced Composite Materials in Structural
Applications, Composites Science and Technology,
https://doi.org/10.1007/978-981-16-1688-4_13

291

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-16-1688-4_13&domain=pdf
mailto:rajesh.kr@pilani.bits-pilani.ac.in
https://doi.org/10.1007/978-981-16-1688-4_13


292 V. Singh et al.

increasing the strength and stiffness of thematrix (Gojny et al. 2004; Liew et al. 2015)
and also increases the strength-weight and stiffness-weight ratios of the plate (Macías
et al. 2017). Mehrabadi et al. (2012) and Arani et al. (2011) reported in their study
that the increase in CNTs volume fraction within the matrix, increases the buckling
load carrying capacity of plate. In this viewpoint, Kiani (2017) has investigated an
FG-CNTRC plate loaded with parabolic loading for the analysis of buckling load,
where the plate has beenmodeled using FSDT to approximate the kinematics of plate
and solved using Ritz method and Airy stress function formulation. On similar field,
Malekzadeh andDehbozorgi (2016)works onFG-CNTRCskewplate to check its low
velocity impact behavior employing first order shear deformation theory (FSDT) and
solved via. finite elementmethod (FEM) combiningNewmark andNewton–Raphson
methods.

It is very well understood from the above investigation that how addition of CNTs
increase in strength and stiffness of the plate and which ultimately increases the
buckling load carrying capacity of the plate. But estimating the buckling load and
strength increment for composite plates is not only the parameters for the design of a
composite plate, the effected due to dynamic loading and dynamic instability plays a
important role in the design of aerospace related applications. Thus, the knowledge
for dynamic stability of plate is required for proper design of composite plates. In this
contextCNThas somebeneficial impact on the plate’s dynamics stability. Rafiee et al.
(2014) has investigated a piezoelectric FG-CNTRC plate with imperfection to study
the nonlinear dynamic instability using FSDT and von-kármán geometric nonlin-
earity and solve employing Galenkin’s method. Again, a temperature-dependent
FG-CNTR visco-plate was analyzed for its dynamic instability behavior by Kolahchi
et al. (2016) using FSDT and solved via. Generalized differential quadrature method
(GDQM). In the same context, Thanh et al. (2017) has investigated nonlinear dynamic
response of FG-CNTRC plate with temperature-dependent material properties using
Reddy’s higher order shear deformation theory (HSDT) and solved using Airy stress
function, Galerkin method and fourth-order Runge–Kutta method. A dynamic insta-
bility analysis of CNTs reinforced sandwich plate under uniform in-plane loading
was investigated by Sankar et al. (2016) after modeling the plate with both HSDT
and FSDT, which was later solved using shear flexible QUAD-8 serendipity element.
Lee (2018) performed the dynamic instability of the CNT reinforced fiber composite
skewplatewith delamination based onHSDTusing FEM. In an investigation by Pathi
and Vasudevan (2019), rotating CNT reinforced composite plate has been modeled
using FSDT for the dynamic instability in the presence uniform in-plane periodic
loading.

From the above literature survey, it can be predicted that study on dynamic insta-
bility of FG-CNTRC has been performed bymany researchers but those were mainly
oriented to uniform in-plane loading or thermal loading conditions but dynamic
instability of FG-CNTRC exposed to non-uniform loading is not yet report as per
the authors knowledge. The aim of this study is to investigate the dynamic insta-
bility region and behavior of UD-CNTRC and FG-CNTRC plate exposed to non-
uniform in-plane loading where CNTs are aligned and distributed throughout the
thickness of the plate. Mainly, the consequence of different parameters like volume
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fraction of CNT, types of non-uniform loading, types of CNTs distribution, static
load factor on dynamic instability of the UD-CNTRC and FG-CNTRC plate (FG-O
and FG-X) are examined and the results obtained from the current work will help in
appropriate design of UD-CNTRC and FG-CNTRC plate against dynamic instability
under non-uniform loading conditions.

2 Formulation

In the current study, a functionally graded carbon nanotube reinforced composite
(FG-CNTRC) plate is semi-analytically analyzed for dynamic instability using the
formulation, as stated in this section. The constituents used in each lamina are
SWCNT (chiral indices (n0, m0) = (10, 10)) and polymer matrix (epoxy resin). The
effective mechanical properties of the lamina (CNT embedded matrix) are obtained
using rule of mixture technique as given in next subsection. Figure 1 shows the
pictorial representation of the FG-CNTRC plate and CNTs distribution across the
thickness of plate.

Fig. 1 Schematic view of a UD-CNTRC plate, b non-uniform loading c UD-CNTRC, d FG-X
CNTRC and e FG-O CNTRC
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Table 1 Various cases of
CNTs distribution as a
function thickness (Kiani
2017)

Distribution of CNTs in CNTRC plate VCNT

UD V_cnt

FG-O 2V_cnt
(
1 − 2 |z|

h

)

FG-X 4V_cnt
|z|
h

2.1 The Rule of Mixture

The effective mechanical properties of the FG-CNTRC plate are obtained using the
rule of mixtures. However, the scale dependent properties of nanocomposite media
are accounted using efficiencyparameterswhich ismentioned in result and discussion
section. According to the rule, the effective mechanical properties are estimated as:

E11 = η1VCNT E
CNT
11 + VmEm (1)

η2

E22
= VCNT

ECNT
22

+ Vm

Em
(2)

η3

G12
= VCNT

GCNT
12

+ Vm

Gm
(3)

VCNT + Vm = 1 (4)

μ12 = V_cntμ
CNT
11 + Vmμm (5)

In Eqs. (1)–(5), η1, η2, and η3 are the efficiency parameters. The efficiency param-
eters are considered to equate the values acquired of shear modulus and Young’s
modulus of the current modified rule of mixtures with that of the results acquired
according to the molecular dynamics simulations (Shen 2011). Besides, ECNT

11 ,
ECNT
22 , and GCNT

12 are the elastic moduli and shear modulus of SWCNTs, respec-
tively. Moreover, Em and Gm are the properties of isotropic matrix. Also, VCNT and
Vm denotes the volume fraction of CNTs andmatrix, respectively (Kiani 2017) (Table
1).

The volume fraction of all these cases is equal to V_cnt although the distribution
of the CNTs are different in all cases.

2.2 Kinematics of CNTRC Plate

In the current study, the CNTRC plate is modeled considering HSDT developed
by Reddy (1985). The displacement fields according to this theory, such that the
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transverse shear strains at both the top and bottom surfaces are zero, for rectangular
plate is as stated below:

u = u0 + zϕx − 4z3

3h2
(
ϕx + w0

,x

)
(6)

v = v0 + zϕy − 4z3

3h2
(
ϕy + w0

,y

)
(7)

w = w0 (8)

In the above equations, u, v, and w indicate the displacements of a material point
(x, y) which is at a distance ‘z’ away from the neutral surface of the plate in the
three principal directions. Similarly, u0, v0 and w0 denote the displacements of the
point on the neutral surface. ϕx and ϕy represent the rotation of the cross-section
perpendicular to the x-axis and y-axis, respectively. The suffix (),x and (),y symbolize
the differentiation with respect to x and y respectively. To simplify Eqs. (6) and (7),
(ϕx + w0

,x ) is represented by φ0
x and (ϕy + w0

,y) is represented by φ0
y . On further

simplifying these equations (Eqs. 6 and 7) as per Soldatos (1991),

u = u0 − zw0
,x + f (z)φ0

x (9)

v = v0 − zw0
,y + f (z)φ0

y (10)

w = w0 (11)

where f (z) = z
(
1 − 4z2

3h2

)
. At ‘z’ distance ahead of the neutral surface of the plate,

the strain–displacement equations can be written as:

εxx = ε0xx − zw0
,xx + f (z)φ0

x,x (12)

εyy = ε0yy − zw0
,yy + f (z)φ0

y,y (13)

γxy = γ 0
xy − 2zw0

,xy + f (z)φ0
x,y + f (z)φ0

y,x (14)

γxz = u,z + w,x = f ′(z)φ0
x (15)

γyz = v,z + w,y = f ′(z)φ0
y (16)

where, ε0xx , ε
0
yy and γ 0

xy are the strains at the neutral surface of the plate as defined in
Eqs. (17)–(19).
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ε0xx = u0,x (17)

ε0yy = v0
,y (18)

γ 0
xy = u0,x + v0

,y (19)

According to constitutive law, the stress and strain of a lamina are related as:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

σxx

σyy

τxy

τyz

τxz

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

=

⎡
⎢⎢⎢⎢⎢⎣

Q11 Q12 0 0 0
Q12 Q22 0 0 0
0 0 Q66 0 0
0 0 0 Q44 0
0 0 0 0 Q55

⎤
⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

εxx

εyy

γxy

γyz

γxz

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(20)

where, Qij (i, j = 1, 2, 6) refers to the plane stress material stiffness constants which
are expressed in terms of engineering constants of CNT embeddedmatrix as follows:

Q11 = Q22 = Ehm/
(
1 − ν2

hm

)
, Q12 = νhm Ehm/

(
1 − ν2

hm

)
,

Q66 = Q44 = Q55 = Ehm/2(1 + νhm).

The force, moment, and additional moment resultants in curvature due to
additional changes are related to strains as defined in Eqs. (21)–(24).

⎧⎨
⎩

Nxx

Nyy

Nxy

⎫⎬
⎭ =

⎡
⎣
A11 A12 A16

A12 A22 A26

A16 A26 A66

⎤
⎦
⎧
⎪⎨
⎪⎩

ε0xx
ε0yy
γ 0
xy

⎫
⎪⎬
⎪⎭

+
⎡
⎣
B11 B12 B16

B12 B22 B26

B16 B26 B66

⎤
⎦
⎧
⎪⎨
⎪⎩

−w0
,xx

−w0
,yy

−2w0
,xy

⎫
⎪⎬
⎪⎭

+
⎡
⎣
C11 C12 C16

C12 C22 C26

C16 C26 C66

⎤
⎦
⎧⎪⎨
⎪⎩

φ0
x,x

φ0
y,y

φ0
x,y + φ0

y,x

⎫⎪⎬
⎪⎭

(21)

⎧⎨
⎩

Mxx

Myy

Mxy

⎫⎬
⎭ =

⎡
⎣
B11 B12 B16

B12 B22 B26

B16 B26 B66

⎤
⎦
⎧⎪⎨
⎪⎩

ε0xx
ε0yy
γ 0
xy

⎫⎪⎬
⎪⎭

+
⎡
⎣
D11 D12 D16

D12 D22 D26

D16 D26 D66

⎤
⎦
⎧⎪⎨
⎪⎩

−w0
,xx

−w0
,yy

−2w0
,xy

⎫⎪⎬
⎪⎭

+
⎡
⎣
E11 E12 E16

E12 E22 E26

E16 E26 E66

⎤
⎦
⎧⎪⎨
⎪⎩

φ0
x,x

φ0
y,y

φ0
x,y + φ0

y,x

⎫⎪⎬
⎪⎭

(22)
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⎧⎪⎨
⎪⎩

Ma
xx

Ma
yy

Ma
xy

⎫⎪⎬
⎪⎭

=
⎡
⎣
C11 C12 C16

C12 C22 C26

C16 C26 C66

⎤
⎦
⎧⎪⎨
⎪⎩

ε0xx
ε0yy
γ 0
xy

⎫⎪⎬
⎪⎭

+
⎡
⎣
E11 E12 E16

E12 E22 E26

E16 E26 E66

⎤
⎦
⎧⎪⎨
⎪⎩

−w0
,xx

−w0
,yy

−2w0
,xy

⎫⎪⎬
⎪⎭

+
⎡
⎣
F11 F12 F16

F12 F22 F26

F16 F26 F66

⎤
⎦
⎧⎪⎨
⎪⎩

φ0
x,x

φ0
y,y

φ0
x,y + φ0

y,x

⎫⎪⎬
⎪⎭

(23)

{
Qa

yz

Qa
xz

}
=
[
H44 H45

H45 H55

]{
φ0
y

φ0
x

}
(24)

where, Nxx , Nyy and Nxy are the force resultants; Mxx , Myy and Mxy are the moment
resultants; Ma

xx , M
a
yy , and Ma

xy are the additional moment resultants in curvature due
to additional change, and Qa

yz and Qa
xz are the transverse shear force resultants. The

additional change of curvature is denoted by φ0
x,x , φ

0
y,y and φ0

x,y + φ0
y,x . The overall

CNTRC plate stiffness constants; Aij, Bij, Cij, Dij, Eij, Fij, and Hij are expressed as
stated in Eqs. (25)–(27).

(
Ai j , Bi j , Di j

) =
h/2∫

−h/2

Qi j
(
1, z, z2

)
dz (i, j) = (1, 2, 6) (25)

(
Ci j , Ei j , Fi j

) =
h/2∫

−h/2

Qi j (1, z, f (z)) f (z)dz (i, j) = (1, 2, 6) (26)

(
Hi j
) =

h/2∫

−h/2

Qi j f
′(z) f ′(z)dz (i, j) = (4, 5) (27)

2.3 In-Plane Elasticity Problem

It is well known that due to uniform in-plane loading at the edge of the plate, the
developed pre-buckling stress distribution is also uniform and uni-axial and matches
with the applied loading. However, when the non-uniform loading is applied, these
three stresses components (σ ij , (i, j= x, y)) are developedwithin the plate. This needs
to be evaluated for estimating the internal stress resultants ((nij, (i, j = x, y)) due to
various non-uniform loadings which are applied in-plane at the edge of the plate,
to develop the governing equation of motions of the FG-CNTRC plate. The explicit
analytical expressions for the pre-buckling stresses (σ ij , (i, j = x, y)) within the FG-
CNTRC plate under non-uniform in-plane mechanical loadings are developed by
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solving in-plane elasticity problem using Airy’s approach. Furthermore, equilibrium
equation for in-plane stress in terms of Airy’s stress function (φ) for FG-CNTRC
plate is estimated using strain-compatibility conditions and is given as,

a22
∂4φ

∂x4
+ (2a12 + a66)

∂4φ

∂x2∂y2
+ a11

∂4φ

∂y4
= 0 (28)

and Airy’s stress function (φ) is described by

ηxx = ∂2φ

∂y2
, ηyy = ∂2φ

∂x2
, ηxy = − ∂2φ

∂x∂y
(29)

where, (A)−1 is the flexibility matrix of the FG-CNTRC plate.

(A)−1 =
⎡
⎣
a11 a12 a16
a12 a22 a26
a16 a26 a66

⎤
⎦ (30)

Here, A = Aij (i, j = 1, 2, 6) is the extensional stiffness of the CNTRC plate and
obtained using Eq. (25)

Now, Airy’s stress function is assumed in the form of series as,

φ(x, y) =
∞∑
i=1

ri (y) cos(αi x) +
∞∑
j=1

s j (x) cos
(
β j y
)+ R0y

2 (31)

where, αi = 2iπ/a, β j = 2 jπ/b, ri (y) and s j (x) are unknown functions in y and
x, respectively. Substituting the above expression in the in-plane stress equilibrium
Eq. (28) and then the coefficients of cos(αi x) and cos

(
β j y
)
are equated which gives

out the results in two ordinary differential equations in ri (y) and s j (x) respectively,

a11
∂4ri (y)

∂y4
− (2a12 + a66)α

2
i

∂2ri (y)

∂y2
+ a22α

4
i ri (y) = 0 (32a)

a22
∂4s j (x)

∂x4
− (2a12 + a66)β

2
j

∂2s j (x)

∂x2
+ a11β

4
j s j (x) = 0 (32b)

Substituting ri (y) = exp(λ2y) and s j (x) = exp(λ1x) in the above equations,
roots of the above equation are λ2 = ±αi1,±αi2 and λ1 = ±β j1,±β j2.

Where, αi1, αi2 = αi

√
(2a12+a66)±

√
(2a12+a66)

2−4a11a22
a11

and β j1, β j2 =

β j

√
(2a12+a66)±

√
(2a12+a66)

2−4a11a22
a22

. Since the functions ri (y) and s j (x) are symmetric

about y and x axes respectively, we can write
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ri (y) = Ri1 cos h(αi1y) + Ri2 cos h(αi2y) (33)

s j (x) = Sj1 cos h
(
β j1x

)+ Sj2 cos h
(
β j2x

)
(34)

Substituting the expressions for ri (y) and s j (x) in Eq. (31), the expression for
Airy’s stress function is written as,

φ(x, y) =
∞∑
i=1

{Ri1 cos h(αi1y) + Ri2 cos h(αi2y)} cos(αi x)

+
∞∑
j=1

{
Sj1 cos h

(
β j1x

)+ Sj2 cos h
(
β j2x

)}
cos
(
β j y
)+ R0y

2 (35)

The in-plane stress resultants are determined by substituting the stress function
(Eq. 35) in Eq. (29). Thus,

ηxx =
∞∑
i=1

cos(αi x)
(
Ri1 cos h(αi1y)α

2
i1 + Ri2 cos h(αi2y)α

2
i2

)

−
∞∑
j=1

cos
(
β j y
)(
Sj1 cos h

(
β j1x

)+ Sj2 cos h
(
β j2x

))
β2
j + 2R0 (36)

ηyy = −
∞∑
i=1

cos(αi x)(Ri1 cos h(αi1y) + Ri2 cos h(αi2y))α
2
i

+
∞∑
j=1

cos
(
β j y
)(
Sj1 cos h

(
β j1x

)
β2
j1 + Sj2 cos h

(
β j2x

)
β2
j2

)
(37)

ηxy =
∞∑
i=1

sin(αi x)αi (Ri1 sin h(αi1y)αi1 + Ri2 sin h(αi2y))αi2

+
∞∑
j=1

sin
(
β j y
)
β j
(
Si1 sin h

(
β j1x

)
β j1 + Si2 cos h

(
β j2x

)
β j2
)

(38)

The coefficients, Ri1, Ri2, Sj1, Sj2 in expressions ηxx (x, y), ηyy(x, y) and
ηxy(x, y) are calculated using in-plane stress boundary conditions, which are written
as

ηxx

(
±a

2
, y
)

= R(y), ηxy

(
±a

2
, y
)

= 0, ηxy

(
x,±b

2

)
= 0, ηyy

(
x,±b

2

)
= 0

(39)
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where, R(y) represents different types of in-plane non-uniform mechanical edge
load distributions. Satisfying the in-plane stress boundary conditions which results
in following set of simultaneous equations in the form of unknown coefficients,

Ri1 = −
(

αi2

αi1

)
sin h αi2b

2

sin h αi1b
2

Ri1 (40)

Sj1 = −
(

β j2

β j1

)
sin h β j2a

2

sin h β j1a
2

Sj2 (41)

α2
i

(
cos h

αi2b

2
− αi2

ai1
cot h

αi1b

2
sin h

αi2b

2

)
Ri2

= −
(
2

a

) ∞∑
j=1

β j2 cos
β j b
2

sin h β j1a
2

(
β j1 sin h

β j2a

2
I1 − β j2 sin h

β j1a

2
I2

)
Sj2 (42)

β2
j

(
cos h

β j2a

2
− β j2

β j1
cot h

β j1a

2
sin h

β j2a

2

)
Sj2 +

(
2

b

)
I0

= −
(
2

b

) ∞∑
i=1

αi2 cos
αi a
2

sinh αi1b
2

(
αi1 sin h

αi2b

2
I3 − αi2 sin h

αi1b

2
I4

)
Ri2 (43)

R0 = 1

b

b/2∫

0

R(y)dy (44)

Here,

I0 = 2

b/2∫

0

R(y) cos
(
β j y
)
dy, I1 = 2

a/2∫

0

cos h
(
β j1x

)
cos(αi x)dx,

I2 = 2

a/2∫

0

cos h
(
β j2x

)
cos(αi x)dx, I3 = 2

b/2∫

0

cos h
(
α j1y

)
cos(βi y)dy,

I4 = 2

b/2∫

0

cos h
(
α j2y

)
cos
(
β j y
)
dy.
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2.4 Governing Equations

Hamilton’s principle Eq. (45) is employed to get the equations of motion for the FG-
CNTRC plate in terms of forces, moments, additional moments and shear resultants,

δ(1)

⎛
⎝

t1∫

t0

(U − W − T )

⎞
⎠ = 0 (45)

In the above equation,U implies strain energy,W is the external work done by the
applied loads andT represents plate kinetic energy in the time interval t0 to t1 whereas
δ(1) denotes the first variation. The partial differential equations of the CNTRC plate
exposed to non-uniform in-plane compressive loading (time-dependent) as follows:

N̂xx,x + N̂xy,y = ρgu
0
,t t (46)

N̂xy,x + N̂yy,y = ρgv
0
,t t (47)

Mxx,xx + 2Mxy,xy + Myy,yy +
(
N̂xxw,x + N̂xyw,y

)
,x

+
(
N̂xyw,x + N̂yyw,y

)
,y

= ρgw
0
,t t (48)

Ma
xx,x + Ma

xy,y − Qa
xz = ρhφ

0
x,t t (49)

Ma
xy,x + Ma

yy,y − Qa
yz = ρhφ

0
y,t t (50)

In the above equations, ρg = ∫ h/2
−h/2 ρhmdz, ρh = ∫ h/2

−h/2 ρhmz2dz and N̂i j =[
Ni j − ni j

]
, where i, j = (x, y) and ni j are the internal stress resultants due to

applied non-uniform in-plane loading, and Ni j are the stress resultants due to the
large deformation. Therefore, N̂i j are the net stress resultants within the FG-CNTRC
plate.

2.5 Galerkin’s Method

The Galerkin’s method is employed to minimize the error by orthogonalizing it with
respect to a set of assumed basis shape function satisfying the prescribed boundary
conditions. Thismethod helps in reducing the governing partial differential equations
into the set of ordinary differential equations. The displacement fields that satisfy
the boundary conditions are expressed as,
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u0 =
M∗∑
m=1

N ∗∑
n=1

Umn(t)�
1
mn(x, y) (51)

v0 =
M∗∑
m=1

N ∗∑
n=1

Vmn(t)�
2
mn(x, y) (52)

w0 =
M∗∑
m=1

N ∗∑
n=1

Wmn(t)�
3
mn(x, y) (53)

φ0
x =

M∗∑
m=1

N ∗∑
n=1

Kmn(t)�
4
mn(x, y) (54)

φ0
y =

M∗∑
m=1

N ∗∑
n=1

Lmn(t)�
5
mn(x, y) (55)

where, Umn(t), Vmn(t), Wmn(t), Kmn(t) and Lmn(t) are undetermined coeffi-
cients. �1

mn(x, y), �2
mn(x, y), �3

mn(x, y), �4
mn(x, y) and �5

mn(x, y) are assumed
basis functions satisfying the boundary conditions of the given problem. m and
n are the numbers of modes considered in the approximate displacement fields(
u0, v0, wo, φ0

x andφ0
y

)
along x and y directions respectively. Here, the total number

of terms is 5×M∗ × N ∗. Where, M∗ and N ∗ are decided based on the converged
solution. The simply supported boundary conditions along all the edges are consid-
ered in which only normal in-plane displacement is allowed and in-plane tangential
displacements and out of plane displacements are restricted. This may be written as,

nxx − Nxx = −N̂xx , Ma
xx = Mxx = v0 = w0 = φ0

y = 0 at x = −a/2, a/2

and

nyy − Nyy = −N̂yy, Ma
yy = Myy = u0 = w0 = φ0

x = 0 at y = −b/2, b/2.

The trigonometric basis functions, which satisfy the above boundary conditions
at all, the edges of plate can be expressed as,

�1
mn(x, y) = sin

(mπx

a

)
cos
(nπy

b

)
(56)

�2
mn(x, y) = cos

(mπx

a

)
sin
(nπy

b

)
(57)

�3
mn(x, y) = cos

(mπx

a

)
cos
(nπy

b

)
(58)

�4
mn(x, y) = sin

(mπx

a

)
cos
(nπy

b

)
(59)
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�5
mn(x, y) = cos

(mπx

a

)
sin
(nπy

b

)
(60)

Galerkin’s method implies that,
˜

A Li
(
uo, vo, wo, φ0

x , φ
0
y

)
�i

mn(x, y) j dxdy = 0
for i = 1, 2, 3, 4, 5 and j = 1, 2, . . . M∗ × N ∗ where Liis the non-linear partial
differential equations and A is the total area of the plate.

2.6 Dynamic Instability

The applied time-dependent non-uniform in-plane load is considered to be of the form
(Nx = Ns+ Nt cos(pt)), where N s is the static load component, N t is the dynamic
load component and ‘p’ denotes the excitation frequency. The dynamic instability
behavior of the plate is explained by the following ordinary differential equation (i.e.,
Mathieu-Hill equation):

[M]
{
δ̈
}+ [K − (NS + NT cos(pt))[KG]]{δ} = {0} (61)

According to Eq. (61), [M] stands for mass matrix, [K ] stands for stiffness matrix
and [KG] stands for the geometric stiffness matrix of the plate. Bolotin’s method
(Bolotin 1964) is employed to trace the boundaries of instability regions. In the
above equations, dynamic and static loading component are varied as NT = ηNcr

andNS = μNcr such that (μ + η)≤ 1, whereNcr is the buckling load. The Eq. (61) has
periodic solutions on the boundaries, with period 2T. These solutions are assumed
in terms of Fourier series as shown in Eqs. (62) and (63), where ak and bk are
some arbitrary constants. In the graph of dimensionless excitation frequency (Ω) vs
dynamic load factor (η), the region between curves with period 2T is known as the
principal dynamic instability region. The region between curves of a different time
period, is the region of stability.

δ(t) = b0 +
∞∑

k=2,4,6

(
ak sin

kpt

2
+ bk cos

kpt

2

)
(62)

δ(t) =
∞∑

k=1,3,5

(
ak sin

kpt

2
+ bk cos

kpt

2

)
(63)

On substituting the above solutions of δ(t) in Eq. (61) and equating coefficients of
identical sine and cosine terms, we get a homogeneous algebraic equation in terms
of arbitrary constants ak and bk . For the solution to be non-trivial, the determinant
of coefficients of ak and bkmust be equal to zero. The equations thus obtained give
the boundaries of instability. Equation (64) gives the upper and lower boundaries
of the first-order approximation of principal dynamic instability region (period 2T ),
while Eq. (65) gives a corrected principal instability region considering second-order
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approximation.

∣∣ K ∗ ± 0.5βNcr KG −0.25Mp21
∣∣ = 0 (64)

[
K ∗ ± 0.5βNcr KG −0.5βNcr KG

−βNcr KG K · − 2.25Mp21

]
− p22

[
0.25M 0

0 0

]
= 0 (65)

where K*= [KL ]-NS[KG].

3 Result and Discussion

Following material properties is consider for the present study as per Kiani (2017).
The Young’s modulus (Em) is 2.5 GPa, Mass density (ρm) is 1150 kg/m3 and
Poisson’s ratio (μm) is 0.34 for matrix and for armchair single-walled carbon
nanotube (SWCNT) with chiral indices (n0 = m0 = 10) having T(k) = 300,
ECNT
11 = 5.6466Tpa, ECNT

22 = 7.08Tpa, GCNT
12 = 1.9445Tpa, μCNT

12 = 0.175
ρCNT = 1400 kg/m3. The efficiency parameters for three different CNTs volume
fraction are: η1 = 0.137 and η2 = 1.022 for V_cnt = 0.12, η1 = 0.142 and η2 = 1.626
for V_cnt = 0.17, and η1 = 0.141 and η2 = 1.585 for V_cnt = 0.28. Here, the efficiency
parameter η3 is considered equal to 0.7 η2. The shear modulus G13 = G12, whereas
G23 is 1.2 times of G12. The properties mentioned here will be used in the study
further unless mentioned separately. In this section, various non-uniform in-plane
edge loadings such as parabolic, concentrated, partial edge loading are considered
along with uniform loading for evaluating the buckling load and boundaries of insta-
bility of the FG-CNTRC plate. The various non-uniform in-plane loading functions
are given below,

Partial edge loading function is expressed as,

Ns = Nt = N̄0
b

d

(
d

b
+

∞∑
r=1

2

π

1

r
sin

rπd

b
cos

2rπy

b

)
(66)

Here, partial edge loading at the edge of the plate is modeled using a single Fourier
series along the y-direction. In which 50 terms (i.e., r = 1 to 50) in Fourier series
are considered for the converged pre-buckling stresses (σi j ,(i, j = x. y)) within the
CNTRC plate.

Parabolic loading function is expressed as,

Ns = Nt = 3

2
N̄0

(
1 − 4

y2

b2

)
(67)

Concentrated loading function is expressed as,
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Ns = Nt = N̄0

c
√

π
exp

(
− y2

c2

)
(68)

In this above expression, c = 1/24 is chosen based on converged pre-buckling
stresses (σi j , (i, j = x. y)) within the CNTRC plate. Here, the loading function for all
the different types of loadings is considered in such a way that total load (i.e., area
due to the loading distribution at the edge of plate) is same.

3.1 Validation Study

To validate the accuracy and effectiveness of the current semi-analytical model, the
obtained results of validation study from the present semi-analytical model along
with the published one has been carried out and presented in Table 2 for the buck-

ling load parameter
(
kcr = λcr b2

π2D ; D = E1h3

12(1−μ2
12)

)
of FG-CNTRC plates exposed to

parabolic in-plane edge loading Ns = N̄0

(
1 − 4y2

b2

)
for three cases of CNT distri-

bution patterns, four aspect ratios with simply supported boundary conditions. The
length-to-thickness ratio is chosen as b/h = 50, and CNTs volume fraction of set
to V_cnt = 0.17. The results are well matched with the published results of Kiani
(2017).

Table 3 presents the dimensionless fundamental frequencies parameter (�n =
ωna2/h

√
ρep/Eep) of FG-CNTRC plates under uniform edge loading for three

different CNT distribution patterns, three side-to-thickness ratios along with simply
supported (SSSS) boundary conditions. The length-to-thickness ratio is chosen as
b/h = 50, and the volume fraction of CNT (V_cnt ) is considered as 0.11, 0.14 and
0.17. The results are very well matched with the published results given by Zhu et al.
(2012).

Thefirst and second (corrected) order approximation of principal instability region
of a SSSS composite plate (a/b = 1, b/h = 25, 0/90/90/0, = V_cnt0) having the
mechanical properties as E1/E2 = 40, E2 = 6.595GPa, G12/E2 = 0.6,G23/E2 = 0.5,

Table 2 Buckling load coefficient (kcr ) of FG-CNTRC plate for V_cnt= 0.17 with b/h = 50

Distribution Method a/b

0.8 1 1.5 2

UD Kiani (2017) 85.8715 59.1758 32.8725 26.0732

Present 86.4724 59.1761 32.7528 26.0783

FG-X Kiani (2017) 122.1227 84.3354 45.5584 34.2909

Present 123.2382 84.3704 45.3957 34.2520

FG-O Kiani (2017) 47.4787 33.2042 20.3205 18.3286

Present 48.0089 33.4528 20.4415 18.4381
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Table 3 Comparison of dimensionless fundamental natural frequency (�n = ωna2/h
√

ρep/Eep)
of a simply supported square plate (a/b = 1) with different distribution of CNTs, volume fraction
of CNTs and edge-thickness ratios

V_cnt 0.11 0.14 0.17

b/h Distribution Method (1,1) (1,2) (1,1) (1,2) (1,1) (1,2)

10 UD Zhu et al.
(2012)

13.532 17.7 14.306 18.362 16.815 22.063

Present 13.59 17.85 14.391 18.552 16.882 22.257

FG-X Zhu et al.
(2012)

14.616 18.646 15.368 19.385 18.278 23.541

Present 14.711 18.803 15.425 19.51 18.21 22.553

FG-O Zhu et al.
(2012)

11.55 16.265 12.338 17.003 14.282 20.091

Present 11.395 16.301 12.188 16.902 14.168 20.224

20 UD Zhu et al.
(2012)

17.355 21.511 18.921 22.867 21.456 26.706

Present 17.336 21.495 18.931 22.885 21.428 26.68

FG-X Zhu et al.
(2012)

19.939 23.776 21.642 25.359 24.735 29.809

Present 19.935 23.763 21.621 25.335 24.631 29.665

FG-O Zhu et al.
(2012)

13.523 18.486 14.784 19.462 16.628 22.739

Present 13.43 18.423 14.703 19.418 16.552 22.714

50 UD Zhu et al.
(2012)

19.233 23.408 21.354 25.295 23.697 28.987

Present 19.159 23.286 21.322 25.205 23.613 28.829

FG-X Zhu et al.
(2012)

22.91 26.66 25.555 29.192 22.416 33.434

Present 22.904 26.635 25.499 29.065 22.287 33.187

FG-O Zhu et al.
(2012)

14.302 19.373 15.801 20.563 17.544 23.783

Present 14.252 19.279 15.772 20.494 17.494 23.697

ν12 = 0.25, G13 = G12, ν13 = ν12 is compared with the principal instability region
given by Moorthy et al. (1990) in Fig. 2. It can be seen that the region of instability
is in proximity to those of the result given by authors.

3.2 Influence of CNT Distribution

The dimensionless buckling load coefficient (kcr) and dimensionless fundamental
natural frequency (Ωn) of the SSSS UD-CNTRC and FG-CNTRC plate for (b/h =
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Fig. 2 Validation of principal instability region of SSSS composite plate (a/b = 1, b/h = 25,
0/90/90/0, V_cnt = 0)

20) under uniform and different types of non-uniform loadings with varying volume
fraction of CNT (V_cnt ) is given in Table 4. It can be noted from the results that
the dimensionless fundamental natural frequency (Ωn) has no effect of the types of
loading applied at the edge of the plate rather it is affected by the volume fraction of
CNT and type of CNT distribution over the thickness of the plate. While dimension-
less buckling load coefficient (kcr) is affected by both the type of loading applied at
the edges of the CNTRC plate and volume fraction of CNT (V_cnt ). It is also observed
that the value of kcr decreases in sequences as uniform > parabolic > partial edge (d/b
= 0.25) > concentrated loading but rises with the increase in CNTs volume fraction,
this is because the increase in CNTs volume fraction increases the stiffness of the
FG-CNTRC plate while concentration of loading at the edge of the plate, decreases
its stiffness. Also, the Kcr value of FG-X distribution is higher in comparison to Kcr

of other two distributions, which shows that FG-X shape distribution increases the
stiffness of the plate.

As per Fig. 3, the dynamic instability region (DIR) of a SSSS UD-CNTRC and
FG-CNTRC plate (a/b = 1, V_cnt = 0.17, b/h = 20) under in-plane partial edge
(d/b = 0.25) loading has been plotted for different CNT distributions with respect
to the Kcr of FG-O. The origin of instability of FG-X distribution is having higher
frequency compared to UD and FG-O type distribution, which shows that the FG-X
has higher stiffness of plate than the other two. At the same time, the width of DIR at
dynamic load factor λd = 0.5 in decreasing sequence is given as 8.17 h

√
(Eep/ρep),

6.38h
√
(Eep/ρep), 5.56 h

√
(Eep/ρep) for FG-O, UD and FG-X respectively. This is

because UD have uniformly distributed CNTs, FG-O has CNTs distribution as such
that the top and the bottom layers have minimum and middle layer has maximum
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Table 4 Dimensionless buckling load coefficient (kcr) and dimensionless fundamental natural
frequency (Ωn) for different CNT distribution model of CNTRC plate (b/h = 20) subjected to
uniform and different types of non-uniform loadings with varying volume fraction (V_cnt )

Distribution V_cnt Kcr / Ωn Uniform Parabolic Partial edge (d/b =
0.25)

Concentrated

UD 0.12 Kcr 28.103 21.716 15.049 11.834

Ωn 15.853 15.853 15.853 15.853

0.17 Kcr 42.348 32.765 22.688 18.249

Ωn 19.359 19.359 19.359 19.359

0.28 Kcr 61.765 47.658 33.066 25.178

Ωn 23.113 23.113 23.113 23.113

FG-X 0.12 Kcr 36.774 28.418 19.692 15.500

Ωn 18.133 18.133 18.133 18.133

0.17 Kcr 55.812 43.188 29.904 24.100

Ωn 22.223 22.223 22.223 22.223

0.28 Kcr 78.881 60.8847 42.230 32.412

Ωn 26.117 26.117 26.117 26.117

FG-O 0.12 Kcr 17.171 13.269 9.195 7.237

Ωn 12.393 12.393 12.393 12.393

0.17 Kcr 25.650 19.848 13.743 11.076

Ωn 15.067 15.067 15.067 15.067

0.28 Kcr 38.080 29.392 20.387 15.647

Ωn 18.150 18.150 18.150 18.150
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Fig. 3 Effect of CNTs distribution on principal instability zone of a SSSS UD and FG-CNTRC
plate (a/b = 1, V_cnt = 0.17, b/h = 20) under in-plane partial edge (d/b = 0.25) loading
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Fig. 4 Effect of type of CNTs distribution and volume fraction on principal instability zone of a
SSSS FG-CNTRC plate (a/b = 1, b/h = 20) under in-plane partial edge (d/b = 0.25) loading

volume fraction CNTs, while, FG-X has CNTs distribution as such that the top and
bottom layers havemaximum andmiddle layer has minimum volume fraction CNTs.

In case of Fig. 4, dynamic instability region for both the types of CNTs distribution
(FG-X and FG-O) are plotted with different volume fraction of CNT (V_cnt ) for a
SSSS FG-CNTRC plate (a/b = 1, b/h = 20) under in-plane partial edge (d/b = 0.25)
loading with respect to the Kcr of FG-O with V_cnt = 0.12 and it is observed that the
DIR of FG-X with V_cnt = 0.12 is overlapped to DIR of FG-O with V_cnt = 0.28,
which signifies that the stiffness of CNTRC plate having FG-X with V_cnt = 0.12 is
equal to CNTRC plate having FG-O with V_cnt = 0.28.

3.3 Influence of Various Non-uniform Loadings on Dynamic
Instability Region

As per Fig. 5, it is observed that under the action of various non-uniform in-plane
periodic loadings, the width of principal instability zone of a SSSS FG-X CNTRC
plate (a/b = 1, b/h = 20, V_cnt= 0.17) with static load factor (λs) = 0 is minimum
for uniform loading and maximum for concentrated loading. The width of the
dynamic instability region (DIR) at dynamic load factor (λd) = 0.5 can be repre-
sented as 5.23h

√
(Eep/ρep), 6.75h

√
(Eep/ρep), 8.40h

√
Eep/ρep), 9.73h

√
(Eep/ρep)

and 12.05h
√
(Eep/ρep) for uniform, parabolic, partial edge (d = 0.5), partial edge

(d = 0.25) and concentrated loadings respectively with respect to the buckling load
of concentrated loading.
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Fig. 5 Effect of different loading conditions on principal instability zone of a SSSS FG-X CNTRC
Plate (a/b = 1, b/h = 20, λs = 0)

This reveals that with increase in concentration of loads at the edge of FG-X
CNTRC plate, stiffness of the plate decreases which leads to the increase in the
width of instability region. Moreover, the origin of stability region is same for all
the cases of loading due to λs = 0. Again, from Fig. 6, it is observed that under
the action of various non-uniform periodic loadings, a SSSS FG-X CNTRC plate
(a/b = 1, b/h = 20, V_cnt = 0.17) with static load factor (λs) = 0.4 shows that
the origin of instability region is different for every loading as compared to Fig. 5.
The width of the dynamic instability region (DIR) at dynamic load factor (λd) =
0.5 can be represented as 5.74h

√
(Eep/ρep), 7.65h

√
(Eep/ρep), 9.86h

√
Eep/ρep),

11.75h
√
(Eep/ρep) and 15.26h

√
(Eep/ρep) for uniform, parabolic, partial edge (d =

0.5), partial edge (d = 0.25) and concentrated loadings respectively with respect to
the buckling load of concentrated loading.

4 Conclusion

In this article, authors have investigated the dynamic instability region of a simply
supported (SSSS) FG-CNTRCplate under uniform and various types of non-uniform
in-plane loadings. Here, the effect of different parameters like CNTs volume fraction,
types of non-uniform loading, CNTs distribution types (UD, FG-X or FG-O), static
load factor on dynamic instability of the CNTRC plate are examined. The remarks
from the present investigation are summarized as,
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Fig. 6 Effect of different loading conditions on principal instability zone of a simply supported
FG-X CNTRC Plate (a/b = 1, b/h = 20, λs = 0.4)

• With the increase in CNTs volume fraction for any type of CNTs distribution in
the FG-CNTRC plate, the stiffness of the plate increases which results in reducing
the width of instability region.

• It was observed that the instability region for FG-X with V_cnt = 0.12 is same as
the instability region of FG-O with V_cnt = 0.28. Which indicates the affect of
CNT distribution on composite plate and minimization in use of volume fraction
of CNT.

• Out of various loading conditions, concentrated load has maximum width of
instability region and uniform loading shows minimum width of instability.
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