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Abstract A mathematical model based on the first-order shear deformation theory
and the von Karman’s nonlinear kinematics for buckling, postbuckling and failure
analysis of elastic–plastic Functionally Graded Material (FGM) plate under thermo-
mechanical is presented. The FGM plate with continuously varying properties along
thickness is modeled as a laminate composed of multiple perfectly-bonded layers
made of isotropic and homogeneous material having layer-wise constant composi-
tion. The thermoelastic properties of FGM are calculated using rule of mixtures and
Tamura-Tomota-Ozawa model (TTO model). Whereas, the elastic–plastic material
properties are evaluated in accordance with the TTO model, assuming the ceramic
phase of FGM to be elastic and the metal phase to be elastic–plastic. Further, the
elastic–plastic analysis of FGM is assumed to follow J2-plasticity with isotropic
hardening. Parametric studies are conducted to investigate the effects of plasticity,
material inhomogeneity, and thermomechanical loading conditions on the elastic–
plastic buckling, postbuckling behavior, and the ultimate load capacity of FGMplate.
The postbuckling response of FGM plate is found to be greatly affected by the plas-
ticity consideration. FGM plate with elastic material properties exhibited a contin-
uous increase in the postbuckling strength; whereas, the postbuckling strength of an
elastic–plastic FGM plate decreases initially and finally, ultimate failure of the plate
occurs.
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Abbreviations

FEM Finite element method
FGM Functionally graded material
FSDT First order shear deformation theory
TD Temperature-dependent
TID Temperature-independent
TTO model Tamura-Tomota-Ozawa model

List of Symbols

x, y, z Cartesian coordinate axis
u, v, w Displacements components in x, y and z directions, respectively
u0, v0,w0 Mid-plane translations corresponding to x, y and z directions, respec-

tively
θx Normal rotation in xz-plane
θy Normal rotation in yz-plane
E Young’s modulus
ν Poisson’s ratio
α Thermal expansion coefficient
T Temperature (in Kelvin)
Vm Volume fraction of metal
Vc Volume fraction of ceramic
h Thickness of FGM plate
n Power law exponent
q Stress-strain transfer ratio
σy Yield strength of FGM
H Plastic tangent modulus
{ε} Strain tensor
{σ } Stress tensor
f Yield surface
κ Strain hardening parameter{
εp
}

Plastic strain tensor
{	σ } Incremental stress tensor
{	ε} Incremental strain tensor
{	εe} Incremental elastic strain tensor
{	εT } Incremental thermal strain tensor
{	εT D} Incremental strain tensor due to temperature-dependent material

properties
{	εP} Incremental plastic strain tensor[
Dep

]
Elasto–plastic constitutive matrix

	ue Incremental displacement vector within element
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	a Incremental nodal displacement vector
N Interpolation functions
[B] Strain–displacement matrix
	U Incremental strain energy
	Wex Incremental external work
︷︸︸︷
	P Incremental tractions at plate surfaces
︷︸︸︷
	Pe Incremental forces at plate edges
[K ] Global stiffness matrix
δ Deflection at a particular iteration
{	RM} Mechanical incremental load vector
{	RT } Thermal incremental load vector
ψ Residual force vector
[KT ] Tangent stiffness matrix
λ Non-dimensionalized in-plane buckling load
Nx(ory) In-plane compressive load in x-direction or y direction
(
2
3εp: εp

)1/2
Magnitude of maximum plastic strain

Superscript

e Element form
T Transpose matrix
l Linear
nl Non-linear

Subscript

c Ceramic material
m Metal material
i Iteration number
max Maximum

1 Introduction

The advancement in materials has been associated with the man’s evolution since
ancient time. Yesterday, it was the age of stone, bronze, and iron and today it is the age
of advanced materials, such as advanced composites, smart materials and function-
ally graded materials (FGMs). The most lightweight composite materials with high
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specific-strength and weight have been used successfully in the aircraft and defense
industries and other engineering applications. However, due to strong mismatch of
material properties at the interface in the structures made from traditional composites
have several disadvantages, like debonding, delamination, plastic deformation and
cracking problems, especially at high temperatures and pressures. In order to manu-
facture thermal barrier materials and also to get rid of the issues associated with the
use of conventional laminated composites, a concept of FGMs was proposed in 1984
by the material scientists of Japan (Shiota andMiyamoto 1997). Functionally graded
materials (FGMs), the next generation composites, are inhomogeneous material with
a smooth and gradual variation in their properties along some specified direction(s),
obtained by varying the volume fractions of the constituents (Suresh and Mortensen
1998).

Normally, there are two constituents of FGMs—ceramics and metals. Ceramic
provides better thermal, wear and oxidation characteristics, whereas metal imparts
high toughness,mechanical strength, andmachinability properties to anFGM.Owing
to the favorablemechanical and thermal properties, FGMoffers awide range of appli-
cations in various engineering fields requiring high temperature resistance combined
with good mechnical strength. The promising advantages of using FGMs include
decreased thermal stresses (Choules and Kokini 1996), good bonding strength in
between joints of dissimilar materials (Howard et al. 1994), and the reduced possi-
bility of catastrophic failure of brittle ceramic materials (Bao and Wang 1995).
Further, FGMs are also used in many other applications; for instance, in rocket
heat shields, heat engine components, heat exchanger tubes, plasma facings, fusion
reactors, nuclear reactor plant, thermo-electric generators, and electrical insulating
applications (Mahamood and Akinlabi 2017).

Further, thin-walled elements, such as plates and shells, widely used inmany engi-
neering fields, such as civil, aerospace, mechanical, naval, space engineering, and
more recently, in micro-engineering, are more vulnerable towards buckling failure
due to large deflections, and/or high stresses under in-plane thermo-mechanical
loading conditions. Due to the fact that themembrane stiffness of plate-like structures
is significantly higher than the bending stiffness that causes these types of structures
to absorb a large amount ofmembrane strain energywith less deformations.However,
the deformations are much higher when these structures absorb the same amount of
bending energy. If the plate is loaded in such a way that most of its strain energy
is contributed by the membrane energy, and under some conditions, such as initial
imperfection, eccentric loading, etc., if the stored membrane energy is converted
into the equivalent bending energy at some critical load point (called buckling load),
then the plate becomes unstable and deforms dramatically in transverse direction
producing excessive out-of-plane deflection. This destabilizing phenomenon is well
known as buckling. It is well known that for the plate like structures, the buckling
does not mean the ultimate failure, and these structures can carry extra load beyond
the buckling point which is known as postbuckling strength (Singh andKumar 1999).

In some applications, these plate-like structural elements are required primarily
to resist buckling, and in others, they must carry a load well into the postbuckling
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range to yield weight savings. Thus, understanding their buckling and postbuckling
behavior is needed for the efficient design of these structural elements.

Moreover, it is also noteworthy to mention that the structural failure can occur
due to the material failure and/or geometrical instability. Before the material failure,
the structure may show inelastic response producing plastic deformation which in
turn causes a destabilizing effect on structures under in-plane compression and/or
shear loads produced by mechanical and/or thermal loading conditions. Further,
due to the safety reasons, machine elements working under the elastic limit, are
also designed to carry overloads that can lead to inelastic deformations (Bazant
et al. 1993). Therefore, elastic–plastic analysis is required to ensure safe and reliable
design of suchmachine components. Being an important design criterion, the elastic–
plastic buckling and postbuckling analysis of homogenous isotropic and composite
plates has been reported in various studies (Narayanan and Chow 1984; Shanmugam
et al. 1999; El-Sawy, and Martini 2004; Paik 2005; Ghavami and Khedmati 2006;
Estefen et al. 2016). In addition, a few studies have also been reported on the inelastic
buckling and postbuckling response of FGM structures (Huang andHan 2014; Zhang
et al. 2015). The elastic–plastic stability and failure analysis of both imperforated
and perforated FGMplates under thermal and/or mechanical loading conditions have
been carried out by authors (Sharma and Kumar 2017a, b).

In this chapter, the researchfindings, alongwith the completemathematical formu-
lation, of elastic–plastic buckling, postbuckling and failure analysis of FGM plate
under thermomechanical loading conditions, considering the temperature dependent
material properties, are reported. The thermoelastic properties (i.e., elastic constants
and thermal expansion coefficients) of FGM plate are calculated using theoretical
and numerical micromechanics based models—Voigt’s model, and Tamura-Tomota-
Ozawa model (TTO model). As per the assumption of TTO model, the ceramic
phase of FGM is considered to be elastic, whereas the metal phase is assumed to
be elastic–plastic. The non-linear FEM formulation for plate analysis is based on
the first-order shear deformation theory (FSDT) and von-Kármán’s nonlinear kine-
matics. Further, J2-plasticity with isotropic hardening is adopted to perform the
elastic–plastic analysis of FGM plate. The incremental solution technique based on
Newton–Raphson method is utilized for the solution of nonlinear algebraic equa-
tions. Numerical studies are conducted on the buckling, postbuckling and failure
responses of elastic–plastic FGM plate, considering the temperature-dependent
as well as temperature-independent material properties, under thermomechanical
loading condition.

2 Layer-Wise Model of FGM Plate

An FGM plate with continuously varying properties along thickness direction is
modeled as a laminate, as shown in Fig. 1, with multiple perfectly-bonded layers of
isotropic material having layer-wise constant composition, as used in many of the
previous studies (Jin 2002; Shao 2005; Shakeri et al. 2006; Shakeri and Mirzaeifar
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Fig. 1 Layer wise model of
a continuous FGM plate

2009; Cinefra et al. 2010; Cinefra and Soave 2011; Yaghoobi et al. 2015). The FGM
plate is assumed tobe consistingof ceramic andmetal phases and the volume fractions
of the material constituents are assumed to follow a power law distribution in the
thickness direction. In the present study, a coordinate system (x, y, z) is attached, as
shown in Fig. 1, in the mid-plane of the plate measuring a, b and h as length, width,
and thickness, respectively.

The temperature-dependent material properties Young’s modulus E and thermal
expansion coefficient α of FGM plate are calculated as follows (Touloukian and
Center 1967).

Pj (T ) =
{
P0
(
P−1T−1 + 1 + P1T + P2T 2 + P3T 3

)
, f or T > 0◦ K

P0 f or T ≤ 0◦ K
(1)

In Eq. (1), Pj (T ) represents the temperature-dependent material properties (E or
α), and P0,P−1, P1, P2, and P3 are material specific coefficients given in the Table 1
for both the constituents of FGM: Al2O3 (a ceramic phase) and Ni (a metal phase).
The effect of temperature on the values of material properties of Al2O3 and Ni is
depicted in Fig. 2.



Thermomechanical Elastic–Plastic Stability and Failure Analysis … 253

Table 1 Temperature-dependent coefficients for thermo-elastic properties of Al2O3 and Ni (Reddy
and Chin 1998)

Property to be
evaluated

Material Coefficients

P0 P−1 P1 P2 P3

E (in Pa) Al2O3 349.55e9 0.0 −3.853e−4 4.027e−7 −1.673e−10

Ni 223.95e9 0.0 −2.794e−4 −3.998e−9 0.0

α (in 1/K) Al2O3 6.8260e−6 0.0 1.838e−4 0.0 0.0

Ni 9.9209e−6 0.0 8.705e−4 0.0 0.0
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Fig. 2 Variation of Young’s modulus (E) and thermal expansion coefficient (α) with temperature

2.1 Effective Thermoelastic Material Properties of FGM
Plate

The volume fractions of ceramic and metallic constituents of FGM plate are varied
in the thickness direction according to the power law, as given below:

Vm(z) =
(
z

h
+ 1

2

)n

; Vc(z) = 1 − Vm(z). (2)

Here, subscripts c and m represent the ceramic and the metallic constituents,
respectively, andndenotes power lawexponent that determines thematerial gradation
profile across the thickness coordinate z, varying from h

2 to − h/2.
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In the present study, the effective elastic material properties of two-phase FGM
are calculated using TTO model (i.e., also called modified rule-of-mixtures) (Gian-
nakopoulos et al. 1995). The TTO model has been used extensively in the litera-
ture (Giannakopoulos et al. 1995; Jin et al. 2003; Gunes et al. 2011) for accurately
predicting the thermoelastic constants of FGM. In TTOmodel, the effective Young’s
modulus of two-phase materials, like FGM, is given in terms of Young’s moduli (i.e.,
Ec and Em) and volume fractions (i.e., Vc and Vm) of the constituting phases (i.e.,
ceramic and metallic phases), and it is expressed as under (Tamura et al. 1973):

E(z, T ) =
{
Vm(z)Em(T )

q + Ec(T )

q + Em(T )
+ (1 − Vm(z))Ec(T )

}

×
{
Vm(z)

q + Ec(T )

q + Em(T )
+ (1 − Vm(z))

}−1

, (3)

where, q represents the stress transfer parameter and it depends upon the properties
of constituent materials as well as on the microstructure interaction in the FGM
material. The value of q ranges from 0 to ∞; q → ∞ represents the case when the
constituent materials deform identically in the loading direction (i.e., Voigt model),
while q = 0 corresponds to the case wherein the constituent materials experience
the same stress level (i.e., Reuss model). Due to the complicated microstructure of
FGM, the constituent elements in FGM neither experience equal deformation nor
equal stress. Generally, a nonzero finite value of q is assumed to approximately reflect
the actual effects of micro-structural interaction in FGM. For instance, for Ni-Al2O3

(Giannakopoulos et al. 1995) and TiB-Ti (Jin et al. 2003) FGMs, the value of q is
assumed to be 4.5 GPa and for FGM containing Al and SiC phases (Bhattacharyya
et al. 2007; Gunes et al. 2011), it is taken as 91.6 GPa.

In the present study, the Poisson’s ratio is assumed to be constant (equal to the
average value of of Poisson’s ratio of metal and ceramic phases) i.e., ν = 0.31, along
the thickness of the FGM plate is used. Equation (3) is used to calculate the Young’s
modulus of FGM plate at a particular value of thickness coordinate. The thermal
expansion coefficient at a particular thickness coordinate of FGM plate is calculated
using the simple rule-of-mixtures, as expressed below:

α(z, T ) = αc(T )Vc(z) + αm(T )Vm(z). (4)

2.2 Effective Elastic–Plastic Material Properties of FGM
Plate

The yield strength and plastic tangent modulus of FGM are calculated by the same
TTOmodel, as described in the previous Sect. 2.1. According to the TTOmodel, the
overall failure, after elastic–plastic response, of an in-homogenous material, having
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Table 2 Temperature-dependent coefficients to evaluate yield strength and tangent modulus of Ni
(Williamson et al. 1995)

Property to be evaluated Coefficients

P0 P−1 P1 P2 P3

σym (in Pa) 2.81e6 0.0 516.68e3 −8.79e2 −3.56e −1

Hm (in Pa) 91.75e7 0.0 930.64e4 −15.88e3 75.72e −1

brittle and ductile phases, is governed by the ductile constituent (Jin et al. 2003). This
assumption of TTO model is applicable for FGMs (containing ceramic—a brittle
phase, and metal—a ductile phase). This is because of the reason that the ductility
and good shear strength induced in the FGM by the metal phase relax the stress
concentration induced around the inherited cracks and flaws of ceramics through the
plastic deformation and hence, eliminate the possibility of brittle failure of FGM
(Bandyopadhyay et al. 2000; Soh et al. 2000).

Based on the aforementioned assumption, the overall yield strength and tangent
modulus of the FGM plate are calculated using q (stress transfer parameter),
σym (yield strength of metal) and Hm (tangent modulus of metal), as follows
(Giannakopoulos et al. 1995):

σy(z, T ) = σym(T )

[
Vm(z) +

(
q + Em(T )

q + Ec(T )

)
Ec(T )

Em(T )
(1 − Vm(z))

]
, (5)

H(z, T ) =
{
Vm(z)Hm(T )

q + Ec(T )

q + Hm(T )
+ (1 − Vm(z))Ec(T )

}

×
{
Vm(z)

q + Ec(T )

q + Hm(T )
+ (1 − Vm(z))

}−1

. (6)

In the present study, the metallic phase is assumed to follow bilinear hardening
behavior, and the elastic–plastic behavior of FGM is also predicted under the same
assumption (Giannakopoulos et al. 1995; Williamson et al. 1995). The values of
coefficients to calculate the temperature-dependent yield strength σym and tangent
modulus Hm of Ni (i.e., using Eq. 1) are given in Table 2 (Williamson et al. 1995).

3 FGM Plate Formulation

3.1 Displacement Field

In the present study, the displacement field is based on first-order shear deformation
theory (FSDT), wherein the displacement field, as expressed in Eq. (7), is written in
terms of the mid-plane (z = 0) translations u0, v0,w0 and the independent normal
rotations θx and θy in the xz- and yz-planes, respectively.
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u(x, y, z) = u0(x, y) + zθx (x, y)

v(x, y, z) = v0(x, y) + zθy(x, y)

w(x, y, z) = w0(x, y) (7)

3.2 Strain–Displacement Relationship

Incorporating the von-Kármán’s assumptions—derivatives of u and v with respect to
x, y, and z are small—and noting that w is independent of z, the strain components
for moderately large deformations can be written in the following forms (Reddy
2004):

εx = ∂u0
∂x

+ z

(
∂θx

∂x

)
+ 1

2

(
∂w0

∂x

)2

,

εy = ∂v0
∂y

+ z

(
∂θy

∂y

)
+ 1

2

(
∂w0

∂y

)2

,

γxy = ∂u0
∂y

+ ∂v0
∂x

+ z

(
∂θx

∂y
+ ∂θy

∂x

)
+
(

∂w0

∂x

∂w0

∂y

)
,

γxz = ∂w0

∂x
+ θx ,

γyz = ∂w0

∂y
+ θy . (8)

Rewriting Eq. (8) into matrix form as

{ε} =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

εx

εy

γxy

γxz

γyz

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

= {ε}l + {ε}nl , {ε}l =
{

ε0p
0

}
+
{
zε0b
ε0s

}
, (9)

{ε}nl =
{

εNL
p

0

}
, (10)

wherein, the linear in-plane strain ε0p, the bending strain ε0b , shear strain ε0s , and the
nonlinear in-plane strain terms εNL

p are written as follows:

{
ε0p
} =

⎧
⎪⎨

⎪⎩

∂u0
∂x
∂v0
∂y

∂u0
∂y + ∂v0

∂x

⎫
⎪⎬

⎪⎭
,
{
ε0b
} =

⎧
⎪⎨

⎪⎩

∂θx
∂x
∂θy
∂y

∂θx
∂y + ∂θy

∂x

⎫
⎪⎬

⎪⎭
(11)
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{
ε0s
} =

{
∂w0
∂x + θx
∂w0
∂y + θy

}

, and
{
εNL
p

} =

⎧
⎪⎪⎨

⎪⎪⎩

1
2

(
∂w0
∂x

)2

1
2

(
∂w0
∂y

)2

(
∂w0
∂x

∂w0
∂y

)

⎫
⎪⎪⎬

⎪⎪⎭
. (12)

3.3 Constitutive Relations

The elastic and elastic–plastic stress–strain relationship for FGM plate with temper-
ature dependent material properties under thermomechanical loading conditions are
discussed in the following paragraphs:

3.3.1 Elastic Constitutive Relations

Based on the generalized Hooke’s law, the elastic stress–strain relations are given by
Reddy (2003) and Sharma and Kumar (2018):

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

σx

σy

τxy

τyz

τxz

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

=

⎡

⎢⎢⎢⎢⎢
⎣

Q11 Q12 0 0 0
Q12 Q22 0 0 0
0 0 Q44 0 0
0 0 0 k21Q55 0
0 0 0 0 k22Q66

⎤

⎥⎥⎥⎥⎥
⎦

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

εx

εy

γxy

γxz

γyz

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

(13)

or, in the matrix form, we can write:

{σ } = [D]{ε}, (14)

Here, k21 and k22 are the shear correction factors, and Qi j are the stiffness matrix
components through the thickness of FGM plate and they are functions of material
properties, as mentioned below:

Q11 = E(z, T )

1 − ν2
, Q12 = Q13 = Q23 = νQ11, Q22 = Q33 = Q11,

Q44 = Q55 = Q66 = E(z, T )

(1 + ν)
, (15)

where, E(z, T ) is Young’s modulus that varies across the thickness of FGM plate at
any temperature T and is calculated using Eq. (3), and ν is the Poisson’s ratio that is
assumed to be constant through the thickness of FGM plate.
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3.3.2 Thermo-Elasto-Plastic Constitutive Relations

The elastic–plastic analysis is carried out under the assumption of von-Mises yielding
criterion, and a uniform expansion is assumed to be followed by the yield surface in
the stress space with increasing plastic deformation (Hill 1998). The yield function
can be expressed as:

f = √
3J2 − σY ield , (16)

where,

J2 = 1

6

[(
σx − σy

)2 + (
σy − σz

)2 + (σx − σz)
2 + 6

(
τ 2
xy + τ 2

yz + τ 2
xz

)]
. (17)

Under the strain hardening effect, the initial yield surface expands with plastic
deformation, and the equation of yield surface for thermo-elasto-plastic deformation
can be written as:

f = f (σ, κ, T ), (18)

wherein, κ and T are the strain hardening parameter and temperature, respectively.
Using chain rule to differentiate f :

d f =
(

∂ f

∂σ

)T

dσ + ∂ f

∂κ
dκ + ∂ f

∂T
dT . (19)

As hardening parameter (κ) is a function of plastic strain (εp), Eq. (19) can be
rewritten as:

d f =
(

∂ f

∂σ

)T

dσ + ∂ f

∂κ

(
∂κ

∂εp

)
dεp + ∂ f

∂T
dT . (20)

The equilibrium conditions under small incremental plastic deformations are
maintained only if the plastic strain energy is put equal to zero; hence, we have:

d f =
(

∂ f

∂σ

)T

dσ + ∂ f

∂κ

(
∂κ

∂εp

)
dεp + ∂ f

∂T
dT = 0. (21)

Now the total incremental strain includes the incremental parts of elastic strain
(	εe), thermal strain (	εT ), strain due to temperature-dependent material properties
(	εT D), and the plastic strain

(
	εp

)
, i.e.,

	ε = 	εe + 	εT + 	εT D + 	εp. (22)

Using Hooke’s law, to calculate the total incremental stress (	σ )
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	σ = [D]
{
	ε − (

	εT + 	εT D + 	εp
)}

. (23)

Putting the value of total incremental stress (dσ ) into Eq. (21), we get

d f =
(

∂ f

∂σ

)T

[D]
{
	ε − (

	εT + 	εT D + 	εp
)}

+ ∂ f

∂κ

(
∂κ

∂εp

)
	εp + ∂ f

∂T
	T = 0. (24)

In the associative flow rule of plasticity, the plastic potential function is taken same
as the yield function (Chakrabarty 2012) by which the incremental plastic strain can
be written as:

	εp = dλ
∂ f

∂σ
. (25)

The thermal strain (	εT ) and the strain due to temperature-dependent material
properties (	εT D) can be written as:

	εT = α	T, and 	εT D = ∂[D]−1

∂T
σ	T . (26)

Let,

(
∂ f

∂σ

)T

[D]

(
∂ f

∂σ

)
− ∂ f

∂k

(
∂k

∂εp

)T(
∂ f

∂σ

)
= ηi . (27)

Substituting Eqs. (25)–(27) into Eq. (24), to obtain the flow variable dλ as:

dλ =
⎡

⎢
⎣

(
∂ f
∂σ

)T
[D]

{
	ε −

(
α	T + ∂[D]−1

∂T σ	T
)}

+ ∂ f
∂T 	T

ηi

⎤

⎥
⎦ (28)

The expression for incremental stress 	σ can be evaluated inserting Eqs. (24)–
(28) into Eq. (23) as:

	σ = [D]

[
(	ε) −

(
αdT + ∂[D]−1

∂T
σdT

)]

− [D]
∂ f

∂σ

⎡

⎢
⎣

(
∂ f
∂σ

)T
[D]

{
	ε −

(
αdT + ∂[D]−1

∂T σdT
)}

+ ∂ f
∂T dT

ηi

⎤

⎥
⎦ (29)

Rearranging Eq. (29) to obtain:
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	σ =
[

[D] − 1

ηi
[D]

∂ f

∂σ

(
∂ f

∂σ

)T

[D]

][
(	ε) −

(
α	T + ∂[D]−1

∂T
σ	T

)]

− 1

ηi
[D]

∂ f

∂σ

∂ f

∂T
	T . (30)

The term

[
[D] − 1

ηi [D] ∂ f
∂σ

(
∂ f
∂σ

)T
[D]

]
in Eq. (30) is the elasto-plastic constitutive

matrix
[
Dep

]i
, that establishes the thermo-elasto-plastic constitutive relationship as

follows:

	σ = [
Dep

]i{
	ε′} (31)

	ε′ = (	ε) − (
	εt

)
(32)

	εt = α	T + ∂[D]−1

∂T
σ	T + 1

ηi
[D]

[
Dep

]−1 ∂ f

∂σ

∂ f

∂T
	T (33)

3.4 Non-linear FEM Formulation
for Thermo-Elastic–Plastic Analysis

The procedure to derive the finite element equations for thermo-elastic–plastic anal-
ysis of FGM plate is presented in this section. The incremental displacement vector
(	ue) within an element is interpolated as:

	ue = N	a, (34)

where, 	a is the incremental nodal displacement vector and N is the interpolation
functions. The incremental strain tensor (	ε) is expressed in the terms of incremental
nodal displacement vector (	a) and strain–displacement matrix (B), as

	ε = B	a, (35)

the incremental strain energy (	U ) may be written as

	U = 1

2

∫

V

	ε′T	σdV, (36)

using Eqs. (31), (32) and (35), to rewrite Eq. (36) in the following form:
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	U = 1

2
	aT

∫

V

BT
[
Dep

]i
B	adV − 	aT

∫

V

BT
[
Dep

]i
	εt dV

+ 1

2

∫

V

	εt
[
Dep

]i
	εt dV, (37)

The incremental external work (	Wex ) due to incremental tractions at plate
surfaces (i.e., z = ±h/2) and plate edges can be written as:

	Wex = 	aT
∫

A

NT
︷︸︸︷
	P dA + 	aT

∫

s

N T
︷︸︸︷
	Pe ds, (38)

where,

︷︸︸︷
	P =

[
	Px 	Py 	 Pz 	Mx 	My

]T
, (39)

and, the edge forces are given by

︷︸︸︷
	Pe =

[
	P

e
x 	P

e
y 	 P

e
z 	M

e
x 	M

e
y

]T

=
h/2∫

h/2

[(
	Pe

x 	Pe
y 	Pe

z 	Me
x 	Me

y

)
dz
]T

(40)

The associated equilibrium equation is obtained by applying the principle of
variation over the functional (	� = 	U − 	Wex ) with respect to the incremental
displacement (	a), as:

∂(	�)

∂(	a)
= ∂(	U − 	Wex )

∂(	a)
= 0 (41)

Using Eqs. (37) and (38) into Eq. (41) to get the equilibrium equation:

⎛

⎝
∫

V

BT
[
Dep

]i
BdV

⎞

⎠	a −
∫

V

BT
[
Dep

]i
	εt dV

−
∫

A

NT
︷︸︸︷
	P dA −

∫

s

N T
︷︸︸︷
	Pe ds = 0. (42)

Value of 	εt is substituted from Eq. (33) to rewrite Eq. (42) in the following
manner:
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⎛

⎝
∫

V

BT
[
Dep

]i
BdV

⎞

⎠	a −
∫

V

BT
[
Dep

]i

×
{
α	T + ∂[D]−1

∂T
σ	T + 1

ηi
[D]

[
Dep

]−1 ∂ f

∂σ

∂ f

∂T
	T

}
dV

−
∫

A

NT
︷︸︸︷
	P dA −

∫

s

N T
︷︸︸︷
	Pe ds = 0. (43)

Finally, the set of nonlinear algebraic equations is obtained in the following marix
form:

[K ]	a = 	R, (44)

where, [K ] is the structural stiffness matrix given by:

[K ] =
∫

V

BT
[
Dep

]i
BdV, (45)

In Eq. (44), 	R represents combined thermomechanical incremental load vector
due to mechanical loading (	RM) and thermal loading (	RT ), i.e.,

	R = 	RM + 	RT , having (46)

	RM =
∫

A

NT
︷︸︸︷
	P dA +

∫

s

N T
︷︸︸︷
	Pe ds, (47)

and

	RT =
∫

V

BT
[
Dep

]i
(

α	T + ∂[D]−1

∂T
σ	T + 1

ηi
[D]

{[Dep]i
}−1 ∂ f

∂σ

∂ f

∂T
	T

)
dV

(48)

The solution for nonlinear algebraic equations posted in Eq. (44) is obtained using
Newton–Raphson iterative solution technique. Newton–Raphson solution technique
is based on Taylor’s series expansion, and it is convenient to rewrite Eq. (44) as:

ψ{δ} = [K (δ)]{δ} − 	R, (49)

where, ψ is the residual force and [K (δ)] is structural stiffness matrix, which is a
function of unknown deflection δ. If for an initial estimate of the displacement vector
{δ}i (i.e., for ith iteration) we obtain residual forces ψ{δ}i �= 0, then an improved
solution {δ}i+1 is obtained by equating the linearized Taylor’s series expansion of
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ψ{δ}i+1 in the neighborhood of {δ}i to zero, as below:

ψ{δ}i+1
∼= ψ{δ}i + KT	{δ}i = 0, (50)

where, 	{δ}i is the incremental displacement vector, and KT is the tangent stiffness
matrix evaluated at {δ}i and is given by:

KT =
[
∂ψ{δ}i
∂[δ]

]
. (51)

The improved solution is then obtained as:

{δ}i+1 = {δ}i + 	{δ}i . (52)

To improve on the numerical stability and convergence of the solution, the load
is applied in small increments. The iterative solution is continued until the following
convergence criterion is satisfied.

δi+1 − δi ≤ β, (53)

where,β is sufficiently small number, i.e., 0.005%.

3.5 Ultimate Load Capacity of FGM Plate

An FEM based strategy that is followed bymany authors in the literature (Narayanan
and Chow 1984; Shanmugam et al. 1999; El-Sawy and Martini 2004; Paik 2005;
Ghavami andKhedmati 2006;Estefen et al. 2016) to predict the ultimate load capacity
of elastic–plastic homogeneous isotropic plates is extended to predict ultimate load
capacity of elastic–plastic FGM plate. To get the ultimate load carrying capacity of
FGM plate, the plate is subjected to the in-plane compressive load in an incremental
manner that initially produces recoverable elastic stress and strain. However, a large
value of load causes yielding in FGM plate which is followed by recoverable elastic
strains as well as irrecoverable plastic strains. As the load further increases, beyond
a particular value of load the proportion of plastic strain reaches to an extent where
the plate completely loss of its stiffness resulting in the complete collapse and hence,
ultimate failure of the FGM plate; the corresponding load is termed as ultimate load
capacity. It is noteworthy that in the present elastic–plastic analysis the load is applied
in small incremental load steps to ensure that the analysis closely follows the actual
load-response curve of FGM plate.
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3.6 Computer Implementation

A general purpose finite element package ANSYS® (Ansys Inc 2014) [by encrypting
amacro in APDL (i.e., ANSYS Parametric Design Language)] was utilized to imple-
ment the formulation and perform thermomechanical elastic–plastic buckling, post-
buckling and failure analysis of FGM plate, with temperature-dependent material
properties.

The layerwise elastic–plastic FGM plate is modeled using eight-noded shell
element, wherein the thermo-elastic–plastic analysis of FGM plate is carried out
in two stages. In the first stage the linear buckling analysis is conducted to obtain
the critical buckling load and corresponding mode shape of the FGM plate. The
linear analysis is followed by nonlinear incremental procedure in which the load is
applied gradually in small increments and the corresponding deformation is obtained
by updating the temperature-dependent material properties at each load step. It is
evident that some sort of imperfection must be introduced into the perfect geometry
of the plate to trace its postbuckling response, without any numerical issues, using
incremental finite element analysis (Barbero 2013). In the present analysis, the bifur-
cation buckling in the FGMplate is initiated by superimposing the imperfection equal
to b/1000 (where, b represents width of the plate) and of the form corresponding to
the first buckling mode shape.

4 Elastic–Plastic Analysis of FGM Plate

The aim of this section is to present the findings, reported by the authors (Sharma and
Kumar, 2017b), obtained by the application of the developed computational model to
investigate the thermo-elastic–plastic respose of Ni/Al2O3 FGMplate under in-plane
compressive loading conditions..

The thermoelastic material properties as well as elastic–plastic strength param-
eters of FGM plate are taken as non-linear function of temperature, as defined by
Eq. (1). Temperature-dependent coefficients for calculating the thermo-elastic prop-
erties of Al2O3 and Ni are given in Table 1, whereas the elastic–plastic strength
coefficients to evaluate yield strength and tangent modulus of metallic phase (i.e.,
Ni) are given in Table 2. The thermoelastic and elastic–plastic material properties
of FGM plate are calculated using rule of mixtures and TTO model, respectively, as
discussed in Sect. 2.

Numerical studies are conducted to examine the effects of material, geometrical,
and loading parameters on the thermo-elastic–plastic response of FGM plate, and
the results are presented in the following form as:

Non-dimensional applied load, � = Nx (or y) b2

Emh3
;

Non-dimensionalized maximum transverse deflection, w = wmax
h ;

Magnitude of maximum plastic strain,
(
εp
)
eq = (

2
3εp: εp

)1/2
.
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where, Ec is the Young’s modulus of ceramic; h represents the thickness of FGM
plate; b is thewidth of plate; Nx(ory) is the in-plane compressive load in x- direction (or
y-direction) per unit edge length, applied at x = a (or y = b); wmax is the maximum
transverse deflection, and εp : εp is the scalar product of the plastic strain tensor
corresponding to failure point (Fig. 3).

The postbuckling and failure response of both elastic and elastic–plastic simply-
supported FGM (for power law exponent, n = 1) square plate (of side 1 m) with
b/h = 100 having temperature-dependent (TD) material properties under various
thermomechanical loading conditions are shown in Fig. 4. The corresponding values
of yield and failure loads are also marked in the Fig. 4 for the elastic–plastic case.
It is to mention here that the yielding point on a particular load–deflection curve
corresponds to the minimum value of the load at which elastic to plastic transition
of the metallic phase present anywhere in the FGM takes place, whereas the failure
point corresponds to the load at which the FGM plate completely losses its stiffness
due to excessive plasticity.

It can be observed from the results that irrespective of thermal load, the post-
buckling response of FGM plate is significantly affected by the consideration of
plasticity and the elastic–plastic FGM plate depicts decrease in the postbuckling
strength followed by the ultimate failure.

Fig. 3 In-plane boundary conditions for a simply-supported (i.e., w = 0 on all edges) FGM plate
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Fig. 4 Buckling and
postbuckling response for
elastic and elastic–plastic
FGM plate under different
thermomechanical loadings
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Morover, the effect of material property variation and temperature rise on the
buckling andpostbuckling behaviors of an elastic–plastic FGMplate subjected to uni-
axial mechanical compressive loading combined with different thermal load values
(i.e.,	T = 25, 50 and 100 ◦C) is also examined and the corresponding postbuckling
paths are shown inFig. 4. It is tomention here that differentmaterial gradation profiles
across the thickness of FGM plate are obtained by changing the value of power law
exponent n (i.e., 1, 2 and 3) in Eq. (2).

As depicted in Fig. 5, the postbuckling strength of FGMplate (at a specific value of
maximum transverse deflection) decreases considerably with increasing temperature
rise. It is also noteworthy that the effect of temperature rise is to increase the rate of

Fig. 5 Nonlinear buckling,
postbuckling and failure
reasponse of elastic–plastic
FGM plate with different
value of power law exponent
(n) under thermomechanical
loading
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Fig. 6 Varition in the
equivalent plastic strain
across the thickness of FGM
plate with different power
law exponents (i.e., n) under
thermomechancial loading
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plastic flow (as observed subsequently in Fig. 6) which leads to ultimate failure of
FGM plate at a relatively lower value of mechanical load. Figure 4 also shows that
irrespective of temperature rise, the ultimate load carrying capacity of FGM plate
increases with the increase in value of power law index that can be attributed to
the higher proportion of ceramic (i.e., Al2O3), possessing higher resistance towards
buckling failure.

Furthermore, the effect ofmaterial gradation profile on the equivalent plastic strain
across the thickness of FGM plate at a particular value (taken equal to the failure
load for FGMwith n = 1) of thermomechanical loading is shown in Fig. 6. The flow
of plasticity in FGM plate for a particular value of n, is found to be more dominating
at the upper region (with higher metal proportion) in comparison to the lower part
(with higher ceramic proportion).

Moreover, at a particular value of thickness, the plasticity effect is more
pronounced in the case of FGM plate with n = 1. It is again demonstrated in Fig. 6
that the effect of higher temperature is to provoke more plasticity effects in the FGM
plate.

The postbuckling paths for elastic–plastic FGMplate (n=1) subjected to uni-axial
and biaxial loading with different load ratios (i.e.,Ny/Nx) under uniform temperature
rise (i.e.,	T ) are depicted in Fig. 7. It can be observed fromFig. 7 that irrespective of
the value of temperature rise, the maximum buckling load, postbuckling strength (for
a particular value of deflection) and failure load are obtained for FGM plate under
uni-axial compression (i.e., for Ny/Nx = 0), and with the addition of compressive
load in y-direction, the values of buckling load, postbuckling strength (for a particular
value of deflection) and failure load decrease.
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Fig. 7 Effect of loading on
elastic–plastic buckling and
postbuckling behavior of
FGM (for n = 1) plate under
thermomechanical loading
(Sharma and Kumar 2017b)
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5 Conclusions

A mathematical formulation for elastic–plastic buckling and postbuckling analysis
of FGM plate with temperature-dependent material properties is presented. A layer-
wise modeling approach of FGM plate is used, wherein the graded thermoelastic
material properties of FGM plate are assumed to be governed by the rule of mixtures
and TTO model, whereas the elastic–plastic material characteristics (i.e., yielding
strength and tangent modulus) are varied as per the TTO model.

The governing equations for elastic–plastic FGM plate are developed using varia-
tional principle. Subsequently, the nonlinear finite element formulation based on the
first-order shear deformation theory and the von Karman’s nonlinear kinematics is
presented. The incremental solution algorithm based on Newton–Raphson method is
used to solve the resulting nonlinear algebraic equations. A computer implementa-
tion, through ANSYS®, of the formulation is also presented to carry out the analysis.
Thereafter, a study on elastic–plastic analysis of FGM plate under in-plane compres-
sion caused by the mechanical loading combined with uniform and constant temper-
ature rise is conducted. The effects of plasticity, material inhomogenity, and thermo-
mechanical loading on elastic–plastic buckling, postbuckling behavior and ultimate
load capacity of FGM plate are analyzed under the framework of J2 deformation
theory associated with the isotropic hardening flow rule.

Based on the study, the following important conclusions are drawn:

• Postbuckling response ofFGMplate is found to begreatly affected by the plasticity
consideration. FGM plate with elastic material properties exhibits a continous
increase in the postbuckling strength; whereas, the postbuckling strength of an
elastic–plastic FGM plate decreases initially and finally, ultimate failure occurs.
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• Along the thickness of FGMplate, the effect of plastic flow is observed to bemore
dominating in the metal rich region of FGM plate than the ceramic rich region.

• Effect of rise in temperature difference (i.e.,	T ) is to develop more plastic strain,
irrespective of the value of material gradation index n and the mechanical loading
condition.

• Buckling load and postbuckling strength of elastic–plastic FGMplate are found to
be significantly affected by itsmaterial gradation profile; anFGMplatewith higher
ceramic proportion depicted higher buckling load and postbuckling strength.

• Effect of bi-axial loading is to reduce the buckling load, postbuckling strength (for
a particular value of deflection), and failure loads, for all values of temperature
difference.
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