
A Transformer Based Pitch Sequence
Autoencoder with MIDI Augmentation

Mingshuo Ding and Yinghao Ma(B)

Peking University, Beijing 100871, China
{dingmingshuo,yhma625}@pku.edu.cn

Abstract. Despite recent achievements of deep learning automatic
music generation algorithms, few approaches have been proposed to eval-
uate whether a single-track music excerpt is composed by automatons or
Homo sapiens. To tackle this problem, we apply a masked language model
based on ALBERT for composers classification. The aim is to obtain
a model that can suggest the probability a MIDI clip might be com-
posed condition on the auto-generation hypothesis, and which is trained
with only AI-composed single-track MIDI. In this paper, the amount of
parameters is reduced, two methods on data augmentation are proposed
as well as a refined loss function to prevent overfitting. The experiment
results show our model ranks 3rd in all the 7 teams in the data challenge
in CSMT (2020). Furthermore, this inspiring method could be spread to
other music information retrieval tasks that are based on a small dataset.

Keywords: ALBERT · Autoencoder · MIDI truncation · Small
dataset

1 Introduction

Methods based on machine learning have been widely proposed for automatic
music generation since significant progress on deep learning. Nowadays, more
and more melodies can be composed by artificial intelligence through using the
pitch and length of the notes in human music as primary inputs to mimic humans
[1–3]. Unlike checking counterpoint in multi-track melodies and evaluation self-
similarity matrix in music structure analysis, few objective algorithms or indi-
cators have been put forward to assess whether a single-track short melody is
created by a machine or a person. Although several attempts has been made,
such as measures from information theory to compare Bach’s music [4], or proba-
bility transfer relation with the N-gram model to compare British and American
folk music melody [3], most of the classification model on composers works are
based on human opinions, namely, the participants listened to a music excerpt
and then judged whether it was composed by a human or an AI [5–8].

However, the result of listening tests might contain individual or group dif-
ferences, which makes them difficult to be compared among different people,
especially when the amount of samples is small. Finding a relatively common
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2021
X. Shao et al. (Eds.): CSMT 2020, LNEE 761, pp. 198–207, 2021.
https://doi.org/10.1007/978-981-16-1649-5_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-16-1649-5_17&domain=pdf
https://doi.org/10.1007/978-981-16-1649-5_17

A Transformer Based Autoencoder 199

and objective approach to classify the composer of a short piece of melodies in
various musical styles can make different music generation models comparable.
The purpose of this study is to find an objective and effective method to generate
an indicating value of whether a music clip is human-composed by analyzing the
AI-made melodies.

Features extracting is an essential component for music series related tasks.
For the single-track data without chords, there are some methods that rely on
N-gram [3,9]. However, this approach is difficult to model the long-term depen-
dence and the following dependence, and the data is sparse with the exponential
growth of probability as sequence length increases, which leads to poor general-
ization ability. Besides, Bidirectional Encoder Representations from Transform-
ers (BERT, Fig. 1) [10] might be a promising technique except its large amount
of parameters such as learning an embedding for a sequence after parameters
reduction [3].

Fig. 1. BERT uses a bidirectional transformer. [10]

In fact, BERT as a pre-trained models [10–12] has dominated the field of
Natural Language Processing (NLP) in the past two years. This model uses self-
supervised learning to encode contextual information to obtain a powerful and
universal representation. This representation can improve performance, espe-
cially in situations where data for downstream tasks is limited. More recently,
BERT-like models have been applied to speech processing [13–16]. However, such
models usually maintain a large number of parameters in both speech tasks and
text tasks, requiring a large amount of data and memory for training and compu-
tation. Therefore, it might be prone to overfit when pre-training data is relatively
scarce, such as in music related cases.

A Lite BERT (ALBERT) [17] is a simplified version of BERT that shares the
same parameters at all layers and decompose the embedding matrix to reduce
most of the parameters. Although the number of parameters is reduced, the
representation learned in ALBERT is still robust and task agnostic, so that
ALBERT can achieve similar performance to BERT in the same downstream
task [18], thus is also regarded as obtaining characteristics about the input itself.

200 M. Ding and Y. Ma

In this paper, a masked language model (MLM) which is based on ALBERT
is introduced into MIDI processing and a new self-supervised model is proposed.

The rest of this article is organized as follows. In Sect. 2, the dataset used
in the study is described as well as the data preprocessing and strategies used
for data augmentation. In Sect. 3, the pipeline of the research, the methods on
prevention of overfitting are demonstrated, as well as the detail of the ALBERT
model and the approach to evaluate the probability of each composer. Section 4
covers the main experimental processes and results. The fifth section we have
made the summary and the prospect.

2 Dataset

2.1 Training Data

The data set is provided in the data challenge of Conference of Sound and Music
Technology (CSMT) 2020 [19]. The training data only contains the music gen-
erated by artificial intelligence algorithms which includes 6000 MIDI files. Each
file is single melodic music whose speed is between 68BPM and 118BPM. Each
melody is 8-bar length, without complete phrase structure. In fact, complete
music sentences are always with 8 or 16 bars and this suggests that the start
point of each music excerpt is not the beginning of any music sentences. Besides,
it should be noted that the melodies in the training data set are generated by
several machine models trained with data in two unannounced different music
genres. More information can be found at the website1.

Despite many open source MIDI datasets on the internet such as the one on
reddit with 3.65 GB multi-track MIDI in all sorts of music genre2, the single-track
music clips like what is provided in the data challenge are rare, not to mention
the uncertainty on music genre. As a consequence, it is difficult to extract a
convincing main melody especially condition on similar music range and notes
distribution. Therefore, training did NOT use any human composed data.

2.2 Data Preprocessing

For the specific problem of comparing the similarities of melodies, the rhythm
and pitch are important characteristics, since people usually pay attention to
them when they perceive music melodies [20]. Thus, the MIDI sequence of 8
bars can be segmented into 128 hexadecimal notes or 256 thirty-second notes,
as the speed and the starting and ending time of the notes are marked. Whether
the unit of the 8-bar music is a hexadecimal note or a thirty-second note depends
on the shortest note length in the given MIDI, and there are 256 notes or so in a
music sequence for most of the cases. Considering the fact that it is meaningless
in music to divide a quarter note into twelve equal parts in the vast majority

1 http://www.csmcw-csmt.cn/data/2020/ai-composition-recognition2020/?
from=timeline.

2 https://www.reddit.com/r/datasets/comments/3akhxy.

http://www.csmcw-csmt.cn/data/2020/ai-composition-recognition2020/?from=timeline
http://www.csmcw-csmt.cn/data/2020/ai-composition-recognition2020/?from=timeline
https://www.reddit.com/r/datasets/comments/3akhxy

A Transformer Based Autoencoder 201

of cases, there is no musical necessity to do so except for compatibility with the
relative rarity of triplets and sixteenth notes. Thus, we classify all triplets as
three quavers or three sixteenth notes in the same probability, which leads to
the total length of a music sequence not being 256. Given that the speed of each
music piece is uniformed as the tempo of each music piece is similar to Andrate,
the feature of speed in each MIDI sequence is not taken into consideration. In
this way, each single-track MIDI clip is turned into a pitch sequence.

2.3 Data Augmentation

Although a noticeable amount of parameters has been decreased in ALBERT
relative to BERT parameters, 6000 MIDI data are somehow relatively poor for
training. As a consequence, it is vital to adopt some measures on data augmen-
tation. Unfortunately, data augmentation methods usually used in NLP tasks
[21] can be seldom used in music series processing.

Randomly swapping is a common approach, but the exchange of music notes
may cause non-negligible differences in feeling for a human listener. Music clips
for the composition of humanity, for example several sixteenth notes in a crotchet
or half note exchange with other sounds, could lead to a strange auditory experi-
ence, and let the audience regard the music piece as machine-created. Synonym
replacement is not suitable in a sequence of music analysis, because there is no
specific semantic like natural language for music notes or sequences. Therefore,
it’s hard to define whether two notes are “synonym”. Even replacing the octave
“synonym” is unacceptable in a lyrical semiquaver with a long note, which results
in a clear change in music expressed in human emotion, though little differences
infrequency spectrum. In addition, Random insert and delete run a high risk
which could make melody strange and weird. It is also hard to change the music
from major mode to minor mode for augmentation because the mode is hard
to find with only single-track especially without music sentences in it. More-
over, the tempo change augmentation can be hardly used either as the tempo is
already uniformed. So we proposed two methods to augment data.

Transposition. The first data augmentation measure taken in our research is
transposition in music tunes. Since music does not make a significant difference,
at least not in the respect whether it is generated by human beings or artificial
intelligence if it is just changed in music mode.

Each time, a transposition raises or lowers all the notes in the same pitch
sequence by a same random music interval. All the positions the MIDI clips
might be transposed to is restricted by both the MIDI range 128 and the music
range, that is the highest note subtract the lowest note. The number of cases for
a certain music piece num is as follows, including zero transposition:

num = 128 − highest + lowest + 1. (1)

202 M. Ding and Y. Ma

Fig. 2. Data augmentation approaches: transposition and random truncation

Each MIDI transposition is implemented with the same possibility to all the
cases. In this way, several relatively same melodies in different music tunes are
generated by the transposition data augmentation.

Random Truncation. In addition, BERT’s training results contain position
embedding and thus absolute position information [22], for example the word at
the beginning of the sentence may be regarded as the subject of the sentence.
But the dataset neither includes complete phrase information nor cadence in
multi-track, therefore, some location information in the training set retained by
BERT belongs to some kind of over-fitting. In order to give up this information,
we randomly delete the first few notes of each pitch sequence for the model.

3 Methods

The pipeline of our model is shown in Fig. 2. First of all, the training set will
undergo a data preprocessing part as described above and be expanded by the
two data augmentation approaches. Secondly, a MLM task based on ALBERT is
trained with refined loss function for an autoencoder on the expanded training
set. Lastly, the trained model will be used for evaluation.

3.1 Avoid Over-fitting

Since there is only machine-generated data used and no data on human com-
position, it is still easy to overfit even after data augmentation. To cope with
this problem, several additional measures have been taken to prevent from data
overfitting.

Refined Loss Function. Some studies have shown that slight adjustment of
the loss function l can prevent overfitting greatly [23]:

lnew = |lorigin − b| + b, (2)

A Transformer Based Autoencoder 203

Fig. 3. Flow chart of data processing

where b is a little positive real parameter which is problem related. The model
is trained with the refined loss function and b is set to 0.05 which is a magic
number in some NLP tasks to prevent from pursuing zero-value of original loss
function but only to a close-zero value.

Smaller Transformer. The number of parameters in the BERT model is
extremely large. Even in the ALBERT model using shared parameters, the num-
ber of parameters can easily lead to overfitting on such a small dataset. Therefore,
on the basis of retaining the structure of ALBERT, the dimension of embedding
is 64, the number of multi-layers is set to 2 as well as the number of multi-head
is 4. As a result, the amount of parameters of ALBERT is reduced significantly
to around 103.6k, thus avoiding potentially overfitting on the training set.

3.2 Training Method

There are two important tasks of Bert’s training process [10]: Masked Language
Model (MLM) and Next Sentence Prediction (NSP). However, the NSP task is
not necessary in this problem, because the training set does not include complete
phrase information. Actually, it will be hard to divide notes into several phrases.
On the contrary, MLM is suitable to tackle this problem.

We hope that the AI composing algorithms used in the dataset which is
relatively certain can be fitted through the coding representation obtained by
the more “universal” ALBERT with a large number of parameters. Some items
of the MIDI sequence is masked and predictions are made on each of the masked
note position based on the corresponding embedding vector learned by ALBERT.
Such predictions might be closer to the results of some of the AI composers than
to those of humans. Assuming that the music was composed by an algorithm
fitted by the ALBERT model, the average “probability” of each masked note
being the same as its ground truth note can be seen as the “P-value” indicating
whether it was created by AI and the hypothesis shall be accept or reject.

204 M. Ding and Y. Ma

Note that ALBERT training will randomly mask N-grams to make predic-
tions [17]. If the masking happens to cover a whole bar or a whole chord formed
by adjacent notes, the notes masked are difficult to be effectively predicted.

After comprehensive consideration, the MLM task is the only used task for
training. Each time, about 15% of the elements has been randomly masked
in a pitch sequence, and then use the other elements not masked to predict
the elements that have been masked. Selecting 15% notes can ensure that the
essential music components are not masked, so that the model can produce
effective prediction, and random selection can avoid overfitting to a certain extent
as well. And the softmax cross-entropy is used as the loss function of the model
to evaluate the distance between the one-hot vector ground truth and the 128
dimensions vector representing the probability of being each of the 128 MIDI
notes, followed by the process mentioned above to refine the loss.

3.3 Evaluation

When evaluating, for a pitch sequence, each note will be masked successively.
Then, the probability pi of the ith masked note is predicted by the trained
ALBERT, and the average probability of all notes is the probability that this
data is composed by AI. Formally, the number of notes in this pitch sequence is
denoted as n, and suggests the probability of AI generating is as follows:

p =
1
n

n∑

i=1

pi (3)

Thus, the probability of each data created by humans, which this task required,
can be obtained by 1 − p.

4 Experiment

4.1 Data Setup

Based on the Albert model, the autoencoder model is trained with MLM tasks
on the dataset provided by CSMT (2020) after augmenting. Both data aug-
mentation strategies mentioned above are used for all the data in the training
set.

Firstly, we use pretty midi [24] reads the data in and then preprocesses it. For
a pitch sequence after preprocessing, 31 different transpositions are generated
including the case remaining the same. And16 of them are implemented with
different values of random truncation range in 1to 100. Due to the fact that
there are only 12 different modes in an octave and the limitation of computing
resources, the size of the augmentation is not extremely large and only part of
them are used for training. Therefore, the size of the training set is expanded to
186000, which is enough for training on the small ALBERT.

A Transformer Based Autoencoder 205

4.2 Environment and Hyper Parameters

Under the good parameter control strategy, the Albert is able to be deployed
on a GTX 1050Ti NVIDIA graphic card. Pytorch [25] and Hugging Face [26]
are used in the process of building and training the algorithm. The small batch
size is 64 and the default learning rate is 10−3 with AdamW optimizer [27]. The
parameter b mentioned is set as 0.05. Because there is no ground truth in the
test set, we can not carry out the ablation experiment, the selection of hyper
parameters is all based on past experience.

4.3 Experiment Result

The data challenge uses the average under receiver operating characteristic curve
(AUC) as an indicator for each model performance. The overall performance of
AUC is 0.6821 which is rank 4th in the 9 models including the baseline model
and rank 3rd in all of the 7 teams that finished the data challenge.

The details of the result are shown in the following table (Table 1, Table 2
and Table 3).

Table 1. The AUC of test data in different music style

Style AUC value

J.S. Bach 0.6984

Pop song 0.6673

Table 2. The AUC of test data composed by different AI algorithm

Algorithms AUC value

GAN 0.7458

Transformer 0.7811

VAE 0.3210

Table 3. The AUC of test data composed by human

Category AUC value

Published 0.6895

Unpublished 0.5404

The AUC values of different music styles do not show significant difference,
which implies our model may keep an objective evaluation among different music
styles. Furthermore, the result of VAE composed is extremely low, even worse
than the random guess. Although the test data is not published and audios can
not be listened for finding some missing patterns, this phenomenon deserves

206 M. Ding and Y. Ma

more attention. Finally, the unpublished result is a bit lower than the published
data. This might be caused by the relatively small number of unpublished data
and these data are composed by conservatory students instead of composers like
Bach and these might keep some difference with each other.

5 Conclusion

In this paper, we proposed an autoencoder approach based on ALBERT with
the aim to set up an indicator to reject the hypothesis that the music excerpt
is composed by machine. The ALBERT model is trained self-supervised with a
MLM to mimic the AI-composer. Experimental results confirmed that the brand-
new method outperforms some of other algorithms and rank 3rd and shows little
difference in two music styles. Besides, we found the model performance on VAE
models is extremely low, therefore, deserve more attention.

Our model provides a meaningful approach and can be spread to similar tasks
with small dataset. However, there are several problems unavoidable as well. To
begin with, the whole semantics of the encoder is hard to be understood as the
performance on some of the models is relatively high and others are extremely
low, which suggest the obvious uncertainty on there liability of the workflow.
In addition, the indicator in our model based on the encoder works in the way
of p-value and keeps some weakness by nature. Some good music pieces may
have high probability to be composed by both human composers and artificial
intelligence and other weird MIDI clips might be low possibility to be composed
by both homo sapiens and automatons. These unsolid pseudo p-values shall be
avoided or be implemented in great caution when it is spread to other tasks if
there are some data in another class.

References

1. Liu, C.H., Ting, C.K.: Computational intelligence in music composition: a survey.
IEEE Trans. Emerg. Top. Comput. Intell. 1(1), 2 (2016)

2. Dong, H.W., Hsiao, W.Y., Yang, L.C., Yang, Y.H.: arXiv preprint
arXiv:1709.06298 (2017)

3. Li, Z., Li, S.: Proceedings of the 7th Conference on Sound and Music Technology
(CSMT), pp. 121–130. Springer (2020)

4. Ren, I.Y.: ECE Department, University of Rochester (2015)
5. Liang, F.T., Gotham, M., Johnson, M., Shotton, J.: ISMIR, pp. 449–456 (2017)
6. Chu, H., Urtasun, R., Fidler, S.: arXiv preprint arXiv:1611.03477 (2016)
7. Huang, A., Wu, R.: arXiv preprint arXiv:1606.04930 (2016)
8. Unehara, M., Onisawa, T.: 10th IEEE International Conference on Fuzzy Sys-

tems.(Cat. No. 01CH37297), vol. 3, pp. 1203–1206. IEEE (2001)
9. Ogihara, M., Li, T.: ISMIR, pp. 671–676 (2008)

10. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: arXiv preprint arXiv:1810.04805
(2018)

11. Peters, M.E., Neumann, M., Iyyer, M., Gardner, M., Clark, C., Lee, K., Zettle-
moyer, L.: arXiv preprint arXiv:1802.05365 (2018)

http://arxiv.org/abs/1709.06298
http://arxiv.org/abs/1611.03477
http://arxiv.org/abs/1606.04930
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1802.05365

A Transformer Based Autoencoder 207

12. Radford, A., Narasimhan, K., Salimans, T., Sutskever, I.: Improving language
understanding by generative pre-training (2018)

13. Liu, A.T., Yang, S., Chi, P.H., Hsu, P.C., Lee, H.: ICASSP 2020-2020 IEEE Inter-
national Conference on Acoustics, Speech and Signal Processing (ICASSP), pp.
6419–6423. IEEE (2020)

14. Jiang, D., Lei, X., Li, W., Luo, N., Hu, Y., Zou, W., Li, X.: arXiv preprint
arXiv:1910.09932 (2019)

15. Ling, S., Liu, Y., Salazar, J., Kirchhoff, K.: ICASSP 2020-2020 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 6429–6433.
IEEE (2020)

16. Schneider, S., Baevski, A., Collobert, R., Auli, M.: arXiv preprint arXiv:1904.05862
(2019)

17. Lan, Z., Chen, M., Goodman, S., Gimpel, K., Sharma, P., Soricut, R.: arXiv
preprint arXiv:1909.11942 (2019)

18. Chi, P.H., Chung, P.H., Wu, T.H., Hsieh, C.C., Li, S.W., Lee, H.: arXiv preprint
arXiv:2005.08575 (2020)

19. Li, S., Jing, Y., Fazekas, G.: arXiv preprint arXiv:2012.03646 (2020)
20. Kim, Y.E., Chai, W., Garcia, R., Vercoe, B.: ISMIR (2000)
21. Wei, J., Zou, K.: arXiv preprint arXiv:1901.11196 (2019)
22. Lee, J., Lee, Y., Kim, J., Kosiorek, A., Choi, S., Teh, Y.W.: International Confer-

ence on Machine Learning (PMLR, 2019), pp. 3744–3753 (2019)
23. Ishida, T., Yamane, I., Sakai, T., Niu, G., Sugiyama, M.: arXiv preprint

arXiv:2002.08709 (2020)
24. Raffel, C., Ellis, D.P.:15th International Society for Music Information Retrieval

Conference Late Breaking and Demo Papers, pp. 84–93 (2014)
25. Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen,

T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Advances in Neural Information
Processing Systems, pp. 8026–8037 (2019)

26. Wolf, T., Debut, L., Sanh, V., Chaumond, J., Delangue, C., Moi, A., Cistac, P.,
Rault, T., Louf, R., Funtowicz, M., Davison, J., Shleifer, S., von Platen, P., Ma,
C., Jernite, Y., Plu, J., Xu, C., Scao, T.L., Gugger, S., Drame, M., Lhoest, Q.,
Rush, A.M.: arXiv preprint arXiv:1910.03771 (2019)

27. Loshchilov, I., Hutter, F.: arXiv preprint arXiv:1711.05101 (2017)

http://arxiv.org/abs/1910.09932
http://arxiv.org/abs/1904.05862
http://arxiv.org/abs/1909.11942
http://arxiv.org/abs/2005.08575
http://arxiv.org/abs/2012.03646
http://arxiv.org/abs/1901.11196
http://arxiv.org/abs/2002.08709
http://arxiv.org/abs/1910.03771
http://arxiv.org/abs/1711.05101

	A Transformer Based Pitch Sequence Autoencoder with MIDI Augmentation
	1 Introduction
	2 Dataset
	2.1 Training Data
	2.2 Data Preprocessing
	2.3 Data Augmentation

	3 Methods
	3.1 Avoid Over-fitting
	3.2 Training Method
	3.3 Evaluation

	4 Experiment
	4.1 Data Setup
	4.2 Environment and Hyper Parameters
	4.3 Experiment Result

	5 Conclusion
	References

