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Abstract. When writing this article, COVID-19 as a global epidemic,
has affected more than 200 countries and territories globally and lead to
more than 694,000 deaths. Wearing a mask is one of most convenient,
cheap, and efficient precautions. Moreover, guaranteeing a quality of the
speech under the condition of wearing a mask is crucial in real-world
telecommunication technologies. To this line, the goal of the ComParE
2020 Mask condition recognition of speakers subchallenge is to recog-
nize the states of speakers with or without facial masks worn. In this
work, we present three modeling methods under the deep neural network
framework, namely Convolutional Recurrent Neural Network(CRNN),
Convolutional Temporal Convolutional Network(CTCNs) and CTCNs
combined with utterance level features, respectively. Furthermore, we
use cycle mode to fill the samples to further enhance the system perfor-
mance. In the CTCNs model, we tried different network depths. Finally,
the experimental results demonstrate the effectiveness of the CTCNs net-
work structure, which can reach an unweighted average recall (UAR) at
66.4% on the development set. This is higher than the result of baseline,
which is 64.4% in S2SAE+SVM nerwork(a significance level at p < 0.001
by one-tailed z-test). It demonstrates the good performance of our pro-
posed network.

Keywords: Computational paralinguistics · Deep learning
framework · Mask condition recognition · Speech recognition

1 Introduction

COVID-19, as a pandemic, has more than 20 million confirmed patients (caus-
ing more than 748 000 deaths), and is still affecting more than 200 countries and
territories globally at the time of writing this paper1. Computer audition (CA),
a multidisciplinary field that leverages the advanced acoustic/audio signal pro-
cessing and machine learning technologies to enable the machines having or even
1 https://coronavirus.jhu.edu/map.html.
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outperforming the human hearing capacities, has been increasingly applied to
the healthcare domain [12]. More recently, CA has been thought to have promis-
ing potential for fighting the COVID-19 pandemic due to its non-invasive and
ubiquitous characteristic by nature [9,15].

In this paper, we aim to develop a speech-driven deep learning framework
to recognize people with or without facial masks worn. The task is proposed
as part of the INTERSPEECH 2020 Computational Paralinguistics ChallengE
(ComParE) [14]. The data offered in this challenge is called the MASC (the Mask
Augsburg Speech Corpus) dataset, which is the first to give access to recordings
of speech from individuals wearing an operation mask. The labels of the data are
their condition states while communicating, including Masking and Clear. Many
existing works have been performed on the speech recognition research. Some
acoustic features, such as the extended Geneva Minimalistic Acoustic Parameter
Set (eGeMAPS) [7], ComParE acoustic feature set and Bag of-Audio-Words
(BoAW) feature set [13], combined with traditional machine learning methods,
have been proved to be effective for recognizing the speech signals.

With the development of deep learning, neural network has made substantial
achievements in the computational paralinguistics field. Neural network have
been widely used due to the superior performance, such as speaker identifi-
cation [11,17,19,21], language identification [1–3] and speech emotion recogni-
tion [5,20]. Therefore, various neural network frameworks such as convolutional
neural network (CNN) and recursive neural network (RNN) have emerged. CNN
is used to extract spatial features and generate feature maps. The extensive
application from AlexNet to VGG model reflects the superior performance of
CNN. The pre-trained AlexNet network was used to extract deep features, and
then the features of the full connection layer were input into Support Vector
Machine (SVM) for classification, which achieved good performance on the data
set FAU-AIBO [6]. Two different convolution nuclei were used to extract time-
domain and frequency-domain features respectively, and then the features were
classified by CNN after fusion. Finally, the UAR of the four categories of emo-
tions of IEMOCAP reached 68% [10]. Gated Recurrent Unit (GRU) and Long-
Short Term Memory (LSTM) are also widely used, GRU is a variant of LSTM,
they can solve the gradient vanishing problem in the RNN optimization process.
Greff et al. benchmarked eight LSTM variants on speech recognition [8]. The
combination of CNN and RNN is widely used. Mingyi et al. added LSTM after
CNN, and found that the five convolution layers had the best performance on
EmoDB [4]. However, with the deepening of network layers, some information
will be lost because CNN has no memory function, and the operation time of
RNN is relatively long.

Main contributions of this work can be summarised as follows: First, we com-
pare the performance of two different network topologies on this classification
problem and find the good effect of TCN on this classification problem. Second,
we have introduced attention mechanism across all network structures to allow
the network to focus on key features during training. Third, we integrate utter-
ance level features into the network structure with good performance, realized
the fusion of deep learning representation and utterance level features.
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In this article, We investigate and compare three topologies, i.e., Convolutional
Recurrent NeuralNetwork (CRNN), Convolutional Temporal Convolutional Net-
wor (CTCNs) and CTCNs with utterance level features. In addition, CNN and
attention are added to both models to improve the network performance.

This paper is organized as follows: Firstly, we introduce the methods used in
Sect. 2. Section 3 introduces experimental design, including data preprocessing,
experimental setting, and experimental results. And the discussion will be given
in Sect. 4. Finally, we conclude this study in Sect. 5.

2 Methods

2.1 BLSTM

BLSTM is composed of forward LSTM and backward LSTM. In the LSTM,
there are three kinds of gates: forgetting gate, input gate and output gate. The
forgetting gate can selectively forget some information, and the input gate new
information selectively recorded, and in the output gate for output. In BLSTM,
forward LSTM is used to help the network learn sequence characteristics forward
and backward LSTM learns sequence information later. This design can help
the network form sequence memory. When we input the extracted mask audio
sequence, we can not only accumulate the information of the input moment, but
also remember the information of the previous moment, which has a good effect
on dealing with the time series problem.

The network structure diagram of BLSTM is shown in Fig. 1, from which
we can see that the output layers results are jointly controlled by forward layers
and backword layers, and the final output results can be expressed as follows by
mathematical expressions:

ht = f(w1xt + w2ht−1) (1)

h
′
t = f(w4xt + w5h

′
t+1) (2)

Ot = g(w3ht + w6h
′
t) (3)

where, Eq. (1) represents the result of forward propagation, Eq. (2) represents
the result of back propagation, and Eq. (3) represents the expression of the
output result after BLSTM.

Fig. 1. BLSTM network structure.
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2.2 TCN

Similar to BLSTM, TCN can also be used to handle time series problems. TCN
network is all convolution operation, which means that TCN neural network can
carry out large-scale parallel processing, which is shorter than BLSTM to some
extent, which involves the skip layer connection of dilated convolution, causal
convolution, and residual convolution.

(a) General Convolution (b) Dilated Convolution

Fig. 2. Contrast diagram of convolution receptive field.

Dilation rate parameter is involved in the part of dilation convolution, which
is used to represent the size of the dilation, so that the convolution process has
a larger receptive field. As shown in Fig. 2(a) represents the receptive field of
dilated convolution, and (b) represents the receptive field of general convolution.
From the figure, the advantages of the receptive field of dilated convolution
can be clearly seen. Where, the size of the convolution kernel in (a) is 3, and
after dilation rate, the size of the convolution kernel becomes 5, and finally the
receptive field of (b) is obtained.

Where, the calculation of the size of the dilated convolution kernel follows:
dilated filter = d ∗ (k − 1) + 1, where d stands for dilation rate and k stands for
the size of the convolution kernel.

By referring the dilative convolution to the causal convolution, the prediction
at time t can take into account the sequence before timet, thus achieving a
time memory effect similar to BLSTM. The skip layer of residual convolution is
realized by 1D fully-convolutional network (FCN) [16], which equals the length
of the output sequence to that of the input sequence [22].

2.3 Attention Mechanism

To ensure the reliability of model training, we added the attention layer to the
network structure and the Attention mechanism after the weight causal layers
in TCN, as shown in Fig. 3.
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In this paper, the attention layer in the network structure is a sequence
coding layer, which is a series of weight allocation coefficients. When the input
information at time t is more similar to the target information, the attention
layer assigns more weight to the time t, that is, the output of the sequence is
more dependent on the time t. In the experiment of this paper, Self-Attention
mechanism is used, which can find the internal connection of the sequence in the
training process, so as to ensure the similarity between the output sequence and
the input sequence. So, we use Scaled Dot-Product Attention [18], the imple-
mentation equation is

Attention(Q,K, V ) = softmax(
Q × KT

√
dk

) × V (4)

Here, K and V are the values of mask audio data after Self-Attention, Q is
the data that corresponds to the label by masked Self - Attention after the value,
dk is the number of channels in the input sequence, used as a normalization.

Weight causal convolution

reluf(x)
Self-Attention Layer

Weight causal convolution

reluf(x)

Self-Attention Layer

X

1*1 ConVf(x)+x

relu

h(x)

Fig. 3. Attention residual learning block.

3 Experiment Design

3.1 Data Pre-processing

In this part, all the audio data in the data set are circulated and filled in for 4s
(the original data set lasts for 1s and the sampling frequency is 16 kHZ). Then,
the librosa library is used to perform short-time Fourier transform to extract
mel spectrogram. The parameters in the process of mel spectrogram extraction
are as follows: the window width w = 25 ms, the window shift 10 ms, and nmels

= 128 mel frequency bands.
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3.2 Experimental Setting

In our experiment, we mainly used three network learning models: CRNN,
CTCNs and CTCNs with utterance level features. We will describe these three
network structures in detail below. It should be noted that due to the limitation
of server storage space, the batchsize of all our experiments is 64.

CRNN. In this model, we first used CNNs to extract features from the mel
spectrograms, considering the effect of the preceding sequence on the prediction
of the following sequence, we use BLSTM to remember information through for-
ward propagation and backward propagation, so as to make the predicted results
more robust. At the same time, after BLSTM layer, add the attention layer to
allocate the feature weight, so that the network can focus on the features that
play a key role in the classification effect. Finally, the spatial features extracted
from the convolutional layer and the sequence features after the attention layer
are fused as the final classification features, and the classification is carried out
through the full connection layer containing softmax function. More specifically,
our network model is described in Table 1.

Table 1. Our network structure

Nework layers Parameter

Conv1 16, 7 * 7 kernels, 1 stride

Pooling 2 * 2 pooling, 2 stride

Dropout 0.25

Conv2 16, 5 * 5 kernels, 1 stride

Pooling 2 * 2 pooling, 2 stride

Dropout 0.25

Conv3 32, 5 * 5 kernels, 1 stride

Pooling 2 * 2 pooling, 2 stride

Dropout 0.25

MaxPooling BLSTM/

TCN blocks: 3 * 3 kernels,d: [1, 2, 4...]

Self-attention layer

Features concatenation

Full-connected Layer 4096 units

Classification Layers Softmax

CTCNs. In this network structure, we use TCN and attention layer to build the
network structure. In the TCN module, we mainly used the structure in Fig. 3.
Multi-layer stacking was performed in residual block in Fig. 3 to build the main
part of the network. Of course, with the stack of blocks, the number of layers in
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the network would be deepened, and the attention layer would be added after
the last layer. This approach is to achieve similar functions to BLSTM, enabling
the network to extract time series features. Considering the impact of spatial
features on the classification results, we added three convolutional layers at the
beginning of the network. The features extracted by the convolutional layer were
on the one hand input into the TCN network module, and on the other hand
retained and fused with the sequence features extracted by the TCN module,
thus forming the features of final progressive classification. The final features are
sorted through the full connection layer of 4096 units by softmax. The detailed
network structure is shown in Table 1.

CTCNs with Utterance Level Features. In the experiment, we mainly
used the manually designed features of low level descriptors (LLDs) and high
level statistics functions (HSFs), obtained utterance level features by making
statistics on the voice features at the frame level, such as maximum value and
mean value, and so on. Here, opensmile toolkit is used to extract utterance level
features, and the feature Set used is ComParE.

In this part, we added utterance level features to integrate the deep features
extracted from deep learning for classification. The extraction of deep features
is based on the experiment in Sect. 3.2, and the features extracted from its full
connection layer are used.

Refer to the specific network structure Fig. 4.

InputWave

Cycle Code Padding

Extral Spectrograms

Extral ComparE Features
CNNs

TCNs

Self-Attention

Full-Connected

SoftMax

opensmile 
toolkit

Fig. 4. TCNs with utterance level features network structure.
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Experimental Result. In this paper, we will use unweighted average recall
(UAR) to evaluate the experimental results of various network structures. As
this is a Sub-Challenge task, all our results are obtained on the development set.
For Sect. 3.2, we conducted experiments with [3,10] different attention residual
blocks, and the experimental results are shown in Table 2. It can be seen from
the table that when residual blocks is 4, the experimental UAR is 66.4%, which
is the best result. The number of channels and experiment time for each block
are also shown in Table 2. The confusion matrix corresponding to the experiment
is shown in the Fig. 5.

Table 2. The result of CTCNs network structure on the development set

Nework

blocks

Channels WAR (%) UAR (%) Time (s)

3 [64, 128, 256] 64.6 65.1 3692.98

4 [64, 128, 256, 512] 66.3 66.4 4874.648

5 [64, 128, 256, 512, 1024] 64.7 64.8 4218.848

6 [64, 128, 256, 512, 1024, 2048] 66.3 65.6 8350.363

7 [64, 128, 256, 512, 1024, 2048, 4096] 65.4 65.0 12205.034

8 [64, 64, 128, 128, 256, 256, 512, 1024] 66.6 66.0 10779.831

9 [64, 64, 64, 128, 128, 128, 256, 256, 512] 64.8 64.4 5451.703

10 [64, 64, 64, 128, 128, 128, 256, 256, 512, 1024] 65.2 65.1 15232.913

Fig. 5. Confusion matrix graph on the development set.
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Table 3. Results of different network structures on the development set

ID Nework structure UAR(%)

1 CRNN 65.5

2 CTCNs 66.4

3 CTCNs + ComparE 65.9

4 ComparE + SVM [14] 62.6

5 ComparE BOAW + SVM [14] 64.2

6 DeepSpectrum + SVM [14] 63.4

7 S2SAE + SVM [14] 64.4

As can be seen from the table, the lowest experimental result of our proposed
method is 65.5%, while the experimental result of S2SAE model in the original
paper is the best, with its UAR being 64.4%, which is lower than our lowest
result by 1.1%, which fully proves the performance of our network structure.

4 Discussion

It can be seen from Table 2 that the network of 4-layer blocks has the best result
on the development set. As the network deepens to 10 layer blocks, the UAR
of the network is not as good as that of 4-layer blocks. This may be from the
side that the deepening of the network makes the training gradient unstable. In
Table 2, we can see that when blocks is 7 or 8, channels are the most and the
experiment takes more than 10,000 s.

The experimental results of different network structures are shown in Table 3.
The model 1, 2, 3 network structures are the three methods tried in this paper,
and the model 4,5,6,7 are the experimental results of the original paper’s network
structures. The difference between model 2 and model 1 is that model 2 uses
TCN to extract sequence features, while model 1 uses BLSTM, and it is finally
found that the experimental results of model 2 are better than those of model
1, which maybe indicates that TCN has a better fitting on this data set. When
we fusioned utterance level features (in this article, ComParE the features) into
model 2, the experimental result is 65.9% in model 3, but this reduced the results
by 0.5%. We consider the reasons for this result may be to join utterance level
features, making increased certain features of the similarity between different
categories, it increases the classification error, thus resulting in a loss of the
experimental results. It may be possible to try other utterance level features for
fusion, hoping to improve the classification result. Model 3 is about 3% higher
than model 4, and it turns out that the TCN network extracts features that are
useful for classification.



172 Y. Qiao et al.

5 Conclusion

Mask Sub-Challenge detection is a challenging task. In this paper, we first
adopted the cycle code padding method to process the raw audio, and then
conducted experiments on the MASC data set through three different network
structures, namely CRNN, CTCNs and CTCNs with utterance level features.
CTCNs achieves the best performance on the development set.

The experimental result of model 4 is the lowest, which used only ComParE
features, while model 2 adds spectral features on this basis, the results increased
by 3.3%, which may indicate the advantage of mel spectrograms in this data
set. All the deep feature extraction in this paper is based on the spectrograms
extracted by the short-time Fourier Transform (STFT). However, window size
in the process of STFT do not have adaptivity and cannot be optimized for
specific problems, so better results may be obtained by using wavelet transform
to extract spectrograms.

The experimental results of other models are better than model 4, which may
reflect the good performance of deep learning. This suggests that we should not
be confined to machine learning, and future research can be developed towards
deep learning, perhaps with better results.
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