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Abstract. Underwater acoustic target recognition is the task of clas-
sifying targets using ship-radiated noise in the marine environment. It
is incredibly hard and complex for the complexity of the marine envi-
ronment. Before the popularization of deep learning, conventional tar-
get recognition methods are mainly based on the audio time-frequency
domain analysis. Different targets have obvious variation in some fre-
quency bands, which leads to the inability of traditional methods to
make full use of spectral information. In order to extremely extract the
information in each frequency bands, this paper proposes a novel Sub-
pretrained CNNs. For each frequency band in the spectrogram, a CNN
classifier is trained on the training set. Finally, the features extracted by
each CNN and the position embedding of the frequency band are con-
catenated as the input of the global classifier. Compare with state of the
art method, the paper achieves better performance. As the experimental
results show, the identification performance of UATR can be enhanced
by the Sub-pre-trained CNNs method.

Keywords: Convolutional Neural Networks · Audio classification ·
Underwater acoustic target recognition · Pre-training

1 Introduction

Underwater acoustic target recognition is the task of classifying targets using
ship-radiated noise in the marine environment. It is widely used for marine explo-
ration, marine biological surveys, and other research activities. It is incredibly
hard and complex for the complexity of the marine environment and the diversity
of underwater acoustic targets [1,2].

At present, various UATR methods based on machine learning have been
put forward. Commonly, we separate these methods into two kinds: approaches
based on artificial feature design and approaches based on automatic feature
extraction [1–4]. In general, the most effective method of UATR is based on
the characteristics of domain knowledge design, which heavily depends on the
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statistical model [1–3]. MFCC is a widely adopted feature in UATR and speech
recognition [3–13]. Nevertheless, the optimal feature of the acoustic target can
not be represented by MFCC [8]. To solve the shortcomings of MFCC, other
features have been presented. The GFCC was introduced into UATR by Lian
[9]. The crux in the process is how to extract the features of underwater acoustic
targets.

In recent years, as the solution based on deep learning has made great suc-
cesses in the field of speech recognition and image classification, people have
carried out in-depth research on improving the ability of underwater acoustic
target recognition. [14–19] in these studies, the solution based on deep learning
shows a strong ability to feature extraction. Compared with the shallow neural
network, the deep neural network can extract more abstract and higher-level
features from big data [21]. As one of the methods based on deep structure,
Deep Boltzmann Machine has better performance in learning and extracting
the features of ship radiated noise. Additionally, CNNs [23] are widely used in
UATR because of its advantage in processing images [24]. In [25], Yang et al.
used ADCNN to simulate the auditory system. Deep learning based methods
can extract more information compared with hand-engineering methods.

This paper proposed an Sub-pretrained CNNs based method which combines
multi-dimensional feature extracted by CNNs with the position encoding, as the
input of the global classifier using fully connected DNN. Firstly, we translate
original signals to time-frequency presentations as images. Then, we transform
the position of bands in the spectrogram to position encoding. After we con-
cat position encoding and multi-dimensional feature extracted by CNNs, global
classifier can recognition underwater targets using the input.

In the second section, the UATR method presented is introduced detailedly.
The specific content of the experimental setting is introduced in The third part.
The experimental results are addressed in the fourth section. The fifth part
summarizes the full paper.

2 Proposed Method

2.1 Framework

For most UATR methods, the process can be divided into feature extraction
stage and learning stage. The purpose of CNN is to adopt a deep hidden structure
in the perceived signal to produce a great feature presentation. The process of the
presented approach for UATR is presented in Fig. 1. As preprocess, we practice
STFT to get time-frequency representations of the original signals. Next, we
simply utilize each band of time-frequency representation to train each CNN
model in the training dataset and train some sub-pre-trained CNNs. The outputs
of the last layers of these CNNs can be considered as presentation of the band.
Then, we concat vectors as just one vector. Finally, we take the vector as the
input of global classifier, which will recognize the target.
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Fig. 1. The process of the presented UATR

2.2 Sub-pretrained CNNs

Spectrograms are 2D representations like an image comprising time and fre-
quency dimensions, although very distinct from the original images. There exists
an obvious diversification during the frequency dimension. As shown in Fig. 2,
in the spectrograms obtained, we observed a clear variation of the magnitude
of different frequency bands, particularly specific to every kind of target. For
instance, the “B” class owns more extra power in higher frequency bins; the “C”
class has more energy in mid-frequency bins and less energy in higher frequency
bins; for “E” class Background noise recordings, energy is well-distributed in
frequency bands. We utilize these observations to put forward Sub-pre-trained
CNNs, which is talked about in the accompanying.

Fig. 2. Time-frequency presentation

To extremely extract the information in each frequency band and fully take
advantage of variation of the magnitude of different frequency bands, we propose
the Sub-pretrained CNNs method. The process of this method can be illustrated
in Fig. 3. Firstly, we extract the spectrogram for the N samples and perform
normalization. Then we split the spectrogram into several bands. It takes spec-
trogram to F*T dimension, bands size is the number of bands. These bands are
independently inputted into 2 conv-layers. Kernel-size is set (5, 5), which has
large receptive field. After conv-layer, sigmoid activation and max-pooling fol-
low. Then, we flatten the output of CNNs and concat these vectors as just one
vector. Finally, to capture the global relations between frequency bands, we use
MLP as classifier to classify the input using diversified information.
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Fig. 3. Sub-pretrained CNNs

2.3 Position Encoding

Position and order of bands are the essential parts of any spectrogram. They
define the high and low frequency and thus the actual characteristics of an
acoustic target. Convolutional Neural Networks (CNNs) rarely take the order
of bands into account. They parse a spectrogram band by band in a sequential
manner. This will integrate the bands’ order.

This paper use the position encoding method proposed in Transfomer [26],
which is a simple yet efficient tool. Firstly, it is not just a number. Instead, it’s
a d-dimensional vector that incorporates information about a specific position
in a spectrogram. Secondly, this vector is not integrated into the classifier itself.
Instead, this vector is used to equip each word with information about its position
in a spectrogram. Basically, we enhance the classifier’s input to inject the order
of bands.

PE(pos) = sin(
pos

length
) (1)

2.4 Classifier

We test SVM, Decision Tree and MLP as classifier. The performance of classi-
fiers are shown in Sect. 4. The methods are implemented with scikit tools. The
principles of these algorithms are introduced as follows.

Support Vector Machine. SVM [27] is a very classical and commonly used
model. Because it has very good classification ability and strong interpretability,
it has a good effect on small samples. For linearly separable data, linear sup-
port vector machine strives to find a segmentation line to maximize the distance
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between positive and negative samples. When the data is approximately separa-
ble but not completely separable and not completely separable, there are a small
number of abnormal samples. Using soft margin maximization, we can fit a clas-
sifier that basically separates the samples but can not completely separate them.
When the data set can not be divided by the interval represented by the linear
function, someone put forward the kernel function to convert the original data
space where the training set samples exist toward a higher dimensional feature
space, formerly the data set converts separable. In order to train a nonlinear
classifier, the principle is shown in the figure. The common kernel functions are
Gaussian kernel and so on.

Decision Tree. Decision Tree [28] is a model that accords with human judgment
intuition and has strong explanation. After abstraction, the decision tree model
is generally more like a tree, so it is named decision tree. As shown in Fig. 4,
the segmentation part of the branches in this structure is to select a feature
in the sample features to segment the data set. The decision book belongs to
supervised learning.

Fig. 4. Two decision trees.

Multi-layer Perceptron. Perceptron (Perceptron) is the origin of deep learn-
ing. Through the weight w and the offset term b, it can map a multi-dimensional
input X to a binary value, through which a simple binary classification can be
achieved. Multilayer perceptrons are in the form of multiple functions. As shown
in Fig. 5, the multilayer perceptron is the superimposed multiple function of the
function represented by the perceptron, which is divided into input, output, con-
cealment and multiple perceptrons according to function and position. At the
same time, if each unit of the multilayer perceptron is linear, then any multi-
layer perceptron can be equivalent to a single layer perceptron. Therefore, the
multilayer perceptron is essentially the superposition of multiple nonlinear func-
tions. Finally, the model is used to measure the fitting degree of the training set,
and the variables in the model are taken as the loss function of the parameters.
Through the back propagation algorithm, a multi-layer perceptron can be fitted
on the training set.
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Fig. 5. Structure of Multi-layer Perceptron.

3 Experiments Setup

3.1 Experimental Datasets

The ship target dataset used in this paper is the ShipsEar [30] dataset recorded in
different regions of the Spanish coast from 2012 to 2013. The dataset has a total
of 90 records of 11 ship types within 15 s to 10 min. According to the original
labels of the dataset, they can be merged into 4 large groups in accordance with
the type of ship. Class and E class: background noise recordings, The detailed
division is shown in Table 1 below:

Table 1. ShipEar dataset details.

A Fishing boats.Trawlers.Mussel boats.Tugboats.Drafgers

B Motorboats.Pilot boats.Sailboats

C Passenger ferries

D Ocean liner.Ro-Ro vessels

E Background noise recordings

3.2 Training Setup

We choose 52,734 Hz as the target audio signal sampling rate, and a 90 ms
Hamming window as windowing function with a 50% overlap is used. The output
Mel spectrum is stored in a 3× 224× 224 image format for subsequent opera-
tions. In addition, we downsampled the experimental audio data. The window
length is 25 ms, the overlap length (Hop size) is 10 ms, the output spectrum is
96× 64, and the embedding code size is 128.

We implement Sub-pretrained CNNs in Pytorch. Most experiments have been
carried out with sklearn [31].
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3.3 Evaluation Indexes

We compare the predicted results of the model with the labels to obtain the num-
ber of TP, FP, TN, and FN in the evaluation. And for each experimental result,
the accuracy rate, recall rate, and F1 function are calculated separately to mea-
sure the experimental results comprehensively and accurately. These indicators
can be expressed by the following formula:

Accuracy =
TP

TP + FP + TN + FN
(2)

4 Experiments Results

4.1 Bands Size Setting

To find optimal Bands size, the experiment was designed. We set the optional
values of band size to 10, 20, 30, 40. In the contrast experiment, the classification
accuracy reaches the highest when band size equal to 20. Therefor, we set the
band size to 20 in the following experiments.

Fig. 6. The recognition accuracy with different bands size

4.2 Evaluation of Position Encoding

To illustrate the importance of position encoding, classification performance of
MLP with encoding and without are measured using the classification accuracy.
The comparison between MLP with position encoding and MLP without position
is shown in Fig. 7. It is clear that position encoding can introduce more structure
information in spectrogram, which contributes to improving the performance.
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Fig. 7. The comparison between MLP with position encoding and MLP without posi-
tion encoding

4.3 A Comparison of Three Kind of Classifiers

To find the optimal classifier, we compare three kinds of classifiers. As illus-
trated in Fig. 8, MLP classifier has the highest accuracy over Decision Tree and
SVM. In contrast recognition, it is clear that the MLP classifier is more suitable
for underwater target recognition. We speculate that this might be due to the
advantage of MLP in classification.

Fig. 8. The recognition accuracy with different bands size
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4.4 Evaluation of Sub-pretrained CNNs with Position Encoding

Considering that methods with position encoding can achieve better performance
than without, we train a Sub-pretrained CNNs with position encoding and using
MLP as the classifier. As a result, accuracy is 91.97%. This best result shows in
the confusion matrix. Table 3 shows the confusion matrix of the proposed UATR
methods obtained from testing data. Compare with state of the art method, the
paper achieves better performance (Table 2).

Table 2. Comparison of performance between Pretrained CNNs and DBM based.

Method Accuracy

Sub-pretrained CNNs with position encoding 91.97%

DBM [22] 90.70%

VGGISH [32] 89.22%

Table 3. Confusion matrix of the proposed model.

True predicted A B C D E

A 0.92 0.01 0.02 0.01 0.00

B 0.01 0.85 0.03 0.02 0.00

C 0.02 0.00 0.93 0.01 0.00

D 0.01 0.03 0.00 0.92 0.01

E 0.00 0.01 0.00 0.00 0.98

5 Conclusions

In the work, a new UATR algorithm based on regional pre-training convolution
neural network is introduced, in order to fully extract the information contained
in different frequency bands in the spectrum. The output of the last hidden
layer of each sub-network is spliced and connected with the position vector
as the input of the total classifier, and then the general classifier is trained.
Compare with state of the normal training convolution neural network model,
the proposed UATR algorithm achieves better performance, the sub-pre-trained
CNN is introduced to learn more information, and the classification accuracy is
91.97%. This method proposes an innovative model training method, which can
be effectively applied to UATR tasks, also give inspiration to other similar tasks.
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