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Abstract. This paper describes a novel chorus detection method based
on extracting the functional structure of music from its self-similarity
matrix. An existing similarity measure was enhanced firstly by using a
key-shift invariant distance and by introducing a chroma-like pitch fea-
ture that exploits melody extraction results of the music. The repeated
sections in the audio were extracted using a graph-based algorithm
and clustering-merging method assuming transitivity of similarity then.
Finally, a classifier to detect the chorus from the repeated sections was
trained. The evaluation results show that our method is comparable with
the state-of-the-art algorithms on both multiple and single chorus section
detection tasks.
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1 Introduction

Music tend to be structured audio as described in [11], composed of repeat-
ing patterns/segments in hierarchies, from repeating phrases to sections. Among
them, the longest repeating segments which correspond to sections or functional
parts in the song are especially useful. For popular music, the basic song struc-
ture consists of an intro, verse, bridge, chorus and outro section. Chorus sec-
tions as the most representative parts of pop music are of special interest in
many music-related applications, like auto music clipping, music thumbnailing,
preview, retrieval and recommendation. For example, with the rapid growth of
short-video services, the catchiest part of the music was preferred for making
the videos. The service provider usually have large repositories of digital music
clips which means clipping and choosing the chorus section manually is difficult,
auto-clipping solves the problem.

2 Previous Work

To catch chorus sections, approaches based on music structure analysis were
pervasively adopted, though there exist methods like [9] which directly estimate
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chorus sections from music audio. Self-similarity matrix (SSM) is the key com-
ponent in many structure analysis algorithms [4,6,7,10,21,24].

One challenge faced in SSM based music structure analysis methods is how to
extract meaningful segments from a raw SSM, which involves SSM enhancement
and analysis. Various methods have been proposed to enhance the SSM, like
matrix fusion technique from [2] used by [24], non-negative matrix factorisation
(NMF) based methods [4,12] and methods [10] using augmentation of transpo-
sition and tempo invariance. As for extracting segments from the SSM, in [24],
a spectral clustering method based on eigenvector decomposition of Laplacian
matrix of the SSM was used to group the frames; in [4], a checkerboard kernel
was applied to the SSM to generate a novelty curve, then peaks in the novelty
curve were detected as segment boundaries; in [6] and [7], lines from the SSM
diagonals were extracted first and merged using various hand-craft rules to form
segments.

In [4], transitivity (which means if A and B are similar, and A and C are
similar, then A and C should be similar) was enforced to the output music
structure on the last step, the proposed method pushed it further: transitivity of
similarity was considered at the first place, and this constraint was kept through-
out the following steps. We proposed a novel graph-based algorithm to extract
repeating segments from the SSM using a clustering-merging method. The clus-
tering step can be seen as a repetition based method, comparing to the stripe
detection approach used in previous repetition based methods like [7,14,18], the
proposed method focus on detecting repeating patterns of smaller size but more
repetitions, thus involve less effort integrating the repeating patterns and better
reflects the repetition in music.

Melody extraction results were introduced to enhance the SSM in the pro-
posed method, the reason is twofold. On the one hand, the feature-level similarity
fusion in [24] draws good results in SSM enhancement while it supports arbitrar-
ily many features as input so that new features could be added. On the other
hand, the results of melody extraction algorithms has been greatly improved
from salience-based approaches [22] to data-driven approaches like [1,3,13].

Heuristic methods were heavily used for chorus detection in previous works
[6,7,17], focusing on distinguish chorus sections by repetition counts, durations
and other features. Since the number of features could be large, and annotated
datasets were available, supervised methods were preferred, in [25], a random
forest classifier were used to detect chorus segments. We adopted the data-driven
method, and combined melody extraction results into the features for chorus
classifying.

Experiment on RWC Pop Database [8] shows our method is better comparing
to the music thumbnailing algorithm in [9] on single section chorus detection,
and has comparable performance with the best of 5 structure analysis algo-
rithms mentioned in [19]. For reproducibility, the proposed algorithm and eval-
uation code is available on https://github.com/beantowel/chorus-from-music-
structure.

https://github.com/beantowel/chorus-from-music-structure
https://github.com/beantowel/chorus-from-music-structure
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3 Method

Figure 1 demonstrates the process of the proposed method. Firstly, acoustic fea-
tures as pitch chroma, MFCC, chroma and tempogram were calculated from the
input music recording. Then self-similarity matrices were generated on these fea-
tures and fused into one. Low-level patterns were extracted by graph algorithms
assuming transitivity of similarity and merged to form top-level structures. In
the end, a classifier learns from the training data to detect chorus sections and
makes predictions on structural information and melody features of the input
sections.

Figure 2 shows the results from the pipeline. The fused SSM were plotted in
the upper-left subfigure, the ground truth chorus sections and detected chorus
sections were represented by the green stripes in the upper half and lower half of
the box. The upper-right subfigure shows the ground truth structure annotations
of the music, the green squares were verse sections and the blue squares were
the chorus sections. The lower-right and lower-left subfigure shows the extracted
low level and top-level structure of the music, different colors were used only to
identify different repeating patterns.

Fig. 1. Overview of the proposed method

3.1 Pitch Chroma Feature

The proposed method adopts the melody extraction result from [13] which is a
melody line: a sequence of estimated fundamental frequency {f0, f1, f2, . . . } cor-
responding to each timestamp {t0, t1, t2, . . . }. Though the algorithm has state-
of-the-art results, wrong estimations in the output make the raw sequence not
suitable for measuring similarity directly. Inspired by chroma feature, a pitch
chroma feature vector is derived from the fundamental frequency sequence which
is robust to the errors.
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Fig. 2. Results for song ‘Dream magic’ from RWC Pop database

For a given window of frequencies {fi, . . . , fj} and a given number of pitch
classes Nclass, frequency values belonging to each pitch class were counted
as pci, comprising a feature vector reflecting the occurrence of the pitches[
pc0 . . . pcNclass−1

]
. The frequency value f is mapped to its pitch class in a

similar way to that in the chroma feature:

pitchClass(f) = Nclass log2(f) mod Nclass (1)

the occurrences were counted as:

pck =
j∑

l=i

[pitchClass(fl) = k] (2)

In the proposed method, the number of pitch classes is set to Nclass = 24
which gives the vector a finer resolution. The window size is 0.1∗10 s long, while
the SSM used in the proposed method has a frame size of 0.23 s.

3.2 Key-Shift Invariant Distance

Modulation is the change of tonality, modulated sections are considered as the
same pattern in the proposed structure analysis method. To deal with the key
change in modulated sections, a key-shift invariant distance is used as the simi-
larity measure for chroma and pitch chroma feature vectors.

For two feature vectors denoted as:

x =
[
x0 . . . xn−1

]
,y =

[
y0 . . . yn−1

]
(3)

n cosine similarity values is calculated by rolling the element in vector y by
an offset of i = 0, . . . , n − 1 and evaluating the similarity between x and
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[
y0+i . . . yn−1+i mod n

]
. The maximum similarity value, or the minimum dis-

tance among them is presented as the key-shift invariant distance of the two
vectors. For example, the chroma feature has 12 pitch classes, then the distance
is invariant to key changes in semitones.

3.3 Repeating Pattern Extraction

Low Level Pattern Extraction. Using the modified version of the algorithm
from [24] with key-shift invariant distance, a self-similarity matrix is calculated
by fusing SSMs of Mel-frequency cepstral coefficients (MFCC), chroma, pitch
chroma and tempogram feature vectors. The fused SSM is ‘cleaner’ where stripe
patterns corresponding to repeating segments were highlighted.

The fused SSM was binarized according to a threshold of exp(−5), values
lower than the threshold were set to 0 while the rest were set to 1. The proposed
method takes the binarized matrix as the adjacency matrix of the self-similarity
graph (SSG) gss where vertices represents audio frames and edges represents the
similarity relation between the frames.

Low-level patterns, or short repeating segments, were captured first. Similar
frames forms a fully connected subgraph, or a clique in the SSG. By extract-
ing cliques from the SSG, redundant or wrong edges representing a similarity
relation were removed. However, cliques may overlap in the SSG, as there are
noise/errors in the generated graph breaking the transitivity of similarity. To
deal with the noise and find the repeating segments, the clique with maximum
size was iteratively extracted from the graph as described in Algorithm 1, once
a clique was extracted, the vertices in that clique were removed from the graph.
This step requires to find all possible cliques in the SSG which is time-consuming
when the graph is big, so literally only the first 10000 cliques found were used
for selecting the largest clique, with less cliques to select, results will be slightly
worse while decreasing processing time.

Figure 3 shows 2 example cases of extracting cliques from an undirected
graph, cliques were enclosed in red-dotted circles, in the right subfigure, there
are possible cliques that overlap with each other.

Fig. 3. Extracting cliques from undirected graph
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Algorithm 1. Extract cliques from graph gss
Require: gss is undirected graph
Ensure: C = {c, . . . } are non-overlap cliques in gss

C ← {}
while gss is not empty do

x ← findCliques(gss)
c ← maxSizeClique(x)
insert c into C
remove c from gss

end while
return C

The extracted cliques were treated as low level patterns, each represents a
group of repeating segments. For clarity, unique numbers can be assigned to
the cliques, then the music structure will be represented by a sequence of label
numbers for audio frames. For visualization, a labeled SSM can be constructed
using the label sequence. The three representations, cliques, label sequence and
labeled SSM, are equivalent data structures since they transform to each other
freely. For example, cliques C = {(0, 1), (2, 3)}, label sequence S = {1, 1, 2, 2}

and labeled SSM Mlabel =

⎡

⎢
⎢
⎣

1 1 0 0
1 1 0 0
0 0 2 2
0 0 2 2

⎤

⎥
⎥
⎦ all refer to the same structure.

Cliques Merging. To get functional level structure of music, the method
merged the original extracted cliques to form larger repeating segments. Con-
sider a music piece with structure ABA for example, the low level struc-
ture would look like a0a0a1a2b0b1a0a0a1a2 and the cliques extracted would be
{(0, 1, 6, 7), (2, 8), (3, 9), (4), (5)}. The target structure ABA, however, yields a
target list of clique as C = {(0, 1, 2, 3, 6, 7, 8, 9), (4, 5)}. The principle is, if two
cliques are sequentially adjacent, like a0 and a1 whose clique representation is
(0, 1, 6, 7) and (2, 8), they can be merged into the same larger clique, as depicted
in Fig. 4, where sequentially adjacent frames were connected by red lines. The
transitivity of similarity relation were kept between merged repeating segments.

Fig. 4. Merging cliques into larger repeating segments
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To decide whether two cliques were sequentially adjacent, we introduce the
notion of ‘ends’ of the clique: it’s composed of heads and tails (endpoints
excluded) of the consecutive segments in the clique. For example, (0, 6) and
(1 + 1, 7 + 1) are the heads and tails of clique a0. Given two clique ci, cj where
the minimum frame number satisfies min(ci) < min(cj), tails of the former
clique tails(ci) and heads of the latter clique heads(cj) were compared to tell if
they met the adjacent condition.

Ideally, if the two cliques were adjacent, the heads and the tails should match
as tails(ci) = heads(cj), but to tolerate deviations the method uses a predicate
which is a conjunction of:

– repeating counts restriction: difference between the numbers of consecutive
segments in ci and cj is within Dblock, which means for the lengths of the
heads and tails, condition

|len(heads(ci)) − len(tails(cj))| < Dblock (4)

is satisfied.
– distance restriction: distance between tails(ci), heads(cj) is within Dadj ,

which means for most (except for at most Dblock items) of the items x ∈
tails(ci) or y ∈ heads(cj), condition

min
∀y∈heads(cj)

|x − y| < Dadj (5)

or
min

∀x∈tails(ci)
|y − x| < Dadj (6)

is satisfied.

To merge original cliques into larger cliques. An adjacency matrix of the
cliques Mclique whose items are mi,j is constructed by evaluating the predicate
mentioned above for cliques ci and cj where i < j. According to the principle
‘sequentially adjacent cliques be merged into the same larger clique’, let gclique
be a graph with adjacency matrix Mclique, cliques in the same connected com-
ponents were to be merged into one as described in Algorithm 2.

Smoothing and Adaptive Merging. To reduce noise/errors in the final out-
put of structure analysis, a median filter with window size Kwindow is applied
to the label sequence representation of the structure which smooth the output
and keeps large repeating segments in one piece.

The parameter Dblock is crucial for controlling the hierarchy of the output
structure, with bigger Dblock the criteria in Sect. 3.3 is more tolerant and results
in larger repeating segments, with smaller Dblock, the criteria is more strict and
results in lower-level patterns. There is no optimal value of Dblock for every song
and its SSM, thus an adaptive merging method was adopted. From multiple
merging outputs with Dblock ∈ {0, . . . , 2} and Kwindow ∈ {23, 37, 47}, result
whose count of cliques is greater than 3 and of minimum ‘error’ is selected.
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Algorithm 2. Merge cliques
Require: C = {c, . . . } are cliques
Ensure: Cmerge = {c′, . . . } are largest possible merged cliques

Mclique =
[
mi,j

]

for ci, cj ∈ C do
mi,j ← isAdjacent(ci, cj)
mj,i ← mi,j

end for
Cmerge ← {}
for x ∈ components(Mclique) do

c′ ← ()
for c ∈ x do

add c into c′

end for
insert c′ into Cmerge

end for
return Cmerge

The error of clique merging process is modeled by comparing the labeled
SSMs of the original clique and that of the merged clique. Empirically, a good
merging result is close to the original cliques, thus we use an error function
composed of two terms: false negative rate and false positive rate. Given the
original cliques C and merged cliques Cmerge, their labeled self-similarity matrix
representations mc = Mlabel(C) and mc′ = Mlabel(Cmerge) were compared. The
error function is:

Error(C,Cmerge) = αENeg + max(βEPos − 0.1, 0) (7)

where ENeg = sum(mc′ = 0 ∧ mc �= 0) is the number of false negatives and
EPos = sum(mc′ �= 0 ∧ mc = 0) is the number of false positives, coefficients
α = 1

sum(mc �=0) and β = 1
sum(mc �=0) were used to normalize the importance of

the terms as both type of errors are considered equally important. Good merged
cliques should cover the original cliques, thus the false positives were inevitable
and always greater than 0, so the minus-then-max function clips the false positive
rate lower then 0.1.

3.4 Chorus Detection

Based on the music structure analysis results, the chorus detection task is just
of choosing the right repeating segments as the chorus. The proposed method
uses a random forest classifier to learn which cliques are the chorus sections.
The chorus sections tend to have different acoustic features to other sections
and specific positions in the song, thus acoustic and structural features of the
cliques C = {c, . . . } were provided to train the classifier, the features used were
listed below:
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– clique duration: duration occupied by the clique normalized by duration of
the song.

– voicing rate: the ratio of the number of voicing frames to that of all frames
in the clique by counting non-zero frequencies in the melody line within the
clique.

– melody median, minimum and maximum: median, minimum and maximum
value of the frequencies in the melody line within the clique.

– clique head and last clique head : the smallest and the biggest frame number
in the heads of the clique heads(c).

– segments count : the number of consecutive segments in the clique by measur-
ing the size of heads(c).

Apart from the structural features like clique head, we added more features
to expose the positional/structural information of the cliques. Based on the 8
features mentioned above, in 3 ways additional features were generated:

– ranking : features of the cliques in a music recording were ranked by sorting
their values, the ranking numbers were used as additional features.

– normalizing : features were normalized by the maximum value from the cliques
in a music recording to generate additional features.

– stacking : cliques were sorted by occurrence (their minimum frame number),
then features of a clique’s predecessor and successor were copied and added
as additional features.

In the training phase, the proposed structure analysis algorithm was first
applied to the music recordings in the training set to get repeating segments, then
each clique was compared with the ground truth annotation to decide whether
to label it as a chorus section or not. The comparison is done by measuring the
overlap ratio between the clique and the ground truth chorus sections, given the
length of the clique lclique, the length of the chorus section and of overlap part
lchorus, loverlap, two metrics can be calculated as:

– precision: p = loverlap

lclique

– recall: r = loverlap

lchorus

Cliques with precision p > 50% and recall r > 10% were labeled as chorus
sections, the others were labeled as non-chorus sections. For each clique, an 8
dimensional feature vector and an 8 ∗ 4 = 32 dimensional additional feature
vector were calculated, the data were used to train a random forest classifier
with 1000 decision trees.

In the prediction phase, features of the cliques extracted by the structure
analysis algorithm were fed to the classifier, the output were directly used as the
result of chorus detection.

4 Evaluation

4.1 Database and Metrics

The RWC Pop Database [8] used for evaluation contains 100 popular songs, each
with one functional structure annotation file. To train the classifier for chorus
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detection, the dataset was randomly split into a training set and a validation
set which constitutes of 70 songs and 30 songs respectively. The evaluation do
not distinguish between different chorus sections like ‘chorus A’ and ‘chorus B’
which were used in the annotation. Chorus detection performance was measured
by overlap-based metrics like in Sect. 3.4 and [7]:

– precision: P = total length of correctly detected chorus sections
total length of detected chorus sections

– recall: R = total length of correctly detected chorus sections
total length of correct chorus sections

– f-measure: F = 2RP
R+P

For comparison with algorithm from [9] which outputs single chorus section,
a modified version of the above metrics was used. Only nearest ground truth
chorus section was considered when measuring the output chorus section. If
there were multiple output chorus section, the length of distinct nearest correct
chorus sections were summed up as Lnearest chorus. Given the total length of
correctly detected nearest chorus sections Lnearest overlap, the modified metrics
were denoted as:

– precision-single: Psingle = Lnearest overlap

total length of detected chorus sections

– recall-single: Rsingle = Lnearest overlap

Lnearest chorus

– f-measure-single: Fsingle = 2RsinglePsingle

Rsingle+Psingle

The modified metrics are suitable for algorithms detecting a single chorus
section and are compatible with algorithms detecting multiple chorus sections,
for the latter case, the precision and recall can be viewed as an averaged score
for the multiple detected chorus sections.

4.2 Reference Methods

The proposed method was denoted as ‘seqRecur’, for better comparison with
[9], a modified version of the method denoted as ‘seqRecurS’ which has the
same single section output format were also evaluated. The fixed-length single
chorus section which covers most of the chorus sections predicted by the proposed
method was selected as the output of ‘seqRecurS’.

Apart from the proposed method, we evaluated 6 reproducible algorithms,
denoted as ‘highlighter’, ‘scluster’, ‘sf’, ‘olda’, ‘cnmf’ and ‘foote’ [5,9,15,16,20,
23]. MSAF [19] implementation of the latter 5 structure analysis algorithms
from https://github.com/urinieto/msaf were used. To evaluate the performance
of structure analysis algorithms on chorus detection task, extra steps were taken.

For label algorithms from MSAF (scluster, cnmf) which outputs the music
structure via labeled sections, the chorus detection method as in Sect. 3.4 can
be applied. For boundary algorithms from MSAF (sf, olda, foote) which split a
music recording into sections, since the output has no recurrent music structure
but only boundaries, the output sections was labeled by maximizing similarity
on the SSM used in Sect. 3.3, then the same chorus section classifier can be
applied on these sections.

https://github.com/urinieto/msaf
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To assess the effect of the chorus detection classifier independently, ground
truth music structure were provided in the training and prediction phase of
the chorus classifier, the result was denoted as ‘gt’. To assess the effect of the
structure analysis algorithm independently, the output sections can be assigned
labels to achieve the highest possible precision, i.e. the section was labeled as
chorus if more than 50% of its length overlap with ground truth chorus sections,
its results were denoted by plus sign suffix like ‘scluster+’ as it represents the
upper bound chorus detection precision of a structure analysis method.

4.3 Results

The average precision, recall and f-measure for songs in the validation set were
listed in Table 2. The violin plot which shows the minimum, maximum and
average value of F, Fsingle for songs in the validation set were shown in Fig. 5. The
proposed method ‘seqRecur’ was the best on R,F among other structure analysis
algorithms, though its upper bound performance ‘seqRecur+’ was worse than
that of ‘olda+’. The modified proposed method ‘seqRecurS’ were comparable
on Fsingle than ‘highlighter’, which was designed for detecting a single chorus
section.

The high scores of ‘gt’ shows that the chorus detection classifier was capa-
ble of learning from the human-labeled ground truth structure annotations. The
performance decrease from results of highest possible precision ‘X+’ to its corre-
spondence ‘X’ using the classifier to detect chorus sections shows that the output
of existing structure analysis algorithms didn’t fit chorus detection task well, one
possible reason is that the output structure lacks consistency, making it difficult
to learn to distinguish the chorus from other functional sections.

Table 1. Reference method categories

Ground truth structure Calculated structure

Ground truth chorus – X+

Calculated chorus gt X

4.4 Ablation Study

To verify the effect of enhancing SSM by introducing the pitch chroma feature,
we conduct an ablation study by removing the pitch chroma feature used in
the SSM fusion step. With the same parameter settings, the evaluation results
were listed in Table 3. By utilizing the melody extraction results with the pitch
chroma feature, the performance of the chorus detection system increased by 2%
in f-measure for method ‘seqRecur’.
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Table 2. Average results on validation set. Depending on whether the two stages of
the algorithms: structure analysis and chorus detection have used ground truth results,
the reference methods can be divided into 3 categories as described in Table 1.

algo P R F Psingle Rsingle Fsingle

seqRecur 0.8050 0.7688 0.7726 0.7957 0.7771 0.7701

seqRecurS 0.8533 0.3317 0.4680 0.8198 0.7212 0.7508

highlighter 0.8820 0.3354 0.4762 0.8571 0.7784 0.7910

scluster 0.6772 0.6528 0.6038 0.6436 0.6912 0.6324

sf 0.7889 0.7068 0.6906 0.7446 0.8303 0.7423

olda 0.7793 0.7615 0.7313 0.7304 0.8675 0.7571

foote 0.8368 0.6812 0.7030 0.7886 0.8738 0.8068

seqRecur+ 0.8573 0.8031 0.8169 0.8436 0.8155 0.8168

scluster+ 0.8545 0.8972 0.8672 0.8107 0.9227 0.8470

sf+ 0.8108 0.8841 0.8323 0.7624 0.9221 0.8141

olda+ 0.8683 0.9344 0.8940 0.8221 0.9548 0.8762

cnmf 0.5510 0.6482 0.5714 0.5262 0.6966 0.5805

cnmf+ 0.7929 0.8594 0.8078 0.7457 0.9063 0.8065

foote+ 0.8717 0.8684 0.8621 0.8270 0.8898 0.8452

gt 0.9395 0.9460 0.9423 0.9253 0.9463 0.9328

Fig. 5. Distribution of F (ovlp-F) and Fsingle (sovl-F) on validation set
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Table 3. Performance increase when pitch chroma feature was used to enhance SSM

algo ovlp-P ovlp-R ovlp-F sovl-P sovl-R sovl-F

seqRecur −0.98% 5.23% 2.31% −1.48% 3.85% 1.02%

seqRecurS −6.52% −1.69% −2.76% −6.82% −3.58% −5.26%

seqRecur+ 2.21% −5.31% −2.00% 1.74% −4.13% −1.44%

5 Conclusion

This paper proposed a chorus detection method based on music structure anal-
ysis results. To better compute the music similarity, we enhanced an existing
similarity fusing method by introducing a new feature which exploits melody
extraction algorithms and a key-shift invariant distance to deal with the key
changes. A novel structure analysis method using graph algorithms and a cho-
rus detection method using supervised learning was proposed.

The chorus detection method were applied to the output of the proposed
structure analysis algorithm and the other 5 state-of-the-art algorithms. Evalu-
ation results shows the method was comparable with the state-of-the-arts algo-
rithms on both multiple and single chorus section detection tasks. The adapted
structure analysis methods using part of the proposed method to detect chorus
sections also reach high performance.

Results shows utilizing music structure analysis and melody extraction algo-
rithms for chorus detection was viable and competitive. However, the perfor-
mance was still not satisfactory comparing to the upper bound. Two reasons lie
behind this: the structure analysis algorithms were not good enough, and the
ambiguity of what ‘chorus’ means since the arrangement of songs varies and the
functional sections were annotated by humans.

Ackowlegement. This work was supported in part by National Key R&D Program
of China (2019YFC1711800), NSFC (61671156).
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22. Salamon, J., Gómez, E.: Melody extraction from polyphonic music signals using
pitch contour characteristics. IEEE Trans. Audio Speech Lang. Process. 20(6),
1759–1770 (2012)

23. Serra, J., Muller, M., Grosche, P., Arcos, J.L.: Unsupervised detection of music
boundaries by time series structure features. In: Twenty-Sixth Conference on Arti-
ficial Intelligence, Toronto, Ontario, Canada, p. 7 (2012)

24. Tralie, C.J., McFee, B.: Enhanced hierarchical music structure annotations via fea-
ture level similarity fusion. In: ICASSP 2019 - 2019 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP), Brighton, United King-
dom, pp. 201–205. IEEE (2019). https://doi.org/10.1109/ICASSP.2019.8683492,
https://ieeexplore.ieee.org/document/8683492/

25. Wu, F., Sun, S., Xue, W.: Automatic extraction of popular music ringtones based
on music structure analysis. In: 2016 IEEE/ACIS 15th International Conference on
Computer and Information Science (ICIS), Okayama, Japan, pp. 1–5. IEEE (2016).
https://doi.org/10.1109/ICIS.2016.7550919, http://ieeexplore.ieee.org/document/
7550919/

https://doi.org/10.1155/2007/89686
https://asp-eurasipjournals.springeropen.com/articles/10.1155/2007/89686
https://asp-eurasipjournals.springeropen.com/articles/10.1155/2007/89686
https://doi.org/10.1109/ICASSP.2013.6637644
http://ieeexplore.ieee.org/document/6637644/
http://ieeexplore.ieee.org/document/6637644/
https://doi.org/10.1109/ICASSP.2019.8683492
https://ieeexplore.ieee.org/document/8683492/
https://doi.org/10.1109/ICIS.2016.7550919
http://ieeexplore.ieee.org/document/7550919/
http://ieeexplore.ieee.org/document/7550919/

	Chorus Detection Using Music Structure Analysis
	1 Introduction
	2 Previous Work
	3 Method
	3.1 Pitch Chroma Feature
	3.2 Key-Shift Invariant Distance
	3.3 Repeating Pattern Extraction
	3.4 Chorus Detection

	4 Evaluation
	4.1 Database and Metrics
	4.2 Reference Methods
	4.3 Results
	4.4 Ablation Study

	5 Conclusion
	References




