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Preface

The Conference on Sound and Music Technology (CSMT)—the leading Chinese
computer audition conference today—is an annual milestone event increasingly
noted outside its home country. This comes, as this year’s CSMT 2020 has been the
third edition featuring also proceedings in English—a wise decision rendering the
otherwise potentially hidden included gems more accessible to the international
scene. At the same time, English co-proceedings of the series’ recent three editions
opened up the door for submissions for a non-Chinese speaking audience. This
helped to further raise the significance of this marvellous event which is celebrating
its overall 8th edition this year—a lucky number in China. And indeed, looking at
the exciting and inspiring contributions ahead in this book, it seems clear that
CSMT was marked by hardest work of a most outstanding organising committee
and perhaps a dash of luck on the side.

As the child of the original China Sound and Music Computing Workshop
(CSMCW), CSMT has indeed matured to an increasingly international event by
now. A great further initiative are CSMT’s quite competitive challenge papers: This
year, only three out of eight challenge papers were accepted (37.5% acceptance
rate). And likewise, also CSMT’s overall standards are on competitive levels: This
year saw overall 17 out of 37 English submissions accepted (45.9% acceptance
rate) and 18 out of 33 Chinese submissions (54.5%), hence featuring an overall
acceptance rate of 50.0% similar to its “big” international relatives in the field such
as the IEEE ICASSP annual conference.

Beyond the impressive success in broadening up internationally, it is with par-
ticular joy to note the success in establishing the event also as a truly interdisci-
plinary event: besides the technical contributions and attendees, CSMT has been
increasingly given attention also by the community of music artists—from only one
professional musician in 2013 to more than 30 participating in this year.

The 2020 event took place on 5–8 November 2020 at North University of China,
Taiyuan City, in the splendid Shanxi Province. As the previous editions, it was
catering for an utmost important area in the field of computer audition at the
intersection of music processing and sound processing and beyond.

v



Machines have long been taught to “see”, and they learnt to recognise and
increasingly understand our spoken and written language, but clearly, a lot of work
still lies ahead of us to make them “hear” and make sense of what their hearing in
much richer ways than today. In order to fully unleash the huge potential true
computer audition bears in making our everyday lives a better experience, highly
interdisciplinary and international collaborations will be needed uniting expertise
beyond computer science from the fields of sound and music, psychology, and
engineering. CSMT is perfectly well equipped to host the best and latest findings in
this respect—from China and the world and from all involved disciplines.

It is with greatest excitement that one can continue reading in the oncoming
contributions—and it is with greatest excitement that one can look forward to
oncoming editions of this special and significant series.

Björn W. Schuller

vi Preface
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Chorus Detection Using Music Structure
Analysis

Zhengyu Cao1, Yongwei Gao1, and Wei Li1,2(B)

1 School of Computer Science, Fudan University, Shanghai 201203, China
{zycao18,ywgao16,weili-fudan}@fudan.edu.cn

2 Shanghai Key Laboratory of Intelligent Information Processing, Fudan University,
Shanghai 201203, China

Abstract. This paper describes a novel chorus detection method based
on extracting the functional structure of music from its self-similarity
matrix. An existing similarity measure was enhanced firstly by using a
key-shift invariant distance and by introducing a chroma-like pitch fea-
ture that exploits melody extraction results of the music. The repeated
sections in the audio were extracted using a graph-based algorithm
and clustering-merging method assuming transitivity of similarity then.
Finally, a classifier to detect the chorus from the repeated sections was
trained. The evaluation results show that our method is comparable with
the state-of-the-art algorithms on both multiple and single chorus section
detection tasks.

Keywords: Chorus detection · Music structure · Graph algorithm

1 Introduction

Music tend to be structured audio as described in [11], composed of repeat-
ing patterns/segments in hierarchies, from repeating phrases to sections. Among
them, the longest repeating segments which correspond to sections or functional
parts in the song are especially useful. For popular music, the basic song struc-
ture consists of an intro, verse, bridge, chorus and outro section. Chorus sec-
tions as the most representative parts of pop music are of special interest in
many music-related applications, like auto music clipping, music thumbnailing,
preview, retrieval and recommendation. For example, with the rapid growth of
short-video services, the catchiest part of the music was preferred for making
the videos. The service provider usually have large repositories of digital music
clips which means clipping and choosing the chorus section manually is difficult,
auto-clipping solves the problem.

2 Previous Work

To catch chorus sections, approaches based on music structure analysis were
pervasively adopted, though there exist methods like [9] which directly estimate
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2021
X. Shao et al. (Eds.): CSMT 2020, LNEE 761, pp. 3–17, 2021.
https://doi.org/10.1007/978-981-16-1649-5_1
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https://doi.org/10.1007/978-981-16-1649-5_1


4 Z. Cao et al.

chorus sections from music audio. Self-similarity matrix (SSM) is the key com-
ponent in many structure analysis algorithms [4,6,7,10,21,24].

One challenge faced in SSM based music structure analysis methods is how to
extract meaningful segments from a raw SSM, which involves SSM enhancement
and analysis. Various methods have been proposed to enhance the SSM, like
matrix fusion technique from [2] used by [24], non-negative matrix factorisation
(NMF) based methods [4,12] and methods [10] using augmentation of transpo-
sition and tempo invariance. As for extracting segments from the SSM, in [24],
a spectral clustering method based on eigenvector decomposition of Laplacian
matrix of the SSM was used to group the frames; in [4], a checkerboard kernel
was applied to the SSM to generate a novelty curve, then peaks in the novelty
curve were detected as segment boundaries; in [6] and [7], lines from the SSM
diagonals were extracted first and merged using various hand-craft rules to form
segments.

In [4], transitivity (which means if A and B are similar, and A and C are
similar, then A and C should be similar) was enforced to the output music
structure on the last step, the proposed method pushed it further: transitivity of
similarity was considered at the first place, and this constraint was kept through-
out the following steps. We proposed a novel graph-based algorithm to extract
repeating segments from the SSM using a clustering-merging method. The clus-
tering step can be seen as a repetition based method, comparing to the stripe
detection approach used in previous repetition based methods like [7,14,18], the
proposed method focus on detecting repeating patterns of smaller size but more
repetitions, thus involve less effort integrating the repeating patterns and better
reflects the repetition in music.

Melody extraction results were introduced to enhance the SSM in the pro-
posed method, the reason is twofold. On the one hand, the feature-level similarity
fusion in [24] draws good results in SSM enhancement while it supports arbitrar-
ily many features as input so that new features could be added. On the other
hand, the results of melody extraction algorithms has been greatly improved
from salience-based approaches [22] to data-driven approaches like [1,3,13].

Heuristic methods were heavily used for chorus detection in previous works
[6,7,17], focusing on distinguish chorus sections by repetition counts, durations
and other features. Since the number of features could be large, and annotated
datasets were available, supervised methods were preferred, in [25], a random
forest classifier were used to detect chorus segments. We adopted the data-driven
method, and combined melody extraction results into the features for chorus
classifying.

Experiment on RWC Pop Database [8] shows our method is better comparing
to the music thumbnailing algorithm in [9] on single section chorus detection,
and has comparable performance with the best of 5 structure analysis algo-
rithms mentioned in [19]. For reproducibility, the proposed algorithm and eval-
uation code is available on https://github.com/beantowel/chorus-from-music-
structure.

https://github.com/beantowel/chorus-from-music-structure
https://github.com/beantowel/chorus-from-music-structure


Chorus Detection Using Music Structure Analysis 5

3 Method

Figure 1 demonstrates the process of the proposed method. Firstly, acoustic fea-
tures as pitch chroma, MFCC, chroma and tempogram were calculated from the
input music recording. Then self-similarity matrices were generated on these fea-
tures and fused into one. Low-level patterns were extracted by graph algorithms
assuming transitivity of similarity and merged to form top-level structures. In
the end, a classifier learns from the training data to detect chorus sections and
makes predictions on structural information and melody features of the input
sections.

Figure 2 shows the results from the pipeline. The fused SSM were plotted in
the upper-left subfigure, the ground truth chorus sections and detected chorus
sections were represented by the green stripes in the upper half and lower half of
the box. The upper-right subfigure shows the ground truth structure annotations
of the music, the green squares were verse sections and the blue squares were
the chorus sections. The lower-right and lower-left subfigure shows the extracted
low level and top-level structure of the music, different colors were used only to
identify different repeating patterns.

Fig. 1. Overview of the proposed method

3.1 Pitch Chroma Feature

The proposed method adopts the melody extraction result from [13] which is a
melody line: a sequence of estimated fundamental frequency {f0, f1, f2, . . . } cor-
responding to each timestamp {t0, t1, t2, . . . }. Though the algorithm has state-
of-the-art results, wrong estimations in the output make the raw sequence not
suitable for measuring similarity directly. Inspired by chroma feature, a pitch
chroma feature vector is derived from the fundamental frequency sequence which
is robust to the errors.
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Fig. 2. Results for song ‘Dream magic’ from RWC Pop database

For a given window of frequencies {fi, . . . , fj} and a given number of pitch
classes Nclass, frequency values belonging to each pitch class were counted
as pci, comprising a feature vector reflecting the occurrence of the pitches[
pc0 . . . pcNclass−1

]
. The frequency value f is mapped to its pitch class in a

similar way to that in the chroma feature:

pitchClass(f) = Nclass log2(f) mod Nclass (1)

the occurrences were counted as:

pck =
j∑

l=i

[pitchClass(fl) = k] (2)

In the proposed method, the number of pitch classes is set to Nclass = 24
which gives the vector a finer resolution. The window size is 0.1∗10 s long, while
the SSM used in the proposed method has a frame size of 0.23 s.

3.2 Key-Shift Invariant Distance

Modulation is the change of tonality, modulated sections are considered as the
same pattern in the proposed structure analysis method. To deal with the key
change in modulated sections, a key-shift invariant distance is used as the simi-
larity measure for chroma and pitch chroma feature vectors.

For two feature vectors denoted as:

x =
[
x0 . . . xn−1

]
,y =

[
y0 . . . yn−1

]
(3)

n cosine similarity values is calculated by rolling the element in vector y by
an offset of i = 0, . . . , n − 1 and evaluating the similarity between x and
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[
y0+i . . . yn−1+i mod n

]
. The maximum similarity value, or the minimum dis-

tance among them is presented as the key-shift invariant distance of the two
vectors. For example, the chroma feature has 12 pitch classes, then the distance
is invariant to key changes in semitones.

3.3 Repeating Pattern Extraction

Low Level Pattern Extraction. Using the modified version of the algorithm
from [24] with key-shift invariant distance, a self-similarity matrix is calculated
by fusing SSMs of Mel-frequency cepstral coefficients (MFCC), chroma, pitch
chroma and tempogram feature vectors. The fused SSM is ‘cleaner’ where stripe
patterns corresponding to repeating segments were highlighted.

The fused SSM was binarized according to a threshold of exp(−5), values
lower than the threshold were set to 0 while the rest were set to 1. The proposed
method takes the binarized matrix as the adjacency matrix of the self-similarity
graph (SSG) gss where vertices represents audio frames and edges represents the
similarity relation between the frames.

Low-level patterns, or short repeating segments, were captured first. Similar
frames forms a fully connected subgraph, or a clique in the SSG. By extract-
ing cliques from the SSG, redundant or wrong edges representing a similarity
relation were removed. However, cliques may overlap in the SSG, as there are
noise/errors in the generated graph breaking the transitivity of similarity. To
deal with the noise and find the repeating segments, the clique with maximum
size was iteratively extracted from the graph as described in Algorithm 1, once
a clique was extracted, the vertices in that clique were removed from the graph.
This step requires to find all possible cliques in the SSG which is time-consuming
when the graph is big, so literally only the first 10000 cliques found were used
for selecting the largest clique, with less cliques to select, results will be slightly
worse while decreasing processing time.

Figure 3 shows 2 example cases of extracting cliques from an undirected
graph, cliques were enclosed in red-dotted circles, in the right subfigure, there
are possible cliques that overlap with each other.

Fig. 3. Extracting cliques from undirected graph
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Algorithm 1. Extract cliques from graph gss
Require: gss is undirected graph
Ensure: C = {c, . . . } are non-overlap cliques in gss

C ← {}
while gss is not empty do

x ← findCliques(gss)
c ← maxSizeClique(x)
insert c into C
remove c from gss

end while
return C

The extracted cliques were treated as low level patterns, each represents a
group of repeating segments. For clarity, unique numbers can be assigned to
the cliques, then the music structure will be represented by a sequence of label
numbers for audio frames. For visualization, a labeled SSM can be constructed
using the label sequence. The three representations, cliques, label sequence and
labeled SSM, are equivalent data structures since they transform to each other
freely. For example, cliques C = {(0, 1), (2, 3)}, label sequence S = {1, 1, 2, 2}

and labeled SSM Mlabel =

⎡

⎢
⎢
⎣

1 1 0 0
1 1 0 0
0 0 2 2
0 0 2 2

⎤

⎥
⎥
⎦ all refer to the same structure.

Cliques Merging. To get functional level structure of music, the method
merged the original extracted cliques to form larger repeating segments. Con-
sider a music piece with structure ABA for example, the low level struc-
ture would look like a0a0a1a2b0b1a0a0a1a2 and the cliques extracted would be
{(0, 1, 6, 7), (2, 8), (3, 9), (4), (5)}. The target structure ABA, however, yields a
target list of clique as C = {(0, 1, 2, 3, 6, 7, 8, 9), (4, 5)}. The principle is, if two
cliques are sequentially adjacent, like a0 and a1 whose clique representation is
(0, 1, 6, 7) and (2, 8), they can be merged into the same larger clique, as depicted
in Fig. 4, where sequentially adjacent frames were connected by red lines. The
transitivity of similarity relation were kept between merged repeating segments.

Fig. 4. Merging cliques into larger repeating segments
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To decide whether two cliques were sequentially adjacent, we introduce the
notion of ‘ends’ of the clique: it’s composed of heads and tails (endpoints
excluded) of the consecutive segments in the clique. For example, (0, 6) and
(1 + 1, 7 + 1) are the heads and tails of clique a0. Given two clique ci, cj where
the minimum frame number satisfies min(ci) < min(cj), tails of the former
clique tails(ci) and heads of the latter clique heads(cj) were compared to tell if
they met the adjacent condition.

Ideally, if the two cliques were adjacent, the heads and the tails should match
as tails(ci) = heads(cj), but to tolerate deviations the method uses a predicate
which is a conjunction of:

– repeating counts restriction: difference between the numbers of consecutive
segments in ci and cj is within Dblock, which means for the lengths of the
heads and tails, condition

|len(heads(ci)) − len(tails(cj))| < Dblock (4)

is satisfied.
– distance restriction: distance between tails(ci), heads(cj) is within Dadj ,

which means for most (except for at most Dblock items) of the items x ∈
tails(ci) or y ∈ heads(cj), condition

min
∀y∈heads(cj)

|x − y| < Dadj (5)

or
min

∀x∈tails(ci)
|y − x| < Dadj (6)

is satisfied.

To merge original cliques into larger cliques. An adjacency matrix of the
cliques Mclique whose items are mi,j is constructed by evaluating the predicate
mentioned above for cliques ci and cj where i < j. According to the principle
‘sequentially adjacent cliques be merged into the same larger clique’, let gclique
be a graph with adjacency matrix Mclique, cliques in the same connected com-
ponents were to be merged into one as described in Algorithm 2.

Smoothing and Adaptive Merging. To reduce noise/errors in the final out-
put of structure analysis, a median filter with window size Kwindow is applied
to the label sequence representation of the structure which smooth the output
and keeps large repeating segments in one piece.

The parameter Dblock is crucial for controlling the hierarchy of the output
structure, with bigger Dblock the criteria in Sect. 3.3 is more tolerant and results
in larger repeating segments, with smaller Dblock, the criteria is more strict and
results in lower-level patterns. There is no optimal value of Dblock for every song
and its SSM, thus an adaptive merging method was adopted. From multiple
merging outputs with Dblock ∈ {0, . . . , 2} and Kwindow ∈ {23, 37, 47}, result
whose count of cliques is greater than 3 and of minimum ‘error’ is selected.
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Algorithm 2. Merge cliques
Require: C = {c, . . . } are cliques
Ensure: Cmerge = {c′, . . . } are largest possible merged cliques

Mclique =
[
mi,j

]

for ci, cj ∈ C do
mi,j ← isAdjacent(ci, cj)
mj,i ← mi,j

end for
Cmerge ← {}
for x ∈ components(Mclique) do

c′ ← ()
for c ∈ x do

add c into c′

end for
insert c′ into Cmerge

end for
return Cmerge

The error of clique merging process is modeled by comparing the labeled
SSMs of the original clique and that of the merged clique. Empirically, a good
merging result is close to the original cliques, thus we use an error function
composed of two terms: false negative rate and false positive rate. Given the
original cliques C and merged cliques Cmerge, their labeled self-similarity matrix
representations mc = Mlabel(C) and mc′ = Mlabel(Cmerge) were compared. The
error function is:

Error(C,Cmerge) = αENeg + max(βEPos − 0.1, 0) (7)

where ENeg = sum(mc′ = 0 ∧ mc �= 0) is the number of false negatives and
EPos = sum(mc′ �= 0 ∧ mc = 0) is the number of false positives, coefficients
α = 1

sum(mc �=0) and β = 1
sum(mc �=0) were used to normalize the importance of

the terms as both type of errors are considered equally important. Good merged
cliques should cover the original cliques, thus the false positives were inevitable
and always greater than 0, so the minus-then-max function clips the false positive
rate lower then 0.1.

3.4 Chorus Detection

Based on the music structure analysis results, the chorus detection task is just
of choosing the right repeating segments as the chorus. The proposed method
uses a random forest classifier to learn which cliques are the chorus sections.
The chorus sections tend to have different acoustic features to other sections
and specific positions in the song, thus acoustic and structural features of the
cliques C = {c, . . . } were provided to train the classifier, the features used were
listed below:
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– clique duration: duration occupied by the clique normalized by duration of
the song.

– voicing rate: the ratio of the number of voicing frames to that of all frames
in the clique by counting non-zero frequencies in the melody line within the
clique.

– melody median, minimum and maximum: median, minimum and maximum
value of the frequencies in the melody line within the clique.

– clique head and last clique head : the smallest and the biggest frame number
in the heads of the clique heads(c).

– segments count : the number of consecutive segments in the clique by measur-
ing the size of heads(c).

Apart from the structural features like clique head, we added more features
to expose the positional/structural information of the cliques. Based on the 8
features mentioned above, in 3 ways additional features were generated:

– ranking : features of the cliques in a music recording were ranked by sorting
their values, the ranking numbers were used as additional features.

– normalizing : features were normalized by the maximum value from the cliques
in a music recording to generate additional features.

– stacking : cliques were sorted by occurrence (their minimum frame number),
then features of a clique’s predecessor and successor were copied and added
as additional features.

In the training phase, the proposed structure analysis algorithm was first
applied to the music recordings in the training set to get repeating segments, then
each clique was compared with the ground truth annotation to decide whether
to label it as a chorus section or not. The comparison is done by measuring the
overlap ratio between the clique and the ground truth chorus sections, given the
length of the clique lclique, the length of the chorus section and of overlap part
lchorus, loverlap, two metrics can be calculated as:

– precision: p = loverlap

lclique

– recall: r = loverlap

lchorus

Cliques with precision p > 50% and recall r > 10% were labeled as chorus
sections, the others were labeled as non-chorus sections. For each clique, an 8
dimensional feature vector and an 8 ∗ 4 = 32 dimensional additional feature
vector were calculated, the data were used to train a random forest classifier
with 1000 decision trees.

In the prediction phase, features of the cliques extracted by the structure
analysis algorithm were fed to the classifier, the output were directly used as the
result of chorus detection.

4 Evaluation

4.1 Database and Metrics

The RWC Pop Database [8] used for evaluation contains 100 popular songs, each
with one functional structure annotation file. To train the classifier for chorus
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detection, the dataset was randomly split into a training set and a validation
set which constitutes of 70 songs and 30 songs respectively. The evaluation do
not distinguish between different chorus sections like ‘chorus A’ and ‘chorus B’
which were used in the annotation. Chorus detection performance was measured
by overlap-based metrics like in Sect. 3.4 and [7]:

– precision: P = total length of correctly detected chorus sections
total length of detected chorus sections

– recall: R = total length of correctly detected chorus sections
total length of correct chorus sections

– f-measure: F = 2RP
R+P

For comparison with algorithm from [9] which outputs single chorus section,
a modified version of the above metrics was used. Only nearest ground truth
chorus section was considered when measuring the output chorus section. If
there were multiple output chorus section, the length of distinct nearest correct
chorus sections were summed up as Lnearest chorus. Given the total length of
correctly detected nearest chorus sections Lnearest overlap, the modified metrics
were denoted as:

– precision-single: Psingle = Lnearest overlap

total length of detected chorus sections

– recall-single: Rsingle = Lnearest overlap

Lnearest chorus

– f-measure-single: Fsingle = 2RsinglePsingle

Rsingle+Psingle

The modified metrics are suitable for algorithms detecting a single chorus
section and are compatible with algorithms detecting multiple chorus sections,
for the latter case, the precision and recall can be viewed as an averaged score
for the multiple detected chorus sections.

4.2 Reference Methods

The proposed method was denoted as ‘seqRecur’, for better comparison with
[9], a modified version of the method denoted as ‘seqRecurS’ which has the
same single section output format were also evaluated. The fixed-length single
chorus section which covers most of the chorus sections predicted by the proposed
method was selected as the output of ‘seqRecurS’.

Apart from the proposed method, we evaluated 6 reproducible algorithms,
denoted as ‘highlighter’, ‘scluster’, ‘sf’, ‘olda’, ‘cnmf’ and ‘foote’ [5,9,15,16,20,
23]. MSAF [19] implementation of the latter 5 structure analysis algorithms
from https://github.com/urinieto/msaf were used. To evaluate the performance
of structure analysis algorithms on chorus detection task, extra steps were taken.

For label algorithms from MSAF (scluster, cnmf) which outputs the music
structure via labeled sections, the chorus detection method as in Sect. 3.4 can
be applied. For boundary algorithms from MSAF (sf, olda, foote) which split a
music recording into sections, since the output has no recurrent music structure
but only boundaries, the output sections was labeled by maximizing similarity
on the SSM used in Sect. 3.3, then the same chorus section classifier can be
applied on these sections.

https://github.com/urinieto/msaf
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To assess the effect of the chorus detection classifier independently, ground
truth music structure were provided in the training and prediction phase of
the chorus classifier, the result was denoted as ‘gt’. To assess the effect of the
structure analysis algorithm independently, the output sections can be assigned
labels to achieve the highest possible precision, i.e. the section was labeled as
chorus if more than 50% of its length overlap with ground truth chorus sections,
its results were denoted by plus sign suffix like ‘scluster+’ as it represents the
upper bound chorus detection precision of a structure analysis method.

4.3 Results

The average precision, recall and f-measure for songs in the validation set were
listed in Table 2. The violin plot which shows the minimum, maximum and
average value of F, Fsingle for songs in the validation set were shown in Fig. 5. The
proposed method ‘seqRecur’ was the best on R,F among other structure analysis
algorithms, though its upper bound performance ‘seqRecur+’ was worse than
that of ‘olda+’. The modified proposed method ‘seqRecurS’ were comparable
on Fsingle than ‘highlighter’, which was designed for detecting a single chorus
section.

The high scores of ‘gt’ shows that the chorus detection classifier was capa-
ble of learning from the human-labeled ground truth structure annotations. The
performance decrease from results of highest possible precision ‘X+’ to its corre-
spondence ‘X’ using the classifier to detect chorus sections shows that the output
of existing structure analysis algorithms didn’t fit chorus detection task well, one
possible reason is that the output structure lacks consistency, making it difficult
to learn to distinguish the chorus from other functional sections.

Table 1. Reference method categories

Ground truth structure Calculated structure

Ground truth chorus – X+

Calculated chorus gt X

4.4 Ablation Study

To verify the effect of enhancing SSM by introducing the pitch chroma feature,
we conduct an ablation study by removing the pitch chroma feature used in
the SSM fusion step. With the same parameter settings, the evaluation results
were listed in Table 3. By utilizing the melody extraction results with the pitch
chroma feature, the performance of the chorus detection system increased by 2%
in f-measure for method ‘seqRecur’.
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Table 2. Average results on validation set. Depending on whether the two stages of
the algorithms: structure analysis and chorus detection have used ground truth results,
the reference methods can be divided into 3 categories as described in Table 1.

algo P R F Psingle Rsingle Fsingle

seqRecur 0.8050 0.7688 0.7726 0.7957 0.7771 0.7701

seqRecurS 0.8533 0.3317 0.4680 0.8198 0.7212 0.7508

highlighter 0.8820 0.3354 0.4762 0.8571 0.7784 0.7910

scluster 0.6772 0.6528 0.6038 0.6436 0.6912 0.6324

sf 0.7889 0.7068 0.6906 0.7446 0.8303 0.7423

olda 0.7793 0.7615 0.7313 0.7304 0.8675 0.7571

foote 0.8368 0.6812 0.7030 0.7886 0.8738 0.8068

seqRecur+ 0.8573 0.8031 0.8169 0.8436 0.8155 0.8168

scluster+ 0.8545 0.8972 0.8672 0.8107 0.9227 0.8470

sf+ 0.8108 0.8841 0.8323 0.7624 0.9221 0.8141

olda+ 0.8683 0.9344 0.8940 0.8221 0.9548 0.8762

cnmf 0.5510 0.6482 0.5714 0.5262 0.6966 0.5805

cnmf+ 0.7929 0.8594 0.8078 0.7457 0.9063 0.8065

foote+ 0.8717 0.8684 0.8621 0.8270 0.8898 0.8452

gt 0.9395 0.9460 0.9423 0.9253 0.9463 0.9328

Fig. 5. Distribution of F (ovlp-F) and Fsingle (sovl-F) on validation set
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Table 3. Performance increase when pitch chroma feature was used to enhance SSM

algo ovlp-P ovlp-R ovlp-F sovl-P sovl-R sovl-F

seqRecur −0.98% 5.23% 2.31% −1.48% 3.85% 1.02%

seqRecurS −6.52% −1.69% −2.76% −6.82% −3.58% −5.26%

seqRecur+ 2.21% −5.31% −2.00% 1.74% −4.13% −1.44%

5 Conclusion

This paper proposed a chorus detection method based on music structure anal-
ysis results. To better compute the music similarity, we enhanced an existing
similarity fusing method by introducing a new feature which exploits melody
extraction algorithms and a key-shift invariant distance to deal with the key
changes. A novel structure analysis method using graph algorithms and a cho-
rus detection method using supervised learning was proposed.

The chorus detection method were applied to the output of the proposed
structure analysis algorithm and the other 5 state-of-the-art algorithms. Evalu-
ation results shows the method was comparable with the state-of-the-arts algo-
rithms on both multiple and single chorus section detection tasks. The adapted
structure analysis methods using part of the proposed method to detect chorus
sections also reach high performance.

Results shows utilizing music structure analysis and melody extraction algo-
rithms for chorus detection was viable and competitive. However, the perfor-
mance was still not satisfactory comparing to the upper bound. Two reasons lie
behind this: the structure analysis algorithms were not good enough, and the
ambiguity of what ‘chorus’ means since the arrangement of songs varies and the
functional sections were annotated by humans.

Ackowlegement. This work was supported in part by National Key R&D Program
of China (2019YFC1711800), NSFC (61671156).
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Abstract. Today’s research on Chinese music technology is mainly
focused on three aspects: data collection, music deconstruction, and
music reconstruction. In this paper, a general method is proposed to
collect Chinese music in the form of numbered musical notation, and
a Dizi dataset is collected using this method. Based on the collected
Dizi dataset, we conduct research on the Dizi music styles of the North-
ern school and the Southern School. Characteristics include melody and
playing techniques of the two different music styles are deconstructed.
A reconstruction example, music style transfer which includes melody
transfer and playing techniques transfer is given and audience evalua-
tion is done to evaluate the reconstruction results.

Keywords: Dizi music · Deconstruction · Reconstruction

1 Introduction

With the continuous development of music technology, more and more
researchers are devoted to the exploration of Chinese music technology. These
studies mainly focus on three aspects: the collection of Chinese music datasets,
the deconstruction of Chinese music, and the reconstruction of Chinese music.
Collected datasets include two forms: audio and symbolic scores. Deconstruc-
tion refers to data mining from the collected datasets, to find some information
about features from music. Reconstruction refers to the creation of new music,
new musical forms, and so on.

Of course, there are still many areas worthy of improvement. The current
research on Chinese music mainly has the following problems:

– In terms of data collection, there has been a relatively standardized and
systematic collection method for audio, and there is also a certain scale of
Chinese musical instrument database [12]. But in terms of the establishment
of a symbolic score database, although some methods have been proposed
before, there is still no standard, accurate and fast collection method for
the numbered musical scores. For example, Optical Character Recognition

c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2021
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technology is a fast method but could lead to many errors due to immaturity.
The collection method proposed in [10] for Guqin is fast and accurate to
some extent, but could not intuitively be represented in the form of numbered
musical notation.

– In the reconstruction and deconstruction of music, the gap between music and
computer science has caused two hands of problems. On the one hand, for
researchers in computer science, much research stays at the stage of pure data
analysis without an in-depth discussion of the meaning of the music. Simply
migrating methods from other fields to Chinese music technology would not
bring substantial progress to the research of Chinese music technology. On
the other hand, for researchers in music, much research fails to make good
use of the powerful tool of computer science.

In response to the above problems. Taking Dizi music as an example, we do
the following work in this paper:

– we propose a general collection method to collect numbered musical scores
by typing them using a self-made font. In this way, collected scores can be
represented intuitively in the form of numbered musical notation. Then, these
scores can be converted into staff easily using a written program. Using this
method, we collect the first symbolic dataset of Dizi music. We also make
public the dataset1.

– Based on the Dizi dataset, we do data mining (deconstruction) include melody
deconstruction and playing techniques deconstruction on the Dizi music
styles. Playing techniques in Chinese music is much more important than
in Western music. Through deconstruction, we not only lay the foundation
for the later music reconstruction but also find some interesting phenomena.

– Based on the deconstruction results, we give an interesting reconstruction
example, music style transfer, which includes both melody transfer and play-
ing techniques transfer. Some audience tests are done to evaluate the transfer
results.

The code used in this paper can be found online2. Besides, here is a brief
introduction to styles of Dizi music, especially for the styles of the Northern
school and the Southern school, which are seen as the research objects in this
paper. In the 1950s, Dizi appeared on the historical stage of solo performance,
and its performance styles consisted of the Southern school and the North-
ern school. Today, the Northern school and the Southern school are two main
styles of Dizi music. The Northern school is characterized as more lively, and
ornamentally technical with extensive use of different types of tricky finger-
ing techniques and tonguing. The Northern school is mainly played by Bangdi
(Check out Hong Kong Chinese Orchestra’s introductory video to the Bangdi
in https://www.youtube.com/watch?v=zJjfFqat oA). By contrast, the South-
ern school is more melodic. It can display the soft features of the Jiangnan
1 https://github.com/hrsoup/Dizi Dataset.
2 https://github.com/hrsoup/CSMT2020 Code.

https://www.youtube.com/watch?v=zJjfFqat_oA
https://github.com/hrsoup/Dizi_Dataset
https://github.com/hrsoup/CSMT2020_Code
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region. The representative playing techniques of the Souther school include trills,
upper acciaccatura, and so on. The Southern school is mainly played by Qudi
(Check out Hong Kong Chinese Orchestra’s introductory video to the Qudi in
https://www.youtube.com/watch?v=HjU5ssXvYQA).

The rest of this paper is organized as follows. Related work is first shown in
Sect. 2. Data preparation is described in Sect. 3. Section 4 and Sect. 5 introduce
deconstruction and reconstruction, respectively. Conclusions and some future
work are given in Sect. 6.

2 Related Work

The first part of related work is data collection. The collected data of Chi-
nese music consists of two forms: audio and symbolic scores. In terms of audio
database establishment, Liang et al. [12] built a database that includes Chinese
musical instrument audio. Wang et al. [16] collected a Dizi audio music dataset.
In terms of symbolic music scores collection, Li et al. [9] collected a Gongchepu
(which is the Chinese traditional musical notation) dataset. Li et al. [10] collected
a Guqin dataset.

The second part of related work is music deconstruction. Music deconstruc-
tion includes research about melody, music spectral characteristics, the correla-
tion of different types of music genres, and so on. Wang et al. [17] did research
about playing techniques recognization from the Dizi music spectrum. Yang et
al. [21] did a quantitative study of vibrato to compare erhu music and violin
music.

The third part of related work is music reconstruction. Music reconstruction
includes music generation, music synthesis, and so on. Luo et al. [13] used meth-
ods of deep learning to generate Chinese folk songs with specific styles. Dai et
al. [2] did music synthesis based on modeling of pipa playing techniques.

3 Data Preparation

3.1 Data Collection

Chinese musical instruments are usually recorded in the form of numbered musi-
cal notation. Therefore, we propose a general method to collect numbered musi-
cal scores. Although this method is applied in Dizi in this paper, it can be
extended easily to other Chinese musical instruments which are also recorded in
numbered musical notation. This method consists of three steps: making a new
font, typing, and transformation.

First, we used the open-source software FontForge to make a new font. We
call the new font DiziFont.ttf. The method of making DiziFont.ttf can be seen
in Fig. 1. The left subfigure shows the overview of the font design. Some keys
in the keyboard correspond to some symbols in the numbered musical notation.
For example, the method of making lower acciaccatura is shown in the right

https://www.youtube.com/watch?v=HjU5ssXvYQA
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(a) The overview of the font design (b) Making lower
acciaccatura

Fig. 1. The method of making DiziFont.ttf

subfigure. The symbol of lower acciaccatura consists of three polygons of different
shapes and sizes, and it corresponds to the capital letter D on the keyboard.

Second, we applied the font of DiziFont.ttf into Microsoft word to type in
numbered musical notation. A piece of example can be seen in Fig. 2. From this
figure, we can see that the digitized numbered musical notation looks the same
as on paper, which is very intuitive. The paper sheet music we used comes from
[11] and [20]. The original typing files are stored in Docx files.

Fig. 2. A typing example

Third, we wrote a program using the music21 toolkit [1] to transform the
Docx file into the MusicXML file. Although it is intuitive to record the numbered
musical notation in the Docx file using our self-made font, it is not standardized.
MusicXML file is not only a more standardized store form but also can be dis-
played in the form of staff using some software such as MuseScore. A transform
example from the Docx file to the MusicXML file can be seen in Fig. 3. In prac-
tice, the playing technique symbols are too complicated which brings us great
difficulties to process them. Therefore, we used an unintuitive but very simple
way to record and process playing techniques. In this way, playing techniques
are represented as lyrics to add to staff scores.

Using this above method, we collect a Dizi dataset both in Docx files and
MusicXML files (which is also to say, numbered musical scores and staff scores).

3.2 Data Statistics

Up to now, we have recorded 28 Dizi songs, which include 19413 notes in total.
The dataset is still being continuously expanded. In terms of style, these songs
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Fig. 3. A transform example

cover the Southern school, the Northern school, and so on. In this paper, we use
the Northern school data and the Southern school data to analyze. The total
number of notes used in this paper is 12925, where 7320 notes for the Northern
school and 5605 notes for the Southern school.

3.3 Data Representation

In this paper, we focus on Dizi music of symbolic representation, so each note can
be seen as a word just like in natural language processing. Each note consists of
two features: the pitch and the duration. We use the chromatic scale to measure
the pitch and quarter length to measure the duration. An example is shown
in Fig. 4. It can be seen how the processing of symbolic music is related to
natural language processing. It shows a note sequence (represented in the form
of numbered musical notation) in C major. The quarter note Do in C major has
the pitch of C4 and the duration of 1 quarter length. The pitch and the duration
can be spliced together and expressed as C41, and the other notes are the same.

Fig. 4. A data representation example

4 Deconstruction

Deconstruction is used to find some information about features from music,
which is done through data mining. For most kinds of music, the melody is quite
an important feature, so we first did the melody deconstruction. For Dizi music,
playing techniques are also important. Different styles have different represen-
tative playing techniques, so we then did the playing techniques deconstruction.
In this paper, deconstruction is seen as a typical classification task.
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4.1 Melody Deconstruction

Melody deconstruction is used to classify melodies of the Northern school and the
Southern school, which can also be seen as a general text classification task. We
first cut music into many pieces, each of whose length is 4 measures, then used
data preprocessing techniques include Bag-of-Words, Term Frequency Inverse
Document Frequency (TF-IDF) [15], Continuous Bag-of-Words (CBOW) [14]
and Skip-Gram [14] to process these data, finally sent these preprocessed-data
to some usual machine learning models include Support Vector Machines (SVM)
[5], long-short-term memory (LSTM) [4] and Text Convolutional Neural Network
(TextCNN) [7]. Experiments were done under 10-fold cross validation. Recall and
F1-socre were used to evaluate experiment results.

The results are shown in Table 1. From this table, we can see that LSTM+TF-
IDF and LSTM+Bag-of-Words get the relative best results. Besides, we find that
the results of using LSTM are better than using TextCNN in total, which is an
interesting result. In the short-text classification task, TextCNN has been proved
to perform better than LSTM in many tasks, but the Dizi melody classification is
not so. We think it is because that TextCNN can only do convolution operation
during a small range, but LSTM can memory longer data. Compared with text
data, music more depends on long memorized data. Grasping partial features
not global features are difficult to recognize melody style.

Table 1. Melody deconstruction results

Model Bag-of-Words TF-IDF CBOW Skip-Gram

Recall F1-score Recall F1-score Recall F1-score Recall F1-score

SVM 97.89 89.96 98.77 95.82 97.96 92.21 97.81 92.23

LSTM 98.41 97.45 98.10 97.74 95.35 94.16 93.87 94.72

CNN 89.66 89.28 96.11 95.40 93.76 88.71 87.83 82.39

4.2 Playing Techniques Deconstrction

Playing techniques deconstruction is seen as a special classification task, tagging
task. The tagging task is discussed between the observation sequence and the
state sequence. In this playing technique deconstruction, each kind of playing
technique is seen as a state and each note is seen as an observation. We first
cut music into pieces which one of whose length is 4 measures, then used ran-
dom word embedding to preprocess data, finally sent these preprocessed-data
to some tagging models. Experiments were done under 10-fold cross-validation
in the dataset of the Northern school and the dataset of the Southern school,
respectively. Accuracy and oov (out-of-vocabulary) accuracy were used to eval-
uate experimental results.
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Besides, Special instructions are needed regarding the tagging model used.
Besides these usual tagging models include Conditional Random Fields (CRF)
[8], bidirectional LSTM (BILSTM) [3] and BILSTM with a CRF layer (BILSTM-
CRF) [6], we also used the model proposed in [19], which combines a general
tagging model and logic rules. As the general tagging model we used is BILSTM,
we call this model BILSTM-RULES.

The total experiment results are shown in Table 2. We can see that BILSTM-
CRF achieves the highest accuracy among two datasets of different styles, while
BILSTM-RULES achieves the highest oov accuracy.

Table 2. Playing techniques deconstruction results. In this table, N represents the
Northern school and S represents the Southern school.

Model Accuracy Oov accuracy

N S N S

CRF 68.98 84.42 39.44 63.03

BILSTM 69.76 84.03 61.29 88.26

BILSTM-CRF 74.71 87.59 43.54 85.53

BISLTM-RULES 69.23 84.12 61.95 88.79

Besides, we find an interesting phenome, that is, not the same as the original
data label does not mean it does not meet a certain style. Although composers
from the same school can have different playing techniques tagging ways for
the same music. For example, the first two subfigures in Fig. 5 show an excerpt
of Song of Soochow. Xunfa Yu and Xianwei Jiang are both from the Southern
school, but they tagging the music differently. In our playing techniques decon-
struction, there are also some similar examples of happening. An example is
shown in the last two subfigures in Fig. 5, it shows an excerpt of Busy Delivering
Harvest. We can see that playing techniques are different between the original
and the generated. But from the human perspective, the playing techniques gen-
erated by BILSTM-CRF still meet the original style, the Northern school. As
tonguing (which is represented as a triangle in numbered musical notation) is a
typical playing technique from the Northern school.

5 Reconstruction

After deconstruction, we can reconstruct new music using deconstruction results.
In this paper, we use music style transfer as a reconstruction example, to show
how to get new music from deconstruction results. There are two steps of recon-
struction (music style transfer) in this paper: melody reconstruction (melody
transfer) and playing techniques reconstruction (playing techniques transfer).
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(a) Composed by Xianwei Jiang (b) Composed by Xunfa Yu

(c) Original techniques (d) Gotten by BILSTM-CRF

Fig. 5. Different techniques tags for the same notes

5.1 Melody Reconstruction

The first step is melody transfer. Given a piece of music with a specific style,
then add some changes to this piece of music. The changes include the following
four kinds:

– Changing a note one or two chromatic semitones higher than the old one.
– Changing a note one or two chromatic semitones lower than the old one.
– Splitting one note into several notes, these notes’ duration include
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– Joining two successive notes into one note whose duration is the sum of these
two notes’ duration.

Then, this piece of music with changes was sent to LSTM with the pre-
processing technique of TF-IDF (which has been proved to perform well in
Sect. 4.1). If the prediction label of classification is the same as its initial label
(keeping the content of original music), and the probability of prediction is
smaller than the old (It is closer to the style of target music), then these changes
could be retained, else be dropped. The above process was repeated until the
specified number of iterations is reached.

5.2 Playing Techniques Reconstruction

The second step is playing techniques transfer. We used models in Sect. 4.2 Which
achieve the highest accuracy (BILSTM-CRF) and oov accuracy (BILSTM-
RULES), respectively, to do playing techniques transfer. For example, if you
want to transfer a piece of music that belongs to the Northern school style, into
the style of the Southern school, you only need to apply the trained Southern
school’s playing techniques tagging models to the piece of music.

5.3 Reconstruction Result

After doing melody reconstruction and playing techniques reconstruction, the
final reconstruction results can be gotten. A reconstruction example that shows
the music style transfer result from the Southern school to the Northern school
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can be seen in Fig. 6. In each subfigure, the first row represents notes in the
staff, the second row represents notes and playing techniques in the form of
numbered musical notation. It can be seen that with the increase of iteration
number, more kinds of playing techniques related to the Northern school (NT)
is been generated. Adding the original melodies with playing techniques using
our models, only tonguing appears two times. After 20 iterations of melodies,
tonguing appears more times than the original melodies. After 60 iterations,
typical playing techniques with the Northern school features like flutter tonguing,
portamento appear, too.

(a) Original melodies adding generated playing techniques

(b) Generated melodies after 20 iterations adding generated playing techniques

(c) Generated melodies after 60 iterations adding generated playing techniques

Fig. 6. A transfer example from the Southern school to the Northern school. The
original melodies come from Song of Soochow.

5.4 Reconstruction Evaluation

After getting reconstruction results, we did the evaluation. In the reconstruction
evaluation, we set four subtasks in total: the Northern school to the Southern
school (N2S), the Southern school to the Northern school (S2N), the other school
to the Northern school (O2N), the other school to the Southern school (O2S).
After getting reconstruction results in the form of symbolic music, we played
them in Dizi to get audios. We made a questionnaire to do an evaluation. There
are 35 participants in total, and all of them have related music background.
The score of evaluation is from 1 to 10. A higher score means a more thorough
reconstruction. For the music style transfer task, it is not only needed to transfer
to the target style, but also needed to maintain the original content, so it is a
good result to get an upper-middle score.
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The evaluation results are shown in Table 3. In general, we can see that for
all four subtasks, the score of using both melody reconstruction and playing
techniques reconstruction, is higher than the score of using only melody recon-
struction. Besides, we can see that BILSTM-CRF performs better when the
Northern school is seen as the music transfer target, while BILSTM-RULES
performs better when the Southern school is seen as the transfer target.

Table 3. Results of audience evaluation. In this table, BILSTM-CRF and BILSTM-
RULES are both methods of playing techniques reconstruction

Method S2N N2S O2N O2S

Only melody reconstruction 4.79 6.00 5.82 5.50

Melody reconstruction + BILSTM-CRF 5.41 6.36 6.79 6.29

Melody reconstruction + BILSTM-RULES 5.18 6.50 6.15 6.65

6 Conclusions and Future Work

In this paper, we proposed a general collection method of Chinese music and
collected a Dizi symbolic dataset. Using some machine learning methods, we
trained some classification models which laid the foundation for music recon-
struction and found some interesting phenomena. We also gave a reconstruction
example about music style transfer, where audience tests were done to do the
evaluation.

Future work includes maintenance and expansion of the Dizi dataset, as well
as broader and in-depth applications and research based on this dataset.

Acknowledgement. Supported by MOE (Ministry of Education in China) Youth
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Abstract. The yangqin, or the Chinese dulcimer, is a traditional Chinese
plucked string instrument with a long history. This article designs and develops
a virtual musical instrument App for the yangqin, presenting a three-dimensional
instrument on the interface for users to perform with no difference from real
instruments in audition and vision. The yangqin is a fixed-pitch instrument
containing hundreds of strings with each pitch running in courses. The article
starts the study with the design of the audio object pool pattern for realistic
acoustic characteristics of sounding quickly repeated notes of fixed-pitch
instruments. The following part focuses on the application development on both
iOS and Android platforms with Unity. Finally, the article explores a new way
of education for Chinese instruments and designs the teaching system for the
App.

Keywords: Virtual musical instrument � Yangqin � Object pool � Unity � App

1 Introduction

Technology plays an important role in the world of professional audio production [1].
The prosperity of the Internet is providing a universal platform for music production,
giving the birth of smart musical instruments on mobile devices. A variety of musical
instrument apps are available, which permit users to play an iPad or an Android tablet
as though it were a particular musical instrument and some scholars regard the iPad
itself as a legitimate musical instrument [2]. However, Chinese musical instrument
application Chinese traditional instruments are in the minority in the fields of computer
music for historical reasons, whereas the popularization of mobile smart devices pro-
vides a new chance for the inheritance and development of these instruments. At
present, application developments for Chinese instruments, though few, have been in a
good trend. The extensive sound library of traditional Chinese instruments – the pipa,
erhu, guzheng and Chinese percussion has been added in GarageBand for iOS since
2016 [3]. There are also Chinese software companies that develop creative Chinese
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instrument Apps with high-quality sound sources such as the Hulusi from Yinyueba [4]
and the Qudi and Suona from JamKoo [5].

However, these products generally share the following deficiencies. First, in most
Apps the instrument performance technique cannot be realized in an authentic way, and
the sensitivity while playing the instruments is relatively poor so that smooth perfor-
mances could not be achieved. Second, the interface is mostly unaesthetic and unable
to show the complete three-dimensional models of the instrument. Third, most Apps
include the education part, which is a great innovation, but only with some embedded
video courses. It is inconvenient for amateur users to repeatedly switch the scenes to
learn how to play the instruments provided in the Apps.

Most importantly, up to now there are no instrument applications for the yangqin
either on computers or mobile platforms. Serving as the accompaniment in Chinese
instruments orchestra, the yangqin plays the same important role as the piano in
western music. However, the yangqin has not been promoted at schools at present,
partly because the yangqin is too large in size and inconvenient to carry, and the
investment of many schools in music education is limited for supporting the purchase
of yangqin in large numbers [6]. A virtual yangqin App can be a perfect alternative on
occasions where the volume of the real instrument cannot be sustained. As a fixed pitch
instrument, each course of strings corresponds only one definite pitch, easy for
digitization.

Based on the above, the article selects the yangqin as the target instrument for the
design and development of the virtual instrument application on mobile platforms. The
research work will be carried out from three aspects: audio synthesis, application
development and teaching system design. The specific research tasks are as follows:

First, algorithm design of the audio object pool pattern for audio synthesis pro-
cessing for fixed-pitch instruments. The algorithm is aimed at achieving tremolo and
other quick playing or repeating effects in the virtual yangqin. The audio source of the
yangqin comes from the Multimedia Chinese Musical Instrument Database [7]
established in China Conservatory of Music.

Second, application development of the virtual instrument with Unity 3D for iOS
and Android platform. The implementation of basic playing and other different func-
tions, as well as the interaction design are included.

Third, program design of the teaching system, including follow-up learning mode
and automatic performing mode for a Chinese classical music work. In follow-up
learning mode, the program will highlight the strings to be played and check off the
results. In automatic performing mode, the notes will be sounded automatically
according to the correct rhythm and pitch of the music score.

2 The Audio Object Pool Pattern for Fixed-Pitch Instruments

Percussion instruments are classified into instruments with definite pitch and with
indefinite pitch in Handbook of Percussion Instruments [8] by Karl Peinkofer. In this
article, the concept of fixed-pitch instruments extends from percussion and refer to
instruments of all kinds whose sound unit data and musical pitch data have a one-to-
one mapping relationship, such as the marimba, yangqin and chimes.
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According to the rule of instrument vibration, when a fixed-pitch instrument is
played with different pitches, each note stays sounded and fades naturally to silence
with no interference from others, while when repeated with the same pitch, the previous
note will stop immediately at the moment when the next one sounds. In order to avoid
the system sound delay and simulate the acoustic characteristics mentioned above in
the best way, the article designs an algorithm for fixed-pitch instrument playing. The
basic idea is: when playing with the same pitch, the second note is played first, and the
first note fades to silence after a short transition time.

2.1 Audio Object Pool Management

In Unity, all the objects must be instantiated, and the audio source that controls the
game sound is an instantiated object in the game scene. And an audio clip must be put
into an audio source for playing and stopping management, and other effect controls.
For the solution above, each pitch is saved in an audio clip, but as it involves playing,
stopping and fading controls for repeating, notes in different terms must be loaded into
different audio sources for management. That will be a problem since every time a note
is played, an audio source is needed. Real-time generation and destruction can consume
huge amount of memory. Especially when producing a tremolo, a distinctive technique
for yangqin, meaning the same pitch is repeated intensively, it can bring an unbearable
load to the program, calling for optimal management of these audio sources.

The article refers to the concept and process of the object pool pattern in game
development to manage audio sources in the scene. The book Pro Design Patterns in
Swift [9] by Adam Freeman decomposes the basic operation of the object pool pattern
into four operations. The first operation is initialization for the objects to be managed.
The second one is checkout, in which a component borrows the object needed from the
pool. The third one is the component using the object to perform work. The fourth one
is check-in, where the component returns the object to the pool.

The audio object pool pattern designed in this article carry on the idea of the object
pool, which is to activate and deactivate the instantiated objects in a fixed memory
space. The audio sources outside the pool are in the status of activated and ready for the
playing control program, while others inside the pool are deactivated and waiting in
line. The system applies for an audio pool with a size of 10 for each sounding com-
ponent, which contains 10 audio sources, all of which are loaded with the same audio
file where the corresponding tone is written. Figure 1 shows the process of the audio
pool. Every time a playing instruction is received, 2 of the 10 Audio Sources will be
called out of the pool, and they will line up in a circular queue for that 2 called-out
positions marked yellow in Fig. 1. The two called-out audio sources (audio A and
audio B in Fig. 1) out of the pool participate in the controlling program in order.
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2.2 Algorithm for Audio Playing in the Pool

For calling out and putting back the audio sources in the pool, a variable t is used to
record the number of times the tone is played in the program, and a function Get-
ClipTerm (int) of type int is declared, whose return value is t – t /10 * 10 (the
division ‘t /10’ gives a round-off value), the remainder obtained by dividing t by 10.
The value is synchronized with the looping pace of the audio sources in the pool and is
used for matching the sequence number of the audio sources in the pool 10 times as a
round, and selecting 2 audio sources each time to run the controlling program. The
specific steps are as follows:

1. At the beginning of the program, apply for 10 Audio Sources, compile them into the
array audioSource[], and load the audio clips corresponding to the pitch one by
one.

2. Initialize the variable t = 0.
3. When the program is running, if the playing instruction is recognized.

a. Play audioSource[GetClipTerm(t)], which is audio B in Fig. 1.
b. When t is not equal to 0, judge whether audioSource[GetClipTerm(t-

1)] (audio A) is playing. If playing, the volume will gradually decrease to 0
within 0.5s. If not, skip.

c. When t equals 0, the note has not been played before. Skip it.
d. Execute t = t + 1, which means the number of times the tone is played

increases once.

3 Application Development with Unity

3.1 System Design

In the development of virtual yangqin App, Unity3D is used as the game engine for
application development, and C# as the programming language, iOS and Android as

Fig. 1. Process of the audio management in the pool
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target platforms released under the Mac OS X system. The App includes the following
features:

1. can be played on each course of strings of the complete three-dimensional yangqin;
2. can switch the reverb effect, including concert hall, padded cell, forest, and cave;
3. can be switched on each string and display fixed name and different tone under the

name;
4. involves the teaching system with follow-up learning mode and automatic per-

forming mode for the traditional Chinese song Chun Dao Qing Jiang.

The system is functionally divided into 5 modules. The overall functional architecture
is shown in Fig. 2.

The interface module is mainly composed of a three-dimensional instrument model
and a UI. Some operations are performed directly on the model, and other functions
need to be realized through the UI buttons. The audio processing module is divided into
audio management and sound processing with the audio object pool pattern described
above. The performing module is to realize the touch recognition and play the correct
tone, including clicking the string to play through the collision body recognition, and
then playing the audio-processed tones. The interaction module includes multi-touch,
note display, string vibration and reverb switch.

The teaching system is based on the complete function of basic performance and
will be specifically introduced in the next section. It provides the function of follow-up
learning by program constraints as well as the display of real-time moving music scores
by numbered musical notation. At the same time, the automatic performing mode is set
for users to learn from, and the interface will also display the scores for users to read
while playing. Buttons are set for users to switch among the treble part (playing with
the left hand), the bass part (with the right hand) or both parts (with both hands), and to
replay and exit.

3.2 Function Module Design and Implementation

Interface Module. The main part of the application is the instrument itself. A three-
dimensional musical instrument model is on the basis of the 402 yangqin in shape, with
a background image that matches the colors. The App interface is shown in Fig. 3. The
structure of the UI system is shown in Fig. 4.

Fig. 2. System function architecture
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According to the hierarchical layer above, the four parent event buttons always
appear below the interface, and secondary buttons and UI elements they contain (such
as all buttons in the menu panel of the ‘note display’ button, and the music score in the
teaching system) will not appear until their parent button is clicked. Figure 5 shows the
activated menu panel of ‘note display’ giving three choices.

Fig. 3. The app interface

Fig. 4. The structure of the UI system
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There are some mutually exclusive relationships in these buttons. For example, in
the follow-up learning mode, when clicking on the button to choose which part to
learn, the clicked one turns yellow indicating that the status is activated, as shown in
Fig. 6, and the other two buttons, whether activated or not, will be inactivated.

Audio Processing Module. The audio object pool pattern introduced in Sect. 2 is used
in the audio processing module. According to the acoustic characteristics of the
yangqin, each note that is played stays sounded and fades to silence unless another is
played again at the same pitch, and the previous note stops at once.

There are 61 courses of strings and 52 different pitches in a 402 yangqin. The audio
files of 52 naturally decayed notes from F to a3, sampled and recorded from the real
yangqin in the database are used for development. The files in different pitches are
stored as audio clips in the game scene, each of which is given one audio object pool
with 10 audio sources loading the pitch once the application is started. The operations
in every pool such as checkout and check-in from the pool in the circular queue of
audio sources and the playing controlling program work independently.

The audio processing script is attached to each game object of a set of strings.
10 audio sources are created at system startup time, and organized into an array
audioSource[] to create an audio pool of 10. The audio clips at the relevant pitches
are loaded then in sequence by matching the names with the game objects. The playing
controlling part is written into the function void stringPlaying(), getting the
audio source to play and stop when receiving the pitch repeating command. The
function GetClipTerm(int) returns the remainder obtained by dividing t by 10,
used to mark the position of audio sources in the cyclical audio pool. The audio source
that are to be played instantly. The audio source audioSource[GetClipTerm
(t)] is the one to be played instantly, and audioSource [GetClipTerm(t-
1)] is the previous audio source. The flowchart of this module is shown in Fig. 7.

Fig. 5. The menu panel of note display

Fig. 6. The ‘both parts’ button that is activated

Development of a Virtual Yangqin App with Unity 35



Performing Module. As a string vibration sounding system, a yangqin string sounds
at a certain pitch depending on its thickness, tension, and effective vibration length. In
theory, anywhere of a string can be hit, but to avoid the interference of other tangled
strings nearby, there are conventional hitting positions when playing the yangqin. The
virtual yangqin App follows this performing rule and sets the effective performing part
as is framed in Fig. 8. In the game scene in Unity, 3D box colliders are added on the
strings within these performing positions. Only when the ray emitted from the screen is
detected to collide with a string can the string vibrate and sound.

Fig. 7. Flowchart of the audio processing module
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The authors have designed and made a pair of capacitive hammers as accessories for
the virtual yangqin App to simulate the effect of real yangqin performance to the
greatest extent. As shown in Fig. 9, the bamboo hammers are wrapped up in tinfoil,
and the tips of the capacitive pens made of conductive silica gel are sleeved on the top
as a contact point. Silicone conducts human body capacitance to the mobile touch
screen to achieve a touch effect. Figure 10 shows the application scenario. The
capacitive hammers retain the elasticity of the bamboo, and are able to bounce on the
screen and achieve quick combos.

Interaction Module. The interaction module mainly includes the following parts:

1. Multi-touch. The Yangqin allows one or two strings to be hit to sound. More than
two fingers will not be recognized.

2. Note display. The yangqin is with fixed pitch, similar to the piano, but its arrangement
is not like the piano from low to high with a fixed pitch rising. Instead, it is with less

Fig. 8. The effective performing part in the virtual Yangqin

Fig. 9. The capacitive hammers

Fig. 10. Performing on the virtual Yangqin with the capacitive hammers
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regularity. Most folk music is performed in movable-do system, so for helping
amateur users to play the yangqin without remembering the arrangement of the pit-
ches, the pitch names as well as the numbered notation in G and D are provided for
display. Figure 7 above shows the interface with the pitch names showing on.

3. Strings vibration. When the strings are hit, the strings exhibit a vibration effect.
4. Reverb switch. There are four reverb effects: padded cell, concert hall, cave, and

forest.

4 Design and Practice of Teaching System

4.1 Teaching Mode Design

It is required for piano learners to learn sheet music notation and its mapping to
respective piano keys, together with articulation details [10]. Taking the portable piano
tutoring system Mr. Piano developed by Sun and Chiang [11] as a reference, the
teaching system of the virtual yangqin designed in this article involves two modes:
follow-up learning and automatic performing. The preset learning repertoire is ‘Chun
Dao Qing Jiang’. In the follow-up learning mode, the user plays notes beat by beat with
the instruction on the screen. Only when each beat is played correctly will the system
continue. In the automatic performing mode, the system plays the track automatically.

Follow-up Learning Mode. As shown in Fig. 11, in the follow-up learning mode, the
score of ‘Chun Dao Qing Jiang’ will be displayed at the top. The user needs to click on
one of the three buttons on the left side of the score to start learning, where ‘treble part’
means to play the upward single part of the score with the left hand, ‘bass part’ refers to
the downward part with the right hand, and ‘both part’ refers to the complete music
with both hands.

After selecting the part, the string corresponding to the pitch to be played in the first
beat will be highlighted, with blue indicating the treble part and green indicating the bass
part. For example, in Fig. 11, the ‘both parts’ button is clicked on. The system will
maintain this state until all the notes of this beat are recognized correctly. After the correct

Fig. 11. The follow-up learning mode
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performance is recognized, it will move on to the next beat, and the score will move
forward in the preset song speed. When the pointer overlaps the second note, the system
will stop again, and the strings to be played in the second beat will be highlighted. If it is
recognized that the user has played the wrong string, the string will flash slightly in red.

Click the ‘restart’ button and it will go back to the beginning of the track and
relearn, and the highlighted part will be cleared. Click the ‘Exit’ button and the follow-
up learning mode will be exited.

Automatic Performing Mode. In the automatic performing mode, the system auto-
matically plays according to the content of the score. The system’s built-in audio
source at a certain pitch is called to directly play the corresponding note in accordance
with the specified rhythm. In the automatic performing mode, the score will still be
displayed on the top, and the score will move synchronously with the performance
throughout the entire process, helping users to better understand the melody and
rhythm. When the system automatically sounds, the user can still click on any course of
strings on the yangqin and play the notes for practice or accompaniment.

Similarly, click the ‘Restart’ button and the track will be replayed, and the high-
lighted part will be cleared. Click the ‘Exit’ button and the automatic performing mode
will be exited.

4.2 Implementation of the Teaching System

Music Score Compilation. In this system, the method of compiling scores is to use a
certain note length as a rhythm unit (the 6th note is used in this article), and compile
each note into an array of string type, and the content is its pitch name. The rests are
represented by null. The rest here is not just a pause in musical theory, but is stretched
to the circumstances that no musical note is to play at this 16th note moment. The treble
and bass parts are compiled separately. The following is the compiled score of the first
sentence of treble part of ‘Chun Dao Qing Jiang’, stored in a string type array.

Figure 12 gives the corresponding content in the original numbered musical notation.

Fig. 12. The first sentence of treble part of ‘Chun Dao Qing Jiang’ in numbered musical
notation (in the key of D)
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Follow-up Learning Program. The follow-up learning mode consists of three choi-
ces for the playing part: the treble part, bass part and both parts. The same program is
used for the treble and bass part learning. The basic idea is to use the integer variable
beat to record the number of beats and control the loop. The program flow chart is
shown in Fig. 13.

Fig. 13. Flow chart of the follow-up learning program for a single part

40 K. Lyu and R. Li



The program for the both parts involves the issue of multi-touch. For a duet for two
pieces of melody, every beat should be distinguished from single-tone or double-tone.
In the case of double-tone, the two-finger touch and single-finger touch situations will
also be considered. It is because the conditions for the system to judge the two-finger
touch are much stricter than the actual double-tone recognized by human ears. It is
difficult for users to achieve standard two-finger touch, so single-finger performing
must be allowed. In this program, for single-finger double-tone performing, only when
the two target notes are recognized within one beat’s length will the performing be
considered correct. If a wrong note occurs, it will be judged wrong even though one or
two correct notes have already been recognized in that beat.

5 Conclusion

The development of Chinese musical instruments is still sluggish in the current world
of computer music, while Chinese traditional music is a valuable historic asset for the
world and requires protection and promotion. The authors hope that the design and
development of a complicated and realistic virtual App of a Chinese instrument can
take a small step.

Authenticity is the biggest feature and advantage of the research results of the
article.

First, the timbre is real. The audio used in this article is sampled and synthesized
based on real timbre, and the audio object pool pattern is designed to simulate the
acoustic characteristics and ensure that the virtual yangqin sounds the same as the real
one when playing.

Second, the appearance is realistic. The shape of the virtual yangqin model is
completely following the structure of the real instrument. Other features on simulating
its appearance include string vibration and the effective performing positions.

Third, the performing method is authentic. The App completely refers to the
playing method of the yangqin, and aims to help all users to learn and play in a correct
way from the teaching system.

It is hoped that based on the high-quality and large-scale Chinese music database,
more Chinese musical instrument applications can be further realized, so that Chinese
musical instruments can make greater progress on the road of intelligence and
generalization.

Acknowledgement. Supported by MOE (Ministry of Education in China) Youth Project of
Humanities and Social Sciences, No. 19YJCZH084.
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Abstract. Music Emotion Recognition (MER), a subject of affective
computing, aims to identify the emotion of a musical track. With the
fast development of deep learning, neural networks, such as Convolu-
tional Neural Network (CNN) and Long Short-Term Memory (LSTM),
have been applied recently. However, while using convolutional kernels,
channels are treated equally, which means treating different aspects (such
as tempo and vibrato related features) of a music clip equally. It’s against
the rule of human perception. Therefore, Channel-wise Attention Mech-
anism is introduced into the task of Music Emotion Recognition. The
performance could be improved to a certain extent.

Keywords: Music Emotion Recognition · Channel-wise Attention
Mechanism

1 Introduction

Music Emotion Recognition (MER), a subject of both Music Information
Retrieval and Affective Computing, aims to identify the emotion conveyed by a
musical clip [18]. Driven by large demands in the music industry such as pro-
viding a content-oriented categorization scheme, generating playlist automati-
cally and music recommendation [6,10,22], MER has developed rapidly in recent
years [1].

Traditional methods are feature-based ones. The most commonly used acous-
tic features (e.g. Mel Frequency Cepstrum Coefficient, spectral shape in timber,
Chromagram and Rhythm strength) are summarized in [9]. On the one hand,
since there are hundreds and thousands of features to be considered, feature
selection methods [16] for removing redundant ones and principle component
analysis (PCA) methods [14] for dimension reduction are introduced. On the
other hand, manual features sophisticated designed to express the nature of
music emotion have always been an interest in the field. Since most features are
low level and related to tone color, in 2018, [15] designed musical texture related
and expressive technique related features.
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2021
X. Shao et al. (Eds.): CSMT 2020, LNEE 761, pp. 43–54, 2021.
https://doi.org/10.1007/978-981-16-1649-5_4
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In recent years, with the development of computer hardware and the large
available online data, deep learning has demonstrated its great power in many
fields including Music Emotion Recognition. Instead of designing specific fea-
tures which is a challenging task [12] and demands large human labor, a Neural
Network itself could extract the very pertinent representations.

Besides simply using deep learning models, such as CNN used in [12], differ-
ent mechanisms are used to improve the performance. Similar to the multitask
learning theory, hoping the first several layers to extract commonly acoustic fea-
tures and the last several layers to extract target-oriented features, [13] stacked
one CNN layer with two RNN branches for arousal and valence regression. Some
hope to utilize auxiliary information. Inspired by speech emotion recognition
tasks considering spoken content [19], [5] proposed a multimodal architecture
based on audio and lyric. In [11], additional harmonic and percussive features
are fed into the bi-directional LSTM model. Because of the lacking of train-
ing data, others also use the transfer learning method, aiming to make use of
excellent features in related domains [3].

As we can see above, despite different mechanisms, the base architectures are
usually CNN. It is known that a convolutional neural network learns hierarchi-
cal features from level to level [21] and that a higher-layer feature maps depend
on lower-layer maps [2]. For instance, in the early layers, low-level information
such as tempo, pitch, (local) harmony or envelop might be extracted [3], while
high-level semantic patterns such as expressivity and musical texture features
would be detected [15] in later layers. However, on the one hand, while doing con-
volutional operations, the low-resolution features which contain abundant low-
frequency information are treated equally across channels [23] (i.e. tempo and
pitch information may not contribute exactly the same), hence, the extracted
features are not powerful enough. On the other hand, without processing the
whole music clip, only understanding a few important aspects, one could recog-
nize its emotion, whereas, a CNN would process all the feature maps which is in
contrast to human perception [4].

Fortunately, the problems existed could just be solved by the Channel-wise
Attention Mechanism, which has been successfully applied in Computer Vision
[20], Natural Language Processing, and Speech Processing. The Channel-wise
Attention Mechanism could re-weight feature maps in channels. Moreover, since
a feature map is computed from earlier ones, it is natural to apply attention
mechanism in multiple layers [2]. In this way, multiple semantic abstractions
could be gained [2]. The applied Channel-wise attention mechanism is a sophis-
ticatedly chose one, detailed in Sect. 2.

Music Emotion Recognition tasks could be categorized into a classification
one and a regression one. The proposed method is tested on both tasks and the
performance has been improved. It should be mentioned that, since public music
emotion classification datasets are small, which will even limit the performance
of the baseline network, a larger music emotion classification dataset is made.
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In summary, the contribution of this paper could be put as follows:

(I). To solve the problem of treating each feature map equally while recogniz-
ing musical emotion patterns, Channel-wise Attention Mechanism is applied
in multi-layers.
(II). The Channel-wise Attention Mechanism is a sophisticated chosen one.
(III). The procedure of how to make a large musical emotion classification
dataset is introduced.
(IV). The proposed method could be proven useful to a certain extent.

2 Proposed Method

Fig. 1. The Channel-wise Attention Mechanism for Music Emotion Recognition

There are many sophisticated channel-wise attention mechanisms in litera-
ture, such as that in SENet [7], that in RCAB [23]. Obviously, we should not
simply draw one of them to use, we should choose or design one on our needs.
Firstly, to fully consider the interrelationships among all channels, the channel-
wise attention mechanism is designed with the fully connected layer and the
activation function, like that in SENet [7], rather than using convolutional ones
whose receptive field is limited to only a few channels, such as that in RCAB
[23]. Secondly, to learn a non-mutually-exclusive relationship, some channel-wise
mechanism is under the mode of an encoder and a decoder scheme. However,
after an encoder operation, whether it depends on doting with a weight matrix
or convolutional operations, the rank is decreased after encoding, meaning some
information from the feature map (though less important) will be lost. This is
undesired. Thirdly, considering of computational efficiency, the designed channel-
wise attention mechanism is lightweight.

Next, the proposed channel-wise attention mechanism and the backbone
architecture will be introduced.
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2.1 Channel-wise Attention Mechanism

The channel-wise attention mechanism block is a transformation block. On the
above reasons, it is designed with a simple gating mechanism with an activation
function. Figure 1 illustrates the mechanism along with the operations and the
variables.

As a whole, it is a reweighting operation from Ul ∈ R
L×C to X̃l ∈ R

L×C ,
where Ul is the output feature map with the length of L and channel number
of C after the l-th convolutional block with input Xl−1. All of the superscripts
in notation refer to the layer index.

First, each convolutional kernel with a fixed size receptive field serves as a
local semantic information extractor. Therefore, each or some of the value in a
feature map could not represent what the channel learns [7]. To mitigate this
problem, the channel-wise statistic Zl =

[
z1

l, z2
l, . . . , zc

l, . . . , zC
l
]

obtained
by using global average pooling f gap (·) is used as the channel feature descriptor.
For detail, zc

l is calculated by:

zlc = f gap

(
xc

l
)

=
1
L

L∑

i=1

xc
l (i) (1)

More sophisticated channel descriptors could also be considered.
Next, inter-channel dependencies will be exploit by Eq. (2):

Sl = σ
(
g

(
Zl

))
= σ

(
Wl · Zl

)
, (2)

Where σ (·) denotes the sigmoid activation and Wl ∈ R
C×C . Obviously, g (·)

could also be interpreted as a fully connected layer with Wl as the corresponding
parameter.

Finally, the attended feature map could be obtained by modulating Ul with
Sl, for each channel

x̃l
c = frs

(
ul
c , slc

)
. (3)

In Eq. (3) frs means rescaling ul
c with scalar slc.

2.2 Backbone Architecture

The backbone architecture we adopted is following the audio subnet of the Audio-
Lyric Bimodal in [5]. It is originally used for the emotion value regression task.
While in this paper, the backbone architecture would be applied to both regres-
sion and classification with different outputs.

It is composed of two convolutional blocks and two dense blocks. For one
thing, as for the convolutional block, a convolutional layer, a max pooling layer
and batch normalization are consecutive. The (the number of kernels, kernel size,
stride) for convolutional layer are (32, 8, 1) and (16, 8, 1) separately, while the
(kernel size, stride) for the max pooling layer are all in (4, 4). For another thing,
the dense block includes a dropout and a fully connected layer. The intermedia
neural number for the two dense blocks is 64 [5].
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Fig. 2. Music Emotion Classification Model with dotted line representing the attention
block and solid line representing the backbone architecture block

3 Evaluation

Datasets, metrics and experiment settings will be talked here. More, the method
for making a large music emotion classification dataset is presented under the
hope of helping other researchers to design much more powerful systems.

3.1 Dataset

Music Emotion Recognition tasks tend to use either categorical psychometrics or
scalar/dimensional psychometrics for classification or regression [9]. Both music
emotion representations are under the supporting of psychological theories [9].
Under categorical approaches, emotion tags are clustered into several classes.
The well-known MIREX Audio Mood Classification Competition just uses this
kind of psychometric [8]. While under continuous descriptors, a certain kind of
emotion could be represented by a point in the Valence-Arousal (V-A) space [17].
Though there are two kinds of music descriptors, under the Circumflex Model
of Affect [17], they could be transformed to each other.

Classification Task Dataset. For the reason that public music emotion clas-
sification datasets are small, containing only less than 1,000 clips, even the base-
line deep learning neural network could not demonstrated its great power, not
to mention the proposed channel-wise attention mechanism. Hence, under the
guidance of the Circumflex Model of Affect by Russell [17], with the help of emo-
tion related playlist (those which have been created intentionally and listened
millions of times) on the mainstream music software, a large reliable dataset
with thousands of music clips could be made with less human labor.

To begin with, a set of music emotion tags are chose according to human expe-
rience and psychology theory. Six tags, Stirring, Empowering, Angry, Somber,
Peaceful and Upbeat are finally determined. Definitely, they are under the con-
strain of Circumflex Model of Affect, sparsely located on the model, which means
that the gap between music emotion tags are large enough to make them sep-
arate well. Figure 3 will illustrate the relationship between the music tags and
the Circumflex Model of Affect.
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Fig. 3. Mapping the selected music emotion tags on the Circumflex Model of Affect

Next, searching the tag related playlists on popular music website such as
NetEase cloud music and QQMusic, top played ones would be considered. By
referencing to the comments of the playlists and humanly verifying each song,
the final ones would be determined. After that, for each song, the first 5 s would
be thrown away considering the emotion there might be different from the whole
song, and then they would be cut into 30 s ones.

Finally, using this method, more than 4,000 music clips with sample rate of
44,100 are got.

Since annotated music excerpts are collected from website and are copy-
righted, the dataset could not be made public. However, using the above men-
tioned method, researchers could make their own dataset easily.

Regression Task Dataset. As for the baseline architecture, the used con-
tinuous descriptor is song leveled, it uses an arousal value and a valence value
to describe a 30 s music expert. Unfortunately, the dataset is not a public one.
Mainstream public ones are all dynamically annotated, which means that they
consider emotion variation in a music [1] and are annotated every once in a
while. To mitigate this problem, we choose the averaged value of all annotations
in a song to represent the song level descriptor.

For the dynamically annotated public dataset, we utilize a largest one, Emo-
tional Analysis in Music (DEAM) [1]. It contains 1,802 songs including 1,744 45 s
clips and 58 full length clips. The time resolution for annotation 2 Hz, meaning
annotating per 500 ms. The annotated values are scaled in [−1,+1].

In our experiment, since baseline architecture is designed for 30 s clips, only
the middle 30 s (from the 7th to the 36th second of the clip) audio is preserved.
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And, 58 full length clips are too long, using the song level averaged annotation
to represent each segment is not a smart choice, therefore, they are thrown away.
Finally, after processing, 1,744 clips are remained.

3.2 Metric

In notation, N, yi, ŷi corresponds to the number of samples, predicted label/value
and real label/value separately, where i ∈ [0, N − 1].

Metric for Music Emotion Classification Task. Accuracy score, shorten
as acc, represents the ratio of correctly classified samples to total number, could
be written as:

acc
(
ŷi, yi

)
=

1
N

N−1∑

i=0

1
(
ŷi == yi

)
. (4)

Confusion matrix shows more detail information than acc. It is much easier to
see how the system confusing among them. Let C to be matrix, Ci,j means the
proportion of sample observed in class i but classified into class j. Specifically,
Ci,i corresponds to the accuracy score for the i-th class.

Matric for Music Emotion Regression Task. Root Mean Square Error
(RMSE) is a typical matric for regression tasks, meaning how far is the predicted
value from the real one.

RMSE =

√√
√
√ 1

N

N−1∑

i=1

(
ŷi − yi

)2

. (5)

3.3 Settings

As mentioned in Sect. 2, the backbone architecture followed from [5] will be used
for both regression and classification tasks.

For each audio clip, after upsampling to 44,100 Hz, an Mel-spectrogram is
extracted with 40 mel bands, 1024 sample long Hann window with no overlapping
as input [5]. In baseline, it uses pitch shifting to argument the data. However,
pitch is an emotion related feature [11,15,18]. Therefore, data argument method
in baseline is not adapted.

While training, we use Cross Entrpy loss for classification task, Mean Square
Error loss for regression task, Adam is the optimizer.

4 Experiments and Results

In this section, experiments conducted to validate the effectiveness of the pro-
posed method will be presented. In notation, AudioNet represents the baseline,
Layer1, Layer2, LayerALL means the location of the added channel-wise atten-
tion mechanism (i.e., Layer1 meaning adding the attention mechanism after the
first layer).
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4.1 Validating the Proposed Method

In the first set of experiments, we would like to validate the power of the proposed
attention mechanism’s power and that of the multi-layer attention scheme by
using the classification dataset. Since the baseline has two convolutional blocks,
three architectures’performances will be evaluated, AudioNet, AudioNet Layer1,
AudioNet Layer2, AudioNet LayerALL.

Table 1. Overall and class level accuracy score for the baseline and attention added
ones in different locations.

Overall accuracy

Network On Whole Dataset

AudioNet 0.665

AudioNet Layer1 0.695

AudioNet Layer2 0.736

AudioNet LayerALL 0.741

Class Level accuracy

Network Angry Somber Upbeat Peaceful Empower Stirring

AudioNet 0.792 0.583 0.736 0.626 0.657 0.458

AudioNet Layer1 0.877 0.613 0.725 0.712 0.614 0.615

AudioNet Layer2 0.836 0.603 0.750 0.720 0.754 0.789

AudioNet LayerALL 0.866 0.557 0.895 0.818 0.732 0.567

Experiment results will be seen in Table 1. As we can see, whether adding
channel-wise attention after layer 1 or layer 2, the performance could be improved
distinctly; this can verify channel-wise attention’s ability. When adding attention
mechanism after all layers, the performance could be improved further, this could
demonstrate the rationality of adding attention to multi layers.

It is interesting to find that the architecture adding attention to the later
layer will demonstrate more power than that adding to the earlier one. The
reason behind might be that earlier layers extract low-level represents while
later ones extract class-specific features [7]. Emphasizing more on class-specific
features will help more than extracting better common music characteristics, for
example, better musical texture features will help more than pitch features in
music emotion recognition [15].
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4.2 Performance on Classification Task

Performance in overall between baseline and the proposed one has been demon-
strate above, Table 2 gives more detail by using confusion matrix.

Table 2. Confusion matrix for baseline and the proposed

AudioNet

Angry Somber Upbeat Peaceful Empowering Stirring

Angry 0.792 0.028 0.028 0.000 0.083 0.069

Somber 0.000 0.583 0.042 0.188 0.021 0.167

Upbeat 0.014 0.028 0.736 0.000 0.167 0.056

Peaceful 0.009 0.261 0.017 0.626 0.000 0.087

Empowering 0.171 0.029 0.071 0.014 0.657 0.057

Stirring 0.125 0.083 0.042 0.125 0.167 0.458

AudioNet LayerALL

Angry Somber Upbeat Peaceful Empowering Stirring

Angry 0.866 0.015 0.015 0.000 0.015 0.090

Somber 0.011 0.557 0.034 0.250 0.000 0.148

Upbeat 0.000 0.000 0.895 0.000 0.070 0.035

Peaceful 0.000 0.143 0.000 0.818 0.000 0.039

Empowering 0.134 0.037 0.085 0.000 0.732 0.012

Stirring 0.133 0.067 0.100 0.000 0.133 0.567

Except for the overall accuracy, in the six classes, five classes’ accuracy scores
have been lift.

As seen in baseline’s result, CSomber,Peaceful and CPeaceful,Somber are both
not small. Since Somber and Peaceful are both less arousal, the network tend
to be confused with each other. If more attention is put on valence related
features, this phenomenon could be eased to some extent. After adding channel-
wise attention mechanism, though accuracy for Somber has been reduced by
0.026, that for Peaceful has been improved by 0.192. This illustrates channel-
wise attention mechanism’s ability to re-weight and concentrate more on target-
related feature maps.
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As for Stirring, the baseline’s accuracy score for which is the lowest. It is easily
misclassified into Angry or Empowering because they are all more arousal. After
adding the attention mechanism, the accuracy score for it has been improved.

4.3 Performance on Regression Task

Since the baseline has been proposed for song level emotion detection, rather
than dynamic one, and there is no such type of dataset, we processed dynamic
annotations in public dataset to generate the corresponding song level one,
detailed in Sect. 3.2. In experiment, we conduct two set of experiments for arousal
regression and valence regression.

Table 3. RMSE for the baseline and the proposed

Network Arousal Valence

AudioNet 0.301 0.251

AudioNet LayerALL 0.284 0.253

As seen in Table 3, for arousal regression, the proposed performs better with
a obviously smaller RMSE, while for valence regression, the baseline performs
slightly better.

5 Conclusion

In this paper, channel-wise attention mechanism is introduced and designed to
make the network focus more on the emotion related feature maps. Experiment
results have verify the utility of the proposed method on both classification
and regression tasks. In future work, we will concentrate more on the attention
scheme, such as designing more sophisticate and accurate channel descriptors or
introducing spatial attention mechanism.

Ackowlegement. This work was supported in part by National Key R&D Program
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Abstract. Automatic melodic phrase detection and segmentation is a
classical task of content-based music information retrieval and also a key
problem of automatic music structure analysis. In this paper, we apply
neural network architectures with conditional random field (CRF) to
produce satisfactory melodic phrase segmentation. To tackle the prob-
lem of the sparse labelling problem of data, we design two tailored label-
engineering techniques with corresponding training techniques for differ-
ent neural networks. We compare the performance of the traditional
model on the public data set Essen Folksong Database. The experi-
mental results show that the performance of the model using the neu-
ral CRF architecture far exceeds that of the traditional method. The
results of ablation experiments on Essen Folksong Database and POP909
dataset show that the improvement of performances mainly comes from
the introduction of CRF structure. Besides, our labelling techniques
also improve model performance and make training process more robust
(Codes and data are available at https://github.com/ldzhangyx/music-
melody-segmentation-using-neural-CRF).

Keywords: Music segmentation · Conditional random field · Music
information retrieval

1 Introduction

Automated melodic phrase detection and segmentation is a classical task in
content-based music information retrieval (MIR). It is also the key step towards
automated music structure analysis, which is useful for many computer-music
applications, such as structured automated composition [21], music databases
[11], and query-by-humming [10]. However, current solutions for melodic phrase
detection cannot yet satisfy practical requirements, especially for symbolic music
representation. To be specific, rule-based methods, in general, rely on theme
repetitions, long notes and rests, and hence are unstable when dealing with music
with large variations; traditional machine-learning methods rely on manually-
designed features and very difficult to capture useful music context information
for boundary detection.
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2021
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On the other hand, many neural network architectures have recently achieved
quite promising results in various domains, including representation learning [2],
computer vision [14], natural language processing [6], autonomous driving [3].
Analogous to the problem of adding punctuation to a list of characters to form
sentences, in this paper, we are primarily interested in labelling the begin and
end of a phrase given a sequence of notes. Since supervised neural networks
can use the back-propagation mechanism to automatically identify the crucial
music-context related features in various ways, we experiment a combination
of existing neural networks and probabilistic graphical models to solve the task,
including convolutional neural network with the conditional random field (CNN-
CRF) and bi-directional long short-term memory with the conditional random
field (Bi-LSTM-CRF).

The main issue of applying deep-learning methods to phrase detection is the
sparse labelling of the training sets. To address this issue, we:

– Contributed two label engineering techniques to solve the sparse labelling
problem that hinders the use of sequential decision-making neural networks;

– Combined the labelling techniques with our deep learning models, which con-
siders both implicit and explicit relationships between labels to detect phrase
boundaries in symbolic representations of music;

– Conducted a quantitative evaluation of the performance of the proposed mod-
els for the task.

All models are trained and tested on Essen Folksong Dataset (EFSC) and
POP909 dataset. Experiment results show that the Bi-LSTM-CRF architecture
performs the best, being able to offer finer segmentation and faster to train,
while CNNs, Bi-LSTM-CNNs and CNN-CRFs are acceptable alternatives.

In the following sections, we discuss the related work in Sect. 2 and present
the methodology in Sect. 3 followed by the experimental results and analysis
in Sect. 4. Finally, we conclude our paper with some reflections and possible
directions for future works in Sect. 5.

2 Related Work

Melody phrase segmentation task has attracted researchers for decades. Foote
[8] first proposed a method to visualizes the structure of music audios by self-
similarity matrices. Later, by measuring changes in local self-similarity, Foote
[9] developed a rule-based boundary detection method for automatic audio seg-
mentation. Kaiser and Sikora [13] further proposed a method that applies non-
negative matrix factorization to self-similarity matrices to produces two factor-
ization products, based on which the structure boundaries can be derived. Other
methods include Hidden Markov Model [1], decision tree [27] and clustering
[17] for audio representation and Local Boundary Detection Model (LBDM) [4],
Grouper [26], IDyOM [22] and Restricted Boltzmann Machines [15] for symbolic
representation. Most rule-based methods follow one or more rules in Generative
Theory of Tonal Music (GTTM) [16] system. For example, the LBDM model
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follows similar rules as GPR 3, while the Grouper model uses GPR 2 and PSPR
1 rules. Compared with deep learning model, these rule-based methods severely
rely on given rules, lacking the ability of not only discovering new relationships
of data but also updating and optimizing rules for specific data.

Recently, neural networks are applied to tackle the task. Ullrich et al. [28]
used Convolutional Neural Networks to analyze music structure, which is more
relevant to our work. The model takes a spectrogram as an input and outputs
the probability of phrase boundary for each spectrum, following by which peak-
picking and thresholding algorithms are applied to post-process the result. Our
study also considers the problem of phrase segmentation but focus on symbolic
representations. This model tries to use neural network to solve the problem, but
the simple model structure limits its performance. The method of using CNN
only is treated the baseline method. We implemented a CNN segmentation model
in the ablation study to represent the performance of this model.

Different from traditional methods which heavily rely on rests and long
notes [25], our system is learning-based and takes into account more music con-
texts, which performs better on tackling the problem of “jump-phrases” of those
phrases go across the temporal, which typically a severe challenge for all meth-
ods which only detect boundaries ignoring the content of melodies. Moreover,
rather than using rule-based post-processing methods, we used a CRF and com-
bined it with deep learning architectures, making the system end-to-end. By
applying neural network and CRF, our model on segmentation tasks performs
significantly better than previous methods.

Neural conditional random field has been widely used in name entity recogni-
tion tasks [7,12,20] and image segmentation tasks [19,23]. For the first time, we
tried to apply the neural CRF structure to the phrase-level segmentation task
of the entire music length data, which requires more domain-specific knowledge
as inductive biases.

3 Method

We introduce the problem definition in Sect. 3.1 and present the neural network
with CRF models in Sect. 3.2. Then, we discuss two label engineering techniques
for model training in Sect. 3.3. Finally, we introduce loss functions used for train-
ing can be found in Sect. 3.4.

3.1 Problem Definition

In this section, we formally define our problem and introduce our data represen-
tation in detail. We denote X ∈ R

T as the random variable over music sequence
to be labeled and Y ∈ N

T as the random variable over the space of all valid
label sequences, where T is the length of the sequence. A specific music phrase
is denoted as {xi} = x ∼ FX , and ŷi = φ(xi) is the predicted label generated
by the model φ, where i ∈ [1, T ]. We use y∗

i as the corresponding ground truth
label.
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Our goal is to construct the conditional probability P (Y |X), which is approx-
imated by p(y|x) = φθ(x), (x, y samples from the dataset D). The model φθ(x) is
optimized using maximum likelihood estimation by finding argmax

θ∈Ω
L(y∗, φθ(x)).

While in practice we approach the problem by performing empirical risk mini-
mization argmin

θ∈Ω

1
N

∑N
i=1 Loss(yi∗, φθ(xi)), where Ω is the parameter space.

3.2 Neural Networks with Conditional Random Field

We use CNN or Bidirectional LSTM to transform and encode input melody. We
apply skip-connection between adjunct layers to avoid the problem of gradient
exploration. Formally, in the layer n, hidden states are calculated as below. For
the LSTM encoder:

hn = Bi-LSTM(f(hn−1) + f(hn−2))

= [
−−−−→
LSTM(f(hn−1) + f(hn−2)),

←−−−−
LSTM(f(hn−1) + f(hn−2))]

(1)

and for the CNN encoder:

hn = CNN(f(hn−1) + f(hn−2)) (2)

where function f(·) is non-linear activate function. Particularly, f(·) =
ReLU(·). The entire network takes X as input, therefore h0 = X. Skip con-
nection mechanism is not applied in the first two layers. Then, hidden states are
transformed back to T -dims vector by a linear transformation x̃ = Wh + b.

We consider the matrix of scores fθ(x̃) are the output of the network. For the
i-th tag, at the t-th word, the element fθi,t is the score output by the network
with parameter θ. A transition score Ai,j models the transition from i-th to j-
th for a pair of consecutive time steps. We denote the new parameters for the
network as θ̃ = θ

⋃{Ai,j∀i, j}. The score of a sentence x̃ along with a path of
tags i is given by:

s(x̃, i, θ̃) =
T∑

t=1

(Ait−1,it + fθit,t) (3)

The dynamic programming algorithm are able to compute Ai,j and optimal
tag sequences for inference. Finally, the entire network can be end-to-end trained.

3.3 Two Label Engineering Techniques

Most previous works posed the musical phrase segmentation task naturally as
a binary classification problem and thus deployed the binary labelling scheme.
Consequently, dataset has highly-imbalanced label distribution, which makes
the training process much harder for many neural network architectures. To
solve the sparse labelling problem, we propose two alternative label engineering
techniques, while keeping the 0–1 labeled dataset for the training of our baseline
methods:
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– One is named as exponential-decay label, where we assign value 1 to the start
of a music phrase, starting from where the value decays exponentially to 1

2 ,
1
4 till it reaches to the middle of a sentence before it goes up with the same
rate till the start of next phrase;

– the other is named as linear-ascend label, where we assign to a note the value
of that note’s numbered position of the phrase it is in. Notes not in any
phrases will be assigned label 0.

A visualization of these three types of labelling is provided in Fig. 1. This two
labelling methods clearly avoid the label imbalance problem, and in particular,
the linear ascending label can be used to train neural network with CRF as its
final layer since the state transitional matrix of CRF requires a discrete label
space.

3.4 Loss Functions

We introduce three training objectives correlated to different labelling tech-
niques.

Loss Function for Binary Labels. We adopt the cross entropy loss for binary
classification to form this loss function. To deal the highly imbalanced distribu-
tion of label, we introduce into the loss function a large weight factor α for
label 1:

loss(y�, ŷ) =
∑

i

[−α y�
i log( ˆyi,1) − (1 − y�

i ) log(1 − ˆyi,0)] (4)

Fig. 1. The original binary labels are displayed in the first row, and the “exponential-
decay label” and “linear-ascend label” are shown in the second and third row.
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Loss Function for Exponential-Decay Labels. Inspired by focal loss [18],
we introduce a re-scaling factor into Mean Square Error (MSE) loss to help our
model better fit the exponential-decay labels:

loss(y�, ŷ) =
1
n

∑
zi (5)

zi =

⎧
⎪⎨

⎪⎩

α (ŷi − y�
i )2 if y�

i = 1 and |ŷi − y�
i | < 1

1
2 (ŷi − y�

i )2 if y�
i �= 1 and |ŷi − y�

i | < 1
|ŷi − y�

i | − 1
2 otherwise

(6)

where α is the penalty rate.

Loss Function for Linear-Ascend Labels. Since only the training of CRF
variants involves the use of linear-ascend label, we present here the standard
loss function of CRF that seeks to maximize the negative log-likelihood of the
ground-truth sequence label:

loss(x, y�) =
∑

ŷ

n∑

i=0

log(L[xi|ŷi)T (ŷi| ˆyi−1)]

−
n∑

i=1

log[L(xi|y�
i )T (y�

i |y�
i−1)]

(7)

Note that during training, CRF does not need to produce any prediction
sequence ŷ. Instead, it works with all possible label sequences given x.

4 Experiments

In this section, we compare our model woth several baseline models. We intro-
duce the dataset in the Sect. 4.1, baseline models in Sect. 4.2, training details in
Sect. 4.3. In Sect. 4.4 we present the experiment results. Finally, we conduct an
ablation study to evaluate effects of all model components on the performance
of our model.

4.1 Dataset

We use Essen Folksong Collection (ESFC) [24] as our training and testing
dataset. ESFC contains 6,236 mostly Germanic folksongs in symbolic format,
where all phrases are annotated by music experts. The professional labelling
of the data alleviates the problem of ill-definition of the melody segmentation
task to a certain extent, making it usable in engineering. Hence, ESFC has been
widely used in testing segmentation models and provides a common basis for
different models to be compared. We randomly split the dataset (at song-level)
into training set (90%) and test set (10%).
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We employ data augmentation during the training stage. In particular, We
make the length of silence and the length of notes randomly offset by 0.3 and
0.5 respectively, and transpose music to all 12 keys. Since our model attempts
to enhance the performance of segmentation tasks by understanding the context
of the melody, it is necessary to perform data augmentation on the tonality of
music.

Besides, we also use POP909 dataset [29] for further experiments, which
contains about 1000 well-known pop songs with melody and phrase labels. We
apply the same augmentation technique to the dataset.

4.2 Baselines

We choose Pause model, LBDM [4], Grouper [26] and the previous state-of-
the-art model ΔIOI [5] as our baselines. The Pause model is a simple model
which only considers silence tokens as phrase boundaries. The pause model can-
not tackle the problem of jump-phrases. LBDM is a rule-based method, which
consists of a change rule and a proximity rule operating over melodic information
that encode pitch, intervals and rests. Grouper uses 3 PSPR rules to asses the
existence of segment boundaries, which are defined in GTTM system. In ΔIOI,
boundaries are selected by calculating differences between successive intervals.
It has a compound version that trains a meta classifier to improve performance
given rule-based results and ΔIOI results.

4.3 Training Settings

For both CNN-CRF and LSTM-CRF models, we set batch size to 32 and pad
sequence length to 120. When the linear labelling is used, we set a total number
k = 32 for different label tags, which is larger than the maximum length of one
single phrase, while k = 4 When we use binary labels. the n We set the learning
rate to 0.01 with a scheduler that scales down the learning rate by 0.75 at the
end of epoch. When initializing the network, we put a large negative number at
Ai,j , where A is the transition matrix of the final CRF layer, making it illegal
for a sequence to jump from label j to label i and enforcing the network only
considers valid prediction.

For the Bi-LSTM-CRF model, 7 Bi-LSTM layers are stacked along with skip
connection. We set hidden size to 512; For the CNN-CRF model, 5-layer CNN
are applied and we set kernels to 3, 3, 3 and 5 respectively. Hidden size of each
layer is 512.

4.4 Results and Analysis

We evaluate our models by comparing different models in terms of segmentation
accuracy using F1 score. Table 1 shows the results where we see that both Bi-
LSTM-CRF model and CNN-CRF perform much better than previous methods.

We also perform an ablation study to analyze the contribution of each part
of the model to performance. We remove the CRF module from the model,
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Table 1. Evaluation results on melody segmentation task.

Model F-1 score

ΔIOI 0.58

Pause 0.60

LBDM 0.65

Grouper without meter 0.66

Grouper with meter 0.74

ΔIOI (Compound) 0.75

CNN-CRF (Linear) 0.82

Bi-LSTM-CRF (Linear) 0.84

leaving a separate Bi-LSTM or CNN network for training. We additionally set
up a stacking network of LSTM-CNN for comparison. In the experiments we
use different types of labels. For the neural CRF model, we use linear labels;
for other models, we use exponential labels. Table 2 shows the result of ablation
study. Ablation study are performed on EFSC and POP909 dataset.

Table 2. Evaluation results of the ablation study. Both CRF architecture and label
engineering improve the model performance.

Model Binary Linear Exponential

Bi-LSTM 0.75 – 0.73

CNN 0.74 – 0.76

Bi-LSTM-CNN 0.76 – 0.74

CNN-CRF 0.81 0.82 –

Bi-LSTM-CRF 0.82 0.84 –

We observed that the introduction of the CRF structure is accompanied by
a great performance improvement; even if the CRF structure is not used, the
deep neural network alone exceeds the best performance of the existing model.

Experiment results also shows that the linear label engineering techniques
slightly improve the performances and both linear labels and exponential labels
make the training process of the CRF models more robust.

Another observation is that time series models, once properly set up, can per-
form better than the CNN variants for this particular task. This can be explained
by time series models’ ability to capture long-term dependencies in theory, yet
the performance boost comes at the expense of increased training time. Time
series models typically take a longer time to train under the settings described
in Sect. 4.4. Bi-LSTM-CNN and Bi-LSTM-CRF models take the longest time
to train. While CNN-CRF can be trained much faster than Bi-LSTM-CRF and
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Bi-LSTM-CNN, the training of it is still slower than the training of the CNN
model. In general, the CNN-CRF model achieves the best balance between time
cost and performance.

A further visualization of each model’s prediction agrees with the perfor-
mance ranking in Table 2. For brevity, we include in Fig. 2 only the correspond-
ing ground-truth label of phrase boundaries and predictions given by the CNN,
Bi-LSTM-CNN and CNN-CRF models on a music sample from the held-out
test set, with red lines indicating there are phrase boundaries at these position
according to the ground-truth label, and blue, yellow and orange lines indicating
phrase boundary predictions by CNN-CRF/Bi-LSTM-CRF, Bi-LSTM-CNN and
CNN models respectively, where Bi-LSTM-CRF gives the same result as CNN-
CRF. As shown in Fig. 2, CNN model is only able to find half of the phrase
boundaries, while Bi-LSTM-CNN/CNN-CRF model manages to find most of
the phrase boundaries, missing only one place. CNN-CRF model not only suc-
cessfully identifies all phrase boundaries according to the ground-truth label, but
also marks one more place as possible phrase boundary point.

Fig. 2. An example of segmentation results by different models. Red: Ground Truth;
Blue: CNN-CRF/Bi-LSTM-CRF (same results); Yellow: Bi-LSTM-CNN; Orange:
CNN.

In addition, our best-performing models are able to develop its own under-
standing of music, which make themselves give reasonable segmentation results.
Currently, the melodic segmentation task is actually an ill-defined problem as
humans have rather high agreement on all others, and improving the ability of
music understanding of models is beneficial to alleviate the problem. Figure 3
visualizes the phrase boundaries the Bi-LSTM-CRF/CNN-CRF model predicts
on another music sample from our test set and the corresponding ground-truth
label, following the same notation used in Fig. 2. There are places that can be
deemed as the start or the end of a phrase, but the ground truth label chooses
not to mark these places as boundaries. Our neural CRF models can not only
successfully predict where the ground truth labels think a phrase begins or ends,
but identify these places as boundaries and produce a finer phrase segmentation.

5 Conclusion

We introduce in this paper a set of deep learning architectures and two label
engineering techniques for the symbolic music phrase segmentation task. Experi-
ment results indicates the effectiveness of our label engineering techniques. While



64 Y. Zhang and G. Xia

Fig. 3. Prediction results. Red: Ground Truth; Blue: Bi-LSTM-CRF/CNN-CRF. It
reveals that understanding music content is helpful to make reasonable segmentation
although those are not in ground truth.

all models can yield satisfactory phrase segmentation, combining CRF with deep
neural networks dramatically improves the performance of our models, as CRF
explicitly characterizes the relation among labels. In the feature, we plan to
explore the segmentation task with BERT-CRF architecture, and apply neural
CRF models to more sophistic tasks. e.g. music structure analysis.

Acknowledgement. The preliminary partial results of this work are available at
https://arxiv.org/abs/1811.05688.
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Abstract. Automatic recognition of six selected basic Guzheng finger-
ing techniques is performed in this paper. The audio samples considered
in this work are cut into segments of single notes to emphasize the prop-
erty of each fingering. Due to limited scale of audio samples, traditional
machine learning methods are used in the automatic recognition instead
of deep learning ones. The RMS energy and MFCCs are proved to be the
most effective parameters in presenting Guzheng fingerings. The accu-
racy in the recognition of the six selected fingerings reaches up to 90.73%
with Random Forest, where the “Yao” achieves perfect recognition of
100%.

Keywords: Guzheng · Fingering recognition

1 Introduction

We aim to perform an automatic recognition of basic Guzheng fingering tech-
niques in this work. Guzheng, one of important Chinese traditional musical
instruments, has a history of more than 2500 years, which can be traced back
to as early as the Warring States Period [1]. It is also known as Qinzheng,
Hanzheng, Yaozheng or Luanzheng in the history. Its shape, number of strings,
and the mode of tone settings are all developing overtime. There were 5 strings
at the earliest, 13 strings in the Tang and Song Dynasties, and later increased to
16, 18, 21, and 25 strings. The common modern model Guzheng is specified as
S21-163 as shown in Fig. 1. The body of the Guzheng is a rectangular wooden
sound box, and it is composed of front panel, strings, string nails, Yueshan,
sound outlet, bottom plate, etc. “S” in the model name stands for S-shaped
Back Yueshan, 163 represents the length of the Guzheng is about 163 cm, and
21 represents the number of Guzheng strings. Guzheng may also appear with
straight back Yueshan and sometimes with shorter lengths for portable purpose
(mini Guzheng or half Zheng).

With 21 strings, Guzheng covers 4 octaves. Although it has only 5 tones (do,
re, mi, sol, la) in each octave, the strings are normally tuned with frequencies
according to twelve-tone equal temperament, to ensure its precision over the wide
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2021
X. Shao et al. (Eds.): CSMT 2020, LNEE 761, pp. 66–77, 2021.
https://doi.org/10.1007/978-981-16-1649-5_6
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Fig. 1. Illustration of a Guzheng

range. The expressiveness of Guzheng is presented by various playing techniques,
including both right hand fingering and left hand fingering techniques. In this
paper, we focus on an automatic approach of Guzheng fingering recognition,
aiming better analysis of Guzheng performing, and auxiliary teaching of Guzheng
playing.

Until currently, research work of Guzheng fingering still focused in the play-
ing executions [2–4], while very few study was implemented with the rapidly
developing artificial intelligent approaches. The most relative work on automatic
detection of Guzheng was a music-to-score alignment system that can mark
out the errors in Guzheng playing [5]. Other close work, on Chinese traditional
plucked instruments but not Guzheng, normally focused on music synthesis, such
as Pipa and Qin [6,7]. For the automatic fingering recognition task, the most
similar work lies in the field of instruments recognition, where both tasks con-
cerning the timbre of the music. In instruments recognition, a number of acoustic
features are investigated, including temporal features, spectral features, cepstral
features, etc. [8]. A various of algorithms, including signal processing, feature
processing, and machine learning classifiers, such as empirical mode decomposi-
tion (EMD), independent component analysis (ICA), HMM, K-NN, etc. [9–13].
We assume that the fingering recognition is also a timbre recognition task that
similar to instruments recognition.

In this work, samples of single notes of Guzheng from 6 selected fingerings
are collected, and with proper acoustic features and machine learning methods,
we perform an automatic recognition of basic Guzheng fingerings. The aim of
this work is to make accurate recognition of Guzheng fingering, and further
automatically evaluate the playing quality of certain fingerings in our future
work, to make it possible to build a tool for better comprehending Guzheng music
and Guzheng playing. A possible application is to make an auxiliary teaching
system of Guzheng playing, to contribute to the inheritance and promotion of
this elegant Chinese traditional instrument.

The rest of the paper is organized as follows. In Sect. 2, we briefly intro-
duce several basic Guzheng fingering techniques; the automatic recognition and
analysis to the results are performed in Sect. 3; Sect. 4 concludes the paper and
presents the future work.
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2 Brief Introduction to Guzheng Fingering Techniques

As a plucked string instrument, Guzheng is played with finger caps on both
hands. The right hand fingerings are responsible for the main melody in playing
with a various of techniques, and the left hand fingerings are mainly for the
glissando or vibrato effects by pressing the strings to the left of the bridges, or
for accompaniment purpose with similar techniques to the right hand.

The most basic right hand fingering techniques include “Tuo/Pi (thumb)”,
“Mo/Tiao (index finger)”, “Gou/Ti (middle finger)”, and “Da (ring finger)”,
which are all played by quickly hitting a single string only once with one finger
toward or outward the direction of palm [3].

Playing with multiple strings or multiple times is a very important way to
enrich Guzheng playing techniques. For example, combinations of two strings are
very commonly used in Guzheng music, including “Dacuo”, which is combined
with “Tuo” and “Gou” over an octave, and “Xiaocuo”, which is combined with
“Tuo” and “Mo” over a range smaller than an octave. As an instrument with
a large number of strings, there are also several fingering techniques that hit
multiple strings at a time, such as “Huazhi” and “Guazou”. A string can be
also hit multiple times over a short time to get an effect as a continuous sound,
such as “Yao (Shaking)”, which is a traditional Guzheng fingering technique,
and “Lunzhi”, which is adopted from Pipa playing. “Yao” refers to hit a certain
string with one finger quickly and repeatedly at a stable speed, normally with
the thumb, that is to say, to play “Tuo” and “Pi” alternatively and quickly.

More expressive Guzheng fingering techniques need the help of the left hand.
Glissando of Guzheng is realized by pressing the left side of the string to enhance
the tension on the string to get a higher tone. The tone after pressing is usually
with a distance to its original tone of major second or minor third, according
to different strings. If the string is pressed before hitting the string and released
later, the fingering is called “Xiahua”; if the string is first hit and pressed later,
the fingering is called “Shanghua”. If the string is pressed and released repeatedly
to a certain degree (normally not so deep as in “Shanghua” or “Xiahua”), we can
get the effect of vibrato, called “Chanyin”. Another fingering technique with the
help of left hand is “Fanyin (overtone)”, which is played by touching the middle
point of string with the skin of the left little finger simultaneously with the right
hand finger hitting the string, to make a crystal sound.

Besides these fingering techniques, there are also a lot of other Guzheng
fingerings, including some special fingerings depending on different genres, such
as “Youzhi” of Henan genre.

3 Automatic Fingering Recognition and Analysis

In this section, we make an experimental investigation on the automatic recog-
nition of six selected basic Guzheng fingering techniques. Limited to the scale of
Guzheng audio samples in our work, traditional machine learning methods are
used instead of deep learning ones to avoid problems such as overfitting. Several
different methods are used for comparison.
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3.1 Experimental Setting

We first clarify the types of fingering, the features and the classifiers used in this
Guzheng fingering recognition work.

Fingering Selection. As there are many fingering techniques of Guzheng, we
do not aim to cover all the fingering techniques in this primary work. We select
6 basic fingerings which are used most commonly for the automatic recognition.
All 6 selected fingerings are played on single string. The techniques over multiple
strings, such as “Huazhi” or “Guazou”, will present a clear pattern with multiple
hitting points of string and rapid pitch changing, are temporarily excluded from
this work.

First, the most basic techniques that hit a single string only once should be
considered in the study, including “Tuo/Pi”, “Gou/Ti”, “Mo/Tiao”, and “Da”.
These fingerings have some similarities between each other, and are considered
together in this work. We use the term “Gou” for all these most basic fingering
in the following sections.

Then, three fingerings that modify the pitch to some degree with the press-
ing of left hand are selected, including “Shanghua”, “Xiahua”, and “Chanyin
(Vibrato)”. In these 3 fingerings, the index finger, middle finger, and ring finger
of the left hand press the left side of the bridge of the string being played, as
shown in Fig. 2(a). “Shanghua” and “Xiahua” present a moving of pitch with a
scale of major second or minor third during a tone, and “Chanyin” presents a
slight continuous changing of pitch around a base level.

Another fingering with special timbre, “Fanyin”, is also selected. In playing
of “Fanyin”, we touch the harmonic point of the corresponding string, normally
the half point of the effective vibration length, with the ring finger lightly and
rapidly, as shown in Fig. 2(b). The “Fanyin” in Guzheng presents a clear crystal
sound, where the second harmony energy is dominant in the spectrum. It can
be used in Guzheng music to mimic the effects of percussion instruments such
as bells and drums.

The sixth selected fingering is “Yao”, which hits the string back and forth
quickly and repeatedly to keep the sound duration and the continuity of the
music [14]. The “Yao” is normally played with the thumb, and sometimes the
little finger of the right hand can be used as a supporting point, as shown in
Fig. 2(c). It is a very important technology in the Guzheng playing technique,
and quite different with the other selected fingerings in this work.

We collected samples of the above mentioned six fingerings to make a dataset
for the automatic fingering recognition experiments. There are two sources of
samples. Some samples come from the Guzheng part of CCMusic developed by
China Conservatory of Music in 2019 [15], where the samples were played by
professional performers, and other samples come from fingering exercises played
by beginners in learning. The samples from both professional performers and
beginners ensure the diversity of playing. There are totally 368 samples collected
on these 6 fingerings, all types with almost balanced number.
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(a) (b) (c)

Fig. 2. Illustration of typical Guzheng fingerings (a) Pressing strings of “Chanyin”,
“Shanghua”, “Xiahua” (b) Preparation of “Fanyin” (c) “Yao”

Feature Extraction. The fingering techniques closely relate to music expres-
siveness, including music emotion/mood aspects. Thus, we choose to transfer a
feature set that focuses on speech emotion to present the audio characteristics
of Guzheng fingering. This feature set comes from the INTERSPEECH 2009
Emotion Challenge [16]. The feature set covers 3 categories of features as the
prosody features, the sound quality features, and the spectrum features, which
are calculated from 12 statistical functions of 16 low-level descriptors (LLDs)
and their first order difference, resulting into a 12 × 16 × 2 = 384 dimensional
feature vector.

The LLDs include zero-crossing-rate (ZCR), root mean square (RMS) energy,
fundamental frequency (F0), harmonic-noise ratio (HNR), and first 12 Mel fre-
quency cepstrum coefficients (MFCCs). ZCR refers to the ratio that the wave-
form goes across the horizontal axis, which is mainly used in speech analyzing to
distinguish unvoiced and voiced sound. RMS energy presents the average level
and changing tendency of the signal. F0 is the basic vibration frequency of a
vibrating component, e.g., vocal cord for voice, strings for some instruments
including Guzheng. It is perceived as pitch by human ears when hearing, and
its changing rate and strength, which can be reflected by its statistics over a
certain period of time, are strongly related to several fingering techniques, such
as “Chanyin”, “Shanghua”, and “Xiahua”. HNR is essentially used in evaluating
voice quality. In analysis of Guzheng fingering, the harmonics come from the sta-
ble vibration of strings, and the noise part of signal comes from the hitting of the
strings with the finger caps. Thus, the way and the frequency of hitting strings
can be detected with this LLD. MFCCs are extracted on Mel scale, which fol-
lows the non-linear characteristics of the auditory characteristics of human ears,
which can be expressed as:

Mel(f) = 2595 ∗ lg(1 +
f

700
). (1)

The MFCCs can exhibit the timbre property of a sound, thus they are impor-
tant for distinguishing different Guzheng fingering.

The above mentioned LLDs are typically calculated on frame level, and their
statistics on a longer time scale can present the characteristics of a sound more
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adequately. The statistical functions in INTERSPEECH 2009 feature set are
listed in Table 1.

Table 1. Statistical functions in INTERSPEECH 2009 feature set

Statistical functionals(12)

mean, standard deviation, kurtosis, skewness

maximum and minimum value, relative position, range

Linear regression: slope, skewness, mean square error (MSE)

The extraction of INTERSPEECH 2009 features set is processed with
TUM’s open-source openSMILE feature extractor [17], with the configuration
“emo IS09.conf”.

Feature Analysis and Selection. Although the INTERSPEECH2009 feature
set is only a small scaled feature set, the direct use of it in our work will still risk
from the problem of “curse of dimensionality” [18] due to the limited number of
audio samples in our dataset. We collected about 60 samples for each selected fin-
gering, which means several samples on each string, that can be seen as approxi-
mately covering the basic playing of the corresponding fingering. The size of the
INTERSPEECH 2009 feature set is 384-dimension, which is far more than 60
samples in a type of fingering. Moreover, there are a certain number of features
in this feature set are not very suitable to present this plucked string instru-
ment, such as ZCR related features. Thus, we added a feature selection before
the automatic fingering recognition. Among the three main approaches of fea-
ture selection algorithms as Filter, Wrapper and Embedded algorithms [18,19],
we choose a filter approach because we are using several different classifiers to
analysis Guzheng fingering. Wrapper approaches and embedded approaches that
rely on or embedded in the classifiers are not convenient in our case. A best 60-
dimensional feature subset is selected in the classification.
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Fig. 3. Box-plot of selected features on the 6 fingerings
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The box-plot to show the distribution range of several selected “good” fea-
tures is displayed in Fig. 3. All the features are first normalized to the range
of [0, 1] for convenient comparison. We can see from the comparison that the
mean values of these features have obvious differences to provide ability in dis-
tinguishing, while their range are normally somehow overlapped with each other
to prevent perfect recognizing. The content of the above shown features is listed
in Table 2. Most of the effective features in distinguishing the Guzheng fingerings
focus in RMS energy features and the first several MFCCs.

Table 2. List of selected feature

Index Feature content Index Feature content

3 Range of RMS energy 18 Average of 1st MFCC

10 Standard deviation of RMS energy 25 Maximum of 2nd MFCC

11 Skewness of RMS energy 35 Skewness of 2nd MFCC

203 Skewness of 1st difference of RMS energy 62 Minimum of 5th MFCC

Choosing of Classifiers. For the automatic fingering recognition investigation
on the small scaled dataset, traditional machine learning methods are used in
this work instead of deep learning ones. Several different classifiers are adopted
to avoid extremely high or low accuracies caused by inappropriate classifiers. The
recognition algorithms are trained and tested on WEKA platform [20]. Rough
tests were taken on a number of methods, and four classifiers with stable perfor-
mances which come from 4 different WEKA categories are chosen for detailed
recognition. The 4 chosen algorithms are: a minimum distance based method,
k-nearest neighbors classifier (KNN), the corresponding method in WEKA is
Lazy-IBK; a decision tree based classifier, Random Forest algorithm, the corre-
sponding method in WEKA is Trees-RandomForest; a logistic regression based
classifier, the corresponding method in WEKA is Functions-SimpleLogistic; and
a support vector machine (SVM) based classifier, the corresponding method in
WEKA is Functions-SMO.

All the classifiers are evaluated with the Guzheng fingering recognition prob-
lem with different parameters, and only the best results are kept. Due to the
limitation of audio samples, 10-fold cross-validation is used in all evaluations
instead of separating training set and testing set, to avoid the bias of separation
on this small dataset.

3.2 Results of Automatic Guzheng Fingering Recognition

4 different machine learning algorithms as IBK (KNN), Random Forest, Simple
Logistic, and SMO are evaluated in this subsection for automatic Guzheng fin-
gering recognition. For each algorithm, the accuracies are calculated with feature
subsets from 1 feature to 60 features as ranked in the filter feature selection.
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The idea of the K nearest neighbor method (KNN) is to determine the cat-
egory of an unknown sample x based on the most frequently occurring category
of its K nearest neighborsby calculating the distance d(x,Y), where Y is the set
of all known samples, and select K samples with the smallest distance as its
neighbor sample. When K= 1, the K nearest neighbor method degenerates to
the nearest neighbor method [21], which presents best performance of IBK in
this work of Guzheng fingering recognition.

The Random Forest method is a combined classifier based on statistical learn-
ing theory, and an integrated learning method based on Bagging. Since sampling
with replacement is used to construct training models with different data sets,
the generalization ability of the model is usually stronger than that of a single
model. This method leads to the overall best accuracy in our fingering recogni-
tion.

As a kind of generalized linear model, the Simple Logistic method does not
perform so well as the other methods in this work, probably due to the fact
that the fingering techniques are not typically linear separable with the selected
features.

The widely used SVM approach, which aims to find an optimal classification
hyperplane based on input data samples [22], is also evaluated. The actually used
SVM is John Platt’s SMO (sequential minimal optimization algorithm) [23]. The
highest accuracies of the SMO classifier are obtained when the c parameter is
set to 1.0.

The best accuracies of the fingering techniques from the 4 methods are illus-
trated in Fig. 4(a).
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Fig. 4. Accuracy of the Guzheng fingering techniques recognition (a) Best accuracy
(%) (b) Minimum number of features to get the best accuracy. The meaning of fin-
gering index: 1-“Gou”, 2-“Chanyin”, 3-“Xiahua”, 4-“Shanghua”, 5-“Fanyin”, 6-“Yao”,
7-weighted average of the six fingerings

The overall accuracy of Guzheng fingering recognition on all 6 fingerings
ranges from 85.96% (Simple Logistic) to 90.73% (Random Forest). For all 4
algorithms, the accuracies for each single fingering technique exhibits similar
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trends. The most basic fingering, “Gou”, can be seen as a reference. There are 3
fingerings with F0 changing, where “Chanyin” gets the worse recognition, while
“Shanghua” gets the best of the 3. The reason that the “Chanyin” cannot be very
well recognized is that it can be seen as a combination of continuous “Shanghua”
and “Xiahua” when with high strength, and it can be similar to “Gou” when it
is very slight. “Fanyin” as a special fingering technique, the recognition rate is
averagely a little lower than “Gou”. This may partly come from the imperfect
playing of some samples collected from exercising of students. The “Yao”, which
is played by hitting a certain string repeatedly and rapidly, is perfectly recognized
by all 4 methods, because it possesses significant different properties than other
fingerings.

The minimum numbers of features to achieve the corresponding best accura-
cies are illustrated in Fig. 4(b). The best recognized fingering, “Yao”, also needs
smallest number of features to get this perfect recognition, with an extreme case
of only 1 feature using SMO. The fingerings with F0 changings generally need
more features to be well recognized.

3.3 Detailed Analysis

In order to discover the similarity and difference between the selected fingerings
in more details, we further analyzed the confusion patterns obtained from the
above recognition results. The confusion matrices of the 4 classifiers when the
accuracies are the highest are displayed in Fig. 5. The values are displayed with
colors to be more intuitive to see.

First, “Yao”, whose timbre characteristics are significantly different from all
other fingerings, can be perfectly distinguished by all 4 classifiers. The other
fingerings are recognized from around 75% to 97%, according to different clas-
sifiers, where IBK and Random Forest show good performance in “Shanghua”,
while the other 2 classifiers are better in “Chanyin”.

For the confusion patterns, two common confusion patterns exist in all 4
classifiers. First, “Gou” is more likely to be confused as “Xiahua”. This might
be explained that the hitting of the string may cause the tension on the string
to increase slightly, and may result in a slight higher pitch at the beginning of
the tone, which is similar to the case of “Xiahua”. “Gou” is also confused with
other fingerings, because it is the most basic Guzheng playing technique, and
all fingerings are somehow similar with it. The other common confusion is that
“Fanyin” is more likely to be confused as “Chanyin”. One possible explanation is
that the most obvious character of “Chanyin” is the continuous changing of F0,
while the F0 of “Fanyin” is usually very weak and tends to be detected with very
bad accuracy. The 3 fingerings with F0 changing also tend to be confused. For
IBK and Random Forest, “Shanghua” is very well recognized with accuracies
nearly 97%, but “Chanyin” and “Xiahua” are confused with each other with
relatively high rates; for Simple Logistic and SMO, “Shanghua” and “Xiahua”,
which both have monotonic changing of F0, are highly confused with each other.
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Fig. 5. Confusion matrice in Guzheng fingering recognition

The confusion patterns among different classifiers have some common ten-
dencies. This proved that the Guzheng fingerings can be effectively distinguished
with machine learning approaches, and that the feature set adopted from speech
emotion analysis also works well on Guzheng, which is a kind of plucked string
instrument. There are also some different confusion patterns according to the
mechanism of classifiers. Due to the limited scale and source of collected Guzheng
audio samples, advantages of the selected classifiers are not fully presented in
this work. For example, larger data scale will be better to further use the random
selection property of Random Forest algorithm.

4 Conclusion

Six typical fingering techniques of the Guzheng playing are analyzed with auto-
matic recognition in this paper. The audio samples partly come from CCMusic
by the China Conservatory of Music and partly come from personal recording
samples in excersicing. A feature set is adopted from speech emotion analysis
for the analyzing of Guzheng fingerings. Four classifier algorithms were selected
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for comparative analysis. The 6 selected Guzheng fingerings are proved to be
separable with the adopted feature set, with the best overall accuracy obtained
from Random Forest algorithm as 90.73%. The best recognized fingering, “Yao”,
is perfectly recognized with accuracy of 100% with all 4 classifiers.

The Guzheng fingerings are currently evaluated in the form of single tones in
this work. In our future work, we will extend the automatic fingering recognition
into continuous playing of whole Guzheng music pieces on much larger scale data,
to make it more practical.
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Abstract. This work present a music dataset named MusicTM-Dataset,
which is utilized in improving the representation learning ability of dif-
ferent types of cross-modal retrieval (CMR). Little large music dataset
including three modalities is available for learning representations for
CMR. To collect a music dataset, we expand the original musical notation
to synthesize audio and generated sheet-music image, and build musi-
cal notation based sheet-music image, audio clip and syllable-denotation
text as fine-grained alignment, such that the MusicTM-Dataset can be
exploited to receive shared representation for multi-modal data points.
The MusicTM-Dataset presents 3 kinds of modalities, which consists of
the image of sheet-music, the text of lyrics and synthesized audio, their
representations are extracted by some advanced models. In this paper,
we introduce the background of music dataset and express the process of
our data collection. Based on our dataset, we achieve some basic methods
for CMR tasks. The MusicTM-Dataset are accessible in https://github.
com/dddzeng/MusicTM-Dataset.

Keywords: MusicTM-Dataset · MIR · Canonical correlation analysis

1 Introduction

Music data is getting readily accessible in digital form online, which brings dif-
ficult to manage the music from a large amount of personal collection. It highly
relies on the music information retrieval to retrieve the right data information
for users. In recent years, machine learning or deep learning based methods has
become increasing prevailing in music information retrieval [1–8] and has played
an essential role in MIR.

This paper concentrates on content music MIR by learning semantic concepts
across different music modalities for MIR, as shown in the Fig. 1. For instance,
when we play music audio, we want to find what is the corresponding sheet music
and which lyrics is correct, by learning two kinds of relationship in audio-sheet
music and audio-lyrics. Such kinds of relationship obtained from content-based
representation by learning the alignment across two modalities in the shared

c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2021
X. Shao et al. (Eds.): CSMT 2020, LNEE 761, pp. 78–89, 2021.
https://doi.org/10.1007/978-981-16-1649-5_7
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latent subspace without introducing any users’ information. The unsupervised
representation learning method ensures the system can allow users to find the
right music data modalities with the other data modalities as query.

The major challenge of unsupervised representation learning for different
music modalities is the modality gap. Representation learning for two music data
modalities such as audio-lyrics [9–11], audio-sheet music [12,13], have become
increasingly in the CMR task to bridge the modality gap. In previous works,
classic CCA and CCA-variant methods [14,15] are popular in representation
learning between two music data modalities, through finding linear or nonlinear
transformation to optimize the correlation between two data modalities in the
shared latent subspace. With the success of Deep Neural Network (DNN) in
representation learning, DNN is also helpful for learning joint representation
for cross-modal tasks [16], for example, attention network [12] applies a soft-
attention mechanism for the audio branch to learn the relationship between
sheet music and audio, which solves the problem that the music recordings easily
brings about the global and local time deviations.

However, representation learning for two modalities is still not enough to
achieve the music information retrieval, when we apply one data modality as
query to retrieve other two different data modalities. The existing dataset nor-
mally applied in learning correlation between two modalities in a shared space.
The paper [13] collect a dataset contains an alignment between sheet music and
music audio, which explores music audio to find the corresponding sheet music
snippets. [17] apply a lyrics and audio paired dataset to align lyrics to audio. In
this paper, we collect a new music dataset including three music data modal-
ities. In particular, sheet music and audio are generated from music notes by
music generation tools, the syllable-level lyrics and music notes are fine-grained
alignment. Three major contributions of this paper have achieved in the fol-
lowing aspects: 1) we collect a fine-grained alignment across three music data
modalities, which is useful for representation learning methods to obtain high-
level feature for music CMR tasks. 2) we release experimental results of some
baselines such as CCA and Generalized CCA on our MusicTM-Dataset. 3) The
performance of Generalized CCA surpasses the CCA on audio-sheet music CMR
task, which shows that the mapping all the three data modalities into a shared
latent subspace can be better than mapping them into two shared latent sub-
space for audio-sheet music cross-modal retrieval.

The rest parts are arranged as follows. Some existing related works show in
Sect. 2. In Sect. 3, we explain the detail of our data collection, feature represen-
tations and the metrics we applied on our experiment in Sect. 4. Section 5 makes
a conclusion of the whole paper.
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Fig. 1. The framework of representation learning for music information retrieval.

2 Related Works

2.1 Audio and Lyrics

Recently, the study of automatic audio-lyrics alignment techniques is getting
trendy. The aim of the topic is to estimate the relation between audio and lyrics,
such as temporal relation [18], deep sequential correlation [19]. [17] establishes
audio-lyrics alignment based on a hidden Markov model speech recognizer, in
particular, the lyrics input is to create a language model and apply the Viterbi
method to link the audio and the lyrics. Synchronizing lyrics information with an
audio recording is an important music application. [20] presents an approach for
audio-lyric alignment by matching the vocal track and the synthesized speech.

2.2 Sheet Music and Audio

The popular problem of correlation learning between sheet music and audio is
to establish the relevant linking structures between them. In [21], it aims to
establish linking the regions of sheet music to the corresponding piece in an
audio of the same clip. [22] bring forwards an multi-modal convolutional neural
network, by taking an audio snippet as input to find the relevant pixel area
in sheet music image. However, the global and local tempo deviations in music
recordings will influence the performance of the retrieval system in the temporal
context. To address that, [23] introduces an additional soft-attention mechanism
on audio modality. Instead of correlation learning with high-level representations,
[13] matches music audio to sheet music directly, the proposed method learns
shared embedding space for short snippet of music audio and the corresponding
piece in sheet music.
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2.3 Lyrics and Sheet Music

Learning the correlation between lyrics and sheet music is a challenging research
issue, which requires to learning latent relationship with high-level represen-
tations. The automatic composition techniques are considerable for upgrading
music applications. [24] proposed a novel deep generative model LSTM-GAN
to learn the correlation in lyrics and melody for generation task. Similarly, [25]
presents an approach that is used to generate music song from a Japanese lyrics.
[26] introduces a novel language model that can generate lyrics from a given sheet
music. [27] presents an better query in using lyrics and melody, which take advan-
tage of extra lyrics information by linking the scores from pitch-based lyrics and
melody recognition. Accept that, “singing voice,” which is for generating singing
voice has been drawing attention in the last years, [28] explores a novel model
that the singing voice generation with no consideration of pre-assigned melody
and lyrics.

3 Dataset and Metrics

This section presents the motivation and contribution of our data collection.
Moreover, also the process of dataset collection applied in our experiments and
the data feature extraction are discussed. In the end, we show all the evaluation
metrics applied to leverage our models.

3.1 Dataset Collection

Figure 2 shows a few examples of MusicTM-Dataset we applied, including the
spectrum of music audio with Librosa library1, word-level lyrics, and sheet music
with Lilypond technique2.

The available music dataset with three modalities, which can be applied in
music information retrieval based on the high-level semantic features is rarely
reported. We try to learn aligned representation for sheet music images, music
audio, and lyrics because they frequently appear in the music data collection.
We follow the work [24] to collect our music dataset by extending two modalities
(lyrics and music notes) to three modalities: sheet music, audio, and lyrics.

In [24] presents a music dataset that a music is represented by lyrics and music
notes. The lyrics is parsed as syllable-level collection, such as the lyrics: ‘Listen
to the rhythm of fall ...’ will parse as ‘Lis ten to the rhy thm of fall’. A music
note is a ternary structure that includes three attributions: pitch, duration, and
rest. The pitch is a frequency-related scale of sounds, for example, piano keys
MIDI number ranges from 21 to 108, each MIDI number corresponds to a pitch
number, such as MIDI number ‘76’ represents pitch number ‘E5’. Duration in
music notes denotes the time of the pitch, for example, a pitch number ‘E5’ with
its duration 1.0, means this music note will last 0.5 s in the playing. The rest of
1 https://librosa.org/doc/latest/index.html.
2 http://lilypond.org/.

https://librosa.org/doc/latest/index.html
http://lilypond.org/
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Believe in my faith

When I was young,
I dreamed to be a strong person,
like a tree that can protect you

.
Everything goes too fast,
since you catch my mind

Synthesis Musical Audio                       Lyrics                                        Sheet Music

Fig. 2. Examples of three data modalities in MusicTM-Dataset.

the pitch is the intervals of silence between two adjacent music notes, which share
the same unit with duration. The dataset used for the melody generation from
lyrics, to consider the time-sequence information in the pairs, the syllable-level
lyrics and music notes are aligned by pairing a syllable and a note.

The initial pre-processing for our dataset is to get the beginning of music
notes and corresponding syllables. In our MusicTM-Dataset collection, we
adopted the same method to get the first 20 notes as a sample and ensure
the syllable-level lyrics corresponding can be kept. Moreover, we removed the
samples if existing the rest attributes of the note are longer than 8 (about four
seconds).

Music audio and sheet music are separately created from music notes that
matches our purpose of musical multimodal building. We use syllable-level lyrics
and notes to create the pairs of sheet and audio by some high-quality tech-
nologies. All the music data modalities contain temporal structure information,
which motivates us to establish fine-grained alignment across different modal-
ities, as seen in Fig. 3. In detail, the syllable of lyrics, the audio snippet, and
sheet music fragment generated from music notes are aligned.

Music audio is also music sound transmitted in signal form. We add piano
instrument in the music channel to create new midi files, and synthesize audios
with TiMidity++ tool3.

Sheet music is created by music note with Lilypond tools. Lilypond is a
compiled system that runs on a text file describing the music. The text file may
contain music notes and lyrics. The output of Lilypond is sheet music which can
be viewed as an image. Lilypond is like a programming language system, music
notes are encoded with letters and numbers, and commands are entered with
backslashes. It can combine melody with lyrics by adding the “\addlyrics” com-
mand. In our MusicTM-Dataset, sheet music (visual format) for one note and
entire sheet music (visual format) for 20 notes are created respectively. Accord-
ingly, each song has single note-level and sequential note-level (sheet fragment)
visual formats.

3 http://timidity.sourceforge.net/.

http://timidity.sourceforge.net/
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Fig. 3. An example of fine-grained alignment across three modalities.

Fig. 4. The audio feature extraction process with vggish model

3.2 Feature Extraction

This section will explain the feature extraction for music multimodal data.

Audio Feature Extraction. Generally, audio signal is used for audio feature
extraction, which plays the main role in speech processing [29,30], music genre
classification [31], and so on. Here, we present a typical model for audio feature
extraction, the supervised trained model Vggish. The detailed process of feature
extraction can be seen in Fig. 4. Firstly, we resample audio waveform 16 kHz
mono, then calculate a spectrogram. Secondly, in order to obtain a stable log
mel spectrogram, it is computed by exploring log. Finally, resampling the feature
into (125,64) format, then applying pre-trained model to extract feature and use
PCA model to map it into 128-dimensional.

Sheet Music Feature Extraction. Different from other image feature extrac-
tion, our feature extraction of sheet music image tries to catch pitches and the
segments. In this paper, our information extraction of sheet music has two lev-
els, pitch detection, and semantic segments. We apply the ASMCMR [32] model
trained in audio-sheet retrieval tasks, which learns the correlation between audio
clips and corresponding sheet snippets. In our work, the shape of extracted note-
level feature and sheet snippet-level features are (100, 32) and (32,) respectively.
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Table 1. Statistics of MusicTM-Dataset applied in our experiments

Modality Feature extractor Dimension Number

Audio Vggish (20, 128) 14,454

Lyrics Skip-gram (20, 20) 14,454

Sheet music Lilypond&ASMCMR (20, 100, 32) 14,454

Lyrics Feature Extraction. We follow [24] to keep the alignment between
syllable and note by representing lyrics in the form of syllable and word level.
The syllable-level feature extracted with the syllable skip-gram model, the word-
level feature extracted with the word skip-gram model used in [24]. These two
pre-trained skip-gram models are trained on all the lyrics data, which applied in
a regression task with SGD optimization. The input of syllable-level skip-gram
model is a sequence of syllables in a sentence, while the input of word-level
model is a word unit sequence in the sentence. The output of the syllable-level
and word-level skip-gram model is 20-dimensional embedding for each syllable
and word, respectively.

The overall statistics of our music data are shown in Table 1. We divided the
dataset into 3 parts as training, validation, and testing set by 70%, 15%, and
15%. The number of training, validation, and testing set are 13,535, 2800, and
2800 respectively.

3.3 Evaluation Metric

To evaluate some baselines on our dataset, we apply some standard evaluation
from the work [33] for unsupervised learning based cross-modal retrieval. R@K
(Recall at K, here we set K as 1, 5, and 10) is to compute correct rate that
is the percentage of retrieved items corresponding to the query in the top-K of
rank list. Fox instance, R@1 calculate the percentage of sample appear in the
first item of retrieved list. In order to further evaluate our collected dataset with
some baselines, we also apply the Median Rank and Mean Rank to compute the
mean and median rank of all the correct results.
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4 Experiments

Table 2. The performance of multimodal information retrieval on MusicTM-Dataset.

audio2lyrics retrieval

Methods R@1 R@5 R@10 MedR MeanR

Random rank [34] 0.028 0.055 0.076 7312.0 7257.2

CCA [35] 0.306 0.350 0.353 423.0 639.4

GCCA [36] 0.040 0.074 0.093 770.0 881.1

lyrics2audio retrieval

Random rank 0.027 0.055 0.076 7316.0 7257.3

CCA 0.304 0.349 0.354 427.0 639.3

GCCA 0.039 0.078 0.095 774.0 881.6

sheet music2lyrics retrieval

Random rank 0.027 0.055 0.075 7311.0 7257.3

CCA 0.093 0.172 0.203 524.0 708.7

GCCA 0.089 0.0142 0.167 573.0 770.5

lyrics2sheet music retrieval

Random rank 0.027 0.055 0.077 7313.0 7257.4

CCA 0.093 0.168 0.198 522.0 709.0

GCCA 0.098 0.014 0.168 578.0 769.8

audio2sheet music retrieval

Random rank 0.028 5.57 7.50 7310.0 7257.2

CCA 0.303 0.349 0.353 341.0 596.5

GCCA 0.358 0.403 0.414 271.0 382.8

sheet music2audio retrieval

Random rank 0.026 0.055 0.075 7310.0 7257.4

CCA 0.300 0.350 0.354 332.0 596.1

GCCA 0.362 0.407 0.415 271.0 381.3

4.1 Baselines

CCA can be seen as the method that aims at finding linear transforms for two
sets of variables in order to optimize the relation between the projections of the
variable sets into a shared latent subspace. Consider two variables from two data
modalities X ∈ RDx and Y ∈ RDy with zero mean and the two paired data sets
Sx = {x1, x2, ..., xn} and Sy = {y1, y2, ..., yn}. Wx ∈ RDx and Wy ∈ RDy as the
directions that linearly map the two set into a shared latent subspace, such that
the relation between the projection of Sx and Sy on Wx and Wy is optimized.

ρ = arg max
(Wx,Wy)

WT
x ΣxyWy√

WT
x ΣxxWx · WT

y ΣyyWy

(1)
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where ρ is the correlation, Σxx and Σyy denote the variance–covariance
matrix of Sx, Sy, respectively and Σxy represents the cross-covariance matrix.

Generalized CCA [36] can be viewed as an extension method of CCA,
which aims to solve the limitation on the number of data modalities. The objec-
tive function in Eq. 2, which focuses on finding a shared representation G for K
different data modalities.

minimize(Wk,G) =
K∑

k=1

||G − WT
k Xk||2F (2)

where K is the size of data points, and Xk is a matrix for kth data modality. Sim-
ilar to CCA, GCCA is to find linear transformation for different data modalities
to optimize the correlation within them.

4.2 Results

In Table 2, when learning the correlation between two data modalities with CCA
method, the correlation of audio-lyrics and audio-sheet music can get more than
30% of R@1, which illustrates the dataset can be learned for cross-modal retrieval
task. Specifically, in comparison with CCA and RANDOM, GCCA will have a
big improvement in the performance of audio-sheet music cross-modal retrieval.
In detail, compared with CCA method, 5.46%, 5.39%, 6.06%, 70, and 213.68
improved in R@1, R@5, R@10, MedR, and MeanR for music audio as the query
to retrieve the correct sheet music; 6.16%, 5.65%, 6.1%, 61, and 214.8 improved in
R@1, R@5, R@10, MedR, and MeanR for sheet music as the query to retrieve the
correct music audio. However, GCCA will decrease the performance of audio-
lyrics cross-modal retrieval and achieve a similar performance of sheet music-
lyrics cross-modal retrieval.

The results show that the learned representation with GCCA for sheet image,
lyrics, and music audio can raise the relation of sheet music and music audio.
However, such representations drop the correlation between music audio and
lyrics and their correlation between sheet music image and lyrics will almost
stay the same as CCA method, which learns the representation in the shared
subspace without involving lyrics data. The results prove our hypothesis can be
accepted that the sheet music and music audio are created by music notes, so the
correlation between audio and sheet music will be close. The lyrics and music
note from original dataset exist alignment between each other, the correlation
between the two can be learned. In this case, the correlation between audio
and lyrics reflects the correlation between audio and music note, however, the
correlation between sheet music and lyrics seems hard to learn.

In visualization of the the position of sheet music, lyrics, and music audio
in CCA and GCCA subspace, as shown in Fig. 5. GCCA seems to pull audio
and sheet music while pushing the audio and lyrics compared with the CCA
subspace. This motivates us to propose a new advanced model that can improve
three couples of cross-modal retrieval tasks in a shared latent subspace as the
GCCA subspace achievement in the future.
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Fig. 5. The general paradigm of MusicTM-Dataset with two different models (CCA,
GCCA)

5 Conclusion

This paper presents a MusicTM-Dataset that consists of three different data
modalities and there is fine-grained alignment across the modalities. The dataset
can be easily extended to different researches, we report the performance of
some baselines on our MusicTM-Dataset, which allows the results of the follow-
ing research to be compared. Instead of applying CCA to learn shared latent
subspace for every two modalities, GCCA learns the correlation of three modal-
ities in one shared latent subspace. The performance of audio-sheet music can
be improved and the performance of audio-lyrics cross-modal retrieval is quilt
similar but the performance of lyrics-sheet music cross-modal retrieval will be
decreased. In theory, we want to develop a new architecture that will improve
the performance of multimodal information retrieval across different modalities.

Acknowledgements. The JSPS Grant for SR financed this work, which is under
Grant No. 19K11987.
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Abstract. Many algorithms classify acoustic scenes with predefined
acoustic scenes categories but few addresses identifying acoustic scenes
that are not predefined (usually referred as “unknown acoustic scenes”),
which is known as “open set” problem for acoustic scene classifica-
tion. Traditional methods generally use a “one-size-fits-all” threshold to
make a second judgment on the output of trained model. The bound-
ary between known and unknown scenes cannot be learned. To enable
this boundary to be programmed, this paper proposes a novel method
to introduce adversarial domain adaptation into the open set acoustic
scene classification. In this method, known scenes are classified through
the adaptation of target domain and source domain, and unknown scenes
are distinguished by adversarial training with the help of preset pseudo-
threshold. Not only the discrimination between unknown classes and
known classes can be learned during the adversarial training process,
but the overall performance of the open set acoustic scene classification
algorithm is also improved. The proposed system achieves better perfor-
mance compared with the baseline of open set acoustic scene detection
in Detection and Classification on Acoustic Scenes and Events challenge
2019.

Keywords: Open set · Acoustic scene classification · Adversarial
domain adaptation · Pseudo-threshold

1 Introduction

The task of identifying the acoustic scene according to characteristics of the audio
is called acoustic scene classification (ASC) [11,16,17,20], which is widely used
in artificial intelligence equipment, home security systems, environmental noise
monitoring, etc. The continuous expansion of the dataset and further develop-
ment of deep neural networks have made the ASC achieved better performance
[2,24,29,31]. Most existing methods of ASC presume that the acoustic signal is
collected from one of the predefined acoustic scenes called closed set, which may
not be always true in a practical scenario. To overcome the limitation brought
by presumption, Daniele et al. [3] introduce the open set setting into ASC. Com-
pared with the closed set ASC that only needs to identify the known scenes, the
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2021
X. Shao et al. (Eds.): CSMT 2020, LNEE 761, pp. 93–104, 2021.
https://doi.org/10.1007/978-981-16-1649-5_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-16-1649-5_8&domain=pdf
https://doi.org/10.1007/978-981-16-1649-5_8


94 C. Ren and S. Li

open set ASC can not only classify audio clips to predefined acoustic scenes but
also identify audio signals collected from the unknown acoustic scenes.

At present, few works focus on open set ASC [3,18,28,33]. Most methods [28,
33] usually regard the unknown acoustic scenes as a special known class and then
obtain the prediction output by training of deep neural network. Finally, a “one-
size-fits-all” fixed threshold as the basis is employed for identifying known scenes
and unknown scenes. The threshold distinguishes the scene with a predicted
probability higher than this value as a known class, and vice versa, as an unknown
class. An obvious problem is that discriminative threshold is not involved in
training phase. Therefore, the boundary between known scenes and unknown
scenes is not learned actually.

To program the boundary between known scenes and unknown scenes, the
open set acoustic scene detection is also regarded as a specialised adversarial
domain adaptation problem as suggested by Saito et al. [21] and Fu et al. [7].
The open set adversarial domain adaptation methods have achieved excellent
performance in the field of image recognition [9,23]. As an adversarial domain
adaptation problem, training dataset and testing dataset can be considered as
source domain and target domain respectively. This method uses the information
learned in source domain to guide classification of known scenes in target domain.
Moreover, the target domain distinguishes unknown class from known classes by
adversarial training.

In this paper, we apply adversarial domain adaptation to the open set ASC,
which solves the problem that the boundary between known scenes and unknown
scenes cannot be truly learned. Because the “one-size-fits-all” threshold is not
involved in the model training phase. Experiments show that our proposed
method could effectively solve open set ASC.

2 Related Work

The purpose of closed set ASC is to match audio signals with predefined scene
labels. Many methods benefit from the development of deep neural networks
[1,4,6,19,26]. Hershey et al. [12] propose a Convolutional Neural Networks
(CNNs) framework which performs well in image recognition for ASC. Vu et
al. [26] employ Recurrent Neural Networks (RNNs) which is flexible in dealing
with sequential data for ASC. Mun et al. [17] utilize Generative Adversarial
Networks (GANs) to improve ASC performance by generating additional train-
ing dataset. Closed set ASC has achieved impressive performance to matching
known semantic label with audio representing its recording environment. How-
ever, in practical applications, the processed dataset usually contains some sam-
ples, which are recorded in unknown scenarios outside. Recognizing a dataset
incorporating unknown scene classes as above is called open set ASC. Consider-
ing the changes in dataset composition, traditional closed set ASC methods are
no longer applicable to open set ASC. However, closed set ASC still provides
reliable models for the classification of known scenes to open set ASC.

Open set ASC is closer to reality and more challenging compared with closed
set ASC. Therefore, this paper will concentrate on the task of open set ASC,
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which is rarely studied. Battaglino et al. [3] first introduced the open set prob-
lem into the field of ASC. Zhu et al. [33] subdivide known classes through CNNs
and self-attention mechanisms [25,30], and rely upon a fixed threshold to filter
unknown scenes. Lei et al. [14] propose a method of combining an improved
ResNet variant and a threshold for open set ASC. These methods are affected
by closed set ASC on classifier, so they can classify known scenes well, and then
identify the scene whose predicted probability is lower than the threshold as an
unknown scene. It can be seen that, except for the final discrimination threshold,
the entire classification network is highly similar to closed set ASC. The training
process does not involve participation of this threshold, therefore, the classifi-
cation network does not really program the boundary between known scenes
and unknown scenes. And the “one-size-fits-all” threshold makes the system less
robust and affected by the setting changes.

To avoid the problem of traditional methods, the open set ASC can be
regarded as an adversarial domain adaptation problem which has achieved excel-
lent performance in image recognition [15,22,27]. Adversarial domain adaptation
consists of labelled source domain and unlabeled target domain which reduces
the complexity of data labelling. The performance of target domain model is
improved by transferring the knowledge learned from information-rich source
domain model. To eliminate the difficulty of discriminating unknown class when
aligning source domain and known classes in target domain, Saito et al. [21] pro-
pose to solve the open set domain adaptation by backpropagation in adversarial
training. Based on the work of [21], Fu et al. [7] develop symmetrical Kullback
Leibler (KL) distance to upgrade loss function of adversarial adaptation, so as
to better recognize the potential unknown samples. These methods get rid of the
dependence on “one-size-fits-all” threshold which not participating in training
phase through means of adversarial domain adaptation.

Therefore, inspired by the adversarial domain adaptation in image recog-
nition [21], we propose to introduce adversarial domain adaptation to solve
the problem of open set ASC for the first time. The proposed method makes
the model obtain the difference between known classes and unknown classes
using pseudo-threshold by adversarial training, and remedies negative influence
of the traditional threshold and improves the robustness of the system. Experi-
ments demonstrate that the method proposed not only solves the problem that
the threshold which not involved in training phase cannot learn the boundary
between known classes and unknown classes in the traditional method but also
can better classify the known scenes.

3 Open Set Adversarial Domain Adaptation

In this section, we first give an overview of the open set ASC system as shown
in Fig. 1, and then detail the adversarial domain adaptation method and its
training process.
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Fig. 1. Open set ASC system based on adversarial domain adaptation. The system
is composed of a generator Gf and a classifier Gy. In target domain, the boundary
between known classes and unknown classes is learned by GRL [8] inverting the gradient
in an adversarial training way.

3.1 Problem Setting and System Framework

The open set adversarial domain adaptation is composed of source domain and
target domain. Some known scenes are processed as source domain, and the
other known scenes and unknown scenes are processed as target domain. In
consideration of being close to the actual situation and relieving the pressure
of labelling, target domain with unlabelled data is unsupervised. Here, source
domain Ds and target domain Dt are denoted as {(xs

i , y
s
i )}ns

i=1 and {xt
j}nt

j=1

respectively, where ns and nt represent the number of samples in source domain
and target domain. Compared with the set of classes Cs = {c1, c2, ..., cm}Km=1 of
source domain, the set of scene classes Ct = {c1, c2, ..., cm; cm+1}Km=1 in target
domain adds an “unknown” class which related to undefined scenarios, where K
refers to the number of defined scene classes. The data distributions of source
domain and target domain are P and Q respectively, and they are unequal to
each other.

Towards open set ASC, on the one hand, adversarial domain adaptation is
to adapt known scenes of target domain to source domain for obtaining the
knowledge of classification scenes; on the other hand, unknown scene can be
identified in target domain through the discriminating mechanism to avoid the
interference of the negative transfer.

With a view to achieve the above challenges, the adversarial domain adapta-
tion model has a generator Gf (x; θf ) and a classifier y = Gy(Gf (x); θy) in series
as shown in Fig. 1. θf and θy respectively represent the parameters of correspond-
ing mapping. For the source domain, the function of generator and classifier is
to classify the known scenes as accurately as possible; for the target domain, the
classifier makes the output probability of the unknown sample tighter the set
demarcation H, while the generator which extracts advanced features is learned
in the opposite direction to H, and the generator and classifier are adversarial
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Fig. 2. The between the method proposed and the traditional method in identifying
known and unknown classes. The traditional method uses a fixed threshold of T on
the trained model while method proposed gradually distribute known and unknown
classes to both sides of the preset pseudo-threshold H during the adversarial training
process.

trained through a gradient reversal layer (GRL) [8] to complete the recognition
task of unknown scenes.

3.2 Adversarial Domain Adaptation for Open Set ASC

Open set adversarial domain adaptation is to classify known scenes and identify
unknown scenes in target domain at the same time. Considering that target
domain is an unsupervised condition, source domain model would provide target
domain with transferable knowledge of classification scenes. The generator Gf

of source domain performs deep processing on the input xs to extract advanced
features related to the category difference. The classifier Gy completes the scene
classification, obtains the probability prediction output ps, and the loss function
is defined as

Lcl =
1
ns

∑

xs
i∈Ds

L(G1:K
y (Gf (xs

i )), y
s
i ) (1)

where L is the cross-entropy loss, Gy is a classifier for K + 1 classes, G1:K
y

represents the probability that the sample xs
i is identified as known class with

missing an unknown class than Ct. Through the optimization of the loss of Lcl,
a network that can be transferred to target domain to classify known classes is
finally obtained.

Then, we need to train a discrimination mechanism to regulate the bound-
ary between known and unknown classes in target domain. Figure 2 shows the
difference between the method proposed in this article and traditional method
in identifying known and unknown classes. The traditional method usually uses
a threshold to identify unknown class after the probability output Pt of the clas-
sifier. If Pt of known scene is lower than the threshold, this scene processed as
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an unknown scene. The threshold is only applied to the trained model and does
not participate in the model training process, which causes this threshold to fail
to learn the difference between unknown scenes and known scenes in actually. In
order to solve this problem, we set a pseudo-threshold H to guide target domain
network to learn the boundary between known classes and unknown classes dur-
ing adversarial training. If the input is a known scene, the probability P

′
a that is

predicted to be an unknown scene will gradually be lower than H as the training
progresses.

In the training process of target domain network, the classifier makes prob-
ability of the sample judged as an unknown class as far as possible to satisfy

p(yt
j = cK+1|xt

j) = H, 0 < H < 1 (2)

However, the generator is learned for keeping p(yt
j = cK+1|xt

j) as far away from
H as possible. Such game training is completed by GRL [8] between the generator
and the classifier. In the backpropagation process, the GRL enables the gradient
of classification loss of the classifier automatically invert before backpropagating
to the parameters of the generator as shown in Fig. 1, thereby realizing a adver-
sarial training similar to GAN [10]. Among Fig. 1, the value of parameter λ is a
hyperparameter. Correspondingly, the adversarial loss is defined as

Ladv = −Hlog(p(yt
j = cK+1 | xt

j)) − (1 − H)log(1 − p(yt
j = cK+1 | xt

j)) (3)

With the adversarial training of generator and classifier, the probability that
known scene in target domain is judged as an unknown class will be lower than
H; conversely, the probability of the unknown sample being predicted as an
unknown class will be higher than H. In this way, the samples of known classes
and unknown classes will gradually treat the pseudo-threshold H as the bound-
ary between each other during the training phase. Target domain can therefore
achieve the purpose of recognizing unknown scenes.

3.3 Training Procedure

In the open set adversarial domain adaptation system, the network structure
of source domain and target domain is same. Firstly, for guiding target domain
to learn the knowledge of classifying known scenes, the generator and classifier
obtain a network with excellent classification performance by training samples
of the source domain. And the network is optimized by minimizing the loss Lcl.
Secondly, the target domain is able to identify unknown scenes, therefore, the
generator and classifier learn the boundary between known scenes and unknown
scenes in an adversarial manner through GRL. The loss that needs to be opti-
mized is Ladv. In short, the training goal of the entire model is

min
Gy

Lcl + Ladv

min
Gf

Lcl − Ladv

(4)
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Fig. 3. The proposed system network structure. “BN” is batch normalization, “FC” is
fully connected layer.

Since source domain does not need to recognize unknown scenes, both the
generator and classifier are trained in the direction of minimizing classification
loss Lcl; while target domain is different, generator and classifier are trained
in the opposite direction of optimization, and then the pseudo-threshold H is
turned into a true boundary through an adversarial method. Through the above
training process, the target domain can not only classify known scenes but also
identify unknown scenes without supervision.

4 Experiments and Results

4.1 Datasets and Experimental Setup

We evaluate the proposed method on the development dataset released by Detec-
tion and Classification on Acoustic Scenes and Events challenge 2019 (DCASE
2019) Task1 Subtask3. This dataset is a collection of audio scenes recorded in
12 European cities by professional recording equipment. The dataset consists of
10 known scenes and 1 unknown scene, where unknown scene includes 4 sub-
scenes. The unknown class in target domain is related to three sub-scenes, and
the unknown class in testing set is remaining sub-scene. Each audio sample has
a duration of 10 s and is sampled to 44.1 kHz. As the input of our system, log
mel spectrograms complemented by its deltas and delta-deltas were used. The
input features are of size 430 time samples and 128 mel filter banks. In order to
further expand data and improve system performance, we use Mixup [32] as a
device to augment data.

This paper proposes an adversarial domain adaptation method for open set
ASC. This method not only classifies known scenes like closed set ASC but also
distinguishes unknown scenes from known scenes. As shown in Fig. 3, the adver-
sarial domain adaptation system proposed consists of a generator and a classifier.
Among them, the generator is used to extract advanced feature representations
of input audio features, including 4 convolutional layer with kernel sizes of 5× 5
and 2 fully connected layers. In order to stabilize training, we apply LeakyReLU
and batch normalization after each convolutional layer. And average pooling is
used for downsampling after convolutional layer. The classifier is composed of a
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fully connected layer, and the probability prediction output is obtained through
Softmax. Stochastic gradient descent (SGD) [5] optimizer whose learning rate is
0.001 is used in this system.

Scene Class Traditional method OS-ANDDCASE2019 Baseline CNN-threshold [33]
Airport 44.2 48.1 62.2

Shopping mall 50.9 52 60.2
Metro station 41.3 59.3 57.3

Street pedestrian 47.5 35.4 69
Public square 34.7 39.1 51.1
Street traffic 78.4 78.1 85.2

Tram 60.7 70.2 60
Bus 59.3 60.6 72.1

Metro 51.5 56.5 69
Park 74 81.7 81.2

Known Average 54.3 58.1 66.7
Unknown 43.1 48.1 60.6

Fig. 4. The comparison of accuracy (%) of the scene class obtained by mentioned model
and traditional methods.

4.2 Performance and Analysis

The following Fig. 4 shows the comparison of experimental results between open
set adversarial domain adaptation method (OS-AND) proposed in this paper
and traditional methods. Baseline is a method officially released by DCASE
2019 Task1 Subtask3. The system consists of 2 convolutional layers and one
dense layer. Finally, a threshold of 0.5 is used as the boundary for identifying
unknown scenes. The method “CNN-threshold” proposed by Kong [13] uses a
5-layer CNN with a convolution kernel of 5 × 5 and a threshold of 0.5. It can
be seen from the table that our model is significantly higher than traditional
methods in the prediction results of known scenes and unknown scenes. In par-
ticular, the accuracy of unknown class has increased from 48.1% to 60.6%. The
great improvement of the accuracy of unknown class recognition shows that
the method of adversarial domain adaptation proposed in this paper is effective
and reasonable. More than half of known scenes have achieved better accuracy
than traditional methods and the average accuracy of known scenes is improved
by about 9% compared with “CNN-threshold”. This proves that the open set
ASC based on adversarial domain adaptation proposed in this paper can not
only identify unknown scenes but also classify known scenes well. The method
proposed is more sensitive to scenes such as “Airport”, “Street pedestrian”, and
“Metro” when classifying known scenes according to the experimental results. Of
course, there are some scenes whose accuracy is lower than traditional methods,
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such as “Tram”, “Park”, etc. This is understandable. The target domain under
unsupervised condition has some difficult samples, which will be processed as
unknown scenes because of the low probability of similarity with known scenes
in the process of adversarial training.

Fig. 5. (a) shows the variation curve of model accuracy with H; (b) shows the variation
curve of model accuracy with epoch.

In addition, in order to better explain the performance of adversarial domain
adaptation, we also give the relationship curve of the pseudo-threshold H of
adversarial loss Ladv and accuracy, and the variation of the system accuracy
with the training epoch under the optimal H in Fig. 5. The function of pseudo-
threshold H in Ladv is to provide a quasi-differential boundary between the
known and unknown classes of the target domain. The choice of H should ensure
that the unknown class can be well recognized, and the classification accuracy
of the known classes is not excessively lost. As shown in Fig. 5(a), the accuracy
of the unknown class gradually increases as H increases, and the accuracy of
known classes gradually decreases. However, the accuracy of known scenes has a
small drop since the source domain provides the target domain with transferable
scene classification knowledge. When H = 0.42 (as shown by the red dotted line
in Fig. 5(a)), the average accuracy of the system is the highest. At this time, the
accuracy of the unknown class increases greatly without sacrificing the accuracy
of known classes too much. Therefore, H is chosen to be 0.42 in adversarial loss
of Ladv.

When H = 0.42, we plot the change of system accuracy to training epoch
in Fig. 5(b). It can be seen that in the first 50 epochs of training, the accuracy
of both unknown class and known classes fluctuates and rises, and the opti-
mal result is reached at the 48th epoch (as shown by the red dotted line in
Fig. 5(b)). After more than 50 epochs, although adversarial training increases
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the accuracy of unknown class, it also causes the accuracy of known classes to
drop significantly. In summary, in order to enable model to identify unknown
scenes and classify known scenes to achieve better performance, we choose the
model obtained when H = 0.42 and the 48th training epoch.

5 Conclusion

In this paper, we propose an open set ASC method based on adversarial
domain adaptation. Different from traditional methods, the proposed method
uses pseudo-threshold in the training process to make system learn the bound-
ary between known scenes and unknown scenes in an adversarial manner. In
order to prove the effectiveness of proposed method, we set a series of exper-
iments on the dataset of the DCASE 2019 Task1 Subtask3. The experimental
results show that the proposed method improves the accuracy of known classes
by about 9% and the accuracy of unknown class by about 18%. This proves that
our proposed method can well complete the open set ASC of classifying known
scenes and identifying unknown scenes.

Acknowledgements. This work was supported in part by the National Natural Sci-
ence Foundation of China (62001038).
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Abstract. Modelling secondary sources as 3D point sources to repro-
duce 2D desired sound field is named as 2.5D sound field reproduc-
tion, which has the intrinsic dimensionality mismatch problem. Exist-
ing methods for 2.5D reproduction have focused on solving the dimen-
sionality mismatch problem and mostly considered free-field condition.
However, in most cases, the reverberation caused by the listening room
will degrade the reproduction performance. In this work, we propose an
active room compensation strategy for 2.5D reproduction. Firstly, adopt
sectorial mode matching algorithm to achieve 2.5D reproduction, the
desired sound field and generated sound field are matched at the repro-
duction center. Secondly, the modal-domain algorithm is developed to
estimate reverberant sound field and design the compensation signals
of loudspeakers to compensate reverberant sound field. The proposed
method is validated through simulation experiments to demonstrate its
effectiveness against room reverberations.

Keywords: Sound field reproduction · 2.5D reproduction · Room
compensation · Modal domain

1 Introduction

As psychoacoustics theory puts the fact that human ears are more sensitive to
sounds from horizontal direction at the height of ears, it is more valuable to
reproduce desired sound field on two-dimension field. Early studies regard it
as 2D reproduction problem where secondary sources are modelled as vertical
line sources [1]. However, due to the acoustic characteristics of the loudspeaker,
modelling it as 3D point source is more reasonable in practice. Due to the intrin-
sic dimensionality mismatch, modelling secondary sources as 3D point sources
to reproduce 2D sound field is named as 2.5D reproduction [2–5]. Most exist-
ing methods for 2.5D reproduction can make good performance in addressing
dimensionality mismatch problem [2,6]. However, these approaches focus on free-
field condition while the reverberation caused by time-varying room responses
will impair the generated sound field [1]. Thus, room compensation (or room
equalization) has been proposed to reduce or eliminate the reverberant effects.
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X. Shao et al. (Eds.): CSMT 2020, LNEE 761, pp. 105–112, 2021.
https://doi.org/10.1007/978-981-16-1649-5_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-16-1649-5_9&domain=pdf
https://doi.org/10.1007/978-981-16-1649-5_9


106 Y. Chen and W. Zhang

As for room compensation, current proposed methods can be divided into two
ways: passive compensation manners and active manners. Passive compensation
methods reduce wall reflections by acoustic absorption materials. Nevertheless,
it gets costly and impractical especially at low frequencies in many real-world
application scenarios. Thus, researchers put forward compensation methods by
active manners. In order to equalize the effects of reverberation, adding appropri-
ate compensation signals on the loudspeaker arrays is the core. Currently, most
proposed room compensation techniques are based on Multiple Input Multiple
Output (MIMO) system [7,8], which can only reduce the effect of reverberation
at discrete points and its adjacent region. Designing compensation signals using
modal domain processing [9] achieves compensation within a continuous region.
However, this has only been considered for 2D reproduction.

In this paper, we propose an active room compensation approach in 2.5D
reproduction through modal domain processing. Section 2 reviews the 2.5D
reproduction using sectorial mode matching algorithm, and we propose an active
room compensation algorithm in Sect. 3. In Sect. 4, the proposed algorithm is
simulated and evaluated by reproduction of narrowband and broadband signals
under reverberant environment.

2 2.5D Reproduction

2.1 Problem Formulation

In modal-domain, we express the 2D desired sound field at any point x =
{rx, φx} through the interior solution of wave equation [10]

Pd(x, k) ≈
M∑

m=−M

αm(k)Jm(krx)eimφx , (1)

where k represents the wave number, αm(k) represents sound field coefficients,
Jm(·) represents cylindrical Bessel function. The truncation order is determined
as M = �ekR/2� [11] where R is the radius of control region.

Consider adopting circular loudspeaker array to generate the desired sound
field exactly as (1) shows, where the array is implemented on horizontal plane,
the number of loudspeakers has to satisfy L ≥ 2M + 1 [12].

Thus, reproduced sound field in free-field is formulated as

P (x, k) =
L∑

l=1

dl(k)Hl(x, k), (2)

where Hl(x, k) is acoustic transfer function (ATF) of the lth loudspeaker and
the observation spot x, dl(k) is the driving signal of lth loudspeaker.

The expression of Hl(x, k) is as follows

Hl(x, k) =
e−ik‖yl−x‖

4π‖yl − x‖ , (3)
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where yl = {rl, φl} represents the loudspeaker location and ‖ · ‖ denotes the
Euclidean distance of the vectors.

In modal domain, Hl(x, k) is formulated as

Hl(x, k) ≈
M∑

m=−M

M∑

n=|m|
γm

n (l, k)jn(krx)Y m
n (

π

2
, φx), (4)

where γm
n (l, k) is the ATF coefficient of lth source. In free field condition,

γm
n (l, k) = −ikh(2)

n (krl)Y m
n (

π

2
, φl),

Substituting (4) into (2) gives the expression

P (x, k) ≈
M∑

m=−M

L∑

l=1

dl(k)
M∑

n=|m|
γm

n (l, k)jn(krx)Y m
n eimφx , (5)

where the spherical harmonic function at elevation θ = π/2 is defined as

Y m
n (π

2 , φx) = Y m
n eimφx , with Y m

n � Am
n Pm

n (0), Am
n =

√
2n+1
4π

(n−|m|)!
(n+|m|)! and Pm

n (·)
represents associated Legendre function.

The loudspeaker driving signals are designed by equating (1) with (5). Using
the orthogonality property of complex exponentials, it gives the following equa-
tion

αm(k)Jm(krx) =
L∑

l=1

dl(k)
M∑

n=|m|
γm

n (l, k)jn(krx)Y m
n

︸ ︷︷ ︸
hm(l,k,rx)

, (6)

for m = −M, ...,M . From (6), it shows that the expansion is only over mode m
and the Bessel function Jm(krx) denotes the radial propagation in 2D sound field,
and the modal expansion is over both n and m and the spherical Bessel function
jn(krx) denotes the radial propagation in 3D sound field, which reflects the
dimensionality mismatching. The solution of this problem is finding appropriate
matching distance rx.

2.2 Sectorial Mode Matching

It has been proved [2] that adopting the center of reproduction region as the
matching spot (rx = 0) can reach a relatively less distortion due to dimension-
ality mismatch. Note that when krx → 0, the summation over order n in (4)
reduces to the single term n = |m| [2,13] where Y m

|m|(
π
2 , φx) is termed as the

sectorial harmonics, and hm(l, k, rx) in (6) is expressed as

hm(l, k, rx) = γm
|m|(l, k)j|m|(krx)Y m

|m|, (7)

Thus, the driving signals dl(k) are derived by matrix
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d = H†b, (8)

where
d =

[
dl1(k) · · · dlL(k)

]T
,

H† =

⎡

⎢⎣
h−M (l1, k, rx) . . . h−M (lL, k, rx)

...
. . .

...
hM (l1, k, rx) . . . hM (lL, k, rx)

⎤

⎥⎦

†

,

b =
[
α−M (k)J−M (krx) · · · αM (k)JM (krx)

]T
.

The dependence on wavenumber k is omitted for notation simplicity. Then, driv-
ing signals can be expressed simply as

d = (Hd)†b, (9)

where Hd denotes the direct-path loudspeaker array ATF in modal domain.

3 Active Room Compensation

The previous section reviews sectorial mode matching algorithm for 2.5D repro-
duction. This section introduces the active room compensation algorithm for
2.5D reproduction in modal domain.

We use a circular microphone array of Q microphones to encircle the control
region with the microphones uniformly placed. Figure 1 shows the system setup.

Fig. 1. Active room compensation system setup: the loudspeaker array and a plane
control region circled by equalizer microphone array.

Note that the aim here is to compensate the reverberation caused by the
loudspeaker signals. Based on Eq. (7) and given the fact that only the sectorial
modes are controlled, derive the sound field coefficients measured by equalizer
microphone array

βm(k) =
1

Qj|m|(krM )Y m
|m|

Q∑

q=1

P (xq, k)e−imφq , m = −M, . . . ,M, (10)
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where rM denotes the microphone array radius. In vector form, the measured
sound field coefficients are constituted by direct-path modes and reverberant-
path modes

β = βd + βr, (11)

The modal domain sound field coefficients can also be expressed as the loud-
speaker driving signals and the corresponding ATF coefficients

β = Γd = Γdd + Γrd, (12)

where Γ = [γ1, . . . ,γL], and γl = [γ−M
|M | (l, k), . . . , γM

|M |(l, k)]T which represent the
ATF coefficients matrix. The ATF coefficients matrix is also decomposed into
the direct path and reverberant path, that is Γ = Γd + Γr.

Then, the compensation problem is formulated as introducing the compen-
sation signals δd at the loudspeakers to minimize the reverberant-path modes,
i.e.,

min ‖βr‖ = ‖β − βd‖
= ‖Γ(d + δd) − Γdd‖
= ‖(Γd + Γr)δd + Γrd‖ (13)

Thus, by solving (13) in the least-squares approach, the compensation signals
at the loudspeakers for eliminating reverberation is given by

δd = −(Γd + Γr)†(β − Γdd), (14)

where the measured sound field coefficients β, the loudspeaker driving signals d
for direct path (or free-field) propagation Γd can be accessed straightforwardly.
The reverberant path ATF coefficients are obtained in an adaptive manner as
addressed in [9].

4 Evaluation

This section describes the simulation based experimental setup and performance
of the proposed room compensation algorithm.

4.1 Simulation Results

Consider a 2D reverberant room of size 2 m × 2 m. Simulate reverberant envi-
ronment by image source method [14]: the wall reflection is 0.8 (the ceiling and
floor are perfectly-absorbing) and the image depth of 7. Control region circled
by equalizer microphone array is centred at (1 m, 1 m) with the radius of 0.25 m.
The loudspeaker array is uniformly placed on the circle of 1 m radius. Note that
the number of loudspeakers and microphones are both 39, which satisfies the
mode truncation requirement M = �ekR/2� + 1 [13].
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We simulate reproduction of two kinds of narrowband sources, i.e., plane
wave and cylindrical wave, and a broadband source. For the narrowband cases,
the plane wave source is of 3 kHz frequency, incident from φv = π/3 and the
cylindrical wave source is of 3 kHz frequency, locating at rv =1.5 m, φv = π/3
away from the system center. For the broadband cases, the cylindrical wave
source is of 3 kHz bandwidth: frequencies 100 Hz to 3 kHz, and the location is as
same as narrowband cylindrical wave source. Figure 2 and Fig. 3 show the com-
pensation performance of narrowband sources, where the desired, reverberant
and compensated sound fields are displayed in (a), (b), (c) respectively. Com-
pared with the reverberant sound fields in Fig. 2(b) and Fig. 3(b), compensation
is achieved within the whole reproduction region.

Fig. 2. Reproduction of a plane wave (frequency at 3 kHz, incident from φv = π/3) in
a 0.25 m control region circled by the asterisk

Fig. 3. Reproduction of a cylindrical wave (frequency at 3 kHz, locating at rv =1.5 m,
φv = π/3 away from the system center) in a 0.25 m control region circled by the asterisk

4.2 Evaluation of Results

The compensation performance is measured by the normalized equalization error
ε over the whole control region. The normalized equalization error is defined as
follows,

ε(w) = 10 log10

∫
R

|P (x, k) − Pd(x, k)|2dx
∫

R
|Pd(x, k)|2dx

(15)
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In this simulation, 40000 observation points are uniformly selected within the
reproduction region to approximate the integral.

In broadband case, set the number of loudspeakers as 45, which is slightly
more than the number of loudspeakers designed at the maximum frequency
3 kHz, other simulation settings are the same as in the examples of Fig. 2 and
Fig. 3. In Fig. 4, it demonstrates the normalized equalization error over 3 kHz
bandwidth, which shows that setting the number of the loudspeakers more than
the minimum requirement of certain frequency can achieve satisfying results. As
the frequency increases, the performance will gradually degrade.

Fig. 4. The normalized equalization error of cylindrical wave reproduction over 3 kHz
bandwidth frequency range.

5 Conclusion

In this paper, we propose an active compensation algorithm for 2.5D sound
field reproduction. Firstly, the sectorial mode matching method is used to derive
the loudspeaker driving signals assuming direct-path propagation between the
loudspeaker array and reproduction region. Then, based on sectorial mode, an
active compensation algorithm is introduced to compensate room reverberation.
From simulation results, it can proved that the proposed algorithm can achieve
effective room compensation over the whole reproduction region.
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Abstract. Underwater acoustic target recognition is the task of clas-
sifying targets using ship-radiated noise in the marine environment. It
is incredibly hard and complex for the complexity of the marine envi-
ronment. Before the popularization of deep learning, conventional tar-
get recognition methods are mainly based on the audio time-frequency
domain analysis. Different targets have obvious variation in some fre-
quency bands, which leads to the inability of traditional methods to
make full use of spectral information. In order to extremely extract the
information in each frequency bands, this paper proposes a novel Sub-
pretrained CNNs. For each frequency band in the spectrogram, a CNN
classifier is trained on the training set. Finally, the features extracted by
each CNN and the position embedding of the frequency band are con-
catenated as the input of the global classifier. Compare with state of the
art method, the paper achieves better performance. As the experimental
results show, the identification performance of UATR can be enhanced
by the Sub-pre-trained CNNs method.

Keywords: Convolutional Neural Networks · Audio classification ·
Underwater acoustic target recognition · Pre-training

1 Introduction

Underwater acoustic target recognition is the task of classifying targets using
ship-radiated noise in the marine environment. It is widely used for marine explo-
ration, marine biological surveys, and other research activities. It is incredibly
hard and complex for the complexity of the marine environment and the diversity
of underwater acoustic targets [1,2].

At present, various UATR methods based on machine learning have been
put forward. Commonly, we separate these methods into two kinds: approaches
based on artificial feature design and approaches based on automatic feature
extraction [1–4]. In general, the most effective method of UATR is based on
the characteristics of domain knowledge design, which heavily depends on the
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2021
X. Shao et al. (Eds.): CSMT 2020, LNEE 761, pp. 113–123, 2021.
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statistical model [1–3]. MFCC is a widely adopted feature in UATR and speech
recognition [3–13]. Nevertheless, the optimal feature of the acoustic target can
not be represented by MFCC [8]. To solve the shortcomings of MFCC, other
features have been presented. The GFCC was introduced into UATR by Lian
[9]. The crux in the process is how to extract the features of underwater acoustic
targets.

In recent years, as the solution based on deep learning has made great suc-
cesses in the field of speech recognition and image classification, people have
carried out in-depth research on improving the ability of underwater acoustic
target recognition. [14–19] in these studies, the solution based on deep learning
shows a strong ability to feature extraction. Compared with the shallow neural
network, the deep neural network can extract more abstract and higher-level
features from big data [21]. As one of the methods based on deep structure,
Deep Boltzmann Machine has better performance in learning and extracting
the features of ship radiated noise. Additionally, CNNs [23] are widely used in
UATR because of its advantage in processing images [24]. In [25], Yang et al.
used ADCNN to simulate the auditory system. Deep learning based methods
can extract more information compared with hand-engineering methods.

This paper proposed an Sub-pretrained CNNs based method which combines
multi-dimensional feature extracted by CNNs with the position encoding, as the
input of the global classifier using fully connected DNN. Firstly, we translate
original signals to time-frequency presentations as images. Then, we transform
the position of bands in the spectrogram to position encoding. After we con-
cat position encoding and multi-dimensional feature extracted by CNNs, global
classifier can recognition underwater targets using the input.

In the second section, the UATR method presented is introduced detailedly.
The specific content of the experimental setting is introduced in The third part.
The experimental results are addressed in the fourth section. The fifth part
summarizes the full paper.

2 Proposed Method

2.1 Framework

For most UATR methods, the process can be divided into feature extraction
stage and learning stage. The purpose of CNN is to adopt a deep hidden structure
in the perceived signal to produce a great feature presentation. The process of the
presented approach for UATR is presented in Fig. 1. As preprocess, we practice
STFT to get time-frequency representations of the original signals. Next, we
simply utilize each band of time-frequency representation to train each CNN
model in the training dataset and train some sub-pre-trained CNNs. The outputs
of the last layers of these CNNs can be considered as presentation of the band.
Then, we concat vectors as just one vector. Finally, we take the vector as the
input of global classifier, which will recognize the target.
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Fig. 1. The process of the presented UATR

2.2 Sub-pretrained CNNs

Spectrograms are 2D representations like an image comprising time and fre-
quency dimensions, although very distinct from the original images. There exists
an obvious diversification during the frequency dimension. As shown in Fig. 2,
in the spectrograms obtained, we observed a clear variation of the magnitude
of different frequency bands, particularly specific to every kind of target. For
instance, the “B” class owns more extra power in higher frequency bins; the “C”
class has more energy in mid-frequency bins and less energy in higher frequency
bins; for “E” class Background noise recordings, energy is well-distributed in
frequency bands. We utilize these observations to put forward Sub-pre-trained
CNNs, which is talked about in the accompanying.

Fig. 2. Time-frequency presentation

To extremely extract the information in each frequency band and fully take
advantage of variation of the magnitude of different frequency bands, we propose
the Sub-pretrained CNNs method. The process of this method can be illustrated
in Fig. 3. Firstly, we extract the spectrogram for the N samples and perform
normalization. Then we split the spectrogram into several bands. It takes spec-
trogram to F*T dimension, bands size is the number of bands. These bands are
independently inputted into 2 conv-layers. Kernel-size is set (5, 5), which has
large receptive field. After conv-layer, sigmoid activation and max-pooling fol-
low. Then, we flatten the output of CNNs and concat these vectors as just one
vector. Finally, to capture the global relations between frequency bands, we use
MLP as classifier to classify the input using diversified information.
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Fig. 3. Sub-pretrained CNNs

2.3 Position Encoding

Position and order of bands are the essential parts of any spectrogram. They
define the high and low frequency and thus the actual characteristics of an
acoustic target. Convolutional Neural Networks (CNNs) rarely take the order
of bands into account. They parse a spectrogram band by band in a sequential
manner. This will integrate the bands’ order.

This paper use the position encoding method proposed in Transfomer [26],
which is a simple yet efficient tool. Firstly, it is not just a number. Instead, it’s
a d-dimensional vector that incorporates information about a specific position
in a spectrogram. Secondly, this vector is not integrated into the classifier itself.
Instead, this vector is used to equip each word with information about its position
in a spectrogram. Basically, we enhance the classifier’s input to inject the order
of bands.

PE(pos) = sin(
pos

length
) (1)

2.4 Classifier

We test SVM, Decision Tree and MLP as classifier. The performance of classi-
fiers are shown in Sect. 4. The methods are implemented with scikit tools. The
principles of these algorithms are introduced as follows.

Support Vector Machine. SVM [27] is a very classical and commonly used
model. Because it has very good classification ability and strong interpretability,
it has a good effect on small samples. For linearly separable data, linear sup-
port vector machine strives to find a segmentation line to maximize the distance
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between positive and negative samples. When the data is approximately separa-
ble but not completely separable and not completely separable, there are a small
number of abnormal samples. Using soft margin maximization, we can fit a clas-
sifier that basically separates the samples but can not completely separate them.
When the data set can not be divided by the interval represented by the linear
function, someone put forward the kernel function to convert the original data
space where the training set samples exist toward a higher dimensional feature
space, formerly the data set converts separable. In order to train a nonlinear
classifier, the principle is shown in the figure. The common kernel functions are
Gaussian kernel and so on.

Decision Tree. Decision Tree [28] is a model that accords with human judgment
intuition and has strong explanation. After abstraction, the decision tree model
is generally more like a tree, so it is named decision tree. As shown in Fig. 4,
the segmentation part of the branches in this structure is to select a feature
in the sample features to segment the data set. The decision book belongs to
supervised learning.

Fig. 4. Two decision trees.

Multi-layer Perceptron. Perceptron (Perceptron) is the origin of deep learn-
ing. Through the weight w and the offset term b, it can map a multi-dimensional
input X to a binary value, through which a simple binary classification can be
achieved. Multilayer perceptrons are in the form of multiple functions. As shown
in Fig. 5, the multilayer perceptron is the superimposed multiple function of the
function represented by the perceptron, which is divided into input, output, con-
cealment and multiple perceptrons according to function and position. At the
same time, if each unit of the multilayer perceptron is linear, then any multi-
layer perceptron can be equivalent to a single layer perceptron. Therefore, the
multilayer perceptron is essentially the superposition of multiple nonlinear func-
tions. Finally, the model is used to measure the fitting degree of the training set,
and the variables in the model are taken as the loss function of the parameters.
Through the back propagation algorithm, a multi-layer perceptron can be fitted
on the training set.
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Fig. 5. Structure of Multi-layer Perceptron.

3 Experiments Setup

3.1 Experimental Datasets

The ship target dataset used in this paper is the ShipsEar [30] dataset recorded in
different regions of the Spanish coast from 2012 to 2013. The dataset has a total
of 90 records of 11 ship types within 15 s to 10 min. According to the original
labels of the dataset, they can be merged into 4 large groups in accordance with
the type of ship. Class and E class: background noise recordings, The detailed
division is shown in Table 1 below:

Table 1. ShipEar dataset details.

A Fishing boats.Trawlers.Mussel boats.Tugboats.Drafgers

B Motorboats.Pilot boats.Sailboats

C Passenger ferries

D Ocean liner.Ro-Ro vessels

E Background noise recordings

3.2 Training Setup

We choose 52,734 Hz as the target audio signal sampling rate, and a 90 ms
Hamming window as windowing function with a 50% overlap is used. The output
Mel spectrum is stored in a 3× 224× 224 image format for subsequent opera-
tions. In addition, we downsampled the experimental audio data. The window
length is 25 ms, the overlap length (Hop size) is 10 ms, the output spectrum is
96× 64, and the embedding code size is 128.

We implement Sub-pretrained CNNs in Pytorch. Most experiments have been
carried out with sklearn [31].
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3.3 Evaluation Indexes

We compare the predicted results of the model with the labels to obtain the num-
ber of TP, FP, TN, and FN in the evaluation. And for each experimental result,
the accuracy rate, recall rate, and F1 function are calculated separately to mea-
sure the experimental results comprehensively and accurately. These indicators
can be expressed by the following formula:

Accuracy =
TP

TP + FP + TN + FN
(2)

4 Experiments Results

4.1 Bands Size Setting

To find optimal Bands size, the experiment was designed. We set the optional
values of band size to 10, 20, 30, 40. In the contrast experiment, the classification
accuracy reaches the highest when band size equal to 20. Therefor, we set the
band size to 20 in the following experiments.

Fig. 6. The recognition accuracy with different bands size

4.2 Evaluation of Position Encoding

To illustrate the importance of position encoding, classification performance of
MLP with encoding and without are measured using the classification accuracy.
The comparison between MLP with position encoding and MLP without position
is shown in Fig. 7. It is clear that position encoding can introduce more structure
information in spectrogram, which contributes to improving the performance.
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Fig. 7. The comparison between MLP with position encoding and MLP without posi-
tion encoding

4.3 A Comparison of Three Kind of Classifiers

To find the optimal classifier, we compare three kinds of classifiers. As illus-
trated in Fig. 8, MLP classifier has the highest accuracy over Decision Tree and
SVM. In contrast recognition, it is clear that the MLP classifier is more suitable
for underwater target recognition. We speculate that this might be due to the
advantage of MLP in classification.

Fig. 8. The recognition accuracy with different bands size



Recognition of Underwater Acoustic Target Using Sub-pretrained CNNs 121

4.4 Evaluation of Sub-pretrained CNNs with Position Encoding

Considering that methods with position encoding can achieve better performance
than without, we train a Sub-pretrained CNNs with position encoding and using
MLP as the classifier. As a result, accuracy is 91.97%. This best result shows in
the confusion matrix. Table 3 shows the confusion matrix of the proposed UATR
methods obtained from testing data. Compare with state of the art method, the
paper achieves better performance (Table 2).

Table 2. Comparison of performance between Pretrained CNNs and DBM based.

Method Accuracy

Sub-pretrained CNNs with position encoding 91.97%

DBM [22] 90.70%

VGGISH [32] 89.22%

Table 3. Confusion matrix of the proposed model.

True predicted A B C D E

A 0.92 0.01 0.02 0.01 0.00

B 0.01 0.85 0.03 0.02 0.00

C 0.02 0.00 0.93 0.01 0.00

D 0.01 0.03 0.00 0.92 0.01

E 0.00 0.01 0.00 0.00 0.98

5 Conclusions

In the work, a new UATR algorithm based on regional pre-training convolution
neural network is introduced, in order to fully extract the information contained
in different frequency bands in the spectrum. The output of the last hidden
layer of each sub-network is spliced and connected with the position vector
as the input of the total classifier, and then the general classifier is trained.
Compare with state of the normal training convolution neural network model,
the proposed UATR algorithm achieves better performance, the sub-pre-trained
CNN is introduced to learn more information, and the classification accuracy is
91.97%. This method proposes an innovative model training method, which can
be effectively applied to UATR tasks, also give inspiration to other similar tasks.

Acknowledgement. This work was supported by National Key R&D Program of
China (2019YFC1711800) and NSFC (61671156).



122 A. Pan et al.

References

1. Yang, H., Shen, S., Yao, X., Sheng, M., Wang, C.: Competitive deep-belief networks
for underwater acoustic target recognition. Sensors 18, 952 (2018)

2. Wang, X., Jiao, J., Yin, J., Zhao, W., Han, X., Sun, B.: Underwater sonar image
classification using adaptive weights convolutional neural network. Appl. Acoust.
146, 145–154 (2018)

3. Wang, W., Li, S., Yang, J., Liu, Z., Zhou, W.: Feature extraction of underwater
target in auditory sensation area based on MFCC. In: 2016 IEEE/OES China
Ocean Acoustics (COA), pp. 1–6. IEEE (2016)

4. Yue, H., Zhang, L., Wang, D., Wang, Y., Lu, Z.: The classification of underwa-
ter acoustic targets based on deep learning methods. In: 2017 2nd International
Conference on Control, Automation and Artificial Intelligence (CAAI 2017), pp.
526–529. Atlantis Press (2017)

5. Lu, Z., Zhang, X., Zhu, J.: Feature extraction of ship-radiated noise based on mel
frequency cepstrum coefficients. Ship Sci. Technol. 26(2), 51–54 (2004)

6. Ke, X., Yuan, F., Cheng, E.: Underwater acoustic target recognition based on
supervised feature-separation algorithm. Sensors 18(12), 4318 (2018)

7. Zhang, L., Wu, D., Han, X., Zhu, Z.: Feature extraction of underwater target signal
using mel frequency cepstrum coefficients based on acoustic vector sensor. J. Sens.
2016, 1–11 (2016)

8. Sharma, R., Vignolo, L., Schlotthauer, G., Colominas, M., Rufifiner, H.L.,
Prasanna, S.: Empirical mode decomposition for adaptive AM-FM analysis of
speech: a review. Speech Commun. 88, 39–64 (2017)

9. Lian, Z., Xu, K., Wan, J., Li, G.: Underwater acoustic target classification based on
modified GFCC features. In: Proceedings of the IEEE 2nd Advanced Information
Technology, Electronic and Automation Control Conference (IAEAC), Chongqing,
China, 25–26 March 2017, pp. 258–262 (2017)

10. Lim, T., Bae, K., Hwang, C., Lee, H.: Underwater transient signal classification
using binary pattern image of MFCC and neural network. IEICE Trans. Fundam.
Electron. Commun. Comput. Sci. E91A, 772–774 (2008)

11. Jankowski Jr., C., Quatieri, T., Reynolds, D.: Measuring fine structure in speech:
Application to speaker identification. In: Proceedings of the International Confer-
ence on Acoustics, Speech, and Signal Processing, Detroit, MI, USA, 9–12 May
1995, pp. 325–328. IEEE, Piscataway (1995)

12. Guo, Y., Gas, B.: Underwater transient and non transient signals classification
using predictive neural networks. In: Proceedings of the 2009 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems, St. Louis, MO, USA, 10–15
October 2009, pp. 2283–2288 (2009)

13. Hu, G., Wang, K., Peng, Y., Qiu, M., Shi, J., Liu, L.: Deep learning methods for
underwater target feature extraction and recognition. Comput. Intell. Neurosci.
2018, 1214301 (2018)

14. Jiang, Y., Wang, D.L., Liu, R.S., Feng, Z.M.: Binaural classification for reverberant
speech segregation using deep neural networks. IEEE/ACM Trans. Audio Speech
Lang. Process. 22(12), 2112–2121 (2014)

15. Lee, H., Yan, L., Pham, P., Ng, A.Y.: Unsupervised feature learning for audio
classification using convolutional deep belief networks. In: Proceedings of the 23rd
Annual Conference on Neural Information Processing Systems (NIPS 2009), vol.
9, pp. 1096–1104, December 2009



Recognition of Underwater Acoustic Target Using Sub-pretrained CNNs 123

16. Jaitly, N., Hinton, G.: Learning a better representation of speech soundwaves using
restricted Boltzmann machines. In: Proceedings of the 36th IEEE International
Conference on Acoustics, Speech, and Signal Processing, (ICASSP 2011), pp. 5884–
5887, May 2011

17. Palaz, D., Collobert, R., Magimai-Doss, M.: Estimating phoneme class conditional
probabilities from raw speech signal using convolutional neural networks. In: Pro-
ceedings of the 14th Annual Conference of the International Speech Communica-
tion Association, INTERSPEECH 2013, pp. 1766–1770, August 2013

18. Huang, G., Huang, G.-B., Song, S., You, K.: Trends in extreme learning machines:
a review. Neural Netw. 61, 32–48 (2015)

19. Abdel-Hamid, O., Mohamed, A.-R., Jiang, H., Deng, L., Penn, G., Yu, D.: Convo-
lutional neural networks for speech recognition. IEEE Trans. Audio Speech Lang.
Process. 22(10), 1533–1545 (2014)

20. Bisot, V., Serizel, R., Essid, S., et al.: Acoustic scene classification with matrix
factorization for unsupervised feature learning. In: IEEE International Conference
on Acoustics. IEEE (2016)

21. Kamal, S., Mohammed, S.K., Pillai, P.R.S., Supriya, M.H.: Deep learning archi-
tectures for underwater target recognition. In: Proceedings of Ocean Electronics
(SYMPOL), October 2013, pp. 48–54 (2013)

22. Hinton, G., et al.: Deep neural networks for acoustic modeling in speech recogni-
tion: the shared views of four research groups. IEEE Signal Process. Mag. 29(6),
82–97 (2012)

23. Deng, L., Abdel-Hamid, O., Yu, D.: A deep convolutional neural network using
heterogeneous pooling for trading acoustic invariance with phonetic confusion. In:
Proceedings of IEEE International Conference on Acoustics, Speech, and Signal
Processing (ICASSP), May 2013, pp. 6669–6673 (2013)

24. Swietojanski, P., Ghoshal, A., Renals, S.: Convolutional neural networks for distant
speech recognition. IEEE Signal Process. Lett. 21(9), 1120–1124 (2014)

25. Yang, H., Li, J., Shen, S., Xu, G.: A deep convolutional neural network inspired by
auditory perception for underwater acoustic target recognition. Sensors 19, 1104
(2019)

26. Ott, M., Edunov, S., Baevski, A., et al.: FAIRSEQ: a Fast, extensible toolkit for
sequence modeling. In: Proceedings of the 2019 Conference of the North (2019)

27. Suykens, J.A.K., Vandewalle, J.: Least squares support vector machine classifiers.
Neural Process. Lett. 9(3), 293–300 (1999)

28. Zhou, B., Cao, C., Li, C., et al.: Hybrid islanding detection method based on
decision tree and positive feedback for distributed generations. IET Gen. Transm.
Distrib. 9, 1819–1825 (2015)

29. Yue, H., Zhang, L., Wang, D., Wang, Y., Lu, Z.: The classification of underwater
acoustic targets based on deep learning methods. Adv. Intell. Syst. Res. 134, 526–
529 (2017)

30. Santos-Domı́nguez, D., Torres-Guijarro, S., Cardenal-López, A., et al.: Shipsear:
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Abstract. Most of the research on acoustic scene classification (ASC)
focuses on classification problem with only known scene classes. In prac-
tice, scene classification problem to be solved generally is based on an
open set, which contains unknown scenes. This paper proposes a two-
stage method that solves the open set problem on ASC. The proposed
system decomposes open set ASC problem into two stages. To mitigate
the impact of unknown scenes on the subsequent recognition process of
known scenes, the first stage is to identify unknown scenes. The second
stage classifies defined acoustic scenes. In this case, the threshold selec-
tion strategy we proposed further sorts out unknown scenes that were not
identified in the previous stage. Experiments show that the method pro-
posed in this paper can effectively identify unknown scenes and classify
known scenes, by segmenting the open set acoustic scene classification
task and selecting an appropriate judgment threshold. On the develop-
ment dataset released by DCASE Challenge 2019 Task 1C, the model
proposed outperforms the first place.

Keywords: Acoustic scene classification · Open set · Two-stage
classification · Threshold selection strategy

1 Introduction

As an environmental identification problem, acoustic scene classification (ASC)
attracts growing attention [2]. ASC processes the audio signal and then extracts
feature information, and the scene is identified by event or semantic information
contained in feature representation [16]. ASC is widely used in smart wearable
devices, robots, home surveillance and security systems, environmental noise
monitoring.

The challenge of Detection and Classification of Acoustic Scenes and Events
(DCASE) [15] provides a series of the open-source database and evaluation
methods which develop ASC. In recent years, Convolutional Neural Networks
(CNNs), Recurrent Neural Networks (RNNs) and Convolutional Recurrent Neu-
ral Networks (CRNNs) are recognised as effective models for ASC problems and
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2021
X. Shao et al. (Eds.): CSMT 2020, LNEE 761, pp. 124–133, 2021.
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are generally superior to traditional machine learning methods in performance
[1,17,22]. However, the research of ASC is mainly focused on the closed set, that
is, the scene classes used in the testing phase and the training phase are same. In
practical scene analysis application, undefined scene classes other than limited
known scene classes are often encountered. Thus, open set recognition task [4–6]
which needs to additionally identify the undefined scenes as an unknown class
is more useful despite higher complexity.

This paper focuses on solving open set ASC problem. The significant differ-
ences in data composition between open set and closed set make traditional ASC
models no longer applicable to open set ASC. To the best of our knowledge, the
research based on open set classification tasks is mainly based on one-stage classi-
fication methods [7,8,18]. Daniele et al. [3] firstly proposed a solution to the open
set problem in the ASC field. They not only use Support Vector Data Descrip-
tion (SVDD) classifier to learn a hypersphere from known scenes to distinguish
unknown class but also introduce a new protocol and indicator for evaluating
the open set ASC task. The introduction of this question has attracted some
scholars to study.

The DCASE Challenge 2019 Task 1C further facilitates extensive research in
open set ASC. These solutions proposed by Wilkinghoff et al. [20] and Lehner
et al. [13] classify known classes and separate unknown classes only by learning
known classes in a single classification system; the difference is that the former
used Deep Convolutional Auto-Encoders (DCAEs) as classification model and
the latter used the improved ResNet variant [11,12] as the classifier. These one-
stage classification methods [13,20] in which unknown classes do not participate
in training phase pay more attention to the inter-class differences of known scenes
but are not necessarily useful for separating unknown scene from known scenes. A
one-stage classification method proposed by Zhu et al. [23] is to put the unknown
class into training phase and designs an K +1 classifier that treats the unknown
class like K known classes. This method uses CRNN-Attention mechanism model
[19,21] as the classifier and achieves the first place of the DCASE Challenge
2019 Task 1C. There is a problem with this method. Although the unknown
classes participate in training process, the operation where unknown classes are
unreasonably regarded as a known scene is likely to ignore the difference between
the unknown class and the entire set of known classes in the distribution of the
feature space.

To avoid the problems of the two types of methods mentioned above [14,
20,23], this paper proposes a solution for open set ASC. Unknown classes are
no longer considered to be an equal role for K known classes in this paper.
Consequently, this paper designs a two-stage classification learning system for
open set ASC to better solve the open set classification problem. The first stage
is used to distinguish unknown classes from the entire set of known classes,
reducing the impact on the next stage. The second stage is used to further divide
the known classes into defined scene labels and separate the remaining unknown
classes which not identified during first one, as well as we proposed a threshold
selection strategy to assist in identification of unknown classes. Experiments
show that our proposed two-stage method which identifies unknown classes and



126 C. Ren and S. Li

classifies known classes more precisely than traditional one-stage methods is an
effective open set ASC solution.

The remainder of this paper is organized as follows: Sect. 2 describes the
two-stage classification method for open set ASC presented in this paper; Sect. 3
introduces experimental setup and results in analysis, and Sect. 4 summarizes
current works and discusses future research directions.

2 Proposed Two-Stage Classification Model

There are two problems to be solved in the open set ASC task, one is to identify
unknown scene, and the other is to classify known scenes. Therefore, in this
section, a two-stage classification learning model for open set ASC is proposed.
The system divided the open set ASC question into two parts and resolves them
in two stages. This section describes in detail how the two-stage ASC system (as
shown in Fig. 1) proposed for the open set completes the classification task.

2.1 Two-Stage Classification Model—The First Stage

The two-stage classification system for open set ASC is proposed in this paper
(as shown in Fig. 1). The main role of the first stage is to separate the same or
similar unknown class encountered in training phase, these separated unknown
class no longer participates in the second stage testing phase, reducing the impact
on the second stage classification.

There are two reasons for unknown class to participate in the first stage train-
ing phase. One is to make the model not overemphasize discriminative features

Fig. 1. A two-stage open set ASC system proposed is consist of the first stage and
the second stage classification models. The output O2 is the sum of K known classes
obtained by the second stage classification model and unknown class obtained by the
first stage and the second stage classification models.
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of the known classes by adding the unknown class samples; the other is to fully
consider the situation that may occur during testing phase because it does not
know in advance whether the sub-scenes contained in the unknown class of the
testing phase have already been encountered in the training phase.

To classify the scenes into the known class or unknown class, CNNs which
performed well in ASC task is used as the first stage classification model [17,22].
After decomposing the original open set ASC task into two problems solved
in two stages respectively, the task complexity of the first stage is significantly
reduced, then the requirement for model complexity is also reduced. Thus, the
first stage task can be accomplished using a CNN classification model with shal-
low structure. The CNNs proposed in this paper is composed of four convolution
layers followed by maxpooling layer.

In the first stage (Fig. 1 upper part), the features Xn which represented by
the log-mel spectrogram of the scene audio signal xn is taken as input, where
n represents the index of audio. The advanced feature representation of the
original input Xn is extracted by the shallow CNNs with four layers. The dis-
tinctive information of the features of the known class and the unknown class
that appeared in the training phase is learned and used as a classification basis.
The global average pooling (GAP) is used to convert the feature map of the
last layer of CNNs into feature points by averaging pooling. Thus, feature points
with significant visibility in CNNs are reserved by the GAP. The output pn of
the neural network is a predicted probability that indicates whether the sample
belongs to the unknown class. To this end, the model is optimized by updating
the weights during backpropagation and minimizing the binary cross-entropy
loss:

l = −
N∑

n=1

((ynlogpn) + (1 − yn)log(1 − pn)) (1)

where N is the number of samples in training phase, yn represents the estimated
label of the nth sample. Finally, the samples of the first stage are expected to
be classified as known class or unknown class.

2.2 Two-Stage Classification Model—The Second Stage

Compared with the first stage, the second stage needs to detailly classify the
complex known scenes into K defined classes. From the perspective of task com-
plexity, the second stage is more complicated, which may result in shallow CNNs
does not necessarily complete the task well. Since CRNNs was proposed by [1],
there has been a lot of work to prove its excellent performance on ASC. There-
fore, we use it as the classification model in the second stage [21].

As shown in the lower part of Fig. 1, the features Xk
mn of the known scenes

xk
mn is used as input to CRNNs, where m is denoted as the index of audio during

the second stage. Among CRNNs, CNNs which acts as advanced features extrac-
tor passed the abstracted advanced feature information into bi-directional RNN
(Bi-RNN). The information in features that helps to classify scenes is not only
independent, but it is also sometimes related to its occurrence time. Therefore,
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considering the need to maintain the temporal resolution of the sequence gen-
erated by Bi-RNN, the pooling operation only occurs on the frequency axis. In
this way, Bi-RNN learned the contextual timing relationship of the feature and
encode it. Bi-RNN regarded as another advanced feature extractor, but different
from CNNs mode.

In the first stage, some unknown scenes used for the testing phase that differs
greatly from the trained unknown scenes in the feature space may be missed.
Since the classifier in the second stage is designed for known scenes, it could be
assumed that the probability of unknown scenes is relatively low. Therefore, a
judgment threshold h is needed to determine the scene with an output probability
below h as an unknown class. To make the threshold at this stage divide the
known and unknown classes more scientifically, we propose a threshold selection
strategy. If Muk which is the number of unknown samples in the testing phase is
known, the choice of threshold hs should make predicted probability of at least
Muk testing samples lower than h. When Muk is unknown, but the relationship
between the accuracy of the unknown classes and the accuracy of the system is
known as:

ACC = (1 − β) ∗ ACCkn + β ∗ ACCuk (2)

Then the value of the threshold should result in the predicted probability of
β ∗ Nt samples being lower than h, where β is a weight coefficient which less
than 1 but over 0 and Nt is the number of testing samples.

The weighted average operation proposed by [21] is used in the second stage
to obtain a suitable probability output so that the selected threshold h separates
the unknown class which is not identified in the first stage. The weighted average
operation is following,

O′
2 =

∑T−1
t=0 O′(t)

∑T−1
t=0 Zsoft(t)

(3)

where
O′(t) = Zsoft(t) � Zsigm(t) (4)

T is the frame-level resolution and O′ is the element-wise multiplication of the
outputs of two fully connected layers whose activation function is softmax Zsoft

and sigmoid Zsigm.
Then, the output corresponding to the first stage is O1{Okn

1 ;Ouk
1 }, the output

of the second stage is O′
2, and the further output after the threshold a judgment

is O2{Okn
2 ;Ouk

2 }. The output O composition of our proposed system should be
the combination of the sum of the unknown class identified in the first stage and
the second stage, and the classification results of the K known classes in the
second stage as following,

Output : O = (Okn
2 ;Ouk

1

⋃
Ouk

2 ) (5)
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3 Experiments

3.1 Dataset and Experimental Setup

This paper verified the two-stage classification system for open set ASC pre-
sented on the development dataset published by the Task 1C of DCASE 2019
Challenge. The dataset contains known scenes and unknown scenes; the former is
10 scenes recorded in 10 different European cities, each recording approximately
1440 audio samples; the latter consists of 4 different sub-scenes, the number of
audio samples recorded in each scene is about 480. The duration of the audio
samples is 10 s.

The ratio of the training set and the testing set is 3:1. 10 visible sub-scenes
of known class appear in both training and testing sets. There are two possible
situations where invisible sub-scenes of unknown class in the testing set may
be completely different from sub-scenes of unknown class in the training set
or maybe partial duplication. To demonstrate the effectiveness of the proposed
system, we do a set of comparative experiments. The parameter setups in the
experiment are as follows.

Figure 2 shows the composition of the classification models in the first and
second stages. Log-mel spectrogram is used as the features of audio samples,
with 640 frames per chunk by 128 mel bins, and then each chunk is evenly
divided into 5 segments, each segment has 128 frames. Batch normalization [9]
is applied after each convolutional layer. During the experiment, dropout was
added to avoid over-fitting of the proposed model, the judgment threshold was
chosen to be 0.2 by threshold selection strategy, and the Adam optimizer with
learning rate which fixed at 0.001 is used.

3.2 Results and Analysis

The number of correctly classified audio samples in the total number of audio
samples called classification accuracy is used as the score of the open set ASC.
Accuracy is calculated as the weighted average of the known classes and unknown
class, as shown below:

ACCweighted = 0.5 ∗ ACCkn + 0.5 ∗ ACCuk (6)

where known classes accuracy ACCkn is the average of the class-wise accuracy.
In Table 1, this experiment compares the proposed model with two typical

one-stage models on the development dataset divided by the Task 1C of DCASE
2019 Challenge. These two typical models are the Baseline and the best model
[23] published on DCASE 2019 Challenge, respectively. Among them, the 10
classification model based on CNNs is adopted by the Baseline, with 0.5 as
the judgment threshold; the 11 classifications based on CRNN-Attention model
[19] is adopted by the model [23]. And our proposed two-stage classification
learning system achieves better results with nearly 5% improvement over the best
model by identifying unknown classes in the first stage, classifying known classes
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Fig. 2. The models of the first and second stages. ‘P’ represents pooling, ‘BN’ is Batch
Normalization.

unknown classes that are difficult in the previous stage in the second stage.
Both the average accuracy of known classes and the accuracy of the unknown
class are higher than the one-stage classification methods, which proves that our
proposed two-stage method is more reasonable and has better performance for
unknown classes recognition and known classes classification. To further compare
the difference in the class-wise accuracy between the system proposed in this
paper and the other two systems, Table 1 shows the comparison of the class-wise
average accuracy of scene classes on these three models. It can be seen that the
proposed system has the highest accuracy in multiple scene classes, but it does
not perform well in individual classes such as “Airport”, “Street pedestrian”,
and “Tram”. One possible reason is that these low-accuracy scenes are similar
to other scenes in the feature space, causing the system to misjudge.

Compared with several other models that use a fixed empirical threshold, the
model we proposed verifies the rationality of the threshold selection strategy. The
model [10] and Baseline in Table 2 utilize a traditional threshold of 0.5 to identify
samples with prediction probability lower than 0.5 as “Unknown”. This choice
leads to the randomness of results, and it is difficult to ensure that 0.5 is the
appropriate probability boundary between the known classes and the unknown
classes. These models do not take into account the probability of prediction and
data composition together. The threshold of model [23] is selected as 0.4, and
the same problem exists. We choose the threshold as 0.2 based on the threshold
selection mechanism proposed in this paper.

Since the number of samples of the unknown class in the testing phase is
345, accounting for nearly 7.6% of the testing sample. 0.2 is selected as the
threshold according to the threshold selection strategy so that the prediction
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Table 1. The accuracy (%) of the corresponding model. Among them, “Known” rep-
resents the average accuracy of 10 known scene classes, “Unknown” represents the
accuracy of unknown scene classes, and “Overall” is the accuracy calculated by For-
mula (6).

Accuracy Model

Baseline Zhu et al. [23] Our model

Airport 44.2 65.3 41.1

Shopping mall 50.9 26.3 71.7

Metro station 41.3 42.1 56.6

Public square 34.7 39.8 45.0

Metro 51.5 42.3 51.7

Tram 60.7 57.6 55.1

Street pedestrian 47.5 37.3 46.9

Street traffic 78.4 74.4 80.4

Bus 59.3 52.3 53.7

Park 74 80.8 64.8

Known 54.3 51.8 56.7

Unknown 43.1 75.9 80.3

Overall 48.7 63.9 68.5

Table 2. The relationship between selected threshold and accuracy (%) of the corre-
sponding model. “Unknown” represents the accuracy of unknown scene classes, and
“Overall” represents the accuracy calculated by Formula (6).

Model Threshold Unknown Overall

Baseline 0.5 43.1 48.7

Kong et al. [10] 0.5 48.1 53.1

Zhu et al. [23] 0.4 75.9 63.9

Our model 0.2 80.3 68.5

probability of about 7.5%–8% testing samples is lower than 0.2. As is seen from
the above Table 2, the method we proposed has the highest accuracy of the
unknown class: 80.3%, which has an obvious advantage than other methods. The
above scheme is obtained when the number of “Unknown” samples is known.
We verified the rationality of the proposed threshold selection mechanism on the
dataset of private Kaggle leaderboard when the number of “Unknown” samples
is unknown. Therefore, according to the formula (6), we choose a threshold of
0.4, which makes about half of the testing samples’ prediction probability is
lower than the threshold. Under the threshold selection strategy, we achieved
the best results of the private Kaggle leaderboard.
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4 Conclusion

This paper proposes a two-stage classification learning solution for open set ASC,
which achieves 68.5% by using the proposed model on the development dataset of
the DCASE 2019 for open set ASC, which is better than the optimal performance
released by DCASE Challenge 2019 Task 1C. The experiment proves that the
proposed model is really useful. In the future, we will explore how to improve
the accuracy of the known classes while ensuring the unknown class accuracy,
and balance the accuracy of known classes and unknown class. Besides, we will
also study the less dependent experience-based solutions for open set ASC, and
the feature representation methods that can more clearly distinguish different
scenes.
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Abstract. Speech dereverberation is an important preprocessing step in
speech signal processing, aims at improving the sound quality by cancel-
ing or suppressing the effect of reverb. This paper provides an overview
of speech dereverberation algorithms, showing the development of speech
dereverberation technology. With the categories and summaries of exist-
ing speech dereverberation algorithms, our goal is to analyze each type
of algorithms’ advantages and disadvantages and provide the necessary
background to the readers who are going to devote themselves to making
progress in this area. Finally, the overview will provide some future work
directions.

Keywords: Dereverberation · Speech dereverberation · Room impulse
response

1 Introduction

With the development of 5G mobile communication and the popularization of
intelligent voice control wireless mobile wearable devices, the demand for long-
distance high-accuracy speech recognition technology is increasing rapidly. How-
ever, reverberation is built up in the indoor environment, particularly disruptive
for speech perception, causing significant performance degradation in speech
recognition. The speech signal can be effectively improved after the dereverber-
ation. For example, the signal-to-interference ratio (SIR) in preference [1] has
increased by 60 dB; and the speech recognition word error rate (WER) in pref-
erence [2] is reduced from 49.2% to 9.0%.These indicate a good solution to the
dereverberation will benefit many speech signal processing technologies.

In this paper, Sect. 2 introduces the mathematical model of the reverbera-
tion signal; Sect. 3 introduces the reverberation cancellation algorithm; Sect. 4
introduces the reverberation suppression algorithm; Sect. 5 introduces other com-
prehensive algorithms; Sect. 6 elaborates the future research directions and give
a conclusion.

2 Mathematical Model of Reverberation Signal

The reverberant speech is calculated by convolution of the clean speech and a
room impulse response (RIR):

y(n) = h(n)∗x(n) (1)
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2021
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where y(n) is the reverberant speech, h(n) is the RIR function, and x(n) is the
dean speech. Eliminating the influence of convolution is the main task of speech
dereverberation.

According to whether RIR needs to be estimated, algorithms using the sta-
tistical acoustic model can be divided into two categories: reverberation cancel-
lation and reverberation suppression, they are discussed separately in the next
two chapters.

Fig. 1. A reverb signal is convoluted by clean speech signal and the RIR

3 Reverberation Cancellation

The famous multiple-input/output inverse-filtering theorem (MINT) method
proposed in 1988 [3] proved the feasibility of reverberation cancellation. Under
the premise of known RIR, deconvolution could be performed through an inverse
filter, and the clean speech signal can be restored without distortion. However,
since RIR is very sensitive to the environment, accurate RIR cannot be mea-
sured in real time as a known condition in practical. To solve this problem, blind
deconvolution methods and complex cepstrum filters are used.
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3.1 Blind Deconvolution

In blind deconvolution algorithms, some information is used to estimate RIR and
achieve dereverberation using an adaptive inverse filter. A classical method is
using the correlation matrix between multi-channel microphone signals[4]. Based
on this, preference [5] studied the process of introducing deviations when using
different window functions to truncate the filter impulse response. With the cost
of 63% increased computational complexity, the signal-to-noise ratio (SNR) can
be increased from −0.6 dB to 9.9 dB after the process. Preference [6] taking the
noise statistical information into account, proposed regularized partial MINT for
joint dereverberation and noise reduction (RPM-DNR) algorithm, a weighting
parameter is designed to balance the effect between dereverberation and noise
reduction.

Using a blind deconvolution can reduce early reflection, but the subjective
sense of hearing has not improved much because the human ear cannot detect
the sound delay below 100ms. More studies make the blind deconvolution as
one step in dereverberation, such as the two-stage dereverberation algorithm
introduced below. In order to estimate RIR more accurately, more statistical
characteristics of reverb and RIR need to be researched.

3.2 Complex Cepstrum

Fig. 2. Canonic Form for Homomorphic Convolution

The blind deconvolution discussed above is a time-domain algorithm. In 1975,
a complex cepstrum domain algorithm was proposed [7]. The complex cepstrum
of the signal x(n) is expressed as:

x̂(t) = F−1{logF [x(t)]} (2)

Complex cepstrum is a convolutional homomorphic system that can convert
convolution in the time domain into addition operation in complex cepstrum
domain. The conversion to the complex cepstrum of Eq. (1) can be described as:

ŷ(n) = ĥ(n) + x̂(n) (3)

The complex cepstrum of reverberate signal ŷ(n) is a bounded, infinite atten-
uate sequence. The nonlinear process of log operation causes |ŷ(n)| to attenuate
rapidly with the increase of n. As the distribution of complex cepstrum x̂(n) of
the clean speech is dose to the zero points, while the complex cepstrum ĥ(n) of
the RIR is mainly distributed away from the zero points, the effect of ĥ(n) can be
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eliminated by a low-pass filter in the complex cepstrum domain. By converting
the deconvolution operation into subtraction, the calculation complexity can be
greatly reduced.

The complex cepstrum algorithm is suitable for clean speech and RIR are far
away in the complex cepstrum domain. However, as a nonlinear transformation,
converting the signal to the complex cepstrum domain filtering will cause some
frequency distortion.

In preference [8], researchers use the mean subtraction of complex cepstrum
and then discuss the effect of different window functions on the speech frame.
Although it is simple to implement, it also has a phase ambiguity problem, which
directly points out two difficulties that the traditional complex cepstrum domain
dereverberation have:

1. It is difficult to find the best window function type, and the parameters of
complex cepstrum domain filters are hard to determine;

2. The RIR is usually not the minimum phase in practical [9], which will cause
phase ambiguity in the complex cepstrum. In this condition, the log phase of
the two complex numbers’ product does not satisfy the additive property, so
it is not easy to reconstruct the original signal.

To solve the first problem, preference [10] studied and determined the param-
eters such as the maximum cut off point of the low pass filter in the complex
cepstrum domain, the transition bandwidth, and the curve characteristics of the
transition band. The maximum cut off point of the low pass filter is irrelevant
to the reverberation time. Adding a Gaussian window before complex cepstrum
domain filtering can improve the dereverberation effect. For the second problem,
the researchers used the minimum phase decomposition method to optimize. A
causal minimum phase LTI system with a rational transfer function H(z) is sta-
ble, which means all poles of H(z) are inside the unit circle of the z-plane. To be
implemented in a practical situation, we need to convert the system to a mini-
mum phase with a stable solution in complex cepstrum. Any rational function
system can be expressed as a combination of a minimum phase part H(z) and
an all-pass part Hap(z) [11]:

H(z) = Hmin(z)Hap(z) (4)

By decomposing the signal into these two components, preference [12] applied
a complex cepstrum filter to the minimum phase component, as well as recon-
structed the signal with an all-pass component, which solved the two major prob-
lems mentioned above. The all-pass component appears as the first prominent
positive peak in the complex cepstrum domain, which can accurately maintain
the phase information. That is, the phase information will not be lost but can be
stored in the all-pass component [13]. In fact, the spectral phase’s processing has
been largely neglected in speech signal processing during the past decades until
recently, more studies have found that there is actually much useful information
in phase, and the use of this information can promote many fields of speech
processing [14,15]. Therefore, the work direction for the future should increase
the use of phase information.
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Fig. 3. The development of dereverberation algorithm using complex cepstrum

4 Reverberation Suppression

These algorithms using speech characteristics to analyze the effect of reverb,
process the speech, suppressing the reverb effect by relevant features of RIR.
Although suppression cannot eliminate the reverb completely, it still can improve
the SNR. Reverberation suppression is more widely used than reverberation
cancellation in practical because it is easier to implement for avoiding estimating
the time-varying RIR. Algorithms based on the linear prediction (LP) residual
and spectral subtraction processing belong to this category.

4.1 Linear Prediction Residual

LP residual signal processing is a speech enhancement technology that can effec-
tively remove additive noise. The premise of applying LP to speech dereverber-
ation is to assume that the reverb is mainly limited to prediction residuals and
has little effect on coefficients of linear predictive coding (LPC). The late reflec-
tions are relatively white in the LP residual domain [16]. Therefore, we regard
the clean speech and the early reflections as expected signal and estimate them
using linear prediction to suppress the late reverberation. The late reflections in
the reverberation signal can be expressed separately as:

ym(n) = dm(n) +
P∑

p=0

cm
p xm(n − D − p) (5)
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Where m is the number of microphones, dm(n) is the direct sound with early
reflections, D is the sampling point to distinguish the early reflections and the
late reflections. By finding a set of coefficients cm(n), the desired signal can be
recovered. Using weighted Linear Prediction Error (WPE) is also one of the most
mainstream dereverberation algorithms in practical applications. WPE performs
long-term linear prediction at each frequency point of the short time Fourier
transform (STFT). Assuming that late reverberation is not related to clean
speech with early reflections, then

ŝn[f ] = yn[f ] −
D+O∑

τ=D

Gτ [f ]Hyn+τ [f ] (6)

Where n is the serial number of time frame, yn[f ] are the coefficient vectors
of the STFT at different frequency f, Sn is the prediction error vector, Gτ

is the complex-valued square matrix of the prediction matrix, symbol (·)H rep-
resents the conjugate transpose, and D is the length of prediction step, O is
the order of the prediction filter. The prediction step D is usually set to 2 or 3
instead of 1 in the WPE algorithm to reduce the excessive decorrelation effect
of LP, but a certain coloration will be introduced accordingly [17]. The classic
WPE algorithm’s performance largely depends on the estimation accuracy of the
expected signal power spectral density (PSD). When the observed signal lasts
long, every time the iteration in the WPE adaptive algorithm can improve the
PSD estimation, otherwise, the PSD estimation will deviate largely, causing the
dereverberation performance to decrease accordingly. To improve this problem,
preference [18] incorporated a deep neural network (DNN) based spectrum esti-
mator into the WPE framework so that PSD can be reliably estimated from
very short observation signals. Experiments showed the processed speech had
improved ASR performance compared to the traditional WPE method. Based
on this, preference [19] approximated the inter frame correlation (IFC) of STFT
and used it to derive WPE, the WER can go down by about 1% compared with
the traditional WPE method. Preference [20] unified the WPE method and a
variant of the minimum variance distortionless response (MVDR) beamformer
into a single convolutional beamformer, reducing the WER by 3.84% on average
than the WPE method. The revolution in machine learning technology has made
remarkable achievements in various fields related to speech processing [21].

Preference [22] optimized the convex function to improve far-field speech
recognition, and a six-microphone array is used based on the traditional multi-
channel LP algorithm. The result showed that when the receiving point is 5m
away from the sound source, the WER is about 12%, about 2% lower than before.
Preference [23] used a Mixed Autoregressive (MAR) reverberation model based
on LP, in which a time-varying first-order Markov model is used to estimate its
coefficients, combined with Kalman filtering for noise reduction. The number
of microphones can be controlled within a certain range to achieve real-time
processing requirements. After processing, the speech SNR is improved by about
0.5 dB. Preference [24] assumed that both the prediction coefficient and the
residual signal are sparse, and the processed signal is relatively improved.
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Since auto regressive (AR) models are often used, to ensure the accuracy
of linear prediction, the AR model’s order generally needs to be greater than
9. To optimize and simplify the algorithm, finding a balance between system
performance and calculation complexity is an important research direction of
LP residual algorithms.

4.2 Spectral Subtraction

Preference [25] proposed that spectral subtraction can be used to achieve speech
dereverberation. This method estimates the energy spectrum of reverberation,
then converts the signal into the energy spectrum to subtract it. Spectral sub-
traction treats late reflection reverberation as additive noise:

y(n) = x(n) + d(n) (7)

Like the LP residual algorithm, this method sees the sum of clean speech and
early reflections as the desired signal and mainly removes late reflections. Assum-
ing that x(n) and d(n) are independent of each other, after performing the STFT
on Eq. (7), the spectral subtraction can be described as:

|X̂(ω)| = (|Ŷ (ω)| − |D̂(ω)|)ejφy(ω) (8)

By estimated the power spectrum of late reflections and subtract it, the effects
of suppressing reverberation can be achieved. Because reverberation has differ-
ent effects on different frequency bands, and the algorithm estimates the noise
inaccurately in low SNR, the residual noise will fluctuate in a narrow band pro-
ducing nonlinear distortion. This noise will interfere with the desired signal and
affect the quality of speech. The improved algorithm used statistical acoustics’
characteristics to find the expected minimum value of certain distortion met-
rics between the clean speech and the estimated signal. However, there is no
unified voice statistical model or unified distortion in such algorithms measure
for now. The Polack reverberation statistical model is used in preference [26];
The super-Gaussian prior speech model and the Laplacian noise model is used in
preference [27]. Some studies used the minimum mean square error (MSE) as the
distortion metric, while some studies used the estimated clean speech phase and
multi-band spectral subtraction to estimate the amplitude to solve the “music
noise” problem [28].

Spectral subtraction is not sensitive to RIR’s fluctuation, and it is not suitable
for eliminating early reflections. Excessive reduction of the energy spectrum
will cause nonlinear distortion, known as “music noise”, which will decrease the
speech quality. Therefore, spectral subtraction is not suitable for standalone.
It can be improved when combined with other algorithms. For example, in the
two-stage dereverberation algorithm (Sect. 5.1), it is used in the second stage of
processing.
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4.3 Beamforming

Beamforming is one of the main research directions in array signal processing.
It is often used to extract specific sound sources in noisy environments, filter
out noise and sound from unexpected directions. With the development of 5G
technology, massive MIMO systems such as microphone array have become a
hot research topic. Since RIR is related to the position, and the microphone
array system has multiple microphones, it can record the position information
in the space and has more available matrix information than the single-channel
system. Therefore, the dereverberation algorithm using the microphone array
can usually achieve better results than single-channel systems.

The signals received by the microphone array are decomposed into the min-
imum phase and the all-pass component, filtering the minimum phase compo-
nent on the cepstrum domain to eliminate reverberation, and then recombine
multiple processed components to reconstruct speech. This algorithm’s effect is
improved compared with complex cepstrum algorithms, and it is very suitable
for the time-varying RIR; but when the reflection coefficient increases above a
certain threshold, the beamforming array’s amplitude will be reduced [13]. Pref-
erence [29] proposed a multi-channel inverse filtering for RIR based on skewness,
which does not need prior knowledge of RIR or direction of arrival (DOA). This
method used a non-Gaussian maximum criterion to implement blind inverse fil-
tering and had a better effect in a strong reverb situation. Preference [20] used the
MVDR beamforming and multi-channel LP, unified into a convolutional beam-
former to achieve the best integration of noise reduction and dereverberation.
This method greatly improved speech enhancement performance and reduced
the speech recognition WER, but parameters such as the target signal’s direc-
tion angle need to be estimated. Generally, the speech’s main information varies
sparsely distributed on the frequency spectrum and contains only a limited num-
ber of harmonics. If using a beamforming filter such as DOA, MVDR, it would
cover a wide frequency band, generate unwilling noise in the signal band out of
interest. Some filters based on harmonic models have been proposed and applied
to dereverberation [30–32], but these harmonic models have not been widely
used in beamforming technology, which can be further studied in the future.
The naturalness of the beamforming method’s subjective evaluation is the best,
but the dereverberation effect is also the worst among all objective evaluation
indicators. This showed that delay-weighted summation and other beamforming
methods mainly eliminate the effect of additive noise; eliminating convolution
noise such as reverberation is not obvious. It is more suitable for noise reduction
preprocessing of other dereverberation algorithms.

5 Other Comprehensive Algorithms

This chapter introduces some novel composite algorithms with good dereverber-
ation effects.
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5.1 Classic Two-Stage Dereverberation

Fig. 4. Process structure of the first stage in the two-stage algorithm

The quality of reverb speech depends on two physical variables: SRR and reverber-
ation time T60. Preference [11] proposed a two-stage dereverberation method to
deal with these two quantities separately: In the first stage, an inverse filter is esti-
mated to increase the SRR, the second stage used spectral subtraction to suppress
the tail of reverberation. In the first stage, the RIR inverse filter of fixed length is
estimated by maximizing the kurtosis of the LP residual, as shown in Fig. 4, for the
kurtosis of the LP residual of clean speech is the highest. After processing, the SRR
is rose from −9.8 dB to 2.4 dB. This stage’s effect is similar to the effect of mov-
ing the sound source closer to the microphone. In the second stage, the equalized
RIR is divided into early and late parts, then uses the spectral subtraction pro-
cess to target the late reflections. Speech after two-stage processing, the average
SNR can gain by 4.82 dB. The inverse filtering of this algorithm is only effective
when T60 is between 2–4 s. If the reverberation time is longer than 4s, the tar-
get function of adaptive inverse filtering based on kurtosis will have many saddle
points, resulting in inaccurate estimation. Preference[33] analyzed the LP residual
characteristics of reverberant speech, proved that it is effective to use the third-
order moment in the statistical feature to suppress reverb. Furthermore, through
comparative experiments, it is found that the skewness maximization based on
the LP residuals is better and more robust than the kurtosis maximization. The
two-stage algorithm based on maximizing LP’s residual skewness has a significant
improvement, especially with long reverberation time.

The two-stage dereverberation algorithm has been combined with deep neural
networks (DNN) to get a better effect in recent years. Express the spectrum
enhancement or separation problem as a supervised learning problem and then
use DNN for supervised learning. Preference [34] combined the DNN framework
and proposed using the Hierarchical structure of the extreme learning machine
(HELM) learning model for speech dereverberation. This model does not adjust



An Overview of Speech Dereverberation 143

the feature extraction layer parameters but only estimated the conversion matrix
based on the training data, which is very suitable for embedded applications and
mobile devices; instead of the inverse filter estimation, preference [35] used the
classical dictionary training K-SVD algorithm in machine learning; preference
[36] used a DNN with 3 hidden layers to estimate the ideal ratio mask (IRM)
corresponding to the first stage in the classic two-stage algorithm. In the second
stage, a MSE normalization is used instead of the percentage normalization,
which could preserve more spectral details, and it is more conducive to restore
clean speech. The experiment showed that the algorithm using DNN combined
with a two-stage algorithm has an average PESQ score of 0.07 points higher
than before. When T60 = 0.3 s, the average direct reverberation ratio (DRR)
can reach 4.96 dB.

5.2 CDR Estimation

In 2011, Jeub et al. proposed a novel algorithm for dereverberation using
two omnidirectional microphones [33]. The author defined a coherent-to-diffuse
power ratio (CDR) equation:

Ψ
(
ejΩ

)
=

Φc

(
ejΩ

)

Φd (ejΩ)
(9)

The coherent and diffuse power spectrum between two received signals is
Φc

(
ejΩ

)
and Φd

(
ejΩ

)
respectively. For the same signal received in different

positions in a uniformly diffused sound field, we can assume that the direct sig-
nals are coherent, and the reverb signals are incoherent by the two microphones.
The CDR function is used to describe the correlation ratio between the clean and
reverberant signals, then remove reverb by estimating the correlation according
to Eq. (9). Preference [37] proposed three new CDR estimation methods, sum-
marized and compared all seven kinds of CDR estimation methods, including
proposed before, four of which are DOA-dependent CDR estimation methods.
The CDR estimation method proposed by Jeub belongs to this category. There
are two other DOA-independent CDR estimators and one estimator that do not
need the noise coherence information. There is an infinite number of unbiased
estimates for CDR DOA-independent estimators, but only one DOA-dependent
unbiased CDR estimator can be determined. Experimental results showed that
using this equation:

̂CDR(l, f) =
1 − Γ̃n cos

(
arg

(
Γ̃s

))

∣∣∣Γ̃n − Γ̃s

∣∣∣

∣∣∣∣∣∣

Γ̃ ∗
s

(
Γ̃n − Γ̃x

)

Re
{

Γ̃ ∗
s Γ̃x

}
− 1

∣∣∣∣∣∣
(10)

to estimate the CDR, both the speech recognition WER and the PESQ score are
the best: the speech recognition rate reached 90.0%,and the PESQ score reached
1.76 compared with Thiergart’s estimator:

̂CDRThiergart(l, f) = Re

{
Γ̃n − Γ̃x

Γ̃x − Γ̃s

}
(11)
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This estimator scored the lowest in the same room test: the speech recogni-
tion rate was 86.2%, and the PESQ score was 1.46. In the Eqs. (10) and (11),
Γ̃n is the estimation of the coherent function of the noise signal in the two
microphones, Γ̃s is the estimation of the coherent function of the dean speech
signal, and Γ̃x is the estimation of the coherent function of the received sig-
nal. The CDR dereverberation algorithm is novel and effective, the use of two
microphones compensates for the shortcomings of lacking spatial information
in a single microphone system. It is also relatively simplified compared to the
microphone array system, so it is easier to implement. Nowadays, most mobile
phones have two microphones, so this algorithm is likely to be widely applied to
many mobile devices in the future. However, the currently proposed CDR esti-
mation models are not robust enough in practice, and part of them are biased
estimates. This algorithm’s future research direction can further optimize the
CDR function estimation model, effectively correct the biased estimation and
improve the robustness.

6 Conclusion

An overview of speech dereverberation is given in this paper. According to
whether RIR needs to be estimated, speech dereverberation algorithms can be
divided into reverberation cancellation and reverberation suppression. The rever-
beration cancellation uses the inverse filter for deconvolution operation, is limited
by the complexity of calculation and sensitivity to noise; the actual application is
not as wide as the reverberation suppression. Older dereverberation algorithms
are often given a priori assumptions to simplify the statistical models, result-
ing in low confidence. With the rapid development of computing ability, the
decreasing price of storage devices and the continuous emergence of big data,
many algorithms that were considered too complex to be calculated can be easily
implemented. Therefore, algorithms that are sensitive to noise and RIR changes,
such as reverberation cancellation, can consider more time-varying information
to design more accurate and complex description models. Even if the calculation
complexity increases, it is possible to achieve real-time calculation as the device’s
computing performance increases.

On the other hand, wearable devices will be used in an outdoor environment
with harsh acoustic environments and unstable sound fields for a long time, the
dereverberation algorithm with high robustness and high noise reduction is one
of the key research directions.

From the perspective of the dereverberation effect, the microphone array
system can make full use of spatial information, which is still an important area of
future research. The combination of adaptive technology and other technologies
is the main research point in the future. The function model involved in the
detailed optimization algorithm, including auditory filter bank, harmonic model,
CDR estimation, etc. need further optimization, and a good phase theory needs
to be studied deeply.
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Abstract. Basic emotional states in valence sense as positive, neutral,
and negative are studied with automatic classification on cats’ meowing
signals, aiming to help human-cat interaction and human emotion regu-
lation by pets keeping. The ground truth of meowing samples is marked
by subjective evaluation from multiple raters with the help of cats’ facial
expression, body movement, and interaction with cat owners in video
clips. Acoustic features extracted from voice energy, zero crossing rate,
and MFCC are proved to be effective in cats’ emotion recognition. The
highest accuracy reaches 97.40% on selected best feature subset with
LogitBoost model.

Keywords: Cats emotions · Acoustic features · Recognition

1 Introduction

Voice, as an effective communication style, plays an essential role in the expres-
sion of feelings. In recent years, researchers have yielded numerous remarkable
results in the emotional analysis of speech for humans [1–3] and various speech
emotion datasets [4] have been obtained. Furthermore, the recognition for emo-
tions of human has achieved a much higher accuracy. Overall, great progress has
been made in the study of emotions in human voice. However, few studies have
focused on the analysis of emotions for animals, and there are a few affective
computing techniques to recognize the emotions for mammals except humans.

Some researchers have studied the barking of dogs and analyzed the emotions
contained in dog barkings. Acoustic characteristics have been discussed for the
recognition of dogs by their barkings [5] and many features have been proposed,
as well as methods, while emotions of cats, who are also important accompany
pets of humans, are not yet studied thoroughly with automatic analysis. A good
model in recognition of cats’ emotions, will greatly help human, especially new
owners of cats, to quickly develop a better interaction with their pets, and make
the most advantage of cat keeping, for accompany, or even emotion regulation
for human (cat owner).

c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2021
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From the related studies on human emotions expressed by voice, one exist-
ing problem is that the emotion categories never reached any universal agree-
ment. Relatively commonly accepted emotion taxonomies include Ekman’s “big
six” [6], or two-dimensional model with valence and arousal [7]. Application
dependent definition of emotion categories is also a common manner, such as in
the case of several widely used emotional speech datasets [8–10]. Although there
are currently very few studies on cats’ emotions, similar investigation has been
made with dogs as behaviour and emotion models of companion robots [5,11–13].
For example, application dependent emotions as happiness, despair, fear, anger,
and surprise are used in [12]. In this work on cats’ emotions by meowing voice,
we choose to use a simple way as the starter, with three states in valence sense
as positive, neutral, and negative, to describe the cats’ most basic emotions.

In the machine learning based approaches, a dataset with reliable labeling
of ground truth to each sample is the essential basis. For example, in the work
with dog barkings, perception tests indicate that acoustic parameters, including
tonality, pitch and inter-bark time intervals, are strongly related with emotions
and affect greatly on listeners’ judgment [14–17]. In building meowing dataset in
this work, subjective evaluation with human judgement will also be used, while
with the help of video contents including cat facial expressions, body movement,
etc.., because human judgement of cats’ emotions only by meowing voice is not
a practical activity for most persons.

The rest of the paper is organized as follows. Section 2 introduces the con-
struction process of the dataset of cats’ meowing. Section 3 describes the process
of emotional feature extraction and conducts the feature dimensionality reduc-
tion to avoid curse of dimensionality. Section 4 gives a set of experiments for
evaluation. Finally, Sect. 5 concludes the paper and presents the future work.

2 Dataset Construction of Cats’ Meowing

We aim to perform an automatic detection of cat’s basic emotions from cats’
meowing in a data driven manner. Thus, to collect a dataset with sufficient cats’
meowing samples with reliable labelling is an essential preparation. The collected
meowing samples can then be regarded as cats’ “language” in the cat emotion
detection.

There are two basic concerns in the construction of this dataset. First, meow-
ing samples from only one or two cats will introduce great influence of the cat
individual, and the common clues in cats’ emotions expressing by voice cannot
be fully discovered. Second, with only the audio signal of cats’ meowing, we can-
not accurately judge the cats’ emotional states. The cats’ facial expressions, body
movements, and the surrounding situations including their interactions with their
owners will help greatly for the judgement. For the above two reasons, video clips
from public websites/apps are chosen as the resource of cats’ meowing samples in
this work. The resource websites we used in data collection include Iqiyi, Tencent
Video, Bilibili, Haokan Video, Wesee Video, etc. A lot of “cat persons” are sharing
their daily interactions with their cats, with labels or even detailed explanations
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to the shared scenes. These sharings facilitate persons who like “cyber cat pet-
ting” to satisfy their cataholic. By collecting samples from these video websites,
we can obtain cats’ scenes from a large number of different cats. The labels and
explanations also make our data collection much easier, because the owners of the
cats know their cats very well and the labels can be seen to be reliable reflecting
the cats’ emotional states. The construction process of the dataset is illustrated
in Fig. 1, from the video clips with owners’ labels and explanations.

Fig. 1. Flow chart of constructing cats’ meowing dataset

One of the problems in the meowing samples collection is that cat owners
usually add background music with their uploaded videos, while the background
music will significantly influence the analysis of cats’ voice. In this case, we first
make a preprocessing with Adobe Audition to remove it. If the obvious residual of
background can still be heard after the removal, the video clip will be discarded.
Video clips with clear removal of background music, together with clips without
any background music, are sent to subjective evaluation in the next step.

In subjective evaluation, several raters were asked to evaluate the emotional
states of cats. To make the evaluation not too dispersed, we only set three cat-
egories of emotions in valence sense as positive, neutral, and negative. Positive
emotions include happy, contentment when they get food or play with their
owners, sometimes the cat will make snoring like sound to express their satis-
faction. Negative emotions include the states such as hunger, scared, anger, etc.
The usual states are regarded as neutral. The raters make the evaluations by
watching videos, including the cats’ facial expressions, body movements, and
interactions with cat owners as their basis of judgement, and if the cat owners
provided labels or explanation, this will also be very important evidence for the
raters. Examples of cats’ facial expressions are shown in Fig. 2. Not all raters have
to evaluate all collected video clips, but we ensured that each clip received evalu-
ations from at least 3 raters. When majority of raters give consistent judgement,
this clip will be marked with the corresponding positive, neutral, or negative
label as the ground truth, and the audio part is extracted into the dataset. If no
majority judgement exists, the clip will be discarded.

Totally 566 samples are kept in our collected dataset, with 179 positive sam-
ples, 141 neutral samples, and 246 negative samples.
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Fig. 2. Examples of cat emotions presented by facial expressions

3 Feature Extraction

Effective features that can express the characteristics of cat emotions from meow-
ing voice are one of essential factors in machine learning based recognition. Cur-
rently, there are very few studies on feature analysis of cat meowing for emotions,
we proposed in this paper to adopt experience from emotion recognition works
on speech, music, or other common audio signals. A good choice is to use the
feature set provided by the challenges of INTERSPEECH, such as the emotion
challenge in 2009 [18], or more comprehensive paralinguistics challenges in 2010
and 2013 [19,20]. These feature sets have been proved in a number of work
concerning human speech emotion [21], and could be a good starter for this
investigation of cat meowing emotion.

Concerning that we only collected several hundreds samples of emotional
cats’ meowing, which only form into a small scaled dataset, high dimensional
feature sets will cause the problem of overfitting. In order to minimize the
impact, the feature set from INTERSPEECH 2009 emotion challenge, which
is with the fewest dimension of features in this series of challenge feature sets,
is adopted in this work. Three categories of features, as prosody features, sound
quality features and spectral features, are contained in this feature sets. The
overall extraction of these features to apply 12 statistical functions on 16 low-
level descriptors (LLDs) and their first order difference, to result into features,
as shown in Fig. 3.

The 16 LLDs are zero-crossing-rate (ZCR), root mean square (RMS) energy,
fundamental frequency (F0), harmonic-noise ratio (HNR), and first 12 Mel fre-
quency cepstrum coefficients (MFCCs). The functions to be applied on these
LLDs range from first order to higher order statistics, including mean, standard

Fig. 3. Feature extraction process
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deviation, kurtosis, skewness, maximum and minimum value, relative position,
range, and offset and slope of linear regression, together with their mean square
error.

The extraction of the above feature set for cats’ meowing analysis is based
on TUM’s open-source openSMILE toolkit [22], with the configuration “emo-
tion IS09.conf”.

4 Automatic Emotion Detection of Meowing

4.1 Experiment Settings

The machine learning approaches for the cats’ meowing emotion detection are
implemented on WEKA platform [23]. Logistic Regression for classification is
chosen as the most basic algorithm in this investigation. As the cats’ emotion is
not linear, this generalized linear model may not fully present the distinguishing
ability of the features, two higher level classifiers based on logistic are used for
better performances, as LogitBoost (as in WEKA platform), which uses boost-
ing method based on logistic with maximum likelihood for optimization, and
LMT, which builds a tree structure classifier with each node as a logistic model.
Beside LMT tree model, another tree model, Random Forest, is also evaluated
for comparison.

There is a problem in the collected meowing dataset that the number of
samples is extremely unbalanced in each category. This imbalance will signifi-
cantly influence the reliability of the trained models [24]. Thus, we desampled
the negative and positive states, to leave only 141 samples in each category to
balance with neutral samples. All the evaluations of models are implemented
with 10-fold cross validation, to minimize the bias in dividing such small scaled
dataset into training set and test set.

4.2 Classification Results of Cats’ Meowing

Automatic classification of cats’ emotions from meowing voice is performed with
the above mentioned four classifiers, and we present the results in terms of
accuracy, AUC (area under ROC curve), and confusion matrices.

The accuracies and kappa statistics from the 4 selected classifiers are com-
pared in Fig. 4. The most basic classifier, logistic, presents relatively poor perfor-
mance with accuracy of only 63.36%, and AUC as low as 0.56, indicates unreli-
able emotion detection ability with this method. The compound methods based
on logistic, LogitBoost and LMT, get significantly improved accuracies of 94.33%
and 86.52%, with AUC of 0.88 and 0.75, respectively. These improvements show
that the compound methods fit the cats’ emotion detection problem better than
the basic logistic methods, and the performance especially benefits from the
boosting approach, while the tree structure also helps to get better classification
in this task of cats’ emotion detection from meowing voice. Another tree based
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Fig. 4. Accuracies of cats’ emotion classification with 4 classifiers

method evaluated here is the Random Forest algorithm, which achieved accu-
racy of 92.20% with AUC of 0.85. This result is close to that of LogitBoost, and
is also highly reliable with high kappa value.

Fig. 5. Confusion matrices of cats’ emotion classification (%)

The confusion matrices from the 4 classifiers are shown in Fig. 5, darker colors
correspond to higher rates. The worst one, Logistic, presents high confusion to
positive or negative from all categories, almost symmetric with positive and
negative. A notable phenomenon appears in all other better classifiers that the
neutral state is always perfectly classified, and all confusions appear between
positive state and negative state. This can be explained by a known fact from
human speech emotion that the emotions are easier to be distinguished in arousal
dimension than in valence dimension. In this evaluation of cats’ emotion from
meowing voice, the positive and negative states are defined in valence dimension,
while both states present higher arousal than neutral state, thus it leads to the
result that the neutral is better recognized than both positive and negative,
rather than presented as a middle state between them.
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4.3 Further Analysis

From the accuracies of over 90% in cats’ emotion classification from LogitBoost
and RandomForest, we assume that the cats’ emotional states can be detected
by the meowing voice, and can be well presented by the INTERSPEECH 2009
emotion challenge feature set. In this subsection, we further analyze the 3 cate-
gories of cats’ emotion as positive, neutral, and negative with the properties of
meowing signals and features.

Frequency Domain Analysis - Spectrum and Spectrogram. Frequency
domain properties of cats’ meowing voice are displayed in Fig. 6 in form of short
time spectrum, from selected typical meowing samples. Similar to human voice,
cat voice also presents clear peaks in the spectrum as fundamental frequency and
its harmonies. We can see from Fig. 6 that meowing in positive state presents less
energy in high frequency band (3000 Hz) than neutral and negative states, and
the harmonies are clearer. Meowing in negative state presents a lot of high energy
frequencies between the harmony peaks, to make the peak pattern somehow in
chaos.

Fig. 6. Spectrum of typical meowing samples of the three categories

A more intuitive illustration of meowing voice can be exhibited in form of
spectrogram, as shown in Fig. 7. Cat meowing signals from all 3 emotional states
show horizontal stripes in the spectrogram, while the stripes are clearer and
thinner in positive state than the other two states, where in neutral states,
the stripes are still clear from each other, while in negative state, some of the
stripes get blurred together. Neutral state shows smoother F0 trace with the
calm voice, positive and negative states that with higher arousal will introduce
more fluctuate in F0 trace. Another phenomenon to be noticed is in long scale
time domain that, when a cat is in negative state, it tends to produce a longer
meowing.
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Fig. 7. Spectrogram of typical meowing samples of the three categories

Feature Analysis and Dimension Reduction. This work suffers from a
problem that the meowing samples we collected from the internet videos are
not sufficiently enough. Even we choose a relatively small scaled feature set, the
audio samples in each category are still less than the number of features in the
set. Thus, a feature selection, or a feature dimension reduction is necessary for
the reliable of this investigation on cats’ emotions. In a filter approach of feature
selection [25], we ranked the 384 features in INTERSPEECH 2009 feature set in
sense of information gain ratio. With from 1 to 30 “good” features, we repeated
the automatic classification with the best classifier in Sect. 4.2, LogitBoost. The
accuracies are plotted in Fig. 8. The accuracy can reach over 90% with only
4 best features, and increase to over 95% with 8 features. With no less than
10 features, the accuracy stay relative stable between 96% and 97%, where the
highest accuracy appears with 17 or 18 features as 97.40%.

Fig. 8. Accuracy with different number of ranked features



Meowing Emotion 157

The confusion matrix with the highest accuracy is displayed in Fig. 9. The
most significate confusion in this case is that samples of negative state are mis-
judged as positive at a rate of 4.96%.

Fig. 9. Confusion matrix with 17 best features

The distribution of 10 selected features is displayed in Fig. 10. As some of
the features have similar distribution to each other, these 10 features are not
precisely the best 10 features in the ranking. It is shown that these features
present different ranges on the three emotional categories, and thus provide
distinguishing ability in automatic emotion classification.

Fig. 10. Distribution of several selected features

The related low level parameters (LLDs as described in INTERSPEECH 2009
feature set) of these features are listed in Table 1. Parameters as RMS energy,
ZCR, and MFCC are all important expressive parameters in cats’ meowing emo-
tions.
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Table 1. Related parameters of the selected features

Feature index Related LLD Feature index Related LLD

6 RMS energy 283 7th MFCC

10 RMS energy 295 8th MFCC

165 ZCR 307 9th MFCC

194 RMS energy 358 ZCR

271 6th MFCC 370 HNR

5 Conclusion

Three categories of cats’ emotion, positive, neutral, and negative, as evaluated
in valence sense, are investigated with automatic classification on voice signals
of cats’ meowing. Only audio signals are considered in the learning models, but
the ground truth of each sample is determined from video clips with cat voice,
facial expression, body movement, as well as their interaction with their owners.
Feature set adopted from INTERSPEECH 2009 emotion challenge is proved to
be also effective in cats’ emotion recognition, and the most expressive features
relate to RMS energy, ZCR, and MFCC. The best classification accuracy is
obtained from LogitBoost model as 97.40%.

Larger meowing dataset and more detailed emotional categories will be stud-
ied in the near future to provide a more accurate and more practical recognition
of cats’ emotions. Both the aims of this work and the future work focus on the
helping of a higher quality human-cat interaction, and make the most of the
accompanying role of pets in human psychological adjustment.
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Abstract. When writing this article, COVID-19 as a global epidemic,
has affected more than 200 countries and territories globally and lead to
more than 694,000 deaths. Wearing a mask is one of most convenient,
cheap, and efficient precautions. Moreover, guaranteeing a quality of the
speech under the condition of wearing a mask is crucial in real-world
telecommunication technologies. To this line, the goal of the ComParE
2020 Mask condition recognition of speakers subchallenge is to recog-
nize the states of speakers with or without facial masks worn. In this
work, we present three modeling methods under the deep neural network
framework, namely Convolutional Recurrent Neural Network(CRNN),
Convolutional Temporal Convolutional Network(CTCNs) and CTCNs
combined with utterance level features, respectively. Furthermore, we
use cycle mode to fill the samples to further enhance the system perfor-
mance. In the CTCNs model, we tried different network depths. Finally,
the experimental results demonstrate the effectiveness of the CTCNs net-
work structure, which can reach an unweighted average recall (UAR) at
66.4% on the development set. This is higher than the result of baseline,
which is 64.4% in S2SAE+SVM nerwork(a significance level at p < 0.001
by one-tailed z-test). It demonstrates the good performance of our pro-
posed network.

Keywords: Computational paralinguistics · Deep learning
framework · Mask condition recognition · Speech recognition

1 Introduction

COVID-19, as a pandemic, has more than 20 million confirmed patients (caus-
ing more than 748 000 deaths), and is still affecting more than 200 countries and
territories globally at the time of writing this paper1. Computer audition (CA),
a multidisciplinary field that leverages the advanced acoustic/audio signal pro-
cessing and machine learning technologies to enable the machines having or even
1 https://coronavirus.jhu.edu/map.html.
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outperforming the human hearing capacities, has been increasingly applied to
the healthcare domain [12]. More recently, CA has been thought to have promis-
ing potential for fighting the COVID-19 pandemic due to its non-invasive and
ubiquitous characteristic by nature [9,15].

In this paper, we aim to develop a speech-driven deep learning framework
to recognize people with or without facial masks worn. The task is proposed
as part of the INTERSPEECH 2020 Computational Paralinguistics ChallengE
(ComParE) [14]. The data offered in this challenge is called the MASC (the Mask
Augsburg Speech Corpus) dataset, which is the first to give access to recordings
of speech from individuals wearing an operation mask. The labels of the data are
their condition states while communicating, including Masking and Clear. Many
existing works have been performed on the speech recognition research. Some
acoustic features, such as the extended Geneva Minimalistic Acoustic Parameter
Set (eGeMAPS) [7], ComParE acoustic feature set and Bag of-Audio-Words
(BoAW) feature set [13], combined with traditional machine learning methods,
have been proved to be effective for recognizing the speech signals.

With the development of deep learning, neural network has made substantial
achievements in the computational paralinguistics field. Neural network have
been widely used due to the superior performance, such as speaker identifi-
cation [11,17,19,21], language identification [1–3] and speech emotion recogni-
tion [5,20]. Therefore, various neural network frameworks such as convolutional
neural network (CNN) and recursive neural network (RNN) have emerged. CNN
is used to extract spatial features and generate feature maps. The extensive
application from AlexNet to VGG model reflects the superior performance of
CNN. The pre-trained AlexNet network was used to extract deep features, and
then the features of the full connection layer were input into Support Vector
Machine (SVM) for classification, which achieved good performance on the data
set FAU-AIBO [6]. Two different convolution nuclei were used to extract time-
domain and frequency-domain features respectively, and then the features were
classified by CNN after fusion. Finally, the UAR of the four categories of emo-
tions of IEMOCAP reached 68% [10]. Gated Recurrent Unit (GRU) and Long-
Short Term Memory (LSTM) are also widely used, GRU is a variant of LSTM,
they can solve the gradient vanishing problem in the RNN optimization process.
Greff et al. benchmarked eight LSTM variants on speech recognition [8]. The
combination of CNN and RNN is widely used. Mingyi et al. added LSTM after
CNN, and found that the five convolution layers had the best performance on
EmoDB [4]. However, with the deepening of network layers, some information
will be lost because CNN has no memory function, and the operation time of
RNN is relatively long.

Main contributions of this work can be summarised as follows: First, we com-
pare the performance of two different network topologies on this classification
problem and find the good effect of TCN on this classification problem. Second,
we have introduced attention mechanism across all network structures to allow
the network to focus on key features during training. Third, we integrate utter-
ance level features into the network structure with good performance, realized
the fusion of deep learning representation and utterance level features.
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In this article, We investigate and compare three topologies, i.e., Convolutional
Recurrent NeuralNetwork (CRNN), Convolutional Temporal Convolutional Net-
wor (CTCNs) and CTCNs with utterance level features. In addition, CNN and
attention are added to both models to improve the network performance.

This paper is organized as follows: Firstly, we introduce the methods used in
Sect. 2. Section 3 introduces experimental design, including data preprocessing,
experimental setting, and experimental results. And the discussion will be given
in Sect. 4. Finally, we conclude this study in Sect. 5.

2 Methods

2.1 BLSTM

BLSTM is composed of forward LSTM and backward LSTM. In the LSTM,
there are three kinds of gates: forgetting gate, input gate and output gate. The
forgetting gate can selectively forget some information, and the input gate new
information selectively recorded, and in the output gate for output. In BLSTM,
forward LSTM is used to help the network learn sequence characteristics forward
and backward LSTM learns sequence information later. This design can help
the network form sequence memory. When we input the extracted mask audio
sequence, we can not only accumulate the information of the input moment, but
also remember the information of the previous moment, which has a good effect
on dealing with the time series problem.

The network structure diagram of BLSTM is shown in Fig. 1, from which
we can see that the output layers results are jointly controlled by forward layers
and backword layers, and the final output results can be expressed as follows by
mathematical expressions:

ht = f(w1xt + w2ht−1) (1)

h
′
t = f(w4xt + w5h

′
t+1) (2)

Ot = g(w3ht + w6h
′
t) (3)

where, Eq. (1) represents the result of forward propagation, Eq. (2) represents
the result of back propagation, and Eq. (3) represents the expression of the
output result after BLSTM.

Fig. 1. BLSTM network structure.
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2.2 TCN

Similar to BLSTM, TCN can also be used to handle time series problems. TCN
network is all convolution operation, which means that TCN neural network can
carry out large-scale parallel processing, which is shorter than BLSTM to some
extent, which involves the skip layer connection of dilated convolution, causal
convolution, and residual convolution.

(a) General Convolution (b) Dilated Convolution

Fig. 2. Contrast diagram of convolution receptive field.

Dilation rate parameter is involved in the part of dilation convolution, which
is used to represent the size of the dilation, so that the convolution process has
a larger receptive field. As shown in Fig. 2(a) represents the receptive field of
dilated convolution, and (b) represents the receptive field of general convolution.
From the figure, the advantages of the receptive field of dilated convolution
can be clearly seen. Where, the size of the convolution kernel in (a) is 3, and
after dilation rate, the size of the convolution kernel becomes 5, and finally the
receptive field of (b) is obtained.

Where, the calculation of the size of the dilated convolution kernel follows:
dilated filter = d ∗ (k − 1) + 1, where d stands for dilation rate and k stands for
the size of the convolution kernel.

By referring the dilative convolution to the causal convolution, the prediction
at time t can take into account the sequence before timet, thus achieving a
time memory effect similar to BLSTM. The skip layer of residual convolution is
realized by 1D fully-convolutional network (FCN) [16], which equals the length
of the output sequence to that of the input sequence [22].

2.3 Attention Mechanism

To ensure the reliability of model training, we added the attention layer to the
network structure and the Attention mechanism after the weight causal layers
in TCN, as shown in Fig. 3.
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In this paper, the attention layer in the network structure is a sequence
coding layer, which is a series of weight allocation coefficients. When the input
information at time t is more similar to the target information, the attention
layer assigns more weight to the time t, that is, the output of the sequence is
more dependent on the time t. In the experiment of this paper, Self-Attention
mechanism is used, which can find the internal connection of the sequence in the
training process, so as to ensure the similarity between the output sequence and
the input sequence. So, we use Scaled Dot-Product Attention [18], the imple-
mentation equation is

Attention(Q,K, V ) = softmax(
Q × KT

√
dk

) × V (4)

Here, K and V are the values of mask audio data after Self-Attention, Q is
the data that corresponds to the label by masked Self - Attention after the value,
dk is the number of channels in the input sequence, used as a normalization.

Weight causal convolution

reluf(x)
Self-Attention Layer

Weight causal convolution

reluf(x)

Self-Attention Layer

X

1*1 ConVf(x)+x

relu

h(x)

Fig. 3. Attention residual learning block.

3 Experiment Design

3.1 Data Pre-processing

In this part, all the audio data in the data set are circulated and filled in for 4s
(the original data set lasts for 1s and the sampling frequency is 16 kHZ). Then,
the librosa library is used to perform short-time Fourier transform to extract
mel spectrogram. The parameters in the process of mel spectrogram extraction
are as follows: the window width w = 25 ms, the window shift 10 ms, and nmels

= 128 mel frequency bands.
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3.2 Experimental Setting

In our experiment, we mainly used three network learning models: CRNN,
CTCNs and CTCNs with utterance level features. We will describe these three
network structures in detail below. It should be noted that due to the limitation
of server storage space, the batchsize of all our experiments is 64.

CRNN. In this model, we first used CNNs to extract features from the mel
spectrograms, considering the effect of the preceding sequence on the prediction
of the following sequence, we use BLSTM to remember information through for-
ward propagation and backward propagation, so as to make the predicted results
more robust. At the same time, after BLSTM layer, add the attention layer to
allocate the feature weight, so that the network can focus on the features that
play a key role in the classification effect. Finally, the spatial features extracted
from the convolutional layer and the sequence features after the attention layer
are fused as the final classification features, and the classification is carried out
through the full connection layer containing softmax function. More specifically,
our network model is described in Table 1.

Table 1. Our network structure

Nework layers Parameter

Conv1 16, 7 * 7 kernels, 1 stride

Pooling 2 * 2 pooling, 2 stride

Dropout 0.25

Conv2 16, 5 * 5 kernels, 1 stride

Pooling 2 * 2 pooling, 2 stride

Dropout 0.25

Conv3 32, 5 * 5 kernels, 1 stride

Pooling 2 * 2 pooling, 2 stride

Dropout 0.25

MaxPooling BLSTM/

TCN blocks: 3 * 3 kernels,d: [1, 2, 4...]

Self-attention layer

Features concatenation

Full-connected Layer 4096 units

Classification Layers Softmax

CTCNs. In this network structure, we use TCN and attention layer to build the
network structure. In the TCN module, we mainly used the structure in Fig. 3.
Multi-layer stacking was performed in residual block in Fig. 3 to build the main
part of the network. Of course, with the stack of blocks, the number of layers in
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the network would be deepened, and the attention layer would be added after
the last layer. This approach is to achieve similar functions to BLSTM, enabling
the network to extract time series features. Considering the impact of spatial
features on the classification results, we added three convolutional layers at the
beginning of the network. The features extracted by the convolutional layer were
on the one hand input into the TCN network module, and on the other hand
retained and fused with the sequence features extracted by the TCN module,
thus forming the features of final progressive classification. The final features are
sorted through the full connection layer of 4096 units by softmax. The detailed
network structure is shown in Table 1.

CTCNs with Utterance Level Features. In the experiment, we mainly
used the manually designed features of low level descriptors (LLDs) and high
level statistics functions (HSFs), obtained utterance level features by making
statistics on the voice features at the frame level, such as maximum value and
mean value, and so on. Here, opensmile toolkit is used to extract utterance level
features, and the feature Set used is ComParE.

In this part, we added utterance level features to integrate the deep features
extracted from deep learning for classification. The extraction of deep features
is based on the experiment in Sect. 3.2, and the features extracted from its full
connection layer are used.

Refer to the specific network structure Fig. 4.

InputWave

Cycle Code Padding

Extral Spectrograms

Extral ComparE Features
CNNs

TCNs

Self-Attention

Full-Connected

SoftMax

opensmile 
toolkit

Fig. 4. TCNs with utterance level features network structure.
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Experimental Result. In this paper, we will use unweighted average recall
(UAR) to evaluate the experimental results of various network structures. As
this is a Sub-Challenge task, all our results are obtained on the development set.
For Sect. 3.2, we conducted experiments with [3,10] different attention residual
blocks, and the experimental results are shown in Table 2. It can be seen from
the table that when residual blocks is 4, the experimental UAR is 66.4%, which
is the best result. The number of channels and experiment time for each block
are also shown in Table 2. The confusion matrix corresponding to the experiment
is shown in the Fig. 5.

Table 2. The result of CTCNs network structure on the development set

Nework

blocks

Channels WAR (%) UAR (%) Time (s)

3 [64, 128, 256] 64.6 65.1 3692.98

4 [64, 128, 256, 512] 66.3 66.4 4874.648

5 [64, 128, 256, 512, 1024] 64.7 64.8 4218.848

6 [64, 128, 256, 512, 1024, 2048] 66.3 65.6 8350.363

7 [64, 128, 256, 512, 1024, 2048, 4096] 65.4 65.0 12205.034

8 [64, 64, 128, 128, 256, 256, 512, 1024] 66.6 66.0 10779.831

9 [64, 64, 64, 128, 128, 128, 256, 256, 512] 64.8 64.4 5451.703

10 [64, 64, 64, 128, 128, 128, 256, 256, 512, 1024] 65.2 65.1 15232.913

Fig. 5. Confusion matrix graph on the development set.
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Table 3. Results of different network structures on the development set

ID Nework structure UAR(%)

1 CRNN 65.5

2 CTCNs 66.4

3 CTCNs + ComparE 65.9

4 ComparE + SVM [14] 62.6

5 ComparE BOAW + SVM [14] 64.2

6 DeepSpectrum + SVM [14] 63.4

7 S2SAE + SVM [14] 64.4

As can be seen from the table, the lowest experimental result of our proposed
method is 65.5%, while the experimental result of S2SAE model in the original
paper is the best, with its UAR being 64.4%, which is lower than our lowest
result by 1.1%, which fully proves the performance of our network structure.

4 Discussion

It can be seen from Table 2 that the network of 4-layer blocks has the best result
on the development set. As the network deepens to 10 layer blocks, the UAR
of the network is not as good as that of 4-layer blocks. This may be from the
side that the deepening of the network makes the training gradient unstable. In
Table 2, we can see that when blocks is 7 or 8, channels are the most and the
experiment takes more than 10,000 s.

The experimental results of different network structures are shown in Table 3.
The model 1, 2, 3 network structures are the three methods tried in this paper,
and the model 4,5,6,7 are the experimental results of the original paper’s network
structures. The difference between model 2 and model 1 is that model 2 uses
TCN to extract sequence features, while model 1 uses BLSTM, and it is finally
found that the experimental results of model 2 are better than those of model
1, which maybe indicates that TCN has a better fitting on this data set. When
we fusioned utterance level features (in this article, ComParE the features) into
model 2, the experimental result is 65.9% in model 3, but this reduced the results
by 0.5%. We consider the reasons for this result may be to join utterance level
features, making increased certain features of the similarity between different
categories, it increases the classification error, thus resulting in a loss of the
experimental results. It may be possible to try other utterance level features for
fusion, hoping to improve the classification result. Model 3 is about 3% higher
than model 4, and it turns out that the TCN network extracts features that are
useful for classification.
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5 Conclusion

Mask Sub-Challenge detection is a challenging task. In this paper, we first
adopted the cycle code padding method to process the raw audio, and then
conducted experiments on the MASC data set through three different network
structures, namely CRNN, CTCNs and CTCNs with utterance level features.
CTCNs achieves the best performance on the development set.

The experimental result of model 4 is the lowest, which used only ComParE
features, while model 2 adds spectral features on this basis, the results increased
by 3.3%, which may indicate the advantage of mel spectrograms in this data
set. All the deep feature extraction in this paper is based on the spectrograms
extracted by the short-time Fourier Transform (STFT). However, window size
in the process of STFT do not have adaptivity and cannot be optimized for
specific problems, so better results may be obtained by using wavelet transform
to extract spectrograms.

The experimental results of other models are better than model 4, which may
reflect the good performance of deep learning. This suggests that we should not
be confined to machine learning, and future research can be developed towards
deep learning, perhaps with better results.
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11. Matëjka, P., Glembek, O., Novotny, O., Plchot, O., Grézl, F., Burget, L., Cernocky,
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Abstract. This paper introduces a novel dataset for the identification
of computer generated melodies as used in the data challenge organ-
ised by the Conference on Sound and Music Technology (CSMT). The
CSMT data challenge requires participants to identify whether a given
piece of melody is generated by computer or is composed by human.
The dataset consists of two parts: a development dataset and an evalua-
tion dataset. The development dataset contains only computer generated
melodies whereas the evaluation dataset contain both computer gener-
ated melodies and human composed melodies. The aim of the dataset
is to facilitate the develpment and assessment of methods to identified
computer generated melodies and facilitate the creation of generative
music systems.

Keywords: Melody clustering · Dataset · Computer generated melody
identification

1 Introduction

Automatic music generation is becoming more and more popular with the devel-
opment of deep learning techniques. At the same time, new challenges have
emerged in juridical practices regarding copyright protection: the source of music
leads to different juridical models. Although the discussion of legal issues is
beyond the scope of this paper and it isn’t among the aims of the proposed data
challenge, a new task is considered helpful in future juridical practices. Iden-
tifying whether a piece of melody is computer generated or human composed
could help in recognising cases of music use where legal intervention of further
scrutiny is necessary. As a result, the Conference on Sound and Music Tech-
nology (CSMT) proposes a data challenge that requires participants to identify
human composed melodies among computer generated ones.
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Existing automatic music generation methods have certain drawbacks, such
as the lack of clear long term structure in the music or the existence of unusual
harmonisation, which make the melody identification less challenging. For exam-
ple, a Self Similarity Matrix (SSM) is used to identify the repetitions in music
[4] that are commonly associated to music structure by composers but are sel-
dom present in pieces produced by music generation algorithms [8]. Moreover in
juridical practices, copyright infringement can be detected using the similarity
of the variation of pitch in melodies, regardless of music structure and accompa-
niment. In this paper and the proposed challenge, the term “melody” refers to
a sequence of pitches with dedicated duration but excludes the concept of music
structure and accompaniment.

The proposed data challenge follows a possible scenario of melody source
identification in juridical practice. There are two datasets used in the challenge.
The development dataset consists of computer-generated melodies that are pro-
duced by a set of exemplar music generation systems. The evaluation dataset
contains both computer-generated and human-composed melodies. Participants
are required to submit a system that identifies human-composed melodies among
the computer-generated melodies.

The authors and organisers of the data challenge reviewed existing computer
music generation systems as outlined in this paper. Three exemplar method-
ologies were proposed including Generative Adversarial Network (GAN), Varia-
tional Auto Encoder (VAE) and transformer systems because these architectures
are commonly used and represent the current state-of-the-art in music generation
as of early 2020. All systems were used to produce computer-generated melodies
in both development and evaluation datasets. The systems used to generate
melodies for development and evaluation datasets are different as the results of
a different initial values and different batch formation in the training process.
For human-composed melodies in the evaluation dataset, the majority (95%) of
human-composed melodies within the evaluation dataset overlaps with human-
composed melodies used as training data for the automatic generation system.
The remaining human-composed melodies are composed by university students
whose major is music composition. Such melodies have not been published to
the public.

The proposed data challenge can be approached in two different ways.
If human-composed melodies are collected by the participants, data may be
labelled as “human” vs. “computer”, hence the proposed task can be considered
a binary classification problem. The human-composed melodies can also be con-
sidered outliers among computer-generated melodies. In this case, the proposed
task can also be viewed as an unsupervised outlier detection problem.

The rest of the paper is organised as follows. A brief overview of automatic
music generation is presented in Sect. 2 in order to justify the choice of melody
generation systems. In Sect. 3, the dataset creation process is explained in detail
together with the data representation proposed for the challenge. This is followed
by a brief conclusion in Sect. 4.
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2 Melody Generation Systems

This section provides an overview of automatic music generation systems. The
majority of music generation systems can be divided to three types [10]: rule-
based systems, methods that utilise mathematical models and machine learning
systems. The machine learning systems, especially deep learning systems, are
considered as the state-of-the-art automatic music generation systems [2]. As
a result, the data challenge proposes to use deep learning systems to generate
melodies that are labelled as computer-generated melodies.

The most important factor for automatic music generation that affects sys-
tem performance is the modelling of temporal dependencies. Rule-based systems
usually propose a set of rules to generate a sequences such as chords [16]. Sys-
tems that use mathematical models aim to describe time dependency in music
mathematically. The generation process may then be considered a sampling pro-
cess from a mathematical model. For modelling temporal dependencies, Markov
models are considered the first choice since the very early stages of music gen-
eration [14]. One of more the recent works using this principle is the ALYSIA
system [1] that creates both lyrics and melodies.

As music usually has a long-time dependency, it is almost impossible for
rule-based and mathematical modelling systems to learn long-time dependencies
accurately. Machine learning systems especially deep learning systems are better
suited for the purpose of music generation as the long-term dependency can be
modelled as a joint probability distribution akin to a language model [6].

One exemplar system is a Recurrent Neural Network (RNN). Makris [13]
uses RNN to generate rhythm in drum patterns. The Microsoft team [20] uses
RNN to encode the pitch, rhythm and chord of music. With the development
of transformer systems that are better at modelling longer-time dependencies,
Vaswani et al. [17] proposed transformer structure to catch longer temporal-
dependency. This was adopted by Huang et al. [9] for music generation. In the
proposed data challenge, the MusicTransformer [9] system is used as one of the
candidate system to generate computer-generated melodies, where the authors
claimed that the MusicTransformer models long-term dependencies in music [9].

Besides using a language model to model long-time dependency in music,
music generation can also be performed by a generative model such as a Varia-
tional Auto-Encoder (VAE) or a Generative Adversarial Network (GAN).

VAE is a variant of the autoencoder, which is a generative deep learning
model. Brunner [3] proposed a VAE-based automatic composition model MIDI-
VAE, which processes polyphonic music with multiple instrument tracks and
models the duration and speed of the notes in the generated music. Wang [18]
proposed a new variant of Variational Autoencoder (VAE), which uses a modu-
lar approach to designing the model structure to generate music. Luo [12] used a
variational autoencoder to generate different styles of Chinese folk music. Music-
VAE [15] improves the structure of VAE according to the characteristics of music
with hierarchical structure, which aims to solve the lack of coherence in generated
music using vanilla VAE. The MusicVAE system is better at generating music
with extended duration hence the proposed data challenge selects MusicVAE as



180 S. Li et al.

the representative of VAE-based music generation systems in the development
and evalution datasets.

Generative adversarial network (GAN) [7] is a generative model that contains
a generator and a discriminator. In a GAN, the generator produces pseudo-
samples and the discriminator judges whether a sample was produced by the
generator. GAN is commonly used for music generation, for example, by Liu
and Yang [11] and Dong et al. [5]. MidiNet [19] is one of few GAN systems that
use piano roll as the representation of music and can generate melodies without
the generation of music accompaniment. As a result, the proposed data challenge
selects MidiNet as the choice of GAN based systems for music generation.

To summarise, deep learning based computer music generation systems out-
perform conventional rule-based and mathematical modelling systems. Among
deep learning systems, there are three types of systems that are considered state-
of-the-art: transformer systems, VAE-based systems and GANs. The proposed
data challenge selects an exemplar system to represent each of these types:
MusicTransformer, MusicVAE and MidiNet (GAN). The computer-generated
melodies in the development and evaluation datasets are a combination of
melodies generated by all three selected systems.

3 Dataset

3.1 Training Data

To investigate whether different music style affects the identification of computer-
generated melodies, two datasets are used for training the selected models: Bach
Chorales in Music211 and pop music from hooktheory2. These two training
datasets are used for training two separate models for melody generation in
this data challenge.

The raw melodies in the datasets are subject to a pre-processing stage. The
Bach Chorales dataset contains several voices. Each voice is treated as a separate
melody. With regards to pop music in hooktheory, only the melody part is used
for training. All melodies are truncated to 32 beats to disregard music structure.

As used by all selected systems [9,15,19], all pre-processed melodies for train-
ing are converted into a form of binarised piano roll as demonstrated in Fig. 1.
The binarised piano roll represents melodies using a matrix, where each column
represents a quarter beat and each row represents a note (such as A4). As each
melody has a length of 32 beats and each column represents a quarter beat, the
binarised piano roll has 128 (32×4 = 128) columns. Moreover, as MIDI files have
a pitch number defined between 0 to 127, there are 128 rows in the binarised
piano roll. As a result, the music representation in this paper has a shape of
128 × 128.

1 https://web.mit.edu/music21/.
2 https://www.hooktheory.com/.

https://web.mit.edu/music21/
https://www.hooktheory.com/
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Fig. 1. Binarised Piano roll representation

3.2 Computer-Generated Melodies

As discussed in our brief overview of music generation methods, the selected
systems for melody generation are MusicTransformer [9], MusicVAE [15] and
MidiNet [19]. In this section, the working principles of these systems are outlined
briefly. For more details, the reader is kindly asked to refer to the original papers.

Two datasets (Music21 and hooktheory) are used to train all selected systems
twice under the exact configuration hence two models are obtained for each style:
Bach and Pop. For each style, one of the resulting models are used to generate
melodies in the development dataset, the remaining model is used to generate
melodies in the evaluation dataset.

MusicTransformer. MusicTransformer [9] uses a Neural Network Language
Model (NNLM) to generate music where the pitch and duration of notes at a
time can be considered a word and the motives or phrases can be considered a
sentence. This work is among the first using a Transformer to generate music.

Given a sentence S which contains N words wi, that is, S = <w1, w2, . . . ,
wn> ∈ Vn, Vn is the size of the overall vocabulary. The language model aims to
find the probability distribution of the sentence, which can be formalised using
Eq. (1). Given the forward sequence of a word, the probability of the entire word
sequence can be decomposed into the product of the conditional probability of
the next word with respect to its forward word. The results of the system show
that longer temporal dependencies are well modelled, since repeated or similar
phrases can be found in the music generated by the proposed system.

P (S) = P (w1, w2, . . . , wN ) = P (w1)P (w2|w1) · · · P (wN |w1, w2, . . . , wN−1) (1)

The initialisation process of the system depends on the joint probability
distribution of the initial sequences hence usually a randomly selected melody
with dedicated lengths is used for initialisation. In this data challenge, the effects
of the initialisation process for the MusicTransformer are also investigated by
examining whether melodies generated by different initialisation seeds can be
identified.
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MusicVAE. MusicVAE [15] improves the structure of VAE according to the
characteristics of music with hierarchical structure, which aims to solve the prob-
lem of lack coherence in the generated music when a vanilla VAE is used. The
music is first represented using an encoder, constructed with a recurrent neu-
ral network to obtain a low-dimensional hidden vector. The resulting vector is
then decoded with a multi-level decoder, which reconstructs the vector into a
16-bar unit first, then the decoding process continues with lower-level decoders
to generate finer units of melodies.

MidiNet. MidiNet [19] converts music binarised into a piano roll, which is akin
to a two-dimensional image. The generator and discriminator of the GAN sys-
tem then use convolutional neural networks to encode and decode the resulting
binarised piano rolls. Besides binarised piano rolls generated by decoders, music
composed by humans is also sent to the discriminator for training. At the same
time, to maintain coherent connection between the music segments, MidiNet
adds information of the front music segment to each layer in the generator. This
system is one of the earliest works targeting automatic composition using the
method of generating images. It demonstrates the feasibility of using CNN to
generate piano roll.

3.3 Human-Composed Melodies

Human composed melodies in this challenge have two sources. Published
melodies that are used train the selected music generation systems and unpub-
lished melodies that are required to be composed for this data challenge by
university students majoring in music composition.

Published melodies are randomly selected from the dataset that trains the
selected music generation systems. The selected melodies are then truncated to
32-beat long segments.

The unpublished melodies in the evaluation dataset is used to test the abil-
ity of recognising unknown human-composed music. The data challenge invited
professionally trained composers from the China Conservatory of Music to com-
pose a number of melodies. The students were asked to compose melodies in two
styles: the Baroque style as composed by J. S. Bach and the common pop style.
The structure of the composed melodies is removed with melody truncated to
32-beat long as well.

3.4 Data Representation

The paper uses pretty midi3 to convert the generated piano roll into a MIDI
file which requires the MIDI number and the duration of each note. The MIDI
number can be directly indexed by the note. The duration of each beat requires
a simple calculation. As each column in the binarised piano roll represents a

3 http://craffel.github.io/pretty-midi/.

http://craffel.github.io/pretty-midi/
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quarter beat, given a tempo value, such as 120 beats per minute (bpm), the
duration of each column in the binarised piano roll can be easily calculated.

The instrument selected in the MIDI file is “Bright Piano” with the velocity
setting to 127 in MIDI files. The tempi of the MIDI files are randomly selected
in the range of 68 bpm, 78 bpm, 88 bpm, 98 bpm, 108 bpm and 118 bpm to avoid
the situation where the columns occupied by an individual note would always
be the same integer.

3.5 Dataset Formation

Once converted to MIDI files, the computer-generated and human-composed
melodies are divided into two datasets: the development dataset and the evalua-
tion dataset. Neither datasets contain labels and they consist of an equal number
of Bach-style and pop-style melodies.

In the development dataset, there are 6,000 computer-generated melodies
generated by three models. The specific composition of the development dataset
is shown in Table 1.

For each type of music generation system, two different datasets were used for
training two individual melody generation systems: melodies from Bach Chorales
in Music21 (labelled as “Bach” in Table 1) and hooktheory dataset (labelled as
“Pop” in Table 1).

Table 1. The development dataset composition of the data challenge where the number
in the brackets indicates the number of melodies. “MTrans”, “MVAE” and “MNet”
represent for music transformer, MusicVAE and MidiNet respectively.

Computer-generated music (6000)

MTrans (2000) MVAE (2000) MNet (2000)

Bach Pop Bach Pop Bach Pop

1000 1000 1000 1000 1000 1000

In the evaluation dataset, there are 4,000 melodies coming from two sources:
computer models and human composition.

Among the human-composed melodies, the items truncated from melodies
originally used for training music generation systems (labelled as “Training”
in Table 2) and specially composed melodies for this data challenge (labelled
as “Unpublished”) are delineated given the two styles: from Bach Chorales or
similar with Bach style (labelled as “Bach” in Table 2) and from hooktheory
dataset or common pop style (labelled as “Pop” in Table 2).

The composition of computer-generated melodies are complex. As a gen-
eral principle, it is necessary to emphasise that the system used to generate
melodies in the evaluation dataset and the system used to generate melodies
in the development dataset are always different although system architectures
may be shared. As the case in the development dataset, each proposed system is
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trained using two different datasets (labelled as “Bach” and “Pop” in Table 2)
hence two separate melody generation systems for different styles are obtained.

Table 2 summarises the composition of the evalution dataset. It is worth men-
tioning that numbers of melodies generated by MusicTransformer is larger than
the other systems in order to investigate the effects of different initialisation
configurations. Unlike in the development dataset where only one configuration
used for initialisation of the MusicTransformer, the melodies in the evaluation
dataset generated by MusicTransformer are the result of three different initial-
isation configurations, among which one of the initialisation scheme is used in
the training process.

Table 2. The evaluation dataset composition of the data challenge where the number
in the brackets indicates the number of melodies. “MTrans”, “MVAE” and “MNet”
represent for music transformer, MusicVAE and MidiNet respectively. The number in
the brackets indicates the number of melodies. The title of each column is explained
in the context.

Computer-generated melodies (2000)

MTrans (1200) MVAE (400) MNet (400)

Bach Pop Bach Pop Bach Pop

600 600 200 200 200 200

Human-composed melodies (2000)

Training (1900) Unpublished (100)

Bach Pop Bach Pop

950 950 50 50

4 Conclusions

The CSMT data challenge requires participants to identify computer-generated
melodies among human-composed melodies. The challenge aims to facilitate solu-
tions for determining the source of melodies in possible copyright infringement
cases in juridical practice. The term “melody” is used in a limited sense in this
data challenge. Melodies were truncated to remove musical structure and they
were used without accompaniment. This paper provided an in-depth discussion
on the composition and the design of the dataset.

The challenge utilises two components, the development dataset and the
evaluation dataset. The development dataset contains only computer-generated
melodies whereas the evaluation dataset combines both computer-generated and
human-composed melodies. The computer-generated melodies in the develop-
ment and evaluation datasets are obtained from the same type of systems with
slightly different settings. The human-composed melodies were composed specif-
ically for the CSMT data challenge besides existing melodies that were used for
system training.
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With the presented setup of the challenge, the identification of computer-
generated melodies can be considered either an unsupervised outlier detection
problem or a supervised classification problem. Both methodologies may suffer
from learning the inherent limitations of the selected music generation systems.
As a result, the systems proposed by participants in the data challenge may not
produce a universally valid approach to identify computer generated melodies,
but rely on data distributions instead that characterise state-of-the-art music
generation systems. Nevertheless, this approach can still prove to be valuable
for practical purposes, as in the legal context introduced earlier, if the models
are kept up to date. Moreover, the melody complexity in this data challenge
is reduced artificially hence the algorithms from participants may have limited
generalisability.
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Abstract. The development of artificial intelligent composition has
resulted in the increasing popularity of machine-generated pieces, with
frequent copyright disputes consequently emerging. There is an insuf-
ficient amount of research on the judgement of artificial and machine-
generated works; the creation of a method to identify and distinguish
these works is of particular importance. Starting from the essence
of the music, the article constructs a music-rule-identifying algorithm
through extracting modes, which will identify the stability of the mode
of machine-generated music, to judge whether it is artificial intelligent.
The evaluation datasets used are provided by the Conference on Sound
and Music Technology (CSMT). Experimental results demonstrate the
algorithm to have a successful distinguishing ability between datasets
with different source distributions. The algorithm will also provide some
technological reference to the benign development of the music copyright
and artificial intelligent music.

Keywords: AI composition · Melody arrangement · Machine music
creation · Mode recognition

1 Introduction

With the gradual rise of artificial intelligent composition, more and more artifi-
cial intelligent composition technology has been introduced for application in the
sphere of business. This technology can potentially trigger a series of disputes
over copyright issues. For the purpose of managing these potential challenges
to intellectual property, it is crucial to design an algorithm that can distinguish
between artificial and machine-generated music.

As one of the most important core elements in music, mode plays an impor-
tant role in judging music [1–3]. Some relevant literature exists that examines
the identification algorithm of Chinese modes, but sufficient research on identi-
fying western modes remains to be seen; the context of judgement technology

c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2021
X. Shao et al. (Eds.): CSMT 2020, LNEE 761, pp. 187–197, 2021.
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for analysing machine-generated artificial music through western modes is a par-
ticularly sparse area of research.

In our previous study, a mode-identification algorithm was designed [4], which
can classify Chinese traditional modes by constructing a decision-making tree
and judging the emotion in Chinese traditional music through identifying modes.
The algorithm is consequently shown to have a fairly high accuracy rate for iden-
tifying traditional Chinese modes, and thus distinguishing whether or not it is
indeed a traditional Chinese mode. While the algorithm’s judgement on tradi-
tional Chinese modes is fairly accurate, it also exhibits effective anti-interference
performance and can successfully identify non-traditional Chinese modes. On
this basis, some scholars have constructed a traditional music mode pattern
based on traditional Chinese music theory [6], matching the traditional Chinese
music modes. The findings indicate that the algorithm has quite a high accuracy
rate in identifying traditional Chinese music modes and can distinguish between
pentatonic and heptatonic modes.

In previous studies, we have proposed CFCS [5], the chord theory constructor
based on the chord construction law and processing logic, and have designed a
dynamic programming algorithm for the automatic composition of chords; this
enables the realisation of mechanised automatic chord composition. Through
experimentation in various cases, the algorithm has been proven to be feasible
and effective.

The article proposes OSC (Occidental Scale Constructor) based on a combi-
nation of research on traditional Chinese modes and CFCS chord composition
function. By constructing the function to conduct mode analysis on monody, the
article will make judgements on machine-generated and artificial music based on
model stability and abnormal mode changes. Due to the subjectivity and territo-
riality of music, the range of the study will be limited to popular music based on
natural major and minor tunes. The processing of modifier notes such as passing
notes, neighbouring nodes, and nonessential notes will not be included.

2 Approach

The main technical issue that the article aims to resolve is the design of an algo-
rithm that can distinguish between artificial and machine-generated music. The
adopted technical proposal is to analyse melodic data through a set of western
mode construction functions and subsequently make the distinction based on
the analytical result.

As shown in Fig. 1, the overall technical pattern of the research can be divided
into three parts. Firstly, decode the MIDI byte through a MIDI preprocessing
module and divide some characteristic series according to specific music rules.
Secondly, analyse the preprocessed files through mode analysis mode to ascertain
whether the melody adheres to basic music rules. Finally, identify the data in the
last module in accordance with a man-machine identification module, to assess
the probability of the melody being either man- or machine-made.
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Fig. 1. The overall technical pattern of the proposed approach

MIDI File Preprocessing. MIDI (Musical Instrument Digital Interface) was
introduced in the 1980s to amend communication issues between electroacoustic
musical instruments, and is currently the most widely accepted music standard
format in the composition world; almost all modern music is created and com-
posed using MIDI. As MIDI files usually contain a large amount of information,
it is essential to preprocess the MIDI data used in our experiments. Preprocess-
ing mainly involves extracting the scale based on the pitch of the MIDI file,
thereby eliminating different interference notes by enumerating the filtration of
characteristic intervals and statistical frequency to improve the accuracy of the
final result.

Fig. 2. MIDI file preprocessing (1)

As shown in Fig. 2, the model mainly uses the music’s abstract information
extracted from the MIDI files for subsequent calculation. It identifies the tracks
in the MIDI (accompaniment, drumbeat, melody, polyphony, etc.) based on the
established rules before classifying the music construction.

After the MIDI is decoded, the model obtains a series of abstract MIDI
information. As demonstrated in Fig. 3, where ‘0’, ‘1’, ‘n’ denotes the order of
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Fig. 3. MIDI file preprocessing (2)

bars, MIDI information is then divided into bars and categorised after data
cleansing through a series of classification layers. Finally, each MIDI track goes
through modal orientation extraction.

2.1 Modal Extractor

Fig. 4. Modal extractor

The modal extractor extracts the possible mode set of each bar of preprocessed
MIDI data through pre-established rules, making bar mode selections regarding
the overall most orientated mode. The most frequently used method for extract-
ing the tendentious set is to match the model exclusion mask based on the
model rule library generated by OSC and deduce the possible model backward
via calculation of the exclusive ones (Fig. 4).

2.2 Modal Rule Library and OSC

Model is a form of organisation structure of music tones with a long-established
history of use in practical music. When describing the concept of model, people
typically take the pivot note of a model, i.e., the keynote, as the starting and
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finishing points. Other notes will be arranged in the form of a scale, based on
the sequence of the pitch. This is known as modes.

The natural major and minor are the most common modes in the western
modal system and in pop music to this day. The article proposes Occidental
Scale Constructor (OSC) and constructs the model rule library based on the
composition system of natural major and minor modes.

Fig. 5. The composition principle of natural major

The Constructor of Natural Major. The natural major is a scale system
consisting of two whole tones, a semitone, three whole tones, and a semitone.
See Fig. 5, where ‘2’ denotes a whole tone and ‘1’ denotes a semitone. Starting
from any note, any scale system that is constructed in accordance with the
aforementioned rules can be called a natural major system.

Based on the rules above, the construction function of the natural major can
be formulated as:

FMajor(S,O) = [S + (O ∗ 12), S + 2 + (O ∗ 12), S + 4 + (O ∗ 12),

S + 5 + (O ∗ 12), S + 7 + (O ∗ 12), S + 9 + (O ∗ 12), S + 11 + (O ∗ 12)].

(1)
Under the mapping relation F (function), S (step) in the function refers to

any given sound level, while O (octave) represents the octave group. The natural
major scale of current group can thus be constructed.

Fig. 6. The composition principle of natural minor

The Constructor of Natural Minor. The constitution system of the natural
minor is a whole tone, a semitone, two whole tones, a semitone, and two whole
tones. See Fig. 6.

According to Eq. (1), the construction function of the natural minor key will
therefore be:

FMinor(S,O) = [S + (O ∗ 12), S + 2 + (O ∗ 12), S + 3 + (O ∗ 12),

S + 5 + (O ∗ 12), S + 7 + (O ∗ 12), S + 8 + (O ∗ 12), S + 10 + (O ∗ 12)].

(2)
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2.3 Mask Remove Algorithm

It is extremely unlikely that the melody of a single bar would exhibit the complete
scale of all models. For example, when there is any black key note, only C natural
major can be excluded while all remaining models can still potentially become
the dominative model of the entire piece. Based on this issue, it is possible
to construct an excluding M (masking) for the melody of a given bar based on
the constitution system of natural major and minor. Conducting model-exclusive
calculations on the pitch is also an option, for the purpose of obtaining all variant
models of the current bar before conducting a systematic analysis on all variant
models and ascertaining the dominative model of the entire piece.

The mask sequence based on the major will be constructed as such:

Mmajor(S,O) = [S + 1 + (O ∗ 12), S + 3 + (O ∗ 12),
S + 6 + (O ∗ 12), S + 8 + (O ∗ 12), S + 10 + (O ∗ 12)].

(3)

Compared with the natural major, the scale of natural minor elevates the fifth
scale on the foundation of the natural major. Consequently, the mask sequence
construction function of minor will be:

Mminor(S,O) = [S + 1 + (O ∗ 12), S + 3 + (O ∗ 12),
S + 6 + (O ∗ 12), S + 7 + (O ∗ 12), S + 10 + (O ∗ 12)].

(4)

If the scale in MMinor (S,O) is not evident in some bars, the affiliated minor of
the major whose key note is S can be adopted as the alternative model of the
current bar.

Under the mapping relation of the M (Mask), with given S (Step) and O
(Octave), the exclusive sequence of the natural major that uses S as keynote
can be obtained. When the pitch of the bar is in this sequence, we can exclude
this model. Taking C natural major as an example, when the model is C natural
major and S =0, then:

Mmajor = [1+(O ∗12), 3+(O ∗12), 6+(O ∗12), 8+(O ∗12), 10+(O ∗12)]. (5)

If in some bars, Pitch-13, it can calculate the scale of O based on the twelve-
tone equal temperament. And when O= 1, then:

Mmajor(0, 1) = [13, 15, 18, 20, 22] (6)

Therefore,

Pitch ∈ Mmajor(0, 1). (7)

According to the above results, it can be concluded that the current bar
does not belong to C natural major. After excluding all impossible models based
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on each bar of the piece in its entirety, the set of all possible models of the
current bar can be obtained. After statistically analysing all alternative models,
the model’s tendency sequence can then be calculated. Based on the model
tendency, it would be possible to filtrate the alternative models of all bars.

Fig. 7. Mode determination

For example, through calculation, it is possible to determine that the model
tendency sequence list of a piece is [C major, G major, D major. . .] and the
alternative model set of the first bar is [G major, A major, E major. . .]. Con-
sequently, if one were to make the choice based on the sequence in the list, the
result would be G major. Likewise, by selecting the model for all bars, the model
tendency of the whole piece would thus be obtained (Fig. 7).

2.4 AI Composition Recognition

One of the most significant features of music is model stability. Although many
musicians commit themselves to breaking the regular model system and discov-
ering new creation techniques, mainstream music currently still adopts the stable
model. Even the modulation or detune obeys certain rules and frequency. For
example, modulation usually occurs between closely related models, as frequent
or distant modulation would influence the stability of the music. Therefore, the
article designs an algorithm to judge abnormal models and consequently attain
the statistics of the abnormal model change, so as to judge the probability of
the music being artificial or machine-made.

Figure 8 illustrates the technological flow chart that can be adopted to judge
man-made or machine-made property through abnormal model change. This
abnormal model change usually takes the form of unconventional modulation or
with uncertain model. For instance, the models of the bars in one melody are
identified as [C, C, C, G, G, E, A, B, F, A, C]. The former five bars are [C, C,
C, G, G]. The transmission from C to G belongs to close modulation, so there is
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Fig. 8. AI composition recognition algorithm

no abnormal model change. However, the models [E, A, B, F, A, C] that follow
it are not closely related; this case can therefore be judged as abnormal model
change. Six instances of abnormal model change can be identified in this melody,
while there are ten instances when the model can be modified. Thus, the output
score of the melody is 6/10 = 0.6.

3 Experiment

The data used are provided by CSMT [7]. The development dataset contains
6000 MIDI files with monophonic melodies generated by artificial intelligence
algorithms. The tempo is between the 68bpm and 118 bpm (beat per minute).
The length of each melody is 8 bars, and the melody does not necessarily include
complete phrase structures. The evaluation dataset contains 4000 MIDI files
with exact configurations of development dataset with two exceptions: 1) A
number of melodies composed by human composers are added, 2) There are a
number of melodies generated by algorithms with minor difference compared to
the algorithms in the development dataset.

Experimental results on CSMT datasets indicate that the score distribut-
tion of the development data is obviously at a low level(Fig. 9), while the score
distributtion of the evaluation data is obviously at a high level (Fig. 10).

We summarize the Area Under Curve (AUC) scores for AI composition recog-
nition on the CSMT evaluation dataset in Table 1. A general observation we can
draw from the results is that our proposed algorithm has achieved good per-
formances and stability across different styles, generation systems and publish
statuses. Significantly, we reach 0.9868 AUC on the melodies generated by GAN.
The overall AUC also proves the effectiveness of our method.

Through experiments on 10,000 samples, our algorithm shows a successful
identification performance on the judgment of man- or machine-made works.
However, complex composing techniques and the evaluation of the time value of
notes are not be included. Under the circumstance of short duration time, the
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Fig. 9. Score distributtion of the development data. The x axis denotes the score,
whereas the y axis denotes the number of examples in the development dataset.

Table 1. Area Under Curve (AUC) scores for AI composition recognition

Taxonomy AUC

Styles Bach 0.7731

Pop 0.7614

Generation systems GAN [8] 0.9868

Transformer [9] (length of initial sequences: 16) 0.7620

Transformer [9] (length of initial sequences: 32) 0.6828

Transformer [9] (length of initial sequences: 64) 0.7346

Transformer [9] (overall) 0.7265

VAE [10] 0.6468

Publish statuses Published 0.7621

Unpublished 0.7709

Overall 0.7626

melody created by human and machine can not be clearly judged by composition
techniques and abstract rules such as musical form structure. A small number
of melody pieces can not be clearly judged even by professionals. However, con-
sidering that the melody itself has a certain flexibility, there is no strict unified
standard, so the experimental results prove that the algorithm is effective and
feasible.
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Fig. 10. Score distributtion of the evaluation data. The x axis denotes the score,
whereas the y axis denotes the number of examples in the evaluation dataset.

4 Conclusion

Starting from the music mode recognition and the essence of the music, the arti-
cle proposes Occidental Scale Constructor based on the CFCS chord construc-
tor. The article also constructs a mode-based music-rule-identifying algorithm
through combining OSC with the mask remove algorithm, which will identify
the mode stability and abnormal mode change, to judge whether the piece is
machine-generated. Experimental results on CSMT datasets demonstrate the
algorithm to have a successful identification ability of machine-generated music.
The algorithm will also provide some technological reference to the benign devel-
opment of the music copyright and artificial intelligent music.
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Abstract. Despite recent achievements of deep learning automatic
music generation algorithms, few approaches have been proposed to eval-
uate whether a single-track music excerpt is composed by automatons or
Homo sapiens. To tackle this problem, we apply a masked language model
based on ALBERT for composers classification. The aim is to obtain
a model that can suggest the probability a MIDI clip might be com-
posed condition on the auto-generation hypothesis, and which is trained
with only AI-composed single-track MIDI. In this paper, the amount of
parameters is reduced, two methods on data augmentation are proposed
as well as a refined loss function to prevent overfitting. The experiment
results show our model ranks 3rd in all the 7 teams in the data challenge
in CSMT (2020). Furthermore, this inspiring method could be spread to
other music information retrieval tasks that are based on a small dataset.

Keywords: ALBERT · Autoencoder · MIDI truncation · Small
dataset

1 Introduction

Methods based on machine learning have been widely proposed for automatic
music generation since significant progress on deep learning. Nowadays, more
and more melodies can be composed by artificial intelligence through using the
pitch and length of the notes in human music as primary inputs to mimic humans
[1–3]. Unlike checking counterpoint in multi-track melodies and evaluation self-
similarity matrix in music structure analysis, few objective algorithms or indi-
cators have been put forward to assess whether a single-track short melody is
created by a machine or a person. Although several attempts has been made,
such as measures from information theory to compare Bach’s music [4], or proba-
bility transfer relation with the N-gram model to compare British and American
folk music melody [3], most of the classification model on composers works are
based on human opinions, namely, the participants listened to a music excerpt
and then judged whether it was composed by a human or an AI [5–8].

However, the result of listening tests might contain individual or group dif-
ferences, which makes them difficult to be compared among different people,
especially when the amount of samples is small. Finding a relatively common
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2021
X. Shao et al. (Eds.): CSMT 2020, LNEE 761, pp. 198–207, 2021.
https://doi.org/10.1007/978-981-16-1649-5_17
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and objective approach to classify the composer of a short piece of melodies in
various musical styles can make different music generation models comparable.
The purpose of this study is to find an objective and effective method to generate
an indicating value of whether a music clip is human-composed by analyzing the
AI-made melodies.

Features extracting is an essential component for music series related tasks.
For the single-track data without chords, there are some methods that rely on
N-gram [3,9]. However, this approach is difficult to model the long-term depen-
dence and the following dependence, and the data is sparse with the exponential
growth of probability as sequence length increases, which leads to poor general-
ization ability. Besides, Bidirectional Encoder Representations from Transform-
ers (BERT, Fig. 1) [10] might be a promising technique except its large amount
of parameters such as learning an embedding for a sequence after parameters
reduction [3].

Fig. 1. BERT uses a bidirectional transformer. [10]

In fact, BERT as a pre-trained models [10–12] has dominated the field of
Natural Language Processing (NLP) in the past two years. This model uses self-
supervised learning to encode contextual information to obtain a powerful and
universal representation. This representation can improve performance, espe-
cially in situations where data for downstream tasks is limited. More recently,
BERT-like models have been applied to speech processing [13–16]. However, such
models usually maintain a large number of parameters in both speech tasks and
text tasks, requiring a large amount of data and memory for training and compu-
tation. Therefore, it might be prone to overfit when pre-training data is relatively
scarce, such as in music related cases.

A Lite BERT (ALBERT) [17] is a simplified version of BERT that shares the
same parameters at all layers and decompose the embedding matrix to reduce
most of the parameters. Although the number of parameters is reduced, the
representation learned in ALBERT is still robust and task agnostic, so that
ALBERT can achieve similar performance to BERT in the same downstream
task [18], thus is also regarded as obtaining characteristics about the input itself.
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In this paper, a masked language model (MLM) which is based on ALBERT
is introduced into MIDI processing and a new self-supervised model is proposed.

The rest of this article is organized as follows. In Sect. 2, the dataset used
in the study is described as well as the data preprocessing and strategies used
for data augmentation. In Sect. 3, the pipeline of the research, the methods on
prevention of overfitting are demonstrated, as well as the detail of the ALBERT
model and the approach to evaluate the probability of each composer. Section 4
covers the main experimental processes and results. The fifth section we have
made the summary and the prospect.

2 Dataset

2.1 Training Data

The data set is provided in the data challenge of Conference of Sound and Music
Technology (CSMT) 2020 [19]. The training data only contains the music gen-
erated by artificial intelligence algorithms which includes 6000 MIDI files. Each
file is single melodic music whose speed is between 68BPM and 118BPM. Each
melody is 8-bar length, without complete phrase structure. In fact, complete
music sentences are always with 8 or 16 bars and this suggests that the start
point of each music excerpt is not the beginning of any music sentences. Besides,
it should be noted that the melodies in the training data set are generated by
several machine models trained with data in two unannounced different music
genres. More information can be found at the website1.

Despite many open source MIDI datasets on the internet such as the one on
reddit with 3.65 GB multi-track MIDI in all sorts of music genre2, the single-track
music clips like what is provided in the data challenge are rare, not to mention
the uncertainty on music genre. As a consequence, it is difficult to extract a
convincing main melody especially condition on similar music range and notes
distribution. Therefore, training did NOT use any human composed data.

2.2 Data Preprocessing

For the specific problem of comparing the similarities of melodies, the rhythm
and pitch are important characteristics, since people usually pay attention to
them when they perceive music melodies [20]. Thus, the MIDI sequence of 8
bars can be segmented into 128 hexadecimal notes or 256 thirty-second notes,
as the speed and the starting and ending time of the notes are marked. Whether
the unit of the 8-bar music is a hexadecimal note or a thirty-second note depends
on the shortest note length in the given MIDI, and there are 256 notes or so in a
music sequence for most of the cases. Considering the fact that it is meaningless
in music to divide a quarter note into twelve equal parts in the vast majority

1 http://www.csmcw-csmt.cn/data/2020/ai-composition-recognition2020/?
from=timeline.

2 https://www.reddit.com/r/datasets/comments/3akhxy.

http://www.csmcw-csmt.cn/data/2020/ai-composition-recognition2020/?from=timeline
http://www.csmcw-csmt.cn/data/2020/ai-composition-recognition2020/?from=timeline
https://www.reddit.com/r/datasets/comments/3akhxy
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of cases, there is no musical necessity to do so except for compatibility with the
relative rarity of triplets and sixteenth notes. Thus, we classify all triplets as
three quavers or three sixteenth notes in the same probability, which leads to
the total length of a music sequence not being 256. Given that the speed of each
music piece is uniformed as the tempo of each music piece is similar to Andrate,
the feature of speed in each MIDI sequence is not taken into consideration. In
this way, each single-track MIDI clip is turned into a pitch sequence.

2.3 Data Augmentation

Although a noticeable amount of parameters has been decreased in ALBERT
relative to BERT parameters, 6000 MIDI data are somehow relatively poor for
training. As a consequence, it is vital to adopt some measures on data augmen-
tation. Unfortunately, data augmentation methods usually used in NLP tasks
[21] can be seldom used in music series processing.

Randomly swapping is a common approach, but the exchange of music notes
may cause non-negligible differences in feeling for a human listener. Music clips
for the composition of humanity, for example several sixteenth notes in a crotchet
or half note exchange with other sounds, could lead to a strange auditory experi-
ence, and let the audience regard the music piece as machine-created. Synonym
replacement is not suitable in a sequence of music analysis, because there is no
specific semantic like natural language for music notes or sequences. Therefore,
it’s hard to define whether two notes are “synonym”. Even replacing the octave
“synonym” is unacceptable in a lyrical semiquaver with a long note, which results
in a clear change in music expressed in human emotion, though little differences
infrequency spectrum. In addition, Random insert and delete run a high risk
which could make melody strange and weird. It is also hard to change the music
from major mode to minor mode for augmentation because the mode is hard
to find with only single-track especially without music sentences in it. More-
over, the tempo change augmentation can be hardly used either as the tempo is
already uniformed. So we proposed two methods to augment data.

Transposition. The first data augmentation measure taken in our research is
transposition in music tunes. Since music does not make a significant difference,
at least not in the respect whether it is generated by human beings or artificial
intelligence if it is just changed in music mode.

Each time, a transposition raises or lowers all the notes in the same pitch
sequence by a same random music interval. All the positions the MIDI clips
might be transposed to is restricted by both the MIDI range 128 and the music
range, that is the highest note subtract the lowest note. The number of cases for
a certain music piece num is as follows, including zero transposition:

num = 128 − highest + lowest + 1. (1)
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Fig. 2. Data augmentation approaches: transposition and random truncation

Each MIDI transposition is implemented with the same possibility to all the
cases. In this way, several relatively same melodies in different music tunes are
generated by the transposition data augmentation.

Random Truncation. In addition, BERT’s training results contain position
embedding and thus absolute position information [22], for example the word at
the beginning of the sentence may be regarded as the subject of the sentence.
But the dataset neither includes complete phrase information nor cadence in
multi-track, therefore, some location information in the training set retained by
BERT belongs to some kind of over-fitting. In order to give up this information,
we randomly delete the first few notes of each pitch sequence for the model.

3 Methods

The pipeline of our model is shown in Fig. 2. First of all, the training set will
undergo a data preprocessing part as described above and be expanded by the
two data augmentation approaches. Secondly, a MLM task based on ALBERT is
trained with refined loss function for an autoencoder on the expanded training
set. Lastly, the trained model will be used for evaluation.

3.1 Avoid Over-fitting

Since there is only machine-generated data used and no data on human com-
position, it is still easy to overfit even after data augmentation. To cope with
this problem, several additional measures have been taken to prevent from data
overfitting.

Refined Loss Function. Some studies have shown that slight adjustment of
the loss function l can prevent overfitting greatly [23]:

lnew = |lorigin − b| + b, (2)
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Fig. 3. Flow chart of data processing

where b is a little positive real parameter which is problem related. The model
is trained with the refined loss function and b is set to 0.05 which is a magic
number in some NLP tasks to prevent from pursuing zero-value of original loss
function but only to a close-zero value.

Smaller Transformer. The number of parameters in the BERT model is
extremely large. Even in the ALBERT model using shared parameters, the num-
ber of parameters can easily lead to overfitting on such a small dataset. Therefore,
on the basis of retaining the structure of ALBERT, the dimension of embedding
is 64, the number of multi-layers is set to 2 as well as the number of multi-head
is 4. As a result, the amount of parameters of ALBERT is reduced significantly
to around 103.6k, thus avoiding potentially overfitting on the training set.

3.2 Training Method

There are two important tasks of Bert’s training process [10]: Masked Language
Model (MLM) and Next Sentence Prediction (NSP). However, the NSP task is
not necessary in this problem, because the training set does not include complete
phrase information. Actually, it will be hard to divide notes into several phrases.
On the contrary, MLM is suitable to tackle this problem.

We hope that the AI composing algorithms used in the dataset which is
relatively certain can be fitted through the coding representation obtained by
the more “universal” ALBERT with a large number of parameters. Some items
of the MIDI sequence is masked and predictions are made on each of the masked
note position based on the corresponding embedding vector learned by ALBERT.
Such predictions might be closer to the results of some of the AI composers than
to those of humans. Assuming that the music was composed by an algorithm
fitted by the ALBERT model, the average “probability” of each masked note
being the same as its ground truth note can be seen as the “P-value” indicating
whether it was created by AI and the hypothesis shall be accept or reject.
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Note that ALBERT training will randomly mask N-grams to make predic-
tions [17]. If the masking happens to cover a whole bar or a whole chord formed
by adjacent notes, the notes masked are difficult to be effectively predicted.

After comprehensive consideration, the MLM task is the only used task for
training. Each time, about 15% of the elements has been randomly masked
in a pitch sequence, and then use the other elements not masked to predict
the elements that have been masked. Selecting 15% notes can ensure that the
essential music components are not masked, so that the model can produce
effective prediction, and random selection can avoid overfitting to a certain extent
as well. And the softmax cross-entropy is used as the loss function of the model
to evaluate the distance between the one-hot vector ground truth and the 128
dimensions vector representing the probability of being each of the 128 MIDI
notes, followed by the process mentioned above to refine the loss.

3.3 Evaluation

When evaluating, for a pitch sequence, each note will be masked successively.
Then, the probability pi of the ith masked note is predicted by the trained
ALBERT, and the average probability of all notes is the probability that this
data is composed by AI. Formally, the number of notes in this pitch sequence is
denoted as n, and suggests the probability of AI generating is as follows:

p =
1
n

n∑

i=1

pi (3)

Thus, the probability of each data created by humans, which this task required,
can be obtained by 1 − p.

4 Experiment

4.1 Data Setup

Based on the Albert model, the autoencoder model is trained with MLM tasks
on the dataset provided by CSMT (2020) after augmenting. Both data aug-
mentation strategies mentioned above are used for all the data in the training
set.

Firstly, we use pretty midi [24] reads the data in and then preprocesses it. For
a pitch sequence after preprocessing, 31 different transpositions are generated
including the case remaining the same. And16 of them are implemented with
different values of random truncation range in 1to 100. Due to the fact that
there are only 12 different modes in an octave and the limitation of computing
resources, the size of the augmentation is not extremely large and only part of
them are used for training. Therefore, the size of the training set is expanded to
186000, which is enough for training on the small ALBERT.
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4.2 Environment and Hyper Parameters

Under the good parameter control strategy, the Albert is able to be deployed
on a GTX 1050Ti NVIDIA graphic card. Pytorch [25] and Hugging Face [26]
are used in the process of building and training the algorithm. The small batch
size is 64 and the default learning rate is 10−3 with AdamW optimizer [27]. The
parameter b mentioned is set as 0.05. Because there is no ground truth in the
test set, we can not carry out the ablation experiment, the selection of hyper
parameters is all based on past experience.

4.3 Experiment Result

The data challenge uses the average under receiver operating characteristic curve
(AUC) as an indicator for each model performance. The overall performance of
AUC is 0.6821 which is rank 4th in the 9 models including the baseline model
and rank 3rd in all of the 7 teams that finished the data challenge.

The details of the result are shown in the following table (Table 1, Table 2
and Table 3).

Table 1. The AUC of test data in different music style

Style AUC value

J.S. Bach 0.6984

Pop song 0.6673

Table 2. The AUC of test data composed by different AI algorithm

Algorithms AUC value

GAN 0.7458

Transformer 0.7811

VAE 0.3210

Table 3. The AUC of test data composed by human

Category AUC value

Published 0.6895

Unpublished 0.5404

The AUC values of different music styles do not show significant difference,
which implies our model may keep an objective evaluation among different music
styles. Furthermore, the result of VAE composed is extremely low, even worse
than the random guess. Although the test data is not published and audios can
not be listened for finding some missing patterns, this phenomenon deserves
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more attention. Finally, the unpublished result is a bit lower than the published
data. This might be caused by the relatively small number of unpublished data
and these data are composed by conservatory students instead of composers like
Bach and these might keep some difference with each other.

5 Conclusion

In this paper, we proposed an autoencoder approach based on ALBERT with
the aim to set up an indicator to reject the hypothesis that the music excerpt
is composed by machine. The ALBERT model is trained self-supervised with a
MLM to mimic the AI-composer. Experimental results confirmed that the brand-
new method outperforms some of other algorithms and rank 3rd and shows little
difference in two music styles. Besides, we found the model performance on VAE
models is extremely low, therefore, deserve more attention.

Our model provides a meaningful approach and can be spread to similar tasks
with small dataset. However, there are several problems unavoidable as well. To
begin with, the whole semantics of the encoder is hard to be understood as the
performance on some of the models is relatively high and others are extremely
low, which suggest the obvious uncertainty on there liability of the workflow.
In addition, the indicator in our model based on the encoder works in the way
of p-value and keeps some weakness by nature. Some good music pieces may
have high probability to be composed by both human composers and artificial
intelligence and other weird MIDI clips might be low possibility to be composed
by both homo sapiens and automatons. These unsolid pseudo p-values shall be
avoided or be implemented in great caution when it is spread to other tasks if
there are some data in another class.
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