
3Applications of Software Implementations
of P Systems

3.1 Introduction

Since the introduction of membrane computing in 1998 [49], there has been a rapid
theoretical development in this area with respect to computing models and their
computing power and computational efficiency [50, 51]. Moreover, numerous real-
world applications of membrane computing models [72,76,77] have been reported.
P systems can perform specific tasks such as solving an NP-hard [48], NP-complete
[37, 62], or PSPACE-complete problems [1], control language generation [63, 75],
controlling robots [79], heuristic optimization problems [27, 71, 73], and arithmetic
operation [78]. These tasks were accomplished manually, instead of by means of
automatic design. The manual implementation of membrane computing models has
some drawbacks. For example, it could be time-consuming, tedious, and impossible
to implement large-scale systems. It limits the application scope of P systemmodels.
Therefore, the question on how to automatically design a P system by using
programs, namely, the programmability of a P system, has become an urgent and
attractive research direction in the area of membrane computing [74].

The automatic design of a P system is a very complicated and challenging task
[70, 80]. There has been many works focused on the use of evolutionary algorithms
to make a population of P systems evolve toward a successful one [34, 72]. These
works start with the selection of an appropriate subset from a redundant set of
evolution rules to design a cell-like P system, where a membrane structure and initial
objects were predefined and fixed in the process of design [7,23,28,66,72]. In [23],
a genetic algorithm was used to design a P system to calculate 42. In [28], a binary
encoding technique was presented to denote an evolution rule set of a P system, and
a quantum-inspired evolutionary algorithm (QIEA) was used to make a population
of P systems evolve toward successful ones. This method successfully solved the
design of P systems to compute 42 and n2 (for natural numbers n ≥ 2). In [66],
an evaluation approach considering nondeterminism and halting penalty factors and
a genetic algorithm with the binary encoding technique in [28] were introduced to
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design P systems for computing 42, n2, and the generation of language {a2n
b3

n |n >

1}. In these studies mentioned above, a specific redundant evolution rule set was
designed for a specific computational task. This was developed in [7,72] by applying
one predefined redundant evolution rule set to design multiple different P systems,
each of which executes a computation task. In [7], an automatic design method
of a cell-like P system framework for performing five basic arithmetic operations
(addition, subtraction, multiplication, division, and power) was presented. In [72], a
common redundant set of evolution rules was applied to design successful P systems
for fulfilling eight computational tasks: 2(n − 1), 2n − 1, n2, 1

2 [n(n − 1)], n(n − 1),
(n − 1)2 + 2n + 2, a2

n
b3

n
and 1

2 (3
n − 1), (n > 1 or 2). In [21, 31], the automatic

design of SN P systems is discussed.
This chapter is organized in the following manner: Sect. 3.2 discusses automatic

design of cell-like P systems with P-Lingua, Sect. 3.3 discusses automatic design
of spiking neural P systems with P-Lingua, Sect. 3.4 discusses modelling real
ecosystems with MeCoSim, and Sect. 3.5 discusses robot motion planning.

3.2 Automatic Design of Cell-Like P Systems with P-Lingua

In this section, some preliminaries are first provided. An automatic design approach
with a genetic algorithm (GA) for a cell-like P system through tuning membrane
structures, initial objects, and evolution rules is discussed. Next, an automatic design
method with a permutation penalty genetic algorithm (PPGA) for a deterministic
and non-halting membrane system by tuning membrane structures, initial objects,
and evolution rules is discussed.

3.2.1 Preliminaries

3.2.1.1 Alphabet andMultisets
An alphabet � is a non-empty set, and their elements are called symbols. A string
u over � is an ordered finite sequence of symbols, that is, a mapping from a natural
number n ∈ N onto �. The number n is called the length of the string u, and it is
denoted by |u|. The empty string (with length 0) is denoted by λ. A multiset over
an alphabet � is a mapping f from � onto the set of natural numbers N. For each
symbol a ∈ �, the natural number f (a) is called the multiplicity of symbol a in
multiset f . We denote by M(�) the set of all multisets over �.

3.2.1.2 Rooted Tree
An undirected graph G is an ordered pair (V ,E) where V is a set whose elements
are called nodes and E = {{x, y} | x, y ∈ V, x �= y} whose elements are called
edges. A path of length k ≥ 1 from x ∈ V to y ∈ V is a sequence (x0, . . . , xk)

such that x0 = x and xk = y. If x0 = xk , then we say that the path is a cycle.
An undirected graph is connected if every pair of nodes is connected by a path. An



3.2 Automatic Design of Cell-Like P Systems with P-Lingua 33

undirected graph with no cycle is said to be acyclic. A rooted tree is a connected,
acyclic, undirected graph in which one of the vertices (called the root of the tree) is
distinguished from the others.

3.2.1.3 Cell-Like P System/Transition P System
1. A cell-like P system with a hierarchical membrane structure can be formally

represented as � = (V ,O,μ,W,�, io) [49], where
(a) V is the (finite and non-empty) alphabet of objects.
(b) O ⊆ V is the output alphabet, namely, the set of output objects.
(c) μ is a hierarchical membrane structure withm ≥ 1 membranes labeled by the

elements of a given set H , H = {0, 1, . . . , m − 1}, and the skin membrane
is labeled as 0. The hierarchical membrane structure can also be depicted
through a rooted tree.

(d) W is the vector of initial multisets w0, . . . , wm−1 over V associated with the
regions 0, 1, . . . , m − 1 delimited by the membranes of μ, namely, W =
[w0, . . . , wm−1].

(e) � is the set of finite sets R0, . . . , Rm−1 of evolution rules associated with
the regions 0, 1, . . . , m − 1 of the membrane structure μ, namely, � =
{R0, . . . , Rm−1}. Three types of evolution rules, rewriting, dissolution, and
rewriting-communication rules, are considered in this study. That is, Ri

(i = 0, 1, . . . , m − 1) has rules of one of the following forms:
(i) rewriting rule: [u → v]i ;
(ii) dissolution rule: [u]i → v;
(iii) rewriting-communication rule: [u]i → [v]ix;
where i ∈ H ; u ∈ V ; v, x ∈ V ∗; where V ∗ denotes the set of all strings
over V . The left-hand side of these rules is u, and the right-hand side of
them is v or v, x. The length of u is called the radius of each rule. The
rewriting rule [u → v]i rewrites u by v. The dissolution rule [u]i → v

dissolves the compartment i, and its content is transferred to the surrounding
membrane after all the other rules have been applied, and u is replaced by v.
The rewriting-communication rule [u]i → [v]ix rewrites u by v inside the
compartment i and, at the same time, sends x outside the compartment.

(f) io is the output membrane of �.
2. The system is called noncooperative if the length of the object in the left-hand

side of an evolution rule is one.

The multisets associated to regions form a configuration of the P system. The
computation begins by treating the initial multisets, wi , 0 ≤ i ≤ m − 1, and then
the system will go from one configuration to a new one by applying the evolution
rules associated to regions in a deterministic and maximally parallel way, that is,
all the objects that may be transformed or communicated must be dealt with. The
system will halt when no more rules are available to be applied. A computation is a
sequence of configurations obtained as it is described above, starting with the initial
configuration and ending with the configuration when the system halts. The result
of a computation, a multiset of objects, is obtained in the output region, io.
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Sometimes cell-like P systems are of the form � = (V ,O,μ,M0, . . . ,Mm−1,

(R0, ρ0), . . . , (Rm−1, ρm−1), io), where M0, . . . ,Mm−1 are multisets over O;
R0, . . . , Rm−1 are rules associated with membrane 0, 1, . . . , m − 1, respectively;
and ρ0, . . . , ρm−1 are the partial order relations associated with the rules in
R0, . . . ,Rm−1. The ρi provides priorities between rules in Ri , in such a manner
that if (r1, r2) ∈ ρi we say that rule r1 has a higher priority than r2, and we denote
it by r1 > r2;

3.2.2 Automatic Design of P Systems with an Elitist Genetic
Algorithm

In this subsection, automatic design approach for a cell-like P system through tuning
membrane structures, initial objects, and evolution rules is discussed. In this method,
a binary encoding technique is used to codify the P system with variable membrane
structures, initial objects, and evolution rules; an elitist genetic algorithm is applied
to evolve a population of P systems toward a successful P system for fulfilling a
specific task, the calculation of the square of 4 [47]; an effective fitness function is
employed to evaluate each candidate P system by a using P-Lingua simulator [58].

3.2.2.1 Problem Statement
Automatic design of cell-like P systems through tuning membrane structures, initial
objects, and evolution rules [47] is performed by advancing the design of a cell-like
P system step-by-step. While performing the task, a family of membrane systems

∏

of P systems, that is,
∏ = {�i}i⊆N , where N is the set of natural numbers and each

P system �i has the structure �i = (V , μ,W,R, io), where V is a predefined
alphabet of objects; μ is a hierarchical membrane structure with m membranes
labeled by the elements of a given set H , H = {0, 1, . . . , m − 1}, and the skin
membrane is labeled as 0; W is the set of initial multisets w0, . . . , wm−1 over V

associated with the regions 0, 1, . . . , m − 1 of μ, that is, W = {w0, . . . , wm−1};
R is the set of evolution rule sets R0, . . . , Rm−1 associated with the regions
0, 1, . . . , m − 1 of μ, that is, R = {R0, . . . , Rm−1}. In order to perform the task
of automatic design, μ, W , and R need to be designed. Moreover, only the rewriting
and dissolution rules are considered in this design, and i0 = 0 implies that the output
result is inside the skin membrane.

Considering a family
∏

of P systems,
∏ = {�i}i⊆N , where each P system �i

has a variableμ,W , andR, whereμ,W , andR are attained by using an optimization
approach. W and R coming from the alphabet V are generated in the process of
design.

3.2.2.2 DesignMethod
The general steps of the design method can be summarized as follows:

Step 1 Design of membrane structure μ: A hierarchical membrane structure with
m membranes is considered in the cell-like P systems.
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Step 2 Definition of an alphabet V : As usual, a certain number of letters from
English alphabet is chosen so that it satisfies the requirement of initial objects wi

and evolution rules Ri .
Step 3 Design of evolution rule set R: The evolution rule set R is obtained by

using a genetic algorithm, where the maximal number of evolution rules in Ri , that
is, the length of Ri , and the types of evolution rules are considered.

Step 4 Design of initial object set W : The initial objects inside each membranewi

(i = 0, 1, . . . , m−1) are obtained by using a genetic algorithm, where the maximal
number of initial objects inside each membrane wi (i = 0, 1, . . . , m− 1) need to be
prescribed.

Step 5 Design of a genetic algorithm: This step has to consider four points: (1) an
encoding technique for membrane structure μ, evolution rule set R or �, and initial
object set W ; (2) a fitness function for evaluating a candidate P system; (3) the
choices of selection, crossover, and mutation operators; and (4) parameter setting.

The details are described as follows:

(1) The encoding techniques for initial object set W , evolution rule set �, and
membrane structure μ are as follows.
(a) Encoding W : In a cell-like P system, encoding of an object in V is

introduced and then turn to the representation of each initial object set wi

(i = 0, 1, . . . , m − 1) and the initial object set W . Suppose the alphabet
V = {a0, a1, . . . , ano−1}, where no is the number of objects in V . In the
genetic algorithm, a binary string with n (n = ceil(log2 no) bits (0 or 1)
is used to represent the object aj (j = 0, 1, . . . , no − 1), where the ceil
function returns the smallest integer value that is greater than or equal to
the number log2 no. In this representation of each object, if the number of
objects in V is less than 2n, then (2n − no) copies of the empty set λ are
inserted into V . For example, if V = {a, b, c, z1, z2, z3, z4}, then the binary
string with 3 bits is used to represent each object in V . Thus, the codes
corresponding to each object can be listed as follows:

000 → a, 001 → b, 010 → c, 011 → z1
100 → z2, 101 → z3, 110 → z4, 111 → λ.

Thus, the initial object setW can be encoded,W = {w1, . . . , wm}, where
wi (i = 0, 1, . . . , m − 1) is the initial object set in the ith membrane and is
composed of a certain number of copies of each object in V . So the maximal
number is limited, denoted by nwi

(i = 0, 1, . . . , m−1) of copies of objects
for each wi in the design of a P system. Therefore, the initial object set wi

in the ith membrane can be represented by using a binary string with nnwi

bits, and consequently, W is denoted by using a binary string with LW bits,
where

LW =
m−1∑

i=0

nnwi
. (3.1)
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That is, W is obtained by concatenating wi (i = 0, 1, . . . , m − 1) one
by one. For example, if V = {a, b, c, z1, z2, z3, z4}, W={w0, w1}, nw0 = 2,
and nw1 = 2, W is represented by applying 12 bits. W=000000011111
means that w0 = a2 and w1 = z1.

(b) Encoding �: Considers two types of evolution rules, that is,
[lef tObSet → rightObSet]label

[lef tObSet]label → rightObSet

where lef tObSet and rightObSet are the multisets of objects selected
from the alphabet V ; label represents the label of a membrane, that is, the
location of the evolution rule. The value of label needs to be preset. The
first rule is a transition rule, and the second one is a dissolution rule. So a
multi-tuple (lef tObSet, rightObSet, dissolution) is used to represent an
evolution rule, where dissolution is a binary bit, that is, ‘0’ or ‘1’, where ‘0’
and ‘1’ representing the rule will be dissolved or not. The encoding methods
of lef tObSet and rightObSet are the same as in wi . So the binary string
concatenating the three strings lef tObSet , rightObSet , and dissolution

represents an evolution rule. For example, if V = {a, b, c, z1, z2, z3, z4},
label = 1, the length of lef tObSet equals 1, and the length of rigthObSet

equals 2, an evolution rule can be denoted as a binary string with 13 bits.
The string 0000010101111 means r1 ≡ [a]1 → b.

Thus, the evolution rule set R, R = {r1, r2, . . . , rnR
} is encoded, where

nR is the number of evolution rules in R. If an evolution rule is represented
by using a binary string with Lr bits, the evolution rule set R can be
represented as a binary string with nR Lr . For example, if R = {r1, r2},
where r1 ≡ [a]1 → b and r2 ≡ [a → bc]1, the evolution rule set R can be
denoted as 00000101011110000010100010, that is, R = {[a]1 → b, [a →
bc]1}.

In this case, the membrane structure μ is fixed, and a candidate P system
can be represented as the binary string concatenating W and R, that is, the
string with LW + nRLr binary bits.

(c) Encoding μ: The hierarchical membrane structure of a cell-like P system
can be represented as a tree structure, where each of the membranes
except for the skin membrane has a parent membrane. For example, if
μ = [

[[]2]1
]
0, the parent membranes of the membranes with the label 2 and

1 are the membranes labeled as 1 and 0, respectively. The skin membrane
in a cell-like P system is the outermost membrane. So only the codes of the
rest (m − 1) membranes are considered. In this section, a parent membrane
encoding method to represent a membrane structure is introduced. Suppose
that a cell-like P system has m membranes labeled as 0, 1, . . . , m − 1.
The symbol nm (nm = ceil(log2 m) binary bits (0 or 1) is used to encode
each of the m − 1 membranes, where the ceil function returns the smallest
integer value that is greater than or equal to the number log2 m. The code
of each membrane refers to the label of its parent membrane. Thus, the
membrane structure μ can be represented by using a binary string with
(m − 1)nm bits. In this representation of a membrane structure, if the
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number of membranes in μ is less than 2nm , the membrane structure with
m membranes is extended to the new structure with 2nm membranes, where
the last (2nm − m)membranes are represented by using the empty set λ. For
example, if a cell-like P system has four membranes, μ is represented by
applying six binary bits. Thus, the string 000010 means μ1 = [[ ]1[[ ]3]2]0,
and the string 000000 corresponds to μ2 = [[ ]1[ ]2[ ]3]0. It is worth noting
that this representation of μ may result in unfeasible membrane structures.
So the traversal of a tree is applied to check whether a candidate membrane
structure is feasible or not. Each of the three traversal approaches, preorder,
inorder, and postorder traversal, can effectively solve this problem.

In this case, a candidate P system can be represented as the binary string
concatenating the codes of μ, W , and R, that is, the string with LW+nR

Lr+(m − 1)nm binary bits.
(2) The fitness function with penalty items is used to evaluate a candidate P system.

The model of the fitness function is described as follows:

f itness = f itness + f (μ) + f (W) + f (R) + f (Halt) (3.2)

where f (W) is the penalty term of the undesired properties in the initial objects
set, that is, when W contains redundant objects, an extra punishment is needed
to the fitness function; f (R) is the penalty term of the undesired properties in
the evolution rules set. Four undesired properties are considered, and they are
as follows: (1) The dissolution rule is a structural rule, and it is applied at most
once per step. If R contains more than one dissolution rules in one membrane,
the simulation will report errors. In order to avoid this kind of errors, a fitness
function value with penalty term is directly returned to stop the simulation. (2) If
R contains nondeterministic rules, the fitness function value with penalty term is
directly returned. (3) A candidate P system contains useless rules: If a candidate
P system contains a useless rule, then it will be added to a penalty term with
η. (4) A candidate P system contains evolutionary rules which cannot forward
the calculation process. f (Halt) is the penalty term of the non-termination
property, that is, if a candidate P system is not in a halting configuration, an
extra punishment is added to the fitness function. If a candidate P system cannot
satisfy the desired properties, a penalty term is added to the fitness function
to reduce the probability of the selection in the candidate population. So the
genetic algorithm can gradually remove the undesired candidate P systems.
f (μ) is the penalty term of the undesired properties of the membrane structure.
If a candidate P system has an invalid membrane structure, it cannot satisfy the
basic syntax of the membrane systems. So in order to make error in the process
of simulation, a penalty term is returned to stop its simulation in P-Lingua. The
evaluation method is shown in Fig. 3.1.

In the evaluation method, the selection of these constants is based on the
designers’ experience, the experimental results, and some investigations such as
in [66].
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Evaluation method

fitness 0
Load the P system corresponding to the current chromosome

NondePairs number of rule pairs with the same left hand side
DisRuleNum number of dissolution rules in a membrane
UselessNum number of useless initial objects in the process of the simulation
UselessRule number of useless rules in the process of the simulation
NotEvoRule number of not evolutionary rules in the simulation
UselessMemSructure the value represents that the membrane structure is error
if (( 0NondePairs )||( 0UselessMemSructure )||( 1DisRuleNum )) then

fitness NondePairs + DisRuleNum UselessMemSructure

return fitness

else

{the P system is deterministic so we need to simulate only computation}

step 0
while ((P system is not a halting state) ( step MaxSteps ) )do

evolve one step(move to the next configuration of the P system)
step step+1

end while
if P system is in a halting configuration then

fitness fitness +| _simulation result _desired result |

else
fitness fitness +| _simulation result _desired result |+ 1

end if

if 0fitness then
fitness fitness + 2UselessNum + 2NotUseRule + 2NotEvoRule

end if

return fitness

end if

−

−

^

Fig. 3.1 Evaluation methods. From [47]
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(3) In this section, JGAP-Java Genetic Algorithms and Genetic Programming
Package [43, 44] are used. The genetic algorithm applies an elitist selection
operator, a single-point crossover operator, and a uniform mutation operator.

(4) There are four parameters in the genetic algorithm, and they are represented
as a parameter set Pa_set where Pa_set = {Np, Pc, Pm, I terNum}, Np, Pc,
Pm, and I terNum are the population size, the crossover rate, the mutation rate,
and the maximal number of evolutionary generations in the genetic algorithm,
respectively.

P system
∏ = {V,μ,W,R, io} is considered, where the membrane structure

consists of four membranes, and the skin membrane is labeled 0; the alphabet V =
{a, b}; io=0; W={w0, w1, w2, w3}, R = {R0, R1, R2, R3}, and μ are obtained by
using JGAP. The parameters are assigned as follows: nw0 = nw1 = nw1 = nw1 = 1;
nR = 4, that is, the evolution rule set R consisting of four rules. In the experiment,
each of R0, R1, R2, and R3 consists of only one rule. The maximal number of
objects in the lef tObjSet and lef tObjSet of each rule are 1 and 4, respectively.
According to the referring existing literature [66] and the design rules, the rest of the
parameters in the experiments are set as follows: m = 4, n = 2, LW = 8, LR = 44,
δ = 25, η1 = 1, η2 = 1, and MaxSteps = 25.

In the following description, at first, the choices of the mutation rate Pm, the
crossover rate Pc, the population size Np, and the maximal number I terNum of
evolutionary generations in the genetic algorithm are discussed, and then the result
of this design is provided.

In the experiments, the parameter sets for Pm, Pc, Np, and I terNum are set as
follows:
Pa_setPm = {30; 0.1; {0.01, 0.05, 0.1, 0.125, 0.2, 0.25, 0.35, 0.5, 1.0}; 300}

for Pm; Pa_setPc = {30; {0.01, 0.05, 0.09, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8
, 0.9, 1.0}; 0.1; 300} for Pc; Pa_setNp = {{10, 20, 30, 40, 50, 60, 70}; 0.1;
0.1; 300} for Np; Pa_setI terNum = {30; 0.1; 0.1; {50, 100, 150, 200, 250,
300, 350, 400}} for I terNum.

Experimental results for the discussion of the four parameters are shown in
Fig. 3.2, where the successful rate refers to the ratio of the number of successful
computations to 100 independent runs; the average generation is the average of the
evolutionary generations over 100 independent runs when the algorithm stops for
each test, and the total number of function evaluations refers to the total number of
the fitness function evaluations for candidate P systems in 100 independent runs.

Figure 3.2a shows that the highest successful rate and the lowest average
generation are obtained when the value of Pm equals 0.100. Figure 3.2b shows that
the best results of the successful rate and the average generation are obtained when
Pc = 1.0. In Fig. 3.2c, when the value of Np is greater than 30, the success rate
arrives at 100%, while the best result of the total number of function evaluations is
achieved when Np=30. According to the results in Fig. 3.2d, as I terNum increases
from 50 to 400, the elapsed time per run gradually goes up; on the other hand, the
success rate arrives at 100% if I terNum is equal to or greater than 300. Therefore, it
is better to assign Pm, Pc, Np and I terNum as 0.100, 1.0, 30, and 300, respectively.
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Fig. 3.2 Experimental results for the four parameters. From [47]. (a) Mutation rates. (b)
Crossover rates. (c) Population sizes. (d) Evolutionary generations

In the design of a cell-like P system for calculating the square of 4, Pa_set
= {30; 0.1; 1.0; 300}. Next 1000 independent runs are performed, and it obtains
100% success rate. The introduced design approach obtains 65 different variants of
cell-like P systems for successfully fulfilling the computation of 42. Their details can
be referred to [47]. The design method obtains different solutions having different
initial objects and evolution rules sets, due to the randomness of the selection of
objects, the rules, and the membrane structure.

3.2.3 Automatic Design of P Systems with a Permutation Penalty
Genetic Algorithm

In this section, an automatic design method, that is, permutation penalty genetic
algorithm (PPGA), for a deterministic and non-halting membrane system generating
the set {n2|n ≥ 1} of natural numbers, by tuning the syntactical ingredients
consisting of membrane structures μ, initial objects W , and evolution rules �
[74] is discussed. The design approach is described in detail. And then a cell-like
membrane system for computing the square of n (n is a natural number) is presented.

To design a P system with the prescribed requirements, it is necessary to consider
the following three points: representation of a P system, evaluation of a candidate



3.2 Automatic Design of Cell-Like P Systems with P-Lingua 41

P system, and evolution of a family of P systems toward the expected result. In
this section, a P system permutation encoding representation, a penalty function
evaluation of a candidate P system, and a genetic algorithm for the P system
evolution toward the expected result are discussed. At first, three techniques are
presented, and then the design method to provide an algorithmic elaboration is
summarized.

1. Representation of P Systems
The permutation encoding technique [60] is used to codify a P system. The
representation of a P system consists of the encoding approaches for the alphabet
V , its membrane structure μ, the initial multiset vector W , evolution rules set �,
and an individual chromosome corresponding to a candidate P system. Next, these
approaches are discussed one by one.

(a) Encoding of V
Suppose that there are NV objects (letters), and the NV strictly positive integers

are used to represent the objects and 0 to denote the empty set λ. Thus, V is encoded
as an ordered string of numbers, namely, “01 . . . NV ”. For instance, if V = {a, b, c},
its codes are “0123”.

(b) Encoding of μ
The hierarchical membrane structure of a cell-like P system can also be denoted

as a rooted tree. Thus, the label of the parent (the neighboring outer membrane, like
the parent of a node in a tree) of each membrane can be used to form an ordered
string to represent a P system structure. It is worth noting that the skin membrane is
not considered in the string because it is the outermost membrane in the structure.
Thus, the hierarchical membrane structure of the P system with Nμ membranes is
represented with a string with (Nμ − 1) numbers. For example, the structure in
Fig. 3.3 can be represented as the codes “0001136”.

(c) Encoding of W
Each element wi , i = 0, 1, . . . , m − 1, of the vector W are strings over V .

The encoding approach of W is designed according to the encoding technique of V .
Suppose that the largest number of objects inwi isNwi

, sowi needsNwi
codes, each

of which may be 0, 1, . . . or NV . The codes of W can be obtained by concatenating

Fig. 3.3 An example for a
cell-like P system membrane
structure and its associated
tree. From [60,74]

0

1
4

5

2 3
6

7 1 2 3

0

6

7
4 5



42 3 Applications of Software Implementations of P Systems

the string of wi , i = 0, 1, . . . , m − 1, and a separator symbol NV + 4 is used to
delimit the codes of wi and wi+1, i = 0, 1, . . . , m − 2. Thus, the total number LW

of codes for W is

LW =
m−1∑

i=0

Nwi
+ m − 1 (3.3)

For example, W = [w0, w1, w2] is the initial multiset vector of a P system. Nw0=λ,
Nw1=aa, Nw2=bbcc. Thus, LW=9 and the string for encoding W is “071172233”.

(d) Encoding of �
The left-hand side u and the right-hand side v of the rule (rewriting, dissolution,

or rewriting-communication rule) are elements of V and V ∗, respectively. On the
basis of the representation of V , the set � is encoded. Suppose that the number of
rules in Ri is NRi

, i = 0, 1, . . . , m − 1, and the largest numbers of objects in the
left-hand side u and in the right-hand side v of a rule are Nl and Nr , respectively.
Thus, Nl codes are used, each of which may be 1, 2, . . . , or NV , Nr codes, each
of which may be 0, 1, . . . , or NV , and additional one code to describe its rule type
(here we use NV + 1, NV + 2, and NV + 3 to denote a rewriting, dissolution, and
rewriting-communication rules, respectively) to encode a rule. Thus, the code length
LRi

for the rule is Nl + Nr + 1, that is, LRi
=Nl + Nr + 1. The codes of � can be

gained by concatenating the string of each rule and by using a separator symbol
NV + 5 between Ri and Ri+1, i = 0, 1, . . . , m − 2. So the total code length L� of
the set � is

L� =
m−1∑

i=0

(NRi
∗ LRi

) + m − 1 (3.4)

It is worth noting that the dissolution rule is a structural rule, which is
applied at most once at each step of a P system evolution, and rewriting
and rewriting-communication rules can be normally applied in a maximally
parallel mode. For instance, the set �={R0, R1, R2} is encoded as the string
11124233481334221681235" where R0 = {[a → aab], [b → cc]}, R1 = {[a →
cc], [b] → [b]a}, and R2 = {[a] → bc}.

(e) Encoding of a P System
Next, a P system through tuning membrane structure, initial objects, and

evolution rules is designed where the codes for the P system can be attained by
sequentially concatenating the codes ofμ,W , and�, and a separator symbolNV +6
to enable the separation of the codes of μ, W , and �. The encoding of a P system
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Fig. 3.4 The initial
configuration of �e (with
rules included). From [74]

has been illustrated using the following example. Consider the following P system
�e = (V ,O,μ,W,�, io) where

1. V = {s, a, b};
2. O = {s};
3. μ = [[[ ]2[ ]3]1]0;
4. W = [w0, w1, w2, w3], w0=λ, w1 = b, w2 = a, w3 = b;
5. �={R0, R1, R2, R3}, R0 = {a → sa, b → sa}, R1={b → sb}, R2 = {[a] →

[a]a}, R3 = {[b] → [b]a};
6. io=0.

The initial configuration of the P system �e is illustrated in Fig. 3.4. If
Nw0=Nw1=Nw2=Nw3=1, NR0=2, NR1=NR2=NR3=1, Nl=1, Nr=2 and LRi

=4, (i =
0, 1, 2, 3), the P system �e is encoded as the string “0119032392124312483135822
2683326”.

2. Evaluation of P Systems
How to evaluate a candidate P system is a crucial step in the automatic design of
membrane systems by using evolutionary algorithms. This step has a direct effect
on the characteristics of the P systems obtained and the performance of the design
algorithm. In the evaluation, the following seven aspects are considered:

1. The difference between the actual number(s) and the expected number(s) of
output objects. The former refers to the simulated result that is returned from the
specialized P system simulation software, P-Lingua [25, 26], through inputting
a candidate P system into the software. The latter is designated by the designer
according to the computational task or the problem to solve.

2. The feasibility of a P system due to its membrane structure μ. In the design, some
infeasible membrane structures may be generated by the evolutionary operations
such as crossover or mutation in a genetic algorithm. The infeasible membrane
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structure refers to the one that does not satisfy the syntactical requirement of the
P system.

3. The redundancy of objects in the initial multiset vector W . In this design, some
objects exist in the initial multiset vector W , but they will not be used through the
computation of the P system. They are called redundant objects. This redundancy
results from the randomness of the generation of the population of initial P
systems in an evolutionary algorithm.

4. The nondeterminism of a P system resulting from nondeterministic membrane
systems due to evolution rules

5. The infeasibility of a P system due to more than one dissolution rules in one set
Ri (i = 0, 1, . . . , m − 1)

6. The redundancy of evolution rules in the set �. The redundant rules refer to the
ones in the set � that are not used through the computation of the P system.

7. A halting P system due to evolution rules

Based on the above analysis, the following evaluation functions are defined:

f = f1 + f2 + f3 + f4 + f5 + f6 + f7 (3.5)

where

f1 = g1(Ns) =
Nobj∑

i=1

|Nao
i − Neo

i | (3.6)

f2 = g2(μ) = δ · Mf (3.7)

f3 = g3(W) = η · Nobs (3.8)

f4 = g4(�) = α · Nnon (3.9)

f5 = g5(�) = β · Rdis (3.10)

f6 = g6(�) = γ · Nred (3.11)

f7 = g7(�) = ξ · H (3.12)

where

– f1 is the object error function; g1(Ns) is the function of the simulation step Ns

of a candidate P system in the P-Lingua software and is designed according to
the computational task; Nao

i and Neo
i are the actual number and the expected

number of the ith (i = 1, 2, . . . , Nobj ) output objects, respectively; Nobj = |O|;
and Nobj is the number of distinct letters involved in the output objects.
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– f2 is the penalty item of the infeasible membrane structure, g2(μ) is the function
of the membrane structure μ, δ is a penalty factor, and Mf ∈ {0, 1}, where “0”
and “1” mean that the membrane structure of a candidate P system is feasible
and infeasible, respectively.

– f3 is the penalty item of the redundant objects in the initial multiset vector W ,
g3(W) is the function of the initial multiset vector W , η is a penalty factor, and
Nobs is the number of the redundant objects in the initial multiset vector W .

– f4 is the penalty item of a nondeterministic P system, g4(�) is a function of the
set �, α is a penalty factor, and Nnon ∈ {0, 1}, where “0” and “1” mean that
there is not any nondeterministic evolution rule, and there is at least one pair of
nondeterministic evolution rules in the set �, respectively.

– f5 is the penalty item of the dissolution rules, g5(�) is a function of the set �,
β is a penalty factor, and Rdis ∈ {0, 1}, where “0” and “1” mean that there is
less than and at least two dissolution rules in one set Ri (i = 0, 1, . . . , m − 1),
respectively.

– f6 is the penalty item of the redundant rules, g6(�) is a function of the set �, γ
is a penalty factor, and Nred is the number of the redundant rules in the set �.

– f7 is the penalty item of the halting P system, g7(�) is a function of the set �, ξ
is a penalty factor, and H ∈ {0, 1}, where “0” and “1” mean that the candidate P
system is a non-halting and halting one, respectively.

In Eqs. (3.7)–(3.12), the purpose of introduction of the penalty factors δ, α, β, γ ,
and ξ is to reject the unexpected candidate P systems, and therefore, the five factors
can be assigned as a larger value as possible, for example, δ=α=β=ξ=999999, while
the purpose of the use of the two factors η and γ is to remove those candidate P
systems having redundant objects or evolution rules as possible as we could, and
accordingly, they can be prescribed as smaller values. They are empirically set to 1
and 1, respectively.

3. Evolution of P Systems
The genetic algorithm with the permutation encoding technique (GAPE) in JGAP
[43] is used to evolve a family of P systems toward a successful one. GAPE uses
the elitist selection strategy, where 20% of individuals with the best fitness values
are selected to pass to the next generation, being free of the crossover and mutation
operators. In GAPE, one-point crossover and uniform mutation are used.

It is worth noting that the evolutionary operators might produce the P systems
violating the constraints in (3.7)–(3.12) including infeasible membrane structures μ,
more than one dissolution rules in one set Ri (i = 0, 1, . . . , m − 1), the redundancy
of objects in the initial multiset vector W , the redundancy of evolution rules in the
set �, the nondeterministic evolution rule pairs, and the halting P system due to
evolution rules.
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Fig. 3.5 Pseudocode
algorithm of PPGA. From
[74]

4. Algorithmic Elaboration
This subsection summarizes the design method PPGA as shown in Fig. 3.5, where
each step is described as follows:

1. This step consists of two processes: the setting of initial parameter values and the
generation of initial population. The former process is used to set initial values
for NV Nwi

, NRi
, LRi

, i = 0, 1, . . . , m − 1, Nl , Nr , population size NP , Pc and
Pm, δ, η, α, β, γ , ξ , the maximal number MaxGen of evolutionary generations
as the termination condition of GAPE, and the maximal number MaxStep of
simulation steps for a P system in the P-Lingua software. The latter process
produces a population with NP individuals, each of which corresponds to a
candidate P system.

2. Each individual is evaluated by using Algorithm 1 and, thus, obtains its fitness.
In Algorithm 1, the values of the variables, Mf , Nobs , Nnon, Rdis , Nred , and H ,
depend on the following constraint recognition techniques:
(a) Infeasible P systems due to infeasible membrane structures: A P system is

an infeasible one if it satisfies one of the three conditions: (i) The parent
membrane of any one membrane is itself, (ii) the system has not the skin
membrane, and (iii) two or more membranes form a parent membrane loop.
For example, membrane 1 is the parent of membrane 2, membrane 2 is the
parent of membrane 3, and membrane 3 is the parent of membrane 1.

(b) Redundant objects: The objects in W do not appear in the left-hand side u of
all evolution rules in �.

(c) Nondeterministic P systems have two cases: (i) Two or more evolution rules
in Ri (i = 0, 1, . . . , m − 1) have the identical left-hand side u. (ii) Two or
more evolution rules in Ri (i = 0, 1, . . . , m − 1) can be applied within one
transition. That is, the left-hand side objects of two or more evolution rules
in Ri (i = 0, 1, . . . , m − 1) can be provided in the current configuration.
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(d) Infeasible P systems due to dissolution rules: A P system is an infeasible
one if there are two or more dissolution rules in Ri (i = 0, 1, . . . , m − 1)
according to the codes describing the rule types.

(e) Redundant evolution rules: An evolution rule is redundant in two cases: (i) if
the evolution rule in which all the objects in the left-hand side do not appear
both in the initial multiset and in the right-hand side of any one rule in the
membrane and (ii) if the evolution rule in which the objects in the left-hand
side are identical with those in the right-hand side, and they are neither the
expected ones nor appear in the left-hand side of any rule in the membrane.

(f) Halting P systems: If there is not any iterative loop consisting of one or
more evolution rules, the system is a halting one. An iterative loop may
be one of the following cases: (i) One evolution rule forms an iterative
loop. That is, if one evolution rule lef tObj → rightObj has the feature
lef tObj ⊂ rightObj , the rule forms an iterative loop. (ii) Several evolution
rules form an iterative loop. If Nil evolution rules, lef tObj1 → rightObj1,
lef tObj2 → rightObj2, lef tObj3 → rightObj3, . . . , lef tObjNil−1 →
rightObjNil−1 , lef tObjNil

→ rightObjNil
, have the features, lef tObj2 ⊆

rightObj1, lef tObj3 ⊆ rightObj2, . . ., lef tObjNil
⊆ rightObjNil−1 ,

lef tObj1 ⊆ rightObjNil
, the rules form an iterative loop.

3. The best solution and its corresponding P system are stored.
4. The elitist selection strategy described is considered.
5. The one-point crossover operator is used and depicted.
6. The uniform mutation operator is employed and illustrated.

Algorithm 1: Evaluation method
Require: A candidate P system
1: f ←0
2: Compute Mf , Nobs , Nnon, Rdis , Nred , H
3: if ((Mf > 0)‖(Nnon > 0)‖(Rdis > 0)) then
4: f ← f2 + f4 + f5
5: else
6: Ns ←0
7: while (H < 1)∧(Ns ≤ MaxStep) do
8: Evolve the P system for one step
9: Ns ← Ns + 1
10: f ← f + f1
11: end while
12: if (H > 0) then
13: f ← f7
14: end if
15: if (f = 0) then
16: f ← f + f3 + f6
17: end if
18: end if
Ensure: Fitness f
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Table 3.1 Successful P
systems

No μ W �

1 [[ ]1[ ]2[ ]3]0
w0 = λ

w1 = b

w2 = a

w3 = a

[b → bs]0
[a → ba]0
[b]1 → ab

[a]2 → ab

[a]3 → sb

2 [[[ ]1]2[ ]3]0
w0 = λ

w1 = a

w2 = a

w3 = a

[b → bs]0
[a → b2]0
[a]1 → [a]1a
[a]2 → sb

[a]3 → b2

3 [[ ]1[ ]2[ ]3]0
w0 = λ

w1 = a

w2 = a

w3 = b

[b → bs]0
[a → ab]0
[a]1 → ab

[a]2 → sb

[a]3 → ab

4 [[[ ]1[ ]3]2]0
w0 = λ

w1 = a

w2 = b

w3 = a

[b → as]0
[a → sa]0
[a]1 → [a]1a
[b]2 → sb

[a]3 → [a]3a

5 [[ ]1[ ]2[ ]3]0
w0 = λ

w1 = b

w2 = b

w3 = a

[b → sa]0
[a → sa]0
[b]1 → [b]1a
[b]2 → [b]2a
[a]3 → sb

The design of the cell-like P system �ex for fulfilling the computation n2 is
discussed to show the results. The parameters, Pm, Pc, NP , MaxGen, η, and γ ,
are set to 0.1, 0.8, 20, 200, 1, and 1, respectively. Next, 5000 independent runs of
the design experiment are performed, and it obtains the success rate 100%. The
introduced design approach obtains 2930 different variants of cell-like P systems
�ex for successfully fulfilling the computation of n2. Table 3.1 lists only five
successful P systems. The complete list of the 1936 successful P systems can refer
to [74]. Due to the randomness of the selection of membrane structure, objects, and
rules, multiple solutions for the same computational task can be obtained on the
identical condition to provide multiple possibilities to construct different complex
membrane systems.
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3.3 Automatic Design of Spiking Neural P Systems
with P-Lingua

In this section, an automatic design method based on genetic algorithms for evolving
SN P systems for generating natural numbers within P-Lingua [20, 21, 54, 67] is
discussed.

An SN P system consists of five main elements: the amount of neurons in the
system, the synapse connections between neurons, the amount of rules within each
neuron, the regular expressions which define each rule, and the initial number of
spikes within each neuron.

A, SN P system [30] of degree m ≥ 1 is a tuple � = (O, σ1, · · · , σm, syn, io),
where:

(1) O = {a} is the singleton alphabet (a is called spike);
(2) σ1, · · · , σm are neurons, identified by pairs

σi = (ni, Ri) , 1 ≤ i ≤ m (3.13)

where:
(a) ni ≥ 0 is the initial number of spikes contained in σi .
(b) Ri is a finite set of rules of the following two forms:

(i) E
/
ac → a; d where E is a regular expression over O, and c ≥ 1, d ≥

0;
(ii) as → λ, for some s ≥ 1, with the restriction that for each rule

E
/
ac → a; d of type (i) from Ri , we have as /∈ L (E);

(3) syn ⊆ {1, . . . m} × {1, . . . m} with (i, i) /∈ syn for i ∈ {1, . . . m} (synapses
between neurons);

(4) i ∈ {1, . . . m} indicates the output neuron (i.e., σio is the output neuron).

The firing and forgetting rules of an SN P system are described and discussed
in detail in [30, 73]. The distinguishing feature of SN P system is that the sequence
of configurations can produce an associated spike train. If the output neuron spikes,
then we have 1, and otherwise, we have 0. Hence, the spike train can be represented
by the sequence of ones and zeros.

In order to automatically generate an SN P system, we should consider each
aspect in an SN P system. The number of neurons in system, the synapse connec-
tions between neurons, the number of rules within each neurons, and the number
of spikes within each neuron, according to specific task, are previously determined,
but the regular expressions which define each rule and the delays on each rule are
randomly generated in an SN P system. Then we can generate a population of SN P
systems by same method. The aim is to use genetic algorithms to get an optimal SN
P system by appropriately evolving an SN P system. The steps are listed as follows:

Step 1: First of all, we define a population of SN P systems � = {�i}i∈H , where
H is a subset of natural numbers, and each SN P system �i of degree m ≥ 1 is
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described as follows:

�i = (O, σ1, · · · , σm, syn, io) (3.14)

where

(1) O = {a} is a predefined singleton alphabet;
(2) σ1, · · · , σm is the neurons from 1 to m.

σi = (ni, Ri) , 1 ≤ i ≤ m (3.15)

where:
(a) ni ≥ 0 is the initial number of spikes contained in σi .
(b) Ri is a finite set of rules of the following two forms:

(i) Spike transfer rules: E
/
ac → a; d. When fulfilling spike transfer

rules and d = 0, a spike in the neuron should leave along the
synapses and travel to the neurons connected to the neuron where
the rule is applied.

(ii) Spike forgetting rules: as → λ. When performing spike forgetting
rules, s spikes are consumed.

Step 2: Determine fitness of each individual in the population.
Step 3: Reserve the individual with higher fitness from the population.
Step 4: Select parents from the population and produce offsprings.
Step 5: Randomly perform mutation.
Step 6: Check whether any individual meets the requirements. If so, terminate the

algorithm; otherwise, continue the algorithm.

The pseudocode algorithm of automatic design method is shown in Fig. 3.6.
More explanations for each step are provided as follows:

Step 1: Input required parameters, which include m, ni , syn, io, H ,
MaxSteps, StepRepetition,MutationRate,MinF itness,MaxGeneration,
BestF itness, and ExpectedSet ,
where:

(a) m, ni , syn, and io represent the number of neurons in each P system, the
number of spikes in each neuron, the synapse connections between each
neuron, and the output neurons, respectively.

(b) H is population size.
(c) MaxSteps represents the maximum steps that each network will take.
(d) StepRepetition is the amount of repetitions each network will undergo to

generate an output list.
(e) MutationRate is the percentage chance for mutation.
(f) MinF itness represents minimal fitness.
(g) MaxGeneration is the max amount of generations.
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Require: Initial membrane construction and objects and genetic algorithm
1: =1
2: while ( ≤ ) do
3: Generating random
4: Caculating fitness value F( )
5: if ( ( ) ≤ | | ( ) == ) then
6: Generating new and replacing old
7: end if
8: = + 1
9: end while
10: while ( ≤ ) do
11: Caculating fitness value each SNPS
12: Sorting population accordding to set F( )
13: =1
14: while ( ≤ ) do
15: if ( ≤ && ≤ ) then
16: [ ] = [ ]
17: if (F( )) then
18: =
19: end if
20: else
21: Parent1=ChooseParent( )
22: Parent2=ChooseParent( )
23: Child=Crossover(Parent1,Parent2)
24: Child=Mutate(Child)
25: [ ] =
26: end if
27: if ( ( ) == 0 | | ( ) == ) then
28: ( ) = 0
29: else
30: ( ) = ( )
31: end if
32: end while
33: = + 1
34: end while
Ensure: Spiking neural P system

Fig. 3.6 Automatic design algorithm of SN P systems

(h) BestF itness represents the best fitness through generations.
(i) ExpectedSet is the expected set.

Step 2: A population of SN P systems and their fitness values are calculated.
F(SNPSi) and F(SNPS) represent the fitness value of the ith SN P system
and the fitness set of all SN P systems in the population, respectively. Check
whether SN P systems are correct according to the fitness function value of each
SN P system in the population.

Step 3: The genetic algorithm is used to automatically design each SN P system
in the population. Elitism represents the number of reserving a certain number
of better SN P systems in the population. Parent1 and Parent2 are two
randomly selected SN P system with larger fitness values. Crossover() and
Mutate() represent the crossover and mutate functions, respectively.

Step 4: Output a new SN P system with high sensitivity and precision after
completion of automatic design.

The most important three steps in Fig. 3.6 including building a population of SN
P systems, designing a fitness function, and setting elitism, crossover, and mutation
are detailed in the following description.



52 3 Applications of Software Implementations of P Systems

1. Building a Population of SN P Systems
An SN P system includes the number of neurons, the synapse connections between
neurons, the number of rules within each neuron, the regular expressions which
define each rule, and the number of spikes in each neuron. An SN P system
represents an individual (DNA, SNPSi) in the population. Here, an individual is
also thought of as a set, which contains above five aspects. As a result, the building
of a population of SN P systems can be divided into the following steps.

Step 1: Generate a random individual, where rules are randomly generated and
other elements are predefined.

Step 2: Repeat the first step until all the individuals(SNPSi) in the population
are produced.

Step 3: Check whether each individual is correct.
Step 4: Delete and replace individuals with incorrect and low fitness values.
Step 5: Save the initial population.

With the initial population, it is necessary to have an appropriate evaluation
function to guide the population to evolve to the optimal solution. Therefore, it
is worth noting that the fitness function plays an important role throughout the
automatic design process. We describe the details of the fitness function as follows.

2. Design of Fitness Function
Here, we discuss how to design the fitness function, which is used to calculate the
sensitivity and the precision of SN P systems. There are two data sets after the
establishment of the SN P systems. One is a real output set OutputSet . Another is
given expected set ExpectedSet . OutputSet represents generating number set of
repeating execution of SN P systems for a specifical task. ExpectedSet is expected
number set for a special task. So a fitness function is established by comparing
elements in the real output set and the expected set. The pseudocode of the fitness
function is shown in Fig. 3.7.

The category of an element in the above two sets is as follows:

(1) The output set is compared with the expected set, and for every number that is
in both of the sets, the true positive count tp increases.

(2) The output set is compared with the expected set, and for every number that is
in the output set but not in the target set, the false positive count fp increases.

(3) The output set is compared with the expected set, and for every number that is
not in the output set but is in the target set, the false negative count f n increases.

(4) The true negative values, those that are not in the output set and not in the target
set, are not counted as they are not needed for this design.

3. Elitism, Crossover, and Mutations
An individual consists of genes, which in the case of this section are represented by
an SN P system. The crossover function allows the exchange of genes between two
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Require: , , = 0, = 0, = 0
1: Initialization settings
2: Merging elements from and into . The length of

is
3: = 1
4: while ( ≤ ) do
5: = + 1
6: if ( ) ∈ then
7: if ( ) ∈ then
8: = + 1
9: Turn to Step 21
10: else
11: = + 1
12: Turn to Step 21
13: end if
14: else
15: if ( ) ∈ then
16: = + 1
17: Turn to Step 21
18: else
19: Turn to Step 21
20: end if
21: end if
22: if then
23: Turn to Step 26
24: else
25: Turn to Step 4
26: end if
27: = ( 2×

2× + + ) ×
28: end while
Ensure: Return

Fig. 3.7 The design of the fitness function

parents, creating a new child individual with the characteristics of the parents that
were used. After the crossover, there is also a chance for the new child individual
to mutate, changing one of the rules in the generated network at random. To
ensure diversity in the population, a certain number of individuals are added to the
population pool at each generation.

Except for crossover and mutation, this algorithm also allows the use of elitism
selection. This feature allows a selected number of best SN P systems to be
introduced with a new generation.

The detailed procedure of elitism, crossover, and mutation are described as
follows:

Elitism: Elitism, the best optimal individuals in the current population, is set to
1 in the method of the automatic design, thatis, an SN P system with the high
sensitivity and precision can be saved to new population of each generation.

Crossover: The crossover is mainly composed of two steps, one is to choose the
parent individuals (parents with a higher fitness will have a higher chance of
reproducing), and the other is to exchange the corresponding rules in the two
parent individuals.
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Require: = 0, , = 0,
= 0

1: = 1
2: while ( ≤ ) do
3: = + 1
4: if ≤ then
5: =
6: + +
7: else
8: = 0
9: end if
10: if ≥ 10 then
11: = (0, 10)
12: else
13: = (10, 20)
14: end if
15: end while
Ensure: Return

Fig. 3.8 Dynamic adjustment procedure of mutation probability

Fig. 3.9 A SN P system generating all natural numbers

Mutations: After getting new sub-individuals from the crossover of two parent
individuals, new sub-individuals are mutated and added to new population, where
MutationRate is dynamically adjusted according to the detailed problem. The
pseudocode algorithm of dynamic adjustment is described in Fig. 3.8.

The automatic design method is further expounded by considering an SN P
system generating all even natural numbers.

An SN P system generating all natural numbers mainly contains four elements:
four neurons, ten synapse connections between neurons, eight rules, and two starting
spikes each neuron. Out of four neurons, three neurons are general neurons, and
remaining one is an output neuron. The specific sketch of an SN P system generating
all natural numbers is shown in Fig. 3.9.

To illustrate the performance of the design method when simulating an SN P
system generating all natural numbers, we make a dynamic behavior analysis from
the fitness function value of the experimental testing process.
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The average fitness value across ten runs is denoted by Fav . A larger value of Fav

represents a smaller difference between the expected set and the output set.

Fav =
10∑

j=1

n∑

i=1

F(SNPSi) (3.16)

where F(SNPSi) represents the fitness value of the ith SN P systems, n is the
number of SN P systems in the population, and j represents the j th run.

In the process of simulated evolution, the design parameters are set as follows:
expected output set for the natural numbers system, 1, 2, 3, 4, 5, 6, 7, 8, 9; the
population size, 4; maximum number of steps per system, 50; maximum number of
repeats per system, 50; and maximum number of generations, 200.

We obtain the change curves of the average fitness value of static and dynamic
mutation probabilities in Fig. 3.10, respectively. As can be seen from Fig. 3.11, the
results of the correct natural data output are produced by a real natural SNP system
and is the same as the expected set.

3.4 Modelling Real Ecosystems with MeCoSim

Membrane computing was not conceived in 1998 as a computational modelling
framework for complex systems. It was far from the initial studies proposing a
novel bioinspired computing model, with roots in formal languages theory and
computation theory. The computational power and efficiency of these devices were
studied in order to provide alternative paths to traditional computers based on Turing
machines, proving the universality of different types of P systems. Besides, these
newmachines presented desirable properties in terms of the inherent parallelism and
the promising effects derived frommechanisms as the cellular division, doubling the
computation resources at any given step, trading space for time in order for these
systems to present a great ability to solve NP-complete problems in reasonable time.
Therefore, nothing in this new paradigm made its founder imagine that the research
lines opened could diverge so significantly as it started to happen a few years after
the first technical report published in 1998.

3.4.1 ProblemDescription

As a general idea, the primary intent we pursue is problem-solving through
membrane systems. Thus, given a certain abstract problem (as 3-COL problem,
deciding if a coloring with three colors is possible for a given graph), a membrane
system is designed to solve the problem, according to the rules satisfying the
constraint of the specific computing model chosen among all the possible types
and variants of P systems. Then, the design is translated into a P-Lingua format
specification and saved in a file with .pli extension. For instance, if the solution is
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Fig. 3.11 The output set of SN P systems generating all natural numbers

using a cell-like P system with active membranes, the following elements should
be given: the membrane structure, μ, the initial multisets for each region, and their
corresponding sets of rules.

A file as the one described above could specify a concrete P system, but in our
approach, we generally provide solutions for an abstract problem, through a family
of P systems (let us denote it by �(< pars >)), subject to certain parameters.
Thus, for instance, if a solution �(< n >) for 3-COL problem is provided (with
the parameter n representing the number of nodes in the graph, getting possibly
involved in the sets of rules, alphabet, initial multisets, and membrane structure),
the P-Lingua file will generically define the structure applicable to every P system
member of the family. Thus, for each particular value of the parameters involved
(n in the example), a different P system will be instantiated. Then, for a given
member of the family (e.g., the P system �(5), solving 3-COL with n = 5, i.e.,
graphs with five nodes), many different possible inputs could be provided (in the
example, one for each possible graph with five nodes, determined by its specific
nodes and edges). In our approach, P-Lingua files should specify the solution for
the abstract problem, while the introduction of the specific parameter values to
instantiate the member of the family and the input to accompany the problem with
the particular input is performed through MeCoSim layer. This imposes a clear
separation between the abstract problem solved (P-Lingua specification) and the
virtual experimentation with each specific instance and input, constituting what is
called a scenario (MeCoSim [42,55]).

For sure, P-Lingua files accept solutions providing non-parameterized models,
or models whose parameters are also hard-coded in the same files, but this would
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break the proper separation of the responsibilities of each tool and consequently the
adequate separation of the roles involved (P system designer, solving the general
problem, and end users, running their virtual experiments through the provision
of the particular data of each scenario of interest). The approach proposed is even
more interesting when we are dealing with models representing real-life problems,
for instance, ecology, where the profiles of people in charge of P system design
and those managing the actual ecosystem are more clearly identified, in such a
way that their background, knowledge, and main focus are generally different,
being the former ones interested in designing solutions based on their computing
models, taking advantage of their novel theories, and the latter ones interested in
managing their ecosystems, getting abstracted from internal details of the models
once they have experimentally validated with the experts in the models that they
seem to behave properly according to their well-known scenarios, and therefore, the
tools provided are useful for their virtual experiments aiding them in their decision-
making process to manage their populations.

All in all, MeCoSim raised with this twofold intention now clearer with the roles
described above: (1) providing a high-level visual environment to design, debug,
simulate, analyze, and visualize models based on P systems and (2) putting at
disposal a simulation environment for end users to introduce different instances of
the problems and run their experiments according to their final needs.

The needs leading the such development were first detected in the context of eco-
logical modelling and simulation of certain real ecosystems, as the ones described in
Sect. 3.4. The managers of the ecosystems under study needed some tools to predict
the evolution of the population of certain species in the corresponding systems (for
different purposes, such as endangered species conservation or invasive species
control). Initially, certain software applications were developed (Ecosim 1.0
family (see Refs. [20,54]) to allow the introduction of different initial scenarios and
visualize specific outputs, showing certain elements of the ecosystems. The effort
was significant to develop each of these specific-purpose applications handling
models of different ecosystems (in tasks from the analysis and design to the pure
development).

Then, after those experiences, a number of common needs were identified.
Investing that amount of effort for each possible future model designed was
unfeasible, so a new approach emerged requiring the development of a software
environment providing the generic mechanisms not only to handle P system-based
models but also to allow the guided delivery of custom applications for each model
designed, hence adapted for each end user problem addressed. With this view,
MeCoSim environment would act as a meta-simulation app, allowing the definition
of a customized simulation app for each problem, with the specific inputs and
outputs required by that problem. Just to summarize, the definition of such custom
user interfaces would imply the following mechanisms:

1. Definition of input tableswhere the user could introduce the external data of each
particular scenario (possibly including both data involved in parameter values
generation and input data for the specific instance for the experiment to conduct)
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2. Calculation of parameters and inputs of the P system, from the data of the
instance just introduced

3. Definition of the output tables and charts, to show the end users requested
information for their target application (depending on their user view, but
designed by the experts in the underlying P systems, configuring which specific
elements of the computation should be extracted and how)

4. Specification of the arrangement of all these inputs and outputs in the custom
app.

Further details of this approach are provided in Refs. [42, 55, 67]
Among all the possible practical applications emerged along the years in

membrane computing, probably one of the most successful ones is the provision of
a very useful methodology [13] for ecologists interested in certain problems related
with real ecosystems, involving a number of species, in competition or cooperation,
with a number of processes taking place simultaneously in the ecosystem and many
biotic and abiotic factors and parameters playing different roles in the interactions.

In what follows, we list in Tables 3.2, 3.3, and 3.4 the main models created
following the approach proposed of P systems as modelling framework and P-
Lingua and MeCoSim as the tools for virtual experimentation.

3.5 Robot Motion Planning

The problem of motion planning is a crucially important problem in mobile robotics.
The problem consists of finding a sequence of motion commands to move a robot
in a complex environment from a starting point to a goal area while avoiding
static and dynamic obstacles. The problem is even more complex if kinematic
and nonholonomic constraints are considered. This problem has been studied from
several years ago [35, 59], proving it is PSPACE-hard when the positions of
obstacles are known. Several approximate algorithms have been proposed in the
literature [19, 64]. A special mention should be given to a category of algorithms
to build rapidly exploring random trees (RRTs) [36]. They are based on the
randomized exploration of the configuration space by building a tree where nodes
represent reachable points in the configuration space, and edges represent the
corresponding transitions. In particular, the RRT* algorithm [33] is able to build
an RRT whose paths asymptotically converge in time of computation to optimal
solutions with respect to a predefined cost function. One of the main challenges by
applying motion planning algorithms in robotics is the parallelization in software
or hardware of such algorithms in order to accelerate them. For example, in [2],
a GPU-based version of the RRT algorithm is presented. One alternative is to
model the algorithms over an inherently parallel model of computation and then
apply software/hardware simulators. With this idea, membrane computing has been
used to design bioinspired parallel RRT models that can be efficiently simulated
by means of parallel software/hardware architectures such as OpenMP [46] and
CUDA [45]. The first approximation was introduced in [56] by using an extension
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Table 3.2 Ecosystems models based on P systems, simulated with EcoSim/MeCoSim (I)

Reference Case study Comments

M. Cardona et al.
2008 [4]

Bearded Vulture
The cliff-nesting and
territorial mountains in
Catalan Pyrenees
(Northeastern Spain)

Five wild and domestic ungulates are
included as carrion (prey) species.

M. Cardona et al.
2008 [3]

Bearded Vulture
Catalan Pyrenees(NE)

Similar structure to [4]

M. Cardona et al.
2010 [5]

Scavenger Birds
Catalan Pyrenees(NE)

Nomadic and non-nomadic species, and
density regulation. Thirteen species,
including two scavenger birds in
competition with bearded vulture

M.A. Colomer
et al. 2010 [10]

Pyrenean Chamois
Catalan Pyrenees(NE)

Four influencing factors: introduced disease
such as pestivirus infection, climate change,
hunting, and migrations among areas

M.A. Colomer
et al. 2010 [8]

Bearded Vulture
The cliff-nesting and
territorial mountains in
Catalan Pyrenees (NE Spain)

Same model presented in [10]

M. Cardona et al.
2011 [6]

Scavengers/Zebra mussel
Catalan Pyrenees (NE Spain)
and a fluvial reservoir
(Riba-roja-Ebro river, NE
Spain)

For the scavengers, a simplified version of
[4]. For mussels, focus on temperature and
its effect on reproduction, fixation of the
mussel to the substrate, movement of larvae,
and density regulations.

M.A. Colomer
et al. 2011 [11]

Scavenger Birds
Catalan Pyrenees /Pyrenean
and Pre-pyrenean mountains.

Species move among areas if lack of
feeding resources in origin region. The
model studied: (a) 13 species, including
three avian scavengers (predators), six wild
ungulates, and four domestic ungulates
(preys); (b) interactions among species; (c)
communication among areas; (d) load
capacity regulation

M.A. Colomer
et al. 2011 [9]

Plant Communities
(sub)Alpine(NE Spain)

Model with climatic variability and
orographic factors. Impact of the plant
community module on population dynamics

A. Margalida
et al. 2011 [39]

Scavenger Birds
Catalan Pyrenees(NE)

Wild ungulates considered due to limitation
of domestic carcasses. It causes an impact
on the biomass. When only considering
wild ungulates, the ecosystem cannot offer
enough food for predators.

M.A. Colomer
et al. 2012 [12]

A carnivore that predates
on ungulates and five
ungulates
Catalan Pyrenees(NE)

Impacts of environment factors such as
weather, orography, and soil conditions on
carnivore size

A. Margalida
et al. 2012 [38]

European vultures as the
Bearded vulture, Egyptian
vulture, and Cinereous
vulture
10 municipalities in
Catalonia, Northern Spain.

Food source: four scenarios of food
availability. Taking 10 areas and 4 avian
scavengers as research object. Impact of
climate variations, such as seasons (summer
and winter), food shortage, density
regulation, and changes in species habitats
(insufficient resources)
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Table 3.3 Ecosystems models based on P systems, simulated with EcoSim/MeCoSim (II)

Reference Case study Comments

M.A. Colomer
et al. 2013 [13]

Birds, cats, and rats
General model

Prey-predator. Natural mortality, intraguild
predation, and mesopredator release effect on
long-lived prey

M.A. Colomer
et al. 2014 [14]

Zebra mussel
Reservoir of Ribarroja

Twenty membranes used for 20 weeks first
reproductive cycle, 16 for the weeks of
second reproductive cycle, and 2 membranes
to handle regulation and mortality

M.A. Colomer
et al. 2014 [15]

Calotriton asper (newt)
Pi Valley (Noth Spain) water
streams

Reproduction, mortality, and displacements
in the terrestrial environment, possibly
colonizing new streams

A. Margalida
et al. 2015 [40]

Avian scavengers
Pi Valley (Noth Spain) water
streams

Impact of removal scenarios on population
viability

A. Cortés-
Avizanda et al.
2015 [18]

Wild rabbits and avian
scavengers
Mediterranean landscapes

Reproduction, mortality, foraging behavior of
Egyptian vultures, wild rabbit carcass
biomass availability, maximum carrying
capacity, and carcass-sharing with
competitors

A. Kane et al.
2015 [32]

Gyps africanus
Hlane-Mlawula-Mbuluzi
reserve network in Swaziland

Carrion feeding, feeding needs analysis,
natural mortality, and many interacting
species

C. Fondevilla
et al. 2016 [24]

Land use and land cover
(plant communities)
Stubai Valley (Central Alps)

Grazing, foraging, natural mortality of animal
species, movement, and land use

Z. Huang, G.
Zhang, et al.
2017 [29]

Domestic Giant Panda
Chengdu Research Base of
Giant Panda Breeding
(GPBB), Wolong China
Conservation and Research
Center for Giant Panda
(CCRCGP)

The evolution process of the species:
RMF+Rescue module, where RMF is also
modified as RFM, FMR, or other forms,
showing the robustness of the system
independently on the order of the modules

H. Tian, G.
Zhang, et al.
2018 [65]

Domestic Giant Panda
Two regions:
GPBB/CCRCGP

The membrane structure is the same as in
[29], and the only difference is that release
module is added to the previous module, that
is, RMF+Rescue module+Release module.

A. Margalida,
et al. 2018 [41]

European avian scavengers
North Spain

Two periods (summer, breeding),
reproduction, mortality, feeding, and carrying
capacity. Forage in peripheral areas
depending on availability in origin

M.A. Colomer,
et al. 2019 [17]

Porcine Reproductive and
Respiratory Syndrome
Spain

Births, lactation, transmission, and fattening

M.A. Colomer,
et al. 2020 [16]

Porcine production
Vaccination against
Aujeszky’s disease
Spain

Based on [17]

Y. Duan, et al.
2020 [22]

Giant Panda in captivity
GPBB and related centers

Reproduction, mortality, feeding, and rescue
models
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Table 3.4 Ecosystems models based on P systems, simulated with EcoSim/MeCoSim (III)

Reference Case study Comments

L. Valencia-
Cabrera, et al.
2013[68]

Gene regulatory networks
General model

The first membrane computing model applied
to reconstruct the behavior of logic networks
of species with PDP systems

L. Valencia-
Cabrera, et al.
2013[69]

Gene regulatory networks
Arabidopsis thaliana

Based on [68], P systems are used to
reproduce a logic gene network of (real)
Arabidopsis thaliana in order to regulate the
flowering processes.

M.A. Colomer
et al. 2014 [14]

Pandemics
General model

Different areas, neighborhoods, families, and
infections at home, in school, workplace,
among communities, etc.

E. Sánchez-
Karhunen, et al.
2019[61]

Market interactions Economic ecosystem modelled with PDP
systems

of the enzymatic numerical P systems (ENPS) [53] framework to simulate basic
RRT algorithms. In [57], the framework of ENPS was used for modelling the RRT
and RRT* algorithms. It is worth pointing out that in [57], no additional ingredients
to the ENPS framework were included. In consequence, the resulting models are
compatible with existent ENPS robot controllers [52,53,77]. In [57], two simulators
were also presented: The first one is based on OpenMP, and the second one is based
on CUDA. The current challenges in this research line are related to simulate on
hardware (FPGA) the models, to adapt the software/hardware simulators to actual
robots, and, finally, to study the inclusion of dynamic obstacles such as people
surrounding the robot.

3.5.1 ProblemDefinition

Let X ⊆ R
d be the configuration space of the robot, where d ∈ N, d ≥ 2.

Let Xobs be the obstacle space and Xf ree be the obstacle-free space such that
X = Xobs ∪Xf ree and Xobs ∩Xf ree = ∅. Let the initial configuration xinit ∈ Xf ree

and the goal region Xgoal � Xf ree. A motion planning problem is defined by
(Xf ree, xinit ,Xgoal).

A function σ : [0, 1] → R
d is called:

• Path, if it is continuous;
• Collision-free path, if it is a path and σ(τ) ∈ Xf ree, for all τ ∈ [0, 1];
• Feasible path, if it is a collision-free path, σ(0) = xinit and σ(1) ∈ Xgoal .

The motion planning problem can be solved in two ways:

1. Given a motion planning problem (Xf ree, xinit ,Xgoal), find a feasible path σ . If
no such path exists, return failure. This is called the feasible motion planning.
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2. Given a motion planning problem (Xf ree, xinit ,Xgoal) and a cost function c :
σ → R, find a feasible path σ ∗ such that c(σ ∗) = min{c(σ ) : σ isf easible}. If
no such path exists, return failure. This is called the optimal motion planning.

3.5.2 Path Planning for Mobile Robots

The path planning problem for mobile robots is a type of motion planning problem
in which a wheeled or legged robot is considered, and it should navigate from an
initial position to a goal region while avoiding obstacles. We can consider two types
of mobile robots: On the one hand, holonomic robots are those that can move in
any direction from its current state. On the other hand, nonholonomic robots have
constrained motions with respect to its current state. For example, a two-wheeled
robot is a nonholonomic robot that cannot follow a direction along its axes without
applying previously a rotation in-place motion.

For the sake of simplicity, we will consider holonomic robots in the rest of this
section. For this type of robots, the configuration space can be defined as X =
{(x, y)} ⊆ R

2 where (x, y) are the Cartesian coordinates of the center of the robot.
The radius of the robot is given by a constant R, and the sets Xobs and Xf ree are
given by an occupancy matrix.

3.5.3 Rapidly-Exploring Random Tree (RRT) Algorithm

The RRT algorithm [36] is a classical solution to the feasibility motion planning
problem. On the other hand, the RRT∗ algorithm [33] provides an approximate
solution to the optimal motion planning problem. The original algorithms are
sequential, but there are parallel versions as [2].

In [56] and [57], membrane computing has been used as computational frame-
work to model parallel versions of such algorithms, providing also simulators in
parallel architectures such as OpenMP and CUDA.

In general terms, the RRT algorithm gives a solution to the feasible motion
planning problem bymaking a random tree exploring the free-obstacle configuration
space. The nodes in the tree represent states in the obstacle-free space, and the
edges represent transitions or movements between such states. The root is located
in the initial robot position. The algorithm explores the space until a node in the
goal region is reached or until a number of iterations. For a holonomic robot,
nodes contain Cartesian coordinates in a 2D space, and edges represent straight-
line movements.

In Fig. 3.12, an example of the RRT is represented. It can be seen as the free
space is explored by the edges of the tree.
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Fig. 3.12 A rapidly exploring random tree example

3.6 Conclusion

Following software implementation of P systems in Chap. 2, this chapter discussed
the use of P-Lingua and MeCoSim to fulfill some applications such as automatic
design of cell-like P systems and spiking neural P systems for performing specific
tasks, and modelling ecosystems and robot path planning. P-Lingua is a widely used
simulator for many variants of P systems such as cell- and tissue-like P systems,
spiking neural P systems, fuzzy reasoning spiking neural P systems, and kernel P
systems. MeCoSim is a visualization simulator based on P-Lingua. Both of them
are very useful to support the exploration of more and more applications with
automation, such as power system fault diagnosis, modelling giant panda ecosystem,
and mobile robot controller design.
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