
1Introduction

1.1 Membrane Computing Overview

Membrane computing (MC for short) is a branch of natural computing investigating
computational models called membrane systems or P systems, inspired by the struc-
ture and functionality of the living cell. This computing paradigm was introduced
by Gh. Păun, initially in a technical report [26] and then in a journal paper [27]. The
MC research has initially developed mostly as a theoretical investigation looking at
various models and bringing inspiration from a multitude of living cell concepts,
topics, and phenomena. All these models have in common a set of compartments
separated by membranes and organized according to a certain structure (tree, graph)
that can be fixed or dynamic. Each of these compartments contains biochemical
entities, called objects, which evolve according to local rules by transforming
multisets of objects and/or moving them from a compartment to a neighboring one.
This common framework uses various bioinspired features such as activators and
inhibitors, membrane electrical charges, catalysts, membrane thickness, and cross-
membrane movement of objects (symport, antiport) in order to generate various
types of models, all fine-tuned by a rigorous way of selecting them in a consistent
and coherent manner. The main characteristic of these models is their distributed
and parallel behavior, that is, the computation takes place in each compartment
and multiple transformations and/or cross-membrane movement of objects may
take place in parallel. Well-defined topics for many classes of (natural computing)
computational models, such as computational power, complexity, and connections
with other computational models, have been investigated, revealing a wealth of new
and exciting results. A first research monograph [28] included some of these initial
theoretical aspects of this field.

These theoretical investigations have paved the way for applications in biology,
computer science, computer graphics, and linguistics. Some tools have been also
produced, supporting these research developments. All these have been pub-
lished in another Springer monograph [11]. The key theoretical developments and

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2021
G. Zhang et al., Membrane Computing Models: Implementations,
https://doi.org/10.1007/978-981-16-1566-5_1

1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-16-1566-5_1&domain=pdf
https://doi.org/10.1007/978-981-16-1566-5_1


2 1 Introduction

applications of membrane computing, at the level of 2010, have been presented in
a handbook [29]. More recently, some more specific MC applications have been
reported [16]. With the exploration of MC models with real-life background, more
and more real-life complex and challenging applications have been investigated
[14, 43].

From this very brief MC overview, it is clear that the theoretical investigations
and MC applications have had a very consistent and steady development. With a
multitude of models requesting, in certain circumstances, tools to verify various
hypotheses and numerous applications involving the simulation, verification, and
analysis of complex systems, a new type of research activity has been launched, the
design and development of adequate software and hardware tools. Thus, this book
will systematically report the results and applications on software and hardware
implementations of a variety of MC models.

The rest of this chapter is organized as follows: Sect. 1.2 introduces software
implementation of P systems. Section 1.3 introduces hardware implementation of P
systems. Section 1.4 discusses challenging problems of P systems implementation.
Concluding remarks, other implementations of P systems, and a brief presentation
of the chapters of this book will be discussed in Sect. 1.5.

1.2 Software Implementation of P Systems

When conducting research in MC, the design of computational models (P systems)
can be guided by a broad spectrum of questions, ranging from solving hard
problems (i.e., problems having a high computational complexity) to modelling
complex systems. The desired answer can be extracted from the analysis of the
corresponding computations of the designed P system over initial scenarios of
interest. Obviously, in order for the designs to be reliable, it is important to verify
their correctness, that is, making sure that the described system actually reflects its
expected behavior. In this context, the need for software implementations able to
manipulate P systems and recreate their behavior naturally arose. Such automatic
tools provide not only an invaluable help for the verification process (especially
when dealing with large and complicated designs and/or long computations) but
also the possibility to run virtual experiments and to process the data associated
to the simulated computations (especially in the case of computational modelling
of complex systems). A very brief overview of existing P systems simulators is
provided in what follows. For a more detailed history and bibliography, we refer the
reader to [11, 29, 33, 40].

First software implementations were written in LISP [38] and Prolog [19],
followed closely by Scheme [2] and Haskell [1] simulators. Note that the term
implementation is used in a software engineering sense (i.e., developing code that
somehow captures the specification of an abstract theoretical model), but it does not
correspond to a faithful and precise materialization of the semantics of the model.
In particular, the inherent parallelism concerning rule applications in one step of a
membrane system cannot be implemented as is in the sequential Central Processing



1.3 Hardware Implementation of P Systems 3

Unit (CPU) of a standard computer although it can be “imitated” or “emulated”
by means of loops of intermediate auxiliary steps. Nevertheless, there were also
several early attempts to get closer to such an ideal implementation by using parallel
techniques of different programming languages, such as MPI for communicating
threads in C++ [9, 10] or RMI for the communication among processes in different
computers in Java [39].

From that point on, new simulators kept coming out on a regular basis as the field
grew and different research groups started to investigate new types of membrane
systems. However, at that time, software tools were mostly considered as auxiliary
by-products, typically featuring an ad hoc design oriented to a specific type of
P system, and they were not meant to be extended.

In this situation, P-Lingua project was created [12, 13], pursuing a standard
formalization that could be used by software implementations independently of
the underlying programming language used to develop the simulator. The initial
goal was to cover as many types of P systems as possible and to define a syntax
specification, which was similar to the notation used in the MC literature. Chapter 3
offers more details about P-Lingua project, as well as about MeCoSim, a general
purpose tool for virtual experimentation in membrane computing built on top of
P-Lingua.

It is also worth pointing out that there exist some specialized integrated simula-
tion tools that offer modelization services to users, which are not required to have a
strong membrane computing training (mostly dealing with biochemical processes).
Some of the most relevant works in this direction are Cyto-Sim [34], MetaPlab /
MpTheory [6], BioSimWare [3], Infobiotics Workbench [4] (see Chap. 4), and The
Java Environment for Nature-inspired Approaches (JENA) [17] (see Chap. 5).

1.3 Hardware Implementation of P Systems

Software simulations of P systems face difficulties in expressing in an efficient
way the parallel and distributed nature of the model as current-day computers are
based on a different, mostly sequential, paradigm. So from the very beginning, a
research aiming to accelerate the execution of P system simulators using different
types of hardware platforms was proposed. Two main research directions have
been developed in this respect, depending on the underlying hardware utilized:
Graphics Processing Unit (GPU) Compute Unified Device Architecture (CUDA)-
based and Field Programmable Gate Array (FPGA)-based implementations. We
refer to Chaps. 6 and 7 for the presentation of the corresponding hardware.

The development cycle for a GPU CUDA-based implementation is very similar
to a traditional software development cycle and allows a relatively quick prototyping
and implementation of corresponding algorithms. The major difficulty is to handle
the data parallelism provided by these devices. In the FPGA case, a unique circuit
design is created for each concrete system and its initial data. This allows to optimize
the circuit for the corresponding computation and to achieve important speedups of
several orders of magnitude. In order to accommodate more designs, a software



4 1 Introduction

generator is used that provides a hardware description corresponding to the system
description and its initial configuration.

First, FPGA-based implementation of a P systems model was proposed in 2003
by Petreska and Teuscher [30], for transitional P systems and using a variant of
sequential rule application strategy. Then, in 2008–2010, Nguyen et al. presented
a series of implementations of transitional P systems with maximal parallelism
evolution strategy [22–25]. These implementations featured up to 500 times speedup
with respect to a reference software implementation. In 2012, Quiros and Verlan
proposed a first truly nondeterministic implementation of a variant of network
of cells (a generic P systems model; see [15]) [31, 32, 42]. This is also the
first implementation achieving a speedup of order 104. In 2019–2020, Shang et
al. proposed an implementation of numerical P systems [35–37] with several
applications in robotics and achieving a speedup of order 105. More details about
these implementations can be found in Chap. 7.

The first GPU simulators came relatively late, in 2010 [7]. However, due to
a lower development effort with respect to FPGA-based designs, their number
is bigger. Besides P systems with active membranes [7, 8], population dynamics
P (PDP) systems [21], spiking neural P systems [5], enzymatic numerical P
systems, and evolution-communication P systems with energy [20] were targeted for
simulation. The obtained speedups range from 1.6 to 100 with respect to a reference
software implementation.

In conclusion, we would like to remark that the development of hardware
implementations is very promising as it allows to achieve important speedups.
Unfortunately, the development time for these implementations, especially for
FPGA-based ones, is much larger than for an ordinary software one. So there is a
kind of a trade-off between the efficiency of an implementation and the development
speed. Hence, for a hardware implementation to be cost-effective, it should target a
problem with significant further development, such as like mobile robot controller,
in order to compensate for the high development effort.

We also refer to a recent paper [44] that gives a detailed overview of different
hardware implementations of P systems.

1.4 Challenges of P Systems Implementation

We mention here some of the most significant challenges of P systems implementa-
tion that are discussed in the next chapters: inherent parallelism of the MC models,
a broad spectrum of models, combining in different ways various features associ-
ated with the generic framework, the usability of the tools, and nondeterminism
implementation on computers with von Neumann architecture. These challenges
require new algorithms, adequate software and/or hardware platforms, generic or
specific solutions, and an effort, in some cases, to produce tools that might appeal to
researchers outside the MC community—we have in mind those complex systems



1.5 Concluding Remarks 5

requesting models that have to be simulated and analyzed with specific tools. More
details can refer to [41, 44]. Some of these challenges are explained as follows:

• Parallelism: How to realize a P system with inherent parallelism is one of
the main challenging problem in P systems software and/or hardware tools.
The challenge results from both model design and simulator implementation
or hardware constraints. Simulating P systems is a memory-demanding task,
given that the execution of rules requires several accesses to memory for just
one conditional operation [41]. The design of P system variants of high
computational intensity and with memory-bandwidth bounded is a challenging
task. The rule competition for objects in the selection phases and finding ways to
extend the idea of adaptive simulators represent significant bottlenecks.

• Nondeterminism: Simulating a P system with nondeterminism on the inherently
deterministic computers or hardware with von Neumann architecture is another
main challenge. Pseudorandom numbers, instead pf actual random numbers, are
used in the present simulators.

• Universality and flexibility: There are numerous P system models with their own
syntactical elements, such as initial structures, initial multisets of objects and
initial set of rules, and specific semantics of the execution strategy. Thus, it is
a challenging task in the development of a software simulator or selection of a
hardware platform that is flexible enough to support all the P system variants.

1.5 Concluding Remarks

As each of the following chapters has an abstract summarizing its content, we
will not present here a summary of each chapter but will discuss instead the main
problems pointing to where they appear in this book.

Three software platforms, P-Lingua (Chap. 2), Infobiotics Workbench (Chap. 4),
and JENA Environment (Chap. 5), are described, pointing to their key features and
usage. P-Lingua framework, probably the most widely used software tool, allows
for the specification and simulation of a large spectrum of types of P systems.
Algorithms describing the semantics of these classes of P systems and a higher
level tool, called MeCoSim, providing a visual representation of the simulation
environment, are presented. Infobiotics Workbench is an integrated software suite
developed for computational systems biology and relying upon stochastic P systems.
Its components providing computer-aided modelling and analysis of biological
systems through simulation, verification, and optimization are described, and their
usage illustrated with some case studies. JENA is a modular, configurable, and
extendable platform conceived as a virtual laboratory and a virtual cell. Biological
information processing is based on natural laws at a molecular level. Resulting
principles make use of dedicated chemical reactions, mechanisms for transportation
of biomolecules, and forces among molecules and their environment mainly induced
by electric charges and by movement in local space. An introduction to JENA is



6 1 Introduction

presented, including its features and capabilities from the user’s perspective and
from a technical point of view. Four illustrative case studies are described.

Tools supporting the automatic design of various types of MC models (cell-
like P systems and spiking neural P systems), by using various classes of genetic
algorithms, are described in Chap. 3. The performance of the tools is proved through
a set of examples. In the same chapter are illustrated the capabilities of theMeCoSim
tool for modelling a complex ecosystem and issues related to the parallelization of a
robot motion problem when modelled with a special class of numerical P systems.

As mentioned above, the parallelization of various processes occurring in the
simulation of certain classes of MC models is a challenging aspect in building
efficient tools. In this respect, implementations relying on specific hardware,
namely, GPU and FPGA, are investigated in Chaps. 6 and 7, respectively. Concepts
related to GPU computing and its applications are introduced. Three types of
simulators are identified and presented: those developed for very specific P systems
or family of P systems (specific simulators), others developed for a wide range of
P systems inside a variant (generic simulators), and a hybrid simulator that receives
high-level information to be better adapted (adaptive simulators). Some guidelines
on how to develop new simulators for P systems on GPUs are presented.

The other hardware option for implementing parallel computation, FPGA, is
discussed in the context of implementing generalized numerical P systems by
considering many advanced techniques. A discussion related to the challenges posed
by FPGA implementations is presented. Enzymatic numerical P systems-based
robot controllers and path planning algorithm are implemented in FPGA, achieving
a speedup of 105 and 104 order of magnitude compared to software simulation.

Also, there are other software tools, such as kPWorkbench [18] or MetaPlab [6],
dedicated to the simulation and analysis of two specific classes of P systems, kernel
P systems and Metabolic P systems, respectively, which are not presented in this
book as they target topics that are not within its scope.

The gain obtained by reading this book is twofold: On the one hand, the
tools presented are introduced together with a thorough investigation of various
algorithms, methods, and guidelines regarding the implementation strategies, and
on the other hand, a consistent description of the usage of the tools and a set of
illustrative examples are presented.

We hope that the readers will find this book interesting, useful, and helpful
in their own investigations and research and will open the desire to make use of
these tools in modelling, analyzing, and better understanding of complex systems
modelled with different types of membrane systems.

References

1. F. Arroyo, C. Luengo, A.V. Baranda, L. Mingo, A software simulation of transition P systems in
Haskell, in Membrane Computing (WMC 2002), ed. by Gh. Păun, G. Rozenberg, A. Salomaa,
C. Zandron. Lecture Notes in Computer Science, vol. 2597 (2003), pp. 19–32. https://doi.org/
10.1007/3-540-36490-0_2

https://doi.org/10.1007/3-540-36490-0_2
https://doi.org/10.1007/3-540-36490-0_2


References 7

2. D. Balbontín-Noval, M.J. Pérez-Jiménez, F. Sancho-Caparrini, A MzScheme implementation
of transition P systems, inMembrane Computing (WMC 2002), ed. by Gh. Păun, G. Rozenberg,
A. Salomaa, C. Zandron. Lecture Notes in Computer Science, vol. 2597 (2003), pp. 58–73.
https://doi.org/10.1007/3-540-36490-0_5

3. D. Besozzi, P. Cazzaniga, G. Mauri, D. Pescini, BioSimWare: a software for the modeling,
simulation and analysis of biological systems, in Membrane Computing (CMC 2010), ed. by
M. Gheorghe, T. Hinze, Gh. Păun, G. Rozenberg, A. Salomaa. Lecture Notes in Computer
Science, vol. 6501 (2010), pp. 119–143. https://doi.org/10.1007/978-3-642-18123-8_12

4. J. Blakes, J. Twycross, F.J. Romero-Campero, N. Krasnogor, The Infobiotics Workbench:
an integrated in silico modelling platform for systems and synthetic biology. Bioinformatics
27(23), 3323–3324 (2011). https://doi.org/10.1093/bioinformatics/btr571

5. J.P.A. Carandang, J.M.B. Villaflores, F.G.C. Cabarle, H.N. Adorna, M.A. Martínez-del-Amor,
CuSNP: spiking neural P systems simulators in CUDA. Rom. J. Inf. Sci. Technol. 20(1), 57–70
(2017)

6. A. Castellini, V. Manca, MetaPlab: a computational framework for metabolic P systems, in
Membrane Computing (WMC 2008), ed. by D.W. Corne, P. Frisco, Gh. Păun, G. Rozenberg,
A. Salomaa. Lecture Notes in Computer Science, vol. 5391 (2008), pp. 157–168. https://doi.
org/10.1007/978-3-540-95885-7_12

7. J.M. Cecilia, J.M. García, G.D. Guerrero, M.A. Martínez-del-Amor, I. Pérez-Hurtado, M.J.
Pérez-Jiménez, Simulation of P systems with active membranes on CUDA. Briefings Bioinf.
11(3), 313–322 (2010). https://doi.org/10.1093/bib/bbp064

8. J.M. Cecilia, J.M. García, G.D. Guerrero, M.A. Martínez-del-Amor, M.J. Pérez-Jiménez, M.
Ujaldón, The GPU on the simulation of cellular computing models. Soft Comput. 16(2), 231–
246 (2012). https://doi.org/10.1007/s00500-011-0716-1

9. G. Ciobanu, G. Wenyuan, A parallel implementation of transition P systems, in Pre-
Proceedings of the Workshop on Membrane Computing, Tarragona, Spain, 2003, ed. by A.
Alhazov, C. Martín-Vide, Gh. Păun. Report RGML 28/03 (2003), pp. 169–184

10. G. Ciobanu, G. Wenyuan, P systems running on a cluster of computers, in Membrane
Computing (WMC 2003), ed. by C. Martín-Vide, G. Mauri, Gh. Păun, G. Rozenberg, A.
Salomaa. Lecture Notes in Computer Science, vol.2933 (2004), pp. 123–139. https://doi.org/
10.1007/978-3-540-24619-0_9

11. G. Ciobanu, M.J. Pérez-Jiménez, Gh. Păun, Applications of Membrane Computing (Springer,
Berlin, 2005)

12. D. Díaz-Pernil, I. Pérez-Hurtado, M.J. Pérez-Jiménez, A. Riscos-Núñez, P-Lingua: a program-
ming language for membrane computing, in Proceedings of the Sixth Brainstorming Week on
Membrane Computing, ed. by D. Díaz-Pernil, C. Graciani, M.A. Gutiérrez-Naranjo, Gh. Păun,
I. Pérez-Hurtado, A. Riscos-Núñez, Fénix Editora (2008), pp. 135–155

13. D. Díaz-Pernil, I. Pérez-Hurtado, M.J. Pérez-Jiménez, A. Riscos-Núñez, A P-Lingua program-
ming environment for Membrane Computing, in Membrane Computing (WMC 2008), ed. by
D.W. Corne, P. Frisco, Gh. Păun, G. Rozenberg, A. Salomaa. Lecture Notes in Computer
Science, vol. 5391 (2009), pp. 187–203. https://doi.org/10.1007/978-3-540-95885-7_14

14. S. Fan, P. Paul, T. Wu, H. Rong, G. Zhang, On applications of spiking neural P systems. Appl.
Sci. 10(20), 7011 (2020). https://doi.org/10.3390/app10207011

15. R. Freund, S. Verlan, A formal framework for static (tissue) P systems, in Membrane
Computing (WMC 2007), ed. by G. Eleftherakis, P. Kefalas, Gh. Păun, G. Rozenberg,
A. Salomaa. Lecture Notes in Computer Science, vol. 4860 (2007), pp. 271–284. https://doi.
org/10.1007/978-3-540-77312-2_17

16. P. Frisco, M. Gheorghe, M.J. Pérez-Jiménez, Applications of Membrane Computing in Systems
and Synthetic Biology (Springer, Berlin, 2014)

17. T. Hinze, The Java Environment for Nature-inspired Approaches (JENA): A workbench for
bioComputing and bioModelling enthusiasts, in Enjoying Natural Computing, Series Lecture
Notes in Computer Science, ed. by C. Graciani, A. Riscos-Núñez, Gh. Păun, G. Rozenberg, A.
Salomaa, vol. 11270 (2018), pp. 155–169. https://doi.org/10.1007/978-3-030-00265-7_13

https://doi.org/10.1007/3-540-36490-0_5
https://doi.org/10.1007/978-3-642-18123-8_12
https://doi.org/10.1093/bioinformatics/btr571
https://doi.org/10.1007/978-3-540-95885-7_12
https://doi.org/10.1007/978-3-540-95885-7_12
https://doi.org/10.1093/bib/bbp064
https://doi.org/10.1007/s00500-011-0716-1
https://doi.org/10.1007/978-3-540-24619-0_9
https://doi.org/10.1007/978-3-540-24619-0_9
https://doi.org/10.1007/978-3-540-95885-7_14
https://doi.org/10.3390/app10207011
https://doi.org/10.1007/978-3-540-77312-2_17
https://doi.org/10.1007/978-3-540-77312-2_17
https://doi.org/10.1007/978-3-030-00265-7_13


8 1 Introduction

18. S. Konur, L. Mierlă, F. Ipate, M. Gheorghe, kP-Workbench: a software suite for membrane
systems. SoftwareX 11, Article No. 100407 (2020)

19. M. Malita, Membrane computing in Prolog, in Pre-Proceedings of the Workshop on Multiset
Processing, Curtea de Arges, Romania, TR 140, CDMTCS, ed. by C.S. Calude, M.J. Dinneen,
Gh. Păun (University of Auckland, Auckland, 2000), pp. 159–175

20. M.A. Martínez-del-Amor, M. García-Quismondo, L.F. Macías-Ramos, L. Valencia-Cabrera,
A. Riscos-Núñez, M.J. Pérez-Jiménez, Simulating P systems on GPU devices: a survey.
Fundam. Inform. 136(3), 269–284 (2015). https://doi.org/10.3233/FI-2015-1157

21. M.A. Martínez-del-Amor, L.F. Macías-Ramos, L. Valencia-Cabrera, M.J. Pérez-Jiménez,
Parallel simulation of population dynamics P systems: updates and roadmap. Nat. Comput.
15(4), 565–573 (2016). https://doi.org/10.1007/s11047-016-9566-1

22. V.T.T. Nguyen, An Implementation of the Parallelism, Distribution and Nondeterminism of
Membrane Computing Models on Reconfigurable Hardware (University of South Australia,
Australia, 2010)

23. V.T.T. Nguyen, D. Kearney, G. Gioiosa, An algorithm for non-deterministic object distribution
in P systems and its implementation in hardware, in Membrane Computing (WMC 2008), ed.
by D.W. Corne, P. Frisco, Gh. Păun, G. Rozenberg, A. Salomaa. Lecture Notes in Computer
Science, vol.5391 (2008), pp. 325–354. https://doi.org/10.1007/978-3-540-95885-7_24

24. V.T.T. Nguyen, D. Kearney, G. Gioiosa, An implementation of membrane computing using
reconfigurable hardware. Comput. Inf. 27(3+), 551–569 (2008)

25. V.T.T. Nguyen, D. Kearney, G. Gioiosa, A region-oriented hardware implementation for
Membrane Computing applications, in Membrane Computing (WMC 2009), ed. by Gh. Păun,
M.J. Pérez-Jiménez, A. Riscos, G. Rozenberg, A. Salomaa. Lecture Notes in Computer
Science, vol. 5957 (2010), pp. 385–409. https://doi.org/10.1007/978-3-642-11467-0_27

26. Gh. Păun, Computing with membranes, in Technical Report (Turku Centre for Computer
Science, Turku, 1998)

27. Gh. Păun, Computing with membranes. J. Comput. Syst. Sci. 61(1), 108–143 (2000). https://
doi.org/10.1006/jcss.1999.1693

28. Gh. Păun, Membrane Computing, An Introduction (Springer, Berlin, 2002)
29. Gh. Păun, G. Rozenberg, A. Salomaa, The Oxford Handbook of Membrane Computing (Oxford

University, Oxford, 2010)
30. B. Petreska, C. Teuscher, A reconfigurable hardware membrane system, in Membrane Com-

puting (WMC 2003), ed. by C. Martín-Vide, G. Mauri, Gh. Păun, G. Rozenberg, A. Salomaa.
Lecture Notes in Computer Science, vol. 2933 (2003), pp. 269–285. https://doi.org/10.1007/
978-3-540-24619-0_20

31. J. Quirós, Implementación Sobre Hardware Reconfigurable de una Arquitectura no Determin-
ista, Paralela y Distribuida de Alto Rendimiento, Basada en Modelos de Computación con
Membranas, Ph.D. thesis (Universidad de Sevilla, Sevilla, 2015, in Spanish). http://hdl.handle.
net/11441/39088

32. J. Quirós, S. Verlan, J. Viejo, A. Millán, M.J. Bellido, Fast hardware implementations of static
P systems. Comput. Inf. 35(3), 687–718 (2016)

33. S. Raghavan, K. Chandrasekaran, Tools and simulators for membrane computing: a literature
review, in Bio-inspired Computing–Theories and Applications (BIC-TA 2016), ed. by M. Gong,
L. Pan, T. Song, G. Zhang. Communications in Computer and Information Science, vol. 681
(Springer, Singapore, 2016), pp. 249–277. https://doi.org/10.1007/978-981-10-3611-8_23

34. S. Sedwards, T. Mazza, Cyto-Sim: a formal language model and stochastic simulator of
membrane-enclosed biochemical processes. Bioinformatics 23(20), 2800–2802 (2007). https://
doi.org/10.1093/bioinformatics/btm416

35. Z. Shang, Hardware Implementation of Cell-inspired Computational Models. Ph.D. Thesis
(University Paris-Est Créteil Val de Marne, Paris, 2020)

36. Z. Shang, S. Verlan, G. Zhang, Hardware implementation of numerical P systems, in
Proceedings of the 20th International Conference on Membrane Computing, CMC20, August
5–8, 2019,ed. by Gh. Păun (Curtea de Arges, Romania, 2019), pp. 463–474

https://doi.org/10.3233/FI-2015-1157
https://doi.org/10.1007/s11047-016-9566-1
https://doi.org/10.1007/978-3-540-95885-7_24
https://doi.org/10.1007/978-3-642-11467-0_27
https://doi.org/10.1006/jcss.1999.1693
https://doi.org/10.1006/jcss.1999.1693
https://doi.org/10.1007/978-3-540-24619-0_20
https://doi.org/10.1007/978-3-540-24619-0_20
http://hdl.handle.net/11441/39088
http://hdl.handle.net/11441/39088
https://doi.org/10.1007/978-981-10-3611-8_23
https://doi.org/10.1093/bioinformatics/btm416
https://doi.org/10.1093/bioinformatics/btm416


References 9

37. Z. Shang, S. Verlan, G. Zhang, H. Rong, FPGA implementation of numerical P systems. Int. J.
Unconv. Comput. 16(2–3), 279–302 (2021)

38. Y. Suzuki, H. Tanaka. On a LISP implementation of a class of P systems. Rom. J. Inf. Sci.
Technol. 3(2), 173–186 (2000)

39. A. Syropoulos, E.G. Mamatas, P.C. Allilomes, K.T. Sotiriades, A distributed simulation of
transition P systems, inMembrane Computing (WMC 2003), ed. by C. Martín-Vide, G. Mauri,
Gh. Păun, G. Rozenberg, A. Salomaa. Lecture Notes in Computer Science, vol. 2933 (2004),
pp. 357–368. https://doi.org/10.1007/978-3-540-24619-0_25

40. L. Valencia-Cabrera, D. Orellana-Martín, M.A. Martínez-del-Amor, M.J. Pérez-Jiménez, An
interactive timeline of simulators in Membrane Computing. J. Membr. Comput. 1, 209–222
(2019). https://doi.org/10.1007/s41965-019-00016-z

41. L. Valencia-Cabrera, I. Pérez-Hurtado, M.A. Martínez-del-Amor, Simulation challenges in
membrane computing. J. Membr. Comput. 2(4), 392–402 (2020). https://doi.org/10.1007/
s41965-020-00056-w

42. S. Verlan, J. Quirós, Fast hardware implementations of P systems, in Membrane Computing
(CMC 2012), ed. by E. Csuhaj-Varjú, M. Gheorghe, G. Rozenberg, A. Salomaa, G. Vaszil.
Lecture Notes in Computer Science, vol. 7762 (2012), pp. 404–423. https://doi.org/10.1007/
978-3-642-36751-9_27

43. G. Zhang, M.J. Pérez-Jiménez, M. Gheorghe, Real-life Applications with Membrane Comput-
ing (Springer, Berlin, 2017)

44. G. Zhang, Z. Shang, S. Verlan, M.A. Martínez-del-Amor, C. Yuan, L. Valencia-Cabrera, M.J.
Pérez-Jiménez, An overview of hardware implementation of Membrane Computing models.
ACM Comput. Surv. 53(4), Article No. 90, 1–38 (2020). https://doi.org/10.1145/3402456

https://doi.org/10.1007/978-3-540-24619-0_25
https://doi.org/10.1007/s41965-019-00016-z
https://doi.org/10.1007/s41965-020-00056-w
https://doi.org/10.1007/s41965-020-00056-w
https://doi.org/10.1007/978-3-642-36751-9_27
https://doi.org/10.1007/978-3-642-36751-9_27
https://doi.org/10.1145/3402456

	1 Introduction
	1.1 Membrane Computing Overview
	1.2 Software Implementation of P Systems
	1.3 Hardware Implementation of P Systems
	1.4 Challenges of P Systems Implementation
	1.5 Concluding Remarks
	References


