
Gexiang Zhang · Mario J. Pérez-Jiménez
Agustín Riscos-Núñez · Sergey Verlan
Savas Konur · Thomas Hinze
Marian Gheorghe

Membrane
Computing
Models:
Implementations

Membrane Computing Models:
Implementations

Gexiang Zhang • Mario J. Pérez-Jiménez •
Agustín Riscos-Núñez • Sergey Verlan •
Savas Konur • Thomas Hinze •
Marian Gheorghe

Membrane Computing
Models: Implementations

Gexiang Zhang
School of Control Engineering
Chengdu University of Information
Technology
Chengdu, China

Mario J. Pérez-Jiménez
Department of Computer Science
and Artificial Intelligence
University of Seville
Sevilla, Spain

Agustín Riscos-Núñez
Department of Computer Science
and Artificial Intelligence
University of Seville
Sevilla, Spain

Sergey Verlan
Département Informatique, LACL
Université Paris Est Créteil
Creteil cedex, France

Savas Konur
Department of Computer Science
University of Bradford
Bradford, West Yorkshire, UK

Thomas Hinze
Department of Bioinformatics
Friedrich Schiller University Jena
Jena, Thüringen, Germany

Marian Gheorghe
Department of Computer Science
University of Bradford
Bradford, West Yorkshire, UK

ISBN 978-981-16-1565-8 ISBN 978-981-16-1566-5 (eBook)
https://doi.org/10.1007/978-981-16-1566-5

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapore
Pte Ltd. 2021, corrected publication 2021
This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether
the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse
of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and
transmission or information storage and retrieval, electronic adaptation, computer software, or by similar
or dissimilar methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, expressed or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Singapore Pte Ltd.
The registered company address is: 152 Beach Road, #21-01/04 Gateway East, Singapore 189721,
Singapore

https://orcid.org/0000-0001-8034-0977
https://orcid.org/0000-0002-5055-0102
https://orcid.org/0000-0002-5409-3578
https://orcid.org/0000-0001-7800-1618
https://orcid.org/0000-0002-0642-9452
https://orcid.org/0000-0002-2409-4959
https://doi.org/10.1007/978-981-16-1566-5

Dedicated to Academician Gheorghe Păun’s
70th Anniversary.

Foreword

An Interlaced Triad: Theory, Applications and Implementations

The present book nicely completes and illustrates the triad mentioned in the title
above for the membrane computing research area.

Membrane computing (a more suggestive name could be cellular computing) is a
branch of natural computing aiming to abstract computing models from the structure
and the functioning of biological cells, considered alone or cooperating in popula-
tions of cells, tissues, and organs, neuronal nets included. The obtained models form
a rather diverse-versatile modeling framework, characterized by a series of features
which are attractive from a theoretical computer science point of view (especially in
what concerns imagining new computing devices, involving new ideas concerning
the computer architecture, data structures, operations with these structures, ways to
organize/control the computations, and so on, with a direct and promising influence
on the computing power and on the computational complexity/efficiency), but also
very important from the point of view of applications (the models are distributed
and parallel, involving discrete mathematics—which is adequate to a large variety
of processes, from biology to economics, from linguistics to engineering, where
traditional tools based on continuous mathematics, typically, differential equations,
cannot be applied). From the applications point of view, the membrane computing
models have also other attractive features—I only mention some of them: easy
scalability/extensibility, non-linear complex behavior, easy programmability, and
understandability/transparency.

In more than two decades since membrane computing research was initiated, a
large bibliography was accumulated (see, e.g., the information provided by http://
ppage.psystems.eu/ and by http://imcs.org.cn/—the latter one is the web page of
the International Membrane Computing Society). As expected, initially mainly
theoretical computer science investigations were carried out: variations of models
(shortly called P systems in the community), trying to capture more and more
biological features or motivated by “classic” computer science, results concerning
the computing power, in comparison with usual computing hierarchies, of Turing,
Chomsky types and related, computational complexity results. The results are

The original version of this book was revised. A correction to this book is available at https://doi.
org/10.1007/978-981-16-1566-5_9.

vii

http://ppage.psystems.eu/
http://ppage.psystems.eu/
http://imcs.org.cn/
https://doi.org/10.1007/978-981-16-1566-5_9
https://doi.org/10.1007/978-981-16-1566-5_9

viii Foreword

somewhat expected for a natural computing model: Turing universality, reached
sometimes with unexpectedly “simple” models; speed-up of computations, until
theoretically solving intractable problems (typically, NP-complete problems) in
feasible time (typically, polynomial); and so on.

Soon (actually, already in the first years of developing this research area)
applications were explored, initially in biology—which is rather natural: the model
is abstracted from the cell biology and the biologists need new (computational,
discrete, understandable) models for investigating the cell. In time, the range of
applications got wider and wider, while the applications became more and more
sophisticated, hence more relevant for the users.

I recall here only three books (two are collective volumes) reporting applications
of P systems, also suggestive in what concerns the areas of applications (rather
general/diverse for the first volume: cell biology, computer graphics, cryptography,
linguistics, sorting):

Gabriel Ciobanu, Gheorghe Păun, Mario J. Pérez-Jiménez (Eds.), Applications
of Membrane Computing, Springer-Verlag, 2006.
Pierluigi Frisco, Marian Gheorghe, Mario J. Pérez-Jiménez (Eds.), Applications
of Membrane Computing in Systems and Synthetic Biology, Springer-Verlag,
2014.
Gexiang Zhang, Mario J. Pérez-Jiménez, Marian Gheorghe, Real-Life Applica-
tions with Membrane Computing, Springer-Verlag, 2017.

Many other similar volumes can be found in the bibliographies indicated above.
Especially for the applications, but also for theory (towards the application edge,

e.g., of computational complexity), of a direct interest are the simulators and the
implementations of membrane systems. A “standard” application in biology consists
of writing a (mathematical) model, then simulating its evolution on a computer;
this means writing a program, a software support, then making experiments (tuning
parameters, checking the evolution in time, modifying certain features of the model,
checking the evolution in time, and repeating these steps in a dialogue between
biologist and computer scientist and between user and software producer), until
adequately covering the modeled reality and until obtaining relevant insights about
it.

The importance of having at hand an efficient, reliable, and easy to use computer
support—both software and hardware—is obvious in this framework. This means
the importance of simulation and of implementation of membrane systems.

The difference between the two is apparent—and we have to mention from the
very beginning that at this moment there is no real bio-implementation of a P system,
no lab “wet” simulation (unlike, for instance, the case of DNA computing, which
started in 1987 by a theoretical model, the so-called splicing operation, introduced
by Tom Head, but got an essential impulse in 1994, by the Leonard Adleman lab
experiment of computing in a test tube, using DNA molecules). There are, however,
many programs for simulating various types of P systems, using a large variety
of programming languages and programming techniques—on the top of all these,

Foreword ix

there also exists a dedicated programming language, P-lingua, elaborated by the
membrane computing research group at Seville University, Spain.

In several research groups, a series of attempts were made to implement P sys-
tems on a dedicated hardware (the big challenges are related to the implementation
of the distribution and, mainly, of the parallelism of the model), one specially
designed for this purpose or adapted to that (such as existing parallel hardware,
like GPUs—graphic processing units).

The present book provides details about all these directions of investigation—and
still more, as it starts with general considerations about the difficulties encountered
when trying to simulate or implement (the borderline/difference between the two
are not always sharp) a P system. It also describes the possibility of automatic
designing of a P system, proposes a workbench for verifying the obtained models,
and discusses a series of applications.

This is a really necessary and timely book, written by a team of professionals,
among the most active and highly knowledgeable experts in membrane computing,
from all three points of view mentioned in the title—theory, applications, imple-
mentations. The reader interested in modeling real-life processes, especially of a
discrete, compartmental/distributed type, or in developing tools for that, software or
hardware alike, will surely benefit from exploring this book.

Bucharest, Romania Gheorghe Păun
November 25, 2020

Preface

Membrane computing is a branch of natural computing, investigating computational
models, called membrane systems or P systems, inspired by the structure and func-
tioning of the biological cell. This computing paradigm was initiated by Gheorghe
Păun in 1998. The membrane computing community has succeeded to achieve
during its more than 20 years’ history a set of landmark successes: the establishment
of the International Membrane Computing Society (IMCS); the organisation of
four regular conference/workshop events, namely European Branch of International
Conference on Membrane Computing (ECMC), Asian Branch of International
Conference on Membrane Computing (ACMC), Brainstorming Week on Membrane
Computing (BWMC), and Chinese Workshop on Membrane Computing (CWMC);
and the gestation and birth of two periodic publications, Journal of Membrane
Computing (JMC)—four issues per year—and IMCS Bulletin—two issues per
year. IMCS awards three yearly IMCS Prizes: The PhD Thesis of the Year, The
Theoretical Result of the Year and The Application of the Year.

This book presents for the first time to the international community a set of
robust, efficient, reliable and easy-to-use tools supporting membrane computing
models. As numerous theoretical results and a wide range of applications have been
published in several comprehensive monographs or collective books

G. Ciobanu, M.J. Pérez-Jiménez, Gh. Păun (eds.), Applications of Membrane
Computing, in Natural Computing Series, Springer, 2006.
P. Frisco, M. Gheorghe, M.J. Pérez-Jiménez (eds.), Applications of Membrane
Computing in Systems and Synthetic Biology, in Emergence, Complexity and
Computation Series, Springer, 2014.
Gh. Păun, Membrane Computing—An Introduction, Springer, 2002.
Gh. Păun, G. Rozenberg, A. Salomaa (eds.), The Oxford Handbook of Membrane
Computing, Oxford University Press, 2010.
G. Zhang, M.J. Pérez-Jiménez, M. Gheorghe. Real-life applications with mem-
brane computing, Springer, 2017.
G. Zhang, J. Cheng, T. Wang, X. Wang, J. Zhu. Membrane Computing: Theory
and Applications, Science China Press, 2015.

this book aims to present the most recent and significant implementation models,
algorithms and platforms of membrane computing models on a variety of software

xi

xii Preface

and hardware platforms, and to describe the most relevant applications, facilitating a
better and deep understanding on how the tools are used in building, experimenting
with and analysing membrane computing models of complex problems arising
in robotics, automatic design of P systems, ecosystem modelling, systems and
synthetic biology, and bioinformatics.

The chapters covered in this monograph provide a clear image of the depth and
breadth of the software and hardware implementations of membrane systems.

• In Chap. 1, Introduction: An overview of membrane computing is provided.
Software and hardware implementation development of P systems are presented.
The challenging problems of P systems implementation are discussed.

• In Chap. 2, P Systems Implementation on P-Lingua Framework: P-Lingua
framework, the most widely used product for the specification and simulation
of different types of P systems, is described. A high-level tool for virtual
experiments, membrane computing simulator (MeCoSim) is also presented.

• In Chap. 3, Applications of Software Implementations of P Systems: Automatic
design of cell-like P systems and spiking neural P systems are discussed
to address the programmability issue of membrane computing models. The
methodologies for modelling real ecosystems and mobile robots motion planning
are also presented.

• In Chap. 4, InfobioticsWorkbench: An In Silico Software Suite for Computational
Systems Biology: The Infobiotics Workbench, an integrated software suite
developed for computational systems biology, is presented. The tool is built
upon stochastic P systems, a probabilistic extension of P systems, as modelling
framework. The platform utilises computer-aided modelling and analysis of
biological systems through simulation, verification and optimisation.

• In Chap. 5, Molecular Physics and Chemistry in Membranes: the Java Envi-
ronment for Nature-Inspired Approaches (JENA): The JENA is described as a
modular, configurable and extendable platform towards a virtual laboratory and
a virtual cell complementing more abstract and more idealised approaches in
membrane computing. An introduction to JENA with its features and capabilities
from the user’s perspective and from a technical point of view is given. Four
illustrative case studies are used to demonstrate JENA’s practicability and
descriptive capacity.

• In Chap. 6, P Systems Implementation on Graphics Processing Units (GPUs):
The concepts behind GPU computing and a taxonomy of GPU-based simulators,
generic, specific and adaptive simulation, are introduced.

• In Chap. 7, P Systems Implementation on Field-Programmable Gate Arrays
(FPGA): Different existing implementations of P systems using FPGA hardware
are presented. The strong and the weak points of each implementation is given. A
particular attention is given to the latest implementation of generalised numerical
P systems that considers many advanced techniques. A discussion about the
challenges and the necessity of an FPGA implementation is finally performed.

Preface xiii

• In Chap. 8, Applications of Hardware Implementation of P Systems: Enzymatic
numerical P system (ENPS) based robot controllers and path planning algorithm
are implemented in FPGA, achieving a speedup of 105 and 104 order of magni-
tude compared to software simulation. FPGA-hardened (E)NPS in this research
can be regarded as a heterogeneous multicore processor since membranes inside
work as processing units which possess different functions.

This book provides comprehensive descriptions of software and hardware tools,
making it a valuable resource for anyone interested in membrane computing models,
and it will be of particular interest to researchers looking for implementation
methodology of membrane systems and also a variety of computing models in
natural computing. The readers can get benefits from this book in the aspects of
software or hardware implementation ideas of parallel distributed computing mod-
els, software/hardware development ideas and skills, the link procedure between
computing models with applications.

Chengdu, China Gexiang Zhang
Sevilla, Spain Mario J. Pérez-Jiménez
Sevilla, Spain Agustín Riscos-Núñez
Paris, France Sergey Verlan
Bradford, UK Savas Konur
Jena, Germany Thomas Hinze
Bradford, UK Marian Gheorghe

Acknowledgments

The first thank is given to the father of membrane computing, Gheorghe Păun, for
his persistently strong support and perfect foreword, especially on the occasion of
his 70th birthday.

The conception of this book originates from the friendly and fruitful collabora-
tions of our five teams (Chengdu, Sevilla, Paris, Bradford and Jena) in the past more
than 10 years. Many contributors could not be included in the author list and are
therefore acknowledged below.

The authors gratefully acknowledge the excellent work and outstanding contri-
butions of Ignacio Pérez-Hurtado, David Orellana-Martín, Miguel Ángel Martínez-
del-Amor, and Luis Valencia-Cabrera to the Sevilla team; Prithwineel Paul, Zeyi
Shang, Jianping Dong, Zhu Ou, and Xiaoli Huang to the Chengdu team; Jonathan
Blakes, Jamie Twycross, Natalio Krasnogor, Francisco Jose Romero-Campero, and
Laurenţiu Mierlă to Infobiotics Workbench; 35 students up till now to the JENA
software system implementation presented in Chap. 5; Anthony Aguillon, Benjamin
Förster, Gerd Grünert, Hendrik Happe, Florian Höch, Sinan Kaya, Korcan Kirkici,
Alexander Melcher, Daniel Noelpp, Jonas Pilot, and Lea Weber who claim the
greatest share to turn the project into major success.

The work of Gexiang Zhang and Sergey Verlan is supported by the
National Natural Science Foundation of China (61972324, 61672437, 61702428,
61373047, 61170016), Sichuan Science and Technology Program (2018GZ0185,
2018GZ0086), Beijing Advanced Innovation Center for Intelligent Robots and
Systems (2019IRS14), New Generation Artificial Intelligence Science and
Technology Major Project of Sichuan Province (2018GZDZX0043), and Artificial
Intelligence Key Laboratory of Sichuan Province (2019RYJ06). The work of Savas
Konur is supported by EPSRC research grant EP/R043787/1. The work of Mario
Pérez-Jiménez, Agustín Riscos-Núñez and the rest of the Sevilla team is supported
by research project TIN2017-89842-P (MABICAP), co-financed by Ministerio de
Ciencia e Innovación of Spain, through the Agencia Estatal de Investigación (AEI),
and by Fondo Europeo de Desarrollo Regional (FEDER) of the European Union.

xv

Contents

1 Introduction . 1
1.1 Membrane Computing Overview . 1
1.2 Software Implementation of P Systems . 2
1.3 Hardware Implementation of P Systems . 3
1.4 Challenges of P Systems Implementation . 4
1.5 Concluding Remarks . 5
References . 6

2 P Systems Implementation on P-Lingua Framework . 11
2.1 Introduction . 11
2.2 P-Lingua Language . 12

2.2.1 P System Models . 12
2.2.2 Membrane Structure . 14
2.2.3 Initial Multisets . 15
2.2.4 P System Rules . 15

2.3 Simulation Algorithms. 17
2.4 Membrane Computing Simulator (MeCoSim) . 19

2.4.1 Primary goals . 20
2.4.2 Main Functional Components . 22

2.5 Conclusion . 27
References . 27

3 Applications of Software Implementations of P Systems 31
3.1 Introduction . 31
3.2 Automatic Design of Cell-Like P Systems with P-Lingua 32

3.2.1 Preliminaries . 32
3.2.2 Automatic Design of P Systems with an Elitist Genetic

Algorithm . 34
3.2.3 Automatic Design of P Systems with a Permutation

Penalty Genetic Algorithm . 40
3.3 Automatic Design of Spiking Neural P Systems with P-Lingua.. 49
3.4 Modelling Real Ecosystems with MeCoSim . 55

3.4.1 Problem Description . 55

xvii

xviii Contents

3.5 Robot Motion Planning .. 59
3.5.1 Problem Definition . 62
3.5.2 Path Planning for Mobile Robots . 63
3.5.3 Rapidly-Exploring Random Tree (RRT) Algorithm 63

3.6 Conclusion . 64
References . 64

4 Infobiotics Workbench: An In Silico Software Suite for
Computational Systems Biology . 71
4.1 Introduction . 71
4.2 Stochastic P Systems. 72
4.3 Software Description.. 77

4.3.1 Simulation .. 77
4.3.2 Verification .. 80
4.3.3 Optimization . 82

4.4 Case Studies . 85
4.4.1 Pulse generator .. 85
4.4.2 Repressilator . 90

4.5 KPWorkbench: A Qualitative Analysis Tool . 93
4.6 Next-Generation Infobiotics for Synthetic Biology 94
4.7 Conclusion . 95
References . 95

5 Molecular Physics and Chemistry in Membranes: The Java
Environment for Nature-Inspired Approaches (JENA) 101
5.1 Introduction . 101
5.2 JENA at a Glance and Its Descriptive Capacity . 105

5.2.1 Atoms, Ions, Molecules, and Particles . 108
5.2.2 Vessels and Delimiters. 117
5.2.3 Brownian Motion and Thermodynamics . 121
5.2.4 Chemical Reactions by Effective Collisions and by

Spontaneous Decay . 125
5.2.5 Applying External Forces . 130
5.2.6 Active Membranes and Dynamical Delimiters 134
5.2.7 Simulation, Monitoring, Logging, and Analyses 136

5.3 JENA Source Code Design . 139
5.4 Selection of JENA Case Studies. 141

5.4.1 Chemical Lotka-Volterra Oscillator . 142
5.4.2 Electrophoresis. 144
5.4.3 Centrifugation .. 149
5.4.4 Neural Signal Transduction Across Synaptic Cleft 152

5.5 Conclusions and Prospectives . 158
References . 160

Contents xix

6 P Systems Implementation on GPUs. 163
6.1 Introduction . 163
6.2 GPU Computing . 164

6.2.1 The Graphics Processing Unit. 164
6.2.2 CUDA Programming Model . 166
6.2.3 GPU Architecture . 168
6.2.4 Good Practices . 169

6.3 Generic Simulations . 170
6.3.1 Definition. 170
6.3.2 Simulating P Systems with Active Membranes 171
6.3.3 Simulating Population Dynamics P Systems 182

6.4 Specific Simulations . 189
6.4.1 Definition. 190
6.4.2 Simulating a SAT Solution with Active Membrane P

Systems. 191
6.4.3 Simulating a SAT Solution with Tissue P Systems 198

6.5 Adaptive Simulations . 209
6.5.1 Definition. 209
6.5.2 Simulating Population Dynamics P Systems 209

6.6 Conclusions . 212
References . 213

7 P Systems Implementation on FPGA . 217
7.1 Introduction . 217
7.2 FPGA Hardware . 218
7.3 Generalized Numerical P Systems (GNPS). 221

7.3.1 Formal Definition .. 221
7.3.2 Basic Variant . 225
7.3.3 Historical Remarks . 228

7.4 Implementing GNPS on FPGA. 230
7.5 FPGA Implementations of Other Models of P Systems. 234

7.5.1 Petreska and Teuscher Implementation .. 234
7.5.2 Nguyen Implementation .. 235
7.5.3 Quiros and Verlan Implementation . 237
7.5.4 Comments . 238

7.6 Discussion . 239
7.7 Conclusion . 240
References . 241

8 Applications of Hardware Implementation of P Systems. 245
8.1 Introduction . 245
8.2 Robot Membrane Controllers with FPGA Implementation 246

8.2.1 Numerical P Systems-Based Membrane Controllers on
FPGA . 246

xx Contents

8.2.2 Enzymatic Numerical P Systems (ENPS)-Based
Membrane Controllers on FPGA . 253

8.2.3 GNPS-Based Membrane Controllers on FPGA 254
8.3 Robot Path Planning with FPGA Implementation.. 256

8.3.1 RRT Algorithm . 258
8.3.2 Arithmetic Units Design. 261
8.3.3 Enzymatic Numerical P System Rapid-Exploring

Random Tree Register Transfer Level (ENPS-RRT
RTL) Model Design . 265

8.3.4 ENPS-RRT on FPGA. 268
8.4 Conclusion . 272
References . 273

Correction to: Membrane Computing Models: Implementations C1

Index . 277

Acronyms

3-COL 3-CoLor (problem)
AC Alternating Current
AG Average Generation
BBB Binomial Block Based (algorithm)
CLBs Configurable Logic Blocks
CPU Central Processing Unit
CUDA Compute Unified Device Architecture
DC Direct Current
DCBA Direct Distribution Based on Consistent Blocks Algorithm
DNA Deoxyribonucleic Acid
DND Direct Non-Deterministic Distribution
DNDP Direct Non-Deterministic Algorithm with Probabilities
DSL Domain Specific Language
DSP Digital Signal Processing
ENPS Enzymatic Numerical P Systems
FFs Flip-Flops
FPGA Field Programmable Gate Array
GAPE Genetic Algorithm with the Permutation Encoding Technique
GNPS Generalized Numerical P Systems
GPU Graphics Processing Unit
HAM-CYCLE Hamiltonian CYCLE
HDL Hardware Description Language
HPC High Performance Computing
IBL Infobiotics Language
IBW Infobiotics Workbench
ILA Integrated Logic Analyzer
JENA Java Environment for Nature-Inspired Approaches
JGAP Java Genetic Algorithm Package
KP Kernel P (Systems)
LC Logic Cell
LFSR Linear Feedback Shift Register
LHS Left-Hand Side
LPP Lattice Population P (Systems)
LUTs Look-Up Tables

xxi

xxii Acronyms

MC Membrane Computing
MCSS Multi-compartmental Stochastic Simulation
MeCoSim Membrane Computing Simulator
MX Multiplexers
NoFE Number of Function Evaluations
NP problem Nondeterministic Polynomial Time Problem
NPS Numerical P systems
PDP Population Dynamics P (System)
PID Proportional Integral Derivative Controller
PPGA Permutation Penalty Genetic Algorithm
PRNG Pseudo Random Number Generator
PSNP SNP Systems with Polarization
PSPACE Polynomial Space (complete)
QIEA Quantum-Inspired Evolutionary Algorithm
RHS Right-Hand Side
RNA RiboNucleic Acid
RRTs Rapidly Exploring Random Trees
RTL Register-Transfer Level
SAT Satisfiability (problem)
SBML Systems Biology Markup Language
SIMD Single Instruction Multiple Data
SN Spiking Neural (P system)
SNP Spiking Neural P (System)
SP Stochastic P (Systems)
SR Success Rate
SRSim Spatial Rules Simulator
SSA Stochastic Simulation Algorithm
SNUPS Simulator of Numerical P Systems
TRNG True Random Number Generator
UART Universal Asynchronous Receiver Transmitter
VHDL VHSIC Hardware Description Language
VHSIC Very High Speed Integrated Circuit

1Introduction

1.1 Membrane Computing Overview

Membrane computing (MC for short) is a branch of natural computing investigating
computational models called membrane systems or P systems, inspired by the struc-
ture and functionality of the living cell. This computing paradigm was introduced
by Gh. Păun, initially in a technical report [26] and then in a journal paper [27]. The
MC research has initially developed mostly as a theoretical investigation looking at
various models and bringing inspiration from a multitude of living cell concepts,
topics, and phenomena. All these models have in common a set of compartments
separated by membranes and organized according to a certain structure (tree, graph)
that can be fixed or dynamic. Each of these compartments contains biochemical
entities, called objects, which evolve according to local rules by transforming
multisets of objects and/or moving them from a compartment to a neighboring one.
This common framework uses various bioinspired features such as activators and
inhibitors, membrane electrical charges, catalysts, membrane thickness, and cross-
membrane movement of objects (symport, antiport) in order to generate various
types of models, all fine-tuned by a rigorous way of selecting them in a consistent
and coherent manner. The main characteristic of these models is their distributed
and parallel behavior, that is, the computation takes place in each compartment
and multiple transformations and/or cross-membrane movement of objects may
take place in parallel. Well-defined topics for many classes of (natural computing)
computational models, such as computational power, complexity, and connections
with other computational models, have been investigated, revealing a wealth of new
and exciting results. A first research monograph [28] included some of these initial
theoretical aspects of this field.

These theoretical investigations have paved the way for applications in biology,
computer science, computer graphics, and linguistics. Some tools have been also
produced, supporting these research developments. All these have been pub-
lished in another Springer monograph [11]. The key theoretical developments and

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2021
G. Zhang et al., Membrane Computing Models: Implementations,
https://doi.org/10.1007/978-981-16-1566-5_1

1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-16-1566-5_1&domain=pdf
https://doi.org/10.1007/978-981-16-1566-5_1

2 1 Introduction

applications of membrane computing, at the level of 2010, have been presented in
a handbook [29]. More recently, some more specific MC applications have been
reported [16]. With the exploration of MC models with real-life background, more
and more real-life complex and challenging applications have been investigated
[14, 43].

From this very brief MC overview, it is clear that the theoretical investigations
and MC applications have had a very consistent and steady development. With a
multitude of models requesting, in certain circumstances, tools to verify various
hypotheses and numerous applications involving the simulation, verification, and
analysis of complex systems, a new type of research activity has been launched, the
design and development of adequate software and hardware tools. Thus, this book
will systematically report the results and applications on software and hardware
implementations of a variety of MC models.

The rest of this chapter is organized as follows: Sect. 1.2 introduces software
implementation of P systems. Section 1.3 introduces hardware implementation of P
systems. Section 1.4 discusses challenging problems of P systems implementation.
Concluding remarks, other implementations of P systems, and a brief presentation
of the chapters of this book will be discussed in Sect. 1.5.

1.2 Software Implementation of P Systems

When conducting research in MC, the design of computational models (P systems)
can be guided by a broad spectrum of questions, ranging from solving hard
problems (i.e., problems having a high computational complexity) to modelling
complex systems. The desired answer can be extracted from the analysis of the
corresponding computations of the designed P system over initial scenarios of
interest. Obviously, in order for the designs to be reliable, it is important to verify
their correctness, that is, making sure that the described system actually reflects its
expected behavior. In this context, the need for software implementations able to
manipulate P systems and recreate their behavior naturally arose. Such automatic
tools provide not only an invaluable help for the verification process (especially
when dealing with large and complicated designs and/or long computations) but
also the possibility to run virtual experiments and to process the data associated
to the simulated computations (especially in the case of computational modelling
of complex systems). A very brief overview of existing P systems simulators is
provided in what follows. For a more detailed history and bibliography, we refer the
reader to [11, 29, 33, 40].

First software implementations were written in LISP [38] and Prolog [19],
followed closely by Scheme [2] and Haskell [1] simulators. Note that the term
implementation is used in a software engineering sense (i.e., developing code that
somehow captures the specification of an abstract theoretical model), but it does not
correspond to a faithful and precise materialization of the semantics of the model.
In particular, the inherent parallelism concerning rule applications in one step of a
membrane system cannot be implemented as is in the sequential Central Processing

1.3 Hardware Implementation of P Systems 3

Unit (CPU) of a standard computer although it can be “imitated” or “emulated”
by means of loops of intermediate auxiliary steps. Nevertheless, there were also
several early attempts to get closer to such an ideal implementation by using parallel
techniques of different programming languages, such as MPI for communicating
threads in C++ [9, 10] or RMI for the communication among processes in different
computers in Java [39].

From that point on, new simulators kept coming out on a regular basis as the field
grew and different research groups started to investigate new types of membrane
systems. However, at that time, software tools were mostly considered as auxiliary
by-products, typically featuring an ad hoc design oriented to a specific type of
P system, and they were not meant to be extended.

In this situation, P-Lingua project was created [12, 13], pursuing a standard
formalization that could be used by software implementations independently of
the underlying programming language used to develop the simulator. The initial
goal was to cover as many types of P systems as possible and to define a syntax
specification, which was similar to the notation used in the MC literature. Chapter 3
offers more details about P-Lingua project, as well as about MeCoSim, a general
purpose tool for virtual experimentation in membrane computing built on top of
P-Lingua.

It is also worth pointing out that there exist some specialized integrated simula-
tion tools that offer modelization services to users, which are not required to have a
strong membrane computing training (mostly dealing with biochemical processes).
Some of the most relevant works in this direction are Cyto-Sim [34], MetaPlab /
MpTheory [6], BioSimWare [3], Infobiotics Workbench [4] (see Chap. 4), and The
Java Environment for Nature-inspired Approaches (JENA) [17] (see Chap. 5).

1.3 Hardware Implementation of P Systems

Software simulations of P systems face difficulties in expressing in an efficient
way the parallel and distributed nature of the model as current-day computers are
based on a different, mostly sequential, paradigm. So from the very beginning, a
research aiming to accelerate the execution of P system simulators using different
types of hardware platforms was proposed. Two main research directions have
been developed in this respect, depending on the underlying hardware utilized:
Graphics Processing Unit (GPU) Compute Unified Device Architecture (CUDA)-
based and Field Programmable Gate Array (FPGA)-based implementations. We
refer to Chaps. 6 and 7 for the presentation of the corresponding hardware.

The development cycle for a GPU CUDA-based implementation is very similar
to a traditional software development cycle and allows a relatively quick prototyping
and implementation of corresponding algorithms. The major difficulty is to handle
the data parallelism provided by these devices. In the FPGA case, a unique circuit
design is created for each concrete system and its initial data. This allows to optimize
the circuit for the corresponding computation and to achieve important speedups of
several orders of magnitude. In order to accommodate more designs, a software

4 1 Introduction

generator is used that provides a hardware description corresponding to the system
description and its initial configuration.

First, FPGA-based implementation of a P systems model was proposed in 2003
by Petreska and Teuscher [30], for transitional P systems and using a variant of
sequential rule application strategy. Then, in 2008–2010, Nguyen et al. presented
a series of implementations of transitional P systems with maximal parallelism
evolution strategy [22–25]. These implementations featured up to 500 times speedup
with respect to a reference software implementation. In 2012, Quiros and Verlan
proposed a first truly nondeterministic implementation of a variant of network
of cells (a generic P systems model; see [15]) [31, 32, 42]. This is also the
first implementation achieving a speedup of order 104. In 2019–2020, Shang et
al. proposed an implementation of numerical P systems [35–37] with several
applications in robotics and achieving a speedup of order 105. More details about
these implementations can be found in Chap. 7.

The first GPU simulators came relatively late, in 2010 [7]. However, due to
a lower development effort with respect to FPGA-based designs, their number
is bigger. Besides P systems with active membranes [7, 8], population dynamics
P (PDP) systems [21], spiking neural P systems [5], enzymatic numerical P
systems, and evolution-communication P systems with energy [20] were targeted for
simulation. The obtained speedups range from 1.6 to 100 with respect to a reference
software implementation.

In conclusion, we would like to remark that the development of hardware
implementations is very promising as it allows to achieve important speedups.
Unfortunately, the development time for these implementations, especially for
FPGA-based ones, is much larger than for an ordinary software one. So there is a
kind of a trade-off between the efficiency of an implementation and the development
speed. Hence, for a hardware implementation to be cost-effective, it should target a
problem with significant further development, such as like mobile robot controller,
in order to compensate for the high development effort.

We also refer to a recent paper [44] that gives a detailed overview of different
hardware implementations of P systems.

1.4 Challenges of P Systems Implementation

We mention here some of the most significant challenges of P systems implementa-
tion that are discussed in the next chapters: inherent parallelism of the MC models,
a broad spectrum of models, combining in different ways various features associ-
ated with the generic framework, the usability of the tools, and nondeterminism
implementation on computers with von Neumann architecture. These challenges
require new algorithms, adequate software and/or hardware platforms, generic or
specific solutions, and an effort, in some cases, to produce tools that might appeal to
researchers outside the MC community—we have in mind those complex systems

1.5 Concluding Remarks 5

requesting models that have to be simulated and analyzed with specific tools. More
details can refer to [41, 44]. Some of these challenges are explained as follows:

• Parallelism: How to realize a P system with inherent parallelism is one of
the main challenging problem in P systems software and/or hardware tools.
The challenge results from both model design and simulator implementation
or hardware constraints. Simulating P systems is a memory-demanding task,
given that the execution of rules requires several accesses to memory for just
one conditional operation [41]. The design of P system variants of high
computational intensity and with memory-bandwidth bounded is a challenging
task. The rule competition for objects in the selection phases and finding ways to
extend the idea of adaptive simulators represent significant bottlenecks.

• Nondeterminism: Simulating a P system with nondeterminism on the inherently
deterministic computers or hardware with von Neumann architecture is another
main challenge. Pseudorandom numbers, instead pf actual random numbers, are
used in the present simulators.

• Universality and flexibility: There are numerous P system models with their own
syntactical elements, such as initial structures, initial multisets of objects and
initial set of rules, and specific semantics of the execution strategy. Thus, it is
a challenging task in the development of a software simulator or selection of a
hardware platform that is flexible enough to support all the P system variants.

1.5 Concluding Remarks

As each of the following chapters has an abstract summarizing its content, we
will not present here a summary of each chapter but will discuss instead the main
problems pointing to where they appear in this book.

Three software platforms, P-Lingua (Chap. 2), Infobiotics Workbench (Chap. 4),
and JENA Environment (Chap. 5), are described, pointing to their key features and
usage. P-Lingua framework, probably the most widely used software tool, allows
for the specification and simulation of a large spectrum of types of P systems.
Algorithms describing the semantics of these classes of P systems and a higher
level tool, called MeCoSim, providing a visual representation of the simulation
environment, are presented. Infobiotics Workbench is an integrated software suite
developed for computational systems biology and relying upon stochastic P systems.
Its components providing computer-aided modelling and analysis of biological
systems through simulation, verification, and optimization are described, and their
usage illustrated with some case studies. JENA is a modular, configurable, and
extendable platform conceived as a virtual laboratory and a virtual cell. Biological
information processing is based on natural laws at a molecular level. Resulting
principles make use of dedicated chemical reactions, mechanisms for transportation
of biomolecules, and forces among molecules and their environment mainly induced
by electric charges and by movement in local space. An introduction to JENA is

6 1 Introduction

presented, including its features and capabilities from the user’s perspective and
from a technical point of view. Four illustrative case studies are described.

Tools supporting the automatic design of various types of MC models (cell-
like P systems and spiking neural P systems), by using various classes of genetic
algorithms, are described in Chap. 3. The performance of the tools is proved through
a set of examples. In the same chapter are illustrated the capabilities of the MeCoSim
tool for modelling a complex ecosystem and issues related to the parallelization of a
robot motion problem when modelled with a special class of numerical P systems.

As mentioned above, the parallelization of various processes occurring in the
simulation of certain classes of MC models is a challenging aspect in building
efficient tools. In this respect, implementations relying on specific hardware,
namely, GPU and FPGA, are investigated in Chaps. 6 and 7, respectively. Concepts
related to GPU computing and its applications are introduced. Three types of
simulators are identified and presented: those developed for very specific P systems
or family of P systems (specific simulators), others developed for a wide range of
P systems inside a variant (generic simulators), and a hybrid simulator that receives
high-level information to be better adapted (adaptive simulators). Some guidelines
on how to develop new simulators for P systems on GPUs are presented.

The other hardware option for implementing parallel computation, FPGA, is
discussed in the context of implementing generalized numerical P systems by
considering many advanced techniques. A discussion related to the challenges posed
by FPGA implementations is presented. Enzymatic numerical P systems-based
robot controllers and path planning algorithm are implemented in FPGA, achieving
a speedup of 105 and 104 order of magnitude compared to software simulation.

Also, there are other software tools, such as kPWorkbench [18] or MetaPlab [6],
dedicated to the simulation and analysis of two specific classes of P systems, kernel
P systems and Metabolic P systems, respectively, which are not presented in this
book as they target topics that are not within its scope.

The gain obtained by reading this book is twofold: On the one hand, the
tools presented are introduced together with a thorough investigation of various
algorithms, methods, and guidelines regarding the implementation strategies, and
on the other hand, a consistent description of the usage of the tools and a set of
illustrative examples are presented.

We hope that the readers will find this book interesting, useful, and helpful
in their own investigations and research and will open the desire to make use of
these tools in modelling, analyzing, and better understanding of complex systems
modelled with different types of membrane systems.

References

1. F. Arroyo, C. Luengo, A.V. Baranda, L. Mingo, A software simulation of transition P systems in
Haskell, in Membrane Computing (WMC 2002), ed. by Gh. Păun, G. Rozenberg, A. Salomaa,
C. Zandron. Lecture Notes in Computer Science, vol. 2597 (2003), pp. 19–32. https://doi.org/
10.1007/3-540-36490-0_2

https://doi.org/10.1007/3-540-36490-0_2
https://doi.org/10.1007/3-540-36490-0_2

References 7

2. D. Balbontín-Noval, M.J. Pérez-Jiménez, F. Sancho-Caparrini, A MzScheme implementation
of transition P systems, in Membrane Computing (WMC 2002), ed. by Gh. Păun, G. Rozenberg,
A. Salomaa, C. Zandron. Lecture Notes in Computer Science, vol. 2597 (2003), pp. 58–73.
https://doi.org/10.1007/3-540-36490-0_5

3. D. Besozzi, P. Cazzaniga, G. Mauri, D. Pescini, BioSimWare: a software for the modeling,
simulation and analysis of biological systems, in Membrane Computing (CMC 2010), ed. by
M. Gheorghe, T. Hinze, Gh. Păun, G. Rozenberg, A. Salomaa. Lecture Notes in Computer
Science, vol. 6501 (2010), pp. 119–143. https://doi.org/10.1007/978-3-642-18123-8_12

4. J. Blakes, J. Twycross, F.J. Romero-Campero, N. Krasnogor, The Infobiotics Workbench:
an integrated in silico modelling platform for systems and synthetic biology. Bioinformatics
27(23), 3323–3324 (2011). https://doi.org/10.1093/bioinformatics/btr571

5. J.P.A. Carandang, J.M.B. Villaflores, F.G.C. Cabarle, H.N. Adorna, M.A. Martínez-del-Amor,
CuSNP: spiking neural P systems simulators in CUDA. Rom. J. Inf. Sci. Technol. 20(1), 57–70
(2017)

6. A. Castellini, V. Manca, MetaPlab: a computational framework for metabolic P systems, in
Membrane Computing (WMC 2008), ed. by D.W. Corne, P. Frisco, Gh. Păun, G. Rozenberg,
A. Salomaa. Lecture Notes in Computer Science, vol. 5391 (2008), pp. 157–168. https://doi.
org/10.1007/978-3-540-95885-7_12

7. J.M. Cecilia, J.M. García, G.D. Guerrero, M.A. Martínez-del-Amor, I. Pérez-Hurtado, M.J.
Pérez-Jiménez, Simulation of P systems with active membranes on CUDA. Briefings Bioinf.
11(3), 313–322 (2010). https://doi.org/10.1093/bib/bbp064

8. J.M. Cecilia, J.M. García, G.D. Guerrero, M.A. Martínez-del-Amor, M.J. Pérez-Jiménez, M.
Ujaldón, The GPU on the simulation of cellular computing models. Soft Comput. 16(2), 231–
246 (2012). https://doi.org/10.1007/s00500-011-0716-1

9. G. Ciobanu, G. Wenyuan, A parallel implementation of transition P systems, in Pre-
Proceedings of the Workshop on Membrane Computing, Tarragona, Spain, 2003, ed. by A.
Alhazov, C. Martín-Vide, Gh. Păun. Report RGML 28/03 (2003), pp. 169–184

10. G. Ciobanu, G. Wenyuan, P systems running on a cluster of computers, in Membrane
Computing (WMC 2003), ed. by C. Martín-Vide, G. Mauri, Gh. Păun, G. Rozenberg, A.
Salomaa. Lecture Notes in Computer Science, vol.2933 (2004), pp. 123–139. https://doi.org/
10.1007/978-3-540-24619-0_9

11. G. Ciobanu, M.J. Pérez-Jiménez, Gh. Păun, Applications of Membrane Computing (Springer,
Berlin, 2005)

12. D. Díaz-Pernil, I. Pérez-Hurtado, M.J. Pérez-Jiménez, A. Riscos-Núñez, P-Lingua: a program-
ming language for membrane computing, in Proceedings of the Sixth Brainstorming Week on
Membrane Computing, ed. by D. Díaz-Pernil, C. Graciani, M.A. Gutiérrez-Naranjo, Gh. Păun,
I. Pérez-Hurtado, A. Riscos-Núñez, Fénix Editora (2008), pp. 135–155

13. D. Díaz-Pernil, I. Pérez-Hurtado, M.J. Pérez-Jiménez, A. Riscos-Núñez, A P-Lingua program-
ming environment for Membrane Computing, in Membrane Computing (WMC 2008), ed. by
D.W. Corne, P. Frisco, Gh. Păun, G. Rozenberg, A. Salomaa. Lecture Notes in Computer
Science, vol. 5391 (2009), pp. 187–203. https://doi.org/10.1007/978-3-540-95885-7_14

14. S. Fan, P. Paul, T. Wu, H. Rong, G. Zhang, On applications of spiking neural P systems. Appl.
Sci. 10(20), 7011 (2020). https://doi.org/10.3390/app10207011

15. R. Freund, S. Verlan, A formal framework for static (tissue) P systems, in Membrane
Computing (WMC 2007), ed. by G. Eleftherakis, P. Kefalas, Gh. Păun, G. Rozenberg,
A. Salomaa. Lecture Notes in Computer Science, vol. 4860 (2007), pp. 271–284. https://doi.
org/10.1007/978-3-540-77312-2_17

16. P. Frisco, M. Gheorghe, M.J. Pérez-Jiménez, Applications of Membrane Computing in Systems
and Synthetic Biology (Springer, Berlin, 2014)

17. T. Hinze, The Java Environment for Nature-inspired Approaches (JENA): A workbench for
bioComputing and bioModelling enthusiasts, in Enjoying Natural Computing, Series Lecture
Notes in Computer Science, ed. by C. Graciani, A. Riscos-Núñez, Gh. Păun, G. Rozenberg, A.
Salomaa, vol. 11270 (2018), pp. 155–169. https://doi.org/10.1007/978-3-030-00265-7_13

https://doi.org/10.1007/3-540-36490-0_5
https://doi.org/10.1007/978-3-642-18123-8_12
https://doi.org/10.1093/bioinformatics/btr571
https://doi.org/10.1007/978-3-540-95885-7_12
https://doi.org/10.1007/978-3-540-95885-7_12
https://doi.org/10.1093/bib/bbp064
https://doi.org/10.1007/s00500-011-0716-1
https://doi.org/10.1007/978-3-540-24619-0_9
https://doi.org/10.1007/978-3-540-24619-0_9
https://doi.org/10.1007/978-3-540-95885-7_14
https://doi.org/10.3390/app10207011
https://doi.org/10.1007/978-3-540-77312-2_17
https://doi.org/10.1007/978-3-540-77312-2_17
https://doi.org/10.1007/978-3-030-00265-7_13

8 1 Introduction

18. S. Konur, L. Mierlă, F. Ipate, M. Gheorghe, kP-Workbench: a software suite for membrane
systems. SoftwareX 11, Article No. 100407 (2020)

19. M. Malita, Membrane computing in Prolog, in Pre-Proceedings of the Workshop on Multiset
Processing, Curtea de Arges, Romania, TR 140, CDMTCS, ed. by C.S. Calude, M.J. Dinneen,
Gh. Păun (University of Auckland, Auckland, 2000), pp. 159–175

20. M.A. Martínez-del-Amor, M. García-Quismondo, L.F. Macías-Ramos, L. Valencia-Cabrera,
A. Riscos-Núñez, M.J. Pérez-Jiménez, Simulating P systems on GPU devices: a survey.
Fundam. Inform. 136(3), 269–284 (2015). https://doi.org/10.3233/FI-2015-1157

21. M.A. Martínez-del-Amor, L.F. Macías-Ramos, L. Valencia-Cabrera, M.J. Pérez-Jiménez,
Parallel simulation of population dynamics P systems: updates and roadmap. Nat. Comput.
15(4), 565–573 (2016). https://doi.org/10.1007/s11047-016-9566-1

22. V.T.T. Nguyen, An Implementation of the Parallelism, Distribution and Nondeterminism of
Membrane Computing Models on Reconfigurable Hardware (University of South Australia,
Australia, 2010)

23. V.T.T. Nguyen, D. Kearney, G. Gioiosa, An algorithm for non-deterministic object distribution
in P systems and its implementation in hardware, in Membrane Computing (WMC 2008), ed.
by D.W. Corne, P. Frisco, Gh. Păun, G. Rozenberg, A. Salomaa. Lecture Notes in Computer
Science, vol.5391 (2008), pp. 325–354. https://doi.org/10.1007/978-3-540-95885-7_24

24. V.T.T. Nguyen, D. Kearney, G. Gioiosa, An implementation of membrane computing using
reconfigurable hardware. Comput. Inf. 27(3+), 551–569 (2008)

25. V.T.T. Nguyen, D. Kearney, G. Gioiosa, A region-oriented hardware implementation for
Membrane Computing applications, in Membrane Computing (WMC 2009), ed. by Gh. Păun,
M.J. Pérez-Jiménez, A. Riscos, G. Rozenberg, A. Salomaa. Lecture Notes in Computer
Science, vol. 5957 (2010), pp. 385–409. https://doi.org/10.1007/978-3-642-11467-0_27

26. Gh. Păun, Computing with membranes, in Technical Report (Turku Centre for Computer
Science, Turku, 1998)

27. Gh. Păun, Computing with membranes. J. Comput. Syst. Sci. 61(1), 108–143 (2000). https://
doi.org/10.1006/jcss.1999.1693

28. Gh. Păun, Membrane Computing, An Introduction (Springer, Berlin, 2002)
29. Gh. Păun, G. Rozenberg, A. Salomaa, The Oxford Handbook of Membrane Computing (Oxford

University, Oxford, 2010)
30. B. Petreska, C. Teuscher, A reconfigurable hardware membrane system, in Membrane Com-

puting (WMC 2003), ed. by C. Martín-Vide, G. Mauri, Gh. Păun, G. Rozenberg, A. Salomaa.
Lecture Notes in Computer Science, vol. 2933 (2003), pp. 269–285. https://doi.org/10.1007/
978-3-540-24619-0_20

31. J. Quirós, Implementación Sobre Hardware Reconfigurable de una Arquitectura no Determin-
ista, Paralela y Distribuida de Alto Rendimiento, Basada en Modelos de Computación con
Membranas, Ph.D. thesis (Universidad de Sevilla, Sevilla, 2015, in Spanish). http://hdl.handle.
net/11441/39088

32. J. Quirós, S. Verlan, J. Viejo, A. Millán, M.J. Bellido, Fast hardware implementations of static
P systems. Comput. Inf. 35(3), 687–718 (2016)

33. S. Raghavan, K. Chandrasekaran, Tools and simulators for membrane computing: a literature
review, in Bio-inspired Computing–Theories and Applications (BIC-TA 2016), ed. by M. Gong,
L. Pan, T. Song, G. Zhang. Communications in Computer and Information Science, vol. 681
(Springer, Singapore, 2016), pp. 249–277. https://doi.org/10.1007/978-981-10-3611-8_23

34. S. Sedwards, T. Mazza, Cyto-Sim: a formal language model and stochastic simulator of
membrane-enclosed biochemical processes. Bioinformatics 23(20), 2800–2802 (2007). https://
doi.org/10.1093/bioinformatics/btm416

35. Z. Shang, Hardware Implementation of Cell-inspired Computational Models. Ph.D. Thesis
(University Paris-Est Créteil Val de Marne, Paris, 2020)

36. Z. Shang, S. Verlan, G. Zhang, Hardware implementation of numerical P systems, in
Proceedings of the 20th International Conference on Membrane Computing, CMC20, August
5–8, 2019,ed. by Gh. Păun (Curtea de Arges, Romania, 2019), pp. 463–474

https://doi.org/10.3233/FI-2015-1157
https://doi.org/10.1007/s11047-016-9566-1
https://doi.org/10.1007/978-3-540-95885-7_24
https://doi.org/10.1007/978-3-642-11467-0_27
https://doi.org/10.1006/jcss.1999.1693
https://doi.org/10.1006/jcss.1999.1693
https://doi.org/10.1007/978-3-540-24619-0_20
https://doi.org/10.1007/978-3-540-24619-0_20
http://hdl.handle.net/11441/39088
http://hdl.handle.net/11441/39088
https://doi.org/10.1007/978-981-10-3611-8_23
https://doi.org/10.1093/bioinformatics/btm416
https://doi.org/10.1093/bioinformatics/btm416

References 9

37. Z. Shang, S. Verlan, G. Zhang, H. Rong, FPGA implementation of numerical P systems. Int. J.
Unconv. Comput. 16(2–3), 279–302 (2021)

38. Y. Suzuki, H. Tanaka. On a LISP implementation of a class of P systems. Rom. J. Inf. Sci.
Technol. 3(2), 173–186 (2000)

39. A. Syropoulos, E.G. Mamatas, P.C. Allilomes, K.T. Sotiriades, A distributed simulation of
transition P systems, in Membrane Computing (WMC 2003), ed. by C. Martín-Vide, G. Mauri,
Gh. Păun, G. Rozenberg, A. Salomaa. Lecture Notes in Computer Science, vol. 2933 (2004),
pp. 357–368. https://doi.org/10.1007/978-3-540-24619-0_25

40. L. Valencia-Cabrera, D. Orellana-Martín, M.A. Martínez-del-Amor, M.J. Pérez-Jiménez, An
interactive timeline of simulators in Membrane Computing. J. Membr. Comput. 1, 209–222
(2019). https://doi.org/10.1007/s41965-019-00016-z

41. L. Valencia-Cabrera, I. Pérez-Hurtado, M.A. Martínez-del-Amor, Simulation challenges in
membrane computing. J. Membr. Comput. 2(4), 392–402 (2020). https://doi.org/10.1007/
s41965-020-00056-w

42. S. Verlan, J. Quirós, Fast hardware implementations of P systems, in Membrane Computing
(CMC 2012), ed. by E. Csuhaj-Varjú, M. Gheorghe, G. Rozenberg, A. Salomaa, G. Vaszil.
Lecture Notes in Computer Science, vol. 7762 (2012), pp. 404–423. https://doi.org/10.1007/
978-3-642-36751-9_27

43. G. Zhang, M.J. Pérez-Jiménez, M. Gheorghe, Real-life Applications with Membrane Comput-
ing (Springer, Berlin, 2017)

44. G. Zhang, Z. Shang, S. Verlan, M.A. Martínez-del-Amor, C. Yuan, L. Valencia-Cabrera, M.J.
Pérez-Jiménez, An overview of hardware implementation of Membrane Computing models.
ACM Comput. Surv. 53(4), Article No. 90, 1–38 (2020). https://doi.org/10.1145/3402456

https://doi.org/10.1007/978-3-540-24619-0_25
https://doi.org/10.1007/s41965-019-00016-z
https://doi.org/10.1007/s41965-020-00056-w
https://doi.org/10.1007/s41965-020-00056-w
https://doi.org/10.1007/978-3-642-36751-9_27
https://doi.org/10.1007/978-3-642-36751-9_27
https://doi.org/10.1145/3402456

2PSystems Implementation on P-Lingua
Framework

2.1 Introduction

As previously mentioned, from the early days of the discipline, different approaches
have been followed to provide software tools assisting the P systems designers in
their design and verification tasks for a number of membrane system types and
variants. However, at the beginning, the most common case was the development
of specific-purpose tools devoted to the solution of a particular model based on
a P system or P systems family. While these early initiatives constituted relevant
achievements for membrane computing, their usefulness for the general community
was significant mostly in the context of the specific paper or scientific result they
were developed around. Surveys on the first generation of software tools related to
membrane computing can be found in [5, 49].

In order to move a step forward in this sense, aiming to provide some solution
for the P systems community in the form of a set of general tools for the software
implementation of P systems, P-Lingua framework emerged more than a decade
ago. As a first crucial element in the framework, a specification language, the so-
called P-Lingua language, was defined, aiming to be a standard for the community
to speak the same language when defining P systems. One of the advantages of
having such a standard is to avoid ambiguities, and moreover to foster collaboration,
facilitating that researchers share their designs, even if they use different simulation
software—similarly as the Systems Biology Markup Language (SBML) format
works for the systems biology community.

The language started with some very general elements common to most P system
types, such as the membrane structure, objects, membrane labels, or rewriting rules.
Along with such general elements, each P system type or variant would admit
specific rules, and the framework would provide parsing tools to detect syntactic
or semantic errors. Along with the specification language, P-Lingua framework
provided from the beginning a number of built-in simulators, capturing the semantic
and dynamic aspects of each P system type. Such simulators were included for the

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2021
G. Zhang et al., Membrane Computing Models: Implementations,
https://doi.org/10.1007/978-981-16-1566-5_2

11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-16-1566-5_2&domain=pdf
https://doi.org/10.1007/978-981-16-1566-5_2

12 2 P Systems Implementation on P-Lingua Framework

sake of completeness of the tool, but they were not intended to compete against
existing software. Actually, the framework included the functionality to compile P-
Lingua code into something else so that one could provide such compiled result as
an input for an external simulator. Software implementation of P systems is further
explored in Chap. 3.

The chapter elaborates on some of the main capabilities of the framework and
is structured as follows. The main elements involved in P-Lingua language will be
introduced in Sect. 2.2, along with a classification of the main types and variants of
P systems supported by the framework, including the main references related with
them. Then, several simulation algorithms will be presented in Sect. 2.3, capturing
the dynamics of some especially relevant types of P systems used in the solution
of real-life problems. Finally, in Sect. 2.4, a higher-level tool will be presented,
MeCoSim, as a step forward to provide a visual virtual research environment.

2.2 P-Lingua Language

P-Lingua is a domain-specific language started in 2008 [4] that has been con-
tinuously evolving since then (technical details on the foundations can be found
in [6, 9, 36] and a survey together with some recent developments in [40]). The
approach is to keep the definitions as simple as possible, being a sort of “LaTeX-
like” pseudocode, in such a way that P systems designers can use similar notation to
the one used in the literature. A P system can thus be defined in a (plain text) .pli
file, where the designer indicates the model, structure, initial multisets, variables (if
any), etc. The elements of the definition will be further explained in what follows.

2.2.1 P SystemModels

When designing a membrane system in P-Lingua, the instruction @model must be
present at the beginning of the .pli file, followed by a keyword identifying the
model used. Through the development of P-Lingua, several classes of P systems
have been included within the framework, while others have been discarded due to
the lack of their use. The latest stable version, pLinguaCore 4.0, was released in
2013, covering only 10 model types. The P-Lingua framework has been continu-
ously expanding since then although the development efforts have been focusing
in the core distributed within MeCoSim. Tables 2.1, 2.2, 2.3 and 2.4 illustrate
the diversity of variants considered in the current version, with the corresponding
keywords and a reference introducing the model. For more details about the exact
pLinguaCore release where some models were included or discarded, we refer the
reader to [39].

In the case of neural-like P systems, the model keyword spiking_psystems
is slightly overloaded since it covers multiple subclasses. Each time the model has
been extended, special symbols and tokens were used so that the parser and the

2.2 P-Lingua Language 13

Table 2.1 Cell-like membrane systems implemented in P-Lingua

Variant of membrane systems Model specification keyword Ref.

P systems with active membranes and
membrane creation

membrane_creation [25]

P systems with active membranes and
membrane division

membrane_division / dam [33]

P systems with symport/antiport rules symport_antiport /
infEnv_symport_antiport

[18]

Polarizationless P systems with active
membranes with minimal cooperation and
membrane division

dam_wp [48]

Polarizationless P systems with active
membranes with minimal cooperation,
membrane division, and without dissolution

dam_wp_wd [48]

Polarizationless P systems with active
membranes with minimal cooperation and
membrane division only for elementary
membranes and without dissolution

dam_wp_wd_wn [48]

P systems with active membranes with
minimal cooperation and membrane
separation

sam [47]

Polarizationless P systems with active
membranes with minimal cooperation and
membrane separation

sam_wp [47]

Polarizationless P systems with active
membranes with minimal cooperation and
membrane separation and without dissolution

sam_wp_wd [47]

Polarizationless P systems with active
membranes with minimal cooperation and
membrane separation only for elementary
membranes and without dissolution

sam_wp_wd_wn [47]

Transition P systems transition / rewriting [32]

Table 2.2 Tissue-like membrane systems implemented in P-Lingua

Variant of membrane systems Model specification keyword Ref.

Tissue P systems with cell division tissue_psystems / tpdc [20, 34]

Tissue P systems with cell division and
antiport rules

tpda [34]

Tissue P systems with cell division and
symport rules

tpds [34]

Tissue P systems with cell separation TSCS [27, 38]

Tissue P systems with evolutional
communication rules with cell division

evolution_communication /
ev_symport_antiport

[31]

Tissue P systems with evolutional
communication rules with cell separation

tsec [31]

Tissue P systems with promoters tpdc / tpda / tpds [45]

14 2 P Systems Implementation on P-Lingua Framework

Table 2.3 Neural-like membrane systems implemented in P-Lingua

Variant of membrane systems Model specification keyword Ref.

Asynchronous SN P systems spiking_psystems [3]

Asynchronous SN P systems with local
synchronization

spiking_psystems [41]

Cell-like spiking neural P systems cell_like_snp [46, 50]

Dendrite P systems dendrite [26]

Fuzzy reasoning spiking neural P systems fuzzy_psystems [13, 17]

Limited asynchronous SN P systems spiking_psystems [29]

Spiking neural P systems spiking_psystems [13, 15, 16]

Spiking neural P systems with anti-spikes spiking_psystems [28]

Spiking neural P systems with hybrid
astrocytes

spiking_psystems [30]

Spiking neural P systems with structural
plasticity

spiking_psystems [1]

Table 2.4 Other variants of membrane systems implemented in P-Lingua

Variant of membrane systems Model specification keyword Ref.

Enzymatic numerical P systems enps [35]

Population dynamics P systems probabilistic [2]

Probabilistic guarded P systems probabilistic_guarded_ [8, 10]

_psystems

Regenerative P systems regenerative_psystems [11]

Simple kernel P systems simple_kernel_psystems [12, 14]

Simple regenerative P systems simple_regenerative_ [11]

_psystems

Stochastic P systems∗ stochastic [42]
∗(discontinued)

simulator are capable to identify which type of rules are being used and how they
should be interpreted.

2.2.2 Membrane Structure

The topology of the membrane system to be simulated will depend on the model
selected in the file. If an invalid structure with respect to the model is defined, the
parser will show a message notifying it. The instruction @mu1 is used to define the
architecture of the system. The syntax is similar to the one used in the literature. For
example, for cell-like membrane systems, the definition

@mu = [[[]′4]′2[]′3]′1

1The usual notation for the structure of P systems is the Greek letter μ.

2.2 P-Lingua Language 15

would lead to a P system with a skin membrane labelled by 1 and 2 internal
membranes: an elementary membrane labelled by 3, and a membrane labelled by
2 which contains an elementary membrane labelled by 4 inside.

In the case of tissue P systems, membranes (called cells) are not hierarchically
arranged, but they can be connected by means of an arbitrary graph, which is not
required to be explicitly given in the definition. Typically, the set of directed arcs
connecting cells can be reconstructed from the implicit information provided by
the set of rules. However, in P-Lingua format, it is necessary to indicate the initial
cells in the system, formally considering them as elementary membranes located
within an external compartment labelled by 0, that will act as the environment of
the system.

Spiking neural P systems need both the initial neurons and the synapses defined
in order to work. The former is defined as previously with the @mu instruction and
the later with @marcs indicating with pairs of labels which arcs will be present in
the underlying graph of the SNP system.

Note that not all the definitions of @mu must be in the same line, but instead
of the = symbol, it is possible to add more compartments to a specific region. For
instance, in cell-like membrane systems, it is possible to use

@mu = [[]′2]′1; @mu(1)+ = []′3;

in order to generate a structure identical to the one defined above. Note that a
semicolon indicates the end of an instruction.

2.2.3 Initial Multisets

In order to describe the initial multisets of the different compartments, the command
@ms is used in a similar way to the literature, with braces {} as the delimiters of
the multisets. Like before, the + = symbols can be used to add new objects to a
predefined multiset. The multiplicity of a symbol is indicated by the * symbol as in
a multiplication (e.g., c*5 indicates 5 copies of object c).

2.2.4 P System Rules

Rules, like the structure of the P system, depend on the model of membrane system
being simulated. The P-Lingua parser was defined in such a way that P systems
researchers can use a very close language to the one used in literature, putting special
emphasis in the definition of rules. Therefore, brackets [] are used in P-Lingua
files as in the definition of rules in research papers. An evolution rule is defined
in the following way: +[a1 - -> b,c]’1. Note the differences between the
P-Lingua and the formal definitions: The subscripts are between braces, the arrow
is replaced by an ASCII version of an arrow, the label is preceded by a ’ symbol
instead of being a subscript, and the polarization precedes the rule instead of being

16 2 P Systems Implementation on P-Lingua Framework

a superscript. For tissue P systems, instead of using parentheses, a similar brackets
notation is used with a double arrow as follows: [a]’1 <- -> [b]’2 to denote
the rule (1, a/b, 2).

Usually, several rules with the same structure but with different subindexes
are defined in P systems, and it can be translated into a P-Lingua file with the
colon: symbol, followed by the corresponding limits. Let r ≡ [ai → ai+1]1
for 0 ≤ i ≤ n be a set of rules of a P system with active membranes
that can be defined in a P-Lingua file as follows: [a{i} - -> a{i+1}
]’1 : 0 <= i <= n. If two or more variables have to be defined, they will
be declared from the right to the left; that is, if a variable j is limited by
i, then the range of i must be written “before” (to the right), for example,

[a{i,j} - -> a{i,j+1}]’1 : 0 <= j < i, 0 <= i <= n.
The user must define all these parameters (except the model type) in a main

function. A function in the P-Lingua language is defined with the keyword def
followed by the name of the function. A function can have parameters whose names
will be indicated between parentheses and separated by commas. More than one
function can be defined in a single P-Lingua file, and they are widely used, for
instance, to construct the membrane system in a modular way. An example of this
would be the following code:

@model<membrane_division>

n = 3 /* A parameter n is defined to be used later */

m = 1000 /* A parameter m is defined to be used later */

def main() {

define_structure();

define_initial_multisets(m);

define_rules(n);

}

def define_structure() {

@mu = []’1;

}

define_initial_multisets(number_objects) {

@ms(1) += a{0}*{number_objects};

}

define_rules(number_steps) {

[a{i} - -> a{i+1}]’1 : 0 <= i < {number_steps};

}

Note that it is allowed to insert comments in P-Lingua files, surrounded by the
symbols /* and */. As indicated above, several examples of the different types of
P systems implemented in P-Lingua can be found in the websites of the P-Lingua
project [43] and MeCoSim [24].

2.3 Simulation Algorithms 17

2.3 Simulation Algorithms

P systems are bioinspired devices that work in a massively parallel and nondeter-
ministic way. While there are preliminary studies analyzing the problems related to
implementations in biological means, there is still a long way to reach this ultimate
goal. That is why developing hardware/software implementations of P systems
becomes a vital necessity for the advancement of scientific activities in membrane
computing.

The P-Lingua framework includes a Java library called pLinguaCore that
provides at least one simulation algorithm for each P system variant. A simulation
algorithm for membrane computing can be described as an algorithm which
is able to reproduce P system computations on conventional software/hardware
architectures. Usually, only one branch of computation is considered, and it is
expected to display the sequence of configurations, including information on the
executed rules for each step of computation. Concerning the hardware used, the
simulation algorithms can be designed to run on sequential machines (single-
thread CPU) or parallel architectures (multi-thread CPU, GPU, FPGA, etc.). The
simulation algorithms in pLinguaCore are designed for single-thread CPU, but it
is possible to parse a P-Lingua file and compile it into an appropriate input for an
external simulator.

All simulation algorithms in pLinguaCore share the same underlying imple-
mentation of a computation step as a loop divided into two stages: selection stage
and execution stage. The selection stage consists in searching for applicable rules
and selecting which ones will actually be executed in each membrane of a given
configuration, taking into account the restrictions dictated by the system semantics.
Then, the execution stage actually implements the changes on the configuration
caused by the execution of the selected rules, and this completes the simulation of
the computation step. The input data for the selection stage contains the description
of the membranes with their multisets (strings over the working alphabet of objects,
labels associated with the membrane, etc.) and the set of defined rules. The output
data of this stage are the multisets of selected rules. Only the execution stage
changes the information of the configuration. It is the reason why execution stage
needs synchronization when accessing to the membrane structure and the multisets.
At the end of the execution stage, the simulation process restarts the selection stage
in an iterative way until a halting configuration is reached (i.e., none of the rules
is applicable). Alternatively, a maximum number of iterations can be set at the
beginning of the simulation to avoid getting stuck on too long (or even infinite)
computations.

With the general design explained above, the pLinguaCore library includes
simulation algorithms for the cell-like, tissue-like, and neural-like P systems
enumerated in Sect. 2.2. For more information, see the corresponding references
in Tables 2.1, 2.2, and 2.3, respectively. There exist in the literature other P system
variants whose computations are not synchronized by a global clock in a step-by-
step fashion (e.g., asynchronous, time-free, or stochastic models). Such variants

18 2 P Systems Implementation on P-Lingua Framework

are not currently supported under the P-Lingua framework, but there exist fully
functional alternative implementations available (see Chaps. 4 and 5).

Other variants are also contemplated [2, 8, 10, 11]. A special mention should
be given to the simulation algorithms for population dynamics P systems (PDP
systems) which is a variant widely used for simulation of ecosystem dynamics
(see Chap. 6) in which each rule has a probability associated. The first description
of probabilistic semantics was quite ambiguous: “Rules should be applied in a
maximally parallel way, according to their probabilities.” There are many ways of
interpreting this sentence, and each one could lead to different behaviors. While all
of them might be “correct” from a formal point of view, not all simulation algorithms
are acceptable when the goal is to reproduce the behavior of a complex system.
Since P-Lingua is a general-purpose framework, indicating which is the appropriate
choice should be a decision of the model designer.

Three simulation algorithms have been designed for PDP systems and imple-
mented in pLinguaCore [19]:

• DNDP algorithm [21].
• BBB algorithm [19].
• DCBA algorithm [22, 23].

In the algorithm DNDP, the rules are selected individually according to its
probabilities. On the other hand, algorithms BBB and DCBA work by grouping
rules in blocks by analyzing the left-hand side, each block has the same left-hand
side, and all the rule probabilities must sum 1. DCBA uses a refined definition of
block in which the charges of the right-hand side must be consistent. More about
simulation algorithms for PDP systems will be explained in Chap. 6 since this kind
of algorithms requires a large amount of computational power being suitable for
high-performance computing platforms such as CUDA.

As it was mentioned before, there are various approaches in the literature
where the standard semantics of P systems (namely, nondeterministic behavior
and maximally parallel application of the rules) is modified by adding different
regulation elements, which need to be carefully described in order to explain how the
system evolves. In particular, it is worth highlighting that the concept of “simulation
algorithm” is used in this section in a theoretical sense, that is, a formalization that
translates the specification of the semantics into a pseudocode capturing precisely
the routine that the system follows when deciding what rules to apply. It should not
be confused with an implementation of such algorithm in a programming language.
Some attempts trying to bring semantic elements explicitly into the description
of a P system in P-Lingua language have been already initiated, and it is being
considered for upcoming release of P-Lingua 5.0.

2.4 Membrane Computing Simulator (MeCoSim) 19

2.4 Membrane Computing Simulator (MeCoSim)

The previous sections have presented the essential elements of P-Lingua framework:
the standard specification language and the simulation engines to run the computa-
tions of the given P systems. These elements constitute the core features, the chassis
of our car. However, in order for this vehicle to move smoothly, several additional
pieces (as the external body but also others as the steering wheel, the pedals, or the
dashboard icons, among others) are needed to provide the users with the desired
driving experience, in order for them to sit down and enjoy while conducting their
virtual experiments with models based on P systems.

With the metaphor introduced, we aim to present the main idea behind MeCoSim
(membrane computing simulator) [24, 37], conceived in a search for the gener-
alization of certain high-level visual applications to manage population dynamics
models, known as EcoSim product family [36, 44]. Built on top of P-Lingua core,
this visual environment provides a higher level of abstraction, transforming the
solid set of tools of our internal chassis and engine given by P-Lingua core into
a whole car, complementing the previous elements with an external layer allowing
the drivers conduct their experiments through the proper sensors and actuators.

Thus, MeCoSim was devised with a manifold purpose, assisting in the design
of the heart of the cars (P system-based models), delivering the final cars (custom
apps based on the models), and helping users drive their vehicles (through the
tools coming with the apps). Firstly, the visual interface provides the expert users
(P system designers) with an interface where they can specify, debug, and run
(step-by-step or entire) computations of their P systems in a smoother way; this
is made easier with the tools provided by a friendly environment, aiding in the
task of designing and verifying the core part of our cars: the P systems modelling
certain case studies. Secondly, the environment provides certain tools to make the
technical pieces constituting the model become a final product, that is, bridging
the gaps to convert the engine, car axles, controls, or wheels into the final car. To
this purpose, MeCoSim provides some tools to define, through configuration files, a
final visual application using the core elements of the framework, plus the P system
(or P system family) specified, and the inputs and outputs to control and monitor,
respectively, each trip made with the car (i.e., each computation of the system, each
virtual experiment conducted). Finally, end users receive their car: the customized
application satisfying their needs. Probably, they will have no idea about the internal
specifications of the car, they are not car mechanics/technicians, but they will be
able to drive their specific car. In such car, the custom app, they will be able to sit,
introduce the details about each particular trip (experiment) they want to make (run),
decide about the speed, and control the steering wheel and pedals, enjoying the drive
and finally getting to their destiny (the end of the computation) while obtaining all
the desired additional information through the monitoring system provided by the
dashboard.

In this context, everything starts with the identification of a certain need, such
as solving a certain NP-complete problem or modelling a real-life system in

20 2 P Systems Implementation on P-Lingua Framework

economy, ecology, medicine, or any other field. In this context, a P system (or P
system family) must be defined to satisfy such need. Thus, the definition of the
system requires the translation of the P system into a file using P-Lingua standard
specification language. Then, an iterative process of design, debug, and verification
starts, progressing with the problem until the model has been properly validated
according to the experts in the problem domain.

Then, the central problem has been solved, but only the technicians could use the
tools to run computations of the system. Then, a new effort can be made by such
P system designers to set in a spreadsheet configuration file the specific elements
of the final car and the application where the end users (ecologists, economists,
etc.) will be able to conduct their visual experiments. The custom elements will
include the hierarchical structure arranging all the visual blocks of the final app,
the tables allowing the introduction of specific input data by the end user, and the
outputs to monitor the activity and the final results of the trip. Now, everything
is ready for the end user to drive, to analyze each particular scenario of interest
(each trip), introducing in the tables the specific parameter values and input data
for each scenario of interest and run each virtual experiments, getting the desired
results in their dashboard given by the custom output tables and charts defined in
the configuration file set by the P system designers during the building of the car
(the custom app).

The description above has been probably illustrative at a general level, but people
not familiarized with MeCoSim might find it difficult to figure out how this approach
look like at a deeper level. The following subsections will try to clarify those aspects
only outlined before, detailing the main goals achieved (Sect. 2.4.1) and the software
components involved (Sect. 2.4.2). In Ref. [44], a methodology is proposed based
for the solution of a problem through membrane-based systems making use of
P-Lingua framework and MeCoSim, where the corresponding tools described are
employed in a systematic way.

2.4.1 Primary goals

As it has just been depicted, MeCoSim’s main intent is the provision of a high-level
visual interface to handle P system-based models. This is right, but what should we
exactly expect from this environment? Let us try to clarify this by analyzing the
origin and initial view of the tools involved.

To start with this overview, it is worth recalling that we are studying a paradigm,
membrane computing, where many computing models have been defined along
the years. As specifically addressed by this book, the implementation of these
computational devices is crucial in order to take advantage of all the theoretical
properties, the strengths, of such machines. However, our biologically inspired
models present certain features that are not easy to implement in certain biological
or artificial substrate, and even if it can be done, it implies major efforts to apply
these machines to each particular problem. Nevertheless, there is a faster convenient
approach that can be applied in order to make this process more manageable in

2.4 Membrane Computing Simulator (MeCoSim) 21

(a) the study of theoretical aspects of the different types of devices (such as their
computational power, efficiency, etc.) or the practical use of models based on these
devices (its tasks such as the design, verification, or validation of properties and
virtual experimentation) and (b) the simulation of the computations for the given
models.

This volume is devoted to implementations of membrane computing models.
Consequently, we actually expect real devices that can capture all the features of the
theoretical machines. Some of the solutions provided by later chapters will succeed,
addressing aspects such as capturing the inherent parallelism of such ideal machines.
However, those real machines will need to take many things into account at a very
technical level, it will be a very tough process, and this will make it very challenging
to validate the proper functioning of these devices according to all the properties of
the types of P systems used, along with all the properties of the models built for a
particular problem, based on such types of P systems.

In order to avoid attacking all the problems at once, a different approach can
be followed: first facing the “soft” implementation of the theoretical devices, the
intended type of P systems, through sequential software simulators, not addressing
all the technical aspects required by the actual implementations but properly
simulating the computations of the theoretical systems, conducting to the very
same results. This allows us to validate a simpler implementation at a functional
level, in terms of the results of the computations, permitting a first step toward
more complex high-performance hardware, hybrid, or biological implementations.
These initial simulators could handle any solution or model solving a certain
problem (from SAT, 3-COL, or HAM-CYCLE to the population dynamics of an
ecosystem or an economy system, among others) by means of the types of P systems
implemented in the corresponding simulators. Such handling will involve helping
in the design, debug, and verification tasks, but of course also the computation of
the given model or solution according to the semantic and dynamic rules of the
theoretical devices. Naturally, for any problem of certain size, analyzing a manual
trace of the computation in a paper would be too tedious or practically unfeasible
for significantly big instances. Therefore, even if a real implementation with the
desirable parallelism is not available, it would be necessary to have at disposal a
machine where one could simulate computations to validate the model or analyze
the evolution of the system under certain scenarios. That would be the approach
followed by P-Lingua framework and MeCoSim so that we can focus on aspects
such as reliability or feasibility (to preserve the same evolution and results of the
theoretical systems), along with user-friendliness, over the efficiency of other later
implementations.

We have clarified the first goal of MeCoSim approach: providing an environment
for the design, verification, and simulation of the models based on P systems in
a reliable and user-friendly way, albeit not prioritizing efficiency. However, there
are more aspects to analyze in our approach. A major one is the search for the
generalization, that is, a definite purpose of providing general-purpose tools to be
applied to each particular membrane system type and each particular solution for a
problem based on them. Thus, the development of ad hoc simulators (for a specific

22 2 P Systems Implementation on P-Lingua Framework

solution for a problem, a single instance/scenario, or different instances of that
problem) is definitely different from the development of a general-purpose simulator
for certain types of P systems, capturing the ingredients of the theoretical model of
computation so that this machine allows the provision of any P system and scenario
and performs its corresponding intended computations.

Many software developments in scientific research are focused on the first
approach, providing simulators for certain problems or even specific instances of
the problem only. Other studies address the development of tools for the analysis
or verification of a specific type or variant of membrane system, such that they can
handle any P system of the type. However, the approach of P-Lingua framework
and MeCoSim has been more ambitious from its origin: providing tools being as
general as possible, for as many types of P systems as possible (including many
variants of cell-like, tissue-like, and neuron-like P systems, among others), while
preserving the strict deep analysis of the syntactic, semantic, and dynamic aspects
of each P system variant, in order to control that the corresponding constraints are
met. The wide range of variants covered include computing models with different
global structures (hierarchical, plain graph, or graph with nodes containing trees—
as in multienvironment, PDP systems), a variety of ingredients in terms of rules or
other elements (dissolution, division, charges, stopping objects, etc.), and different
handling of semantic aspects (related with sequentiality, nondeterminism, priorities,
maximality, probabilistic or stochastic behaviors, among others).

As described above and in Sects. 2.2 and 2.3, many types and variants of
P systems have been covered by the tools developed within the framework.
Moreover, as detailed in Sect. 2.2, along with the specification language and its
corresponding parsers for each computing models, many simulators were developed
inside P-Lingua project. This infrastructure provided from the beginning [36]
a complete programming environment for membrane computing and has kept
incorporating new elements along the years, staying as an alive project, including a
living version inside MeCoSim.

In Sect. 3.4, the basic steps of the approach followed with these tools are
depicted, illustrating their use for real applications.

2.4.2 Main Functional Components

As previously mentioned, a clear separation of the roles involved in modeling and
simulation process is stated (apart from the software developers in charge of P-
Lingua and MeCoSim development): (a) P systems designer and (b) end users of a
simulation app. What does MeCoSim provide within this scope?

As shown in Fig. 2.1, the software developer releases different versions of
MeCoSim (and certain plug-ins) available for any potential users. In contrast,
P systems designer, possibly unrelated with software development, defines a
simulation app based on MeCoSim, customized for its particular problem. Then,
he can debug its solution and analyze the underlying P system. Finally, the end user

2.4 Membrane Computing Simulator (MeCoSim) 23

De
ve

lo
pe

r

De
ve

lo
p

an
d

re
le

as
e

M
eC

oS
im

M
eC

oS
im

Pl

ug
in

s

De
sig

ne
r

Cu
st

om
ize

 a
nd

 re
le

as
e

sim
ul

a�
on

 a
pp

M
eC

oS
im

Pr
ov

id
e

th
e

m
od

el

or
 so

lu
�o

n
Si

m
ul

a�
on

ap

p
ba

se
d

on

M
eC

oS
im

Si
m

ul
a�

on

ap
p

ba
se

d
on

M

eC
oS

im

En
d

us
er

Pr
ov

id
e

in
pu

t d
at

a
sc

en
ar

io
s

Ru
n

sim
ul

a�
on

s

Fo
rm

ul
at

e
hy

po
th

es
is

An
al

yz
e

th
e

re
su

lts

Fi
g
.
2
.1

R
ol

es
an

d
us

es
of

M
e
C
o
S
i
m

24 2 P Systems Implementation on P-Lingua Framework

Fig. 2.2 Model debugging

employs the custom simulation app to study different scenarios of interest involving
specific instances of the problem.

In summary, the main functionalities of MeCoSim are the following:

• General environment to simulate computations of P systems
With the default custom application, any P-Lingua file not requiring additional
inputs can be edited, while detecting aspects to modify; parsed and debugged (see
Fig. 2.2), to find possible warnings or errors, both at a syntactic and a semantic
level, alerting the P systems designer if some rules of the intended model type
are violated; and simulated (through the algorithm selected in the interface, as
shown in Fig. 2.3), generating the initial structure and multisets of the system
and then running the computation either step-by-step or until its end (after a fixed
number of steps or when a halting configuration is reached, where no rules can
be applied). Besides, the default output is given in the form of a flat table (with a
row for each object symbol present in each computation step inside each region,
with a certain multiplicity), and also some of the main internal elements of the
P system can be visualized at any moment (membrane structure, multisets, and
alphabet).

• Mechanism for the definition of custom simulation apps
Any custom app consists of:
– A hierarchical structure for the visual arrangement of the information (inputs

and outputs) in the app for the end user, according to the setting introduced
by the designer in an .xls spreadsheet file, as illustrated by the first table in
Fig. 2.4.

– A definition of input tables, and output tables and charts, to respectively
introduce data and visualize results. More details about the definition of such

2.4 Membrane Computing Simulator (MeCoSim) 25

Fig. 2.3 Available simulators for a loaded P systems variant

Fig. 2.4 Custom app definition—input

components can be found at Refs. [24, 37, 44], and a basic example of tables
(header and columns) configuration is given by the second and third tables
present in Fig. 2.4.

– The configuration of parameters, establishing which parameters and input data
for the model, should be generated from the input tables, either directly taking
the value from the table at the beginning of the simulation or applying some
processing from the input data to generate calculated derived values. To this
purpose, a specific parameters generation language was defined, as described
in detail in [37, 44]. The generation of a basic parameter n from the first row

26 2 P Systems Implementation on P-Lingua Framework

and column of a table with id = 5 is illustrated in the last table of Fig. 2.4.
Much more complex parameters can be generated, as described in [37, 44].

– Results: In order for the output tables and charts to show some information
about the simulation, the custom configuration must define which elements
from the computation should be taken into account when extracting informa-
tion from all the computation trace data. An additional language is used in the
.xls spreadsheet file to provide a flexible mechanism to express the retrieval of
information from the computation. Internally, for every simulation performed,
from the previous definition, a database query is generated, being executed
against the given on-memory database containing the flat structure with the
computation.

Apart from this core functionalities, additional features and abilities are provided
in the form of MeCoSim plug-ins following a certain architecture proposed [24, 37,
44]. These add-ons can be given either as Java-based packages (as a graph viewer
[see Fig. 2.5], a window for the introduction and encoding of logical formulas or a
tool to define and detect invariants in the models based on Daikon [7]) or as external
programs being called from MeCoSim and properly connected (using the so-called
processes plug-in). A detailed description of the underlying mechanisms and the
plug-ins developed is given in [44].

Additionally to the features of MeCoSim software and its plug-ins, a system of
repositories was made available, manageable from MeCoSim environment, having
access to repositories of four types: apps (.xls), models (.pli), scenarios (.ec2), and
plug-ins (.jar). Besides the official repositories, any user can provide additional
ones (through the definition of the corresponding .xml file for the desired type of
repository), providing the corresponding URL to the resource.

Fig. 2.5 GraphsPlugin—trees of graphs

References 27

2.5 Conclusion

This chapter presented the very representative and widely used P-Lingua language
for a variety of P systems such as cell-like P systems, tissue-like P systems, spiking
neural P systems, and kernel P systems. The description of P-Lingua language with
pLinguaCore consists of P systems models, membrane structure, initial multisets,
and P system rules. The simulation algorithms in P-Lingua and MeCoSim on top
of pLinguaCore with primary goals and main functional components were also
discussed.

References

1. F.G.C. Cabarle, H.N. Adorna, N. Ibo, Spiking neural P systems with structural plasticity, in
Pre-proceedings of 2nd Asian Conference on Membrane Computing, Chengdu, China (2013),
pp. 13–26

2. M. Cardona, M.A. Colomer, A. Margalida, A. Palau, I. Pérez-Hurtado, M.J. Pérez-Jiménez,
D. Sanuy, A computational modeling for real ecosystems based on P systems. Nat. Comput.
10(1), 39–53 (2011). https://doi.org/10.1007/s11047-010-9191-3

3. M. Cavaliere, O. Egecioglu, O.H. Ibarra, M. Ionescu, Gh. Păun, S. Woodworth, Asynchronous
spiking neural P systems: decidability and undecidability, in DNA Computing. Lecture Notes
in Computer Science, ed. by M. Garzon, H. Yan, vol. 4848 (2008), 246–255. https://doi.org/10.
1007/978-3-540-77962-9_26

4. D. Díaz-Pernil, I. Pérez-Hurtado, M.J. Pérez-Jiménez, A. Riscos-Núñez, P-Lingua: a program-
ming language for Membrane Computing, in Proceedings of the Sixth Brainstorming Week on
Membrane Computing, Fénix Editora, D. Díaz-Pernil, C. Graciani, M.A. Gutiérrez-Naranjo,
Gh. Păun, I. Pérez-Hurtado, A. Riscos-Núñez (2008), pp. 135–155

5. D. Díaz-Pernil, C. Graciani, M.A. Gutiérrez-Naranjo, I. Pérez-Hurtado, M.J. Pérez-Jiménez,
Software for P systems, in The Oxford Handbook of Membrane Computing, ed. by Gh. Păun,
G. Rozenberg, A. Salomaa (Oxford University, Oxford, 2009), pp. 437–454. Chapter 17

6. D. Díaz-Pernil, I. Pérez-Hurtado, M.J. Pérez-Jiménez, A. Riscos-Núñez, A P-Lingua program-
ming environment for Membrane Computing, in Membrane Computing (WMC 2008), ed. by
D.W. Corne, P. Frisco, Gh. Păun, G. Rozenberg, A. Salomaa. Lecture Notes in Computer
Science, vol. 5391 (2009), pp. 187–203. https://doi.org/10.1007/978-3-540-95885-7_14

7. M.D. Ernst, J.H. Perkins, P.J. Guo, S. McCamant, C. Pacheco, M.S. Tschantz, C. Xiao, The
Daikon system for dynamic detection of likely invariants. Sci. Comput. Program. 69(1–3), 35–
45 (2007). https://doi.org/10.1016/j.scico.2007.01.015

8. M. García-Quismondo, Modelling and Simulation of Real-life Phenomena in Membrane
Computing. Ph.D. Thesis (Universidad de Sevilla, Sevilla, 2014). http://hdl.handle.net/11441/
66147

9. M. García-Quismondo, R. Gutiérrez-Escudero, I. Pérez-Hurtado, M.J. Pérez-Jiménez, A.
Riscos-Núñez, An overview of P-Lingua 2.0, in Membrane Computing. WMC 2009. Lecture
Notes in Computer Science, vol. 5957, ed. by Gh. Păun, M.J. Pérez-Jiménez, A. Riscos, G.
Rozenberg, A. Salomaa (2010), pp. 264–288. https://doi.org/10.1007/978-3-642-11467-0_20

10. M. García-Quismondo, M.A. Martínez-del-Amor, M.J. Pérez-Jiménez, Probabilistic guarded P
systems: a formal definition, in Proceedings of the Twelfth Brainstorming Week on Membrane
Computing, Fénix Editora, ed. by L.F. Macías-Ramos, M.A. Martínez-del-Amor, Gh. Păun, A.
Riscos-Núñez, L. Valencia-Cabrera (2014), pp. 183–206

11. M. García-Quismondo, M. Levin, D. Lobo, Modeling regenerative processes with membrane
computing. Inf. Sci. 381, 229–249 (2017). https://doi.org/10.1016/j.ins.2016.11.017

https://doi.org/10.1007/s11047-010-9191-3
https://doi.org/10.1007/978-3-540-77962-9_26
https://doi.org/10.1007/978-3-540-77962-9_26
https://doi.org/10.1007/978-3-540-95885-7_14
https://doi.org/10.1016/j.scico.2007.01.015
http://hdl.handle.net/11441/66147
http://hdl.handle.net/11441/66147
https://doi.org/10.1007/978-3-642-11467-0_20
https://doi.org/10.1016/j.ins.2016.11.017

28 2 P Systems Implementation on P-Lingua Framework

12. M. Gheorghe, F. Ipate, R. Lefticaru, M.J. Pérez-Jiménez, A. Turcanu, L. Valencia, M. García-
Quismondo, F. Mierla, 3-COL problem modelling using simple kernel P systems. Int. J.
Comput. Math. 90(4), 816–830 (2013). https://doi.org/10.1080/00207160.2012.743712

13. M. Ionescu, Gh. Păun, T. Yokomori, Spiking Neural P systems. Fundam. Inform., 71(2–3),
279–308 (2006)

14. F. Ipate, R. Lefticaru, L. Mierla, L. Valencia, H. Hang, G. Zhang, C. Dragomir, M.J. Pérez-
Jiménez, M. Gheorghe, Kernel P systems: applications and implementations. Adv. Intell. Syst.
Comput. 212, 1081–1089 (2013). https://doi.org/10.1007/978-3-642-37502-6_126

15. L.F. Macías-Ramos, Developing Efficient Simulators for Cell Machines. Ph.D. Thesis (Univer-
sidad de Sevilla, Seville, 2016). http://hdl.handle.net/11441/36828

16. L.F. Macías-Ramos, I. Pérez-Hurtado, M. García-Quismondo, L. Valencia-Cabrera, M.J.
Pérez-Jiménez, A. Riscos-Núñez, A P-Lingua based simulator for Spiking Neural P systems,
in Membrane Computing (CMC 2011), ed. by M. Gheorghe, Gh. Păun, G. Rozenberg, A.
Salomaa, S. Verlan. Lecture Notes in Computer Science, vol. 7184 (2012), pp. 257–281. https://
doi.org/10.1007/978-3-642-28024-5_18

17. L.F. Macías-Ramos, M.A. Martínez-del-Amor, M.J. Pérez-Jiménez, Simulating FRSN P
systems with real numbers in P-Lingua on sequential and CUDA platforms, in Membrane
Computing (CMC 2015), ed. by G. Rozenberg, A. Salomaa, J.M. Sempere, C. Zandron. Lecture
Notes in Computer Science, vol. 9504, pp. 262–276 (2015). https://doi.org/10.1007/978-3-
319-28475-0_18

18. L.F. Macías-Ramos, L. Valencia-Cabrera, B. Song, T. Song, L. Pan, M.J. Pérez-Jiménez, A
P-lingua based simulator for P systems with symport/antiport rules. Fundam. Inform. 139(2),
211–227 (2015). https://doi.org/10.3233/FI-2015-1232

19. M.A. Martínez-del-Amor, Accelerating Membrane Systems Simulators using High Perfor-
mance Computing with GPU. Ph.D. Thesis (Universidad de Sevilla, Sevilla, 2013). http://hdl.
handle.net/11441/15644

20. M.A. Martínez-del-Amor, I. Pérez-Hurtado, M.J. Pérez-Jiménez, A. Riscos-Núñez, A P-
Lingua based simulator for Tissue P systems. J. Logic Algebraic Program. 79(6), 374–382
(2010). https://doi.org/10.1016/j.jlap.2010.03.009

21. M.A. Martínez-del-Amor, I. Pérez-Hurtado, M.J. Pérez-Jiménez, A. Riscos-Núñez, M.A.
Colomer, A new simulation algorithm for multienvironment probabilistic P systems, in 2010
IEEE Fifth International Conference on Bio-Inspired Computing: Theories and Applications
(BIC-TA), Changsha, 2010, vol. 1 (2010), pp. 59–68. https://doi.org/10.1109/BICTA.2010.
5645352

22. M.A. Martínez-del-Amor, I. Pérez-Hurtado, M. García-Quismondo, L.F. Macías-Ramos, L.
Valencia-Cabrera, A. Romero-Jiménez, C. Graciani-Díaz, A. Riscos-Núñez., M.A. Colomer,
M.J. Pérez-Jiménez, DCBA: simulating Population Dynamics P Systems with proportional
object distribution, in Membrane Computing. CMC 2012, ed. by E. Csuhaj-Varjú, M. Gheo-
rghe, G. Rozenberg, A. Salomaa, G. Vaszil. Lecture Notes in Computer Science, vol. 7762
(2012), pp. 291–310. https://doi.org/10.1007/978-3-642-36751-9_18

23. M.A. Martínez-del-Amor, I. Pérez-Hurtado, M. García-Quismondo, L.F. Macías-Ramos, L.
Valencia-Cabrera, A. Romero-Jiménez, C. Graciani, A. Riscos-Núñez, M.A. Colomer, M.J.
Pérez-Jiménez, DCBA: simulating population dynamics P systems with proportional objects
distribution, in Membrane Computing (CMC 2012), ed. by E. Csuhaj-Varjú, M. Gheorghe, G.
Rozenberg, A. Salomaa, G. Vaszil. Lecture Notes in Computer Science, vol. 7762 (2013), pp.
257–276. https://doi.org/10.1007/978-3-642-36751-9_18

24. MeCoSim website. http://www.p-lingua.org/mecosim
25. M. Mutyam, K. Krithivasan, P systems with membrane creation: universality and efficiency, in

Machines, Computations, and Universality (MCU 2001), ed. by M. Margenstern, Y. Rogozhin.
Lecture Notes in Computer Science, vol. 2055 (2001), pp. 276–287. https://doi.org/10.1007/3-
540-45132-3_19

https://doi.org/10.1080/00207160.2012.743712
https://doi.org/10.1007/978-3-642-37502-6_126
http://hdl.handle.net/11441/36828
https://doi.org/10.1007/978-3-642-28024-5_18
https://doi.org/10.1007/978-3-642-28024-5_18
https://doi.org/10.1007/978-3-319-28475-0_18
https://doi.org/10.1007/978-3-319-28475-0_18
https://doi.org/10.3233/FI-2015-1232
http://hdl.handle.net/11441/15644
http://hdl.handle.net/11441/15644
https://doi.org/10.1016/j.jlap.2010.03.009
https://doi.org/10.1109/BICTA.2010.5645352
https://doi.org/10.1109/BICTA.2010.5645352
https://doi.org/10.1007/978-3-642-36751-9_18
https://doi.org/10.1007/978-3-642-36751-9_18
http://www.p-lingua.org/mecosim
https://doi.org/10.1007/3-540-45132-3_19
https://doi.org/10.1007/3-540-45132-3_19

References 29

26. D. Orellana-Martín, M.A. Martínez-del-Amor, L. Valencia-Cabrera, I. Pérez-Hurtado, Agustín
Riscos-Núñez, M.J. Pérez-Jiménez, Dendrite P Systems toolbox: representation, algorithms
and simulators. Int. J. Neural Syst.. Available online 30 September 2020. https://doi.org/10.
1142/S0129065720500719

27. L. Pan, T.-O. Ishdorj, P systems with active membranes and separation rules. J. Universal
Comput. Sci. 10(5), 630–64 (2004). https://doi.org/10.3217/jucs-010-05-0630

28. L. Pan, Gh. Păun, Spiking neural P systems with anti-spikes. Int. J. Comput. Commun. Control
4(3), 273–282 (2009). https://doi.org/10.15837/ijccc.2009.3.2435

29. L. Pan, J. Wang, H.J. Hoogeboom, Limited asynchronous spiking neural P systems. Fundam.
Inform. 110(1–4), 271–293 (2011). https://doi.org/10.3233/FI-2011-543

30. L. Pan, J. Wang, H.J. Hoogeboom, Asynchronous extended spiking neural Psystems with
astrocytes, in Membrane Computing (CMC 2011), ed. by M. Gheorghe, Gh. Păun, G.
Rozenberg, A. Salomaa, S. Verlan. Lecture Notes in Computer Science, vol. 7184 (2012), pp.
243–256. https://doi.org/10.1007/978-3-642-28024-5_17

31. L. Pan, B. Song, L. Valencia-Cabrera, M.J. Pérez-Jiménez, The computational complexity
of tissue P systems with evolutional symport/antiport rules. Complexity 2018, Article ID
3745210, 21 (2018). https://doi.org/10.1155/2018/3745210

32. Gh. Păun, Computing with membranes. J. Comput. Syst. Sci. 61(1), 108–143 (2000). https://
doi.org/10.1006/jcss.1999.1693. First circulated at TUCS Research Report No. 208, November
1998. http://www.tucs.fi

33. Gh. Păun, P systems with active membranes: attacking NP complete problems. J. Autom. Lang.
Comb. 6(1), 75–90 (2000). Auckland University, CDMTCS Report No 102 (1999)

34. Gh. Păun, M.J. Pérez-Jiménez, A. Riscos-Núñez, Tissue P systems with cell division. Int. J.
Comput. Commun. Control 3(3), 295–303 (2008). https://doi.org/10.15837/ijccc.2008.3.2397

35. A.B. Pavel, O. Arsene, C. Buiu, Enzymatic numerical P systems: a new class of Membrane
Computing systems, in Proceedings of the 2010 IEEE Fifth International Conference on Bio-
Inspired Computing: Theories and Applications (BIC-TA 2010), Changsha, China, September
23–26 (2010), pp. 1331–1336. https://doi.org/10.1109/BICTA.2010.5645071

36. I. Pérez-Hurtado, Desarrollo y Aplicaciones de un Entorno de Programación para Com-
putación Celular: P-Lingua. Ph.D. Thesis (Universidad de Sevilla, Sevilla, 2010, in Spanish).
http://hdl.handle.net/11441/66241

37. I. Pérez-Hurtado, L. Valencia-Cabrera, M.J. Pérez-Jiménez, M.A. Colomer, A. Riscos-Núñez,
MeCoSim: a general purpose software tool for simulating biological phenomena by means
of P systems, in Proceedings of the IEEE Fifth International Conference on Bio-inspired
Computing: Theories and Applications (BIC-TA 2010), vol. I, ed. by K. Li, Z. Tang, R. Li, A.K.
Nagar, R. Thamburaj (2010), pp. 637–643. https://doi.org/10.1109/BICTA.2010.5645199

38. I. Pérez-Hurtado, L. Valencia-Cabrera, J.M. Chacón, A. Riscos-Núñez, M.J. Pérez-Jiménez, A
P-lingua based simulator for tissue P systems with cell separation. Rom. J. Inf. Sci. Technol.
17(1), 89–102 (2014)

39. I. Pérez-Hurtado, D. Orellana-Martín, M.A. Martínez-del-Amor, L. Valencia-Cabrera, A.
Riscos-Núñez, M.J. Pérez-Jiménez, 11 years of P-Lingua: a backward glance, in Proceedings
of the 20th International Conference on Membrane Computing (CMC20), ed. by Gh. Păun
(2019), pp. 451–462

40. I. Pérez-Hurtado, D. Orellana-Martín, G. Zhang, M.J. Pérez-Jiménez, P-Lingua in two steps:
flexibility and efficiency. J. Membr. Comput. 1(2), 93–102 (2019). https://doi.org/10.1007/
s41965-019-00014-1

41. T. Song, L. Pan, Gh. Păun. Asynchronous spiking neural P systems with local synchronization.
Inf. Sci. 219, 197–207 (2013). https://doi.org/10.1016/j.ins.2012.07.023

42. A. Spicher, O. Michel, M. Cieslak, J.-L. Giavitto, P. Prusinkiewicz, Stochastic P systems and
the simulation of biochemical processes with dynamic compartments. Biosystems, 91(3), 458–
472 (2008). https://doi.org/10.1016/j.biosystems.2006.12.009

43. The P-Lingua website. http://www.p-lingua.org

https://doi.org/10.1142/S0129065720500719
https://doi.org/10.1142/S0129065720500719
https://doi.org/10.3217/jucs-010-05-0630
https://doi.org/10.15837/ijccc.2009.3.2435
https://doi.org/10.3233/FI-2011-543
https://doi.org/10.1007/978-3-642-28024-5_17
https://doi.org/10.1155/2018/3745210
https://doi.org/10.1006/jcss.1999.1693
https://doi.org/10.1006/jcss.1999.1693
http://www.tucs.fi
https://doi.org/10.15837/ijccc.2008.3.2397
https://doi.org/10.1109/BICTA.2010.5645071
http://hdl.handle.net/11441/66241
https://doi.org/10.1109/BICTA.2010.5645199
https://doi.org/10.1007/s41965-019-00014-1
https://doi.org/10.1007/s41965-019-00014-1
https://doi.org/10.1016/j.ins.2012.07.023
https://doi.org/10.1016/j.biosystems.2006.12.009
http://www.p-lingua.org

30 2 P Systems Implementation on P-Lingua Framework

44. L. Valencia-Cabrera, An Environment for Virtual Experimentation with Computational Models
Based on P Systems. Ph.D. Thesis (Universidad de Sevilla, Sevilla, 2015). http://hdl.handle.
net/11441/45362

45. L. Valencia-Cabrera, B. Song, Tissue P systems with promoter simulation with MeCoSim
and P-Lingua framework. J. Membr. Comput. 2(2), 95–107 (2020). https://doi.org/10.1007/
s41965-020-00037-z

46. L. Valencia-Cabrera, T. Wu, Z. Zhang, L. Pan, M.J. Pérez-Jiménez, A simulation software tool
for cell-like spiking neural P systems. Rom. J. Inf. Sci. Technol. 20(1), 71–84 (2017)

47. L. Valencia-Cabrera, D. Orellana-Martín, M.A. Martínez-del-Amor, A. Riscos-Núñez, M.J.
Pérez-Jiménez, Computational efficiency of minimal cooperation and distribution in polariza-
tionless P systems with active membranes. Fundam. Inform. 153(1–2), 147–172 (2017). https://
doi.org/10.3233/FI-2017-1535

48. L. Valencia-Cabrera, D. Orellana-Martín, M.A. Martínez-del-Amor, A. Riscos-Núñez, M.J.
Pérez-Jiménez, Reaching efficiency through collaboration in membrane systems: dissolution,
polarization and cooperation. Theor. Comput. Sci. 701, 226–234 (2017). https://doi.org/10.
1016/j.tcs.2017.04.015

49. L. Valencia-Cabrera, D. Orellana-Martín, M.A. Martínez-del-Amor, M.J. Pérez-Jiménez, An
interactive timeline of simulators in Membrane Computing. J. Membr. Comput. 1(3), 209–222
(2019). https://doi.org/10.1007/s41965-019-00016-z

50. T. Wu, Z. Zhang, Gh. Păun, L. Pan, Cell-like spiking neural P systems. Theor. Comput. Sci.
623, 180–189 (2016). https://doi.org/10.1016/j.tcs.2015.12.038

http://hdl.handle.net/11441/45362
http://hdl.handle.net/11441/45362
https://doi.org/10.1007/s41965-020-00037-z
https://doi.org/10.1007/s41965-020-00037-z
https://doi.org/10.3233/FI-2017-1535
https://doi.org/10.3233/FI-2017-1535
https://doi.org/10.1016/j.tcs.2017.04.015
https://doi.org/10.1016/j.tcs.2017.04.015
https://doi.org/10.1007/s41965-019-00016-z
https://doi.org/10.1016/j.tcs.2015.12.038

3Applications of Software Implementations
of P Systems

3.1 Introduction

Since the introduction of membrane computing in 1998 [49], there has been a rapid
theoretical development in this area with respect to computing models and their
computing power and computational efficiency [50, 51]. Moreover, numerous real-
world applications of membrane computing models [72,76,77] have been reported.
P systems can perform specific tasks such as solving an NP-hard [48], NP-complete
[37, 62], or PSPACE-complete problems [1], control language generation [63, 75],
controlling robots [79], heuristic optimization problems [27, 71, 73], and arithmetic
operation [78]. These tasks were accomplished manually, instead of by means of
automatic design. The manual implementation of membrane computing models has
some drawbacks. For example, it could be time-consuming, tedious, and impossible
to implement large-scale systems. It limits the application scope of P system models.
Therefore, the question on how to automatically design a P system by using
programs, namely, the programmability of a P system, has become an urgent and
attractive research direction in the area of membrane computing [74].

The automatic design of a P system is a very complicated and challenging task
[70, 80]. There has been many works focused on the use of evolutionary algorithms
to make a population of P systems evolve toward a successful one [34, 72]. These
works start with the selection of an appropriate subset from a redundant set of
evolution rules to design a cell-like P system, where a membrane structure and initial
objects were predefined and fixed in the process of design [7,23,28,66,72]. In [23],
a genetic algorithm was used to design a P system to calculate 42. In [28], a binary
encoding technique was presented to denote an evolution rule set of a P system, and
a quantum-inspired evolutionary algorithm (QIEA) was used to make a population
of P systems evolve toward successful ones. This method successfully solved the
design of P systems to compute 42 and n2 (for natural numbers n ≥ 2). In [66],
an evaluation approach considering nondeterminism and halting penalty factors and
a genetic algorithm with the binary encoding technique in [28] were introduced to

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2021
G. Zhang et al., Membrane Computing Models: Implementations,
https://doi.org/10.1007/978-981-16-1566-5_3

31

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-16-1566-5_3&domain=pdf
https://doi.org/10.1007/978-981-16-1566-5_3

32 3 Applications of Software Implementations of P Systems

design P systems for computing 42, n2, and the generation of language {a2n
b3n|n >

1}. In these studies mentioned above, a specific redundant evolution rule set was
designed for a specific computational task. This was developed in [7,72] by applying
one predefined redundant evolution rule set to design multiple different P systems,
each of which executes a computation task. In [7], an automatic design method
of a cell-like P system framework for performing five basic arithmetic operations
(addition, subtraction, multiplication, division, and power) was presented. In [72], a
common redundant set of evolution rules was applied to design successful P systems
for fulfilling eight computational tasks: 2(n− 1), 2n− 1, n2, 1

2 [n(n − 1)], n(n− 1),
(n − 1)2 + 2n + 2, a2n

b3n
and 1

2 (3n − 1), (n > 1 or 2). In [21, 31], the automatic
design of SN P systems is discussed.

This chapter is organized in the following manner: Sect. 3.2 discusses automatic
design of cell-like P systems with P-Lingua, Sect. 3.3 discusses automatic design
of spiking neural P systems with P-Lingua, Sect. 3.4 discusses modelling real
ecosystems with MeCoSim, and Sect. 3.5 discusses robot motion planning.

3.2 Automatic Design of Cell-Like P Systemswith P-Lingua

In this section, some preliminaries are first provided. An automatic design approach
with a genetic algorithm (GA) for a cell-like P system through tuning membrane
structures, initial objects, and evolution rules is discussed. Next, an automatic design
method with a permutation penalty genetic algorithm (PPGA) for a deterministic
and non-halting membrane system by tuning membrane structures, initial objects,
and evolution rules is discussed.

3.2.1 Preliminaries

3.2.1.1 Alphabet andMultisets
An alphabet � is a non-empty set, and their elements are called symbols. A string
u over � is an ordered finite sequence of symbols, that is, a mapping from a natural
number n ∈ N onto �. The number n is called the length of the string u, and it is
denoted by |u|. The empty string (with length 0) is denoted by λ. A multiset over
an alphabet � is a mapping f from � onto the set of natural numbers N. For each
symbol a ∈ �, the natural number f (a) is called the multiplicity of symbol a in
multiset f . We denote by M(�) the set of all multisets over �.

3.2.1.2 Rooted Tree
An undirected graph G is an ordered pair (V ,E) where V is a set whose elements
are called nodes and E = {{x, y} | x, y ∈ V, x 	= y} whose elements are called
edges. A path of length k ≥ 1 from x ∈ V to y ∈ V is a sequence (x0, . . . , xk)

such that x0 = x and xk = y. If x0 = xk , then we say that the path is a cycle.
An undirected graph is connected if every pair of nodes is connected by a path. An

3.2 Automatic Design of Cell-Like P Systems with P-Lingua 33

undirected graph with no cycle is said to be acyclic. A rooted tree is a connected,
acyclic, undirected graph in which one of the vertices (called the root of the tree) is
distinguished from the others.

3.2.1.3 Cell-Like P System/Transition P System
1. A cell-like P system with a hierarchical membrane structure can be formally

represented as � = (V ,O,μ,W,
, io) [49], where
(a) V is the (finite and non-empty) alphabet of objects.
(b) O ⊆ V is the output alphabet, namely, the set of output objects.
(c) μ is a hierarchical membrane structure with m ≥ 1 membranes labeled by the

elements of a given set H , H = {0, 1, . . . ,m − 1}, and the skin membrane
is labeled as 0. The hierarchical membrane structure can also be depicted
through a rooted tree.

(d) W is the vector of initial multisets w0, . . . , wm−1 over V associated with the
regions 0, 1, . . . ,m − 1 delimited by the membranes of μ, namely, W =
[w0, . . . , wm−1].

(e)
 is the set of finite sets R0, . . . , Rm−1 of evolution rules associated with
the regions 0, 1, . . . ,m − 1 of the membrane structure μ, namely,
 =
{R0, . . . , Rm−1}. Three types of evolution rules, rewriting, dissolution, and
rewriting-communication rules, are considered in this study. That is, Ri

(i = 0, 1, . . . ,m − 1) has rules of one of the following forms:
(i) rewriting rule: [u → v]i ;

(ii) dissolution rule: [u]i → v;
(iii) rewriting-communication rule: [u]i → [v]ix;
where i ∈ H ; u ∈ V ; v, x ∈ V ∗; where V ∗ denotes the set of all strings
over V . The left-hand side of these rules is u, and the right-hand side of
them is v or v, x. The length of u is called the radius of each rule. The
rewriting rule [u → v]i rewrites u by v. The dissolution rule [u]i → v

dissolves the compartment i, and its content is transferred to the surrounding
membrane after all the other rules have been applied, and u is replaced by v.
The rewriting-communication rule [u]i → [v]ix rewrites u by v inside the
compartment i and, at the same time, sends x outside the compartment.

(f) io is the output membrane of �.
2. The system is called noncooperative if the length of the object in the left-hand

side of an evolution rule is one.

The multisets associated to regions form a configuration of the P system. The
computation begins by treating the initial multisets, wi , 0 ≤ i ≤ m − 1, and then
the system will go from one configuration to a new one by applying the evolution
rules associated to regions in a deterministic and maximally parallel way, that is,
all the objects that may be transformed or communicated must be dealt with. The
system will halt when no more rules are available to be applied. A computation is a
sequence of configurations obtained as it is described above, starting with the initial
configuration and ending with the configuration when the system halts. The result
of a computation, a multiset of objects, is obtained in the output region, io.

34 3 Applications of Software Implementations of P Systems

Sometimes cell-like P systems are of the form � = (V ,O,μ,M0, . . . ,Mm−1,

(R0, ρ0), . . . , (Rm−1, ρm−1), io), where M0, . . . ,Mm−1 are multisets over O;
R0, . . . , Rm−1 are rules associated with membrane 0, 1, . . . ,m − 1, respectively;
and ρ0, . . . , ρm−1 are the partial order relations associated with the rules in
R0, . . . ,Rm−1. The ρi provides priorities between rules in Ri , in such a manner
that if (r1, r2) ∈ ρi we say that rule r1 has a higher priority than r2, and we denote
it by r1 > r2;

3.2.2 Automatic Design of P Systemswith an Elitist Genetic
Algorithm

In this subsection, automatic design approach for a cell-like P system through tuning
membrane structures, initial objects, and evolution rules is discussed. In this method,
a binary encoding technique is used to codify the P system with variable membrane
structures, initial objects, and evolution rules; an elitist genetic algorithm is applied
to evolve a population of P systems toward a successful P system for fulfilling a
specific task, the calculation of the square of 4 [47]; an effective fitness function is
employed to evaluate each candidate P system by a using P-Lingua simulator [58].

3.2.2.1 Problem Statement
Automatic design of cell-like P systems through tuning membrane structures, initial
objects, and evolution rules [47] is performed by advancing the design of a cell-like
P system step-by-step. While performing the task, a family of membrane systems

∏

of P systems, that is,
∏ = {�i}i⊆N , where N is the set of natural numbers and each

P system �i has the structure �i = (V ,μ,W,R, io), where V is a predefined
alphabet of objects; μ is a hierarchical membrane structure with m membranes
labeled by the elements of a given set H , H = {0, 1, . . . ,m − 1}, and the skin
membrane is labeled as 0; W is the set of initial multisets w0, . . . , wm−1 over V

associated with the regions 0, 1, . . . ,m − 1 of μ, that is, W = {w0, . . . , wm−1};
R is the set of evolution rule sets R0, . . . , Rm−1 associated with the regions
0, 1, . . . ,m − 1 of μ, that is, R = {R0, . . . , Rm−1}. In order to perform the task
of automatic design, μ, W , and R need to be designed. Moreover, only the rewriting
and dissolution rules are considered in this design, and i0 = 0 implies that the output
result is inside the skin membrane.

Considering a family
∏

of P systems,
∏ = {�i}i⊆N , where each P system �i

has a variable μ, W , and R, where μ, W , and R are attained by using an optimization
approach. W and R coming from the alphabet V are generated in the process of
design.

3.2.2.2 DesignMethod
The general steps of the design method can be summarized as follows:

Step 1 Design of membrane structure μ: A hierarchical membrane structure with
m membranes is considered in the cell-like P systems.

3.2 Automatic Design of Cell-Like P Systems with P-Lingua 35

Step 2 Definition of an alphabet V : As usual, a certain number of letters from
English alphabet is chosen so that it satisfies the requirement of initial objects wi

and evolution rules Ri .
Step 3 Design of evolution rule set R: The evolution rule set R is obtained by

using a genetic algorithm, where the maximal number of evolution rules in Ri , that
is, the length of Ri , and the types of evolution rules are considered.

Step 4 Design of initial object set W : The initial objects inside each membrane wi

(i = 0, 1, . . . ,m− 1) are obtained by using a genetic algorithm, where the maximal
number of initial objects inside each membrane wi (i = 0, 1, . . . ,m− 1) need to be
prescribed.

Step 5 Design of a genetic algorithm: This step has to consider four points: (1) an
encoding technique for membrane structure μ, evolution rule set R or
, and initial
object set W ; (2) a fitness function for evaluating a candidate P system; (3) the
choices of selection, crossover, and mutation operators; and (4) parameter setting.

The details are described as follows:

(1) The encoding techniques for initial object set W , evolution rule set
, and
membrane structure μ are as follows.
(a) Encoding W : In a cell-like P system, encoding of an object in V is

introduced and then turn to the representation of each initial object set wi

(i = 0, 1, . . . ,m − 1) and the initial object set W . Suppose the alphabet
V = {a0, a1, . . . , ano−1}, where no is the number of objects in V . In the
genetic algorithm, a binary string with n (n = ceil(log2 no) bits (0 or 1)
is used to represent the object aj (j = 0, 1, . . . , no − 1), where the ceil
function returns the smallest integer value that is greater than or equal to
the number log2 no. In this representation of each object, if the number of
objects in V is less than 2n, then (2n − no) copies of the empty set λ are
inserted into V . For example, if V = {a, b, c, z1, z2, z3, z4}, then the binary
string with 3 bits is used to represent each object in V . Thus, the codes
corresponding to each object can be listed as follows:

000 → a, 001 → b, 010 → c, 011 → z1
100 → z2, 101 → z3, 110 → z4, 111 → λ.

Thus, the initial object set W can be encoded, W = {w1, . . . , wm}, where
wi (i = 0, 1, . . . ,m − 1) is the initial object set in the ith membrane and is
composed of a certain number of copies of each object in V . So the maximal
number is limited, denoted by nwi (i = 0, 1, . . . ,m−1) of copies of objects
for each wi in the design of a P system. Therefore, the initial object set wi

in the ith membrane can be represented by using a binary string with nnwi

bits, and consequently, W is denoted by using a binary string with LW bits,
where

LW =
m−1∑

i=0

nnwi . (3.1)

36 3 Applications of Software Implementations of P Systems

That is, W is obtained by concatenating wi (i = 0, 1, . . . ,m − 1) one
by one. For example, if V = {a, b, c, z1, z2, z3, z4}, W={w0, w1}, nw0 = 2,
and nw1 = 2, W is represented by applying 12 bits. W=000000011111
means that w0 = a2 and w1 = z1.

(b) Encoding
: Considers two types of evolution rules, that is,
[lef tObSet → rightObSet]label

[lef tObSet]label → rightObSet

where lef tObSet and rightObSet are the multisets of objects selected
from the alphabet V ; label represents the label of a membrane, that is, the
location of the evolution rule. The value of label needs to be preset. The
first rule is a transition rule, and the second one is a dissolution rule. So a
multi-tuple (lef tObSet, rightObSet, dissolution) is used to represent an
evolution rule, where dissolution is a binary bit, that is, ‘0’ or ‘1’, where ‘0’
and ‘1’ representing the rule will be dissolved or not. The encoding methods
of lef tObSet and rightObSet are the same as in wi . So the binary string
concatenating the three strings lef tObSet , rightObSet , and dissolution

represents an evolution rule. For example, if V = {a, b, c, z1, z2, z3, z4},
label = 1, the length of lef tObSet equals 1, and the length of rigthObSet

equals 2, an evolution rule can be denoted as a binary string with 13 bits.
The string 0000010101111 means r1 ≡ [a]1 → b.

Thus, the evolution rule set R, R = {r1, r2, . . . , rnR } is encoded, where
nR is the number of evolution rules in R. If an evolution rule is represented
by using a binary string with Lr bits, the evolution rule set R can be
represented as a binary string with nR Lr . For example, if R = {r1, r2},
where r1 ≡ [a]1 → b and r2 ≡ [a → bc]1, the evolution rule set R can be
denoted as 00000101011110000010100010, that is, R = {[a]1 → b, [a →
bc]1}.

In this case, the membrane structure μ is fixed, and a candidate P system
can be represented as the binary string concatenating W and R, that is, the
string with LW + nRLr binary bits.

(c) Encoding μ: The hierarchical membrane structure of a cell-like P system
can be represented as a tree structure, where each of the membranes
except for the skin membrane has a parent membrane. For example, if
μ = [[[]2]1

]
0, the parent membranes of the membranes with the label 2 and

1 are the membranes labeled as 1 and 0, respectively. The skin membrane
in a cell-like P system is the outermost membrane. So only the codes of the
rest (m − 1) membranes are considered. In this section, a parent membrane
encoding method to represent a membrane structure is introduced. Suppose
that a cell-like P system has m membranes labeled as 0, 1, . . . ,m − 1.
The symbol nm (nm = ceil(log2 m) binary bits (0 or 1) is used to encode
each of the m − 1 membranes, where the ceil function returns the smallest
integer value that is greater than or equal to the number log2 m. The code
of each membrane refers to the label of its parent membrane. Thus, the
membrane structure μ can be represented by using a binary string with
(m − 1)nm bits. In this representation of a membrane structure, if the

3.2 Automatic Design of Cell-Like P Systems with P-Lingua 37

number of membranes in μ is less than 2nm , the membrane structure with
m membranes is extended to the new structure with 2nm membranes, where
the last (2nm − m)membranes are represented by using the empty set λ. For
example, if a cell-like P system has four membranes, μ is represented by
applying six binary bits. Thus, the string 000010 means μ1 = [[]1[[]3]2]0,
and the string 000000 corresponds to μ2 = [[]1[]2[]3]0. It is worth noting
that this representation of μ may result in unfeasible membrane structures.
So the traversal of a tree is applied to check whether a candidate membrane
structure is feasible or not. Each of the three traversal approaches, preorder,
inorder, and postorder traversal, can effectively solve this problem.

In this case, a candidate P system can be represented as the binary string
concatenating the codes of μ, W , and R, that is, the string with LW +nR

Lr +(m − 1)nm binary bits.
(2) The fitness function with penalty items is used to evaluate a candidate P system.

The model of the fitness function is described as follows:

f itness = f itness + f (μ) + f (W) + f (R) + f (Halt) (3.2)

where f (W) is the penalty term of the undesired properties in the initial objects
set, that is, when W contains redundant objects, an extra punishment is needed
to the fitness function; f (R) is the penalty term of the undesired properties in
the evolution rules set. Four undesired properties are considered, and they are
as follows: (1) The dissolution rule is a structural rule, and it is applied at most
once per step. If R contains more than one dissolution rules in one membrane,
the simulation will report errors. In order to avoid this kind of errors, a fitness
function value with penalty term is directly returned to stop the simulation. (2) If
R contains nondeterministic rules, the fitness function value with penalty term is
directly returned. (3) A candidate P system contains useless rules: If a candidate
P system contains a useless rule, then it will be added to a penalty term with
η. (4) A candidate P system contains evolutionary rules which cannot forward
the calculation process. f (Halt) is the penalty term of the non-termination
property, that is, if a candidate P system is not in a halting configuration, an
extra punishment is added to the fitness function. If a candidate P system cannot
satisfy the desired properties, a penalty term is added to the fitness function
to reduce the probability of the selection in the candidate population. So the
genetic algorithm can gradually remove the undesired candidate P systems.
f (μ) is the penalty term of the undesired properties of the membrane structure.
If a candidate P system has an invalid membrane structure, it cannot satisfy the
basic syntax of the membrane systems. So in order to make error in the process
of simulation, a penalty term is returned to stop its simulation in P-Lingua. The
evaluation method is shown in Fig. 3.1.

In the evaluation method, the selection of these constants is based on the
designers’ experience, the experimental results, and some investigations such as
in [66].

38 3 Applications of Software Implementations of P Systems

Evaluation method

fitness 0
Load the P system corresponding to the current chromosome

NondePairs number of rule pairs with the same left hand side
DisRuleNum number of dissolution rules in a membrane
UselessNum number of useless initial objects in the process of the simulation
UselessRule number of useless rules in the process of the simulation
NotEvoRule number of not evolutionary rules in the simulation
UselessMemSructure the value represents that the membrane structure is error
if ((0NondePairs)||(0UselessMemSructure)||(1DisRuleNum)) then

fitness NondePairs + DisRuleNum UselessMemSructure

return fitness

else

{the P system is deterministic so we need to simulate only computation}

step 0
while ((P system is not a halting state) (step MaxSteps))do

evolve one step(move to the next configuration of the P system)
step step+1

end while
if P system is in a halting configuration then

fitness fitness +| _simulation result _desired result |

else
fitness fitness +| _simulation result _desired result |+ 1

end if

if 0fitness then
fitness fitness + 2UselessNum + 2NotUseRule + 2NotEvoRule

end if

return fitness

end if

−

−

^

Fig. 3.1 Evaluation methods. From [47]

3.2 Automatic Design of Cell-Like P Systems with P-Lingua 39

(3) In this section, JGAP-Java Genetic Algorithms and Genetic Programming
Package [43, 44] are used. The genetic algorithm applies an elitist selection
operator, a single-point crossover operator, and a uniform mutation operator.

(4) There are four parameters in the genetic algorithm, and they are represented
as a parameter set Pa_set where Pa_set = {Np,Pc, Pm, I terNum}, Np, Pc,
Pm, and I terNum are the population size, the crossover rate, the mutation rate,
and the maximal number of evolutionary generations in the genetic algorithm,
respectively.

P system
∏ = {V,μ,W,R, io} is considered, where the membrane structure

consists of four membranes, and the skin membrane is labeled 0; the alphabet V =
{a, b}; io=0; W={w0, w1, w2, w3}, R = {R0, R1, R2, R3}, and μ are obtained by
using JGAP. The parameters are assigned as follows: nw0 = nw1 = nw1 = nw1 = 1;
nR = 4, that is, the evolution rule set R consisting of four rules. In the experiment,
each of R0, R1, R2, and R3 consists of only one rule. The maximal number of
objects in the lef tObjSet and lef tObjSet of each rule are 1 and 4, respectively.
According to the referring existing literature [66] and the design rules, the rest of the
parameters in the experiments are set as follows: m = 4, n = 2, LW = 8, LR = 44,
δ = 25, η1 = 1, η2 = 1, and MaxSteps = 25.

In the following description, at first, the choices of the mutation rate Pm, the
crossover rate Pc, the population size Np, and the maximal number I terNum of
evolutionary generations in the genetic algorithm are discussed, and then the result
of this design is provided.

In the experiments, the parameter sets for Pm, Pc, Np, and I terNum are set as
follows:
Pa_setPm = {30; 0.1; {0.01, 0.05, 0.1, 0.125, 0.2, 0.25, 0.35, 0.5, 1.0}; 300}

for Pm; Pa_setPc = {30; {0.01, 0.05, 0.09, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8
, 0.9, 1.0}; 0.1; 300} for Pc; Pa_setNp = {{10, 20, 30, 40, 50, 60, 70}; 0.1;
0.1; 300} for Np ; Pa_setI terNum = {30; 0.1; 0.1; {50, 100, 150, 200, 250,

300, 350, 400}} for I terNum.
Experimental results for the discussion of the four parameters are shown in

Fig. 3.2, where the successful rate refers to the ratio of the number of successful
computations to 100 independent runs; the average generation is the average of the
evolutionary generations over 100 independent runs when the algorithm stops for
each test, and the total number of function evaluations refers to the total number of
the fitness function evaluations for candidate P systems in 100 independent runs.

Figure 3.2a shows that the highest successful rate and the lowest average
generation are obtained when the value of Pm equals 0.100. Figure 3.2b shows that
the best results of the successful rate and the average generation are obtained when
Pc = 1.0. In Fig. 3.2c, when the value of Np is greater than 30, the success rate
arrives at 100%, while the best result of the total number of function evaluations is
achieved when Np=30. According to the results in Fig. 3.2d, as I terNum increases
from 50 to 400, the elapsed time per run gradually goes up; on the other hand, the
success rate arrives at 100% if I terNum is equal to or greater than 300. Therefore, it
is better to assign Pm, Pc, Np and I terNum as 0.100, 1.0, 30, and 300, respectively.

40 3 Applications of Software Implementations of P Systems

0 0.2 0.4 0.6 0.8 1
0

50

100
S

uc
ce

ss
fu

l r
at

es
(%

)

Mutation rates

0 0.2 0.4 0.6 0.8 1
0

200

400

A
ve

ra
ge

 g
en

er
at

io
ns

Successful rates
Average generations

0 0.2 0.4 0.6 0.8 1
99

100

101

S
uc

ce
ss

fu
l r

at
es

(%
)

Crossover rates

0 0.2 0.4 0.6 0.8 1
30

45

60

75

A
ve

ra
ge

 g
en

er
at

io
ns

Successful rates
Average generations

10 20 30 40 50 60 70
70

80

90

100

S
uc

ce
ss

fu
l r

at
es

(%
)

Population size

10 20 30 40 50 60 70
400

900

1400

1900

T
ot

al
 n

um
be

r
fu

nc
tio

n
ev

al
ua

tio
ns

Successful rates
Total number function evaluations

50 100 150 200 250 300 350 400
40

50

60

70

80

90

100

S
uc

ce
ss

fu
l r

at
es

(%
)

Evolutionary generations

50 100 150 200 250 300 350 400

2.5
3
3.5
4
4.5
5
5.5

T
im

e
pe

r
ru

n
(s

ec
on

ds

Successful rates
Time per run (seconds

(a) (b)

(c) (d)

Fig. 3.2 Experimental results for the four parameters. From [47]. (a) Mutation rates. (b)
Crossover rates. (c) Population sizes. (d) Evolutionary generations

In the design of a cell-like P system for calculating the square of 4, Pa_set

= {30; 0.1; 1.0; 300}. Next 1000 independent runs are performed, and it obtains
100% success rate. The introduced design approach obtains 65 different variants of
cell-like P systems for successfully fulfilling the computation of 42. Their details can
be referred to [47]. The design method obtains different solutions having different
initial objects and evolution rules sets, due to the randomness of the selection of
objects, the rules, and the membrane structure.

3.2.3 Automatic Design of P Systemswith a Permutation Penalty
Genetic Algorithm

In this section, an automatic design method, that is, permutation penalty genetic
algorithm (PPGA), for a deterministic and non-halting membrane system generating
the set {n2|n ≥ 1} of natural numbers, by tuning the syntactical ingredients
consisting of membrane structures μ, initial objects W , and evolution rules

[74] is discussed. The design approach is described in detail. And then a cell-like
membrane system for computing the square of n (n is a natural number) is presented.

To design a P system with the prescribed requirements, it is necessary to consider
the following three points: representation of a P system, evaluation of a candidate

3.2 Automatic Design of Cell-Like P Systems with P-Lingua 41

P system, and evolution of a family of P systems toward the expected result. In
this section, a P system permutation encoding representation, a penalty function
evaluation of a candidate P system, and a genetic algorithm for the P system
evolution toward the expected result are discussed. At first, three techniques are
presented, and then the design method to provide an algorithmic elaboration is
summarized.

1. Representation of P Systems
The permutation encoding technique [60] is used to codify a P system. The
representation of a P system consists of the encoding approaches for the alphabet
V , its membrane structure μ, the initial multiset vector W , evolution rules set
,
and an individual chromosome corresponding to a candidate P system. Next, these
approaches are discussed one by one.

(a) Encoding of V
Suppose that there are NV objects (letters), and the NV strictly positive integers

are used to represent the objects and 0 to denote the empty set λ. Thus, V is encoded
as an ordered string of numbers, namely, “01 . . .NV ”. For instance, if V = {a, b, c},
its codes are “0123”.

(b) Encoding of μ
The hierarchical membrane structure of a cell-like P system can also be denoted

as a rooted tree. Thus, the label of the parent (the neighboring outer membrane, like
the parent of a node in a tree) of each membrane can be used to form an ordered
string to represent a P system structure. It is worth noting that the skin membrane is
not considered in the string because it is the outermost membrane in the structure.
Thus, the hierarchical membrane structure of the P system with Nμ membranes is
represented with a string with (Nμ − 1) numbers. For example, the structure in
Fig. 3.3 can be represented as the codes “0001136”.

(c) Encoding of W
Each element wi , i = 0, 1, . . . ,m − 1, of the vector W are strings over V .

The encoding approach of W is designed according to the encoding technique of V .
Suppose that the largest number of objects in wi is Nwi , so wi needs Nwi codes, each
of which may be 0, 1, . . . or NV . The codes of W can be obtained by concatenating

Fig. 3.3 An example for a
cell-like P system membrane
structure and its associated
tree. From [60, 74]

0

1
4

5

2 3
6

7 1 2 3

0

6

7
4 5

42 3 Applications of Software Implementations of P Systems

the string of wi , i = 0, 1, . . . ,m − 1, and a separator symbol NV + 4 is used to
delimit the codes of wi and wi+1, i = 0, 1, . . . ,m − 2. Thus, the total number LW

of codes for W is

LW =
m−1∑

i=0

Nwi + m − 1 (3.3)

For example, W = [w0, w1, w2] is the initial multiset vector of a P system. Nw0 =λ,
Nw1 =aa, Nw2 =bbcc. Thus, LW =9 and the string for encoding W is “071172233”.

(d) Encoding of

The left-hand side u and the right-hand side v of the rule (rewriting, dissolution,

or rewriting-communication rule) are elements of V and V ∗, respectively. On the
basis of the representation of V , the set
 is encoded. Suppose that the number of
rules in Ri is NRi , i = 0, 1, . . . ,m − 1, and the largest numbers of objects in the
left-hand side u and in the right-hand side v of a rule are Nl and Nr , respectively.
Thus, Nl codes are used, each of which may be 1, 2, . . . , or NV , Nr codes, each
of which may be 0, 1, . . . , or NV , and additional one code to describe its rule type
(here we use NV + 1, NV + 2, and NV + 3 to denote a rewriting, dissolution, and
rewriting-communication rules, respectively) to encode a rule. Thus, the code length
LRi for the rule is Nl + Nr + 1, that is, LRi =Nl + Nr + 1. The codes of
 can be
gained by concatenating the string of each rule and by using a separator symbol
NV + 5 between Ri and Ri+1, i = 0, 1, . . . ,m − 2. So the total code length L
 of
the set
 is

L
 =
m−1∑

i=0

(NRi ∗ LRi) + m − 1 (3.4)

It is worth noting that the dissolution rule is a structural rule, which is
applied at most once at each step of a P system evolution, and rewriting
and rewriting-communication rules can be normally applied in a maximally
parallel mode. For instance, the set
={R0, R1, R2} is encoded as the string
11124233481334221681235" where R0 = {[a → aab], [b → cc]}, R1 = {[a →
cc], [b] → [b]a}, and R2 = {[a] → bc}.

(e) Encoding of a P System
Next, a P system through tuning membrane structure, initial objects, and

evolution rules is designed where the codes for the P system can be attained by
sequentially concatenating the codes of μ, W , and
, and a separator symbol NV +6
to enable the separation of the codes of μ, W , and
. The encoding of a P system

3.2 Automatic Design of Cell-Like P Systems with P-Lingua 43

Fig. 3.4 The initial
configuration of �e (with
rules included). From [74]

has been illustrated using the following example. Consider the following P system
�e = (V ,O,μ,W,
, io) where

1. V = {s, a, b};
2. O = {s};
3. μ = [[[]2[]3]1]0;
4. W = [w0, w1, w2, w3], w0=λ, w1 = b, w2 = a, w3 = b;
5.
={R0, R1, R2, R3}, R0 = {a → sa, b → sa}, R1={b → sb}, R2 = {[a] →

[a]a}, R3 = {[b] → [b]a};
6. io=0.

The initial configuration of the P system �e is illustrated in Fig. 3.4. If
Nw0 =Nw1 =Nw2=Nw3 =1, NR0 =2, NR1 =NR2=NR3 =1, Nl=1, Nr=2 and LRi =4, (i =
0, 1, 2, 3), the P system �e is encoded as the string “0119032392124312483135822
2683326”.

2. Evaluation of P Systems
How to evaluate a candidate P system is a crucial step in the automatic design of
membrane systems by using evolutionary algorithms. This step has a direct effect
on the characteristics of the P systems obtained and the performance of the design
algorithm. In the evaluation, the following seven aspects are considered:

1. The difference between the actual number(s) and the expected number(s) of
output objects. The former refers to the simulated result that is returned from the
specialized P system simulation software, P-Lingua [25, 26], through inputting
a candidate P system into the software. The latter is designated by the designer
according to the computational task or the problem to solve.

2. The feasibility of a P system due to its membrane structure μ. In the design, some
infeasible membrane structures may be generated by the evolutionary operations
such as crossover or mutation in a genetic algorithm. The infeasible membrane

44 3 Applications of Software Implementations of P Systems

structure refers to the one that does not satisfy the syntactical requirement of the
P system.

3. The redundancy of objects in the initial multiset vector W . In this design, some
objects exist in the initial multiset vector W , but they will not be used through the
computation of the P system. They are called redundant objects. This redundancy
results from the randomness of the generation of the population of initial P
systems in an evolutionary algorithm.

4. The nondeterminism of a P system resulting from nondeterministic membrane
systems due to evolution rules

5. The infeasibility of a P system due to more than one dissolution rules in one set
Ri (i = 0, 1, . . . ,m − 1)

6. The redundancy of evolution rules in the set
. The redundant rules refer to the
ones in the set
 that are not used through the computation of the P system.

7. A halting P system due to evolution rules

Based on the above analysis, the following evaluation functions are defined:

f = f1 + f2 + f3 + f4 + f5 + f6 + f7 (3.5)

where

f1 = g1(Ns) =
Nobj∑

i=1

|Nao
i − Neo

i | (3.6)

f2 = g2(μ) = δ · Mf (3.7)

f3 = g3(W) = η · Nobs (3.8)

f4 = g4(
) = α · Nnon (3.9)

f5 = g5(
) = β · Rdis (3.10)

f6 = g6(
) = γ · Nred (3.11)

f7 = g7(
) = ξ · H (3.12)

where

– f1 is the object error function; g1(Ns) is the function of the simulation step Ns

of a candidate P system in the P-Lingua software and is designed according to
the computational task; Nao

i and Neo
i are the actual number and the expected

number of the ith (i = 1, 2, . . . , Nobj) output objects, respectively; Nobj = |O|;
and Nobj is the number of distinct letters involved in the output objects.

3.2 Automatic Design of Cell-Like P Systems with P-Lingua 45

– f2 is the penalty item of the infeasible membrane structure, g2(μ) is the function
of the membrane structure μ, δ is a penalty factor, and Mf ∈ {0, 1}, where “0”
and “1” mean that the membrane structure of a candidate P system is feasible
and infeasible, respectively.

– f3 is the penalty item of the redundant objects in the initial multiset vector W ,
g3(W) is the function of the initial multiset vector W , η is a penalty factor, and
Nobs is the number of the redundant objects in the initial multiset vector W .

– f4 is the penalty item of a nondeterministic P system, g4(
) is a function of the
set
, α is a penalty factor, and Nnon ∈ {0, 1}, where “0” and “1” mean that
there is not any nondeterministic evolution rule, and there is at least one pair of
nondeterministic evolution rules in the set
, respectively.

– f5 is the penalty item of the dissolution rules, g5(
) is a function of the set
,
β is a penalty factor, and Rdis ∈ {0, 1}, where “0” and “1” mean that there is
less than and at least two dissolution rules in one set Ri (i = 0, 1, . . . ,m − 1),
respectively.

– f6 is the penalty item of the redundant rules, g6(
) is a function of the set
, γ

is a penalty factor, and Nred is the number of the redundant rules in the set
.
– f7 is the penalty item of the halting P system, g7(
) is a function of the set
, ξ

is a penalty factor, and H ∈ {0, 1}, where “0” and “1” mean that the candidate P
system is a non-halting and halting one, respectively.

In Eqs. (3.7)–(3.12), the purpose of introduction of the penalty factors δ, α, β, γ ,
and ξ is to reject the unexpected candidate P systems, and therefore, the five factors
can be assigned as a larger value as possible, for example, δ=α=β=ξ=999999, while
the purpose of the use of the two factors η and γ is to remove those candidate P
systems having redundant objects or evolution rules as possible as we could, and
accordingly, they can be prescribed as smaller values. They are empirically set to 1
and 1, respectively.

3. Evolution of P Systems
The genetic algorithm with the permutation encoding technique (GAPE) in JGAP
[43] is used to evolve a family of P systems toward a successful one. GAPE uses
the elitist selection strategy, where 20% of individuals with the best fitness values
are selected to pass to the next generation, being free of the crossover and mutation
operators. In GAPE, one-point crossover and uniform mutation are used.

It is worth noting that the evolutionary operators might produce the P systems
violating the constraints in (3.7)–(3.12) including infeasible membrane structures μ,
more than one dissolution rules in one set Ri (i = 0, 1, . . . ,m − 1), the redundancy
of objects in the initial multiset vector W , the redundancy of evolution rules in the
set
, the nondeterministic evolution rule pairs, and the halting P system due to
evolution rules.

46 3 Applications of Software Implementations of P Systems

Fig. 3.5 Pseudocode
algorithm of PPGA. From
[74]

4. Algorithmic Elaboration
This subsection summarizes the design method PPGA as shown in Fig. 3.5, where
each step is described as follows:

1. This step consists of two processes: the setting of initial parameter values and the
generation of initial population. The former process is used to set initial values
for NV Nwi , NRi , LRi , i = 0, 1, . . . ,m − 1, Nl , Nr , population size NP , Pc and
Pm, δ, η, α, β, γ , ξ , the maximal number MaxGen of evolutionary generations
as the termination condition of GAPE, and the maximal number MaxStep of
simulation steps for a P system in the P-Lingua software. The latter process
produces a population with NP individuals, each of which corresponds to a
candidate P system.

2. Each individual is evaluated by using Algorithm 1 and, thus, obtains its fitness.
In Algorithm 1, the values of the variables, Mf , Nobs , Nnon, Rdis , Nred , and H ,
depend on the following constraint recognition techniques:
(a) Infeasible P systems due to infeasible membrane structures: A P system is

an infeasible one if it satisfies one of the three conditions: (i) The parent
membrane of any one membrane is itself, (ii) the system has not the skin
membrane, and (iii) two or more membranes form a parent membrane loop.
For example, membrane 1 is the parent of membrane 2, membrane 2 is the
parent of membrane 3, and membrane 3 is the parent of membrane 1.

(b) Redundant objects: The objects in W do not appear in the left-hand side u of
all evolution rules in
.

(c) Nondeterministic P systems have two cases: (i) Two or more evolution rules
in Ri (i = 0, 1, . . . ,m − 1) have the identical left-hand side u. (ii) Two or
more evolution rules in Ri (i = 0, 1, . . . ,m − 1) can be applied within one
transition. That is, the left-hand side objects of two or more evolution rules
in Ri (i = 0, 1, . . . ,m − 1) can be provided in the current configuration.

3.2 Automatic Design of Cell-Like P Systems with P-Lingua 47

(d) Infeasible P systems due to dissolution rules: A P system is an infeasible
one if there are two or more dissolution rules in Ri (i = 0, 1, . . . ,m − 1)
according to the codes describing the rule types.

(e) Redundant evolution rules: An evolution rule is redundant in two cases: (i) if
the evolution rule in which all the objects in the left-hand side do not appear
both in the initial multiset and in the right-hand side of any one rule in the
membrane and (ii) if the evolution rule in which the objects in the left-hand
side are identical with those in the right-hand side, and they are neither the
expected ones nor appear in the left-hand side of any rule in the membrane.

(f) Halting P systems: If there is not any iterative loop consisting of one or
more evolution rules, the system is a halting one. An iterative loop may
be one of the following cases: (i) One evolution rule forms an iterative
loop. That is, if one evolution rule lef tObj → rightObj has the feature
lef tObj ⊂ rightObj , the rule forms an iterative loop. (ii) Several evolution
rules form an iterative loop. If Nil evolution rules, lef tObj1 → rightObj1,
lef tObj2 → rightObj2, lef tObj3 → rightObj3, . . . , lef tObjNil−1 →
rightObjNil−1 , lef tObjNil → rightObjNil , have the features, lef tObj2 ⊆
rightObj1, lef tObj3 ⊆ rightObj2, . . ., lef tObjNil ⊆ rightObjNil−1 ,
lef tObj1 ⊆ rightObjNil , the rules form an iterative loop.

3. The best solution and its corresponding P system are stored.
4. The elitist selection strategy described is considered.
5. The one-point crossover operator is used and depicted.
6. The uniform mutation operator is employed and illustrated.

Algorithm 1: Evaluation method
Require: A candidate P system
1: f ←0
2: Compute Mf , Nobs , Nnon, Rdis , Nred , H

3: if ((Mf > 0)‖(Nnon > 0)‖(Rdis > 0)) then
4: f ← f2 + f4 + f5
5: else
6: Ns ←0
7: while (H < 1)∧(Ns ≤ MaxStep) do
8: Evolve the P system for one step
9: Ns ← Ns + 1

10: f ← f + f1
11: end while
12: if (H > 0) then
13: f ← f7
14: end if
15: if (f = 0) then
16: f ← f + f3 + f6
17: end if
18: end if
Ensure: Fitness f

48 3 Applications of Software Implementations of P Systems

Table 3.1 Successful P
systems

No μ W

1 [[]1[]2[]3]0

w0 = λ

w1 = b

w2 = a

w3 = a

[b → bs]0

[a → ba]0

[b]1 → ab

[a]2 → ab

[a]3 → sb

2 [[[]1]2[]3]0

w0 = λ

w1 = a

w2 = a

w3 = a

[b → bs]0

[a → b2]0

[a]1 → [a]1a

[a]2 → sb

[a]3 → b2

3 [[]1[]2[]3]0

w0 = λ

w1 = a

w2 = a

w3 = b

[b → bs]0

[a → ab]0

[a]1 → ab

[a]2 → sb

[a]3 → ab

4 [[[]1[]3]2]0

w0 = λ

w1 = a

w2 = b

w3 = a

[b → as]0

[a → sa]0

[a]1 → [a]1a

[b]2 → sb

[a]3 → [a]3a

5 [[]1[]2[]3]0

w0 = λ

w1 = b

w2 = b

w3 = a

[b → sa]0

[a → sa]0

[b]1 → [b]1a

[b]2 → [b]2a

[a]3 → sb

The design of the cell-like P system �ex for fulfilling the computation n2 is
discussed to show the results. The parameters, Pm, Pc, NP , MaxGen, η, and γ ,
are set to 0.1, 0.8, 20, 200, 1, and 1, respectively. Next, 5000 independent runs of
the design experiment are performed, and it obtains the success rate 100%. The
introduced design approach obtains 2930 different variants of cell-like P systems
�ex for successfully fulfilling the computation of n2. Table 3.1 lists only five
successful P systems. The complete list of the 1936 successful P systems can refer
to [74]. Due to the randomness of the selection of membrane structure, objects, and
rules, multiple solutions for the same computational task can be obtained on the
identical condition to provide multiple possibilities to construct different complex
membrane systems.

3.3 Automatic Design of Spiking Neural P Systems with P-Lingua 49

3.3 Automatic Design of Spiking Neural P Systems
with P-Lingua

In this section, an automatic design method based on genetic algorithms for evolving
SN P systems for generating natural numbers within P-Lingua [20, 21, 54, 67] is
discussed.

An SN P system consists of five main elements: the amount of neurons in the
system, the synapse connections between neurons, the amount of rules within each
neuron, the regular expressions which define each rule, and the initial number of
spikes within each neuron.

A, SN P system [30] of degree m ≥ 1 is a tuple � = (O, σ1, · · · , σm, syn, io),
where:

(1) O = {a} is the singleton alphabet (a is called spike);
(2) σ1, · · · , σm are neurons, identified by pairs

σi = (ni, Ri) , 1 ≤ i ≤ m (3.13)

where:
(a) ni ≥ 0 is the initial number of spikes contained in σi .
(b) Ri is a finite set of rules of the following two forms:

(i) E
/
ac → a; d where E is a regular expression over O , and c ≥ 1, d ≥

0;
(ii) as → λ, for some s ≥ 1, with the restriction that for each rule

E
/
ac → a; d of type (i) from Ri , we have as /∈ L (E);

(3) syn ⊆ {1, . . .m} × {1, . . .m} with (i, i) /∈ syn for i ∈ {1, . . .m} (synapses
between neurons);

(4) i ∈ {1, . . .m} indicates the output neuron (i.e., σio is the output neuron).

The firing and forgetting rules of an SN P system are described and discussed
in detail in [30, 73]. The distinguishing feature of SN P system is that the sequence
of configurations can produce an associated spike train. If the output neuron spikes,
then we have 1, and otherwise, we have 0. Hence, the spike train can be represented
by the sequence of ones and zeros.

In order to automatically generate an SN P system, we should consider each
aspect in an SN P system. The number of neurons in system, the synapse connec-
tions between neurons, the number of rules within each neurons, and the number
of spikes within each neuron, according to specific task, are previously determined,
but the regular expressions which define each rule and the delays on each rule are
randomly generated in an SN P system. Then we can generate a population of SN P
systems by same method. The aim is to use genetic algorithms to get an optimal SN
P system by appropriately evolving an SN P system. The steps are listed as follows:

Step 1: First of all, we define a population of SN P systems � = {�i}i∈H , where
H is a subset of natural numbers, and each SN P system �i of degree m ≥ 1 is

50 3 Applications of Software Implementations of P Systems

described as follows:

�i = (O, σ1, · · · , σm, syn, io) (3.14)

where

(1) O = {a} is a predefined singleton alphabet;
(2) σ1, · · · , σm is the neurons from 1 to m.

σi = (ni , Ri) , 1 ≤ i ≤ m (3.15)

where:
(a) ni ≥ 0 is the initial number of spikes contained in σi .
(b) Ri is a finite set of rules of the following two forms:

(i) Spike transfer rules: E
/
ac → a; d . When fulfilling spike transfer

rules and d = 0, a spike in the neuron should leave along the
synapses and travel to the neurons connected to the neuron where
the rule is applied.

(ii) Spike forgetting rules: as → λ. When performing spike forgetting
rules, s spikes are consumed.

Step 2: Determine fitness of each individual in the population.
Step 3: Reserve the individual with higher fitness from the population.
Step 4: Select parents from the population and produce offsprings.
Step 5: Randomly perform mutation.
Step 6: Check whether any individual meets the requirements. If so, terminate the

algorithm; otherwise, continue the algorithm.

The pseudocode algorithm of automatic design method is shown in Fig. 3.6.
More explanations for each step are provided as follows:

Step 1: Input required parameters, which include m, ni , syn, io, H ,
MaxSteps, StepRepetition, MutationRate, MinF itness, MaxGeneration,
BestF itness, and ExpectedSet ,
where:

(a) m, ni , syn, and io represent the number of neurons in each P system, the
number of spikes in each neuron, the synapse connections between each
neuron, and the output neurons, respectively.

(b) H is population size.
(c) MaxSteps represents the maximum steps that each network will take.
(d) StepRepetition is the amount of repetitions each network will undergo to

generate an output list.
(e) MutationRate is the percentage chance for mutation.
(f) MinF itness represents minimal fitness.
(g) MaxGeneration is the max amount of generations.

3.3 Automatic Design of Spiking Neural P Systems with P-Lingua 51

Require: Initial membrane construction and objects and genetic algorithm
1: =1
2: while (≤) do
3: Generating random
4: Caculating fitness value F()
5: if (() ≤ | | () ==) then
6: Generating new and replacing old
7: end if
8: = + 1
9: end while
10: while (≤) do
11: Caculating fitness value each SNPS
12: Sorting population accordding to set F()
13: =1
14: while (≤) do
15: if (≤ && ≤) then
16: [] = []
17: if (F()) then
18: =
19: end if
20: else
21: Parent1=ChooseParent()
22: Parent2=ChooseParent()
23: Child=Crossover(Parent1,Parent2)
24: Child=Mutate(Child)
25: [] =
26: end if
27: if (() == 0 | | () ==) then
28: () = 0
29: else
30: () = ()
31: end if
32: end while
33: = + 1
34: end while
Ensure: Spiking neural P system

Fig. 3.6 Automatic design algorithm of SN P systems

(h) BestF itness represents the best fitness through generations.
(i) ExpectedSet is the expected set.

Step 2: A population of SN P systems and their fitness values are calculated.
F(SNPSi) and F(SNPS) represent the fitness value of the ith SN P system
and the fitness set of all SN P systems in the population, respectively. Check
whether SN P systems are correct according to the fitness function value of each
SN P system in the population.

Step 3: The genetic algorithm is used to automatically design each SN P system
in the population. Elitism represents the number of reserving a certain number
of better SN P systems in the population. Parent1 and Parent2 are two
randomly selected SN P system with larger fitness values. Crossover() and
Mutate() represent the crossover and mutate functions, respectively.

Step 4: Output a new SN P system with high sensitivity and precision after
completion of automatic design.

The most important three steps in Fig. 3.6 including building a population of SN
P systems, designing a fitness function, and setting elitism, crossover, and mutation
are detailed in the following description.

52 3 Applications of Software Implementations of P Systems

1. Building a Population of SN P Systems
An SN P system includes the number of neurons, the synapse connections between
neurons, the number of rules within each neuron, the regular expressions which
define each rule, and the number of spikes in each neuron. An SN P system
represents an individual (DNA, SNPSi) in the population. Here, an individual is
also thought of as a set, which contains above five aspects. As a result, the building
of a population of SN P systems can be divided into the following steps.

Step 1: Generate a random individual, where rules are randomly generated and
other elements are predefined.

Step 2: Repeat the first step until all the individuals(SNPSi) in the population
are produced.

Step 3: Check whether each individual is correct.
Step 4: Delete and replace individuals with incorrect and low fitness values.
Step 5: Save the initial population.

With the initial population, it is necessary to have an appropriate evaluation
function to guide the population to evolve to the optimal solution. Therefore, it
is worth noting that the fitness function plays an important role throughout the
automatic design process. We describe the details of the fitness function as follows.

2. Design of Fitness Function
Here, we discuss how to design the fitness function, which is used to calculate the
sensitivity and the precision of SN P systems. There are two data sets after the
establishment of the SN P systems. One is a real output set OutputSet . Another is
given expected set ExpectedSet . OutputSet represents generating number set of
repeating execution of SN P systems for a specifical task. ExpectedSet is expected
number set for a special task. So a fitness function is established by comparing
elements in the real output set and the expected set. The pseudocode of the fitness
function is shown in Fig. 3.7.

The category of an element in the above two sets is as follows:

(1) The output set is compared with the expected set, and for every number that is
in both of the sets, the true positive count tp increases.

(2) The output set is compared with the expected set, and for every number that is
in the output set but not in the target set, the false positive count fp increases.

(3) The output set is compared with the expected set, and for every number that is
not in the output set but is in the target set, the false negative count f n increases.

(4) The true negative values, those that are not in the output set and not in the target
set, are not counted as they are not needed for this design.

3. Elitism, Crossover, and Mutations
An individual consists of genes, which in the case of this section are represented by
an SN P system. The crossover function allows the exchange of genes between two

3.3 Automatic Design of Spiking Neural P Systems with P-Lingua 53

Require: , , = 0, = 0, = 0
1: Initialization settings
2: Merging elements from and into . The length of

is
3: = 1
4: while (≤) do
5: = + 1
6: if () ∈ then
7: if () ∈ then
8: = + 1
9: Turn to Step 21
10: else
11: = + 1
12: Turn to Step 21
13: end if
14: else
15: if () ∈ then
16: = + 1
17: Turn to Step 21
18: else
19: Turn to Step 21
20: end if
21: end if
22: if then
23: Turn to Step 26
24: else
25: Turn to Step 4
26: end if
27: = (2×

2× + +) ×
28: end while
Ensure: Return

Fig. 3.7 The design of the fitness function

parents, creating a new child individual with the characteristics of the parents that
were used. After the crossover, there is also a chance for the new child individual
to mutate, changing one of the rules in the generated network at random. To
ensure diversity in the population, a certain number of individuals are added to the
population pool at each generation.

Except for crossover and mutation, this algorithm also allows the use of elitism
selection. This feature allows a selected number of best SN P systems to be
introduced with a new generation.

The detailed procedure of elitism, crossover, and mutation are described as
follows:

Elitism: Elitism, the best optimal individuals in the current population, is set to
1 in the method of the automatic design, thatis, an SN P system with the high
sensitivity and precision can be saved to new population of each generation.

Crossover: The crossover is mainly composed of two steps, one is to choose the
parent individuals (parents with a higher fitness will have a higher chance of
reproducing), and the other is to exchange the corresponding rules in the two
parent individuals.

54 3 Applications of Software Implementations of P Systems

Require: = 0, , = 0,
= 0

1: = 1
2: while (≤) do
3: = + 1
4: if ≤ then
5: =
6: + +
7: else
8: = 0
9: end if
10: if ≥ 10 then
11: = (0, 10)
12: else
13: = (10, 20)
14: end if
15: end while
Ensure: Return

Fig. 3.8 Dynamic adjustment procedure of mutation probability

Fig. 3.9 A SN P system generating all natural numbers

Mutations: After getting new sub-individuals from the crossover of two parent
individuals, new sub-individuals are mutated and added to new population, where
MutationRate is dynamically adjusted according to the detailed problem. The
pseudocode algorithm of dynamic adjustment is described in Fig. 3.8.

The automatic design method is further expounded by considering an SN P
system generating all even natural numbers.

An SN P system generating all natural numbers mainly contains four elements:
four neurons, ten synapse connections between neurons, eight rules, and two starting
spikes each neuron. Out of four neurons, three neurons are general neurons, and
remaining one is an output neuron. The specific sketch of an SN P system generating
all natural numbers is shown in Fig. 3.9.

To illustrate the performance of the design method when simulating an SN P
system generating all natural numbers, we make a dynamic behavior analysis from
the fitness function value of the experimental testing process.

3.4 Modelling Real Ecosystemswith MeCoSim 55

The average fitness value across ten runs is denoted by Fav . A larger value of Fav

represents a smaller difference between the expected set and the output set.

Fav =
10∑

j=1

n∑

i=1

F(SNPSi) (3.16)

where F(SNPSi) represents the fitness value of the ith SN P systems, n is the
number of SN P systems in the population, and j represents the j th run.

In the process of simulated evolution, the design parameters are set as follows:
expected output set for the natural numbers system, 1, 2, 3, 4, 5, 6, 7, 8, 9; the
population size, 4; maximum number of steps per system, 50; maximum number of
repeats per system, 50; and maximum number of generations, 200.

We obtain the change curves of the average fitness value of static and dynamic
mutation probabilities in Fig. 3.10, respectively. As can be seen from Fig. 3.11, the
results of the correct natural data output are produced by a real natural SNP system
and is the same as the expected set.

3.4 Modelling Real Ecosystemswith MeCoSim

Membrane computing was not conceived in 1998 as a computational modelling
framework for complex systems. It was far from the initial studies proposing a
novel bioinspired computing model, with roots in formal languages theory and
computation theory. The computational power and efficiency of these devices were
studied in order to provide alternative paths to traditional computers based on Turing
machines, proving the universality of different types of P systems. Besides, these
new machines presented desirable properties in terms of the inherent parallelism and
the promising effects derived from mechanisms as the cellular division, doubling the
computation resources at any given step, trading space for time in order for these
systems to present a great ability to solve NP-complete problems in reasonable time.
Therefore, nothing in this new paradigm made its founder imagine that the research
lines opened could diverge so significantly as it started to happen a few years after
the first technical report published in 1998.

3.4.1 Problem Description

As a general idea, the primary intent we pursue is problem-solving through
membrane systems. Thus, given a certain abstract problem (as 3-COL problem,
deciding if a coloring with three colors is possible for a given graph), a membrane
system is designed to solve the problem, according to the rules satisfying the
constraint of the specific computing model chosen among all the possible types
and variants of P systems. Then, the design is translated into a P-Lingua format
specification and saved in a file with .pli extension. For instance, if the solution is

56 3 Applications of Software Implementations of P Systems

Fi
g
.
3
.1
0

T
he

ch
an

ge
cu

rv
es

of
th

e
av

er
ag

e
fit

ne
ss

va
lu

es
an

d
th

e
m

ax
im

um
fit

ne
ss

va
lu

es

3.4 Modelling Real Ecosystemswith MeCoSim 57

Fig. 3.11 The output set of SN P systems generating all natural numbers

using a cell-like P system with active membranes, the following elements should
be given: the membrane structure, μ, the initial multisets for each region, and their
corresponding sets of rules.

A file as the one described above could specify a concrete P system, but in our
approach, we generally provide solutions for an abstract problem, through a family
of P systems (let us denote it by �(< pars >)), subject to certain parameters.
Thus, for instance, if a solution �(< n >) for 3-COL problem is provided (with
the parameter n representing the number of nodes in the graph, getting possibly
involved in the sets of rules, alphabet, initial multisets, and membrane structure),
the P-Lingua file will generically define the structure applicable to every P system
member of the family. Thus, for each particular value of the parameters involved
(n in the example), a different P system will be instantiated. Then, for a given
member of the family (e.g., the P system �(5), solving 3-COL with n = 5, i.e.,
graphs with five nodes), many different possible inputs could be provided (in the
example, one for each possible graph with five nodes, determined by its specific
nodes and edges). In our approach, P-Lingua files should specify the solution for
the abstract problem, while the introduction of the specific parameter values to
instantiate the member of the family and the input to accompany the problem with
the particular input is performed through MeCoSim layer. This imposes a clear
separation between the abstract problem solved (P-Lingua specification) and the
virtual experimentation with each specific instance and input, constituting what is
called a scenario (MeCoSim [42, 55]).

For sure, P-Lingua files accept solutions providing non-parameterized models,
or models whose parameters are also hard-coded in the same files, but this would

58 3 Applications of Software Implementations of P Systems

break the proper separation of the responsibilities of each tool and consequently the
adequate separation of the roles involved (P system designer, solving the general
problem, and end users, running their virtual experiments through the provision
of the particular data of each scenario of interest). The approach proposed is even
more interesting when we are dealing with models representing real-life problems,
for instance, ecology, where the profiles of people in charge of P system design
and those managing the actual ecosystem are more clearly identified, in such a
way that their background, knowledge, and main focus are generally different,
being the former ones interested in designing solutions based on their computing
models, taking advantage of their novel theories, and the latter ones interested in
managing their ecosystems, getting abstracted from internal details of the models
once they have experimentally validated with the experts in the models that they
seem to behave properly according to their well-known scenarios, and therefore, the
tools provided are useful for their virtual experiments aiding them in their decision-
making process to manage their populations.

All in all, MeCoSim raised with this twofold intention now clearer with the roles
described above: (1) providing a high-level visual environment to design, debug,
simulate, analyze, and visualize models based on P systems and (2) putting at
disposal a simulation environment for end users to introduce different instances of
the problems and run their experiments according to their final needs.

The needs leading the such development were first detected in the context of eco-
logical modelling and simulation of certain real ecosystems, as the ones described in
Sect. 3.4. The managers of the ecosystems under study needed some tools to predict
the evolution of the population of certain species in the corresponding systems (for
different purposes, such as endangered species conservation or invasive species
control). Initially, certain software applications were developed (Ecosim 1.0
family (see Refs. [20,54]) to allow the introduction of different initial scenarios and
visualize specific outputs, showing certain elements of the ecosystems. The effort
was significant to develop each of these specific-purpose applications handling
models of different ecosystems (in tasks from the analysis and design to the pure
development).

Then, after those experiences, a number of common needs were identified.
Investing that amount of effort for each possible future model designed was
unfeasible, so a new approach emerged requiring the development of a software
environment providing the generic mechanisms not only to handle P system-based
models but also to allow the guided delivery of custom applications for each model
designed, hence adapted for each end user problem addressed. With this view,
MeCoSim environment would act as a meta-simulation app, allowing the definition
of a customized simulation app for each problem, with the specific inputs and
outputs required by that problem. Just to summarize, the definition of such custom
user interfaces would imply the following mechanisms:

1. Definition of input tables where the user could introduce the external data of each
particular scenario (possibly including both data involved in parameter values
generation and input data for the specific instance for the experiment to conduct)

3.5 Robot Motion Planning 59

2. Calculation of parameters and inputs of the P system, from the data of the
instance just introduced

3. Definition of the output tables and charts, to show the end users requested
information for their target application (depending on their user view, but
designed by the experts in the underlying P systems, configuring which specific
elements of the computation should be extracted and how)

4. Specification of the arrangement of all these inputs and outputs in the custom
app.

Further details of this approach are provided in Refs. [42, 55, 67]
Among all the possible practical applications emerged along the years in

membrane computing, probably one of the most successful ones is the provision of
a very useful methodology [13] for ecologists interested in certain problems related
with real ecosystems, involving a number of species, in competition or cooperation,
with a number of processes taking place simultaneously in the ecosystem and many
biotic and abiotic factors and parameters playing different roles in the interactions.

In what follows, we list in Tables 3.2, 3.3, and 3.4 the main models created
following the approach proposed of P systems as modelling framework and P-
Lingua and MeCoSim as the tools for virtual experimentation.

3.5 Robot Motion Planning

The problem of motion planning is a crucially important problem in mobile robotics.
The problem consists of finding a sequence of motion commands to move a robot
in a complex environment from a starting point to a goal area while avoiding
static and dynamic obstacles. The problem is even more complex if kinematic
and nonholonomic constraints are considered. This problem has been studied from
several years ago [35, 59], proving it is PSPACE-hard when the positions of
obstacles are known. Several approximate algorithms have been proposed in the
literature [19, 64]. A special mention should be given to a category of algorithms
to build rapidly exploring random trees (RRTs) [36]. They are based on the
randomized exploration of the configuration space by building a tree where nodes
represent reachable points in the configuration space, and edges represent the
corresponding transitions. In particular, the RRT* algorithm [33] is able to build
an RRT whose paths asymptotically converge in time of computation to optimal
solutions with respect to a predefined cost function. One of the main challenges by
applying motion planning algorithms in robotics is the parallelization in software
or hardware of such algorithms in order to accelerate them. For example, in [2],
a GPU-based version of the RRT algorithm is presented. One alternative is to
model the algorithms over an inherently parallel model of computation and then
apply software/hardware simulators. With this idea, membrane computing has been
used to design bioinspired parallel RRT models that can be efficiently simulated
by means of parallel software/hardware architectures such as OpenMP [46] and
CUDA [45]. The first approximation was introduced in [56] by using an extension

60 3 Applications of Software Implementations of P Systems

Table 3.2 Ecosystems models based on P systems, simulated with EcoSim/MeCoSim (I)

Reference Case study Comments

M. Cardona et al.
2008 [4]

Bearded Vulture
The cliff-nesting and
territorial mountains in
Catalan Pyrenees
(Northeastern Spain)

Five wild and domestic ungulates are
included as carrion (prey) species.

M. Cardona et al.
2008 [3]

Bearded Vulture
Catalan Pyrenees(NE)

Similar structure to [4]

M. Cardona et al.
2010 [5]

Scavenger Birds
Catalan Pyrenees(NE)

Nomadic and non-nomadic species, and
density regulation. Thirteen species,
including two scavenger birds in
competition with bearded vulture

M.A. Colomer
et al. 2010 [10]

Pyrenean Chamois
Catalan Pyrenees(NE)

Four influencing factors: introduced disease
such as pestivirus infection, climate change,
hunting, and migrations among areas

M.A. Colomer
et al. 2010 [8]

Bearded Vulture
The cliff-nesting and
territorial mountains in
Catalan Pyrenees (NE Spain)

Same model presented in [10]

M. Cardona et al.
2011 [6]

Scavengers/Zebra mussel
Catalan Pyrenees (NE Spain)
and a fluvial reservoir
(Riba-roja-Ebro river, NE
Spain)

For the scavengers, a simplified version of
[4]. For mussels, focus on temperature and
its effect on reproduction, fixation of the
mussel to the substrate, movement of larvae,
and density regulations.

M.A. Colomer
et al. 2011 [11]

Scavenger Birds
Catalan Pyrenees /Pyrenean
and Pre-pyrenean mountains.

Species move among areas if lack of
feeding resources in origin region. The
model studied: (a) 13 species, including
three avian scavengers (predators), six wild
ungulates, and four domestic ungulates
(preys); (b) interactions among species; (c)
communication among areas; (d) load
capacity regulation

M.A. Colomer
et al. 2011 [9]

Plant Communities
(sub)Alpine(NE Spain)

Model with climatic variability and
orographic factors. Impact of the plant
community module on population dynamics

A. Margalida
et al. 2011 [39]

Scavenger Birds
Catalan Pyrenees(NE)

Wild ungulates considered due to limitation
of domestic carcasses. It causes an impact
on the biomass. When only considering
wild ungulates, the ecosystem cannot offer
enough food for predators.

M.A. Colomer
et al. 2012 [12]

A carnivore that predates
on ungulates and five
ungulates
Catalan Pyrenees(NE)

Impacts of environment factors such as
weather, orography, and soil conditions on
carnivore size

A. Margalida
et al. 2012 [38]

European vultures as the
Bearded vulture, Egyptian
vulture, and Cinereous
vulture
10 municipalities in
Catalonia, Northern Spain.

Food source: four scenarios of food
availability. Taking 10 areas and 4 avian
scavengers as research object. Impact of
climate variations, such as seasons (summer
and winter), food shortage, density
regulation, and changes in species habitats
(insufficient resources)

3.5 Robot Motion Planning 61

Table 3.3 Ecosystems models based on P systems, simulated with EcoSim/MeCoSim (II)

Reference Case study Comments

M.A. Colomer
et al. 2013 [13]

Birds, cats, and rats
General model

Prey-predator. Natural mortality, intraguild
predation, and mesopredator release effect on
long-lived prey

M.A. Colomer
et al. 2014 [14]

Zebra mussel
Reservoir of Ribarroja

Twenty membranes used for 20 weeks first
reproductive cycle, 16 for the weeks of
second reproductive cycle, and 2 membranes
to handle regulation and mortality

M.A. Colomer
et al. 2014 [15]

Calotriton asper (newt)
Pi Valley (Noth Spain) water
streams

Reproduction, mortality, and displacements
in the terrestrial environment, possibly
colonizing new streams

A. Margalida
et al. 2015 [40]

Avian scavengers
Pi Valley (Noth Spain) water
streams

Impact of removal scenarios on population
viability

A. Cortés-
Avizanda et al.
2015 [18]

Wild rabbits and avian
scavengers
Mediterranean landscapes

Reproduction, mortality, foraging behavior of
Egyptian vultures, wild rabbit carcass
biomass availability, maximum carrying
capacity, and carcass-sharing with
competitors

A. Kane et al.
2015 [32]

Gyps africanus
Hlane-Mlawula-Mbuluzi
reserve network in Swaziland

Carrion feeding, feeding needs analysis,
natural mortality, and many interacting
species

C. Fondevilla
et al. 2016 [24]

Land use and land cover
(plant communities)
Stubai Valley (Central Alps)

Grazing, foraging, natural mortality of animal
species, movement, and land use

Z. Huang, G.
Zhang, et al.
2017 [29]

Domestic Giant Panda
Chengdu Research Base of
Giant Panda Breeding
(GPBB), Wolong China
Conservation and Research
Center for Giant Panda
(CCRCGP)

The evolution process of the species:
RMF+Rescue module, where RMF is also
modified as RFM, FMR, or other forms,
showing the robustness of the system
independently on the order of the modules

H. Tian, G.
Zhang, et al.
2018 [65]

Domestic Giant Panda
Two regions:
GPBB/CCRCGP

The membrane structure is the same as in
[29], and the only difference is that release
module is added to the previous module, that
is, RMF+Rescue module+Release module.

A. Margalida,
et al. 2018 [41]

European avian scavengers
North Spain

Two periods (summer, breeding),
reproduction, mortality, feeding, and carrying
capacity. Forage in peripheral areas
depending on availability in origin

M.A. Colomer,
et al. 2019 [17]

Porcine Reproductive and
Respiratory Syndrome
Spain

Births, lactation, transmission, and fattening

M.A. Colomer,
et al. 2020 [16]

Porcine production
Vaccination against
Aujeszky’s disease
Spain

Based on [17]

Y. Duan, et al.
2020 [22]

Giant Panda in captivity
GPBB and related centers

Reproduction, mortality, feeding, and rescue
models

62 3 Applications of Software Implementations of P Systems

Table 3.4 Ecosystems models based on P systems, simulated with EcoSim/MeCoSim (III)

Reference Case study Comments

L. Valencia-
Cabrera, et al.
2013[68]

Gene regulatory networks
General model

The first membrane computing model applied
to reconstruct the behavior of logic networks
of species with PDP systems

L. Valencia-
Cabrera, et al.
2013[69]

Gene regulatory networks
Arabidopsis thaliana

Based on [68], P systems are used to
reproduce a logic gene network of (real)
Arabidopsis thaliana in order to regulate the
flowering processes.

M.A. Colomer
et al. 2014 [14]

Pandemics
General model

Different areas, neighborhoods, families, and
infections at home, in school, workplace,
among communities, etc.

E. Sánchez-
Karhunen, et al.
2019[61]

Market interactions Economic ecosystem modelled with PDP
systems

of the enzymatic numerical P systems (ENPS) [53] framework to simulate basic
RRT algorithms. In [57], the framework of ENPS was used for modelling the RRT
and RRT* algorithms. It is worth pointing out that in [57], no additional ingredients
to the ENPS framework were included. In consequence, the resulting models are
compatible with existent ENPS robot controllers [52,53,77]. In [57], two simulators
were also presented: The first one is based on OpenMP, and the second one is based
on CUDA. The current challenges in this research line are related to simulate on
hardware (FPGA) the models, to adapt the software/hardware simulators to actual
robots, and, finally, to study the inclusion of dynamic obstacles such as people
surrounding the robot.

3.5.1 Problem Definition

Let X ⊆ R
d be the configuration space of the robot, where d ∈ N, d ≥ 2.

Let Xobs be the obstacle space and Xf ree be the obstacle-free space such that
X = Xobs ∪Xf ree and Xobs ∩Xf ree = ∅. Let the initial configuration xinit ∈ Xf ree

and the goal region Xgoal � Xf ree. A motion planning problem is defined by
(Xf ree, xinit ,Xgoal).

A function σ : [0, 1] → R
d is called:

• Path, if it is continuous;
• Collision-free path, if it is a path and σ(τ) ∈ Xf ree, for all τ ∈ [0, 1];
• Feasible path, if it is a collision-free path, σ(0) = xinit and σ(1) ∈ Xgoal.

The motion planning problem can be solved in two ways:

1. Given a motion planning problem (Xf ree, xinit ,Xgoal), find a feasible path σ . If
no such path exists, return failure. This is called the feasible motion planning.

3.5 Robot Motion Planning 63

2. Given a motion planning problem (Xf ree, xinit ,Xgoal) and a cost function c :
σ → R, find a feasible path σ ∗ such that c(σ ∗) = min{c(σ) : σ isf easible}. If
no such path exists, return failure. This is called the optimal motion planning.

3.5.2 Path Planning for Mobile Robots

The path planning problem for mobile robots is a type of motion planning problem
in which a wheeled or legged robot is considered, and it should navigate from an
initial position to a goal region while avoiding obstacles. We can consider two types
of mobile robots: On the one hand, holonomic robots are those that can move in
any direction from its current state. On the other hand, nonholonomic robots have
constrained motions with respect to its current state. For example, a two-wheeled
robot is a nonholonomic robot that cannot follow a direction along its axes without
applying previously a rotation in-place motion.

For the sake of simplicity, we will consider holonomic robots in the rest of this
section. For this type of robots, the configuration space can be defined as X =
{(x, y)} ⊆ R

2 where (x, y) are the Cartesian coordinates of the center of the robot.
The radius of the robot is given by a constant R, and the sets Xobs and Xf ree are
given by an occupancy matrix.

3.5.3 Rapidly-Exploring Random Tree (RRT) Algorithm

The RRT algorithm [36] is a classical solution to the feasibility motion planning
problem. On the other hand, the RRT∗ algorithm [33] provides an approximate
solution to the optimal motion planning problem. The original algorithms are
sequential, but there are parallel versions as [2].

In [56] and [57], membrane computing has been used as computational frame-
work to model parallel versions of such algorithms, providing also simulators in
parallel architectures such as OpenMP and CUDA.

In general terms, the RRT algorithm gives a solution to the feasible motion
planning problem by making a random tree exploring the free-obstacle configuration
space. The nodes in the tree represent states in the obstacle-free space, and the
edges represent transitions or movements between such states. The root is located
in the initial robot position. The algorithm explores the space until a node in the
goal region is reached or until a number of iterations. For a holonomic robot,
nodes contain Cartesian coordinates in a 2D space, and edges represent straight-
line movements.

In Fig. 3.12, an example of the RRT is represented. It can be seen as the free
space is explored by the edges of the tree.

64 3 Applications of Software Implementations of P Systems

Fig. 3.12 A rapidly exploring random tree example

3.6 Conclusion

Following software implementation of P systems in Chap. 2, this chapter discussed
the use of P-Lingua and MeCoSim to fulfill some applications such as automatic
design of cell-like P systems and spiking neural P systems for performing specific
tasks, and modelling ecosystems and robot path planning. P-Lingua is a widely used
simulator for many variants of P systems such as cell- and tissue-like P systems,
spiking neural P systems, fuzzy reasoning spiking neural P systems, and kernel P
systems. MeCoSim is a visualization simulator based on P-Lingua. Both of them
are very useful to support the exploration of more and more applications with
automation, such as power system fault diagnosis, modelling giant panda ecosystem,
and mobile robot controller design.

References

1. A. Alhazov, C. Martín-Vide, L. Pan, Solving a PSPACE-complete problem by recognizing P
systems with restricted active membranes. Fundam. Inform. 58(2), 66–77 (2003)

2. J. Bialkowski, S. Karaman, E. Frazzoli, Massively parallelizing the RRT and the
RRT∗Massively parallelizing the RRT and the RRT∗, in Proceedings of the 2011 IEEE/RSJ
International Conference on Intelligent Robots and Systems, San Francisco, CA, 2011 (2011),
pp. 3513–3518. https://doi.org/10.1109/IROS.2011.6095053

3. M. Cardona, M.A. Colomer, M.J. Pérez-Jiménez, D. Sanuy, A. Margalida, A P System model-
ing an ecosystem related to the bearded vulture, in Proceedings of the Sixth Brainstorming
Week on Membrane Computing, Fénix Editora, ed. by D. Díaz-Pernil, C. Graciani, M.A.
Gutiérrez-Naranjo, Gh. Păun, I. Pérez-Hurtado, A. Riscos-Núñez (2008), pp. 51–66

4. M. Cardona, M.A. Colomer, M.J. Pérez-Jiménez, Modeling ecosystems using P systems: the
bearded vulture, a case study, in Membrane Computing (WMC 2008), ed. by D.W. Corne, P.
Frisco, Gh. Păun, G. Rozenberg, A. Salomaa. Lecture Notes in Computer Science, vol. 5391

https://doi.org/10.1109/IROS.2011.6095053

References 65

(2009), pp. 137–156. https://doi.org/10.1007/978-3-540-95885-7_11
5. M. Cardona, M.A. Colomer, A. Margalida, I. Pérez-Hurtado, M.J. Pérez-Jiménez, D. Sanuy,

A P system based model of an ecosystem of some scavenger birds, in Membrane Computing
(WMC 2009), ed. by Gh. Păun, M.J. Pérez-Jiménez, A. Riscos, G. Rozenberg, A. Salomaa.
Lecture Notes in Computer Science, vol. 5957 (2010), pp. 182–195. https://doi.org/978-3-
642-11467-0_14

6. M. Cardona, M.A. Colomer, A. Margalida, A. Palau, I. Pérez-Hurtado, M.J. Pérez-Jiménez,
D. Sanuy, A computational modeling for real ecosystems based on P systems. Nat. Comput.
10(1), 39–53 (2011). https://doi.org/10.1007/s11047-010-9191-3

7. Y. Chen, G. Zhang, T. Wang, X. Huang, Automatic design of a P system for basic arithmetic
operations. Chin. J. Electron. 23(2), 302–304 (2014)

8. M.A. Colomer, M.A. Martínez-del-Amor, I. Pérez-Hurtado, M.J. Pérez Jiménez, A uniform
framework for modeling based on P systems, in Proceedings of the 2010 IEEE Fifth
International Conference on Bio-Inspired Computing: Theories and Applications (BIC-TA
2010), Changsha, China, vol. 1 (IEEE Press, New York, 2010), pp. 616–621. https://doi.org/
10.1109/BICTA.2010.5645196

9. M.A. Colomer, C. Fondevilla, L. Valencia-Cabrera, A new P system to model the subalpine
and alpine plant communities, in Proceedings of the Ninth Brainstorming Week on Membrane
Computing, Fénix Editora, ed. by M.A. Martínez-del-Amor, Gh. Păun, I. Pérez-Hurtado, F.J.
Romero-Campero, L. Valencia-Cabrera (2011), pp. 91–112

10. M.A. Colomer, S. Lavín, I. Marco, I. Pérez-Hurtado, M.J. Pérez-Jiménez, D. Sanuy, E.
Serrano, L. Valencia-Cabrera, Modeling population growth of Pyrenean chamois (Rupicapra
p. pyrenaica) by using P-systems, in Membrane Computing (CMC 2010), ed. by M. Gheorghe,
T. Hinze, Gh. Păun, G. Rozenberg, A. Salomaa. Lecture Notes in Computer Science, vol. 6501
(2011), pp. 144–159. https://doi.org/10.1007/978-3-642-18123-8_13

11. M.A. Colomer, A. Margalida, D. Sanuy, M.J. Pérez-Jiménez, A bio-inspired computing model
as a new tool for modeling ecosystems: the avian scavengers as a case study. Ecol. Modell.
222(1), 33–47 (2011). https://doi.org/10.1016/j.ecolmodel.2010.09.012

12. M.A. Colomer, I. Pérez-Hurtado, M.J. Pérez-Jiménez, A. Riscos-Núñez, Comparing simulation
algorithms for multienvironment probabilistic P systems over a standard virtual ecosystem.
Nat. Comput. 11(3), 369–379 (2012). https://doi.org/10.1007/s11047-011-9289-2

13. M.A. Colomer, A. Margalida, M.J. Pérez-Jiménez, Population Dynamics P System (PDP)
models: a standardized protocol for describing and applying novel bio-inspired computing
tools. PloS One 8(4) (2013). https://doi.org/10.1371/journal.pone.0060698

14. M.A. Colomer, A. Margalida, L. Valencia-Cabrera, A. Palau, Application of a computational
model for complex fluvial ecosystems: the population dynamics of zebra mussel dreissena
polymorpha as a case study. Ecol. Complexity 20, 116–126 (2014). https://doi.org/10.1016/j.
ecocom.2014.09.006

15. M.A. Colomer, A. Montori, E. García, C. Fondevilla, Using a bioinspired model to determine
the extinction risk of Calotriton asper populations as a result of an increase in extreme rainfall
in a scenario of climatic change. Ecol. Modell. 281, 1–14 (2014). https://doi.org/10.1016/j.
ecolmodel.2014.02.018

16. M.A. Colomer, A. Margalida, L. Fraile, Improving the management procedures in farms
infected with the porcine reproductive and respiratory syndrome virus using PDP models. Sci.
Rep. 9, 9959 (2019). https://doi.org/10.1038/s41598-019-46339-w

17. M.A. Colomer, A. Margalida, L. Fraile, Vaccination is a suitable tool in the control of
Aujeszky’s disease outbreaks in pigs using a Population Dynamics P Systems model. Animals
10, 909 (2020). https://doi.org/10.3390/ani10050909

18. A. Cortés-Avizanda, M.A. Colomer, A. Margalida, O. Ceballos, J.A. Donázar, Modeling the
consequences of the demise and potential recovery of a keystone-species: wild rabbits and
avian scavengers in Mediterranean landscapes. Sci. Rep. 5, 17033 (2015). https://doi.org/10.
1038/srep17033

19. K. Daniel, A. Nash, S. Koenig, A. Felner, Theta∗: Any-Angle Path Planning on Grids. J. Artif.
Intell. Res. 39, 533–579 (2010). https://doi.org/10.1613/jair.2994

https://doi.org/10.1007/978-3-540-95885-7_11
https://doi.org/978-3-642-11467-0_14
https://doi.org/978-3-642-11467-0_14
https://doi.org/10.1007/s11047-010-9191-3
https://doi.org/10.1109/BICTA.2010.5645196
https://doi.org/10.1109/BICTA.2010.5645196
https://doi.org/10.1007/978-3-642-18123-8_13
https://doi.org/10.1016/j.ecolmodel.2010.09.012
https://doi.org/10.1007/s11047-011-9289-2
https://doi.org/10.1371/journal.pone.0060698
https://doi.org/10.1016/j.ecocom.2014.09.006
https://doi.org/10.1016/j.ecocom.2014.09.006
https://doi.org/10.1016/j.ecolmodel.2014.02.018
https://doi.org/10.1016/j.ecolmodel.2014.02.018
https://doi.org/10.1038/s41598-019-46339-w
https://doi.org/10.3390/ani10050909
https://doi.org/10.1038/srep17033
https://doi.org/10.1038/srep17033
https://doi.org/10.1613/jair.2994

66 3 Applications of Software Implementations of P Systems

20. D. Díaz-Pernil, I. Pérez-Hurtado, M.J. Pérez-Jiménez, A. Riscos-Núñez, A P-Lingua program-
ming environment for Membrane Computing, in Membrane Computing (WMC 2008), ed. by
D.W. Corne, P. Frisco, Gh. Păun, G. Rozenberg, A. Salomaa. Lecture Notes in Computer
Science, vol. 5391 (2009), pp. 187–203. https://doi.org/10.1007/978-3-540-95885-7_14

21. J. Dong, M. Stachowicz, G. Zhang, M. Cavaliere, H. Rong, P. Paul, Automatic design of
spiking neural P systems based on genetic algorithms. Int. J. Unconv. Comput. 16(2–3), 201–
216 (2021)

22. Y. Duang, H. Rong, D. Qi, L. Valencia-Cabrera, G. Zhang, M.J. Pérez-Jiménez, A review of
membrane computing models for complex ecosystems and a case study on a complex Giant
Panda system. Complexity 2020, Article ID 1312824, 26, (2020). https://doi.org/10.1155/2020/
1312824

23. G. Escuela, M.A. Gutiérrez-Naranjo, An application of genetic algorithms to Membrane
Computing, in Proceedings of the Eighth Brainstorming Week on Membrane Computing, Fénix
Editora, ed. by M.A. Martínez-del-Amor, Gh. Păun, I. Pérez-Hurtado, A. Riscos-Núñez (2010),
pp. 101–118

24. C. Fondevilla, M.A. Colomer, F. Fillat, U. Tappeiner, Using a new PDP modelling approach for
land-use and land-cover change predictions: a case study in the Stubai Valley (Central Alps).
Ecol. Modell. 322, 101–114 (2016). https://doi.org/10.1016/j.ecolmodel.2015.11.016

25. M. García-Quismondo, R. Gutiérrez-Escudero, M.A. Martínez-del-Amor, E. Orejuela-Pinedo,
I. Pérez-Hurtado, P-Lingua 2.0: a software framework for cell-like P systems. Int. J. Comput.
Commun. Control 4(3), 234–243 (2009). https://doi.org/10.15837/ijccc.2009.3.2431

26. M. García-Quismondo, R. Gutiérrez-Escudero, I. Pérez-Hurtado, M.J. Pérez-Jiménez, A.
Riscos-Núñez. An Overview of P-Lingua 2.0, in Membrane Computing (WMC 2009), ed.
by Gh. Păun, M.J. Pérez-Jiménez, A. Riscos, G. Rozenberg, A. Salomaa. Lecture Notes in
Computer Science, vol. 5957 (2010), pp. 264–288. https://doi.org/10.1007/978-3-642-11467-
0_20

27. J. He, J. Xiao, X. Liu, T. Wu, T. Song, A novel membrane-inspired algorithm for optimizing
solid waste transportation. Optik—Int. J. Light Electron Opt. 126(23), 3883–3888 (2015).
https://doi.org/10.1016/j.ijleo.2015.07.152

28. X. Huang, G. Zhang, H. Rong, F. Ipate, Evolutionary Design of a Simple Membrane System,
in Membrane Computing (CMC 2011), ed. by M. Gheorghe, Gh. Păun, G. Rozenberg, A.
Salomaa, S. Verlan. Lecture Notes in Computer Science, vol. 7184 (2012), pp. 203–214. https://
doi.org/10.1007/978-3-642-28024-5_14

29. Z. Huang, G. Zhang, D. Qi, H. Rong, M.J. Pérez-Jiménez, L. Valencia-Cabrera, Application
of probabilistic membrane systems to model giant panda population data. Comput. Syst. Appl.
26(8), 252–256 (2017). https://doi.org/10.15888/j.cnki.csa.005878 (in Chinese)

30. M. Ionescu, Gh. Păun, T. Yokomori, Spiking Neural P Systems. Fundam. Inform. 71(2–3),
279–308 (2006)

31. J. Juico, J. Silapan, F.G.C. Cabarle, I. Macababayao, R.T.A. De la Cruz. Evolving spiking
neural P systems with polarization. Philipp. Comput. J. (Special Issue on P systems) 14(2),
11–20 (2020)

32. A. Kane, A.L. Jackson, A. Monadjem, M.A. Colomer, A. Margalida, Carrion ecology
modelling for vulture conservation: are vulture restaurants needed to sustain the densest
breeding population of the African white-backed vulture? Anim. Conserv. 18(3), 279–286
(2015). https://doi.org/10.1111/acv.12169

33. S. Karaman, E. Frazzoli, Sampling-based algorithms for optimal motion planning. Int. J. Rob.
Res. 30(7), 846–894 (2011). https://doi.org/10.1177/0278364911406761

34. S. Kazarlis, A. Bakirtzis, V. Petridis, A genetic algorithm solution to the unit commitment
problem. IEEE Trans. Power Syst. 11(1), 83–92 (1996). https://doi.org/10.1109/59.485989

35. J. Latombe, Motion planning: a journey of robots, molecules, digital actors, and other artifacts.
Int. J. Rob. Res. 18(11), 1119–1128 (1999). https://doi.org/10.1177/02783649922067753

36. S. LaValle, Rapidly-exploring Random Trees: A New Tool for Path Planning, TR 98-11
(Computer Science Department, Iowa State University, Iowa, 1998). http://lavalle.pl/papers/
Lav98c.pdf

https://doi.org/10.1007/978-3-540-95885-7_14
https://doi.org/10.1155/2020/1312824
https://doi.org/10.1155/2020/1312824
https://doi.org/10.1016/j.ecolmodel.2015.11.016
https://doi.org/10.15837/ijccc.2009.3.2431
https://doi.org/10.1007/978-3-642-11467-0_20
https://doi.org/10.1007/978-3-642-11467-0_20
https://doi.org/10.1016/j.ijleo.2015.07.152
https://doi.org/10.1007/978-3-642-28024-5_14
https://doi.org/10.1007/978-3-642-28024-5_14
https://doi.org/10.15888/j.cnki.csa.005878
https://doi.org/10.1111/acv.12169
https://doi.org/10.1177/0278364911406761
https://doi.org/10.1109/59.485989
https://doi.org/10.1177/02783649922067753
http://lavalle.pl/papers/Lav98c.pdf
http://lavalle.pl/papers/Lav98c.pdf

References 67

37. X. Liu, J. Suo, S. Leung, J. Liu, X. Zeng, The power of time-free tissue P systems:
Attacking NP-complete problems. Neurocomputing 159, 151–156 (2015). https://doi.org/10.
1016/j.neucom.2015.01.072

38. A. Margalida, M.A. Colomer, Modelling the effects of sanitary policies on European vulture
conservation. Sci. Rep. 2, 753 (2012). https://doi.org/10.1038/srep00753

39. A. Margalida, M.A. Colomer, D. Sanuy, Can wild ungulate carcasses provide enough biomass
to maintain avian scavenger populations? An empirical assessment using a bio-inspired
computational model. PloS One 6(5), e20248 (2011). https://doi.org/10.1371/journal.pone.
0020248

40. A. Margalida, M.A. Colomer, D. Oro, R. Arlettaz, J.A. Donázar, Assessing the impact of
removal scenarios on population viability of a threatened, long-lived avian scavenger. Sci. Rep.
5, 16962 (2015). https://doi.org/10.1038/srep16962

41. A. Margalida, P. Oliva-Vidal, A. Llamas, M.A. Colomer, Bioinspired models for assessing the
importance of transhumance and transboundary management in the conservation of European
avian scavengers. Biol. Conserv. 228, 321–330 (2018). https://doi.org/10.1016/j.biocon.2018.
11.004

42. MeCoSim website. http://www.p-lingua.org/mecosim
43. K. Meffert, J. Meseguer, E.D. Mart, A. Meskauskas, J. Vos, N. Rotstan (last visited-July 2011),

JGAP—Java Genetic Algorithms and Genetic Programming Package (2011). http://jgap.sf.net
44. M. Mitchell, An Introduction to Genetic Algorithms (MIT Press, Cambridge, 1998)
45. NVIDIA CUDA Toolkit. https://developer.nvidia.com/cuda-toolkit. NVIDIA Corporation.

Online (accesed August 2019)
46. OpenMP specification, version 4.5. https://www.openmp.org/specifications. The OpenMP

ARB (Architecture Review Boards). Online (accessed August 2019)
47. Z. Ou, G. Zhang, T. Wang, X. Huang, Automatic design of cell-like P systems through tuning

membrane structures, initial objects and evolution rules. Int. J. Unconv. Comput. 9(5–6), 425–
443 (2013)

48. L. Pan, Gh. Păun, M.J. Pérez-Jiménez, Spiking neural P systems with neuron division and
budding. Sci. China Inf. Sci. 54(8), 1596–1607 (2011). https://doi.org/10.1007/s11432-011-
4303-y

49. Gh. Păun, Computing with membranes. J. Comput. Syst. Sci. 61(1), 108–143 (2000). https://
doi.org/10.1006/jcss.1999.1693 (first circulated at TUCS Research Report No. 208, November
1998. http://www.tucs.fi)

50. Gh. Păun, G. Rozenberg, A guide to membrane computing. Theor. Comput. Sci. 287, 73–100
(2002). https://doi.org/10.1016/S0304-3975(02)00136-6

51. Gh. Păun, G. Rozenberg, A. Salomaa, The Oxford Handbook of Membrane Computing (Oxford
University, Oxford, 2010)

52. A.B. Pavel, C. Buiu, Using enzymatic numerical P systems for modeling mobile robot
controllers. Nat. Comput. 11(3), 387–393 (2012). https://doi.org/10.1007/s11047-011-9286-
5

53. A.B. Pavel, O. Arsene, C. Buiu, Enzymatic numerical P systems: a new class of Membrane
Computing systems, in Proceedings of the 2010 IEEE Fifth International Conference on Bio-
Inspired Computing: Theories and Applications (BIC-TA), Changsha, 2010 (2010), pp. 1331–
1336. https://doi.org/10.1109/BICTA.2010.5645071

54. I. Pérez-Hurtado, Desarrollo y Aplicaciones de un Entorno de Programación para Com-
putación Celular: P-Lingua. Ph.D. Thesis (Universidad de Sevilla, Sevilla, 2010, in Spanish).
http://hdl.handle.net/11441/66241

55. I. Pérez-Hurtado, L. Valencia-Cabrera, M.J. Pérez-Jiménez, M.A. Colomer, A. Riscos-Núñez,
MeCoSim: a general purpose software tool for simulating biological phenomena by means
of P systems, in Proceedings of the IEEE Fifth International Conference on Bio-inspired
Computing: Theories and Applications (BIC-TA 2010), vol. I, ed. by K. Li, Z. Tang, R. Li, A.K.
Nagar, R. Thamburaj (2010), pp. 637–643. https://doi.org/10.1109/BICTA.2010.5645199

https://doi.org/10.1016/j.neucom.2015.01.072
https://doi.org/10.1016/j.neucom.2015.01.072
https://doi.org/10.1038/srep00753
https://doi.org/10.1371/journal.pone.0020248
https://doi.org/10.1371/journal.pone.0020248
https://doi.org/10.1038/srep16962
https://doi.org/10.1016/j.biocon.2018.11.004
https://doi.org/10.1016/j.biocon.2018.11.004
http://www.p-lingua.org/mecosim
http://jgap.sf.net
https://developer.nvidia.com/cuda-toolkit
https://www.openmp.org/specifications
https://doi.org/10.1007/s11432-011-4303-y
https://doi.org/10.1007/s11432-011-4303-y
https://doi.org/10.1006/jcss.1999.1693
https://doi.org/10.1006/jcss.1999.1693
http://www.tucs.fi
https://doi.org/10.1016/S0304-3975(02)00136-6
https://doi.org/10.1007/s11047-011-9286-5
https://doi.org/10.1007/s11047-011-9286-5
https://doi.org/10.1109/BICTA.2010.5645071
http://hdl.handle.net/11441/66241
https://doi.org/10.1109/BICTA.2010.5645199

68 3 Applications of Software Implementations of P Systems

56. I. Pérez-Hurtado, M.J. Pérez-Jiménez, G. Zhang, D. Orellana-Martín. Simulation of rapidly-
exploring random trees in Membrane Computing with P-lingua and automatic programming.
Int. J. Comput. Commun. Control 13(6), 1007–1031 (2019). https://doi.org/10.15837/ijccc.
2018.6.3370

57. I. Pérez-Hurtado, M.A. Martínez-del-Amor, G. Zhang, F. Neri, M.J. Pérez-Jiménez, A mem-
brane parallel rapidly-exploring random tree algorithm for robotic motion planning. Integr.
Comput.-Aided Eng. 27, 1–18 (2020). https://doi.org/10.3233/ICA-190616

58. P-Lingua website (last visited, July 2011). http://www.p-lingua.org
59. J.H. Reif, Complexity of the mover’s problem and generalizations, in Proceedings of the 20th

Annual Symposium on Foundations of Computer Science (SFCS 1979), San Juan, Puerto Rico,
USA (1979), pp. 421–427. https://doi.org/10.1109/SFCS.1979.10

60. S. Ronald, Robust encodings in genetic algorithms: a survey of encoding issues, in Proceedings
of 1997 IEEE International Conference on Evolutionary Computation (ICEC ’97), Indianapo-
lis, IN, USA, 1997 (1997), pp. 43–48. https://doi.org/10.1109/ICEC.1997.592265

61. E. Sánchez-Karhunen, L. Valencia-Cabrera, Modelling complex market interactions using PDP
systems. J. Membr. Comput. 1(1), 40–51 (2019). https://doi.org/10.1007/s41965-019-00008-z

62. T. Song, L.F. Macías-Ramos, L. Pan, M.J. Pérez-Jiménez, Time-free solution to SAT problem
using P systems with active membranes. Theor. Comput. Sci. 529, 61–68 (2014). https://doi.
org/10.1016/j.tcs.2013.11.014

63. T. Song, Q. Zou, X. Liu, X. Zeng, Asynchronous spiking neural P systems with rules on
synapses. Neurocomputing 151, 1439–1445 (2015). https://doi.org/10.1016/j.neucom.2014.10.
044

64. A. Stentz, The focussed D∗ algorithm for real-time replanning, in IJCAI95: Proceedings of the
14th International Joint Conference on Artificial Intelligence, vol. 2 (1995), pp. 1652–1659

65. H. Tian, G. Zhang, H. Rong, et al. Population model of giant panda ecosystem based on
population dynamics P system. J. Comput. Appl. 38(5), 1488–1493 (2018). https://doi.org/
10.11772/j.issn.1001-9081.2017102551 (in Chinese)

66. C. Tudose, R. Lefticaru, F. Ipate, Using genetic algorithms and model checking for P
systems automatic design, in Nature Inspired Cooperative Strategies for Optimization (NICSO
2011). Studies in Computational Intelligence, vol 387, ed. by D.A. Pelta, N. Krasnogor,
D. Dumitrescu, C. Chira, R. Lung (2012), pp. 285–302. https://doi.org/10.1007/978-3-642-
24094-2_20

67. L. Valencia-Cabrera, An Environment for Virtual Experimentation with Computational Models
Based on P Systems. Ph.D. Thesis (Universidad de Sevilla, Sevilla, 2015). http://hdl.handle.
net/11441/45362

68. L. Valencia-Cabrera, M. García-Quismondo, M.J. Pérez-Jiménez, Y. Su, H. Yu, L. Pan,
Modeling logic gene networks by means of probabilistic dynamic P systems. Int. J. Unconv.
Comput. 9(5–6), 445–464 (2013)

69. L. Valencia-Cabrera, M. García Quismondo, M.J. Pérez-Jiménez, Analysing gene networks
with PDP systems. Arabidopsis thailiana, a case study, in Proceedings of the Eleventh
Brainstorming Week on Membrane Computing, Fénix Editora, ed. by L. Valencia-Cabrera,
M. García-Quismondo, L.F. Macías-Ramos, M.A. Martínez-del-Amor, Gh. Păun, A. Riscos-
Núñez (2013), pp. 257–272

70. M. Yuan, G. Zhang, M.J. Pérez-Jiménez, T. Wang, Z. Huang, P systems based computing
polynomials: design and formal verification. Nat. Comput. 15, 591–596 (2016). https://doi.
org/10.1007/s11047-016-9577-y

71. G. Zhang, J. Cheng, M. Gheorghe, Q. Meng, A hybrid approach based on differential evolution
and tissue membrane systems for solving constrained manufacturing parameter optimization
problems. Appl. Soft Comput. 13(3), 1528–1542 (2013). https://doi.org/10.1016/j.asoc.2012.
05.032

72. G. Zhang, M. Gheorghe, L. Pan, M.J. Pérez-Jiménez, Evolutionary membrane computing: a
comprehensive survey and new results. Inf. Sci. 279, 528–551 (2014). https://doi.org/10.1016/
j.ins.2014.04.007

https://doi.org/10.15837/ijccc.2018.6.3370
https://doi.org/10.15837/ijccc.2018.6.3370
https://doi.org/10.3233/ICA-190616
http://www.p-lingua.org
https://doi.org/10.1109/SFCS.1979.10
https://doi.org/10.1109/ICEC.1997.592265
https://doi.org/10.1007/s41965-019-00008-z
https://doi.org/10.1016/j.tcs.2013.11.014
https://doi.org/10.1016/j.tcs.2013.11.014
https://doi.org/10.1016/j.neucom.2014.10.044
https://doi.org/10.1016/j.neucom.2014.10.044
https://doi.org/10.11772/j.issn.1001-9081.2017102551
https://doi.org/10.11772/j.issn.1001-9081.2017102551
https://doi.org/10.1007/978-3-642-24094-2_20
https://doi.org/10.1007/978-3-642-24094-2_20
http://hdl.handle.net/11441/45362
http://hdl.handle.net/11441/45362
https://doi.org/10.1007/s11047-016-9577-y
https://doi.org/10.1007/s11047-016-9577-y
https://doi.org/10.1016/j.asoc.2012.05.032
https://doi.org/10.1016/j.asoc.2012.05.032
https://doi.org/10.1016/j.ins.2014.04.007
https://doi.org/10.1016/j.ins.2014.04.007

References 69

73. G. Zhang, H. Rong, F. Neri, M.J. Pérez-Jiménez, An optimization spiking neural P system for
approximately solving combinatorial optimization problems. Int. J. Neural Syst. 24(5), 01–16
(2014). https://doi.org/10.1142/S0129065714400061

74. G. Zhang, H. Rong, Z. Ou, M.J. Pérez-Jiménez, M. Gheorghe, Automatic design of deter-
ministic and non-halting membrane systems by tuning syntactical ingredients. IEEE Trans.
Nanobiosci. 13(3), 363–371 (2014). https://doi.org/10.1109/TNB.2014.2341618

75. X. Zhang, Y. Liu, B. Luo, L. Pan, Computational power of tissue P systems for generating
control languages. Inf. Sci. 278, 285–297 (2014). https://doi.org/10.1016/j.ins.2014.03.053

76. G. Zhang, J. Cheng, T. Wang, X. Wang, J. Zhu, Membrane Computing: Theory and Applica-
tions (Science China Press, Beijing, 2015) (in Chinese)

77. G. Zhang, M.J. Pérez-Jiménez, M. Gheorghe, Real-life Applications with Membrane Comput-
ing. Series Emergence, Complexity and Computation (Springer, Berlin, 2017)

78. G. Zhang, H. Rong, P. Paul, Y. He, F. Neri, M.J. Pérez-Jiménez, A complete arithmetic
calculator constructed from spiking neural P systems and its application to information fusion.
Int. J. Neural Syst., 2050055 (2020). Available online, published 16 September 2020. https://
doi.org/10.1142/S0129065720500550

79. J. Zhao, X. Wang, G. Zhang, F. Neri, T. Jiang, M. Gheorghe, F. Ipate, R. Lefticaru, Design
and implementation of membrane controllers for trajectory tracking of nonholonomic wheeled
mobile robots. Integr. Comput.-Aided Eng. 23, 15–30 (2016). https://doi.org/10.3233/ICA-
150503

80. M. Zhu, G. Zhang, Q. Yang, H. Rong, W. Yuan, M.J. Pérez-Jiménez. P systems based
computing polynomials with integer coefficients: design and formal verification. IEEE Trans.
NanoBiosci. 17(3), 272–280 (2018). https://doi.org/10.1109/TNB.2018.2836147

https://doi.org/10.1142/S0129065714400061
https://doi.org/10.1109/TNB.2014.2341618
https://doi.org/10.1016/j.ins.2014.03.053
https://doi.org/10.1142/S0129065720500550
https://doi.org/10.1142/S0129065720500550
https://doi.org/10.3233/ICA-150503
https://doi.org/10.3233/ICA-150503
https://doi.org/10.1109/TNB.2018.2836147

4Infobiotics Workbench: An In Silico Software
Suite for Computational Systems Biology

4.1 Introduction

The modelling and analysis of biological systems using computational approaches
alternative to mathematical methods have been the focus of many recent studies
since these approaches can reveal more information about system behavior. Var-
ious computational formalisms have been introduced and studied in this context,
including state transition systems [32], rule-based systems [33], Petri nets [68], and
process algebra [59].

Membrane computing is a popular subfield of rule-based systems. Due to its
affinity with the functioning and structure of living cells, it has been utilized in
modelling and analysis of a number of biological systems [12, 44, 49, 50, 65].

In membrane computing, where models are called P systems, computations
represent biological processes that take place within compartments of a living cell.
Membrane structures mimic cell structures of living organisms, where compart-
ments contain multisets of objects that evolve by the execution of a set of rules.

Stochastic P systems [64] are a probabilistic variant of P systems, where reaction
rates are obtained from elementary rate constants according to the law of mass action
kinetics. Stochastic P systems offer a suitable, intuitive, and amenable modeling
framework for biological and chemical systems, where the inherent noise that exists
in stochastic dynamics of small copy number of systems cannot be properly captured
by more traditional mathematical methods. The reaction rules with associated rate
constants translate directly and without additional input into probabilistic transitions
of the continuous time Markov process that defines the stochastic model.

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2021
G. Zhang et al., Membrane Computing Models: Implementations,
https://doi.org/10.1007/978-981-16-1566-5_4

71

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-16-1566-5_4&domain=pdf
https://doi.org/10.1007/978-981-16-1566-5_4

72 4 InfobioticsWorkbench: An In Silico Software Suite for Computational Systems. . .

The Infobiotics Workbench (IBW) is an integrated software suite built upon
stochastic P systems models. The platform utilizes computer-aided modelling and
analysis of biological systems through a number of important features:

Modelling Language IBW features a domain-specific language, where individual
cells are represented by stochastic P systems. The language also allows specifica-
tions of multicellular populations distributed over various geometric surfaces, such
as lattices.

Simulation IBW implements a native stochastic simulator that enables molecular
populations to be visualized over cellular populations in space and time. The results
can be viewed in different formats, including time series, histograms, and 3D surface
plots.

Verification IBW has a verification component used for validating biological
properties. Using powerful probabilistic model checking tools, the platform enables
inferring novel system information through formal probabilistic queries and exhaus-
tive analysis of all possible system behaviors.

Optimization The optimization engine permits optimization parameters by esti-
mating the rate constants in order to converge model dynamics toward laboratory
observations. It also optimizes model structures by changing the composition of
rule sets managing potential state transitions in compartments to generate alternative
reaction networks recreating target dynamics more accurately.

IBW allows modelling and analysis of not only cell-level behavior but also multi-
compartmental population dynamics. This enables comparing between macroscopic
and mesoscopic interpretations of molecular interaction networks and investigating
temporospatial phenomena in multicellular systems.

This chapter is divided into the following sections: a presentation of the
stochastic P systems, a description of IBW’s key features, two case studies where
we illustrate using the IBW features, a short description of a related tool used for
qualitative analysis, and finally, a presentation of the next-generation infobiotics for
synthetic biology.

4.2 Stochastic P Systems

In IBW, each cell is represented by a stochastic P system (Definition 4.1). The
definitions given in this section are borrowed from [12].

Definition 4.1. A stochastic P system (SP system) is a probabilistic variant of P
systems, whose semantics is given by a tuple:

SP = (O,L,μ,M1, . . . ,Mn,R1, . . . , Rn) (4.1)

4.2 Stochastic P Systems 73

where:

• O is a finite set of objects that specify the entities that are part of the system
(such as genes, RNAs, proteins, etc.);

• L = {l1, . . . , ln} is a finite set of labels that name compartments (such as cells,
nucleus, cytoplasm, etc.);

• μ is a membrane structure containing n ≥ 1 membranes that define the regions
or compartments;

• Mi = (li, wi, si), for each 1 ≤ i ≤ n, is the initial configuration of the membrane
i (defining a compartment or a region), where li ∈ L is the membrane label,
wi ∈ O∗ is a finite multiset of objects, and si is a finite set of strings over O;

• Rlk = {rlk
1 , . . . , r

lk
mlk

}, for each 1 ≤ k ≤ n, are a set of multiset rewriting rules
that describe molecular interactions, for example, complex formation and gene
regulation. Here, each set of rewriting rules Rlk are linked to the corresponding
compartment identified by the label lk . The multiset rewriting rules are defined
as:

r
lk
i : o1 [o2]l

c
lk
i→ o′

1 [o′
2]l (4.2)

where o1, o2 and o′
1, o

′
2 are multisets of objects (that might be empty), over

O , representing molecular species that are consumed/produced in corresponding
molecular reactions. The label l (linked to the square brackets) specifies the
compartment where the interaction takes place. When such a rule is applied, the
contents of the membrane with label l change by replacing the objects o2 with
o′

2. The contents of the outside membrane also change by replacing the objects o1

with o′
1. The stochastic constant c

lk
i is used to compute the rule propensity (i.e.,

probability and time required to apply the rule [23]).
Definition 4.1 provides the formal specification for an individual cell. Many

biological systems are multicompartmental in nature, that is, they have spatial
characteristics in that molecule exchanges between adjacent cells determine overall
phenotypes. However, this type of structures cannot be defined by stochastic P
systems as these systems have only hierarchical (nested) membrane structures
that do not capture multicompartments. Therefore, stochastic P systems should
be complemented with a spatial framework. Here, we define such a framework
as a two-dimensional geometric lattice, which consists of a population of cells
represented by SP systems. Rules moving objects from one cell to another on the
lattice are associated with a vector describing where to place these molecules. This
geometric extension of stochastic P systems is called lattice population P systems
(LPP systems for short) [64].

To capture the spatial distribution of cells forming colonies and tissues, we define
a finite point lattice or grid with regularly distributed points [56] that can describe
possible spatial geometries in Fig. 4.1. The spatial distribution of cells is defined by
a finite point lattice, Definition 4.2.

74 4 InfobioticsWorkbench: An In Silico Software Suite for Computational Systems. . .

n1

n2n3

n4

b1

b2

Fig. 4.1 A square lattice

Definition 4.2. Given B = {v1, . . . , vn} a list of linearly independent basis vectors,
o ∈ R

n a point referred to as origin, and a list of integer bounds (αmin
1 , αmax

1 ,

. . . , αmin
n , αmax

n), a finite point lattice generated by:

Lat = (B, o, (αmin
1 , αmax

1 , . . . , αmin
n , αmax

n)) (4.3)

is a collection of regularly distributed points, P(Lat), defined as:

P(Lat) = {o+
n∑

i=1

αivi : ∀i = 1, . . . , n (αi ∈ Z∧αmin
i ≤ αi ≤ αmax

i)} (4.4)

4.2 Stochastic P Systems 75

Given a finite point lattice, generated by Lat, where the coefficients {αi : i =
1, . . . , n} uniquely identify each point x = o+∑n

i=1 αivi ∈ P(Lat), hence denoted
as x = (α1, . . . , αn).

LPP systems allow the distribution of instances of stochastic P systems repre-
senting cells on a lattice according to Definition 4.3.

Definition 4.3. A lattice population P (LPP) system is a formal specification of a
set of geometrically organized cells, denoted by the following tuple:

LPP = (Lat, {SP1, . . . , SPp}, Pos, {T1, . . . , Tp}) (4.5)

where

• Lat defines a finite point lattice in R
n (typically n = 2) as in Definition 4.2

describing the geometry of cellular population.
• SP1, . . . , SPp are SP systems as in Definition 4.1 representing different cell

types in the population.
• Pos : P(Lat) → {SP1, . . . , SPp} is a function that distributes different

instances of SP systems SP1, . . . , SPp over the lattice points.
• Tk = {rk

1 , . . . , rk
nk

} for each 1 ≤ k ≤ p is a finite set of translocation rules
included in the skin membrane of the corresponding SP system SPk , allowing
the interchange of objects between different SP systems located in different
geometrical locations. The translocation rules are specified as follows:

rk
i : [obj]k

v
�� []k′

ck
i→ []k

v
�� [obj]k′ (4.6)

where obj is a multiset of objects, v is a vector in R
n, and ck

i is the stochastic
constant. When a translocation rule is applied in the skin membrane of an SP system
SPk located at the point p (Pos(p) = SPk), the objects obj are removed from this
membrane and placed in the skin membrane of SPk′ located at the point p + v,
Pos(p + v) = SPk′ .

In system biology, there are cases where molecular reaction networks can be
divided into modules, each of which performs a specific task [27]. It has been shown
some modules, called motifs, appear recurrently in transcriptional networks. Motifs
carry out particular functions like response acceleration and noise filtering [2].

In order to capture the modularity in LPP systems, hence to be able to model
motifs, we have introduced P system modules [12], defined as follows:

Definition 4.4. A P system module, Mod , is defined using three finite ordered
sets of variables O = {O1, . . . ,Ox}, C = {C1, . . . , Cy}, and Lab = {L1, . . . , Lz}
(where O,C and Lab represent objects, stochastic kinetic constants, and

76 4 InfobioticsWorkbench: An In Silico Software Suite for Computational Systems. . .

compartment labels, respectively). Modules contain a finite set of rewriting rules
that have the same form in Eq. (4.2):

Mod(O,C,Lab) = {r1, . . . , rm} (4.7)

O , C, and Lab can be instantiated with specific values o = {o1, . . . , ox}, c =
{c1, . . . , cy}, and lab = {l1, . . . , lz} for O , C, and Lab, respectively, as in:

Mod({o1, . . . , ox}, {c1, . . . , cy}, {l1, . . . , lz}) (4.8)

The rules are generated according to the corresponding substitutions O1 = o1, . . . ,

Ox = ox , C1 = c1, . . . , Cy = cy and L1 = l1, . . . , Lz = lz.
The use of modularity allows us to define libraries or collections of modules:

Lib = {Mod1(O1, C1, Lab1), . . . ,Modp(Op,Cp,Labp)} (4.9)

In order to specify and manipulate LPP system models, we have introduced LPP
XML [12], a set of machine-readable data formats closely mirroring our formal
definitions. LPP XML allows us to define LPP system models which consist of
stochastic P system modules with initial multisets and instantiations of rules and a
geometric lattice and distribution of stochastic P systems over the lattice.

The LPP XML formats are very convenient for software implementation, but
writing, reading, and manipulating models in XML by hand is a very cumbersome
task with syntax obscuring information. Hence, to utilize this process, we have
defined a user-friendly DSL (domain-specific language), called LPP DSL. IBW
implements a parser that directly reads LPP DSL files and automatically converts
them into XML.

The LPP formalism permits the reuse of some components:

• Inter-model reuse: Modules (in libraries), stochastic P systems, and lattices are
put into different files that can be used and referred from multiple LPP system
models.

• Intra-model reuse: Multiple SP systems can reside within each LPP system,
utilizing the model construction of homogeneous or heterogeneous bacterial
colonies or tissues.

• Intra-submodel reuse: Modules of rules can be parameterized and instantiated
multiple times within an SP system using different instantiations.

P systems modules can be made more or less abstract by parameterizing different
elements, such as species and stochastic rate constants. Motifs, corresponding to the
topology of the underlying biological network, can be specified by modules that are
made fully abstract by representing all components as parameters. In this scenario,
parameter names should point out what role their values will play in the module.

4.3 Software Description 77

4.3 Software Description

The Infobiotics Workbench (IBW) [30] is an integrated in silico platform built upon
lattice population P (LPP) systems models [11,12]. IBW has several functionalities.
It allows simulating LPP models using a custom-built stochastic simulator, MCSS,
and provides a user-friendly dashboard to visualize the simulation experiments in
various formats. The dashboard uses adjustable editor views, allowing to edit and
run model files easily.

The platform features a model checking component, PMODELCHECKER, that
permits users verify temporospatial dynamic system properties using probabilistic
or statistical model checking. IBW also offers parameter and model structure
optimization using evolutionary algorithms via POPTIMIZER.

The users can perform experiments using the integrated dashboard or individual
components separately outside the workbench. IBW makes the flow of information
between different components seamless and easy by passing parameter files and
model files through different components (see Fig. 4.2 [12]).

4.3.1 Simulation

The Infobiotics Workbench features a custom-built simulation platform, MCSS

(multicompartmental stochastic simulation), comprising two types of quantitative
simulations: deterministic numerical approximation with standard solvers and
stochastic simulation using Gillespie algorithms [23]. MCSS extends the baseline
Gillespie method with multicompartmental stochastic algorithms [63] that relies on
compartmentalized nature of lattice population P systems models. The algorithm
uses queues that store the next rule to execute in each compartment in the heap and
only recalculates the reaction propensities in a compartment where a rule is fired.
This approach significantly improves performance by reducing the simulation time
for models that consist of a large number of compartments.

IBW features a very user-friendly simulation dashboard (see Fig. 4.3) [12].
The simulation environment allows tweaking various simulation parameters, for
example, number of runs, time points, and intervals, concentration units, and species
to be displayed. The results can be displayed as time series and histograms. System
population dynamics can also be observed as surface plotting functions in 3D by
selecting a subset of compartments. The results can be exported in common data
formats (e.g., csv) for manipulating by third-party software.

The simulation dashboard has a number of features to make the simulation
experiments simple, customizable, and reproducible. Users can: (i) select a subset
of (or all) entries, multiple, species, and compartments; (ii) filter species or sort
them in alphabetical order; (iii) filter compartments or sort them by their geometric
positions on the lattice; (iv) adjust simulation time points and intervals; (v) set data
and display units (species concentrations as molecules, moles, or concentrations;
compartment volumes as liters, milliliter, microliters, and nanoliters; and time

78 4 InfobioticsWorkbench: An In Silico Software Suite for Computational Systems. . .

Fig. 4.2 Summary of the data flow between different components of IBW. Information is passed
as files: parameters (.params) and models (.sbml, .lpp or .xml). Various intermediary files
are generated: simulation data (.h5) and verification data (.psm). The results can be exported
in various formants: tabulated data (.csv), image (.jpg,.png,.eps), and videos (.avi,
.mpg)

4.3 Software Description 79

Fig. 4.3 The simulation dashboard

points as seconds, minutes, or hours); (vi) select whether species’ amounts in each
compartment over the selected runs should be averaged for obtaining approximate
results; (vii) get an estimated memory requirement for each simulation experiment
to predict how fast the experiment can be carried out; (viii) export the selected and
rescaled datapoints in various data formats (.csv, .xls, .npz); and (ix) plot results for
selected runs and compartments as time series or histograms, which allows making
exact (combined) or relative (stacked/tiled) comparisons of the temporal
behavior of different molecular species of same/different compartments based on
specific, several, or averaged over many simulation runs. (x) export plots as images
for further comparison with experimental observations (see Fig. 4.4) [12]. The figure
toolbar enables zooming, panning, and subplot configuration and (xi) visualize
the system dynamics at real-time in 2D space using 3D heat-mapped meshes or
surface plots to capture the dynamic distribution of selected species over time (see
Fig. 4.5) [12]. Surfaces plots provide an intuitive means of qualitative evaluation
of population level dynamics that may (cautiously) be compared to laboratory
observations.

80 4 InfobioticsWorkbench: An In Silico Software Suite for Computational Systems. . .

Fig. 4.4 Time series plot styles (stacked view)

4.3.2 Verification

Formal methods have been used in systems biology in order to better understand
system behavior. As a complementary approach to simulation, formal verification is
a method which exhaustively analyzes all possible system behaviors, which cannot
be done via simulation, to evaluate the correctness of systems. It allows inferring
“more novel information about system properties” [44].

Model checking [14], an algorithmic verification approach, is used to verify
whether a model with a finite structure satisfies certain system properties. Model
checking requires a formal system model and a formal specification, expressed in
a logical notation [34–39]. It then evaluates the formal specification against all
possible behaviors of the system model, which are computed by enumerating all
possible sequence of traces.

4.3 Software Description 81

Fig. 4.5 Surface plots illustrating dynamic expression patterns for two proteins. Users can
progress time either by moving the time point index slider forward or backward or by pressing
the Play/Pause button

Model checking has been widely utilized in computing and engineering applica-
tions for the last two decades in verifying various systems, for example, safety-
critical systems [40], concurrent systems [3], distributed systems [69], network
protocols [42], stochastic systems [41], multi-agent systems [1, 47], pervasive
systems [4,43,48], and swarm robotics [45,46] as well as some engineering applica-
tions [57, 58]. Due to its novel features to infer information about system behavior,
there is a growing interest to apply this technique in systems biology [8,9]. Recently,
it has been applied to analysis of various biological systems [21, 49, 49, 50, 52, 65].

Probabilistic model checking is a stochastic extension of classical model check-
ing complemented with quantitative techniques to verify properties about the like-
lihood of the observation of certain behavior. However, they require a probabilistic
state machine (such as Discrete-Time Markov Chains (DTMCs), Continuous-Time
Markov Chains (CTMCs)) or Markov Decision Processes (MDPs) in a dedicated
syntax. System properties are written as probabilistic logical statements, often
probabilistic logics: CSL (Continuous Stochastic Logic) [5] for CTMCs and PCTL
(Probabilistic Computation Tree Logic) [26] for DTMCs and MDPs. A probabilistic
model checker then automatically verifies if the system model satisfies the property
using some analytical methods.

82 4 InfobioticsWorkbench: An In Silico Software Suite for Computational Systems. . .

The Infobiotics Workbench features a verification module, called PMOD-
ELCHECKER, which integrates two third-party probabilistic models checkers
PRISM [28] and MC2 [15]. Properties of stochastic P system models are written as
probabilistic logic formulas and automatically verified using either PRISM or MC2.
PMODELCHECKER extends the verification capability to multicompartments so as
to verify LPP system models.

PMODELCHECKER supports both exact (i.e., numerical) and approximate (i.e.,
statistical) model checking methods. To perform exact probabilistic model check-
ing, LPP systems are automatically converted into the reactive modules specifi-
cation, from which PRISM is executed. In this approach, the full state space is
generated and each property is verified against all states of the model, which
is usually computationally very demanding. The approximate probabilistic model
checking does not require generating all system states. Instead, simulations are run
up to a specified maximum number of runs or a confidence threshold (defined by
users), and properties are verified against the simulation traces instead of the system
model. To perform approximate probabilistic model checking, users can either (i)
call PRISM’s discrete event simulator or (ii) run MC2 using previous simulation
results or running new simulations.

The PMODELCHECKER dashboard provides an interface for both PRISM and
MC2 (see Fig. 4.6) [12]. Users can adjust verification parameters for each model
checker, accordingly. The dashboard allows loading multiple formulas from a file
and selecting a specific formula that can be edited or removed. Users can also add a
new formula using the respective buttons.

The PMODELCHECKER dashboard features a result view which displays the
outcome of a model checking experiment (see Fig. 4.7) [12]. The results can be
displayed in 2D if the probability of a property in question is compared against
one selected variable, or the results can be displayed in 3D if the probability
is checked against two variables. The dashboard allows performing queries that
depend on several variables by enabling the choice of variables so that the results of
n-dimensional queries to be viewed in a consistent manner.

4.3.3 Optimization

The correct reproduction of cellular behavior depends on the accuracy of kinetic rate
constants used in both deterministic and stochastic models. Unfortunately, well-
characterized rate constants are not often available in many systems, and those
that are known for some models use artificial values that are obtained from similar
systems. One possible solution to this problem is using parameter optimization to
estimate the rate constants in order to fit model dynamics to laboratory observations.

For this purpose, IBW features the POPTIMIZER component, which optimizes
models in two ways:

1. Numerical model parameters: The stochastic kinetic constants linked to each rule
can be tweaked to fit the given target.

4.3 Software Description 83

Fig. 4.6 PMODELCHECKER parameterization interfaces

2. Model structure: The composition and structure of the rule sets managing
possible state transitions occurring in compartments can be changed to generate
alternative reaction networks recreating the target dynamics more accurately.

Both of these optimization steps aim to minimize the distance between the
stochastically simulated and user-provided quantities of molecular species at every
target time point, quantitatively evaluating the fitness of candidate models and
automatically discriminating between them.

POPTIMIZER searches both parameter and structure spaces using well-known
population-based optimization algorithms: Covariance Matrix Adaptation Evolu-
tion Strategies (CMA-ES) [25], Estimation of Distribution Algorithms (EDA),
Differential Evolution (DE) [67], and genetic algorithms (GA) [24]. The current
version of the optimization process is limited to single compartment models because
multicompartmental structures significantly increase the algorithmic complexity.

84 4 InfobioticsWorkbench: An In Silico Software Suite for Computational Systems. . .

Fig. 4.7 Model checking results interface

This is mainly due to the fact that simulating many copies of the cells at those
compartments would increase the computational cost and makes it difficult to
provide accurate target data. Hence, model optimization is generally feasible for
smaller models, which can then be reintegrated, provided they can be decoupled.

POPTIMIZER implements a genetic algorithm [13, 62] to produce candidate
models. This is initially done by random choice and then by mutating the fittest
models of the previous round, performing several runs of parameter optimization
steps on each model to ensure that the candidate models have fair chance of
fitting the target behavior before using the final fitness function to choose the next
generation.

The result of an optimization process is the fittest model generated, and the out-
come is displayed at the dashboard. POPTIMIZER also allows a visual comparison of
the quantities of each species for target and the optimized models (see Fig. 4.8) [12].

4.4 Case Studies 85

Fig. 4.8 POPTIMIZER results interface

4.4 Case Studies

In this section, we will illustrate using the IBW features in two case studies. In
the first case study, we will use the pulse generator system [10], consisting of a
bacterial colony that displays a propagation behavior of a wave of gene expression.
The second case study is a genetic circuit, repressilator.

4.4.1 Pulse generator

The pulse generator system [10] synthesizes a signalling molecule AHL, triggering
the production of the green fluorescent protein (GFP). The system exhibits a
propagation behavior, that is, the propagation of the GFP expression along the
bacterial colony (see Fig. 4.11 and 4.12) [12]. The system consists of two different
bacterial strains, sender cells and pulsing cells (see Fig. 4.9) [50], which work as
follows:

“Sender cells contain the gene luxI from Vibrio fischeri. This gene codifies the enzyme
LuxI responsible for the synthesis of the molecular signal 3OC12HSL (AHL). The luxI
gene is expressed constitutively under the regulation of the promoter PLtetO1 from the
tetracycline resistance transposon.”

“Pulsing cells contain the luxR gene from Vibrio fischeri that codifies the 3OC12HSL
receptor protein LuxR. This gene is under the constitutive expression of the promoter
PluxL. It also contains the gene cI from lambda phage codifying the repressor CI under the

86 4 InfobioticsWorkbench: An In Silico Software Suite for Computational Systems. . .

PLtetO1 luxI

LuxI AHL

PluxL luxR PluxR cI PluxPR gfp

Sender Cell

CI

LuxR

GFP

Pulsing Cell

AHL AHL

LuxR

Fig. 4.9 The sender and pulsing cells of the pulse generator.

regulation of the promoter PluxR that is activated upon binding of the transcription factor
LuxR_3OC12. Finally, this bacterial strain carries the gene gfp that codifies the green
fluorescent protein under the regulation of the synthetic promoter PluxPR combining the
Plux promoter (activated by the transcription factor LuxR_3OC12) and the PR promoter
from lambda phage (repressed by the transcription factor CI).”

The sender and pulsing bacterial strains are distributed along a lattice, where the
sender cells are located at one end of the lattice, and the pulsing cells are placed at
the rest of the lattice (see Fig. 4.10).

PLtetO1 luxI

LuxI AHL

PluxL luxR PluxR cI PluxPR gfp

Sender Cell

LuxR CI

AHL AHLLuxR

GFP

AHL

Pulsing Cell

Fig. 4.10 Spatial distribution of two bacterial strains

4.4 Case Studies 87

Modelling
As discussed in Sect. 4.2, IBW accepts lattice population systems as input. The pulse
generator system is captured by an LPP model, representing a bacterial colony over
a rectangular lattice, which distributes the sender cells at one end of the lattice and
the pulsing cells over the rest of the lattice. The LPP model contains two stochastic
P systems models, one for each different cell type. The first SP model represents
the stochastic behavior of the sender cell, capturing the production of the signal
3OC6-HSL (AHL). The second model represents the pulsing cell, capturing the
production of GFP protein as a response to the signal 3OC6-HSL (AHL). In both
SP models, the reaction rules govern the regulation of the corresponding promoters
used in the sender and pulsing cells. The complete stochastic model of the pulse
generator example (written in LPP) is available in the IBW website [60].

Simulation
The IBW simulation dashboard visualizes the system behavior via time series,
histogram, or surface plotting functions. Users are able to choose species they
want to simulate over a subset of datapoints. Below, we present a set of simulation
experiments [12, 44, 50].

Figure 4.11 shows the propagation of a pulse of GFP over a single pulsing cell
using time series. Figure 4.12 illustrates the spatial propagation over a bacterial
colony using 3D animation. The propagation of the GFP protein continues through
pulsing cells until the concentration level drops to 0.

Figure 4.13 shows the signalling molecule signal3OC6 amount, the number
of molecules, over time, suggesting that the pulsing cells located further away from
the sender cells produce lower concentrations of GFP.

These experiments suggest IBW’s stochastic simulation algorithms allow users
to generate realistic trajectories of molecular dynamics that can be compared to
laboratory data.

Fig. 4.11 Propagation of GFP over a pulsing cell

88 4 InfobioticsWorkbench: An In Silico Software Suite for Computational Systems. . .

GFP at 50

GFP at 100

GFP at 200

GFP at 400

Fig. 4.12 Propagation of GFP along the bacterial colony

Fig. 4.13 Signalling molecule level over time

Verification
IBW’s PMODELCHECKER component allows users to perform verification using two
third-party probabilistic model checkers PRISM and MC2 to infer more information
about system behavior.

Below, we present a set of verification experiments [50] based on probabilistic
model checking. Here, we consider a lattice of size 2 × 6. The sender cells are
positioned to the initial 2 × 2 segment of the lattice, followed by the pulsing cells
that are distributed to the rest (2 × 4) of the lattice (see Fig. 4.10).

In the following, we show the informal representation of queries (i.e., system
requirements to be verified) and their corresponding translations to the language
that PMODELCHECKER accepts as input.

4.4 Case Studies 89

(a) (b)

(c) (d)

Fig. 4.14 Quantitative analysis using probabilistic model checking. Row n denotes the nth row of
the pulsing cells in the lattice and T denotes time. (a) Prob. of GFP exceeds threshold (Prop. 1). (b)
Prob. of relative GFP (Prop. 2). (c) Expected GFP protein (Prop. 3). (d) Expected signal3OC6
(Prop. 4)

Query 1. “What is the probability that GFP concentration at row n ∈ {3, 4, 5, 6}
exceeds 100 at the time instant T ?”

This query is expressed formally as follows:

P=?[true U[T ,T] GFP_pulsing_n ≥ 100].

The verification results are illustrated in Fig. 4.14a.

Query 2. “What is the probability that GFP concentration at row n ∈ {3, 4, 5}
stays greater than GFP concentration at row 6 until the time instant T where GFP
concentration at row 6 exceeds GFP concentration at row n?”

The formal translation of this query is:

P=?[GFP_pulsing_n ≥ GFP_pulsing_6 U[T ,T] GFP_pulsing_6 >

GFP_pulsing_n].

The verification results are presented in Fig. 4.14b.

90 4 InfobioticsWorkbench: An In Silico Software Suite for Computational Systems. . .

Query 3. “What is the expected GFP concentration at row n ∈ {3, 4, 5, 6} at the
time instant T ?”

This query is formally expressed as:

R{“GFP_pulsing_n”}=? [I = T] .

The results are shown in Fig. 4.14c.

Query 4. “What is the expected signal3OC6 concentration at row n ∈
{3, 4, 5, 6} at the time instant T ?”

The query is formally translated as:

R{“signal3OC6_pulsing_n”}=? [I = T] .

The corresponding verification results are shown in Fig. 4.14d.
Figure 4.14a,c confirm the propagation of a pulse of GFP, whose concentration

first increases in the rows near to the sender cells and then gradually drops to zero.
The rows distant from the sender cells exhibit a similar behavior with some delay,
which is proportional to the distance between the row and the sender cells. Figure
4.14d shows that pulsing cells located further away from the sender cells produce
lower concentrations of GFP.

These results show verification, by means of formal queries, can provide more
novel information about the system behavior and dynamics, complementary to
simulation.

4.4.2 Repressilator

The repressilator is a genetic circuit [17] used as a canonical example in some P
system models [19].

The system contains three genes codifying the corresponding repressors: the
operon lactose repressor, lacI; the repressor from the tetracycline transposon,
tetR; and a repressor from the λ phage virus, cI. These three genes are linked
in a gene regulatory network in such a way that lacI represses the expression of
tetR; the tetR gene then represses cI. Finally, cI represses the expression of
lacI to close the cycle.

Modelling
The repressilator system is captured as a stochastic P system. The molecular
interactions within the stochastic P system are defined in a modular manner. The
bacterial colony is modelled by a lattice population system over a rectangular
lattice. This is done by distributing the copies of this cell type over the points of

4.4 Case Studies 91

a rectangular lattice. The complete stochastic model of the repressilator system is
available in the IBW website [61].

Simulation
Figure 4.15 shows the system evolution over time for the LacI, CI, and TetR pro-
teins, confirming that the circuit generates oscillations of these repressor molecules
based on the order they are connected within the regulatory network.

The oscillations significantly differ in amplitude and frequency due to stochastic
effects. Therefore, different cells in the lattice might exhibit different oscillatory
behavior, not necessarily synchronous (as illustrated in Fig. 4.15).

The asynchronous oscillatory behavior in different cells can be better observed
using the population dynamics. Figure 4.16 shows the spatiotemporal evolution of
LacI, CI, and TetR in the entire colony carrying the repressilator.

Verification
Below, we show two queries used to calculate the probability of having more or
fewer than 300 proteins of LacI, CI, and TetR simultaneously over different time
points of the evolution.

Query 1. “What is the probability that LacI, CI, and TetR can simultaneously
be below 300 molecules?”

This query is expressed formally as follows:

P=?[time = t U LacI < 300 ∧ CI < 300 ∧ TetR < 300].

The verification results for t = 20, 000 . . .40, 000 (with increments of 5000) are
zero.

Query 2. “What is the probability that LacI, CI, and TetR can simultaneously
be above 300 molecules?”

The query is translated as:

P=?[time = t U LacI > 300 ∧ CI > 300 ∧ TetR > 300].

Similarly, the verification results for t = 20,000 . . .40,000 (with increments of
5000) are zero.

The results obtained in both scenarios suggest that these three proteins cannot be
above or below 300 molecules simultaneously, confirming oscillating behavior.

92 4 InfobioticsWorkbench: An In Silico Software Suite for Computational Systems. . .

Fig. 4.15 Oscillation behavior in two different cells [19]

4.5 KPWorkbench: A Qualitative Analysis Tool 93

Fig. 4.16 Spatiotemporal evolution of the CI and TetR proteins in the colony

4.5 KPWorkbench: A Qualitative Analysis Tool

We have illustrated how IBW facilitates the quantitative analysis of biological
systems using stochastic P systems. However, in some cases, quantitative analysis
might not be needed if, for example, we only want to observe the detection of
molecular species rather than measuring their concentration. In such cases, we can
only rely on qualitative analysis where we can apply some abstraction methods to
reduce the model complexity. One typical abstraction method is removing kinetic
constants from a stochastic model. In this way, we can obtain much simpler
nondeterministic models that can be used for detecting the existence of molecular
species.

A nondeterministic model captures all interactions included in its stochastic
counterpart but in a rather symbolic and qualitative way in that it removes more
precise quantitative aspects of the system. All possible system pathways are still
contained in the nondeterministic model but as exact molecular concentrations are
not necessary for these models. In certain circumstances, the multisets are bounded,
even restricted to one or two elements, describing their presence rather than their
molecular concentrations.

In order to facilitate the qualitative modelling, we have introduced kernel P
systems [22], a non-probabilistic variant of stochastic P systems, which mimic
biological membranes without any quantitative information. Kernel P systems allow
building nondeterministic models, which are used for qualitative analyses where
molecular concentrations are not necessary or a chain of reactions already analyzed
can be replaced by some abstractions mimicking their behavior through simpler
rewriting mechanisms.

The expressive power and efficiency of kP systems have been illustrated by a
number of representative case studies [49, 50, 58]. In this respect, we have also
introduced a modelling language, called kP–Lingua, allowing one to write kP
system models. The theoretical aspects of the methods and techniques developed
for kP systems have been discussed in [6, 7, 16, 20].

We have also developed the kPWORKBENCH platform [53] (available and down-
loadable from its website [54]), which allows modelling and analysis of membrane
systems through various computational approaches, including modelling, simula-
tion, agent-based high-performance simulation [51], and verification. To simplify
verification queries, we have introduced a user-friendly property language based

94 4 InfobioticsWorkbench: An In Silico Software Suite for Computational Systems. . .

on natural language statements. These unique features allow kPWORKBENCH to
support the non-probabilistic modelling and analysis of membrane systems using
various computational approaches. The usability and novelty of our approach have
been illustrated by some case studies from systems and synthetic biology [49, 50]
to some engineering problems [57, 58].

4.6 Next-Generation Infobiotics for Synthetic Biology

Systems biology mainly focuses on studying existing organisms. In computational
biology, there is a growing trend to study biological phenomena that do not exist
in nature. To this end, synthetic biology, aiming to design new biological entities,
is emerging rapidly. As DNA sequencing and synthesis technology get cheaper and
become easy to reach [55], the scale and complexity of engineered biology systems
will grow. Moreover, rapidly emerging biotechnology is accelerating the adoption
of synthetic biology across various disciplines including computing science as well
as industrial applications.

In line with these advances, synthetic biology introduces new challenges difficult
for existing tools and approaches to address. It is well known that most of synthetic
biology models are complex, with a rich combinatorics of biochemical interactions
and certain motifs occurring.

Although IBW provides a good tool support for systems biology, and it can
be utilized for some small-scale synthetic biology systems, it cannot address the
challenges imposed by synthetic biology. The IBW language allows modelling
systems at a relatively high abstraction level but does not provide any support for
further refinements at the DNA level, which is a requirement of synthetic biology,
where different operations at that level have to be specified. Also, the simulation
and verification processes that are normally efficient for systems biology can be
very cumbersome depending on the complexity of synthetic systems.

In an attempt to provide a robust tool support for synthetic biology, we have
developed a new version of Infobiotics Workbench [31] that can assist synthetic
biologists in an informed, iterative workflow of system specification, verification,
simulation, and biocompilation. This new version of IBW features a unique domain-
specific language, called IBL (Infobiotics Language), offering a combined grammar
for modelling, verification, and biocompilation statements rather than relying upon
individual complex formalisms for each computational aspect. This novel approach
offers seamless interoperability across different tools as well as compatibility
with common data exchange formats, for example, SBOL (Synthetic Biology
Open Language) [18] and SBML (Systems Biology Markup Language) [29], and
eliminates the need of manual translations for stand-alone applications.

The new IBW also significantly improves the efficiency of computational
processes so as to cope with scaling-up demand of synthetic biology. The platform
implements a new simulation module, incorporating all the variants of Gillespie’s
stochastic simulation algorithms (SSAs) complemented with prediction tool that
selects the best performing SSA using machine learning algorithms. The simulation

References 95

algorithms are also speeded up via parallel implementation and executed on cloud-
based GPU clusters.

The verification queries use natural language statements, which are embedded
within the IBL language. This makes IBL easy to use and intuitive for nonexperts.
The verification process relies on statistical model checking approach [66], which
significantly improves model checking times. This allows verifying queries for large
systems in seconds rather than hours.

IBW also features a biocompilation module that allows automated compilation of
a specified synthetic circuit into eventual genetic sequence information and import
from/export to standard data exchange formats.

These unique features make IBW a very useful in silico tool for synthetic biology.

4.7 Conclusion

In this chapter, we have presented the Infobiotics Workbench, a computer-aided
in silico design suite for systems biology. We have provided an overview of the
platform’s important features: (a) a domain-specific language, where individual
cells are represented by stochastic P systems and multicellular populations are
represented by lattice population P systems; (b) a multicellular stochastic simulator
that enables molecular populations to be visualized over cellular populations in
space and time using a variety of visualization formats; (c) a verification component
that validates biological properties using probabilistic model checking; and (d) an
optimization engine that optimizes model parameters and model structures.

We have shown the usability and applicability of the platform with two case
studies: pulse generator and repressilator. For each case study, we have discussed
the respective modelling, along with its simulation and verification results.

We have also provided a brief overview of the new version of Infobiotics
Workbench [31] developed to address the challenges and requirements of synthetic
biology by providing an informed, iterative workflow of system specification,
verification, simulation, and biocompilation.

References

1. H. Abbink, R. van Dijk, T. Dobos, M. Hoogendoorn, C. Jonker, S. Konur, P.P. van Maanen,
V. Popova, A. Sharpanskykh, P. van Tooren, J. Treur, J. Valk, L. Xu, P. Yolum, Automated
support for adaptive incident management, in Proceedings of the 1st International Workshop on
Information Systems for Crisis Response and Management (ISCRAM’04) (Brussels, Belgium,
2004), pp. 153–170

2. U. Alon, Network motifs: theory and experimental approaches. Nat. Rev. Genet. 8(6), 450–61
(2007). https://doi.org/10.1038/nrg2102

3. R. Alur, K. McMillan, D. Peled, Model-checking of correctness conditions for concurrent
objects. Inf. Comput. 160(1–2), 167–188 (2000). https://doi.org/10.1006/inco.1999.2847

4. M. Arapinis, M. Calder, L. Denis, M. Fisher, P. Gray, S. Konur, A. Miller, E. Ritter, M. Ryan,
S. Schewe, C. Unsworth, R. Yasmin, Towards the verification of pervasive systems. Electron.
Commun. EASST 22, 1–15 (2009). https://doi.org/10.14279/tuj.eceasst.22.315

https://doi.org/10.1038/nrg2102
https://doi.org/10.1006/inco.1999.2847
https://doi.org/10.14279/tuj.eceasst.22.315

96 4 InfobioticsWorkbench: An In Silico Software Suite for Computational Systems. . .

5. C. Baier, B Haverkort, H. Hermanns, J.P. Katoen, Model-checking algorithms for continuous-
time markov chains. IEEE Trans. Software Eng. 29, 524–541 (2003). https://doi.org/10.1109/
TSE.2003.1205180

6. M.E. Bakir, F. Ipate, S. Konur, L. Mierlă, I. Niculescu, Extended simulation and verification
platform for kernel P systems, in Membrane Computing (CMC 2014), ed. by M. Gheorghe,
G. Rozenberg, A. Salomaa, P. Sosík, C. Zandron. Lecture Notes in Computer Science, vol.
8961 (2014), pp. 158–178. https://doi.org/10.1007/978-3-319-14370-5_10

7. M.E. Bakir, S. Konur, M. Gheorghe, I. Niculescu, F. Ipate, High performance simulations
of kernel P systems, in Proceedings of the 2014 IEEE International Conference on High
Performance Computing and Communications, 2014 IEEE 6th International Symposium on
Cyberspace Safety and Security, 2014 IEEE 11th International Conference on Embedded
Software and System (HPCC,CSS,ICESS) (2014), pp. 409–412. https://doi.org/10.1109/HPCC.
2014.69

8. M.E. Bakir, M. Gheorghe, S. Konur, M. Stannett, Comparative analysis of statistical model
checking tools, in Membrane Computing (CMC 2016), ed. by A. Leporati, G. Rozenberg, A.
Salomaa, C. Zandron. Lecture Notes in Computer Science, vol. 10105 (2017), pp. 119–135.
https://doi.org/10.1007/978-3-319-54072-6_8

9. M.E. Bakir, S. Konur, M. Gheorghe, N. Krasnogor, M. Stannett, Automatic selection of
verification tools for efficient analysis of biochemical models. Bioinformatics 34(18), 3187–
3195 (2018). https://doi.org/10.1093/bioinformatics/bty282

10. S. Basu, Y. Gerchman, C.H. Collins, F.H. Arnold, R. Weiss, A synthetic multicellular system
for programmed pattern formation. Nature 434 (2005), 1130–1134. https://doi.org/10.1038/
nature03461

11. J. Blakes, J. Twycross, F.J. Romero-Campero, N. Krasnogor, The Infobiotics Workbench:
an integrated in silico modelling platform for systems and synthetic biology. Bioinformatics
27(23), 3323–3324 (2011). https://doi.org/10.1093/bioinformatics/btr571

12. J. Blakes, J. Twycross, S. Konur, F.J. Romero-Campero, N. Krasnogor, M. Gheorghe, Infobi-
otics workbench: a P systems based tool for systems and synthetic biology, in Applications of
Membrane Computing in Systems and Synthetic Biology. Series Emergence, Complexity and
Computation, Chapter 7 (2014), pp. 1–41. https://doi.org/10.1007/978-3-319-03191-0_1

13. H. Cao, F.J. Romero-Campero, S. Heeb, M. Cámara, N. Krasnogor, Evolving cell models for
systems and synthetic biology. Syst. Synth. Biol. 4(1), 55–84 (2010). https://doi.org/10.1007/
s11693-009-9050-7

14. E.M. Clarke, O. Grumberg, D.A. Peled, Model checking (MIT Press, New York, 1999)
15. R. Donaldson, D. Gilbert, A Monte Carlo model checker for probabilistic LTL with numerical

constraints. Res. Rep. (2008), TR-2008-282. Department of Computing Science, University of
Glasgow

16. C. Dragomir, F. Ipate, S. Konur, R. Lefticaru, L. Mierlă, Model checking kernel P systems,
in Membrane Computing (CMC 2013), ed. by A. Alhazov, S. Cojocaru, M. Gheorghe, Y.
Rogozhin, G. Rozenberg, A. Salomaa. Lecture Notes in Computer Science, vol. 8340 (2013),
pp. 151–172. https://doi.org/10.1007/978-3-642-54239-8_12

17. M.B. Elowitz, S. Leibler, A synthetic oscillatory network of transcriptional regulators. Nature
403(6767), 335–338 (2000). https://doi.org/10.1038/35002125

18. M. Galdzicki, K.P. Clancy, E. Oberortner, M. Pocock, J.Y. Quinn, C.A. Rodriguez, R. Nicholas,
M.L. Wilson, L. Adam, J.C. Anderson, The synthetic biology open language (SBOL) provides
a community standard for communicating designs in synthetic biology. Nat. Biotechnol. 32(6),
545–550 (2014). https://doi.org/10.1038/nbt.2891

19. M. Gheorghe, V. Manca, F.J. Romero-Campero, Deterministic and stochastic P systems for
modelling cellular processes. Nat. Comput. 9(2), 457–473 (2009). https://doi.org/10.1007/
s11047-009-9158-4

20. M. Gheorghe, S. Konur, F. Ipate, L. Mierlă, M.E. Bakir, M. Stannett, An integrated model
checking toolset for kernel P systems, in Membrane Computing (CMC 2015), ed. by G.
Rozenberg, A. Salomaa, J.M. Sempere, C. Zandron. Lecture Notes in Computer Science, vol.
9504 (2015), pp. 153–170. https://doi.org/10.1007/978-3-319-28475-0_11

https://doi.org/10.1109/TSE.2003.1205180
https://doi.org/10.1109/TSE.2003.1205180
https://doi.org/10.1007/978-3-319-14370-5_10
https://doi.org/10.1109/HPCC.2014.69
https://doi.org/10.1109/HPCC.2014.69
https://doi.org/10.1007/978-3-319-54072-6_8
https://doi.org/10.1093/bioinformatics/bty282
https://doi.org/10.1038/nature03461
https://doi.org/10.1038/nature03461
https://doi.org/10.1093/bioinformatics/btr571
https://doi.org/10.1007/978-3-319-03191-0_1
https://doi.org/10.1007/s11693-009-9050-7
https://doi.org/10.1007/s11693-009-9050-7
https://doi.org/10.1007/978-3-642-54239-8_12
https://doi.org/10.1038/35002125
https://doi.org/10.1038/nbt.2891
https://doi.org/10.1007/s11047-009-9158-4
https://doi.org/10.1007/s11047-009-9158-4
https://doi.org/10.1007/978-3-319-28475-0_11

References 97

21. M. Gheorghe, S. Konur, F. Ipate, Kernel P systems and stochastic P Systems for modelling and
formal verification of genetic logic gates, in Advances in Unconventional Computing, ed. by
A. Adamatzky. Series Emergence, Complexity and Computation, vol. 22 (2017), pp. 661–675.
https://doi.org/10.1007/978-3-319-33924-5_25

22. M. Gheorghe, R. Ceterchi, F. Ipate, S. Konur, R. Lefticaru, Kernel P systems: from modelling
to verification and testing. Theor. Comput. Sci. 724, 45–60 (2018). https://doi.org/10.1016/j.
tcs.2017.12.010

23. D. Gillespie, A general method for numerically simulating the stochastic time evolution of
coupled chemical reactions. J. Comput. Phys. 22(4), 403–434 (1976). https://doi.org/10.1016/
0021-9991(76)90041-3

24. D.R. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning (Addison
Welsey, Reading, 1989)

25. N. Hansen, A. Ostermeier, Completely derandomized self-adaptation in evolution strategies.
Evol. Comput. 9(2), 159–195 (2001). https://doi.org/10.1162/106365601750190398

26. H. Hansson, B. Jonsson, A logic for reasoning about time and reliability. Formal Aspects
Comput. 6, 102–111 (1994). https://doi.org/10.1007/BF01211866

27. L.H. Hartwell, J.J. Hopfield, S. Leibler, A.W. Murray, From molecular to modular cell biology.
Nature 402, C47–C52 (1999). https://doi.org/10.1038/35011540

28. A. Hinton, M. Kwiatkowska, G. Norman, D. Parker, Prism: a tool for automatic verification of
probabilistic systems, in Tools and Algorithms for the Construction and Analysis of Systems,
12th International Conference, TACAS 2006 Held as Part of the Joint European Conferences
on Theory and Practice of Software, ETAPS 2006, Vienna, Austria, March 25—April 2, 2006.
Lecture Notes in Computer Science, vol. 3920 (2006), pp. 441–444. https://doi.org/10.1007/
11691372_29

29. M. Hucka, A. Finney, H.M. Sauro, et al. The systems biology markup language (SBML):
a medium for representation and exchange of biochemical network models. Bioinformatics
19(4), 524–531 (2002). https://doi.org/10.1093/bioinformatics/btg015

30. Infobiotics Workbench. http://sysbio.infobiotics.org
31. Infobiotics Workbench for Synthetic Biology. http://infobiotics.org
32. S.A. Kauffman, Metabolic stability and epigenesis in randomly constructed genetic nets. J.

Theor. Biol. 22(3), 437–467 (1969). https://doi.org/10.1016/0022-5193(69)90015-0
33. J.W. Klop, Term rewriting systems, in Handbook of Logic in Computer Science, vol. 2 (Oxford

University, Oxford, 1993), pp. 1–116
34. S. Konur, A decidable temporal logic for events and states, in Proceedings of the Thirteenth

International Symposium on Temporal Representation and Reasoning (TIME’06), Budapest,
2006 (2006), pp. 36–41. https://doi.org/10.1109/TIME.2006.1

35. S. Konur, An interval logic for natural language semantics, in Proceedings of the Seventh
Conference on Advances in Modal Logic, Nancy, France, 9–12 September 2008, ed. by C.
Areces, R. Goldblatt (2008), pp. 177–191

36. S. Konur, Real-time and Probabilistic Temporal Logics: An Overview. CoRR abs/1005.3200
(2010)

37. S. Konur, A Survey on Temporal Logics. CoRR abs/1005.3199 (2010)
38. S. Konur, An event-based fragment of first-order logic over intervals. J. Logic Lang. Inf. 20,

49–68 (2011). https://doi.org/10.1007/s10849-010-9126-5
39. S. Konur, A survey on temporal logics for specifying and verifying real-time systems. Front.

Comput. Sci. 7(3), 370–403 (2013). https://doi.org/10.1007/s11704-013-2195-2
40. S. Konur, Specifying safety-critical systems with a decidable duration logic. Sci. Comput.

Program. 80(Part B), 264–287 (2014). https://doi.org/10.1016/j.scico.2013.07.012
41. S. Konur, Towards light-weight probabilistic model checking. J. Appl. Math. 2014, Article ID

814159, 1–15 (2014). https://doi.org/10.1155/2014/814159
42. S. Konur, M. Fisher, Formal analysis of a VANET congestion control protocol through

probabilistic verification, in Proceedings of the 2011 IEEE 73rd Vehicular Technology
Conference (VTC Spring), Yokohama, 2011 (2011), pp. 1–5. https://doi.org/10.1109/VETECS.
2011.5956327

https://doi.org/10.1007/978-3-319-33924-5_25
https://doi.org/10.1016/j.tcs.2017.12.010
https://doi.org/10.1016/j.tcs.2017.12.010
https://doi.org/10.1016/0021-9991(76)90041-3
https://doi.org/10.1016/0021-9991(76)90041-3
https://doi.org/10.1162/106365601750190398
https://doi.org/10.1007/BF01211866
https://doi.org/10.1038/35011540
https://doi.org/10.1007/11691372_29
https://doi.org/10.1007/11691372_29
https://doi.org/10.1093/bioinformatics/btg015
http://sysbio.infobiotics.org
http://infobiotics.org
https://doi.org/10.1016/0022-5193(69)90015-0
https://doi.org/10.1109/TIME.2006.1
https://doi.org/10.1007/s10849-010-9126-5
https://doi.org/10.1007/s11704-013-2195-2
https://doi.org/10.1016/j.scico.2013.07.012
https://doi.org/10.1155/2014/814159
https://doi.org/10.1109/VETECS.2011.5956327
https://doi.org/10.1109/VETECS.2011.5956327

98 4 InfobioticsWorkbench: An In Silico Software Suite for Computational Systems. . .

43. S. Konur, M. Fisher, A roadmap to pervasive systems verification. Knowl. Eng. Rev. 30(3),
324–341 (2015). https://doi.org/10.1017/S0269888914000228

44. S. Konur, M. Gheorghe, A property-driven methodology for formal analysis of synthetic
biology systems, in IEEE/ACM Transactions on Computational Biology and Bioinformatics,
vol. 12(2), 360–371 (2015). https://doi.org/10.1109/TCBB.2014.2362531

45. S. Konur, C. Dixon, M, Fisher, Formal verification of probabilistic swarm behaviours, in Swarm
Intelligence (ANTS 2010), ed. by M. Dorigo et al. Lecture Notes in Computer Science, vol.
6234 (2010), pp. 440–447. https://doi.org/10.1007/978-3-642-15461-4_42

46. S. Konur, C. Dixon, M. Fisher, Analysing robot swarm behaviour via probabilistic model
checking. Rob. Auton. Syst. 60(2), 199–213 (2012). https://doi.org/10.1016/j.robot.2011.10.
005

47. S. Konur, M. Fisher, S. Schewe, Combined model checking for temporal, probabilistic, and
real-time logics. Theor. Comput. Sci. 503, 61–88 (2013). https://doi.org/10.1016/j.tcs.2013.07.
012

48. S. Konur, M. Fisher, S. Dobson, S. Knox, Formal verification of a pervasive messaging system.
Formal Aspects Comput. 26(4), 677–694 (2014). https://doi.org/10.1007/s00165-013-0277-4

49. S. Konur, M. Gheorghe, C. Dragomir, F. Ipate, N. Krasnogor, Conventional verification for
unconventional computing: a genetic XOR gate example. Fundam. Inform. 134, 97–110
(2014). https://doi.org/10.3233/FI-2014-1093

50. S. Konur, M. Gheorghe, C. Dragomir, L. Mierlă, F. Ipate, N. Krasnogor, Qualitative and
quantitative analysis of systems and synthetic biology constructs using P systems. ACS Synth.
Biol. 4(1), 83–92 (2015). https://doi.org/10.1021/sb500134w

51. S. Konur, M. Kiran, M. Gheorghe, M. Burkitt, F. Ipate, Agent-based high-performance
simulation of biological systems on the GPU, in Proceedings of the 2015 IEEE 17th
International Conference on High Performance Computing and Communications, 2015 IEEE
7th International Symposium on Cyberspace Safety and Security, and 2015 IEEE 12th
International Conference on Embedded Software and Systems, New York, NY (2015), pp. 84–
89. https://doi.org/10.1109/HPCC-CSS-ICESS.2015.253

52. S. Konur, H. Fellermann, L.M. Mierlă, D. Sanassy, C. Ladroue, S. Kalvala, M. Gheorghe,
N. Krasnogor, An integrated in silico simulation and biomatter compilation approach to
cellular computation, in Advances in Unconventional Computing, ed. by A. Adamatzky. Series
Emergence, Complexity and Computation, vol. 23 (2017), pp. 655–676. https://doi.org/10.
1007/978-3-319-33921-4_25

53. S. Konur, L. Mierlă, F. Ipate, M. Gheorghe, kPWorkbench: a software suit for membrane
systems. SoftwareX 11, 100407 (2020). https://doi.org/10.1016/j.softx.2020.100407

54. kPWorkbench. https://github.com/kernel-p-systems/kpworkbench
55. P. Kuhn, K. Wagner, K. Heil, M. Liss, N. Netuschil, Next generation gene synthesis: from

microarrays to genomes. Eng. Life Sci. 17(1), 6–13 (2017). https://doi.org/10.1002/elsc.
201600121

56. J.C. Lagarias, Point lattices, in Handbook of Combinatorics, vol. 1 (1996), pp. 919–966
57. R. Lefticaru, S. Konur, Ü. Yildirim, A. Uddin, F. Campean, M. Gheorghe, Towards an

integrated approach to verification and model-based testing in system engineering, in Pro-
ceedings of the 2017 IEEE International Conference on Internet of Things (iThings) and IEEE
Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social
Computing (CPSCom) and IEEE Smart Data (SmartData), Exeter, 2017 (2017), pp. 131–138.
https://doi.org/10.1109/iThings-GreenCom-CPSCom-SmartData.2017.25

58. R. Lefticaru, M.E. Bakir, S. Konur, M. Stannett, F. Ipate, Modelling and validating an
engineering application in kernel P systems, in Membrane Computing (CMC 2017), ed. by
M. Gheorghe, G. Rozenberg, A. Salomaa, C. Zandron. Lecture Notes in Computer Science,
vol. 10725 (2018), pp. 183–195. https://doi.org/10.1007/978-3-319-73359-3_12

59. C. Priami, Stochastic π-calculus. Comput. J. 38(7), 578–589 (1995). https://doi.org/10.1093/
comjnl/38.7.578

60. Pulse Generator Case Study. https://sysbio.infobiotics.org/models/pulseGenerator/
pulseGenerator.html

https://doi.org/10.1017/S0269888914000228
https://doi.org/10.1109/TCBB.2014.2362531
https://doi.org/10.1007/978-3-642-15461-4_42
https://doi.org/10.1016/j.robot.2011.10.005
https://doi.org/10.1016/j.robot.2011.10.005
https://doi.org/10.1016/j.tcs.2013.07.012
https://doi.org/10.1016/j.tcs.2013.07.012
https://doi.org/10.1007/s00165-013-0277-4
https://doi.org/10.3233/FI-2014-1093
https://doi.org/10.1021/sb500134w
https://doi.org/10.1109/HPCC-CSS-ICESS.2015.253
https://doi.org/10.1007/978-3-319-33921-4_25
https://doi.org/10.1007/978-3-319-33921-4_25
https://doi.org/10.1016/j.softx.2020.100407
https://github.com/kernel-p-systems/kpworkbench
https://doi.org/10.1002/elsc.201600121
https://doi.org/10.1002/elsc.201600121
https://doi.org/10.1109/iThings-GreenCom-CPSCom-SmartData.2017.25
https://doi.org/10.1007/978-3-319-73359-3_12
https://doi.org/10.1093/comjnl/38.7.578
https://doi.org/10.1093/comjnl/38.7.578
https://sysbio.infobiotics.org/models/pulseGenerator/pulseGenerator.html
https://sysbio.infobiotics.org/models/pulseGenerator/pulseGenerator.html

References 99

61. Repressilator Case Study. http://sysbio.infobiotics.org/models/repressilator/repressilator.html
62. F.J. Romero-Campero, H. Cao, M. Camara, N. Krasnogor, Structure and parameter estimation

for cell systems biology models, in Proceedings of the 10th Annual Conference on Genetic
and Evolutionary Computation (GECCO ’08), Atlanta, GA, USA, July 12–16, 2008 (2008),
pp. 331–339. https://doi.org/10.1145/1389095.1389153

63. F.J. Romero-Campero, J. Twycross, M. Cámara, M. Bennett, M. Gheorghe, N. Krasnogor,
Modular assembly of cell systems biology models using P systems. Int. J. Found. Comput. Sci.
20(3), 427–442 (2009). https://doi.org/10.1142/S0129054109006668

64. F.J. Romero-Campero, J. Twycross, H. Cao, J. Blakes, N. Krasnogor, A multiscale modeling
framework based on P systems, in Membrane Computing (WMC 2008), ed. by D.W. Corne, P.
Frisco, Gh. Păun, G. Rozenberg, A. Salomaa. Lecture Notes in Computer Science, vol. 5391
(2009), pp. 63–77. https://doi.org/10.1007/978-3-540-95885-7_5

65. D. Sanassy, H. Fellermann, N. Krasnogor, S. Konur, L. Mierlă, M. Gheorghe, C. Ladroue,
S. Kalvala, Modelling and stochastic simulation of synthetic biological Boolean gates, in
Modelling and Stochastic Simulation of Synthetic Biological Boolean Gates, 2014 IEEE
International Conference on High Performance Computing and Communications, 2014 IEEE
6th International Symposium on Cyberspace Safety and Security, 2014 IEEE 11th International
Conference on Embedded Software and Syst (HPCC,CSS,ICESS), Paris, 2014 (2014), pp. 404–
408. https://doi.org/10.1109/HPCC.2014.68

66. K. Sen, M. Viswanathan, G. Agha, Statistical model checking of black-box probabilistic
systems, in Computer Aided Verification (CAV 2004), ed. by R. Alur, D.A. Peled. Lecture
Notes in Computer Science, vol. 3114 (2004), pp. 202–215. https://doi.org/10.1007/978-3-
540-27813-9_16

67. R. Storn, K. Price, Differential evolution: a simple and efficient heuristic for global optimiza-
tion over continuous spaces. J. Global Optim. 11, 341–359 (1997). https://doi.org/10.1023/A:
1008202821328

68. F.J.W. Symons, Introduction to numerical Petri nets, a general graphical model of concurrent
processing systems. Aust. Telecommun. Res. 14(1), 28–32 (1980)

69. M. Yabandeh, Model checking of distributed algorithm implementations, Ph.D. thesis, IC
(2011). École Polytechnique Fédérale de Lausanne. https://doi.org/10.5075/epfl-thesis-4858

http://sysbio.infobiotics.org/models/repressilator/repressilator.html
https://doi.org/10.1145/1389095.1389153
https://doi.org/10.1142/S0129054109006668
https://doi.org/10.1007/978-3-540-95885-7_5
https://doi.org/10.1109/HPCC.2014.68
https://doi.org/10.1007/978-3-540-27813-9_16
https://doi.org/10.1007/978-3-540-27813-9_16
https://doi.org/10.1023/A:1008202821328
https://doi.org/10.1023/A:1008202821328
https://doi.org/10.5075/epfl-thesis-4858

5Molecular Physics and Chemistry
in Membranes: The Java Environment
for Nature-Inspired Approaches (JENA)

5.1 Introduction

Molecules turn out to form a perfect medium for data storage and information
processing carried out by dedicated chemical reactions or physical effects. By means
of these interactions, molecules might be modified, selected, or spatially separated
by specific attributes. Moreover, molecules stand out due to their miniaturized
size within a nanometer scale [36]. Since molecules are composed of atoms or
ions, they come with an inner spatial structure sustained by specific chemical
bonds and resulting forces [29]. A molecule “stores” its inner structure which
is responsible for molecular attributes like overall mass, binding energy, electric
charge, and chemical reactivity reflecting unsaturated binding sites and valences.
From a descriptive point of view, molecules represent an excellent workpiece: On
the one hand, they are small enough in a way that gravity has merely an insignificant
and mostly negligible effect on their behavior, but on the other hand, they are
large enough to commonly overcome influences of stochastic quantum physics and
partially unknown consequences of strong nuclear power [12]. The behavior of
molecules follows the laws of thermodynamics [1,34] and mechanics mainly driven
by mechanical and electrical forces, especially electrostatics [3]. The underlying
rules, formulated either in an explicit manner or by statistical statements, provide a
well-balanced basis for modelling and simulation in membrane computing.

Having these facts in mind, the idea arises to create a software system for
membrane computing operating at the level of single spatially distributed molecules
in a vessel and emulating their interactions. Its aim is bridging the gap between
highly abstract and strongly idealized formal term-rewriting modelling tools like
P-Lingua [8, 27] and expensive systems for detailed molecular dynamics like
Amber [2, 31] including almost all known physical effects able to slightly influence
molecular structures in time and space which implies advanced demands in high-
performance computing. For our approach, we envisage a software tool acting at

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2021
G. Zhang et al., Membrane Computing Models: Implementations,
https://doi.org/10.1007/978-981-16-1566-5_5

101

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-16-1566-5_5&domain=pdf
https://doi.org/10.1007/978-981-16-1566-5_5

102 5 Molecular Physics and Chemistry in Membranes: The Java Environment. . .

a medium level of abstraction and able to exhibit the most relevant aspects of the
dynamical behavior of a molecular system under study. In this way, we are going
to capture principles of biological information processing along with an illustrative
visualization.

Interestingly, biochemistry and biophysics typically take place within liquids,
particularly within water in its liquid form [14, 17]. A biological cell in a living
organism is formed by an outer delimiting but flexible and permeable phospholipid
membrane mainly filled with water. Inner membranes define subcellular compart-
ments in which the presence of special molecules along with specific environmental
conditions like pH value enables different specialized tasks [21]. An average
biological cell consists of approximately 109 molecules, between 60% and 80%
of them water [20]. Beyond molecular interactions within living cells in vivo,
molecular biological processes can also be carried out in vessels or test tubes in
vitro [5]. Corresponding laboratory techniques have in common that the molecules
are treated in liquid water as well. Aiming at a virtual cell and a virtual laboratory,
our membrane computing software is conceived by the imagination to have at least
one reaction space surrounded by a membrane or a barrier and filled with a liquid.

The software as a whole should cover four tasks: (1) definition of a molecular
system with its initial spatial placement of molecules in terms of a liquid and spec-
ification of a delimiting vessel or outer membrane, (2) configuration of processing
specifications like chemical reactions, electrical or mechanical forces the vessel
or membrane is exposed to, (3) simulation of system’s behavior by running the
process in time and space with motion of molecules, tracing the interactions among
molecules and between molecules and membrane, and visualization of system’s
dynamics, and (4) analysis of the emulated process by histograms and statistical
evaluations (see Fig. 5.1).

From a technical point of view, the software is planned to be modular. So it
can be successively extended in order to manage more and more types of processes
beyond chemical reactions like diffusion or osmosis, but also blotting, separation,
and filtering techniques based on dedicated physical effects. In addition, the pool
of visualization, analysis, and evaluation methods is intended to grow in the long
term as well. All modules communicate to each other and exchange data via
interfaces. Another crucial feature lies in a strict object-oriented implementation
which supports the handling of molecules at different stages of detailedness such
as with or without inner structure and with varying settings of attributes. The
response of molecules to consequences of the process under study can be adapted
in accordance with the available amount of molecular data. Moreover, the user
interface should be appropriate and easy to obtain. We decided to utilize Java
as programming language due to its advantageous properties [7]. Since teams of
students are involved in software development, the popularity of Java in teaching
and in practice gives a further argument. Summarizing all together, we created the
name “Java Environment for Nature-inspired Approaches”, JENA for short [15],
for our membrane computing software which expresses a homage to our university
located in the city with the same name.

5.1 Introduction 103

z

x

y

serotonin

sp
ec

ie
s c

on
ce

nt
ra

tio
ns

 (m
ol

/l)

serotonin

glutamate

water

time (minutes)

(2) (3)

(4)

(1)

Fig. 5.1 Schematic illustration of the main steps when employing the Java Environment for
Nature-inspired Approaches (JENA): (1) definition of a molecular system, (2) configuration of
processing specifications, (3) simulation of system’s behavior, and (4) analysis and evaluation

Our main motivation for the JENA project is the idea to bring models of
membrane computing closer to real-life processes. Particularly, the role of time for
adjustment of processing schemes toward orchestrated functional units might be a
major clue for understanding of biological control loops [18] and clock systems [16]
acting as triggers for numerous facets of life.

When examining state-of-the-art models of systems biology or bioinformatics
in which the course of molecule concentrations over time is obtained, we notice
that the mathematical formulation of the model often contains abstract process
parameters whose values are hard to determine or need to be fitted. In case of
chemical reactions described by ordinary differential equations according to the
rules of mass action or other kinetics. For instance, there are rate constants so-
called Arrhenius terms [4]. It belongs to a common practice to assign a rate constant
value that reaches the best possible fit of the model to the observations. More or
less, abstract macroscopic parameters like rate constants reflect the most likely
superposition of a large number of microscopic effects at the molecular level. The
microscopic effects in turn result from the natural laws of thermodynamics and
molecular mechanics. Here, molecules move within space able to collide and to
interact like billiard balls. This coincides with the basic idea we adopt for our
modelling approach. Since the Brownian motion of molecules characterizes liquids
[25], we combine it with force fields able to deflect, to accelerate, and to slow down
molecules. Forces arise from molecular motion, from unsaturated binding sites of
molecules, or from environmental influences like an applied voltage. Simulation
studies of a molecular system’s behavior conducted in this way can help to reveal
abstract process parameter values and explain their assignment.

104 5 Molecular Physics and Chemistry in Membranes: The Java Environment. . .

Biological information processing can be seen as an interplay of manifold
chemical reactions and physical processes operating in concert [28]. They might run
simultaneously inside the same membrane, but they can also be organized within
a cascade of adjacent membranes, or they utilize dynamical membrane structures
capable of dividing a membrane into two parts or unification of either membranes
into one. Due to the permeable nature of a membrane, molecules can selectively
pass via channels or get blocked.

A fascinating biological example for an interplay of distinct processes and
membranes is given by neural signal transduction across a synaptic cleft between
connected neurons in higher-order multicellular organisms [22]. A neuron produces
a sequence of spikes based on its input stimulations and their weighted summation.
The spikes represent electrical signals mediated by subsequent thrusts of positively
charged natrium (sodium) and other ions. They spread through the axon of the
neuron towards its synapse. The distance of an axon varies from less than 1 mm up
to more than 1 m [6]. An axon is equipped with a cascade of membranes connected
via ion channels. A spike of ions generates a so-called action potential which in
turn temporarily opens one ion channel after the other in a way that the spike runs
through the entire axon. Its speed reaches up to 140 m

s [10]. Typically, a spike is
followed by other ones forming a sequence over time whose duration and frequency
(temporal distance between consecutive spikes) determine the information to
transmit. The opposite tail of an axon is called synapse in which vesicles filled
with neurotransmitters reside. There are around 60 variants of neurotransmitters
available, each of them symbolizing a molecular messenger [23]. Subject to duration
and frequency of the spike sequence entering the synapse, a specific combination
of neurotransmitters gets released. To this end, corresponding vesicles move to
the surface of the synapse and undergo an exocytosis [32]. This process opens
vesicle’s membrane, and its containing neurotransmitters leave the hosting neuron.
By diffusion [33], they traverse the synaptic cleft to the adjacent neuron and finally
bind to receptors placed on its outer dendritic face. This implies an activation of ion
channels and leads to transformation of the chemical signal into an electrical signal
to be evaluated as an input stream. A neuron is able to receive several thousands
of input streams from its dendrites connected with upstream neurons. These input
signals are weighted and summarized. When exceeding a threshold, they stimulate
the neuron to fire by producing a new sequence of spikes. What stands out is that
underlying processing schemes incorporate several compartments and a variety of
cells to achieve the final outcome. So biological information processing becomes
manifest in time and space [26]. We accommodate this property by taking into
account the outer environment of a membrane for input and output of molecules.
Additionally, we allow the JENA system to manage a multiplicity of membranes
and vessels.

The JENA chapter is structured as follows: In Sect. 5.2, we familiarize the reader
with the configurability and the features of JENA at its current state of implemen-
tation in 2020 from a user’s perspective along with the underlying natural laws and
basic knowledge from chemistry and physics relevant for employment of JENA.
We shed light on JENA’s descriptive capacity from a modelling point of view. We

5.2 JENA at a Glance and Its Descriptive Capacity 105

show how to specify molecules, membranes, vessels, physical processes, chemical
reactions, and handling of multiple membranes. Furthermore, we introduce the
simulation engine and tools for visualization and analysis. After all, Sect. 5.3 is
dedicated to the JENA source code design from a technical standpoint. We give
an overview of modules, packages, and their structure and interplay. Especially
for visualization, some predefined classes from the SRSim Library [11] have been
used. Finally, four case studies presented in Sect. 5.4 demonstrate the practicability
of JENA for modelling and simulation in membrane computing. We exemplify a
chemical Lotka-Volterra oscillator [24], show the effects of electrophoresis [19]
and centrifugation as laboratory techniques driven by external forces, and present
a model of neural signal transduction across a synaptic cleft.

5.2 JENA at a Glance and Its Descriptive Capacity

In this section, we introduce the features and expressiveness of JENA for modelling
and simulation of molecular systems over time and in space. In this context, we
reflect and recall the underlying natural laws and their formalisms from physics
and chemistry the JENA software is based on. So the adopted medium level
of abstraction becomes apparent, and the descriptive capacity together with its
capabilities and limitations emerges from the range of knowledge in natural sciences
incorporated into JENA’s engines.

We start with the smallest elementary entities managed in the system: atoms and
ions. Their attributes like mass, electric charge, and degree of saturation of the outer
orbital of electrons are responsible for their properties and for their behavior since a
variety of forces (strength and direction) affecting motion, acceleration, speed, and
reactivity result from the entire force field. Atoms can bind to each other forming
molecules with a three-dimensional structure of atoms. Each chemical bond comes
with additional parameters like binding energy and binding length which defines
molecule’s stability and the activation energy necessary to modify its structure by
breaking or setting chemical bonds. Molecules can also arise from ions attached to
each other with alternating positive and negative electric charge composing an ion
lattice which in turn acts and reacts with respect to the force field. We assume atoms,
ions, and molecules to follow a Brownian motion typical for a solution of liquid
water. The existence of membranes and barriers from solid material delimiting a
processing space requires consideration of elements and building blocks able to
resist a permanent motion. Instead, they keep their position within a nearly fixed,
large, and dense spatial structure sticked together by stronger forces. To this end,
we allow for formation of particles either composed of atoms, ions, and molecules
or freely configured as sized building blocks. Membranes may contain channels,
receptors, and openings making them permeable and able to control passage from
outside to inside and vice versa. Beyond creation of solid membranes or delimiters,
particles are helpful entities in order to capture abstract substrates without definition
of an inner structure but moveable within the surrounding liquid volume.

106 5 Molecular Physics and Chemistry in Membranes: The Java Environment. . .

Having the specification of initial atoms, ions, molecules, and particles at
hand, one or more vessels can be created and filled together with additional
water molecules. A vessel is a coherent finite three-dimensional space placed
within a Cartesian coordinate system and completely enclosed by membranes
and/or delimiters. A vessel consists of a finite number of inner adjacent volume
elements. Membranes or delimiters are built by connected particles whose spatial
placement decides about the shape of a vessel. Membranes and delimiters can
be defined in a way that several vessels occur. Each of them constitutes an
individual volume given by the number of inner volume elements. Eventually, each
vessel becomes initially filled with the corresponding atoms, ions, molecules, and
moveable particles according to given substance concentrations. Additional water
molecules complement each vessel. When filling a vessel, the spatial distribution
of all containing elements matters which can either represent a homogeneous
placement or emulate a punctiform injection. All elements of a vessel have been
assigned an initial speed, orientation, and direction of movement in accordance with
the Maxwell-Boltzmann distribution which relies on the configurable temperature
among others. Now, the Brownian motion of all moveable elements of all vessels
might start after the initial configuration of the whole molecular system under study
is set (see Fig. 5.2).

Assuming a liquid to be existing within each vessel of the system, the average
spatial distance between neighbored moveable elements lies within the magnitude
of the medium size of a molecule. This implies a quite dense package of the
atoms, ions, molecules, and particles which enables numerous interactions. Each
moveable element comes with an individual amount of kinetic energy which mainly
marks out its movement. Additional accelerations or slowdowns might be caused
by electrostatic charges located in atoms or ions whose outer orbital of electrons
is unsaturated. Resulting Coulomb forces can deviate other moveable elements

100 time (s)500

Fig. 5.2 Artificial molecular system composed of different types of particles during Brownian
motion. Collisions among particles might cause chemical reactions

5.2 JENA at a Glance and Its Descriptive Capacity 107

with similar or with complement properties from their trajectory. We organize
the simulation of Brownian motion in a time-discrete manner. Each atom, ion,
molecule, or particle is located within a volume element of the residing vessel. By
conducting a time step, it might leave this volume element and enter a different one.
Interactions of atoms, ions, molecules, and particles result in collisions among each
other and with the solid particle structures forming membranes and delimiters. A
collision can initiate a chemical reaction in case the kinetic energy of all involved
atoms, ions, molecules, and particles in total reaches or exceeds the required
activation energy. A configurable list of possible reactions together with activation
energies has been defined for each vessel. When reacting, the collision is said to
be nonelastic and effective. Chemical bonds of the substrates get rearranged, and
reaction products emerge which in turn move through the vessel along a new route.
Particles incorporated in the solid structures of membranes or delimiters might
be involved in reactions as well. Collisions with too less kinetic energy run in
an elastic manner similar to a reflection. Here, all atoms, ions, molecules, and
particles stay intact without any modification of chemical bonds, and they continue
their movement with a different direction. A special case of a chemical reaction
is called decay. Here, a molecule or particle can spontaneously decompose without
any collision. If a decay reaction has been defined in a vessel, its substrate molecules
or particles have been marked with individual points in time in which the decay will
occur. The point in time is estimated from the speed and from the decay reaction’s
activation energy in accordance with laws of thermodynamics.

Furthermore, external forces applied to a vessel might affect the movement of
containing atoms, ions, molecules, and particles constituting the liquid. We distin-
guish mechanical and electrical external forces. A typical example for application of
mechanical forces is centrifugation. Here, all moveable elements of a vessel receive
an additional acceleration in the direction of the applied force. The intensity of
acceleration depends on their individual mass. Since all moveable constituents of the
vessel undergo applied mechanical forces, the Brownian motion gets perturbed for a
while commonly resulting in more elastic collisions reflecting the effect of friction.
In contrast, application of electrical external forces can be done by a voltage causing
an electric field spatially distributed throughout the hosting vessel. It influences the
movement of all electrically charged ions, molecules, and particles while atoms
remain unaffected. A typical example is electrophoresis but also the functioning
of ion channels.

Membranes and delimiters composed of particles are helpful in order to separate
a processing space into different vessels or compartments which in turn can be
equipped with various initial settings of substrate atoms, ions, molecules, and
particles. Membranes and delimiters have been treated as solid structures without
Brownian motion and surrounded by liquids. Delimiters intend to act as a barrier
impassable for moveable atoms, ions, molecules, and particles forming a liquid.
In contrast, a membrane enables passage of constituents of a liquid by presence
of ion channels or by small openings, and it might interact with their environment
by receptors. An ion channel residing in a membrane is shaped by some particles
representing the outer cover, a particle having the function of a gate and electrical

108 5 Molecular Physics and Chemistry in Membranes: The Java Environment. . .

external forces able to temporarily open and to close the gate. Particles utilized for
delimiters and membranes are allowed to act as substrates or catalysts for chemical
reactions. In this way, delimiters and membranes can be dissolved. Remaining single
particles with no bond to the solid structure become moveable and can be degraded
by further reactions. Moreover, we allow placement of particles into the molecular
system by configuration at any discrete point in time. This feature can be employed
to create delimiters and membranes on the fly. The dynamics of active membranes
and variable delimiters makes the JENA software more flexible for modelling and
simulation.

The entire molecular system under study captured by JENA is embedded into a
cuboid placed in a three-dimensional Cartesian coordinate system and composed of
many small cubical-shaped volume elements. These volume elements represent the
smallest unit (lattice) for particles as parts of solid structures and for atoms, ions,
molecules, and particles forming the liquids. A configuration of the entire molecular
system is given by a list of all volume elements indicating for each volume element
the contained atoms, ions, molecules, and particles. A simulation of system’s
behavior over time sums up all configurations over the discrete points in time
resulting in a logging data set. This data set becomes employed for all subsequent
visualizations and analyses. Visualizations depict configuration series of the system
under study from a freely configurable observer’s perspective or at an arbitrary
plane (layer) parallel to two of the coordinate system’s axes. Analyses result in
histograms and diagrams obtained from evaluation of the data set. Abundance of
atoms, ions, molecules, and particles can be showed over time. The spatial trace of a
single molecule or particle is available as well. In addition, statistical parameters like
temperature and speed distribution, collision frequency, and percentage of different
energy forms complete the analytic features of JENA.

5.2.1 Atoms, Ions, Molecules, and Particles

Atoms
Atoms embody the spheric components from which matter as physical substance
in its solid, liquid, or gaseous state is made up. Material properties of substances as
well as their behavior in chemical reactions have been defined by the atoms and their
spatial arrangement. Each atom belongs to a chemical element listed in the periodic
table. There are 92 naturally produced elements found on earth. They differ by their
inner structure, by their mass, by their spheric size, and by their reactivity.

An atom consists of a small nucleus surrounded by an atomic shell. The nucleus
is composed of a dense packing of protons and neutrons. Protons are positively
electrically charged, sticked together by strong nuclear power active within the
small radius of the nucleus. Each chemical element is characterized by an individual
number of protons residing in the atomic nucleus ranging from 1 (hydrogen) to
92 (uranium). There exist further unstable chemical elements with more than 92
protons which have been artificially produced and tend to spontaneously decay in
the short term. Most of the chemical elements host a specific number of neutrons

5.2 JENA at a Glance and Its Descriptive Capacity 109

inside the nucleus in addition to the protons. For one element, the number of
neutrons might slightly vary. So a chemical element might be available in several
isotopes according to the number of neutrons. The nucleus of an atom as a whole is
positively electrically charged due to the contained protons. Although a nucleus is
extremely small within a magnitude of few femtometers (10−15 m), it summarizes
more than 99% of the mass of an atom.

The surrounding atomic shell comprises around 100,000-fold of the nucleus’
diameter. It is structured by nearly spherically layers of orbitals in which electrons
are located. An electron is negatively electrically charged. In an atom, the number
of protons in the nucleus is in parity with the total number of electrons in the shell.
This implies an electrically neutral state of the entire atom taken as an entity. The
orbitals forming the atomic shell conically enclose the nucleus. Each orbital comes
with a maximum number of electrons able to include. While the innermost orbital
can merely host up to two electrons, each of the next both orbitals might manage 8
of them followed by two orbitals, each of them able to carry up to 18 electrons and
finally having two orbitals with each of them giving room for up to 32 electrons.
Electrons start to fill the innermost orbital. After its capacity has been exhausted,
the next orbital gets occupied.

The degree of saturation of the outermost orbital with electrons (valence) is
mainly responsible for the reactivity and for the kind of chemical reactions the
atom can be involved in. Electrons in the outermost orbital might interact with
corresponding electrons from another atom nearby. To do so, both atoms can
completely fill their outermost orbitals by sharing common electrons. To this end,
both outermost orbitals interfere with each other. A residing electron of the one
atom can pair with its counterpart from the other atom to form a covalent chemical
bond sticking both atoms to each other. In case of atoms whose outermost orbital is
completely filled from the beginning with a number of electrons at its capacity limit
(inert gases), there is no reactivity.

The mass of an atom results from the number of protons, neutrons, and electrons
it is composed of. A proton contributes a mass of 1.672621923 ·10−27 kg, a neutron
1.674927498 · 10−27 kg, and an electron merely 9.109383702 · 10−31 kg. Since the
majority of chemical elements found on earth is available in a mixture of isotopes
whose number of neutrons slightly varies, it is a common practice to choose an
average number of neutrons according to the relative abundance of all known stable
isotopes. The periodic table assigns a corresponding molar mass to each chemical
element which stands for the mass in g of 6.02214076·1023 atoms (amount of 1mol).

In case of the chemical element carbon (symbolized by C; see Fig. 5.3) over all
stable isotopes, the periodic table exhibits an average molar mass of 12.0116 g

mol .
This corresponds to a mass of approximately 2.008 · 10−26 kg. Moreover, the
periodic table reveals a radius of 76 pm (picometers whereas 1 pm = 10−12 m) for
carbon atoms. Their nucleus accommodates six protons, and their outermost orbital
hosts four electrons having a capacity of eight.

110 5 Molecular Physics and Chemistry in Membranes: The Java Environment. . .

++

+

+

+

+

_

_

_

__

_

Fig. 5.3 Schematic representation of an atom of the chemical element carbon (isotope 12C). Its
nucleus contains six protons (+) and six neutrons. Six electrons (−) have been distributed within
two orbitals. The inner one is completely filled with two electrons while the outer one possesses
four having a capacity of eight. Seldomly (<1%), naturally produced carbon atoms exist as 13C
isotopes accommodating seven instead of six neutrons in its nucleus

For all 92 naturally occurring and stable chemical elements from hydrogen (H, 1
proton) to uranium (U, 92 protons), we keep at hand the name, the symbol, the mass,
the radius of the atoms, the number of protons, and the number of electrons in the
outermost orbital in relation to its capacity. This set of parameters marks each atom.
For schematic representation, we depict an atom by a sphere without inner structure.

Ions
While atoms have in common that the number of protons residing within the nucleus
is in parity with the number of electrons distributed within the orbitals of the
atomic shell, ions deviate from this property. They can either accumulate additional
electrons which leads to a negative electric charge or they might emit electrons from
their outermost orbital which in turn results in a positive electric charge. Ions tend
to have completely filled orbitals of electrons avoiding orbitals whose capacity is
not exhausted. In case the outermost orbital carries only one or few electrons, they
typically get emitted to obtain a positively charged ion. In contrast, a nearly filled
outermost orbital attracts further electrons generating negatively charged ions. A
configuration of electrons in which all used orbitals have been completely filled
turns out to be more energy efficient for the ion than others making the entire
subatomic structure more stable. Typically, the number of accumulated or emitted
electrons ranges from one up to three, whereas chemical elements being metals
produce mainly onefold, twofold, or threefold positively charged ions (cations)
like sodium ions (Na+), magnesium ions (Mg2+), or iron ions (Fe3+). Nonmetals
mostly generate negatively charged ions (anions). Examples are chlorine ions (Cl−),

5.2 JENA at a Glance and Its Descriptive Capacity 111

oxygen ions (O2−), or phosphide ions (P3−). Ions with an electric charge balance
greater than +3 or smaller than −3 are extremely rare. It might happen that several
atoms chemically bind to each other before becoming a polyatomic ion.

We illustrate an ion by a sphere whose radius corresponds to the radius of
the underlying atom. Since the electrons contribute to an ion’s mass merely in a
negligible manner, the mass of an ion is set to the same value of its underlying
atom. Having in mind the ion model consisting of nucleus and surrounding spherical
electron orbitals, we assign ion’s radius by copying the radius of its underlying atom
which holds in acceptable approximation. For the parameter set characterizing an
ion, we add to the parameters of the underlying atom its electric charge balance by
the corresponding integer number.

Since ions are electrically charged with respect to their environment, they induce
an electrical force (Coulomb force) attracting other ions with opposite charge and
pushing away other ions with correspondent charge. These forces can be strong
enough to affect the motion route of ions present close to each other in a vessel. So
we need to capture all electrical forces by modelling their influence to the motion of
ions.

The elementary electric charge of e = 1.602176634·10−19As (Ampere seconds)
is the smallest portion of electric charge to be distinguished. An electron is said to
exhibit the charge −e, while a proton possesses +e. In consequence, an ion marked
with a charge balance −n has a total charge of −n · e, while an ion with +n reaches
n · e, respectively.

Two (spherical) ions with charges q1 and q2 whose spatial distance is r affect to
each other by a Coulomb force |FQ| of

|FQ| = 1

4 · π · ε0
· |q1| · |q2|

r2 (5.1)

whereas ε0 = 8.854187812 · 10−12 As
Vm symbolizes the absolute dielectric vacuum

permittivity, a physical constant. The Coulomb force |FQ| is directed along the line
from the central point of one ion to its counterpart from the other. If both ions
are oppositely charged, their Coulomb forces are attracting to each other. In case
of correspondent charge, the Coulomb forces have a push-away effect. To do so,
Coulomb forces can accelerate both incorporated ions since

|FQ| = m · |a| (5.2)

holds with m representing ion’s mass and |a| its acceleration. The acceleration
increases the speed |v| of the ion over time step �t by |v| = |a| ·�t . During motion,
the distance r between the ions changes again which in turn results in a modified
Coulomb force. The larger the distance r , the weaker is its effect and vice versa.

Since a vessel can contain many ions (much more than two), all pairwise
interactions between them caused by Coulomb forces need to be calculated and

112 5 Molecular Physics and Chemistry in Membranes: The Java Environment. . .

superpositioned (added) for each single ion in order to obtain the entire effect. Here,
it is more convenient to utilize a vector-based mathematical formulation. Let us
assume that the central point of each ion i is represented by a three-dimensional
vector ri . Another ion k is located at rk. The Coulomb force vector Fik(ri) affecting
ion i by k can be formulated by:

Fik(ri) = qi · qk

4 · π · ε0
· 1

|ri − rk|3 · (ri − rk) (5.3)

For the resulting total Coulomb force Fi (ri) affecting ion i, all forces Fik(ri)

have to be vectorially summed up over k by:

Fi (ri) = Fi1(ri) + Fi2(ri) + . . . + Fik(ri) =
∑

k

Fik(ri) (5.4)

Ion i’s total acceleration ai (ri) constitutes ai (ri) = 1
mi

· Fi (ri). Within one time
step �t , the velocity vi (ri) of ion i incrementally changes by �vi (ri) = ai (ri) · �t

updating its speed vector.

Molecules
A compound formed either by a number of atoms or by a mixture of atoms and
ions or even exclusively by ions is called molecule. A molecule might consist of a
multiplicity of one chemical element. Alternatively, it can be composed of a variety
of chemical elements as well. All molecules have in common that the number of
underlying atoms and/or ions is finite. At least two are required, but biomolecules
are able to reach up to several thousands of them. Each molecule is characterized
by its three-dimensional typically static spatial structure in which all incorporated
atoms and/or ions are placed. Chemical bonds in concert with electrostatic forces
cause the spatial structure of a molecule.

A chemical bond that links two atoms or one atom with one ion mainly results
from an electron pair and is said to be covalent. Here, electrons residing in
the outermost orbitals of either atoms interact with each other. Each atom and
each ion tend to completely fill its outermost orbital with electrons exhausting
its capacity due to the comparatively lower level of inner energy necessary to
maintain this configuration. Atoms from chemical elements whose outermost orbital
is completely filled a priori (inert gases like helium) are unable to contribute to
molecules. All other atoms and most of the ions can act as components of molecules.
In order to set a single covalent bond, two atoms or one atom and one ion need
to approximate to each other in a way that both outermost orbitals interfere. An
electron from the one orbital and its counterpart from the other one develop an
electron pair. Both orbitals share this electron pair which in turn increases the
number of electrons in each of the orbitals by one. In consequence, both orbitals
are a bit more filled than before existence of the electron pair. Since an outermost
orbital might contain more than one electron, an atom or ion can be involved in more
than one electron pair with one or with several adjacent atoms or ions and hence

5.2 JENA at a Glance and Its Descriptive Capacity 113

set up more than one covalent chemical bond. The spatial distance between the
central points of two atoms or of an atom and an ion linked by a covalent chemical
bond is called bond length. Typically, it ranges between around 70 pm and 250 pm.
Moreover, each covalent chemical bond exhibits an individual binding energy. It is
defined as the amount of energy necessary to break (destroy) the underlying bond.
The higher the binding energy, the stronger is the chemical bond. Binding energies
of single covalent chemical bonds among atoms vary in a magnitude of several
hundred kilojoule per mol, mostly between 150 kJ

mol and 600 kJ
mol .

A compound exclusively built from ions can persist nearly without covalent
chemical bonds, but instead, the ions mainly stick together by electrostatic forces
forming an ion lattice. As a whole, it can be seen as a molecule in the broader
sense even if no electron pair is present. An ion lattice describes a spatial structure
of ions. In an alternating manner, positively charged and negatively charged ions
attract to each other by Coulomb forces induced in the central point of each involved
ion. Two ions of opposite electric charge are linked by ionic bonding. In the lattice
structure, neighbored ions can come close to each other until their distance is equal
to the sum of both radiuses. Corresponding lengths of ionic bondings are in a range
from approximately 150 pm to 400 pm. The strength of an ionic bonding might be
even higher than those of a single covalent chemical bond since its binding energy
typically exceeds 170 kJ

mol and can reach up to 1500 kJ
mol .

For later simulation and processing, we need to create a data record of the
spatial structure of each molecule together with its chemical bonds. All copies of
a molecule present in the entire vessel system share this data record. The basis of
each molecule’s data record is a three-dimensional Cartesian coordinate system in
picometer scale. Inspired by the notion of a space-filling model (calotte model),
each atom and ion incorporated into a molecule is considered to be a sphere able
to intersect with others. We manually assign a three-dimensional position vector to
any central point of the atoms and ions. Geometry and orientation of the resulting
spatial structure provide the anchor points for the molecular skeleton. In addition to
the position vector, each atom and ion is marked by its identifier (chemical symbol)
which enables access to the corresponding data sets taken from the periodic table. In
order to complete a molecular data record, all chemical bonds have to be included
as well. A chemical bond is parameterized by both of its linked atoms or ions
complemented by the binding energy and by the information whether it is a covalent
bond, an ionic bonding, or a mixture of both forms. The bond length directly results
from the Euclidean distance of either underlying atoms or ions.

Having finalized the data contributing to a molecular data record, a schematic
representation of the described molecule for visualization is required. Here, we
decided to virtually circumscribe each molecule by a spheric cover whose radius
is determined by the spatial dimension of the molecule. The advantage of utilizing
a spheric cover is the fact that the spatial orientation of the molecule does not
matter and can be ignored when running a simulation. The radius of the spheric
cover is figured out by the largest distention of the molecule regarding x-, y-, and

114 5 Molecular Physics and Chemistry in Membranes: The Java Environment. . .

x

z

y

z

H H

H H
O

structural formula

O

104°

0

60
0
76−76

0
60

r=73pm

x

r=31pm r=31pm

l=97pm l=97pm

oxygen

hydrogen hydrogen

0
0

spheric cover
r=108pm

Fig. 5.4 A water molecule (H2O) is composed of three atoms: one atom from the chemical
element oxygen (O) linked with two atoms of hydrogen (H) by two separate single covalent
chemical bonds. The oxygen atom has a radius of 73 pm, each hydrogen atom 31 pm, respectively.
The outermost orbital of the oxygen hosts 6 out of 8 possible electrons while each hydrogen’s
orbital carries 1 electron having a capacity of 2. So two electron pairs arise. In consequence, all
outermost orbitals have been completely filled. Each of both electron pairs originates a single
covalent chemical bond whose length is 97 pm with a binding energy of 463 kJ

mol . The angle
between both bonds constitutes 104◦. Within a three-dimensional Cartesian coordinate system
in picometer scale, we denote central point’s coordinates of all atoms complemented by the
parameters of all chemical bonds. Finally, the entire molecule gets circumscribed by a spheric
cover (indicated by a dotted shape) whose radius r = 108pm results from the spatial dimension of
the molecule

z coordinate axes. Figure 5.4 illustrates the composition of a water molecule by its
atoms and their spatial positions together with all further parameters.

Particles
Explicitly defined atoms, ions, and molecules have been assumed to be individually
moveable in space within a liquid environment inspired by the compartment’s ingre-
dients of a biological cell or by a test tube contents. When considering biological
systems as a whole on the one hand and in vitro setups like electrophoresis gels
on the other, some kind of solid spatial structures residing inside a vessel are
needed. Solid structures aim to be resistant against Brownian motion. They keep
fixed positions within the three-dimensional space of the underlying vessel, and
they reflect moveable constituents in case of an impact with low speed.

Nevertheless, solid structures might be involved in chemical reactions in case of
collisions with moveable atoms, ions, or molecules which in turn could knock out
parts of the solid structure. Then, these parts dissolve away and become moveable.
Vice versa, colliding atoms, ions, or molecules can also stick to the solid structure
strengthening its shape. Another behavioral scenario of a solid structure might
resemble a biological receptor embedded into a cell membrane. A receptor has an

5.2 JENA at a Glance and Its Descriptive Capacity 115

affinity to specific types of molecules or ions. When colliding with one of those
exemplars, a messenger molecule at the opposite side of the receptor gets released
indicating perception and initiating a signalling cascade. A solid structure formed
like a tunnel and equipped with controllable electric charges placed at dedicated
positions is able to act in terms of an ion channel.

We expect solid spatial structures to be exclusively composed of solid particles.
A solid particle is an abstract box-shaped building block generally marked with an
individual identifier and with the size of the box (length, width, height) in a picome-
ter scale. We provide two possibilities in order to define a solid particle. Firstly, its
contents can be given by a single atom, ion, or molecule to be incorporated into the
solid particle. Here, the box is represented by a cube whose size is quantified in a
way that the volume of the cube equals the volume of the underlying sphere obtained
from the atom, ion, or molecule (see Fig. 5.5a). Secondly, a solid particle is allowed
to be freely configured without any constitutional template by assigning a mass
together with length, width, and height of the box and—if necessary—positions and
variable quantities of electric point charges within the box as shown in Fig. 5.5b.

Freely configurable particles embody a modelling instrument to cope with
different levels of abstraction. Partially unknown molecular structures, for instance,
evident in some proteins or complex organic macromolecules, can be simply
included in a model, and they might interact with other constituents of the molecular
system under study according to predefined chemical reaction rules.

When we conceived the JENA approach, particles primarily have been intro-
duced to exclusively maintain an immoveable behavior at fixed positions within

y

x
z

(b) (c)(a)

+

_

_

+

+

Fig. 5.5 (a) A solid (immoveable) particle has been visualized by a box whose volume equals the
volume of the underlying sphere symbolizing the incorporated atom, ion, molecule, or moveable
particle. (b) A box representing a solid particle is placed in a picometer-scaled three-dimensional
Cartesian coordinate system oriented in parallel to the coordinate axes with freely configurable
length, width, and height. Inside a box, electric point charges might be set at arbitrary positions
if necessary to indicate Coulomb forces. (c) Example of a compound exclusively made from
solid particles sticked to each other. For simplicity, all boxes forming a compound have the same
orientation parallel or orthogonal to each other. A linkage (bond) within a compound connects two
neighbored boxes that typically share a common plane or at least a common point. The coordinates
of this point denoted in the coordinate systems of either boxes specify the position of the linkage
and hence the placement of the boxes related to each other. All boxes in a compound need to be
connected, and loose boxes are not allowed. In case a compound made from solid particles migrates
to a moveable state, a sphere with the same volume as all boxes in total is generated

116 5 Molecular Physics and Chemistry in Membranes: The Java Environment. . .

solid structures. Later on, it turned out to be advantageous to manage particles
in a more flexible way. So a particle is allowed to change its status from solid
(immoveable) to moveable and vice versa by chemical or processing rules. When
dissolved away from a solid structure by means of auxiliary substances, a particle
becomes moveable and starts to follow the Brownian motion throughout the liquid
environment of the hosting vessel. In contrast, a moveable particle can hit a solid
structure and sticks to it by chemical binding. Hence, its status migrates from
moveable to immoveable. In consequence, each particle comes with the variable
attribute whether it is treated to be solid (immoveable) or not. For visualization, we
depict immoveable particles by a box and moveable particles by a sphere, whereas
a particle keeps its spatial volume when transformed from a box to a sphere or back.

Furthermore, the concept of freely configurable moveable particles enables
integration of abstract reaction models within the JENA simulation software
typically managed in membrane computing or artificial chemistries. Nucleotides
found in strands of deoxyribonucleic acid (DNA) or ribonucleic acid (RNA) or other
monomeric units represent typical examples to be captured by particles.

A productive feature of particles is its ability to form compounds among each
other. To this end, particles can attach and bind to each other. Their boxes or
spheres get glued together at the plane and position they touch (see Fig. 5.5c). A
linkage between two neighbored particles can be seen as a chemical bond in the
broader sense. Since its bond length is implicitly set by the size of either boxes
or spheres, we restrict ourselves to parameterize the binding energy if available.
Having in mind that the binding energy in solid material like crystal can reach
more than the fourfold of those found in ionic bondings, values of 6000 kJ

mol or
even more express a high stability. This mechanical robustness can guarantee a
persistence of solid molecular structures acting as support elements which cannot
be destroyed by impacts from colliding atoms, ions, or molecules. However, special
enzymes with catalytic activity are capable of breaking those bonds. An arbitrary
number of particles might connect to form a compound from boxes or from spheres.
All particles subsumed by a compound need to be uniformly marked either to
be moveable or to be immoveable in a freely configurable manner. The rules for
creation of a compound contain this information.

Compounds made from solid (immoveable) particles can successively emerge
by an assembly effect of chemical reactions with colliding constituents. In this
way, even growing compounds of solid particles are able to link together to form a
common compound containing all particle boxes and linkages from its predecessors,
but a (nested) hierarchy of compounds is not managed.

A definition of compounds from solid particles ab initio is supported by the JENA
simulation software. This feature can be used among other things for creation of
permeable membranes placed in a vessel or for description of filaments or backbone
structures. We are aware of the fact that a composition of boxes, all of them placed
with the same orientation, merely provides restricted facilities in order to model
complex surface structures. Nevertheless, the concept of particles together with their

5.2 JENA at a Glance and Its Descriptive Capacity 117

flexibility to toggle between a moveable and immoveable state and equipped with
the capability of forming and decomposing compounds is a strong and expressive
instrument.

5.2.2 Vessels and Delimiters

We demand chemical reactions and physical processes among atoms, ions,
molecules, and particles to take place within a vessel. A vessel defines the spatial
dimension of a molecular system and confines its constituents from the environment.
Generally, a vessel is intended to symbolize a compartment of a biological cell or a
test tube for in vitro techniques. We regard a vessel to be a freely configurable box-
shaped cuboid placed in a three-dimensional Cartesian coordinate system in a way
that one of the corners coincides with the point of origin. For simplicity, the cuboid
needs to be oriented in parallel to the coordinate axes (see Fig. 5.6a). The size of
a vessel (length, width, and height) might vary within a range of few nanometers
(10−9 m) up to some millimeters (10−3 m). Once stipulated, the size of a vessel
cannot be modified afterward. The computation time and effort for emulation of
system’s dynamics typically increase along with ascendingly declared volume of a
vessel. When initially set up, the outer walls of a vessel act as barriers impermeable
for any constituents and for material but able to apply or to dissipate heat in the form
of thermal energy.

The inner space of a vessel might be separated into disjoint nonoverlapping
chambers. To this end, an arbitrary number of delimiters might be placed across
a vessel. A delimiter is a barrier exhibited by a plane located in parallel to
two of the underlying coordinate system’s axes as exemplified in Fig. 5.6b. For
implementation, a delimiter consists of an oversized immoveable particle ranging
throughout the whole dimension of the vessel. Technically, the delimiter particle

y

z

y

x x

z

y

z

x

(a) (b) (c)

Fig. 5.6 (a) Definition of a vessel as a freely configurable cuboid placed in a three-dimensional
Cartesian coordinate system oriented in parallel to the coordinate axes. One of the cuboid’s corners
coincides with the point of origin. (b) Placement of delimiters in order to separate a vessel into
disjoint chambers. Three delimiters, each of them forming a plane in parallel to a plane spanned by
two of the coordinate system axes, divide the vessel into six box-shaped chambers with different
volumes. A delimiter is made from an oversized immoveable particle. (c) Representation of a
vessel by means of voxels, a three-dimensional grid pattern of small cube-shaped volume elements
discretizing the space inside the vessel. Some voxels are occupied by parts of the delimiters

118 5 Molecular Physics and Chemistry in Membranes: The Java Environment. . .

comes with a local coordinate system whose point of origin maps to a point within
the coordinate system of the vessel. This point called anchor point marks the
position of the delimiter. The main advantage of delimiters lies in their flexible
nature when acting over time. At arbitrary points in time during simulation or in
consequence of predefined conditions, a delimiter can be created inside or removed
from a vessel. This feature allows definition of separate reaction chambers with
initially different reaction conditions to get unified after certain product molecules
have been appeared which in turn can further assemble in progress.

For technical modelling of a vessel with its constituting atoms, ions, molecules,
moveable and immoveable particles, and delimiters, we consider a vessel to be
composed of a plethora of small volume elements, so-called voxels illustrated in
Fig. 5.6c. A voxel is a small virtual cube whose side length is set per default to
500 pm but can be freely configured with a fixed value according to the needs of the
system under study. The voxels represent the smallest distinguishable locations and
positions within a vessel. A voxel is either occupied by one or several atoms, ions,
molecules, moveable particles on the one hand, or it is captured by an immoveable
particle, a part of an immoveable particle, or a part of a delimiter. The voxels
determine the underlying spatial granularity of the molecular system under study
since they form a three-dimensional lattice for placement and positioning of all
system’s constituents at any points in time. The resulting discretization of space
enables a more efficient algorithmic handling of simulation issues.

Having the grid pattern of the voxels for the whole vessel available, all delimiters
and immoveable particles can be set. To do so, the corresponding voxels have been
estimated and marked as occupied. During this preprocessing step, a huge data
structure emerges containing all voxels. For each voxel, its spatial position together
with the information whether it is empty or occupied and in case of occupied,
by which immoveable particle or delimiter, need to be figured out. A vessel can
be composed of up to several hundred million voxels which implies a notable
computation time. The next preprocessing step is dedicated to identification of
the individual chambers within the vessel. For this purpose, we utilize the method
of growing bubbles. Out of many randomly selected spatially distributed starting
voxels marked as empty, we let bubbles grow by taking into account all neighbors
of each starting voxel. If also marked as empty, they belong to the same chamber.
As soon as two growing bubbles start to intersect, they become unified and marked
to be part of the same chamber as well. Please note that permeable membranes
composed of immoveable particles and exhibiting holes, channels, or pores do
not separate distinct chambers. Instead, these membranes have been interpreted
as solid structures residing inside a chamber. After the first preprocessing step is
done, all chambers should have been identified by the containing empty voxels.
For each chamber s, its spatial volume Vs is obtained by counting the number of
containing voxels. The knowledge about the underlying volume of a chamber plays
an important role for filling in with atoms, ions, molecules, and moveable particles.

For each vessel, its initial temperature T needs to be set. The temperature
subsumes the average kinetic energy of all moveable particles, molecules, ions,
and atoms residing in the vessel. Hence, their velocities of motion are strongly

5.2 JENA at a Glance and Its Descriptive Capacity 119

influenced by the temperature. The initial value of temperature can be freely
configured either at a Kelvin scale (K) or by degrees centigrade (◦C) having in mind
that 0K = −273.15◦C which characterizes the absolute zero point of the smallest
possible temperature. Setting this or even lower temperatures is permitted since the
motion of moveable constituents gets stopped then. The user is responsible to select
a temperature that causes a liquid state of aggregation inside the vessel.

Now, the initial placement of atoms, ions, molecules, and moveable particles
into the chambers of the vessel can be done by the JENA tool. To this end, the
user specifies for each sort of atoms, ions, molecules, and moveable particles their
initial abundance n (number of copies) or, alternatively, their initial concentration
c. The abundance can be given by the absolute number of copies, but it can also
be set by mol having in mind that 1mol stands for 6.02214076 · 1023 molecules or
moveable particles expressed by Avogadro’s constant. Let A be the identifier of an
unbound atom, unbound ion, molecule, or moveable particle available in nA copies.
A is called a species. Its concentration cA, also denoted as [A], is defined by

cA = [A] = nA

Vs

(5.5)

whereas Vs indicates the volume of the hosting chamber inside the vessel. Since
the volume of each chamber is finite, there exists a maximal abundance and hence
a maximal concentration for each species which cannot be exceeded in order to
guarantee movability in terms of a liquid.

For each species initially present in the vessel, the user specifies the “point of
injection” by x, y, and z coordinates of the vessel’s coordinate system located
inside the vessel. The point of injection identifies a certain chamber. In case that no
chambers exist, the point of injection has no meaning. The desired number of copies
for the species is then generated and homogeneously distributed in approximated
spatial equipartition inside the chamber (or inside the whole vessel if no chambers
have been declared). The placement results in marking corresponding voxels to be
occupied by an exemplar of the species. The initial placement is separately done for
all species defined by the user.

Now, the contents of each chamber is automatically complemented by additional
water molecules. In a liquid, the average distance of adjacent unbound atoms,
unbound ions, molecules, and moveable particles should be in the magnitude of
their size. This density assures the properties of a liquid like flexibility in shape
and almost no compressibility. Water molecules get added until the final density
is reached. Eventually, a number of voxels is marked to be occupied by water
molecules. The number of inserted water molecules might vary across the chambers
subject to their enrichment with species. In the unlikely case of an overdensed
species concentration in which no water molecules can be added, the JENA tool
produces an error message and stops further processing.

Before the Brownian motion can start, an individual direction of movement and
a speed have to be assigned to each unbound atom, unbound ion, molecule, and
moveable particle including all water molecules. This is done by a speed vector at

120 5 Molecular Physics and Chemistry in Membranes: The Java Environment. . .

time t = 0 denoted v(0) = (vx(0), vy(0), vz(0)) and attached to each exemplar
of each species and to all water molecules. The direction of movement has been
randomly chosen by two angles interpreted as spherical coordinates (latitude α with
0 ≤ α ≤ π and longitude β with 0 ≤ β ≤ 2π , respectively).

According to the laws of thermodynamics, the absolute speed values |v| for each
unbound atom, unbound ion, molecule, and moveable particle of the same species
follow the Maxwell-Boltzmann distribution valid for gases and liquids and described
by the probability density function

p(|v|) = 4 · π ·
(

m

2 · π · kB · T
) 3

2 · |v|2 · e− m·|v|2
2·kB ·T (5.6)

in which m represents the individual mass, T the Kelvin temperature, and kB =
1.380649 · 10−23 J

K the Boltzmann constant. p(|v|) provides the probability of the
absolute speed value |v| for an unbound atom, unbound ion, molecule, or moveable
particle with mass m at temperature T (see Fig. 5.7).

The Maxwell-Boltzmann distribution turns out to be asymmetric stating that
very few exemplars of a species have a very low speed, most exemplars a low
up to medium speed, and some exemplars a high or very high speed. Typically,
the average speed constitutes several hundred meters per second. The Maxwell-
Boltzmann distribution is based on the observation that molecules sharing the same
kinetic energy Ekin = m

2 ·|v|2 and hence having the same mass m and the same speed
value |v| arrange when ascendingly sorted by speed to form a spherical orbital with
radius |v| whose spherical surface 4 · π · |v|2 gets filled.

x

y

z3500300025002000 450010005000 40001500 5000

Maxwell−Boltzmann
distribution of

hydrogen molecules at
300 Kelvin

absolute speed value |v| in m/s

0.0005

0.001

0.0015

0.002

0.0025

0.003

0.0035

0.004
p

Fig. 5.7 Maxwell-Boltzmann distribution p(|v|) of hydrogen molecules (H2) at temperature T =
300K revealing the portion of molecules with absolute speed value |v| from 0 to 5000 m

s . The
directions of movement for the molecules are randomly set within a homogeneous environment.
A resulting individual speed vector at time t = 0 denoted v(0) = (vx(0), vy (0), vz(0)) has been
assigned to each molecule present in the vessel

5.2 JENA at a Glance and Its Descriptive Capacity 121

For each unbound atom, unbound ion, molecule, and moveable particle present
in the vessel, we randomly assign an absolute speed value |v| in a way that the
Maxwell-Boltzmann distribution is held over all exemplars of each species. Now,
all individual speed vectors v(0) at time t = 0 can be obtained by

v(0) =
⎛

⎝
vx(0)

vy(0)

vz(0)

⎞

⎠ =
⎛

⎝
|v| · sin(α) · sin(β)

|v| · cos(α)

|v| · sin(α) · cos(β)

⎞

⎠ (5.7)

After having all speed vectors initialized, the molecular system is ready to start
simulation of Brownian motion and observation of the interactions among system’s
constituents. For all speed vectors at any point in time t including t = 0, the law

|v| = |v(t)| =
√

vx(t)2 + vy(t)2 + vz(t)2 is valid disclosing the relation between
the absolute value of speed and the corresponding vector components.

5.2.3 Brownian Motion and Thermodynamics

Each unbound atom, unbound ion, molecule, and moveable particle present in the
vessel and its chambers is equipped with two individual vectors. The position vector
x = (x, y, z) records the current position in the vessel expressed by its coordinates.
In addition, the speed vector v = (vx, vy , vz) determines the direction and the
velocity of movement within the vessel.

For simulation of Brownian motion, we discretize the course of time into
equidistant time steps symbolized by �t . The duration of every time step is globally
set for the whole molecular system inside the vessel under study. Since the voxels
represent the smallest distinguishable unit of space and spatial position, the time
step should be configured in a way that most of the moveable system’s constituents
migrate from their current voxel to another one in order to bridge a measurable
distance. Taking this requirement into account, the time step �t typically ranges
between 1 ns (10−9s) and several μs (10−6s) and can be freely configured whereas
50 ns have been set as default.

Now, the update scheme can be formulated. To this end, we consider the position
vector x and the speed vector v as functions over time t whose initial values at t = 0
have been given. Assuming a uniform motion, the update of each position vector by
pure Brownian motion reads as follows:

x(t + �t) = x(t) + �t · v(t) =
⎛

⎝
x(t) + �t · vx(t)

y(t) + �t · vy(t)

z(t) + �t · vz(t)

⎞

⎠ (5.8)

Furthermore, the new position of electrically charged ions, molecules, and
moveable particles has been influenced by Coulomb forces induced by other
electrically charged constituents. Additionally, explicitly defined external electrical

122 5 Molecular Physics and Chemistry in Membranes: The Java Environment. . .

and/or mechanical forces will also have an effect on the updated position. Since an
arbitrary force expressed by a vector F causes an acceleration a = − 1

m
· F of the

moveable constituent with mass m in case of attractive forces and a = 1
m

· F in
case of repulsive ones, an increment �x = 1

2 · (�t)2 · a is made to the position
with respect to each relevant source of force present in the system adjusting the new
position by x(t + �t) = x(t) + �t · v(t) +∑(�x). Since an acceleration a caused
by a force F also affects the velocity of moveable constituents, their speed vectors
necessitate an update as well which is done by v(t + �t) = v(t) + �t · a. The
modification of speed can also mean a slowdown in case of a is directed oppositely
or nearly oppositely in comparison to v.

The new position x(t + �t) of each unbound atom, unbound ion, molecule,
and moveable particle should result in a new voxel defined within the space of the
underlying vessel. Successively, each moveable constituent gets removed from its
previous voxel and attached to the new one according to the new position.

In rare cases, it might happen that a moveable constituent located near an outer
wall of the vessel gets an updated position outside the vessel which is impermissible.
Here, the closest voxel inside the vessel needs to be identified, and the position
vector x(t) is set to these coordinates. Then, a reflection at the wall of collision
will be done. To do so, the speed vector becomes modified for the next time steps.
Reflection at a wall in parallel to the plane spanned by the x and z axes results in
vy(t + �t) = −vy(t). Respectively, a reflection at a wall in parallel to the plane
spanned by the x and y axes implies vz(t + �t) = −vz(t), and finally, a reflection
at a wall in parallel to the plane spanned by the y and z axes leads to vx(t + �t) =
−vx(t).

Beyond reflection at an outer wall, the new position x(t + �t) of each moveable
constituent might identify voxels whose state decides about different scenarios. The
simplest case is a previously empty voxel. Here, the unbound atom, unbound ion,
molecule, or moveable particle occupies the empty voxel and that’s it. The situation
becomes more complicated if the new voxel has been already marked by other
system’s constituents residing there and is not empty. This indicates a collision.

The new voxel might be occupied by a part of a delimiter or by a part of
a solid (immoveable) particle the considered moveable constituent collided with.
The subsequent collision behavior depends on the existence (presence or absence)
of a chemical reaction rule mentioning all collision partners as substrates. If no
matching reaction rule is defined, the collision is treated as a reflection. The colliding
moveable constituent rebounds from the solid structure. This is done by an update
of moveable constituent’s speed vector in the same way like a reflection at an outer
wall. Solid structures inside a vessel are always assumed to be oriented in parallel
to the vessel’s coordinate system axes.

The presence of a matching reaction rule leads to evaluation whether or not a
reaction occurs. To this end, the kinetic energy of the collided moveable constituent
with mass m is obtained by Ekin = m

2 · |v(t)|2. Each reaction rule comes with
a predefined activation energy Ea necessary to conduct the reaction. So it is
checked whether or not Ekin ≥ Ea. If not, the amount of energy is too low to

5.2 JENA at a Glance and Its Descriptive Capacity 123

run the reaction, and the scenario results again in a reflection as described before.
In case the kinetic energy reaches or exceeds the required activation energy, the
reaction occurs as defined in the reaction rule. There are three options: (1) The
moveable constituent could be absorbed by the solid structure becoming a part of
it. Therefore, the moveable constituent gets fixed at its position and marked to be
immoveable from now on. Its speed vector is set to the zero vector and deleted.
Neighbored voxels might be marked as occupied as well since the solid structure has
grown. (2) Alternatively, a reaction rule can instruct a behavior in which the solid
(immoveable) particle at the position of collision gets knocked out from its solid
structure becoming moveable from now on. A new random speed vector is created
for this new moveable constituent in accordance with the Maxwell-Boltzmann
distribution as described before. The moveable constituent that initiated the collision
on its own undergoes a reflection by corresponding update of its speed vector.
(3) The moveable constituent could be transformed into other unbound atoms,
unbound ions, molecules, or moveable particles leaving intact the solid structure
collided with. Here, the solid structure acts as a kind of catalyst. All resulting new
moveable constituents need to be initialized with speed vectors randomly equipped
with direction and absolute speed value coinciding with the Maxwell-Boltzmann
distribution. Cases (2) and (3) can be combined by knocking out a part of the solid
structure and getting transformed despite this (Fig. 5.8).

A collision can exclusively involve moveable constituents. This becomes
apparent if and only if the corresponding voxel is marked by several moveable
constituents which in turn have to be assumed to collide as a whole.

vessel

elasticnon−elastic

chemical reaction
modification of bonds

no chemical reaction
no modification of bonds

potential collisions of moveable system’s constituents

Fig. 5.8 Illustration of elastic and nonelastic collisions that might occur among moveable
constituents of a vessel or a chamber. Elastic collisions keep the total kinetic energy following
the conservation of momentum. The constituents stay intact but change their speed and direction
of movement. A nonelastic collision indicates a chemical reaction in which the inner structure
of constituents gets modified by breaking and/or creation of chemical bonds. Resulting reaction
products emerge as new moveable constituents and start their Brownian motion

124 5 Molecular Physics and Chemistry in Membranes: The Java Environment. . .

In principle, the number of moveable constituents colliding with each other
and placed within the same new voxel could be arbitrarily high. In practice, most
of the molecular collisions take place with two objects. Seldomly, three or four
objects hit to each other. Collisions with a larger number of objects than four
are practically impossible. In accordance with the rules of thermodynamics and
molecular mechanics, a collision might exhibit either an elastic or a nonelastic
behavior. In order to decide about this, the total kinetic energy of all constituents
involved in the collision has to be calculated based on their masses and speed
vectors. One constituent with mass m and speed vector v(t) contributes a portion
of Ekin = 1

2 · m · |v(t)|2 to the total kinetic energy Ekin_total =∑Ekin.
In case there is no chemical reaction rule defined having all collided constituents

as substrates or the total kinetic energy is lower than the activation energy Ea of a
matching chemical reaction (Ekin_total < Ea), the collision is treated to be elastic.
Here, the momentum conservation holds which means that all kinetic energy from
the colliding constituents is kept forming the kinetic energy of the same constituents
after collision spreading out in different directions with different velocities. More
or less, all colliding constituents reflect to each other, and they stay intact without
modification of their inner structure or mass. Moreover, we assume for simplicity
that each elastic collision is carried out in a central manner in which the spheres hit
to each other in a way that both radiuses at the point of collision form a common
line. Let us consider two elastically colliding constituents called i and k with their
masses mi and mk and with their speed vectors vi (t) and vk(t), respectively. The
elastic collision results in updated speed vectors by the scheme:

vi (t + �t) = mi − mk

mi + mk

· vi (t) + 2 · mk

mi + mk

· vk(t) (5.9)

vk(t + �t) = mk − mi

mi + mk

· vk(t) + 2 · mi

mi + mk

· vi (t)

An elastic collision with more than two constituents is divided into a sequence
of elastic collisions with two constituents each. Let us assume for illustration a
collision of three objects named A, B, and C. This scenario is split into an elastic
collision A with B, a second one B with C, and a third one A with C. In case of
four objects elastically colliding to each other, a sequence of six collisions with two
objects each has to be figured out and handled.

Whenever a chemical reaction rule exists mentioning all collided constituents as
substrates and their total kinetic energy Ekin_total reaches or exceeds the required
activation energy Ea of the reaction (Ekin_total ≥ Ea), the reaction will be carried
out as described in the reaction rule. A part of the total kinetic energy is used
to break chemical bonds and/or to create new chemical bonds transforming the
substrates into reaction products, and the momentum conservation is not valid any
more. Instead, the collision is treated to be nonelastic. Let i and k be two collided
constituents with masses mi and mk and speed vectors vi (t) and vk(t) binding to
each other and forming the reaction product p (due to a reaction rule of the form

5.2 JENA at a Glance and Its Descriptive Capacity 125

i + k −→ p). We obtain the following scheme for the mass mp and for the speed
vector vp(t + �t) having in mind that the previous constituents i and k do not exist
anymore after nonelastic collision:

mp = mi + mk (5.10)

vp(t + �t) = mi

mi + mk

· vi (t) + mk

mi + mk

· vk(t)

A nonelastic collision is called effective because of conduction of a chemical
reaction.

A chemical reaction might have more than two substrates colliding to each other.
Let A, B, and C again be identifiers of constituents. A reaction rule of the form
A + A + B −→ C or A + B + C −→ ABC identifies three substrates. Reactions
with four substrates can also occur while more than four substrates are unrealistic.
For treatment of nonelastic collisions in chemical reactions with more than two
substrates, we split the corresponding reaction rule into a sequence of reaction rules,
each with two substrates. A reaction of the form A + B + C −→ ABC is split into
A + B −→ AB and AB + C −→ ABC. In case of a reaction with more than one
reaction product, we also split the reaction in a number of reactions, one for each
reaction product. Let us add D and E as substances acting as reaction products in a
reaction A+B −→ D+E. We consider two separate partial reactions A+B −→ D

and A+B −→ E instead, whereas mA +mB = mD +mE . More complex reactions
will be split accordingly like A + B + C −→ D + E which results in three partial
reactions A + B −→ AB, AB + C −→ D, and AB + C −→ E, respectively.

5.2.4 Chemical Reactions by Effective Collisions and by
Spontaneous Decay

Chemical reactions have in common that at least one chemical bond or ionic
bonding among involved substances becomes modified in order to generate new
connection structures between atoms and/or ions. Substances are transformed into
reaction products by means of a chemical reaction. According to the Billiard model
of Brownian motion, containing constituents like unbound atoms, unbound ions,
molecules, and particles present within the vessel can collide with each other.
Whenever a collision occurs, all colliding constituents form the substances for a
potential reaction.

Breaking an existing chemical bond or ionic bonding as well as creation of a
new bond consumes energy which in turn is provided by the kinetic energy of
the collided constituents. The amount of energy necessary to trigger a chemical
reaction is called activation energyEa. Each combination of substances able to react
with each other defines a chemical reaction with an individual activation energy.
Typically, the mandatory activation energy of a chemical reaction ranges between
approximately 30 kJ

mol and 100 kJ
mol . Biochemical reactions often share an activation

126 5 Molecular Physics and Chemistry in Membranes: The Java Environment. . .

energy around 67 kJ
mol . It becomes apparent that the activation energy is commonly

much lower than the binding energy among atoms or ions. Since the binding energy
is defined as the amount of energy needed to break the bond, the question arises
why an activation energy of around 25% of the binding energy or even less suffices.
The answer lies in the nature of an electron pair representing a bond. Argued in a
simplified way, the electron pair can migrate to the position of a newly generated
chemical bond staying intact. Other unpaired electrons fill the gap vice versa. So
the rearrangement and modification of a chemical bond might happen with a low
activation energy. The situation becomes different in case of a chemical bond to be
broken without generation of a new bond at another position inside the molecule.
Here, the activation energy turns out to be higher and equals the binding energy of
the affected bond.

Whenever the total kinetic energy of colliding substrate constituents reaches or
exceeds the activation energy, the collision is said to be effective, and the chemical
reaction occurs transforming the substrates into reaction products. Thermodynami-
cally, a nonelastic collision is made. Directions of movement and speed vectors of
reaction products result from that. The same chemical reaction can simultaneously
take place at different locations inside the vessel since the substrate constituents
might collide independently from each other. Typically, at the beginning of the
time course, a chemical reaction runs quite intensely because of many effective
collisions inside the vessel or chamber. Gradually, the number of reactive substrate
constituents decreases while more and more reaction products are available. Over
time, many reactions become weaker and weaker since less and less substrate
constituents effectively collide.

We denote a chemical reaction by a reaction rule mentioning the identifiers of
involved substrate constituents and the identifiers of resulting reaction products
together with the activation energy of the reaction. All substrate constituents and
reaction products need to be predefined as atoms, ions, molecules, or particles in
the JENA tool. A reaction rule refers to their identifiers. For instance, a reaction
rule of the form A + A + B −→ C + D with Ea = x involves the substrate
constituents A and B generating reaction products C and D consuming x units
of activation energy. Two exemplars A and one exemplar B need to effectively
collide in order to produce one exemplar C and one exemplar D. A multiplicity of
exemplars from the same constituent can be expressed by a so-called stoichiometric
factor, here two exemplars of A. Using stoichiometric factors, the reaction rule reads
2A + B −→ C + D; Ea = x. Exclusively natural numbers act as stoichiometric
factors, whereas 0 is permitted indicating that the corresponding species is not
needed and not involved. A stoichiometric factor 1 needs not to be written explicitly.

Now, we can introduce a general scheme in order to capture all chemical
reactions defined in a vessel or chamber. Let us assume S1 to Sp be the identifiers
of all atoms, ions, molecules, and particles present or expected to appear, and let the
optional coordinates (xk, yk, zk) mark a position in the vessel’s coordinate system

5.2 JENA at a Glance and Its Descriptive Capacity 127

to identify the corresponding chamber within the vessel where reaction k is defined.
The scheme of reaction rules has the form

(x1, y1, z1) : a1,1S1 + a2,1S2 + . . . + ap,1Sp −→ b1,1S1 + . . . + bp,1Sp; Ea,1

(x2, y2, z2) : a1,2S1 + a2,2S2 + . . . + ap,2Sp −→ b1,2S1 + . . . + bp,2Sp; Ea,2

...

(xr, yr , zr) : a1,rS1 + a2,rS2 + . . . + ap,rSp −→ b1,rS1 + . . . + bp,rSp; Ea,r

in which p is the number of distinct species, r the number of reactions (number of
reaction rules), ai,k ∈ N with i = 1, . . . , p and k = 1, . . . , r the stoichiometric
factors of the substrate constituents, and bi,k ∈ N with i = 1, . . . , p and k =
1, . . . , r the stoichiometric factors of the reaction products. Each reaction rule
comes with an individual activation energy Ea,k with k = 1, . . . , r .

Each chemical reaction follows the law of mass conservation. The total mass
of all substrate constituents exactly coincides with the total mass of the resulting
reaction products. Having a reaction rule a1,kS1+a2,kS2+. . .+ap,kSp −→ b1,kS1+
b2,kS2 + . . . + bp,kSp; Ea,k at hand, it holds:

p∑

i=1

(
ai,k · mSi

) =
p∑

i=1

(
bi,k · mSi

) ∀k = 1, . . . , r (5.11)

The law of mass conservation emerges from the observation that atoms and ions
forming substrate constituents and reaction products stay intact. Merely, their spatial
arrangement and their bonds to each other can change by chemical reactions. That’s
why no mass gets lost, and no additional mass can appear.

A crucial parameter that controls the course of a chemical reaction is temper-
ature. The Kelvin temperature T inside a vessel and its chambers results from
the average kinetic energy Ekin of all unbound atoms, unbound ions, molecules,
and moveable particles. The thermodynamical law Ekin = 3

2 · kB · T with the
Boltzmann constant kB = 1.380649 · 10−23 J

K expresses this relation. The higher
the temperature, the faster the chemical reactions run due to a higher speed of the
moveable constituents which leads to a larger number of effective collisions per time
step. When increasing the environmental temperature by 10 K, the affected chemical
reactions commonly get accelerated two- until threefold. The current temperature T

is calculated based on the speed vectors of all moveable constituents present in the
vessel.

It might happen that the temperature inside a vessel is too low in order to enable
a chemical reaction defined as reaction rule, especially in case of a high activation
energy. There are two strategies for operating those reactions: (1) Utilization of
a catalyst able to significantly drop the activation energy. The catalyst, mostly an
enzyme (protein molecule), acts as an additional substrate, promotes the interplay
of other substrates, and finally emerges unchanged from the reaction. Particularly,

128 5 Molecular Physics and Chemistry in Membranes: The Java Environment. . .

in biochemical reactions, catalysts are the first choice to accelerate a reaction. (2)
Increase of temperature by heating. In this way, further energy is transmitted to
the reaction system which in turn leads to a higher average speed of its moveable
constituents, and hence, a higher reactivity is obtained. Biomolecules are often
prone to higher temperatures since they tend to lose their spatial structure by
degradation. Many biomolecules fail to be robust against temperatures greater than
approximately 40◦C.

Interestingly, the course of a chemical reaction might either consume or release
thermal energy that implies a modification of the temperature inside the vessel. The
reason for that is based on the endothermic or exothermic nature of a chemical
reaction. The chemical bonds and ionic bondings in the substrate molecules store an
amount of inner energy. Whenever the outermost orbital of an atom is completely
filled with electrons by incorporation of electron pairs, it is said to be saturated, and
its inner energy reaches a minimum value. In contrast, unsaturated atoms possess
more inner energy necessary to maintain this configuration. Each chemical reaction
starts with a certain level of the total inner energy of all involved substrates. In order
to initiate a reaction, the barrier set by the activation energy has to be overcome.
Eventually, the total inner energy of the reaction products might deviate from those
of the substrates (see Fig. 5.9). In case it becomes higher, the reaction permanently
consumes energy. Thermal energy needs to be applied continuously to keep alive
the reaction which is called endothermic. Contrarily, the total inner energy of
the reaction products can be lower than the substrates. Here, thermal energy is
released into the environment, and the reaction runs autonomously. It is called to
be exothermic.

What stands out is that the temperature inside a vessel can change while chemical
reactions take place. Sometimes, heating or cooling is required in order to control
the temperature. To this end, we establish a temperature management in the JENA
tool. At arbitrary points in time, a freely configurable temperature can be set
by instruction, or the current temperature can be incremented or decremented. A

H < 0

E H > 0E

reaction progressC

substrate
constituents reaction

product

A + B

A, B C

instable
intermediates
[AB]

total inner
energy

exothermic reaction

reaction progressC

substrate
constituents

A + B

A, B

instable
intermediates
[AB]

total inner
energy

endothermic reaction

reaction
product

C

a a

Fig. 5.9 Balance �H of the total inner energy of substrate constituents reacting with each other
and forming a reaction product. Reactions can run either exothermic or endothermic dependent
on release (�H < 0) or consumption (�H > 0) of thermal energy. In order to start a chemical
reaction, the energy barrier defined by the activation energy Ea has to be overcome

5.2 JENA at a Glance and Its Descriptive Capacity 129

change of temperature will affect the speed vectors of all moveable constituents
in the vessel. Their absolute speed values undergo an update in conformity with
the Maxwell-Boltzmann distribution. Since many moveable constituents have to be
taken into account, a temperature update might consume some computation time for
simulation.

Our implementation combines the Billiard model of thermodynamics with the
characteristics of chemical reactions and reaction kinetics at a fine-grained level
of abstraction. We neglect possible effects of the spatial orientation of colliding
substrate constituents. There are a number of reactions especially in biochemistry
in which the orientation of colliding molecules matters to decide whether or not
they react. Except from this feature, we are able to reconstruct abstract reaction
parameters like rate constants and Arrhenius terms from the simulation of a reaction
system over time. Abstract reaction parameters can be used in mass-action kinetics,
and they are a part of ordinary differential equations approximating the time course
of species concentrations.

Particles handled in the reaction system have been marked either to be moveable
or solid (immoveable). This attribute can be used when formulating reaction rules.
Each substrate constituent or reaction product representing a particle might be
freely configurable attached in reaction rules with the superscript symbol “m” for
moveable or “s” for solid (immoveable) to express the corresponding behavior. Let,
for instance, P be the identifier of a particle. A reaction rule P s + A −→ Pm + A

describes the knocking out of a particle from a solid structure with the help
of a catalyst molecule A. It selects immoveable particles P ignoring moveable
exemplars. We are aware of the fact that status transformations between moveable
and solid change the overall mass of the moveable constituents in the vessel which
can slightly affect the average kinetic energy and hence the temperature.

The number of reaction rules defined in a vessel or chamber is not limited.
It might happen that the same or a subset combination of substrate constituents
is specified in several reaction rules. These rules compete with each other when
detecting a corresponding collision. An example is given by the rules A + B −→
C + D and A + B −→ E. In case of a collision between A and B, the decision
must be made which of the matching reaction rules will be applied. To this end,
we evaluate the individual activation energies Ea,k attached to each reaction rule
k. Based on the activation energy, we determine the simplified Arrhenius equation

by the term e− Ea,k
R·T with the universal gas constant R = 8.314462618 kg·m2

s2·mol·K and
the Kelvin temperature T . The portion of this term in relation to the sum of the
terms from all competing reaction rules determines a probability used for a weighted
random selection of the reaction rule to be applied.

There is a special class of chemical reactions called spontaneous decay. They
have in common that merely one substrate constituent is specified which is typically
decomposed into several reaction products. For instance, a reaction rule of the form
A −→ B + C stands for a spontaneous decay of A producing its components
B and C. A characteristic feature of a spontaneous decay is the absence of any
effective collision. This makes the technical handling within a Billiard model more

130 5 Molecular Physics and Chemistry in Membranes: The Java Environment. . .

complicated since the points in time have to be estimated in which an exemplar
of the species to decay will “spontaneously” react without any collision partner.
For this purpose, we consult the activation energy Ea,k of the spontaneous decay’s

reaction rule k. By means of the term [A] · e− Ea,k
R·T · �t whereas [A] is the

concentration of the species A to decay in the chamber or vessel, we obtain an
index measure of the decay velocity indicating how many individual decays of
A need to take place within the vessel or chamber in the current time step �t .
Then, the exemplars of A to decay are chosen randomly and treated according to
the spontaneous decay’s reaction rule. The implementation of spontaneous decay is
geared to the time-discretized law of mass-action reaction kinetics.

5.2.5 Applying External Forces

Beyond chemical reactions, physical processes play a major role for modelling
and simulation of principles for biological information processing. In this context,
physical processes become manifest in exposure to external forces affecting a
vessel and its constituents. We distinguish two kinds of external forces, namely,
mechanical and electrical ones. External forces in general influence the movement
of moveable constituents whereas both properties—direction and speed—might
undergo a variation. Chemical bonds and ionic bondings remain unchanged by the
effect of external forces. Instead, external forces aim to harmonize or to control the
movement of individual unbound atoms, unbound ions, molecules, and moveable
particles present in the vessel. Their Brownian motion starts to interfere with the
directed acceleration induced by the sum of all external forces taken into account.
In consequence, the disordered motion of moveable constituents gets gradually
replaced by a regular flow or stream throughout the chambers of a vessel. This
physical process can be organized in a way that a successive spatial separation
of moveable constituents by their mass or by their electric charge is made which in
turn is the basis for a plethora of biological methods and laboratory techniques. Not
seldom, chemical reactions and external forces act together, for instance, by release
of reaction products or by bringing together suitably selected substrate constituents.
For application of external forces, we consider the vessel with its coordinate system
as a whole without any distinction of chambers. In other words, external forces have
been understood to represent global quantities the entire reaction system with all of
its chambers is faced with.

For modelling of external forces, we employ the technique of vector fields.
A vector field assigns each voxel (x, y, z). The vessel is composed of a force
vector F whose direction and value can be dynamically configured by means of a
mathematical term. Beyond the position (x, y, z) within the vessel, each individual
vector symbolizing an external force within the field might be dependent on the
current point in time t . Altogether, the vector field for an arbitrary external force has

5.2 JENA at a Glance and Its Descriptive Capacity 131

the general form

F(x, y, z, t) =
⎛

⎝
Fx(x, y, z, t)

Fy(x, y, z, t)

Fz(x, y, z, t)

⎞

⎠ (5.12)

whereas the components Fx , Fy , and Fz express the portions of the force applied in
x, y, and z-dimension, respectively. The absolute value arises from:

|F(x, y, z, t)| =
√

Fx(x, y, z, t)2 + Fy(x, y, z, t)2 + Fz(x, y, z, t)2

A force F(x, y, z, t) present at the position (x, y, z) at the point in time t

accelerates each moveable constituent with mass m residing at (x, y, z) by a =
1
m

· F(x, y, z, t) which influences the corresponding speed vector by the increment
�t · a, whereas the effects of all external forces vectorially sum up.

Mechanical External Forces
Mechanical external forces have an effect on all kinds of moveable constituents by
affecting the movement of unbound atoms, unbound ions, molecules, and moveable
particles. Mechanical external forces define a three-dimensional force field which
incorporates the space of the whole vessel under study. Application of pressure
or mechanical power like stirring, pumping, or vortexing are typical causes for
generation of mechanical external forces.

Let us illustrate a force field that emerges from a constant pressure applied to
the liquid in the vessel. Pressure p is defined to express the quantity of force |F|
vertically affecting an area A which becomes apparent by the equation p = |F|

A
. The

area A can be specified as a plane placed in the three-dimensional coordinate system
of the vessel. For instance, the arbitrarily chosen implicit equation 3·x−4·y+2·z =
5 stands for a plane oriented in an inclined manner (see Fig. 5.10a). Its normal vector
n = (3,−4, 2) with |n| = √

32 + (−4)2 + 22 = √
29 determines the direction of

vertically impacting force vectors. Let f > 0 be the constant intensity of force. The
resulting force field reads:

F(x, y, z, t) = f√
3 · |n| · n =

⎛

⎜
⎜
⎝

f√
3·√29

· 3
f√

3·√29
· (−4)

f√
3·√29

· 2

⎞

⎟
⎟
⎠ (5.13)

The force field turns out to be constant throughout the entire vessel (Fig. 5.10b).
Since liquids are almost incompressible, a constant pressure merely implies a slight
compression of the liquid’s moveable constituents which start to enrich at the outer
walls of the vessel opposite to the plane where they undergo a higher number of
elastic collisions among each other. A permanent liquid stream cannot be modelled
in this way.

132 5 Molecular Physics and Chemistry in Membranes: The Java Environment. . .

xx

yy

(a) (b) (c)

Fig. 5.10 (a) Inclined plane placed into the vessel’s coordinate system to symbolixe the area
vertically attacked by forces in order to emulate pressure. (b) xy projection of the resulting
homogeneous and unidirectional force field. (c) Cylindrical mechanical force field (swirl) whose
longitudinal axis goes through the central point with a = 4 and b = 6. Cylinder’s longitudinal axis
takes course in parallel to the z axis. Intensity of forces is homogeneous throughout the whole field

More interesting from a physical point of view is a swirl able to rotate the
moveable constituents of the liquid inside the vessel. Let the mechanical external
force field be spatially organized like a cylinder whose longitudinal axis is located
in parallel to the z axis and goes through the point (a, b, 0) (see Fig. 5.10c). The
intensity f of the forces (f > 0) is homogeneous within the whole field. The
resulting definition of the force field reads:

F(x, y, z, t) = f√
2

·

⎛

⎜
⎜
⎝

y−b√
(x−a)2+(y−b)2

− x−a√
(x−a)2+(y−b)2

0

⎞

⎟
⎟
⎠ (5.14)

Electrical External Forces
Electrical external forces exclusively affect electrically charged moveable con-
stituents of the vessel, namely, unbound ions, molecules incorporating ions, and
moveable particles marked with electric charges. All other constituents perceive no
influence by electrical external forces. In general, an electric external force field can
either result from a point charge placed at an arbitrary spatial position, or it can be
induced by an electric field that emerges from an external voltage supply source and
pervades the entire vessel. An electric field might have a constant (direct current,
DC) nature, or it can pulse over time (alternating current, AC) with a fixed or even
variable frequency.

We declare an electric force field to be directed from the positive pole (source)
toward the negative pole (sink) which coincides with the technical definition of the
direction of electric current. An electrical force accelerates an oppositely charged
moveable constituent (plus-minus or minus-plus) in an attracting manner, while

5.2 JENA at a Glance and Its Descriptive Capacity 133

xx

yy

(a) (b) (c)
x

y

Fig. 5.11 (a) xy projection of the first stage of modelling an electric force field spherically spread
out by a point charge placed at a = 4, b = 6, c = 3. (b) Force field after consideration of
diminishing intensity of force with ascending distance to the central point. (c) Snapshot of a pulse
field directed in parallel to the x axis (xy projection)

equally charged moveable constituents (plus-plus or minus-minus) are pushed away
from each other. Hence, the direction of acceleration turns from a to −a.

Let us first consider an example in which a positive point charge is located
at the position (a, b, c) of the vessel. Starting from this central point, the forces
spatially spread out in a radial (star-shaped) way. Although the intensity of the forces
diminishes with increasing distance to the central point, we begin the force field
modelling with constant intensity f > 0 (see Fig. 5.11a). In this case, the vector
field has the form:

F(x, y, z, t) = f√
3

·

⎛

⎜
⎜
⎜
⎝

x−a√
(x−a)2+(y−b)2+(z−c)2

y−b√
(x−a)2+(y−b)2+(z−c)2

z−c√
(x−a)2+(y−b)2+(z−c)2

⎞

⎟
⎟
⎟
⎠

(5.15)

Now, we can add the effect of diminishing intensity with ascending distance r =√
(x − a)2 + (y − b)2 + (z − c)2 to the central point (a, b, c). Due to Coulomb’s

law, the force value behaves proportional to 1
r2 . When introducing a proportionality

factor D, we obtain the equation for an electric force field spherically distributed
around a point charge as depicted in Fig. 5.11b:

F(x, y, z, t) = f√
3

·

⎛

⎜
⎜
⎜
⎝

D · x−a

(
√

(x−a)2+(y−b)2+(z−c)2)3

D · y−b

(
√

(x−a)2+(y−b)2+(z−c)2)3

D · z−c

(
√

(x−a)2+(y−b)2+(z−c)2)3

⎞

⎟
⎟
⎟
⎠

(5.16)

134 5 Molecular Physics and Chemistry in Membranes: The Java Environment. . .

While an electric force field generated by a point charge remains unchanged over
time, a pulse field exhibits a time-dependent oscillatory nature. In order to model
this kind of behavior, we exemplify a vector field oriented in parallel to the x axis.
We assume a sinusoidal oscillation of the force intensity with a constant amplitude
f > 0. For simplicity, we choose a period length in parity with τ time units. The
resulting pulse field has the form:

F(x, y, z, t) = f ·
⎛

⎜
⎝

cos
(

2·π
τ

· t
)

0
0

⎞

⎟
⎠ (5.17)

Figure 5.11c shows the pulse field at the points in time t = 0, τ, 2 · τ, Within
each period, the polarity of the pulse field alternates twice.

The modelling approach of vector fields provides a powerful and expressive
instrument for description of external forces applied to the vessel under study.
The vector field might be adapted to physical laws and equipped with suitable
parameters. Several force fields can act simultaneously and independent of each
other by vectorial addition of their portions to obtain the total effect.

5.2.6 Active Membranes and Dynamical Delimiters

Sometimes, emulation and control of chemical reactions and physical processes
active within a vessel require additional instruments beyond Brownian motion,
reaction rules, and external forces. Particularly, static structures and fixed elements
can benefit from a possibility in order to make them dynamic which gives a
greater flexibility in modelling of complex and interwoven processing schemes.
A first step toward dynamical structures has been defined by toggling the state
of particles between moveable and solid (immoveable) by means of corresponding
reaction rules. In principle, this instrument is sufficient to simulate the behavior of
active membranes by dedicated creation or dissolution of delimiters or membrane
structures composed of solid particles. The only way to do so discussed up to now
consists in a set of reaction rules in which a “seed particle” can be set, and further
particles might attach mediated by auxiliary substances. Creation or complete
dissolution of a large membrane using this strategy turns out to be a demanding and
time-consuming task and lacks any attempts in which complex spatial structures
enter a cell as a whole like endocytosis.

Aiming at incorporation of a broader spectrum of environmental stimuli, we
allow pre-definition of so-called instructions. Each instruction comes with a pre-
viously set point in time t or a condition. As soon as the point in time is reached
or the condition is fulfilled for the first time, the instruction gets executed. In
case of a fulfilled condition, the instruction can be configured to be performed
immediately or with a definable delay given by a number of time steps. A condition
can evaluate the current temperature T whether it is below, equals, or exceeds a

5.2 JENA at a Glance and Its Descriptive Capacity 135

configurable threshold. Alternatively, a condition might express whether or not a
species concentration is below, equals, or exceeds a certain value. The instruction
consists of an action performed within the vessel under study. At the current stage
of the JENA tool, six types of actions are available for configuration of instructions:

Set temperature: The Kelvin temperature inside the vessel can be set to an
arbitrary value T > 0. In consequence, the individual speed vectors of all
moveable constituents present within the vessel have been recalculated. While
the directions of movement remain unchanged, the speed values undergo an
acceleration (in case of ascending temperature) or a slowdown (when cooling
down) in accordance with keeping the Maxwell-Boltzmann distribution. We act
on the assumption that the temperature is homogeneous and almost equal within
the whole vessel.

Increment or decrement of temperature: Based on the current temperature
present in the vessel, an increment or decrement given in Kelvin can be made.
The resulting temperature must not reach 0K or below since the instruction
will be ignored in this case. Oppositely, there is no upper limit defined for
temperature. Moreover, phase transformations (e.g., from liquid to gas or from
liquid to ice) haven’t been taken into consideration up to now. The increment
or decrement of temperature is an instrument to model effects of heating or
cooling which is sometimes necessary to control reactions and assure their
desired behavior. Analogously to the “set temperature” instruction, the speed
vectors of all moveable constituents will be updated.

Set new solid particle or new delimiter: Many processes in biology come with
creation or dissolution of membranes in order to restructure reaction spaces,
compartments, or vesicles during the life cycle of a cell. We reflect this aspect by
an instruction able to set a new solid (immoveable) particle or a new delimiter.
The new particle or delimiter has to be predefined and specified and is accessed
then by its identifier. The position for placement within the vessel’s coordinate
system is needed to be given as well. All voxels occupied by the new particle
or delimiter have been estimated and checked whether or not other immoveable
constituents compete against space. If so, the new particle or delimiter fails to be
placed, and the instruction terminates without any effect. In case of vacancy, the
corresponding voxels will be emptied by removal of all moveable constituents
including water molecules from the vessel. These unbound atoms, unbound ions,
molecules, or moveable particles will be lost from the system whose total mass
of moveable constituents diminishes. Instead, the new particle or delimiter starts
to reside in this space, and the voxels have been marked to be occupied in this
way. Setting a new solid particle or delimiter can divide a chamber into several
chambers. The reaction rules will be copied for each chamber that emerges.

Remove solid particle or delimiter: Unification of previously separate reaction
chambers and biological processes like exocytosis come with the demand to
eliminate solid structures from a vessel. To this end, we introduce an according
instruction. The solid (immoveable) particle or delimiter to be removed has to be
addressed by its identifier and/or position with regard to the vessel’s coordinate

136 5 Molecular Physics and Chemistry in Membranes: The Java Environment. . .

system. The voxels previously occupied by the particle or delimiter will be filled
with new water molecules in order to perpetuate the thermodynamic properties
of a liquid. Their speed vectors get initialized to meet the Maxwell-Boltzmann
distribution. The new water molecules increase the total mass of moveable
constituents collected in the vessel. Furthermore, removal of a solid particle or
delimiter might imply a unification of previously separate chambers into one
common reaction space. The reaction rules from all involved chambers will be
available in the unified chamber except for copies.

Inject moveable constituents: This instruction allows injection of additional
moveable constituents (unbound atoms, unbound ions, molecules, or moveable
particles) from the same type at a freely configurable point in time. The injection
comes with a position with regard to the coordinate system of the vessel. A
given number of moveable constituent’s copies gets placed and distributed in
the corresponding chamber or in the whole vessel in case no chambers exist. A
number of water molecules in parity to the number of inserted copies are removed
from the chamber or vessel.

Activate or deactivate reaction rule: It might happen that a chemical reaction
needs massless triggers like light or radiation to become active, for instance,
light-dependent reactions in photosynthesis. What stands out is the usefulness
of an instruction able to activate or deactivate a specific reaction rule in a freely
configurable way. We accommodate this request by a corresponding instruction
marking a reaction rule as “on” or “off’.’ Especially in combination with setting
or removal of delimiters which modifies the number of chambers, activation and
deactivation of reaction rules turn out to be helpful for achieving appropriate
process specifications.

We are aware of the fact that instructions represent a more or less artificial
but useful instrument to influence the progress of chemical reactions and physical
processes. Coping with dynamical spatial structures is a crucial aspect in membrane
computing and a major feature of biological information processing.

5.2.7 Simulation, Monitoring, Logging, and Analyses

The operation of the JENA tool is based on input and output files. Each input
file is prepared by the user in advance. It contains all necessary data in order to
initialize the system and to run the simulation. For specification of all data collected
in an input file, a specific syntax is required. The given input file becomes read
by the tool and checked for consistency and plausibility. Afterward, the simulation
run starts with generation of constituents, filling the vessel(s), allocation of voxels,
identification of chambers, and application of external forces. Organized by discrete
time steps, the configuration of the system with the positions of all currently existing
constituents except water molecules gets logged time step by time step or after a
number of time steps when tracing the behavior including evaluation of instructions.
Finally, a large logfile is available as output ready to get further analyzed and
visualized.

5.2 JENA at a Glance and Its Descriptive Capacity 137

An input file is written in plain text divided into a number of mandatory and
optional sections. The sections of an input file widely correspond to the previous
subsections of this chapter. It makes sense to start with the #constituents
section. Here, the data on predefined types of atoms, ions, molecules, and par-
ticles including delimiters need to be configured. The mandatory section named
#vessels is dedicated to collect all data for description of one vessel or several
vessels independent from each other. A vessel is characterized by its unique
identifier, its dimensions, its coordinate system, the granularity of voxels, and its
initial temperature. Moreover, the initial placement of solid particles and delimiters
and the initial points of injection for moveable constituents need to be declared.
Another section called #reactions contains the reaction rules defined for each
vessel, whereas each reaction rule is assigned to a vessel and a chamber within
the vessel if configured. All reaction rules refer to the globally specified types of
atoms, ions, molecules, and particles mentioned in the corresponding section. In
case that several vessels exist, each vessel might have its individual set of reaction
rules. A finite number of superpositioned external forces can be formulated in the
section #forces. Again, each vessel is allowed to have its specific set of external
forces. The section #instructions enables setup of instructions separately
for all vessels available. Finally, a mandatory #simulation section covers all
information needed to control the course of simulation uniformly for all vessels.
The duration of a time step �t and the point in time to terminate the simulation
have been captured. In addition, the detailedness of the output file collecting the
simulation results can be specified here.

A minimal input file is restricted to a single vessel merely containing a
#vessels section without constituents, reactions, external forces, and instructions
complemented by a #simulation section. This setting will lead to a vessel
automatically filled with water molecules which in turn perform a Brownian
motion. A multiplicity of vessels is suitable to simultaneously compare different
experimental conditions varied among the vessels. For future JENA versions, we
plan additional kinds of instructions able to manage an exchange of moveable
constituents among vessels.

While the simulation runs, the corresponding output file is successively pro-
duced. In its simplest form, an output file lists the abundance (absolute number
of copies) of each moveable constituent in each vessel except water molecules at a
number of equidistant time steps. Additionally, global parameters like temperature,
existence of chambers, and volumes of chambers have been included. According
to the settings made in the input file’s #simulation section, species abundance
can be logged separately per chamber and by monitoring the species concentrations.
More in detail, the spatiotemporal trace of selected or all individual moveable con-
stituents except water molecules might be inserted into the output file. Occurrences
of reactions (effective collisions) can be marked to enrich the trace information
(Fig. 5.12).

The output file is the basis for subsequent analyses and visualizations. Since an
output file is written in plain text as well, it can be evaluated in a flexible way
with the JENA tool but also with other tools like R for statistical examinations. The

138 5 Molecular Physics and Chemistry in Membranes: The Java Environment. . .

Fig. 5.12 Example of a perspective view of a vessel with its moveable constituents except water
molecules at a configurable point in time. The perspective of the external observer is variable and
enables an imagination of the spatial distribution of vessel’s contents

JENA tool at its present stage of development comes with a couple of analysis and
visualization features:

Abundance or species concentration of selected or all moveable constituents
over time per chamber or in a whole vessel: The resulting diagram plots the
course of species concentrations or species abundance subject to the discrete
points in time logged in the output file. The diagram might refer either to an
entire vessel or to a single chamber situated inside a vessel.

Histogram of chamber or vessel contents over time: In contrast to the afore-
mentioned diagram, the courses are placed on top of each other. In this way, the
portions of species in relation to all moveable constituents become easily visible.

Perspective view of a vessel with its contents at a configurable point in time:
The box of a vessel is depicted from the perspective of an external observer. The
spheres of all moveable constituents together with the cuboids of all immoveable
constituents present in the vessel at a configurable point in time are shown.

Spatial trace view of an arbitrarily selectable moveable constituent over time:
Again, the box of a vessel is depicted from the perspective of an external
observer. For one selectable individual moveable constituent, its spatial trace
throughout the vessel during simulation gets illustrated. Positions in which
reactions occur by effective collisions have been marked.

View of a layer in a vessel located in parallel to two of the coordinate system
axes: This visualization takes into consideration a box-shaped thin slice across
the vessel in parallel to two of the coordinate system axes. All moveable and
immoveable constituents except water molecules located in the slice at a freely

5.3 JENA Source Code Design 139

configurable point in time have been depicted. The resulting figure can be
interpreted as a cross section of the vessel and gives insight into the spatial
distribution of constituents.

Cumulative view of all layers in a vessel (vessel view from top or from a side
wall): Here, all slices throughout the vessel placed on top of each other have
been summed up producing a cumulative view of the moveable and immoveable
constituents except water molecules present in a vessel at a freely configurable
point in time.

Frequency of effective collisions in a vessel over time: For this type of dia-
gram, a constituent (type of unbound atom, unbound ion, molecule, or particle)
has been chosen that acts as a substrate in at least one reaction rule. The
diagram displays the points in time of effective collisions (chemical reactions)
incorporating the selected substrate. Based on these data, the average frequency
of effective collisions over simulation time is calculated.

Course of temperature in a vessel over time: The temperature in a vessel might
vary during simulation due to the reaction’s balance of energy and due to possible
heating or cooling effects expressed by instructions. The resulting diagram shows
the course of temperature over simulation time based on the kinetic energies of
all moveable constituents in the vessel under study.

Beyond visualizations and diagrams, simulation results exhibit a basis for
subsequent analyses. The most popular application consists in parameter fitting,
especially estimation of rate constants of chemical reactions and further abstract
parameters employed for process modelling by means of differential equation
systems.

5.3 JENA Source Code Design

The first idea for the JENA tool dates back to 2017. In early 2018, we started
with software development. In the meantime, the JENA project currently comprises
more than 400,000 lines of Java source code spread into around 80 classes
with approximately 1500 methods and functions in total. Up to now, 35 students
participated in software development, testing, debugging, and employment. We
coordinate the JENA tool at Friedrich Schiller University Jena, Germany. It is
planned to persist as an ongoing long-term project. After the software will have
reached its beta state, we are going to make it available for download including all
source code via the research platform at www.molecular-computing.de.

Students attending the one-semester master courses “Molecular Algorithms” and
“Foundations of Object-Oriented Programming” contribute to JENA by producing
a piece of source code addressing a phenomenon or a process found in biology
or biochemistry. Accompanied by an exhaustive literature search, the phenomenon
or process gets described at a low level of abstraction. To this end, suitable data
structures and data types need to be created in order to capture all details of
interest. Furthermore, we make use of parameters for control of randomized or

www.molecular-computing.de

140 5 Molecular Physics and Chemistry in Membranes: The Java Environment. . .

predetermined effects that might occur. Parameters can also include probability
distributions based on empirical studies or derived from natural laws. Attention
is paid to the objective that as many effects as possible have been integrated into
the corresponding Java source code. Simultaneously, another group of students
is searching for abstract models of biocomputing reflecting the phenomenon or
process under study. So the Java source code can be complemented by one or
more formal representations. In consequence, we successively obtain a collection
of varying implementations, all dedicated to the same phenomenon or process but
widely spread in their level of abstraction. We are aware of the fact that our JENA
tool primarily serves as an experimental workbench directed to “play” with models
and implementations and to learn about their advantages and disadvantages which
facilitate an evaluation from a practical perspective.

The JENA software architecture is organized to be composed of five main module
packages dedicated to their employment for data management, simulation engine,
visualization, user interface, and application kernel. Following a strict object-
oriented approach, the classes defined in the packages communicate to each other
by well-defined interfaces.

The main challenge within the domain of data management consists in coping
with the huge amount of data capturing the positions and speed vectors of all
constituents (atoms, ions, molecules, particles) present in the vessel(s) under study.
The number of constituents can reach several hundred millions of them including all
water molecules. We made the decision of discretization of space in order to divide
the vessel into a grid of small boxes (volume elements) called voxels. It turns out that
the spatial arrangement of voxels forming the vessel remains static since the vessel
proportions cannot change during simulation. So it gives advantage to implement a
huge hash table that links a list of constituent’s records to each voxel. The anchor
address of each list can be directly derived from the x, y, and z coordinates of the
corresponding voxel which enable a fast and effective access. The contents of each
list have been handled in a dynamical manner since the presence of constituents
in a voxel typically changes over simulation time. The hash table as a whole might
consume a total amount up to several terabytes for storage in memory. Therefore, we
use to handle simulation of large molecular systems at a central server while small
systems up to few million constituents can be managed at a commercially available
personal computer.

The simulation engine unites all procedures and algorithmic techniques neces-
sary for progression of all constituents in space and over time. Especially the updates
of speed vectors represent a demanding task due to the fact that recalculation of
speed vector components is computationally expensive. On the one hand, complex
mathematical operations like trigonometric functions are needed. On the other hand,
accelerations caused by many other constituents from the environment and from
possible external forces can sum up from thousands of portions to be individually
estimated and considered. Accelerations affect the speed vector. Here, we decided
to implement a kind of lazy evaluation neglecting marginal influences below a
threshold of around 0.01%. For computation of trigonometric functions, we utilize
prefabricated numerical tables with fast access instead of Taylor approximation. The

5.4 Selection of JENA Case Studies 141

granularity of vector fields defined by external forces has been spatially discretized
as well with respect to the voxels. The same holds for reaction rules.

Visualization is based on simulation outputs collected within an output file.
Perspective views of a vessel have been obtained from a vanishing point projection
in which hidden regions are excluded from further evaluation. From former software
projects in bioinformatics by our JENA research group, we have the freely available
visualization package of SRSim [11] at hand able to depict a three-dimensional
arrangement of colored spheres with light effects. We have integrated the corre-
sponding routines into JENA.

Currently, the user interface of the JENA tool is held spartan since it is mainly
restricted to the input file provided by the user prior to starting the simulation. The
input file contains all information about initialization of the molecular system and
for simulation of its behavior. This avoids a variety of dialogue windows and icons
but transfers the responsibility for correctness of all configurations made in the
input file to the user. Some but not all potentially possible inconsistencies have been
checked automatically before starting the simulation.

The application kernel controls the interplay of all other modules and defines
the processing steps in the desired manner. Here, schemata of successive actions
have been identified and specified, for instance, a sequence of steps to be done for
execution of an instruction.

The JENA software is a product of many team members and contributors aimed
at achievement of functionality rather than aesthetics and perfectionism from a
theoretical point of view in software construction. Following the notion of an
experimental system, JENA is thought to explore ideas, their implementation, and
their integration into an entire workbench to be completed in an ongoing long-term
project.

5.4 Selection of JENA Case Studies

By means of four dedicated modelling and simulation case studies, we demonstrate
the practicability of the JENA tool. Each study addresses an individual aspect
of biological information processing carried out either inside a biological cell
or employed as a laboratory technique. The case studies aim at a fine-grained
emulation of physical processes and/or chemical reactions operating in concert. We
start with the chemical Lotka-Volterra oscillator able to maintain a stable oscillatory
behavior by merely three reactions. The second study is focused on electrophoresis,
a technique for spatial separation of electrically charged biomolecules like DNA by
their mass corresponding to DNA strand length.Centrifugation as a well-established
method for separation of a mixture of liquids by their components with different
mass densities is considered in the third study, while the final one models a neural
signal transduction across the synaptic cleft.

142 5 Molecular Physics and Chemistry in Membranes: The Java Environment. . .

5.4.1 Chemical Lotka-Volterra Oscillator

Oscillatory signals represent an important instrument for biological information
processing since generation and maintenance of biological rhythms rely on stable
oscillations. They act as clock signals, as triggers for periodic activities, and for
exhibition of anticipating behavioral patterns.

The chemical Lotka-Volterra oscillator [24] is an artificial chemistry consisting
of a minimalist reaction scheme composed of merely three reactions. Positive
feedback loops among autocatalytic reactions enable a sustained oscillation in terms
of a predator-prey relationship between abstract molecular species called X and Y .
In addition, a supply species called A is needed. Its concentration should be kept
constant or nearly constant over time in order to push the oscillation forward by
permanent inflow. A waste species named B collects by-products. The reaction rules
read:

A + X −→ 2X; Ea,1 = 67kJ/mol (5.18)

X + Y −→ 2Y ; Ea,2 = 67kJ/mol (5.19)

Y −→ B; Ea,3 = 67kJ/mol (5.20)

Positive feedback loops imply a self-amplifying effect combined with a delay. At
the beginning, the “prey” species X undergoes an exponential duplication (repro-
duction) promoted by supplier A in which the number of moveable constituents
of the type X grows faster and faster due to reaction 5.18. After a while, the
exponential growth of X collapses since the “predator” Y consumes more and more
exemplars of X in order to promote its own duplication expressed by reaction 5.19.
In consequence, the number of X exemplars dramatically diminishes and reaches
a low base level. A short time later, the growth of the Y population stops as well
due to lack of X necessary to “feed” Y for reproduction. Now, the number of Y

exemplars sinks down which in turn allows species X to exponentially reproduce
again starting a new oscillation cycle. It stands out that a spike-shaped oscillatory
waveform emerges in which the peaks of Y follow the peaks of X with a short
delay. The period length of the limit cycle oscillation is mainly determined by the
velocity of the degradation reaction 5.20. The faster this reaction runs, the shorter the
resulting period length gets adjusted. The degradation reaction can be accelerated
by decrease of its activation energy Ea,3. Technically, this reaction is treated as
a spontaneous decay without taking into account effective collisions because of
the only substrate Y . In the simulation scenario, we uniformly assign an activation
energy of 67 kJ

mol to all three reactions.
For the JENA simulation study, we define a cubical vessel whose dimension

is 100 nm along the x, y, and z axes. Its volume constitutes 106 nm3. The vessel
contains no solid structures and no delimiters. The species of types A, X, Y ,
and B have been specified to embody moveable particles with uniform mass of
m = 10−24 kg and without inner structure. Initially, 5,000,000 exemplars of A,

5.4 Selection of JENA Case Studies 143

3,000,000 exemplars of X, and 1,000,000 exemplars of Y have been injected
and homogeneously distributed inside the vessel enriched by a number of water
molecules. The initial temperature is set to T = 300 K. We plan to simulate
the reaction system’s behavior for 200 s model time with a discrete time step of
�t = 50 ns by logging all species abundance every 1000 ns. Since the number of
particles from type A needs to be (almost) constant over time to act as a supplier and
to conduct a permanent inflow, we add instructions into the input file to make sure
that every 2 s an amount of 381,270 new particles of type A will be inserted into the
system to exactly compensate for consumption of A which pushes the oscillation.

Figure 5.13 shows the simulation results put into graphs. Here, the abundance
courses of the species A, X, and Y over simulation time become visible. Waste
species B linearly accumulates over time and is skipped in the diagram. The
depicted abundance courses have been smoothed by a moving average filter
to eliminate a slight noise. The oscillatory behavior exhibiting a spike-shaped
waveform with exponential growth and reduction becomes apparent. The transient
phase at the beginning of the oscillatory process is short and passes into a limit
cycle. The study illustrates that the JENA tool is able to manage a multiple particle
system containing several million moveable constituents. A high number of particles
are necessary to obtain a sustained oscillation. In case of reducing the number of

14

200150100500

0

2

4

6

8

10

12

16

X
Y
A

time (s)

sp
ec

ie
s

ab
un

da
nc

e
(m

ill
io

n
m

ov
ea

bl
e

co
ns

tit
ue

nt
s)

Fig. 5.13 Simulation of a chemical Lotka-Volterra oscillator using a minimalist reaction system.
Species A acts as supplier kept at a nearly constant level of particle abundance. Species abundance
X and Y oscillate exhibiting a spike-shaped waveform typical for the predator-prey relationship of
the system

144 5 Molecular Physics and Chemistry in Membranes: The Java Environment. . .

particles to a few thousands, the oscillation course becomes more instable or chaotic,
and one of the species X or Y might extinct, terminating the oscillation.

5.4.2 Electrophoresis

Electrophoresis subsumes a physical technique able to spatially separate electrically
charged molecules by their weights [19]. Particularly, DNA (negatively charged)
and many naturally originated proteins (twisted and folded chains of amino acids
whose electric charge is mainly determined by outer amino acid side chains) are
beneficial candidates for widespread applications in molecular biology and chemical
analysis [35].

Mostly, electrophoresis takes place within a special physical medium like a
gel which carries and steers the molecules during the separation process. To do
so, the gel is prepared in a way to be equipped with numerous pores forming
woven channels or tunnels sufficiently sized to allow passage of charged sample
molecules. For instance, agarose is commonly used to compose a gel suitable
for electrophoresis on DNA. The fiber structure of agarose enables pores whose
diameter usually varies between 150 and 500 nanometers while a DNA strand
(in biologically prevalent B-DNA conformation) diametrically consumes merely 2
nanometers, but its length can reach several hundred nanometers [13]. The ready-
made gel, typically between 10 and 30 centimeters in length or width and up to 5
millimeters thick, is embedded in a gel chamber filled up with a buffer solution in
order to adjust an appropriate pH environment. The gel chamber comes with two
electrodes, a negative one and a positive one, placed at the opposite boundaries of
the gel (see Fig. 5.14).

Subsequently, the sample mixture of DNA strands to be separated becomes
injected into the gel close to the negative electrode. Now, an electrical DC voltage,
provided by an external power supply and mostly chosen between 80 and 120 volts,
is applied to the electrodes. Driven by the external electrical force, the negatively
charged molecules begin to run toward the positive electrode along a lane through
the pores of the gel. In order to mobilize, each molecule has to overcome its friction
notable in both forms, with the gel on the one hand and inherently on the other.

Interestingly, the resulting velocity of movement strongly depends on the mass
(weight) of the individual molecules. Since small and light molecules induce a low

gel tray ready−made
agarose gel

slots for injection of
DNA sample

2

3

4

100150200 DNA strand length
in base pairs (bp)

50bp standard ladder

DNA

1

50

+−

further

sample lanes

−
+

− +100V

chamber

external
power
supply

gel

Fig. 5.14 Sketching technical instruments and outcome of agarose gel electrophoresis

5.4 Selection of JENA Case Studies 145

friction, they run faster than heavier exemplars. This distinction finally affects the
resulting spatial separation according to the weights of involved charged molecules.
The process of electrophoresis is stopped by switching off the voltage shortly before
the smallest molecules have reached the opposite end of the gel. For an easier
visualization of this process, the molecular mixture initially becomes enriched by
a weakly binding dye whose velocity converges in compliance with the smallest
sample molecules [35].

In addition, the DNA sample molecules had been stained using a fluorescence
marker like ethidium bromide [30]. This substance loosely binds to the hydrogen
bonds of double-stranded DNA and persists at the DNA during the electrophoresis
run. Ethidium bromide attached to DNA fluoresces under ultraviolet (UV) light
making the DNA visible inside the gel. Typically, the DNA after electrophoresis
is arranged in so-called bands (sustained bar-shaped blots) along the underlying
lane. Normally, these bands appear in light-gray up to white colors on a dark gel
background. The color’s intensity gives a raw information on the absolute number
of molecules of almost the same mass accumulated within each band.

In a first and mostly sufficient approximation, gel electrophoresis can be
modelled by a parity balance of forces. The electrical force FE needs to overcome
the friction FR . Movement of charged molecules starts up if and only if both forces
equal to each other:

FE = FR (5.21)

Now, we can resolve both forces by formulating its strength using a couple of
dedicated parameters. The electrical force is defined as the product of the molecular
electric charge q with the electric field E which in turn can be expressed by the
quotient of the voltage U and the distance h between the electrodes: FE = q · E =
q · U

h
. In contrast, the friction in accordance with Stokes’ law reads FR = 6 · π ·

η · r · v, assuming movement of a sphere where r denotes the radius, v symbolizes
its velocity, and η stands for the viscosity of the medium, mainly reflecting the
average size of the pores. The velocity can be assumed to remain almost constant
after a short acceleration phase in conjunction with switching on the electric voltage.
Putting everything together reveals:

v = q · E

6 · π · η · r
(5.22)

The only indetermined parameter is the radius r of the imagined sphere represent-
ing the moving charged molecule. In order to cope with that, we can presume that
the volume Vmolecule of the charged molecule resembles the volume Vsphere of the
imagined sphere. Having this in mind, we can write Vmolecule = m

ρ
with m denoting

the mass (weight) of the molecule and ρ its density. Moreover, Vsphere = 4
3 · π · r3.

146 5 Molecular Physics and Chemistry in Membranes: The Java Environment. . .

From that, we obtain:

r =
(

3

4 · π · m

ρ

) 1
3

(5.23)

Let us now compose a resulting function s : R
2 −→ R which describes the

distance moved by a charged molecule with mass m after an elapsed time t:

s(m, t) = v · t (5.24)

= q · E

6 · π · η
(

3·m
4·π ·ρ

) 1
3

· t (5.25)

= q

6 · π ·
(

3
4·π ·ρ

) 1
3

︸ ︷︷ ︸
taken as global parameter G

·E
η

· 1

m
1
3

· t (5.26)

= G · E

η
· 1

m
1
3

· t (5.27)

For DNA agarose gel electrophoresis, the electric field E frequently constitutes
between 400 V

m and 500 V
m while the viscosity commonly differs from 0.001 kg

m·s
(consistency like water in large-pored gels) up to 0.02 kg

m·s in small-meshed gels
enhancing the friction along with producing heat. When employing the molecule

mass m in kg along with elapsed time t in s and remembering that 1VAs = 1 kg·m2

s3 ,
the final value of the function s is returned in meters.

In order to disclose the relation between mass of a DNA double strand and its
length in base pairs, we need to consider the average mass of a nucleotide. Indeed,
there are slight mass deviations between single nucleotides A (adenine, ≈ 5.467 ·
10−25 kg), C (cytosine, ≈ 5.234 · 10−25 kg), G (guanine, ≈ 5.732 · 10−25 kg), and T
(thymine, ≈ 5.301 · 10−25 kg). Each nucleotide mass comprises the chemical base
together with its section of the sugar-phosphate backbone. In average, we obtain
≈ 5.4335 · 10−25 kg per nucleotide or ≈ 1.0867 · 10−24 kg per base pair. Marginal
influences of dye and ethidium bromide are neglected.

When observing gel electrophoresis on DNA in practice, we witness the occur-
rence of undesired side effects resulting in some misplaced DNA strands. It might
happen that short DNA strands run slower than expected due to its supercoiled
spatial structure which increases the friction. Several DNA strands of different mass
can be spatially interwoven in a way that the electrical force used to move the strands
does not suffice to ungarble the DNA cluster. What stands out is a certain fuzziness
regarding the masses of DNA strands enriched in the same band.

Having the formalization of gel electrophoresis in terms of a parameterized
process on a pool of DNA strands at hand, we can implement a corresponding

5.4 Selection of JENA Case Studies 147

model. The main motivation to do so lies in the necessity to figure out the abstract
global parameter G by an appropriate value according to the specificity of the
utilized gel. Moreover, a JENA model should be able to illustrate the process
of gel electrophoresis and some of its undesired side effects like fuzziness of
bands and its intensity. For setup of the experimental study, we model a pool of
90, 000 linear DNA double strands as moveable particles without inner structure
since the nucleotide sequence does not matter for separation by length using gel
electrophoresis. Inspired by a so-called ladder, a DNA size marker composed of
a mix of DNA strands with varying lengths obtained from a cleaved plasmid, we
create 13 types of moveable particles. They correspond to DNA double strands with
lengths of 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000, 1200, 1500, and 3000
base pairs (bp). We assume an average mass of m = 1.0867 ·10−24 kg per base pair.
DNA strand particles with lengths of 500 and 1000 base pairs have been generated
in 12,000 copies, all other lengths in 6000 copies each. Since each DNA strand
particle gets symbolized by a sphere, its radius increases with ascending mass and
strand length. Each DNA strand particle is equipped with an electrically negative
charge. The corresponding point charge of q = 2 · n · e with n expressing the
number of base pairs and e the elementary charge of an electron is assigned to the
central point of the sphere symbolizing a DNA strand particle.

The cuboid vessel for carrying out the gel electrophoresis becomes sized 10 cm
in x dimension (lane length), 1 cm in y dimension (lane width), and 0.5 cm in
z dimension (height). At the position x = 1µm, we initially place a delimiter
in parallel to the yz plane in order to model the injection slot by a chamber for
placement of the DNA strand particles prior to starting the electrophoresis process.
The delimiter separates the vessel into two disjoint chambers. One of them forms
the slot, and the other one stands for the electrophoresis gel. We presume a 1.5%
agarose gel whose filaments surround pores for passage of particles and imply a
certain viscosity of the medium. The gel chamber with a volume of nearly 5 cm3

contains the agarose and water, both with similar mass density of around 1 g
cm3 .

So the entire agarose gel filled with water has a mass of approximately 5 g which
means that 75 mg pure agarose powder have been used. In the model, we distribute
this mass to 100,000 small solid particles in micrometer scale randomly placed in
the gel chamber in spatial equipartition in order to mimic the friction effect of the
agarose filaments.

Now, we can inject the moveable DNA strand particles into the slot and fill both
chambers with additional water molecules to emulate the behavior of a liquid. We
set an initial temperature of T = 300 K for the Brownian motion. To start the
electrophoresis process, an external electric force field is applied directed in parallel
to the x axis with a constant field intensity of 500 V

m . The time step �t is set to 1µs.
At the point in time t = �t , we remove by instruction the delimiter to release
the DNA strand particles from the slot which enter the gel and pass toward its
opposite side. The less the mass of a DNA strand particle, the faster it can move
by the external electrical force. The electrical force pushing the particles forward
through the gel is larger than counter-effects of the Brownian motion causing a slight
individual slowdown. When elastically colliding with solid particles of agarose

148 5 Molecular Physics and Chemistry in Membranes: The Java Environment. . .

x0.1m

agarose gel image

10
0

20
0

40
0

10
00 50
0

30
0 bp

12
00

15
00

30
00

vessel simulation

Fig. 5.15 Agarose gel image from a 100bp ladder of DNA double strands (upper part) and
corresponding simulation result of the electrophoresis process by a JENA model described in the
text. The lower part shows a 10µm thick layer of the virtual gel. White dots mark the final positions
of DNA strand particles

filaments, the DNA strand particles get reflected and redirected which also might
diminish their speed toward the opposite side of the gel. In consequence, DNA
strand particles with the same mass slightly spread by their speed of movement
in parallel to the x axis, causing a certain fuzziness.

We run the electrophoresis simulation for a model time of 30 min. After the
corresponding number of time steps has elapsed, the external electric force field
gets deactivated. Figure 5.15 shows in its lower part a resulting spatial distribution
of approximately 700 DNA strand particles within a section of the gel by depicting a
layer in parallel to the xz plane at the height y = 2.5 mm and 10µm thick. For better
visibility, the diameters of the spheres representing the DNA strand particles (white
dots) have been enlarged up to 10,000-fold. A high degree of similarity between
the simulation result and a real-world agarose gel with a 100 bp ladder becomes
apparent. In order to obtain this result, we did several simulation runs with varying
size, granularity, and spatial distribution of solid particles at fixed positions inside
the gel modelling agarose filaments. These solid particles are responsible for the
effect of friction by causing elastic collisions with the DNA strand particles which
perturb their motion along the direction of the electric field. It turns out that a certain
amount of “disorder” and “irregularity” in spatial placement of the solid particles
seems to be essential. Few DNA strand particles “stick” at some solid particles
unable to leave this position.

After successive adjustment and verification of the JENA model for electrophore-
sis, it can be employed for parameter fitting in formula 5.27 to obtain an appropriate
approximation of G. This formula provides a simple and easy-to-use formalization
of electrophoresis with linear DNA double strands using 1.5% agarose gel (viscosity

5.4 Selection of JENA Case Studies 149

η = 0.01 kg
m·s) as a physical process for spatial DNA separation by strand length.

For parameter fitting of G, we first identify spatial clusters of DNA strand particles
forming the bands in the JENA model. For each band and hence for each available
strand length and strand mass, an average position at the x axis has been calculated.
These data act as a reference and target for parameter fitting. Now, formula 5.27
might be assigned with a randomly chosen initial value for G and applied. We
estimate the cumulated error by weighted summation of the deviations of all bands.
Using a hill climbing heuristic approach, G becomes incremented or decremented
a bit, and the formula is employed again. After a number of several thousand
iterations, a finally optimized value of G comes out. We fitted a constant average

value of approx. 6.794 · 10−4 A·s·kg
1
3

m for G in agarose gel electrophoresis on linear
double-stranded non-denaturing DNA with 1.5% agarose and E = 500 V

m . Different
compositions of the gel and different electric field intensities might imply other best-
fit values of G disclosing a functional relationship.

5.4.3 Centrifugation

Centrifugation belongs to well-established and frequently utilized laboratory tech-
niques for spatial separation of particles embedded in a liquid (suspension or
dispersion) by their different mass densities. Another usage of centrifugation
consists in spatial separation of a mixture of liquids (emulsion) into its components.

A typical application scenario of centrifugation is the recovery of DNA strands
out of a band after agarose gel electrophoresis. Here, the band becomes excised
from the gel using a scalpel. The resulting gel block contains the desired DNA
strands but additionally many agarose filaments, encapsulated water molecules, and
not seldomly rests of proteins from previous operations on DNA. A test tube gets
prepared by filling in a liquid able to break up the agarose filaments. The gel block
has been immerged after what the filaments decay and dissolve. Encapsulated water
gets released. Now, a mix of different types of particles embedded in a liquid persists
in the test tube.

Separation of particles by centrifugation makes use of external mechanical
forces. To this end, a device called centrifuge is set into operation. Its central
component is a rotor, a revolvable cylinder equipped with a ring of conical slots for
placement and locking of test tubes. All test tubes prepared for centrifugation need
to be inserted into the slots of the ring in an equally offset manner in order to avoid
imbalances. Afterward, the test tubes have been arranged radially with their bottoms
located outward in the rotor. Eventually, the rotor is set into a fast rotation around
its central axis for some seconds (short spin) up to few minutes (long spin). The
speed might reach up to several thousand rotations per minute (rpm) using standard
laboratory centrifuges on a table.

Along with the fast rotation of the rotor, centrifugal forces have been induced
directed radially outward from the rotation axis. The centrifugal forces cause an
additional acceleration of the moveable constituents present in each centrifugated

150 5 Molecular Physics and Chemistry in Membranes: The Java Environment. . .

test tube toward its bottom. The acceleration value |a| increases with ascending
distance r to the rotation axis (radius) expressed by the equation

|a| = 4 · π2 · r · n2 (5.28)

in which n symbolizes the revolution speed typically set in the unit s−1 or min−1.
The resulting centrifugal force affecting a particle with mass m has the value |FC| =
m · |a|.

By getting accelerated more and more toward the bottom of the test tube, the
moveable constituents begin to heavily collide in an elastic manner. Particles with
a large mass will move rather straight toward the bottom while particles with lower
mass get redirected by collisions with heavier particles. So lightweight particles
have been more and more displaced from the bottom. In consequence of the strong
elastic collisions, they are forced to move toward the rotation axis and start to enrich
there. The inertia of the heavier particles to straightly move toward the bottom and
their resistance against low-mass particles when elastically colliding implies the
effect of spatial separation. Ideally, the process of centrifugation lasts until most
of the heaviest and densest particles have reached the bottom and enriched there.
Along the longitudinal axis of each centrifugated test tube, a spatial separation of
the containing moveable particles can be observed with ascending density ρ = m

V
(m, particle mass; V , particle volume) from the top downward to the bottom. In
many cases, several colored phases (layers) become visible, whereas a phase stands
for an enrichment of particles of the same type.

When carefully removed from its rotor slot, a test tube with all separate phases
is available for postprocessing. The phases might be successively pipetted and
transferred to other vessels. Sometimes, the densest particles residing at the test
tube bottom form a solid or powdery phase which is called pellet. For instance, this
is the case when recovering DNA from an agarose gel. After centrifugation, the
containing DNA gets concentrated in a pellet. All other phases, composed of liquids
and agarose fragments, need to be eliminated by pipetting before the remaining
pellet can be diluted with high-purity water to be proceeded as a DNA solution.

A JENA model intends to illustrate the process of centrifugation. To this end,
we define a vessel with a squarish base area at the xz plane of the underlying
coordinate system. The point in which both diagonals intersect coincides with the
central point of the centrifuge’s rotor. Having in mind a minicentrifuge, we assign a
rotor diameter of 35 mm. The rotation axis of the rotor is covered by an immoveable
particle placed in parallel to the y dimension of the coordinate system. This barrier
prevents moveable particles from entering the rotation axis. Furthermore, we place
four equally shaped large-sized cuboid delimiters into the corners of the square that
exhibits a cross section of the rotor (see left part of Fig. 5.16). Radially from the
central point, four orthogonal slots between the delimiters persist which in turn act
as test tubes. Their bottoms are located outward and oppositely to the central point.
Each of the four slots has a length of 15 mm and a width of 5 mm.

In the JENA model, we plan to initially insert all moveable particles for
centrifugation near the rotation axis of the rotor. To do so, four auxiliary delimiters

5.4 Selection of JENA Case Studies 151

xx

z z

x

z

Fig. 5.16 Schematic illustration of the modelling setup for centrifugation and its results. The
vessel with delimiters acting as rotor and initial placement of moveable particles is shown in the
left part. The vector field of acceleration resulting from centrifugal forces radially to the rotation
axis is depicted in the middle part. Final spatial separation of moveable particles arranged in three
phases in each of the four slots after centrifugation becomes visible in the right part

are necessary, marked by white lines across the rotor in the left part of Fig. 5.16.
They confine the initial spatial area available for the moveable particles prior
to centrifugation, avoiding a disordered homogeneous distribution throughout the
whole slots. After the first time step of centrifugation simulation, these four
delimiters will be removed by instruction. Three types of moveable particles have
been configured with uniform spheric volume V and masses m of 10−26 kg (green),
10−24 kg (white), and 10−22 kg (magenta). Fif tythousand exemplars of each
particle type are generated and placed near the rotation axis. The initial temperature
for Brownian motion is set to T = 300 K.

The effect of centrifugal forces radially accelerating the moveable particles into
the slots has been emulated by external mechanical forces. For this purpose, we
create a three-dimensional force field cylindrically oriented around the rotation
axis of the rotor with regard to the vessel’s coordinate system. Let (a, b, c) ∈ R

3

represent a central point and the line (a, s, c) for all s ∈ R the rotation axis. A vector
field radially oriented at the rotation axis and with uniform values throughout space
can be defined by Funiform(x, y, z) = (x−a√

(x−a)2+(z−c)2
, 0, z−c√

(x−a)2+(z−c)2
) whereas

the term
√

(x − a)2 + (z − c)2 stands for the distance of a point (x, y, z) from the
rotation axis. Now, we can formulate the vector field of the centrifugal forces whose
values follow Eq. (5.28). Having in mind that the radius r = √(x − a)2 + (z − c)2

coincides with the distance to the rotation axis, the resulting expression can be
simplified to the form:

Fcentrifugal(x, y, z, t) = 4 · π2 · n2 · m(x, y, z, t)√
2

·
⎛

⎝
x − a

0
z − c

⎞

⎠ (5.29)

152 5 Molecular Physics and Chemistry in Membranes: The Java Environment. . .

The term m(x, y, z, t) symbolizes the mass located in position (x, y, z) at the
point in time t . The variable n stands for the revolution speed. The acceleration
a affecting each moveable particle is given by the vector field a(x, y, z, t) =

1
m(x,y,z,t)

·Fcentrifugal(x, y, z, t). The middle part of Fig. 5.16 shows a sectional view
of a vector field of accelerations with the central point at a = 17.5 and c = 17.5.
Please note that the acceleration is independent from each moveable particle’s mass.

For the simulation study, we run the centrifugation for 30 s with a revolution
speed of 3000 rpm which corresponds to n = 50 s−1. The time step �t is set to
1µs. The right part of Fig. 5.16 gives a schematic illustration of the final separation
of moveable particles, making cognizable three phases in each of the four test tube
slots. The colored moveable particles have been enlarged up to 100-fold for better
visibility.

5.4.4 Neural Signal Transduction Across Synaptic Cleft

The capability of appropriate response to environmental stimuli has been identified
to be a common feature of all living organisms and hence a crucial general property
of life. Sensory perception and cognition come along with generation and evaluation
of a plethora of signals expressing an imagination of the environment and its
relevant issues. In addition, the response of an organism by behavioral activities
requires control and monitoring of actuators, appendages, limbs, or extremities
which necessitates induction and propagation of corresponding instructions encoded
by dedicated signal sequences. Furthermore, higher organisms equipped with a brain
or central nervous system manage a lot of inherent signals giving information about
the physical constitution and the internal state of organs and body functions. It turns
out that coping with manifold signals, their transduction and processing are essential
for keeping alive.

Vertebrates possess a network of interwoven and connected neurons reaching all
components of the body responsible for most tasks of signal processing. A neuron
is a specialized type of a biological cell for weighted summation and transduction
of neural signals. Figure 5.17 gives an overview of the neuron structure and its
most relevant components. The cell nucleus contains the genomic DNA and is
surrounded by dendrites, a treelike structure with multiple branches. Each of them
is spatially connected with a synapse of a predecessor neuron, or it is linked
with a sensor as signal generator for reception and perception. Signals enter the
dendrites by sequences of spikes made of a surge of cations, most of them natrium
(sodium) ions denoted as Na+. Via microtubules—molecular hoses composed of
protein complexes—the spikes pass the dendrites toward the nucleus and become
accumulated by summing up. The frequency and duration of a spike sequence might
vary among the single branches within the dendrites. Beyond, spike sequences from
frequently used branches get a higher weight when summed up in comparison to
those with a sparse signal intensity. What stands out is that in the nucleus, a stream
of cations over time arrives and gets blocked in the first instance. Whenever an
individual threshold of cation concentration is reached or exceeded, the neuron starts

5.4 Selection of JENA Case Studies 153

ion channel

axon with axon segments

dendrites

nucleus
synapse

synaptic cleft

synaptic

myelin sheath

dendrites of subsequent neurons

neuron

vesicles

Fig. 5.17 Structure of a neuron with its main components for signal processing found in
vertebrates

to fire what means that a subsequent stream of spikes is released into the axon of the
neuron, a cascade of axon segments coupled to each other by ion channels.

Each axon segment comes with one or more microtubules operating like a
wire. By means of an electric field produced by delimiting membrane proteins
and their electric charges (membrane potential),, the spikes of cations get directed
throughout the axon segment. Its opposite end provides ion channels bridging an
axon segment with its successor. An ion channel controls passage of the cation
spikes. Additionally, a signal refresh is done by amplification and reshaping. The
spikes flattened and weakened along the microtubular wire. Each axon segment
has been wrapped by a myelin sheath acting as an isolator against the local
environment that contributes the cation spikes to be protected from perturbations
and interferences with other electrical signals. Since an axon with its segments can
reach a total length up to approximately 1 m, maintenance of a high quality of signal
transduction is crucial for keeping frequency and waveform of each operated spike
sequence.

The axon on its own ends up in one or more synapses placed in a branched man-
ner. A synapse is responsible to forward the information encoded by the sequence
of spikes to the next neuron. To this end, the electrical signal is transformed into
a chemical representation. For this functionality, each synapse accommodates a
number of synaptic vesicles. Having a nearly spheric form, a synaptic vesicle
contains an individual combination of neurotransmitters enclosed by a membrane.
Presence of cations temporarily accumulated in a synapse from arriving spikes
initiates a chemical signalling cascade at the outer face of synaptic vesicles. Subject
to the amount of cations attachable to a vesicle, it defines an individual threshold to
become activated. After the needed amount of cations has been reached, the vesicle
moves toward the outer face of the synapse and releases its neurotransmitters by
exocytosis into the synaptic cleft, a thin gap to the next neuron. Neurotransmitters are
a collection of messenger molecules able to enter the nearest dendrite of the adjacent
neuron to get received again. This is done by a variety of receptors available at the
dendrite’s surface. Each of these receptors is coupled with another ion channel. As

154 5 Molecular Physics and Chemistry in Membranes: The Java Environment. . .

soon as the receptor gets activated by a suitable neurotransmitter, its ion channel
opens for a short while in order to release a new spike of cations starting to pass the
neuron processed in the same way as in its predecessor neuron. Since many receptor-
controlled ion channels exist in a dendrite operating simultaneously, many cation
spikes arise forming a sequence. Spiking signals feature by a high specificity and by
a low amount of energy necessary for generation, transduction, and processing in
comparison to sinusoidal oscillations because of the small average signal level over
time.

We realize that neural signal processing is based on a complex interplay of
numerous electrical, mechanical, and chemical processes complementing each
other to achieve the entire functionality. This biological scenario emphasizes the
usefulness of a modelling and simulation tool able to cope with a multiplicity of
natural principles found in physics and chemistry and their cooperative bundling.

Before the modelling part of the case study can start, we pay attention to a deeper
understanding of the functioning of ion channels as fundamental elements of neural
signal processing.

Neural signal transduction is based on presence of movable electrically charged
particles, especially cations. This complements the observation that a majority of
complex intracellular molecules exhibits a negative electric charge such as RNA,
DNA, and most proteins. Hence, an axon segment as a whole acts as a negative
electrical potential surrounded by free or loosely bound cations like calcium (Ca2+),
natrium (Na+), or potassium (K+). Originated from environmental minerals, they
reside at the outer face of the membrane surrounding an axon segment.

A neural signal cascade throughout the axon of a neuron is made of a sequence of
ion channels, whereas each ion channel consists of a large protein placed throughout
the outer membranes of adjacent axon segments (see Fig. 5.18). An ion channel
allows a group of ions to pass together into the next axon segment driven by
an electrochemical gradient [9]. To this end, the channel temporarily opens by
deblocking a molecular gate. This gate, formed by an amino acid chain as a part of
the underlying large protein, is controlled by electrical forces between the opposite
ends of the channel. Whenever the resulting voltage exceeds a certain threshold,
a so-called action potential has built up, the molecular gate becomes open, and a
group of ions quickly runs into the body of the axon segment inducing a spike-
shaped electrical signal. Afterward, the voltage between the opposite ends of the
channel is nearly zero due to compensation of electric charges which implies closing
the gate by adjusting the corresponding amino acid chain. It takes some time until
enough cations accumulate at the outer end of the ion channel in order to open the
gate again. Finally, the ion channel exhibits a spiking oscillatory behavior over time
regarding the concentration course of entering cations. Inside the axon segment,
these cations propagate alongside the microtubule, initiating wave patterns and
triggering downstream processes.

Beneficially, the permeability of ion channels in each axon segment is sensitive to
neural activity. Along with increasing activity, the required electrical force to open
the molecular gate becomes diminished. This leads to a higher frequency (or shorter
periodicity, respectively) of the spiking oscillation. From a systems biology point of

5.4 Selection of JENA Case Studies 155

+
+ −−

++

+
+

+
++

+

+

+

+
++

+

+

+
+

+

ca
tio

n
co

nc
en

tr
at

io
n

spike

cations for transduction

vo
lta

ge
 n

ea
rly

 z
er

o
af

te
r

co
m

pe
ns

at
io

n

ion channel
throughout

axon segments

cations for transduction

el
ec

tr
ic

 v
ol

ta
ge

molecular gate (closed)
molecular gate

time

(temporary open)

Fig. 5.18 Schematic representation of an ion channel and its functional principle. Cations (+)

accumulate at the outer face of the membrane surrounding an axon segment (left). After their
amount has reached a certain threshold, the electric voltage with respect to the negatively charged
inner part of the axon segment (−) induces an electrical force which in turn temporarily opens
a molecular gate. A group of cations passes this gate together which results in a spiking signal
(right). Afterward, the voltage is nearly zero due to compensation of electric charges, and the
molecular gate becomes closed again

view, a neural signal cascade based on ion channels primarily performs a frequency
encoding of the input signal comparable with frequency modulation in engineering.

For the modelling study, we select an axon of a neuron with its segments, a
synapse containing vesicles filled with neurotransmitters, and the synaptic cleft.
The study aims at achievement of a spatiotemporal emulation of the behavioral
patterns of cations, spike sequences, vesicles, and neurotransmitters for illustration
of the holistic processing scheme from a general point of view. Later, a successive
refinement might incorporate more and more details toward a quantifiable model
capable of parameter fitting and disclosing underlying laws between frequency or
duration of spike sequences and patterns of neurotransmitter release.

Figure 5.19 illustrates the initial modelling setup and the propagation phases of
cation spikes throughout the axon segments together with subsequent release of
neurotransmitters from a synaptic vesicle into the synaptic cleft. Let us describe
a general formalization of the molecular system whose behavior coincides with
biological knowledge. A later fine-tuning of the model can help to figure out process
parameter values and underlying macroscopic laws from microscopic interactions.
(1) A common elongated vessel (1 mm× 1µm × 1µm) is defined to incorporate all
relevant system components separated by delimiters. The leftmost chamber stands

156 5 Molecular Physics and Chemistry in Membranes: The Java Environment. . .

dendrite axon with axon segments synaptic vesicle with neurotransmitterselectric field

synaptic cleftion channel
inflow of
cations from dendrites

(1)

(2)

(3)

(4)

(5)

(6)

(7)

+

+

+
+ +

+
+
+

+

+

+

++
+

+

+++

+
+

+

+

+

+

+

+

+

+
+

+
+
+
+
+
+

+
+

+

+
+
+

+
+

+

+

+

+

+

+

+

+

+

+

+
+
+

+

+

+
+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+ +

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+
+

+

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−
−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

Fig. 5.19 Propagation phases of cation spikes throughout axon segments and subsequent release
of neurotransmitters from synaptic vesicles into synaptic cleft

5.4 Selection of JENA Case Studies 157

for the transit region from the nucleus into the axon supplied by an inflow of cations
from the dendrites as soon as the neuron is firing. The inflow is implemented by
instructions creating and setting new cations every few time steps. Downstream
ion channels symbolized by solid particles with negative point charges divide the
axon into three consecutive segments. Behind the axon, the right end of the vessel
contains the synapse with some synaptic vesicles. Each vesicle is embedded into
six surface areas acting as boundaries. They have been modelled as solid particles
with negative point charges. Neurotransmitters represented by small solid particles
have been attached at the inner faces of these delimiters. In total, the rightmost
delimiters of the synapse demarcate a small outer chamber having the function of
the synaptic cleft. The membrane potential present in the axon generates an electric
field directed along and in parallel of the longitudinal axis. Its effect has been
included by external electrical forces that steer the cations on their route through
the axon. (2) More and more cations accumulate and enrich in the leftmost chamber
stopped by the first ion channel still blocked by the presence of the corresponding
delimiter. Over time, the number of cations increases continuously. Successively,
they loosely bind to the delimiter of the first ion channel. (3) Immediately after
the number of loosely bound cations has reached a predefined threshold, the ion
channel temporarily opens which is done by a conditional instruction for removal of
its delimiter. Now, a spike of cations continues with passing on its route entering the
first axon segment. During passage, some cations out of the spike are slightly faster
than others due to influences of Brownian motion and elastic collisions with water
molecules. In consequence, the spike begins to disperse and becomes weaker. (4) A
predefined time span after opening the first ion channel, the spike has completely
moved into the first axon segment which in turn compensates the action potential,
and the first ion channel needs to close again. This is done by another instruction
set into operation with a delay. A fixed configurable number of time steps after
opening the ion channel by conditional instruction, the delimiter is placed again
preventing further cations from penetration of the first axon segment. Meanwhile,
the spike of cations inside the first axon segment arrives at its opposite end marked
with the next blocked ion channel. The cations need to accumulate at its entry
what refreshes and restores the shape of the spike. (5) The second ion channel
temporarily opens by conditional instruction, allows passage of a spike of cations,
and closes again shortly after by delayed instruction. The cations move across the
second axon segment and collect at the entry of the third ion channel. (6) After
the predefined threshold of loosely bound cations is reached, the third ion channel
temporarily opens, releasing the spike of cations into the third axon segment, and
closes again by delayed instruction. The cations pass the third axon segment and
wait in front of the rightmost ion channel terminating the third axon segment in
front of the synapse. Simultaneously, a next collection of cations from the dendrites
has been accumulated ready to enter the first axon segment forming the next spike.
(7) Now, the original spike arrived at the synapse after the rightmost ion channel has
temporarily opened and closed again. The cations traverse the synapse and bind to
the outer faces (delimiters) of synaptic vesicles. Since the surface of each synaptic
vesicle varies in its size, the number of cations able to bind there might deviate as

158 5 Molecular Physics and Chemistry in Membranes: The Java Environment. . .

well. By means of a chemical reaction (reaction rule) taking into account the number
of bound ions to the compound of solid particles symbolizing the vesicle, it opens
by elimination of the outer boundary solid particle. Moreover, the neurotransmitters
are transformed from solid particles into moveable ones which models their release.
For simplicity, we define the reaction in a way that the cations finally disappear
along with release of neurotransmitters. By means of Brownian motion as main
driving force for diffusion, the neurotransmitter particles migrate into the synaptic
cleft depicted by the rightmost chamber. Simultaneously, the next spike has reached
and passed the first axon segment.

The modelling case study can reproduce the desired behavior by the instruments
available within the JENA tool. The interplay of physical processes and chemical
reactions becomes obvious. Nevertheless, we are aware of the fact that the model
at its present level is rather abstract and artificial without refinement and without
fitting of parameters for a configuration in accordance with quantifiable measures.
Configuration of cation abundance, thresholds, time delays, electric field properties,
and proportions of the neuron’s components to act in concert for obtaining an
expected average spike periodicity of approximately 100 ms and a medium signal
transduction speed of around 140 m

s requires an extension of the model system
from a three-stage axon to several hundreds of axon segments and a more precise
description of all dynamical structures including their regeneration.

5.5 Conclusions and Prospectives

We believe that the JENA tool in its present form contains a variety of useful, expres-
sive, powerful, and elegant concepts and methods for modelling and simulation of
biological information processing over time and in space at a medium abstraction
level of molecules, particles, and their interplay. The tool mainly benefits from
the combination of chemical reactions with physical processes since this feature
facilitates formulation of many complex and interwoven biological principles like
neural signal transduction. We envisage description, emulation, and analysis of a
freely configurable molecular system in terms of a virtual cell or a virtual laboratory
in which liquids and solid structures dynamically act, react, and interact.

The assumption of a vessel filled with atoms, ions, molecules, and moveable
particles that perform a Brownian motion coincides with the well-established
thermodynamical notion of composition found in liquids. Additional solid (immove-
able) particles might form delimiters, permeable membranes, microtubules, or
other three-dimensional spatial structures able to separate a vessel into chambers,
compartments, or entities like vesicles, trabecular bone structures, or agarose gel
filaments.

We allow specification of an individual set of reaction rules attached to an
arbitrary reaction space (chamber) completely enclosed by solid particles or outer
walls of the vessel. This setting enables definition of independent sets of reaction
rules executed in parallel within different parts of the underlying vessel. Moreover,
reaction rules might incorporate transformations of particles between a moveable

5.5 Conclusions and Prospectives 159

and solid state, making them an instrument for successive assembly or decompo-
sition of compounds and hence able to cope with dynamical structures. Following
the intention of the so-called Billiard model, a chemical reaction emerges from an
effective collision of its substrate molecules or particles with enough kinetic energy
to overcome the activation energy. An exception is given by decay reactions in which
merely one substrate spontaneously degenerates. We allow for this by determination
of points in time for molecular decay.

Many physical processes rely on the effect of varying forces influencing the
motion of molecules and particles. Since electrical and mechanical forces are most
relevant, corresponding force fields can be defined by means of interfering three-
dimensional vector fields. This feature turns out to be a powerful instrument because
many laboratory techniques and biological processes make use of external forces.
Examples are centrifugation, electrophoresis, ion channels, osmosis, filters, and
pumps.

Complementing the aforementioned modelling concepts for an autonomous
system’s behavior without any controlling intervention from outside, we provide the
instrument of instructions in order to enable directed modifications of the molecular
system either at predefined points in time or subject to fulfillment of conditions like
exceeding a minimum particle concentration. Particularly for modelling of abstract
issues or environmental stimuli, instructions are the first choice. They can create or
eliminate solid particles, inject new moveable constituents, change the temperature,
and add or remove reaction rules which implies a high flexibility for exploration of
case studies.

Currently, the JENA tool has reached its alpha state prior to be made available for
all interested users. After a couple of tests and improvements will be finalized, the
software package can be downloaded for free from our research platform at www.
molecular-computing.de.

Despite the JENA tool is not far away from the first level of maturation, there are
many ideas for further improvements and extensions. Future work is planned whose
next steps address following open problems, questions, and wishes.

Although a multiplicity of vessels can be managed, these vessels have been
considered to be isolated from each other so far. It would give a higher descriptive
convenience to connect several vessels inspired by a tissue, by a united cell structure,
or by a distributed multipurpose laboratory equipment. To do so, we need to find a
way to make outer vessel boundaries permeable for exchange of atoms, ions, and
moveable particles. The connectivity of vessels on their own should be handled in
a dynamical manner as well, for instance, by suitable new types of instructions able
to link or to disconnect vessels and capable of regulation of outer wall’s selective or
time-dependent permeability.

Due to the discretization of space by voxels (small-volume elements), elastic and
nonelastic collisions have been treated to run in a central manner which means that
both colliding molecules or particles move along a course frontally faced to each
other. This assumption brings a high degree of idealization, increasing the level
of abstraction since most collisions have a peripheral or decentral nature whose

www.molecular-computing.de
www.molecular-computing.de

160 5 Molecular Physics and Chemistry in Membranes: The Java Environment. . .

mathematical modelling is more complex, consumes more computational resources,
but gives more realistic results.

Convincing visualization has been identified to be a challenging task. This
is mainly due to the fact that atoms, ions, and molecules turn out to be rather
small in comparison to the dimensions of a vessel. When depicted in its original
proportions, many constituents are simply invisible since they occupy less than one
pixel. In contrast, there might exist a high number up to several billion constituents,
especially in case that water molecules are included in a visualization. Here, we are
seeking for new and complementing approaches.

JENA in its entirety is conceived of an ongoing long-term project with many
facets, fascinating case studies, a growing pool of models, and amazing applications
also in teaching and education. From a scientific point of view, the JENA tool is
envisioned for helping to turn empirical bioinformatics knowledge into systematic
knowledge derivable and explainable based on natural laws and promoted by
membrane computing.

References

1. A. Bejan, Advanced Engineering of Thermodynamics, 4th edn. (Wiley, New York, 2016)
2. D.A. Case, T.E. Cheatham, T. Darden, H. Gohlke, R. Luo, K.M. Merz, Jr., A. Onufriev, C.

Simmerling, B. Wang, R. Woods, The Amber biomolecular simulation programs. J. Comput.
Chem. 26, 1668–1688 (2005). https://doi.org/10.1002/jcc.20290.

3. T. Clark, A Handbook of Computational Chemistry: A Practical Guide to Chemical Structure
and Energy Calculations (Wiley-Interscience, New York, 1985)

4. K.A. Connors, Chemical Kinetics: The Study of Reaction Rates in Solution (VCH Publishers,
New York, 1990)

5. L.G. Davis, M.D. Dibner, J.F. Battey, Basic Methods in Molecular Biology (Elsevier, Amster-
dam, 2006)

6. P. Dayan, L. Abbott, Theoretical Neuroscience: Computational and Mathematical Modeling of
Neural Systems (MIT Press, Cambridge, 2001)

7. D. Flanagan, Java in a Nutshell (O’Reilly, New York, 2005)
8. M. García-Quismondo, R. Gutiérrez-Escudero, I. Pérez-Hurtado, M.J. Pérez-Jiménez, A.

Riscos-Núñez, An overview of P-Lingua 2.0, in Membrane Computing (WMC 2009), ed.
by Gh. Păun, M.J. Pérez-Jiménez, A. Riscos, G. Rozenberg, A. Salomaa. Lecture Notes in
Computer Science, vol. 5957 (2010), pp. 264–288. https://doi.org/10.1007/978-3-642-11467-
0_20

9. R. Glaser, Biophysics: An Introduction (Springer, Berlin, 2012)
10. P. Greengard, The neurobiology of slow synaptic transmission. Science 294(5544), 1024–1030

(2001). https://doi.org/10.1126/science.294.5544.1024
11. G. Grünert, B. Ibrahim, T. Lenser, M. Lohel, T. Hinze, P. Dittrich, Rule-based spatial modeling

with diffusing, geometrically constrained molecules. BMC Bioinf. 11, 307 (2010). https://doi.
org/0.1186/1471-2105-11-307

12. S.R. Hameroff, Ultimate Computing. Biomolecular Consciousness and Nanotechnology
(North-Holland/Elsevier, Amsterdam, 1987)

13. D. Hames, N. Hooper, Biochemistry, 3rd edn. (Taylor and Francis, London, 2005)
14. R.A. Harvey, P.C. Champe, Biochemistry (Lippincott Williams and Wilkins, Baltimore, 2005)

https://doi.org/10.1002/jcc.20290
https://doi.org/10.1007/978-3-642-11467-0_20
https://doi.org/10.1007/978-3-642-11467-0_20
https://doi.org/10.1126/science.294.5544.1024
https://doi.org/0.1186/1471-2105-11-307
https://doi.org/0.1186/1471-2105-11-307

References 161

15. T. Hinze, The Java Environment for Nature-inspired Approaches (JENA): a workbench for
bioComputing and bioModelling enthusiasts, in Enjoying Natural Computing, Series Lecture
Notes in Computer Science, vol. 11270, ed. by C. Graciani, A. Riscos-Núñez, Gh. Păun, G.
Rozenberg, A. Salomaa (2018), pp. 155–169. https://doi.org/10.1007/978-3-030-00265-7_13

16. T. Hinze, J. Behre, C. Bodenstein, G. Escuela, G. Grünert, P. Hofstedt, P. Sauer, S. Hayat, P.
Dittrich, Membrane systems and tools combining dynamical structures with reaction kinetics
for applications in chronobiology, in Applications of Membrane Computing in Systems and
Synthetic Biology, ed. by P. Frisco, M. Gheorghe, M.J. Pérez-Jiménez. Series Emergence,
Complexity, and Computation, vol. 7 (Springer, Berlin, 2014), pp. 133–173. https://doi.org/
10.1007/978-3-319-03191-0_5

17. W. Hoppe, W. Lohmann, H. Markl, H. Ziegler, Biophysics (Springer, Berlin, 1983)
18. P.A. Iglesias, B.P. Ingalls. Control Theory and Systems Biology (MIT Press, New York, 2010)
19. B.G. Johannson, Agarose gel electrophoresis. Scand. J. Clin. Lab. Invest. 29(s124), 7–19

(1972). https://doi.org/10.3109/00365517209102747.
20. H. Kitano, Computational systems biology. Nature 420, 206–210 (2002). https://doi.org/10.

1038/nature01254
21. E. Klipp, R. Herwig, A. Kowald, C. Wierling, H. Lehrach, Systems Biology in Practics (Wiley

VCH, New York, 2005)
22. C. Koch, Biophysics of Computation. Information Processing in Single Neurons (Oxford

University, Oxford, 1999)
23. Z.L. Kruk, C.J. Pycock, Neurotransmitters and Drugs (Croom Helm, London, 2007)
24. A.J. Lotka, Contribution to the theory of periodic reactions. J. Phys. Chem. 14(3), 271–274

(1910). https://doi.org/10.1021/j150111a004
25. P. Mörters, Y. Peres, Brownian Motion (Cambridge University, Cambridge, 2010)
26. Gh. Păun, G. Rozenberg, A. Salomaa The Oxford Handbook of Membrane Computing (Oxford

University, Oxford, 2010)
27. I. Pérez-Hurtado, D. Orellana-Martín, G. Zhang, M.J. Pérez-Jiménez, P-lingua in two steps:

flexibility and efficiency. J. Membr. Comput. 1(2), 93–102 (2019). https://doi.org/10.1007/
s41965-019-00014-1

28. T.D. Pollard, W.C. Earnshaw, J. Lippincott-Schwartz, G.T. Johnson, Cell Biology, 3rd edn.
(Elsevier, Amsterdam, 2017)

29. A.K. Rappe, C.J. Casewit, K.S. Colwell, W.A. Goddard, W.M. Skiff, UFF, a full periodic table
force field for molecular mechanics and molecular dynamics simulations. J Am. Chem. Soc.
114(25), 10024–10035 (1992). https://doi.org/10.1021/ja00051a040

30. R.W. Sabnis, Handbook of Biological Dyes and Stains: Synthesis and Industrial Application
(Wiley-VCH, New York, 2010)

31. R. Salomon-Ferrer, D.A. Case, R.C. Walker, An overview of the Amber biomolecular
simulation package. WIREs Comput. Mol. Sci. 3, 198–210 (2013). https://doi.org/10.1002/
wcms.1121

32. T.C. Südhof, J. Rizo, Synaptic vesicle exocytosis. Cold Spring Harbor Perspect. Biol. 3(12),
1–15 (2011). https://doi.org/10.1101/cshperspect.a005637

33. G.I. Taylor, Diffusion by continuous movements. Proc. London Math. Soc. 2(1), 196–212
(1922). First published. https://doi.org//10.1112/plms/s2-20.1.196

34. G.J. van Wylen, R.E. Sonntag, Fundamentals of Classical Thermodynamics (Wiley, New York,
1985)

35. R. Westermeier, Electrophoresis in Practice (Wiley-VCH, New York, 2005)
36. M. Weissbluth, Atoms and Molecules (Academic Press, New York, 2008)

https://doi.org/10.1007/978-3-030-00265-7_13
https://doi.org/10.1007/978-3-319-03191-0_5
https://doi.org/10.1007/978-3-319-03191-0_5
https://doi.org/10.3109/00365517209102747
https://doi.org/10.1038/nature01254
https://doi.org/10.1038/nature01254
https://doi.org/10.1021/j150111a004
https://doi.org/10.1007/s41965-019-00014-1
https://doi.org/10.1007/s41965-019-00014-1
https://doi.org/10.1021/ja00051a040
https://doi.org/10.1002/wcms.1121
https://doi.org/10.1002/wcms.1121
https://doi.org/10.1101/cshperspect.a005637
https://doi.org//10.1112/plms/s2-20.1.196

6PSystems Implementation on GPUs

6.1 Introduction

The development of P system simulators is usually driven by the importance
of certain models. Usually, these simulators are implemented in a flexible way,
allowing not only to simulate a wide variety of P systems but also to help
construct simulators for other models. An example of this flexibility is P-Lingua
framework[13]. However, for certain applications and models, efficient simulation
tools are required. For instance, the simulation of population dynamics P systems
is crucial for model validation of real ecosystems and for virtual experimentation.
In this case, the faster the simulation tool, the shorter the time to construct a
valid model. Another interest behind the development of efficient tools is also for
analyzing theoretical aspects of P systems (parallelism, non-determinism, etc.) and
how to bridge them with today, in-silico technology [48].

There are several ways to accelerate the simulation of P systems: changing the
technology where to implement the simulators (e.g., from interpreted languages like
Java to compiled ones like C++), increasing the power of the processors where to
run the simulations (e.g., increasing the clock frequency, the memory bandwidth and
clock, etc.), or using high performance computing (HPC) technologies to implement
real parallelism. The main trend when developing efficient simulators has been the
last one: taking advantage of the inherent parallelism of the models and mapping it
into parallel platforms such as clusters, supercomputers, accelerators, etc.

According to [15], we can define high performance computing (HPC) as “the
practice of aggregating computing power in a way that delivers much higher
performance than one could get out of a typical desktop computer or workstation
in order to solve large problem instances in science, engineering, or business”.
This is usually accomplished by means of parallelism, since it is the basis for
the acceleration of large and complex real-world applications. The maximum
exponent of HPC is known as supercomputing, where the computing power of
current technology is being continuously pushed. A ranking of the most powerful

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2021
G. Zhang et al., Membrane Computing Models: Implementations,
https://doi.org/10.1007/978-981-16-1566-5_6

163

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-16-1566-5_6&domain=pdf
https://doi.org/10.1007/978-981-16-1566-5_6

164 6 P Systems Implementation on GPUs

supercomputers can be consulted at Top500 website [46]. To the time of writing,
most of the top 10 supercomputers are based on nodes extended with accelerators.

HPC accelerators are dedicated chips that serve as co-processors, extending in
this way the computing power. Examples of accelerators are FPGAs and GPUs.
The latter refers to the processors inside the graphics cards, which take over the
task of graphics generation in computers. However, with the increasing demand
in 3D rendering for gaming and video, and as foreseen by Elster [12] and others,
GPUs (Graphics Processing Units) have evolved to a massively parallel processor
that is suitable for parallel computing. Today, GPUs are the enabling technology for
trending areas such as Deep Learning, Data Science, physics simulation, real-time
ray tracing graphics, etc.

Concerning P systems and their applications, GPUs have been shown to be an
alternative for accelerating simulations. In [4], the double parallelism of P systems
were mapped over the double parallelism inside GPUs. This idea has been refined
over the time, in such a way that the simulators are now better adapted to GPU
parallelism. We can identify three types of simulators: those developed for very
specific P systems or family of P systems (specific simulators) and developed for a
wide range of P systems inside a variant (generic simulators) and a hybrid simulator
that receives high-level information to be better adapted (adaptive simulators).

In this chapter, we will introduce all the concepts related with GPU computing
and its applications. Later, we will go through some P system simulators depending
on their type: specific, generic, or hybrid. Finally, we will provide some guidelines
on how to develop new simulators for P systems on GPUs.

6.2 GPU Computing

In this section, we will introduce the main concepts of GPU computing, including
CUDA and modern GPU architecture. This will provide the required background to
understand the design of P system simulators on GPUs.

6.2.1 The Graphics Processing Unit

The first Graphics Processing Units (GPUs) were introduced back in 1999 [11], in
order to overcome the bottleneck created by the CPU when generating real-time
graphics, such as in videogames and in 3D rendering. Since then, every graphics
card has integrated such kind of specific processors. Usually, we refer to GPU and
graphics card as synonyms. It is important to remark the place where the GPU is
located on a computer. The GPU is connected with the CPU through a data bridge
(Northbridge), which is also used to access the main memory (RAM). Currently,
modern GPUs are connected through the so called PCI Express bus, which runs at
more than 64GB/s (when using 16-lane configuration).

GPUs, since they were born, install processor cores that are specialized for
graphics (pixel colorization, etc.). Thus, these processors are able to include more

6.2 GPU Computing 165

cores than usual CPUs because they are more specific and, so, lightweight. This
GPU architecture has evolved over the time, being both more parallel and flexible.
The former means that it included more and more computing cores, and the
latter means that these cores were more programmable. In fact, since 2002, the
graphics pipeline implemented in GPU hardware became programmable through
small programs called shaders. Programming languages such as Cg, GLSL, DirectX
Shading languages, etc. are employed for shaders. There were two types of shaders
(for vertices and fragments), but in 2007 they were unified (e.g., the U of CUDA
stands for Unified).

The evolution of shaders led to a new area called GPGPU (general purpose
computing on the GPU), whose name was coined by Mark Harris in 2002. The
target of this research area is to develop parallel methodologies to program GPUs
for other purposes rather than graphics, such as scientific computing. Today, this
is more known as GPU computing and has been settled as an alternative within
HPC. That is, GPUs are nowadays an HPC accelerator that can be found in the most
powerful supercomputers. GPUs are good at data parallelism. More specifically,
they are based on SPMD programming model (Single Program Multiple Data): the
GPU processes many independent elements in parallel using the same program [35].

Currently, GPU computing is also a heterogeneous computing system [17],
where the GPU is known as device and the CPU is known as host. The host has
a role of a master, which takes over the execution and manages the different devices
that can be in the system. Devices are co-processors that help to accelerate the
algorithms by executing code in a parallel fashion, reducing in this way the overhead
on the host. This trend is being consolidated with OpenCL [31], the first free,
open standard for multi-platform, heterogeneous parallel programming of modern
processors found in PCs, servers, and embedded devices. OpenCL is being used not
only for GPUs but also for FPGAs, multicore CPUs, etc. However, the drivers and
compilers developed by each manufacturer of chips (NVIDIA, Intel, AMD. . .) are
not up to date and lack full support. This is why a new standard, called SYCL, is
being conceived, but it is still experimental (to date).

GPUs can be programmed with both OpenCL and SYCL [44]. Moreover,
NVIDIA GPUs can be also programmed with CUDA [32], which is a proprietary
technology that is very mature and has lot of functionality. By having a quick look
to the literature, it is possible to see that CUDA is the most used platform for
GPU computing. On the other side, AMD GPUs can be also programmed with a
CUDA-like environment called HIP [34], which is based on RoCm. This allows
programmers to translate easily CUDA code to AMD technology. Other standard
languages and platforms to program GPUs are based on the graphics pipeline, such
as OpenGL, GLSL, and Vulkan [47]. They can also be used for GPU computing in
a not very complex way.

In short, GPU computing poses a highly parallel architecture with thousands of
lightweight processor cores and high-bandwidth memory that can be programmed
with several standard languages. The most evolved one is CUDA, but it works
only for NVIDIA GPUs. Since the introduction of CUDA in 2007, many scientific
applications have used GPU computing. Their low cost compared to the perfor-

166 6 P Systems Implementation on GPUs

mance offered has made GPUs an attractive alternative. In fact, currently they are
the enabling technology (i.e., if you want to tackle these problems, you should be
using GPUs) for Deep Learning [18], nanopore DNA sequencing, and high-energy
particle trajectory reconstruction in LHCb HLT 1.

6.2.2 CUDA ProgrammingModel

In this chapter, we will be focusing on CUDA [32,33], since, as mentioned, it is the
most widely technology for GPU computing, and on top of that, the majority of P
system simulators have been developed with CUDA. Let us recall that CUDA, as
usual in GPU computing, offers a heterogeneous system to the user, where the CPU
is known as the host, and the GPU is the device. The execution flow in a CUDA
program is like in any common program; it starts with the CPU main function. At
some points, the CPU asks the GPU to allocate memory, transfer memory, launch
computation, retrieve results, etc.

CUDA devices take advantage of data-parallel program sections and accelerate
their execution. A CUDA program therefore consists of one or more phases that
are executed either in the host or in device. Sequential and control phases are
implemented in the host code, while phases which exhibit a large amount of data
parallelism are implemented in the device code. A CUDA program is also a unified
source code covering both sides.

We call kernels to those functions executed by the device (GPU). When they are
requested to be executed by the host, they allocate an execution grid on device. A
grid typically populates a large number of execution threads that work in SPMD
fashion: they execute the same piece of code (the kernel function) to probably
different portions of data. Actually, a kernel is written as a usual function in a
programming language (so far, only C++, Fortran or Python) but using special
keywords given by the CUDA API. These keywords, such as the thread identifier,
might take different values at different threads in run time, so that they can have
index different data elements, or even take different execution path (although this
is not optimal). CUDA threads are much lighter than CPU threads. A CUDA
programmer can assume that these threads take a few cycles to be generated and
scheduled. This contrasts with the threads of the CPU, which normally require
thousands of clock cycles to be managed.

Threads within a grid are arranged in a two-level hierarchy. At the higher level,
each grid consists of a two-dimensional array of thread blocks. At the lower level,
each block is organized as a three-dimensional array of threads. All blocks in a
grid have the same number and organization of threads. Moreover, each block is
identified by a two-dimensional identifier and each thread within its block by a three-
dimensional identifier. To date, a thread block can contain, at most, 1024 threads.
Threads within a block can easily cooperate through a special fast memory (see
below) and special warp-wide operations (see next section) and be synchronized
with a barrier operation.

6.2 GPU Computing 167

One kernel is executed by just one grid that, has mentioned, arranges an array
of thread blocks, each with the same configuration of threads. It is also possible
to launch several kernels at the same time on a GPU with different grids. This is
allowed by the so-called CUDA streams. They are concepts similar to lanes, where
kernels get executed. As long as there are available resources on the GPU, the
kernel executions can be done simultaneously. CUDA streams also allow to overlap
execution with memory transfers, designing in this way full computing pipelines.

CUDA programmers also have to explicitly manage the memory layout and
hierarchy. GPUs offer different memory spaces arranged in a hierarchy where to
store the data of a parallel program. In CUDA, the host and the devices have separate
memory spaces (as it is in the real hardware). In order to run a kernel on the device,
the data has to be there. Hence, enough memory should be first allocated, and
later the relevant data has to be transferred from host to device. Similarly, after
the execution of the kernels on the device, the resulting data has to be copied from
device to host memory, and finally the allocated device memory should be released.
From this point of view, we can assume that CUDA uses static memory allocations.
Dynamic memory is already supported at the kernels, but there are restrictions, and
it drastically downgrades the performance.

The memory that serves as communication channel between the host and the
device is called global (or device) memory. The host can allocate memory and copy
memory, and CUDA threads can access it and make modifications. However, this
memory is the slowest in the GPU, but the largest one. The best performance is
achieved when contiguous threads (according to their identifiers) access contiguous
positions of data, in what is called coalesced memory access. This helps to maximize
the utilization of the memory bandwidth.

Threads can use a common memory space when they are in the same thread
block, which is called shared memory. Accesses to shared memory are very
fast when done in a coalesced way. However, it is a small space of up to just
kilobytes. On the other side, we can find cached memories. They are memories
that automatically speedup the access to repeated data through a cache. Examples
of them are constant and texture memories. They are read-only memories for the
GPU, and the CPU can just copy data in there, under certain restrictions. Moreover,
modern GPUs have two levels of cache memory for accesses to global memory, but
this is completely transparent to the code.

In summary, algorithms implemented in CUDA are structured as follows [17]:

1. The host initializes the program, reading the input data.
2. The host allocate enough memory space in global memory for input and auxiliary

data.
3. The host copies the input and auxiliary data to the device.
4. The host launches a kernel to the device, with the following

syntax: kernelName <<< numBlocks, numThreads, streamId,
sharedMemory >>> (param1, param2,...)

168 6 P Systems Implementation on GPUs

5. When a kernel is executed, at the device side:
(a) The threads of each block read its corresponding data portion from global

memory to shared memory or to internal variables (also called registers, see
next section).

(b) Threads work with the data directly on the shared memory or with their
registers.

(c) Threads copy these data back to global memory.
6. The host might call more kernels, copy more data, retrieve data, etc.
7. When the algorithm is done, the host copies back the results from global memory

of the device.

As mentioned before, threads from different blocks cannot cooperate directly,
but only through the global memory and using a special set of atomic operations.
These operations are implemented by implicit locks, so that accesses to desired data
elements can be efficiently synchronized through them. However, this is restricted
to the use of a small set of operations.

6.2.3 GPU Architecture

A modern GPU architecture [19] consists of a processor array which has hundreds
(even thousands) of SP (streaming processor) cores organized in SM (streaming
multiprocessor). In this sense, every SM contains the following units: SP arithmetic
cores, SFU single-precision floating point units (for specific operations such as
sine, cosine, reciprocal square root, etc.), double precision units, instruction cache,
read only constant cache, read/write shared memory and L1 cache memory, a set
of 32-bit registers, and access to the off-chip memory (device/local memory). The
arithmetic units are capable to execute several instructions per clock cycle, and they
are fully pipelined, running at frequencies around 1 GHz (depending on the GPU).
The amount of cores, floating point units, shared memory, etc. depends on the GPU
itself.

SMs is able to manage and execute thousands of threads in hardware with zero
scheduling overhead. Each thread has its own thread execution state and can execute
an independent code path. This execution is done in a SIMT (Single-Instruction
Multiple-Thread) fashion [19], where threads execute the same instruction on
different piece of data. SMs create, manage, schedule, and execute threads in groups
of 32 threads (of the same thread block). This set of 32 threads is called warp. Each
SM can handle several warps. Individual threads of the same warp must be of the
same type and start together at the same program address in order to be scheduled
simultaneously, but they are free to branch (e.g., an if then else clause) and
execute independently at the cost of serialization.

When a grid is created to execute a kernel, the thread blocks are created and
assigned to SMs. An SM can handle several thread blocks, but a thread block is
assigned only to one SM. Then, the thread block is split into warps and they are
scheduled. When a warp is selected, its threads are executed on SPs as long as the

6.2 GPU Computing 169

threads are synchronized in the same execution flow of the code. If the threads of a
warp diverge, the warp serially executes each taken branch path, disabling threads
that are not on that path. When all the paths complete, the threads re-converge to the
original execution path.

As shown by the CUDA programming model [17], the GPU contains several
memory spaces. First of all, both the GPU and the CPU have separated memory
spaces. They are connected through a bus that can be PCI Express ×16 bus standard.
Global memory is the largest (up to several gigabytes) but the slowest one. Although
there is a two-level cache memory system to speedup repeated access to same data,
an access to global memory is around 400 times slower than accessing on-chip
memory spaces (such as shared memory or registers). Moreover, in order to fulfill
the memory bandwidth, threads should make coalesced accesses.

As mentioned, inside each SM we can find a memory space called shared
memory. Its size is measured in kilobytes, but its access is very fast, even close
to the accesses to registers. This memory space is also split into shared memory
and L1 cache memory. The latter is transparent to CUDA programs, while shared
memory is manually managed (one can allocate space and let threads to copy and
modify data). There are also many other units for cached memory which is read only
for the cores. Finally, SMs incorporate a large amount of registers, whose access is
the fastest since they are next to the cores. They are used to allocate the values of
single variables declared in the code (e.g., iterators, auxiliary variables, etc.).

6.2.4 Good Practices

CUDA is supported by a wide range of tools [33], including a compiler (called
nvcc), the driver for the GPU, libraries, and examples. They are freely available at
their website. There is also a vast amount of documentation, books, and literature
in this respect. CUDA is not only the most mature platform for GPU computing but
also the one with the largest community and support. It is important to know the
compiler options for automatic optimizations (like -O3) and to understand and use
the libraries (e.g., CuRAND for random number generation, CuSPARSE for sparse
matrix representations and operations, etc.).

It is also a good practice to start developing a reference program in sequential
C/C++ before starting implementing in CUDA. This is critical in order to first
understand the algorithm, secondly to validate the parallel version, and also to run
benchmarks and performance analysis.

Finally, let us introduce four ways to accelerate the execution of a program on a
GPU with CUDA [35]. They will help to understand the designs of GPU-based P
system simulators:

• Emphasize parallelism: GPUs prefer to run thousands of lightweight threads.
Thus, the algorithms should permit dividing the computation into many inde-
pendent pieces by decreasing the resources assigned to each thread and avoiding
synchronization.

170 6 P Systems Implementation on GPUs

• Minimize branch divergence: if a warp is broken because divergence in the path
executed by the threads, then there is no real parallelism.

• Maximize arithmetic intensity: computation is relatively cheap for today’s GPUs,
but bandwidth is precious. It is better to maximize the computational operations
per memory transaction. Shared memory or registers can help for this purpose.

• Exploit streaming bandwidth: on the other side, GPUs and their on-board
memory have a peak bandwidth much faster than in CPUs. It is achieved
by streaming memory access patterns: coalesced access to aligned memory
positions. A good way to maximize the bandwidth in an algorithm is by the
scatter/gather strategy.

6.3 Generic Simulations

In this section, we will introduce a type of simulation of P systems, which is
called generic simulation [22, 25]. We will describe how to implement this kind
of simulators in CUDA and provide two illustrative examples.

6.3.1 Definition

When implementing a P system simulator, it is important to understand what type of
P systems we want to simulate before starting the development. We will say that a
generic simulator is a simulator developed for a wide range of P systems belonging
to the same variant. If the simulator is able to handle a large variety of P systems
(with very distinct rules and alphabets, even designed to solve different problems),
then it is generic. Sometimes the types of P systems are restricted somehow for the
sake of simplicity, but as long as the simulator accepts P systems from different
families (but for the same variant), we will say it is generic and not specific.

In this scenario, it is not possible to know what can happen in the computation
at a certain transition step. Therefore, it has to be prepared for any situation, so we
need to cover worst-case scenarios when developing such kind of simulators. For
example, we need to provide an upper bound of existing objects at a certain step,
in order to avoid memory overflows. Furthermore, in principle, all rules might be
selected for execution at a certain step (until their applicability is checked). The
rules must be stored in memory since we do not know them until the P system
model is parsed. As mentioned in Chap. 2, simulators are usually defined by three
modules: input parser, simulation engine, and output module. Generic simulators
can be designed to reproduce either a single computation or all computations of the
input P system.

6.3 Generic Simulations 171

The memory layout is also an essential part of a simulator, since P system
simulators have been demonstrated to be memory and memory bandwidth bound.
When storing the information of P system configuration, we can use either [25]:

• Sparse representation: using a large array to store multiplicities, with a position
per each possible object (all objects defined in the alphabet). The access is direct
since the object identifier is the index where to access the array. However, if many
objects are not present at a certain moment, the array will be full of zeroes.

• Dense representation: using a double array with a component for the object
identifier and the other for multiplicity. We need to search for the object, unless
we track them and we know exactly where they are store at any moment. This
can help to drastically reduce the size because objects with multiplicity zero can
be discarded.

Generic simulators usually use sparse representations, since, in this way, they
can identify objects very efficiently, in O(1). The object identifier is employed as
the index to access the array where storing the multisets, and by representing the
whole alphabet, we make sure of an upper bound for the worst-case scenario.

6.3.2 Simulating P Systems with Active Membranes

In this section we will depict the very first GPU simulator for P systems ever
developed. It was a generic simulator and helped to understand how to better map
the parallelism of P systems on the parallelism on GPUs. The simulated models
were of the variant P systems with active membranes and elementary division.

The original work is published in [4, 21, 22]. The full framework of simulators
for P systems with active membranes, including the sequential, fast sequential, and
CUDA parallel simulators, is called PCUDA. It is a subproject of the PMCGPU
project and can be downloaded from the official website http://sourceforge.net/p/
pmcgpu [45] or the repository https://github.com/RGNC/pcuda.

6.3.2.1 Recognizer P Systems with Active Membranes
Families of cell-like P systems whose membrane structures does not grow, that
is, there is no rules producing new membranes in the system, only can solve in
polynomial time and uniform way, problems in class P. Therefore, new ingredients
are needed in order to be able to provide efficient solutions of computationally
hard problems by making use of an exponential workspace, expressed in terms of
number of membranes and number of objects, created in linear time. In [36], a new
computing model, called P system with active membranes, was introduced. In these
systems, the membranes have associated with electrical charges and make use of
division rules, inspired from the mitosis and meiosis processes, as a mechanism to
generate in linear time, an exponential workspace. Polynomial time and uniform
solutions to NP-complete problems were given by using families of the new
computing model.

http://sourceforge.net/p/pmcgpu
http://sourceforge.net/p/pmcgpu
https://github.com/RGNC/pcuda

172 6 P Systems Implementation on GPUs

Next, P systems with active membranes and division rules only for elementary
division are formally defined.

Definition 6.1. A P system with active membranes of degree q ≥ 1 is a tuple
� = (�,H,μ,M1, . . . ,Mq,R, iout), where:

1. � and H are finite alphabets such that � ∩ H = ∅;
2. μ is a rooted tree with q nodes labeled by elements from H (the root is labeled

by is ∈ H);
3. M1, . . . ,Mq belongs to M(�), that is, all of them are multisets over �;
4. R is a finite set of rules, of the following forms:

(a) [a → u]αh , for h ∈ H , α ∈ {+,−, 0}, a ∈ �, u ∈ M(�) (object evolution
rules);

(b) a []α1
h → [b]α2

h , for h ∈ H \ {is}, α1, α2 ∈ {+,−, 0}, a, b ∈ � (send-in
rules);

(c) [a]α1
h → b []α2

h , for h ∈ H , α1, α2 ∈ {+,−, 0}, a, b ∈ � (send-out rules);
(d) [a]αh → b, for h ∈ H \ {is, iout}, α ∈ {+,−, 0}, a, b ∈ � (dissolution rules);
(e) [a]α1

h → [b]α2
h [c]α3

h , for h ∈ H \{is, iout }, α1, α2, α3 ∈ {+,−, 0}, a, b, c ∈
� (division rules for elementary membranes);

5. iout ∈ H ∪ {env}, where env /∈ � ∪ H .

A P system with active membranes of degree q ≥ 1, � = (�,H,μ,M1, . . . ,Mq,

R, iout), can be viewed as a set of q membranes, injectively labeled by elements
of H , arranged in a hierarchical structure μ given by a labeled rooted tree (called
membrane structure) whose root is called the skin membrane (labeled by is), such
that (a) each membrane has associated with an electrical charge from the set
{+,−, 0}; (b) M1, . . . ,Mp represent the finite multisets of objects (symbols of
the working alphabet �) initially placed in the q membranes of the system; (c) R
is a finite set of rules over � associated with the labels; and (d) iout ∈ H ∪ {env}
indicates the output zone. We use the term zone i to refer to membrane i in the case
i ∈ H and to refer to the “environment” of the system in the case i = env. The
leaves of μ are called elementary membranes.

Next, the semantics of the new computing model is described. A configuration
(or instantaneous description)Ct at an instant t of a P system with active membranes
is described by the following elements: (a) the membrane structure at instant t and
(b) all multisets of objects over � associated with all the membranes present in the
system at that moment.

An object evolution rule [a → u]αh is applicable to a configuration Ct at an
instant t , if there exists a membrane labeled by h with electrical charge α, in Ct ,
such that contains object a. When applying such a rule to such a membrane, one
object a is consumed and objects from the multiset u is produced in that membrane.

A send-in communication rule a []α1
h → [b]α2

h is applicable to a configuration
Ct at an instant t , if there exists a membrane labeled by h with electrical charge α1,
in Ct such that h is not the label of the root of μ and its parent membrane contains
object a. When applying such a rule to such a membrane, one object a is consumed

6.3 Generic Simulations 173

from the parent membrane, and object b is produced in the corresponding membrane
labeled by h. Besides, the charge α1 of that membrane h is replaced by α2.

A send-out communication rule [a]α1
h → b []α2

h is applicable to a configuration
Ct at an instant t , if there exists a membrane labeled by h with electrical charge α1,
in Ct such that it contains object a. When applying such a rule to such a membrane,
one object a is consumed from such membrane h, and object b is produced in the
parent of such membrane (in the case that such membrane is the skin, then object
b is produced in the environment). Besides, the charge α1 of that membrane h is
replaced by α2.

A dissolution rule [a]αh → b is applicable to a configuration Ct at an instant
t , if there exists a membrane labeled by h with electrical charge α, in Ct , different
from the skin membrane and the output zone, such that it contains object a. When
applying such a rule to such a membrane, one object a is consumed, membrane h is
dissolved, and one object b and the remaining objects of the membrane where the
rule is applied are sent to its parent (or the first ancestor that has not been dissolved).

A division rule for elementary membrane [a]α1
h → [b]α2

h [c]α3
h is applicable to

a configuration Ct at an instant t , if there exists an elementary membrane labeled by
h with electrical charge α1, in Ct , different from the skin membrane and the output
zone, such that it contains object a. When applying such a rule to such a membrane,
the membrane with label h is divided into two membranes with the same label; in
the first copy, one object a is replaced by one object b; in the second one, one object
a is replaced by one object c; all the other objects are replicated and copies of them
are placed in the two new membranes. Besides, the charge α1 of the first created
membrane h is replaced by α2, and the charge α1 of the second created membrane
h is replaced by α3.

In P systems with active membranes, the rules are applied according to the
following principles:

• At one transition step: (i) one object and one membrane can be used by only one
rule, selected in a non-deterministic way, and (ii) at most a rule of types (b)–(e),
selected in a non-deterministic way, can be applied to a membrane, and then it is
applied once.

• Object evolution rules can be simultaneously applied to a membrane with one
rule of types (b)–(e). If it is the case, object evolution rules will be applied in a
maximally parallel manner.

• If an object evolution rule and a division rule are applied to a membrane at the
same transition step, then we suppose that first the evolution rule is applied, and
then the division is produced. Of course, this process takes only one transition
step.

• The skin membrane and the output membrane, if any, can never get divided nor
dissolved.

Given a P system with active membranes, � = (�,H,μ,M1, . . . ,Mq,R, iout),
the initial configuration of � is C0 = (M1, · · · ,Mq). A configuration is a halting
configuration if no rule of the system is applicable to it. We say that configuration

174 6 P Systems Implementation on GPUs

C1 yields configuration C2 in one transition step, denoted C1 ⇒� C2, if we can
pass from C1 to C2 by applying the rules from R following the previous remarks. A
computation of � is a (finite or infinite) sequence of configurations such that:

1. The first term of the sequence is the initial configuration of the system.
2. Each non-initial configuration of the sequence is obtained from the previous

configuration in one transition step
3. If the sequence is finite (called halting computation), then the last term of the

sequence is a halting configuration.

All computations start from an initial configuration and proceed as stated above;
only halting computations give a result, which is encoded by the objects present in
the output zone iout in the halting configuration.

Let us notice that these P systems have some important features: (a) They use
three electrical charges; (b) the polarization of a membrane can be modified by
the application of a rule; (c) the label of a membrane cannot be modified by the
application of a rule; and (d) they do not use cooperation neither priorities.

Decision problems are associated with languages in such manner that solving a
decision problem is defined by recognizing the language associated with it. For that,
recognizer membrane systems were introduced in [41] (called decision P systems),
and complexity classes associated with these systems were introduced in [40].
Over the last few years, the previous methodology for addressing the P versus NP
problem has been applied in the framework of Membrane Computing.

A computing model in the paradigm of Membrane Computing (generically called
membrane system) is said to be a recognizer system if it has the following syntactic
and semantic peculiarities: (a) the working alphabet has two distinguished objects
(yes and no); (b) there exist an input alphabet strictly contained in the working
alphabet and an input membrane; (c) the initial content of each compartment is a
multiset of objects from the working alphabet not belonging to the input alphabet;
(d) all computations of the system are halt; and (e) for each computation, either
object yes or object no (but not both) must have been released to the environment
and only at its last step. Recognizer membrane systems have the ability to accept or
reject multisets over the input alphabet. Specifically, given a recognizer membrane
system �, for each multiset m over the input alphabet, a new initial configuration
is obtained by adding the multiset m to the content of the input compartment at
the initial configuration of � (the system � with this new initial configuration
associated with m is denoted by � + m). Then, we say that system � accepts
(respectively, reject) the input multiset m if and only if all computations of the
system � + m answer yes (resp. no).

Unlike a Turing machine where there is an infinite tape, all the elements that
make up a recognizer membrane system have a finite description. Therefore, while
a decision problem (with an infinite set of instances) can be solved by a single Turing
machine, an infinite family of recognizer membrane systems is necessary to solve it.

Following [40], we say that a family � = {�(n) | n ∈ N} of recognizer
membrane systems solves a decision problem X in polynomial time and uniform

6.3 Generic Simulations 175

way if the following holds: (i) the family � can be generated by a deterministic
Turing machine working in polynomial time; and (ii) there exists a pair (cod, s) of
polynomial-time computable functions (over the set of instances of X) such that (a)
for each instance u ∈ IX, s(u) is a natural number and cod(u) is an input multiset
of the system �(s(u)); (b) for each n ∈ N, the set s−1({n}) is a finite set; and (c) the
family � is polynomially bounded, sound, and complete with regard to (X, cod, s)

(see [40] for details).
Given a computing model R of recognizer membrane systems, PMCR denotes

the set of decision problems solvable by families from R in polynomial time
and uniform way. This complexity class is closed under complement and under
polynomial-time reduction [40]. Hence, if X is a complete problem for a complexity
class K and X ∈ PMCR, then we deduce that K∪ co-K ⊆ PMCR.

P systems with active membranes (without dissolution and using division rules
only for elementary membranes) have been successfully used to design polynomial
time solutions to (weak and strong) NP-complete problems (e.g., SAT [42],
Subset Sum [38], Knapsack [39], Partition [14], etc.). It is important to
note that some of these solutions only make use of two polarizations in their design.

6.3.2.2 Simulation Algorithm
The simulator is based on the sequential simulator for P systems with active
membranes provided in pLinguaCore [13]. In this design, the simulation process
is a loop divided into two stages: selection stage and execution stage. The selection
stage consists in the search for rules to be executed in each membrane of a given
configuration. The selected rules are executed at the execution stage, what finalizes
the simulation of a computation step (or transition).

The input data for the selection stage contains the description of the membranes
with their multisets (strings over the working alphabet of objects, labels associated
with the membrane, etc.) and the set of defined rules. The output data of this stage
are the multisets of selected rules. Only the execution stage changes the information
of the configuration. It is the reason why execution stage needs synchronization
when accessing to the membrane structure and the multisets.

At the end of the execution stage, the simulation process restarts the selection
stage in an iterative way until a halting configuration is reached. This stop condition
is twofold: a certain number of iterations or a final configuration is reached. On one
hand, we define a maximum number of iterations at the beginning of the simulation.
On the other hand, a halting configuration is obtained when there are no more rules
to select at selection stage. As previously explained, the halting configuration is
always reached since it is a simulator for recognizer P systems.

Non-determinism affects the selection stage, since it is possible to have more than
one selectable rule but only one can be executed. For example, two evolution rules
can be executed using the same object, a division rule and a send-in rule that can be
selected in the same membrane at the same time. In order to avoid non-determinism
somehow, the simulator assumes only confluent P systems. Thus, instead of working
with the entire tree of possible computations, the simulator selects and simulates
only one computation path, since all paths are guaranteed to give the same answer.

176 6 P Systems Implementation on GPUs

We can take advantage of this property by selecting path using the lowest cost rules.
We will measure this cost in number of membranes and synchronization operations.
These are the conditions that could damage the simulation performance the most.
In this context, we introduce the following priorities among rules in the selection
stage:

1. Dissolution rules: they decrease the number of membranes (highest priority).
2. Evolution rules: they do not need any communication among membranes (which

avoids synchronization).
3. Send-out rules: they do need communication between the given membrane and

its parent (adding one object to its parent).
4. Send-in rules: they do need communication between the given membrane and its

parent (reserving one object from its parent and adding the object to itself).
5. Division rules: they increase the number of membranes (lowest priority).

During the execution stage, the information of the system can vary by including
new objects inside membranes, dissolving membranes, dividing membranes, etc.,
obtaining a new configuration. This new configuration will be the input data for the
selection stage of the next iteration.

Finally, note that this two-staged algorithm allows to keep a coherence in the
simulation. If we perform selection and execution of rules, one by one, it would be
difficult to ensure the semantic constraints of the system. Moreover, the selected and
executed rules in a step of the simulator may not correspond to the rules applied in
a computing step of the theoretical model. An alternative solution might be to take
two copies of the configuration, one to be updated with the right-hand sides of the
rules and another to select rules (subtracting the left-hand sides of rules). As this
involves a bigger use of memory, the simulator uses the two stages and a temporary
data structure to store information of the selection of rules.

6.3.2.3 Sequential Simulator
As previously mentioned, CUDA programming model [33] is based on the C/C++
language [16]. Therefore, the first recommended step when developing applications
in CUDA is to start from a baseline algorithm written in C++, identifying the parts
that can be susceptible to be parallelized on the GPU. In this work, we have based
on the simulator for P systems with active membranes developed in pLinguaCore
[13]. This sequential (or single-threaded) simulator is programmed in JAVA, so the
first step was to translate the code to C++.

The first version of the sequential simulator implements the structure of mem-
branes by using C++ pointers and dynamic memory allocations. Each membrane
stores a pointer to its parent, a pointer to the first of its children, another pointer to
one of its brothers (having the same parent membrane), the charge, and the multiset
of objects. The multiset of objects is also implemented by a (dynamic) linked list
based on pointers. Each object in the multiset stores its multiplicity (if zero, it is
deleted to save memory space) and a pointer to the next object. Therefore, memory
spaces for membranes and objects are created and deleted “on demand.” The rules of

6.3 Generic Simulations 177

the system are statically stored, so that we can easily access to the rules associated to
each membrane, by using its label and charge. Furthermore, the multiset of selected
rules is also implemented using a dynamic linked list. However, we found that this
drastically slowdown the simulation, since objects get created and consumed at
every step, and hence, we are continually allocating and destroying memory, what
is very time consuming.

Therefore, a simulator using static structures that get allocated at the beginning
of the simulator was developed and shown to be 160 times faster than the first
version [21]. These structures are the same also for the parallel simulator, so they
are replicated at both sides in order to achieve fair comparisons. In summary, the
memory layout to represent the P system is based on the following data structures:

• Multisets: an array storing the multisets of the objects using a sparse representa-
tion. Since, for simplicity, it is assumed that the simulated P system can contain
only two levels in the memory hierarchy (a skin membrane and elementary mem-
branes), the representation of the environment, skin, and elementary membranes
are separated. The amount of elementary membranes is set initially by the user.

• Charges: an array storing the charge of each membrane.
• Rule sets: an array storing rules information. It is indexed by using a membrane

label, a charge, and finally an object index. Given that it is possible to have more
than one rule associated to the same object, and assuming that the P system is
confluent, only one rule of each type is stored.

One major problem to overcome is the competition for objects between different
membranes. In this case, internal membranes applying send-in rules are competing
for the objects in the parent. We loop the tree from the top to the bottom, so the top
level membranes have more priority using its objects than internal membranes using
send-in rules.

The input of the simulator (the P system with active membranes to simulate) is
given by a binary file. It is a file whose information is encoded in Bytes and bits (not
understandable by humans like plain text), which is suitable for compressing data.
This binary file contains all the information of the P system (alphabet, labels, rules,
etc.) which is the input of the simulator. The format is depicted in [21]. pLinguaCore
2.0 [13] is able to translate a P system written in P-Lingua language into a binary file.
First, we define the P system into P-Lingua. pLinguaCore translates it to a binary
file, which is used as the input of the simulator. The output is a plain text generated
with a format similar to the one provided in pLinguaCore.

6.3.2.4 Parallel Simulation on CUDA
Whenever we design algorithms in the CUDA programming model, the main effort
is dividing the required work into processing pieces, which have to be processed
by TB thread blocks of T threads each. Using a thread block size of T = 256, it is
empirically determined to obtain the overall best performance on the Tesla C1060
[43]. Each thread block accesses to one different set of input data and assigns a
single or small constant number of input elements to each thread.

178 6 P Systems Implementation on GPUs

Fig. 6.1 Basic design of the parallel simulator on the GPU. From [4, 21]

Each thread block can be considered independent to the other, and it is at this
level at which internal communication (among threads) is cheap using explicit
barriers to synchronize, and external communication (among blocks) becomes
expensive, since global synchronization can only be achieved by the barrier implicit
between successive kernel calls. The need of global synchronization in the designs
requires successive kernel calls even to the same kernel.

Figure 6.1 shows the overall design of the simulator on the GPU [4]. Thread
blocks and threads are distributed as follows. Each membrane of the simulated
P system is attributed to each thread block. In this way, the parallelism between
membranes by using the parallelism between thread blocks is identified. However,
this is tricky. Membranes can communicate accordingly to the hierarchical tree
structure, while thread blocks are all independent. Communication through send-out
and dissolution rules (down-up direction) is controlled by globally synchronizing
the selection and execution stages. This is implemented by using different kernels.
However, send-in rules (up-down direction in the tree) are more complicated to
control. In this case, different membranes can compete for single objects. The
sequential simulator controls this issue by looping the tree from the top to the
bottom. However, the parallel simulator has to run all the membranes in parallel.
Therefore, for the sake of simplicity, the parallel simulator can handle only two
levels of membrane hierarchy: the skin (controlled by the host) and the rest of
elementary membranes (controlled by the thread blocks in device). This is the

6.3 Generic Simulations 179

tree structure we can find in the literature for the majority of solutions based on
P systems with active membranes (note that division rules enlarge the tree width-
wise) [40].

Furthermore, each individual thread is assigned to each object within a membrane
(corresponding to its thread block). It is responsible for identifying the rules that can
be executed using the corresponding object, that is, rules that have that object in their
left-hand sides. Since all blocks must have the same number of threads, and each
membrane can contain a different multiset of objects in every time step, we identify
as common for all membranes the whole alphabet. Note that threads can work with
many objects that do not really exist in the membrane, as all the alphabet of objects
is usually not present within a membrane at a given instant. In fact, the simulator
assigns multiple objects to the same thread for not restricting the number of objects
in the alphabet. However, the number of objects in the alphabet must be divisible by
a number smaller than 512 (the maximum number of threads per thread block), in
order to equally distribute the objects among the threads.

The simulator contains five kernels to implement the selection and execution
stages [21]. The first kernel implements the selection stage and also the execution
stage for evolution rules. The other four kernels implement the other execution rules
(dissolution, division, send-out, and send-in rules). All the kernels follow this basic
design. The selection kernel starts with the selection stage. After the selection stage,
we also execute in this kernel the evolution rules. These rules are executed inside this
kernel for three main reasons: the evolution rules do not imply communication (and
therefore, synchronization) among membranes; they are executed in a maximal way,
and this decision allows us to use less global memory because it is not necessary to
store the selected evolution rules for the execution stage. The rest of the rules to
be applied are executed in four different kernels, one kernel per each kind of rule
(dissolution, division, send-out, and send-in).

Algorithm 2 shows the pseudo-code of the simulator. First of all, the data needed
for the computation is moved to the GPU. Then, the code calls the selection kernel
which returns the selected rules for the current configuration of the P system. Among
the possible selected rules, there will be different kinds of rules to be executed.
Therefore, the type of those rules is identified for launching only the required kernels
to accomplish the execution stage. As explained before, this process iterates until the
maximum number of steps is reached or the system returns an answer. Finally, the
result data is copied back to the CPU.

6.3.2.5 Performance Comparative Analysis
In this section, the performance of the developed simulators is compared. This
is done by a very simple example, with the aim of studying the behavior of the
CUDA kernels. In order to evaluate the performance of the simulator, a family of
P systems was designed, named test P system, where it is easy to vary the number
of membranes as well as the number of objects [4]. This test P system also fits the
behavior of the GPU since only evolution and division rules are defined (without
communication and dissolution rules), and every object in every membrane will

180 6 P Systems Implementation on GPUs

Algorithm 2: Parallel simulator of P systems on the GPU, from [21]
1: configuration ← initialConfiguration
2: selectedRules ← ∅
3: step ← 0
4: isFinalConfiguration ← false
5: CopyDataFromCPUtoGPU(configuration)
6: CopyDataFromCPUtoGPU(rules)
7: while step < maxStep ∧ NOT isFinalConfiguration do
8: kernelSelection(rules,configuration,selectedRules)
9: if DISSOLUTION ∈ selectedRules then

10: kernelDissolution(rules,configuration,selectedRules)
11: end if
12: if DIVISION ∈ selectedRules then
13: kernelDivision(rules,configuration,selectedRules)
14: end if
15: if SEND-OUT ∈ selectedRules then
16: kernelSendOut(rules,configuration,selectedRules)
17: end if
18: if SEND-IN ∈ selectedRules then
19: kernelSendIn(rules,configuration,selectedRules)
20: end if
21: step ← step + 1
22: isFinalConfiguration ← checkFinalConfiguration(configuration)
23: end while
24: CopyDataFromGPUtoCPU(configuration)

evolve according to a given rule. The defined P system is of the following form
� = (O,H,μ,ω1, ω2, R), where:

• O = {d, oi / 0 ≤ i ≤ n},
• H = 1, 2,
• μ = [[]2]2,
• ω1 = ∅, ω2 = O ,
• R =

(i) Evolution rules: [oi → oi]0
2, 0 <= i < n

(ii) Division rule: [d]0
2 → [d]0

2[d]0
2

Thus, the test P system allows us to take control of the number of objects in the
system by modifying the n parameter. Furthermore, the number of rules changes
along with the number of objects, and the number of membranes in every step of
the computation is equal to 2s , where s is the step number. Lastly, the number of
evolution rules selected and executed per membrane in every step is invariable, since
they are defined one per object and all the objects of the alphabet are presented in
every membrane labeled with 2.

6.3 Generic Simulations 181

E
xe

cu
tio

n
tim

e
(m

se
c)

Fig. 6.2 Comparing the execution time for one step of the fast sequential and parallel simulators,
by increasing the number of membranes in the system and using a total of 2560 objects in the
alphabet. From [4, 21]

Fig. 6.3 Comparing the speedup for one step of the fast sequential and parallel simulators, by
increasing the number of membranes in the system and using a total of 2560 objects in the alphabet.
From [4, 21]

Figures 6.2 and 6.3 show the results obtained for the parallel simulator versus
the sequential version. Notice that in both graphs the Y-axis is also represented
in a logarithmic form. The benchmark covers the parallelism between membranes
by exponentially increasing the number of membranes. It can be seen that the
CPU simulator also increases its time exponentially from the beginning (with four
membranes) until reaching the final configuration (with 32768 membranes). The
CUDA simulator, which assigns 256 threads per block (each thread handles 10
elements per membrane), also increases its execution time in a near exponential

182 6 P Systems Implementation on GPUs

way, but the performance difference is about 5.7×, and this difference enlarges with
the number of membranes (from 1024), because the resources of the GPU are fully
utilized.

6.3.3 Simulating Population Dynamics P Systems

In this section, a simulator for Population Dynamics P (PDP) systems is revisited.
It is a generic simulator implementing the DCBA algorithm for PDP systems.

The original work is published in [21, 22, 24, 28]. The framework of generic
simulators for PDP systems on GPU is called ABCDGPU. It is a subproject of
the PMCGPU project and can be downloaded from the official website http://
sourceforge.net/p/pmcgpu [45] or the repository https://github.com/RGNC/abcd-
gpu.

6.3.3.1 Population Dynamics P Systems
Population Dynamics P systems are a variant of multienvironment P systems with
active membranes [6–8]. The model consists of a directed graph of environments,
each of them containing a P system where electrical charges are associated with
membranes. All P systems share the same skeleton, in the sense that they have the
same working alphabet, the same membrane structure, and the same set of rules.
Nevertheless, in this framework each rule has associated a probability function
which can vary for each environment.

Definition 6.2. A Population Dynamics P system (PDP) of degree (q,m), q,m ≥
1, taking T ≥ 1 time units, is a tuple

� = (G, �,�, T ,RE, μ,R, {fr,j : r ∈ R, 1 ≤ j ≤ m}, {Mi,j : 1 ≤ i ≤ q, 1 ≤ j ≤ m})

where:

• G = (V , S) is a directed graph. Let V = {e1, . . . , em}.
• � and � are alphabets such that � � �.
• T is a natural number.
• RE is a finite set of rules of the form (x)ej

→
pr (y1)ej1

· · · (yh)ejh
, where

x, y1, . . . , yh ∈ �, (ej , ejl) ∈ S, 1 ≤ l ≤ h, and pr : {1, . . . , T } −→ [0, 1]
is a computable function such that for each ej ∈ V and x ∈ �, the sum of

functions associated with the rules of the type (x)ej

→
pr (y1)ej1

· · · (yh)ejh
is the

constant function 1.
• μ is a rooted tree labeled by 1 ≤ i ≤ q , and by symbols from the set EC =

{0,+,−}.
• R is a finite set of rules of the form u[v]αi → u′[v′]α′

i , where u, v, u′, v′ ∈
Mf (�), u + v 	= ∅, 1 ≤ i ≤ q and α, α′ ∈ {0,+,−}, such that there is no

rules (x)ej

→
pr (y1)ej1

· · · (yh)ejh
and u[v]αi → u′[v′]α′

i having x ∈ u.

http://sourceforge.net/p/pmcgpu
http://sourceforge.net/p/pmcgpu
https://github.com/RGNC/abcd-gpu
https://github.com/RGNC/abcd-gpu

6.3 Generic Simulations 183

• For each r ∈ R and 1 ≤ j ≤ m, fr,j : {1, . . . , T } −→ [0, 1] is a computable
function such that for each u, v ∈ Mf (�), 1 ≤ i ≤ q , α, α′ ∈ {0,+,−} and
1 ≤ j ≤ m, the sum of functions fr,j with r ≡ u[v]αi → u′[v′]α′

i , is the constant
function 1.

• For each i, j (1 ≤ i ≤ q, 1 ≤ j ≤ m), Mi,j is a finite multiset over �.

A Population Dynamics P system defined as above can be viewed as a set of m

environments e1, . . . , em interlinked by the edges from the directed graph G. Each
environment ej only can contain symbols from the alphabet �, and all of them also
contain a P system skeleton, �j = (�,μ,M1,j , . . . ,Mq,j ,R), of degree q , where:

(a) � is the working alphabet whose elements are called objects.
(b) μ is a rooted tree which describes a membrane structure consisting of q

membranes injectively labeled by 1, . . . , q . The skin membrane (the root of the
tree) is labeled by 1. We also associate electrical charges from the set {0,+,−}
with membranes.

(c) M1,j , . . . ,Mq,j are finite multisets over �, describing the objects initially
placed in the q regions of μ, within the environment ej .

(d) R is the set of evolution rules of each P system. Every rule r ∈ R in �j has a
computable function fr,j associated with it. For each environment ej , we denote
by R�j the set of rules with probabilities obtained by coupling each r ∈ R with
the corresponding function fr,j .

Therefore, there is a set RE of communication rules between environments, and
the natural number T represents the simulation time of the system. The set of rules
of the whole system is

⋃m
j=1 R�j ∪ RE .

The semantics of Population Dynamics P systems is defined through a non-
deterministic and synchronous model (in the sense that a global clock is assumed).
Next, we describe some semantics aspects of these systems.

An evolution rule r ∈ R, of the form u[v]αi → u′[v′]α′
i , is applicable to

each membrane labeled by i, whose electrical charge is α, and it contains the
multiset v, and its parent contains the multiset u. When such rule is applied, the
objects of the multisets v and u are removed from membrane i and from its parent
membrane, respectively. Simultaneously, the objects of the multiset u′ are added to
the parent membrane i, and objects of multiset v′ are introduced in membrane i.
The application also replaces the charge of membrane i to α′. In each environment
ej , the rule r has associated a probability function fr,j that provides an index of the
applicability when several rules compete for objects. In this model, the cooperation
degree is given by |u| + |v|.

A rule r ∈ RE , of the form (x)ej

→
pr (y1)ej1

. . . (yh)ejh
, is applicable to the

environment ej if it contains object x. When such rule is applied, object x passes
from ej to ej1, . . . , ejh possibly modified into objects y1, . . . , yh respectively. At
any moment t (1 ≤ t ≤ T) for each object x in environment ej , if there exist

communication rules of the type (x)ej

→
pr (y1)ej1

. . . (yh)ejh
, then one of these rules

184 6 P Systems Implementation on GPUs

will be applied. If more than one such a rule can be applied to an object at a given
instant, the system selects one randomly, according to their probability which is
given by pr(t).

For each j (1 ≤ j ≤ m), there is just one further restriction, concerning the
consistency of charges: in order to simultaneously apply several rules of R�j to
the same membrane, all the rules must produce the same electrical charge in the
membrane in which to be applied. Thus, we will say that the rules of the system,
in this computational framework, are applied in a non-deterministic, maximally
consistent, and parallel way.

An instantaneous description or configuration of the system at any instant t is
a tuple of multisets of objects present in the m environments and at each of the
regions of each �j , together with the polarizations of the membranes in each P
system. We assume that all environments are initially empty and that all membranes
initially have a neutral polarization. We assume a global clock exists, synchronizing
all membranes and the application of all the rules (from RE and from R�j in all
environments).

In each time unit, we can transform a given configuration in another configuration
by using the rules from the whole system as follows: at each transition step, the rules
to be applied are selected in a non-deterministic way according to the probabilities
assigned to them, and all applicable rules are simultaneously applied in a maximal
way. In this way, we get transitions from one configuration of the system to the next
one.

A computation is a sequence of configurations such that the first term of the
sequence is the initial configuration of the system, and each non-initial configuration
of the sequence is obtained from the previous configuration by applying rules of
the system in a maximally consistent and parallel manner with the restrictions
previously mentioned.

6.3.3.2 Simulation Algorithm
The simulation algorithms for PDP systems called BBB and DCBA [21, 27] are
based on the grouping of rules into blocks. These groups are constructed by
looking the left-hand side. Note that rules having the same left-hand side must
have associated probabilities summing 1. Specifically, DCBA works using a refined
definition of block, called consistent block [21, 27], as shown in Definition 6.3.
DNDP [21, 30] does not use the concept of blocks, but it selects rules by a random
loop instead.

Definition 6.3. Rules from R and RE are classified into consistent blocks by either
of the following:

(a) The rule block associated with (i, α, α′, u, v) is Bi,α,α′,u,v = {r ∈ R :
LHS(r) = (i, α, u, v) ∧ charge(RHS(r)) = α′}

(b) The rule block associated with (ej , x) is Bej ,x = {r ∈ RE : LHS(r) = (ej , x)}.

6.3 Generic Simulations 185

The selection of rules in BBB and DCBA relies always first on selecting blocks,
calculating a multinomial random variate, and therefore obtaining a selection of
rules within each block. In this sense, we can say that rules within a block will
not compete among objects when using BBB and DCBA, because they are selected
altogether. This, again, does not hold in DNDP, where rules are selected individually
according to the probabilities. Block competition takes place whenever two blocks
have distinct but overlapping left-hand sides.

DCBA tackles the resource competition issue by performing a proportional
distribution of objects among competing blocks. This is done by using the distri-
bution table, which is a system-wide time having blocks per columns and pairs
(object,region) per rows. Algorithm 3 shows a summary of the algorithm, which
can be depicted in [27]. It can be seen that, as usual, each loop iteration is made by
two stages: selection and execution. Selection stage consists of three phases: phase
1 distributes objects to the blocks in a certain proportional way, phase 2 ensures
maximality by checking the maximal number of applications of each block, and
phase 3 translates from block to rule applications by calculating random numbers
using a multinomial distribution. Finally, execution stage (or phase 4) generates the
right-hand side of rules.

Algorithm 3: Sketch of DCBA algorithm for PDP systems
1: Initialization of the algorithm: static distribution table (columns: blocks, Rows:

(objects,membrane))
2: for t ← 0 . . . T do
3: Selection stage:
4: Phase 1 (Distribution of objects among rule blocks)
5: Phase 2 (Maximality selection of rule blocks)
6: Phase 3 (Probabilistic distribution, blocks to rules)
7: Execution stage
8: end for

The proportional distribution of objects along the blocks is carried out through
a table which implements the relations between blocks (columns) and objects in
membranes (rows). We always start with a static (general) table, and depending on
the current configuration of the PDP system, the table is dynamically modified by
deleting columns related to non-applicable blocks. Note that after phase 1, we have
to assure that the maximality condition still holds. This is normally conveyed by a
random loop over the remaining blocks.

Finally, DCBA also handles the consistency of rules by defining the concept of
consistent blocks [21, 27]: rules within a block have the same left-hand side and
the same charge in the right-hand side. There is a further restriction within phase
1: if two non-consistent blocks (having different associated right-hand charge) can
be selected in a configuration, the simulation algorithm will return an error, or
optionally non-deterministically choose a subset of consistent blocks.

186 6 P Systems Implementation on GPUs

6.3.3.3 Design of the Parallel Simulator
Normally, the end user (i.e., ecological experts and model designers) runs many
simulations on each set of parameters to extract statistical information of the
probabilistic model. This can be automated by adding an outermost loop for
simulations in the main procedure of the DCBA, which is easily parallelized.

At first glance, these two levels of parallelism (simulations and environments
[23]) could fit the double parallelism of the CUDA architecture (thread blocks and
threads). For example, we could assign each simulation to a block of threads and
each environment to a thread (since they require synchronization at each time step).
However, the number of environments depends inherently on the model. Typically,
2 to 20 environments are considered, which is not enough for fulfilling the GPU
resources. Number of simulations typically range from 50 to 100, which is sufficient
for thread blocks, but still a poor number compared to the several hundred cores
available on modern GPUs.

Thus, the selection of rule blocks (phase 1) and rules (phase 2 and 3) is further
parallelized. Hence, the simulator can utilize a huge number of thread blocks
by distributing simulations (parallel simulations, as memory can store them) and
environments in each one and process each rule block by each thread. Since there are
normally more rule blocks (thousand of them) than threads per thread block (up to
512), 256 threads are created, which iterate over the rule blocks in tiles. This design
is graphically shown on Fig. 6.4. Each phase of the algorithm has been designed
following the general CUDA design explained above and implemented separately
as individual kernels. Thus, simulations and environments are synchronized by the
successive calls to the kernels.

Fig. 6.4 General design of the CUDA-based simulator: 2D grid and 1D thread blocks. Threads
loop the rule blocks in tiles. From [21, 28]

6.3 Generic Simulations 187

6.3.3.4 GPU Implementation of the DCBAPhases
The main challenge at phase 1 is the expanded static table Tj construction. The
size of this table is of order O(|B| · |�| · (q + 1)), where |B| is the number of
rule blocks, |�| is the size of the alphabet (total amount of different objects), and
q + 1 corresponds to the number of membranes plus the space for the environment.
A full implementation of Tj can be expensive for large systems and very sparse:
competitions for one object appears for a relatively small number of blocks. Thus
the expanded static table is implemented by a virtual table, which is similar but
based on the information of the rules:

• Operations over columns: they can be transformed to operations for each rule
block and their left-hand sides.

• Operations over rows: they can be transformed to operations over the left-hand
sides of rule blocks and storing the partial results into a global array (one position
per row).

Further auxiliary data structures are used to virtually simulate the table [23]:

• activationV ector: the information of filtered blocks is stored here as Boolean
values.

• addition: the total sums of the rows are stored using this global vector, one per
each pair object and region.

• MinN : the minimum numbers per column are stored here.
• BlockSel: the total number of applications for each block is stored here.
• RuleSel: the total number of applications for each rule is stored here.

The implementation of phase 1 is actually done by means of three kernels,
executing one after the other and using the same grid configuration as mentioned
in Fig. 6.4. The second and third kernels are executed several times according to
parameter A (accuracy) of DCBA [28]:

1. Kernel for Filters: FILTERS 1 and 2 are implemented here.
2. Kernel for Normalization: the two parts (row additions and minimum calcula-

tions) of the normalization step is implemented in a kernel. The two parts are
synchronized by synchtreads CUDA instruction. The work assigned to threads is
divergent, that is, each thread works with one rule block, but writes information
for each object appearing in the LHS. Therefore, the writes to addition are
carried out by atomic operations.

3. Kernel for Updating and FILTER 2. As before, the work of each thread is
divergent. Thus, the update of the configuration is also implemented with atomic
operations. Moreover, the BlockSel gets updated with the new distribution of
selection.

188 6 P Systems Implementation on GPUs

Phase 2 is the most challenging part when parallelizing by blocks. The selection
of blocks is performed in an inherently sequential way: we need to know how much
a block can consume before checking the next one. At least, phase 2 can be run
simultaneously to each environment and simulation. For this phase, a special version
of this kernel was designed. This kernel dynamically calculates the competition of
blocks, so that the dependencies of blocks are pre-calculated in order to know which
blocks can be selected independently of each other, and everything is done in shared
memory. BlockSel gets updated with the last selections, and the configuration is
also updated to prevent other blocks from being selected.

Phase 3 requires a random number generation system for multinomial distri-
butions that was not existing for CUDA. A dedicated implementation was done,
called CURAND_BINOMIAL, and it is based on the accelerated uniform and normal
random variate generation in CUDA with CuRAND and the BINV algorithm. This
is therefore used to calculate multinomial distributions per rule block and write to
RuleSel.

Finally, for phase 4, the rule selection RuleSel is used to generate the right-hand
side, by using atomic operations over the configuration. The parallelization is done
by using a similar grid configuration as shown in Fig. 6.4, but looping over rules
instead of rule blocks.

6.3.3.5 Performance Results of the Simulator
In order to test the performance of the simulators, a random generator of PDP
systems was designed (designated pdps-rand). These randomly created PDP sys-
tems have no biological meaning. The purpose is to stress the simulator in
order to analyze the implemented designs with different topologies. pdps-rand is
parametrized in such a way that it can create PDP systems of a desired size.

The parallel simulator on the GPU (pdp-gpu-sim) and a parallel simulator on
multicore CPUs (pdp-omp-sim, for 1 (sequential), 2 and 4 cores) are compared. All
experiments were run on a GPU server: Linux 64-bit server, with a 4-core (2 GHz)
dual socket Intel i5 Xeon Nehalem processor, 12 GBytes of DDR3 RAM, and two
NVIDIA Tesla C1060 graphics cards (240 cores at 1.30 GHz, 4 GBytes of memory).
GPU cores are typically slower than CPU cores.

The test analyses the performance when increasing the parallelism level of the
CUDA threads within thread blocks, that is, the number of rule blocks. The speedup
achieved by pdp-gpu-sim versus pdp-omp-sim is shown in Fig. 6.5. The number of
simulations is fixed to 50 and the environments to 20 (hence, a total of 1000 thread
blocks). The number of objects is proportionally increased together with the number
of rule blocks, in such a way that the ratio for number of rule blocks and number of
objects is always 2. The mean LHS length is 1.5 (this is normal value for many real
ecosystem models, as seen in the literature). The speedup gets stable to around 7×
on the number of rule blocks for the GPU versus CPU. For the multicore versions
with 2 and 4 CPUs, the speedups are maintained to 4.3× and 3×, respectively. In
the experiments, this number is also achieved when running with 106 rule blocks.

As stated in [23], parallelizing by simulations yields the largest speedups
on multicore platforms. In order to test the efficiency of the simulator when

6.4 Specific Simulations 189

Fig. 6.5 Scalability of the simulators when increasing the number of rule blocks, from [21, 28]

S
pe

ed
up

91 96

Fig. 6.6 Scalability of the simulators when increasing the number of simulations, from [21, 28]

increasing the number of simulations, rule blocks are fixed to 50000, environments
to 20, objects to 5000, and mean LHS length to 1.5. As shown in Fig. 6.6, the
GPU achieves better runtime than the multicore implementations. The speedup is
maintained to 4.5× using one core, 3.5× for 2 cores, and 2.7× for 4 cores.

6.4 Specific Simulations

In this section, we will introduce a type of simulation of P systems, which is called
specific simulation [25]. We will describe how to implement this kind of simulators
in CUDA and provide two major examples.

190 6 P Systems Implementation on GPUs

6.4.1 Definition

When implementing a P system simulator, it is important to understand what type
of P systems we want to simulate before starting the development. We will say that
a specific simulator is any simulator developed for just a certain P system or family
of P systems. In other words, if we focus on just one P system or a parametrized
definition of P systems forming a family, then we need a specific simulator. On the
one hand, this is a restricted version of a simulator, since it can handle a reduced
variety of P systems, but it also helps to adjust better the simulator to parallel
architectures.

Basically, restricting the P systems to be simulated helps us to take a better
control of the algorithm by predicting when certain things will happen. On the one
hand, by just focusing on a P system variant, we will know which kind of rules
and what semantics apply. On the other hand, by knowing exactly the P systems to
simulate, we can develop tailored code to certain parts of the model. For example,
we can see in the literature that when developing solutions to certain problems, it
is very useful to design it by making a scheme of the computation. This means
that the computation tree of the designed P system is usually bound and can be
divided into stages. For example, in SAT solutions, there is usually a stage where an
exponential amount of membranes is generated by applying division rules, and it is
known at which moment the stage starts and ends, because it is part of the design of
the solution. By making an exhaustive analysis, it would be even possible to predict
which objects can appear in which membranes and when.

Therefore, specific simulators can take advantage of that information in order to
adapt the code and the data structures. Specific functions and kernels can be written
for each stage, and the memory layout to store the P system information can be
drastically reduced. In fact, the information of rules (left and right-hand sides) can
be encoded in the source code, instead of storing them in memory, because we know
the rules.

The memory layout is also an essential part of a simulator, since P system
simulators have been demonstrated to be memory and memory bandwidth bound.
When storing the information of P system configuration, we can use either of the
following[25]:

• Sparse representation: using a large array to store multiplicities, with a position
per each possible object (all objects defined in the alphabet). The access is direct
since the object identifier is the index where to access the array. However, if many
objects are not present at a certain moment, the array will be full of zeroes.

• Dense representation: using a double array with a component for the object
identifier and the other for multiplicity. We need to search for the object, unless
we track them and we know exactly where they are store at any moment. This
can help to drastically reduce the size because objects with multiplicity zero can
be discarded.

6.4 Specific Simulations 191

Specific simulators can use dense representation, if we can know where each
object is at every transition step, so that the rules can access them directly. Moreover,
there are many objects that work as counters, for example oi, 0 ≤ i ≤ n. They are
distinct objects but at the end they are related. If we know that oi and oj , with i 	= j

will not be present at the same time, then we can use just one position, or even use
a variable (register) to store the subindex.

Finally, it is important to remark that specific simulators must keep being full
simulators; that is, if the simulator goes beyond the P system model and skips
representing the P system features, then we are simulating something else. In other
words, we will say that a program is simulating a P system if we can ask the
program, at any transition step, any piece of information of the state of the P system
(configuration, rules applied, etc.). Thus, a specific simulator should be developed
in such a way that we could extract from it the configuration of the P system or the
rules that have been applied.

6.4.2 Simulating a SAT Solution with Active Membrane P Systems

The first specific simulator implemented in CUDA was a family of recognizer
P systems with active membranes designed to solve the SAT problem in linear time
(but with exponential workspace). In this section, we will discuss the design of this
simulator and its performance achieved with CUDA.

The original work is published in [3, 5, 21, 22]. The framework of all these
simulators is named PCUDASAT, and it can be downloaded from the official website
http://sourceforge.net/p/pmcgpu [45] or the repository https://github.com/RGNC/
pcudasat.

6.4.2.1 SAT Solution with Active Membranes
Let ϕ = C1 ∧ · · · ∧ Cm be a propositional formula in CNF such that the set of
variables of the formula is V ar(ϕ) = {x1, . . . , xn}, consisting of m clauses Ci =
yi,1∨· · ·∨yi,ki , 1 ≤ i ≤ m, where yi,i′ ∈ {xj ,¬xj : 1 ≤ j ≤ n} are the literals of ϕ.
We can assume that the formula is in simplified expression, i.e., no clause contains
two occurrences of the same literal, and no clause can contain, simultaneously, a
literal and its negation. The SAT problem is defined as follows: given a Boolean
formula in conjunctive normal form (CNF), to determine whether or not there exists
a truth assignment to its variables on which the formula evaluates true.

The solution to SAT based on recognizer P system with active membranes is
defined as �am−SAT (〈m,n〉) = (�,�,μ,M1,M2,R, 2) of degree 2, for each pair
of natural numbers m,n ∈ N. Specifically:

• The input alphabet is � = {xi,j , xi,j |1 ≤ i ≤ m, 1 ≤ j ≤ n}.
• The working alphabet is

� = � ∪ {ck|1 ≤ k ≤ m + 2} ∪ {dk|1 ≤ k ≤ 3n + 2m + 3} ∪
∪ {ri,k |0 ≤ i ≤ m, 1 ≤ k ≤ 2n} ∪ {e, t} ∪ n{Yes,No}

http://sourceforge.net/p/pmcgpu
https://github.com/RGNC/pcudasat
https://github.com/RGNC/pcudasat

192 6 P Systems Implementation on GPUs

• The set of labels is {1, 2}.
• The initial structure of membranes is μ = [[]2]1.
• The initial multisets associated with the membranes are M1 = ∅ y M2 = {d1}.
• The input membrane is the one labeled by 2.
• The set R consists of the following rules:

(a) [dk]0
2 → [dk]+2 [dk]−2 , for 1 ≤ k ≤ n.

(b) [xi,1 → ri,1]+2 , [xi,1 → ri,1]−2 , for 1 ≤ i ≤ m.
[xi,1 → λ]−2 , [xi,1 → λ]+2 , for 1 ≤ i ≤ m.

(c) [xi,j → xi,j−1]+2 , [xi,j → xi,j−1]−2 , for 1 ≤ i ≤ m, 2 ≤ j ≤ n. [xi,j →
xi,j−1]+2 , [xi,j → xi,j−1]−2 , for 1 ≤ i ≤ m, 2 ≤ j ≤ n.

(d) [dk]+2 → []0
2dk, , [dk]−2 → []0

2dk, for 1 ≤ k ≤ n.
dk[]0

2 → [dk+1]0
2, for 1 ≤ k ≤ n − 1}.

(e) [ri,k → ri,k+1]0
2, for 1 ≤ i ≤ m, 1 ≤ k ≤ 2n − 1.

(f) [dk → dk+1]0
1, for n ≤ k ≤ 3n − 3; [d3n−2 → d3n−1e]0

1.
(g) e[]0

2 → [c1]+2 ; [d3n−1 → d3n]0
1.

(h) [dk → dk+1]0
1, for 3n ≤ k ≤ 3n + 2m + 2.

(i) [r1,2n]+2 → []−2 r1,2n.
(j) [ri,2n → ri−1,2n]−2 , for 1 ≤ i ≤ m.
(k) r1,2n[]−2 → [r0,2n]+2 .
(l) [ck → ck+1]−2 , for 1 ≤ k ≤ m.
(m) [cm+1]+2 → []+2 cm+1.
(n) [cm+1 → cm+2t]0

1.
(o) [t]0

1 → []+1 t .
(p) [cm+2]+1 → []−1 Yes.
(q) [d3n+2m+3]0

1 → []+1 No.

We also consider a polynomial encoding (cod, s) of the SAT problem in the
family �am−SAT = {�am−SAT (t) | t ∈ N}. The function cod associates to the
previously described propositional formula ϕ (an instance of SAT with n variables
and m clauses), the following multiset of objects

cod(ϕ) =
m⋃

i=1

{xi,j |xj ∈ Ci} ∪ {xi,j |¬xj ∈ Ci}

In this case, object xi,j represents that variable xj in clause Ci .
The size function, s, is defined as follows s(ϕ) = 〈m,n〉 = (m+n)·(m+n+1)

2 + m.
Then, cod(ϕ) is an input multiset of the system �am−SAT (s(ϕ)) and the pair
(cod, s) is therefore a polynomial encoding of the SAT problem in the family
�am−SAT. Thus, the system of the family �am−SAT processing the instance ϕ will
be the P system with active membranes �am−SAT (s(ϕ)) with input multiset cod(ϕ).

6.4 Specific Simulations 193

The system �am−SAT (s(ϕ)) with input cod(ϕ) is confluent, and its computation
is structured in four phases as follows:

• Generation phase: all possible relevant truth assignment is generated for the set
of variables of the formula {x1, . . . , xn}. It is achieved by using division rules
in the internal membranes (labeled by 2). This will allow the generation of 2n

membranes that will encode all possible assignments. Nevertheless, in this phase,
while the valuations are being generated, the clauses that are true by the encoded
valuation in each internal membrane are checked. This idea is implemented
through a very sophisticated process by which only the truth values 1 and 0 are
given to the variable 1. This variable 1 corresponds to the variable x1 in the first
loop step, but by a set of indices, the variable 1 corresponds to the variable x2 in
the second loop step, and so on. This phase is executed in 3n − 1 computation
steps, and only the rules (a), (b), (c), (d) and (e) are applied.

• Synchronization phase: it prepares the system for the checking phase synchroniz-
ing the execution of the system by unifying certain sub-indices of some objects.
The execution of this phase consumes 2n computation steps, and only rules
(e), (f) and (g) are executed.

• Check-out phase: in this phase, it is determined how many clauses are true for
each truth assignment encoded by the internal membranes. This is done using the
objects ck (k > 1), whose appearance in a membrane means that exactly k − 1
clauses are made true by the encoded valuation in that membrane. This phase is
executed in 2m steps, and rules (h), (i), (j), (k) and (l) are applied.

• Output phase: in this phase the system provides the corresponding output
depending on the analysis of the check-out phase. That is, this step performs
a search of the internal membranes encoding a solution (i.e., containing object
cm+1). If a membrane satisfies the above condition, the object Yes is sent to
the environment, and the system stops. Otherwise, the object No is sent to the
environment and the system stops. The execution of this phase is done in 4 steps
and the used rules are (m), (n), (o), (p) and (q).

6.4.2.2 Sequential Simulator and Data Structures
The sequential simulator design is based on the four main phases of a P system
computation from �am−SAT: generation, synchronization, check-out, and output.
Thus, the computation of the P system to simulate (from the family �am−SAT) is
reproduced by sequentially executing these phases. Firstly, the generation phase
is executed, generating 2n membranes by dividing each one in n steps, where n

is the number of variables of the input CNF formula. Since we know the value
of n, the simulator knows the amount of membranes to generate before starting
the simulation. After that, the simulator executes the synchronization phase which
evolves the objects following the rules previously explained. The check-out phase
determines the membranes that codify a solution of the SAT instance, and finally
the output phase sends out the correct answer to the environment.

It is important to remark that the semantics of the P system is reproduced by
the simulation algorithm, so the simulator is specific for this solution. Thus, the

194 6 P Systems Implementation on GPUs

only input for the simulator is the CNF formula provided in DIMACS CNF format.
We can assume therefore that the simulator behaves as a SAT solver, receiving a
propositional formula and giving the corresponding answer. However, this solver is
implemented following a solution by means of P systems.

The first challenge is to decrease the sparsity of the data structures storing the
configuration of the P system. After an exhaustive analysis of the computation, the
upper bound of number of distinct objects appearing in a membrane can be fixed
to the size of the input multiset (the number of literals in the input propositional
formula). Indeed, one can observe that the size of the right-hand side of evolution
rules is always 1. Thus, every object in the input multiset always evolves to either
another or disappears. By definition, send-in, send-out, and division rules do not
generate more than one object in the right-hand side.

Hence, the representation of the P system is made by an array storing the
multisets of objects for every membrane labeled by 2. The amount of elements
per membrane equals to, as mentioned above, the size of the input multiset (total
number of literals in the formula, |cod(ϕ)|). This array is initially allocated for the
maximum amount of membranes 2 that the P system will create, which is 2n (note
that n is defined in the input file). Only the first one is initialized by storing the full
input multiset. Division rules will initialize each membrane later on.

The encoding of objects for the input multiset can be made at a bit-level within
integers of 32 bits. Each integer stores the following (8 bits for each field):

1. The name of the object (x or x)
2. Reserved space.
3. Variable (subindex i).
4. Clause (subindex j).

It is noteworthy that the membrane charges are not stored, since we can observe
from the computation that a partition of membranes having positive and negative
charges can be done over the array. In other words, the first half of membranes
are positive, and the other half (new ones) negative. The skin membrane is not
represented, since its purpose is to store objects sent out from membranes, those
which are sent in to the same membranes in the next step. This process is therefore
simulated within each membrane, avoiding to store the information for the skin
membrane. Other objects, such as yes, no, and c counter, are also placed as variables
encoded directly in source code.

6.4.2.3 Design of the GPU Simulator
The parallel simulator on the GPU was designed to take over the most demanding
phases on the computation of �am−SAT, which are the first three phases. The last
one (output phase) is developed on the CPU. In order to map the parallelism into the
GPU, the simulator assigns a thread block to each membrane, as shown in Fig. 6.7.
In this way, the parallelism among membranes is represented. Moreover, each thread
is assigned to each object of the input multiset, which is a literal of the input formula
(with the exception of object d1). This mapping is common to all the defined kernels.

6.4 Specific Simulations 195

Fig. 6.7 Design of the parallel simulator for �am−SAT. Each generated membrane is assigned to
a thread block, and each object (initially, the input multiset) is assigned to a thread. From [3, 21]

Algorithm 4 shows the pseudocode for the host side the simulator. The generation
phase is simulated by using three kernels which execute the rules in this phase. This
is an iterative process of n steps where the kernels are called n times. A tailored
kernel for division is designed to make copies of all membranes executing division
rules, whose behavior is shown in Fig. 6.8. There is a double parallelism in the
division, as shown in the figure; threads within a block are in charge of making
the copies for the new membrane and changing just the corresponding object. But
this is also repeated for each thread block. In each iteration, the simulator adjusts
the number of thread blocks before calling the kernel, since new membranes are
created. That is, the membranes are distributed along the two-dimensional grid of
thread blocks.

When the exponential amount of membranes is created, synchronization and
check-out phases are executed. This is simulated within just one kernel for both
phases, in parallel for each membrane. Global synchronization is not necessary
because there is no communication among the internal membranes at these phases.
Finally, the output phase is developed on the CPU, checking the conditions and
launching the result of the computation.

196 6 P Systems Implementation on GPUs

Fig. 6.8 Parallel division on GPU at generation phase in �am−SAT. Each membrane is divided
by a thread block, which copies the objects also in parallel by using several threads. If the number
of objects is larger than 256, the thread block repeats the process until covering all the objects.
From [5]

Algorithm 4: Parallel Simulator of �am−SAT, at host side. From [3, 21]
1: {Initialization}
2: T hreads ← |cod(ϕ)| {The number of literals in the CNF formula}
3: Blocks ← (1, 1) {One block in the 2-dimensional grid}
4: d ← 0 {A counter}
5: numMembranes ← 1 {Number of membranes}
6: psystem ← allocateGPUMemory(2n) {Allocate enough memory to represent the P

system}

7: {Generation phase}
8: repeat
9: Division_kernel <<< Blocks, T hreads >>> (psystem, numMembranes)

10: numMembranes ← numMembranes × 2
11: Blocks ← AdjustBlocks(psystem, numMembranes) {Distribute membranes among

blocks}
12: Send_out_kernel <<< Blocks, T hreads >>> (psystem, numMembranes)

13: Send_in_kernel <<< Blocks, T hreads >>> (psystem, numMembranes)

14: d ← d + 1
15: until d < n {Repeat n times (number of variables)}

16: {Synchronization and Check-out phases}
17: Syn_Check_kernel <<< Blocks, T hreads >>> (psystem, numMembranes)

18: {Output phase (executed on the CPU)}
19: Output (psystem, numMembranes)

6.4 Specific Simulations 197

Fig. 6.9 Simulation performance for am-sat-gpu vs am-sat-seq when increasing the number of
membranes (x-axis). From [3, 21]

6.4.2.4 Performance Analysis
Next, we analyze the performance of the simulators above described for �am−SAT:
the sequential simulator developed in C++ (from now, am-sat-seq) and the GPU
parallel simulator on CUDA (am-sat-gpu). The experimental results were obtained
using a Tesla C1060 GPU.

Figure 6.9 shows the experimental performance of the cell-like simulators (in a
log scale) when increasing the number of membranes in the P system (and hence,
the number of blocks in the GPU and also the variables in the CNF formula) until
reaching 212 membranes. The number of simulated membranes is restricted by the
available memory of the system. The number of literals in the formula is fixed to
256, which means 256 threads per block.

It can be seen that once the GPU resources have been fully occupied, the
execution time increases linearly with the number of blocks. In this case, we report
up to 94× of speedup between am-sat-seq and am-sat-gpu. However, Fig. 6.9 shows
the speedup becomes a constant number of 100× when the number of membranes is
greater than 128 K.1 This is the number of blocks launched in the grid of the GPU.

We finalize the performance analysis by also considering the data management
(allocation and transfer) time of the GPU. This is also very important, because it
is part of the solution. Figure 6.10 shows the speedup achieved by comparing am-
sat-gpu (with data management) and am-sat-seq. We can see that for small amounts
of membranes, the speedup is below 1, what means a worst performance. However,
after 32 K membranes, the speedup is 1.23×, and it is increased along with the
number of membranes until 64× for 4 M membranes. This is caused by the decrease
in the kernels time, and the time of handling the data is almost constant for any

1Note that we use here “K” and “M” for binary prefixes “kilo” and “mega”, respectively. Therefore,
128 K = 217 = 131072.

198 6 P Systems Implementation on GPUs

Fig. 6.10 Achieved speedup of am-sat-gpu against am-sat-seq considering also the GPU data
management, when increasing the number of membranes (x-axis). From [3, 21]

size. Note that the data management performed by am-sat-gpu is the following: data
allocation, initial configuration (only 1 membrane) transfer, and answer (object yes
or not) transfer. The information of the P system during the computation is always
kept on the GPU memory.

6.4.3 Simulating a SAT Solution with Tissue P Systems

In this section, we depict a specific simulator for the family of recognizer tissue P
systems with cell division. We first explain the data structures and the phases that
compound the simulation algorithm, then the sequential version, and after that the
parallel one based on CUDA, describing the different optimizations taken for each
phase of the simulator.

The original work is published in [21, 22, 26]. This simulation framework
is named TSPCUDASAT, and it can be downloaded from the official website
http://sourceforge.net/p/pmcgpu [45] or the repository https://github.com/RGNC/
tspcudasat.

6.4.3.1 Recognizer Tissue P Systemwith Cell Division
In the paradigm of membrane computing, a new computing model (tissue P system
with cell division) is introduced by using the biological membranes placed in the
nodes of a directed graph, inspired from the cell inter-communication in tissues
[20]. Besides, cell division is an elegant process that enables organisms to grow
and reproduce. Mitosis is a process of cell division which results in the production
of two daughter cells from a single parent cell. Daughter cells are identical to one
another and to the original parent cell. Through a sequence of steps, the replicated
genetic material in a parent cell is equally distributed to two daughter cells. While
there are some subtle differences, mitosis is remarkably similar across organisms.

http://sourceforge.net/p/pmcgpu
https://github.com/RGNC/tspcudasat
https://github.com/RGNC/tspcudasat

6.4 Specific Simulations 199

Definition 6.4. A tissue P system with cell division of degree q ≥ 1, is a tuple
� = (�,E,M1, . . . ,Mq,R, iout), where:

1. � is a finite alphabet:
2. E � �;
3. M1, . . . ,Mq are finite multisets over �;
4. R is a finite set of communication rules of the following forms:

(a) Communication rules: (i, u/v, j), for i, j ∈ {0, 1, 2, . . . , q}, i 	= j , u, v ∈
M(�), |u| + |v| > 0;

(b) Division rules: [a]i → [b]i [c]i , where i ∈ {1, 2, . . . , q}, i 	= iout and
a, b, c ∈ �.

5. iout ∈ {0, 1, . . . , q}.

A tissue P system with cell division� = (�,E,M1, . . . ,Mq ,R, iout) of degree q ≥
1, can be viewed as a set of q cells, labeled by 1, . . . , q , with an environment labeled
by 0 such that (a) M1, . . . ,Mq represent the finite multisets of objects (symbols of
the working alphabet �) initially placed in the q cells of the system; (b) E is the set
of objects initially located in the environment of the system, all of them available in
an arbitrary number of copies; (c) R is a finite set of rules over � associated with
the cells and the environment; and (d) iout ∈ {0, 1, . . . , q} indicates the output zone.
We use the term zone i to refer to cell i, in the case 1 ≤ i ≤ q and to refer the
environment in the case i = 0.

A communication rule (i, u/v, j) is called a symport rule if u = λ or v =
λ. A symport rule (i, u/λ, j) provides a virtual arc from zone i to zone j . A
communication rule (i, u/v, j) is called an antiport rule if u 	= λ and v 	= λ. An
antiport rule (i, u/v, j) provides two arcs: one from zone i to zone j and another one
from zone j to zone i. Therefore, every tissue P system has an underlying directed
graph whose nodes are the zones (cells and the environment) of the system and the
arcs are obtained from communication rules.

A configuration (or instantaneous description) Ct at an instant t of a tissue P
system � is a tuple whose components are the multisets over � associated with
each cell present in the system at moment t and the multiset over � \ E associated
with the environment at moment t .

A communication rule (i, u/v, j) is applicable to zones i, j to a configuration
Ct at instant t , if in that configuration the multiset u is contained in one zone i and
multiset v is contained in one zone j . When applying such a communication rule to
such zones, the objects of the multiset represented by u are sent from zone i to zone
j , and simultaneously, the objects of multiset v are sent from zone j to zone i. The
length of communication rule (i, u/v, j) is defined as |u| + |v|.

A division rule [a]i → [b]i[c]i is applicable to a configuration at an instant
t , if one cell i belongs to that configuration containing object a. When applying a
division rule [a]i → [b]i[c]i to such a cell i, under the influence of object a, that cell
is divided into two cells with the same label i; in the first copy, object a is replaced
by object b, in the second one, object a is replaced by object c; all the other objects

200 6 P Systems Implementation on GPUs

residing in such a cell i are replicated, and copies of them are placed in the two new
cells. The output cell iout and any cell with input degree equal to zero cannot be
divided.

The rules of a tissue P system with cell division are applied as follows:
communication rules will be applied in a non-deterministic maximally parallel
manner as it is customary in membrane computing but with the following important
remark: if a cell divides, then the division rule is the only one which is applied
for that cell at that step; the objects inside that cell do not evolve by means
of communication rules. In other words, before division a cell interrupts all its
communication channels with the other cells and with the environment. The new
cells resulting from division will interact with other cells or with the environment
only at the next step—providing that they do not divide once again. The label of a
cell precisely identifies the rules which can be applied to it.

Given a tissue P system with cell division, � = (�,E,M1, . . . ,Mq ,R, iout), the
initial configuration of � is C0 = (M1, · · · ,Mq; ∅). A configuration is a halting
configuration if no rule of the system is applicable to it. We say that configuration
C1 yields configuration C2 in one transition step, denoted C1 ⇒� C2, if we can
pass from C1 to C2 by applying the rules from R following the previous remarks. In
tissue P systems with cell division, the concepts of computation, recognizer system,
and polynomial time and uniform solution to a decision problem are introduced in a
similar way than in P systems with active membranes.

6.4.3.2 SAT Solution with Tissue P Systems
This section presents an efficient solution to SAT problem by means of family
of recognizer tissue P systems with cell division. Let ϕ = C1 ∧ · · · ∧ Cm be
a propositional formula in CNF such that the set of variables of the formula is
V ar(ϕ) = {x1, . . . , xn} and consists of m clausesCj = yj,1∨· · ·∨yj,kj , 1 ≤ i ≤ m,
where yj,j ′ ∈ {xi,¬xi : 1 ≤ i ≤ n} are the literals of ϕ. Without loss of generality,
we can assume that the formula is in simplified expression.

For each pair of natural numbers m,n ∈ N, we will consider the recognizer
tissue P system with cell division �tsp−SAT (〈m,n〉) = (�,�,μ,M1,M2, R, 2) of
degree 2, defined as follows:

• The input alphabet is � = {xi,j , xi,j | 1 ≤ i ≤ n, 1 ≤ j ≤ m}
• The working alphabet is

� = � ∪ {ai, ti , fi | 1 ≤ i ≤ n} ∪ {ri | 1 ≤ i ≤ m} ∪
∪ {Ti, Fi | 1 ≤ i ≤ n} ∪ {Ti,j , Fi,j | 1 ≤ i ≤ n, 1 ≤ j ≤ m + 1}∪
∪ {bi | 1 ≤ i ≤ 2n + m + 1} ∪ {ci | 1 ≤ i ≤ n + 1} ∪
∪ {di | 1 ≤ i ≤ 2n + 2m + nm + 1}∪
∪ {ei | 1 ≤ i ≤ 2n + 2m + nm + 3} ∪ {f, g,yes, no}

• The environment alphabet is E = � − {yes,no}.
• The set of labels is {1, 2}.

6.4 Specific Simulations 201

• The initial multisets associated with the cells are M1 = {yes,no, b1, c1, d1, e1}
and M2 = {f, g, a1, a2, . . . , an}.

• The input cell is the one labeled by 2, and the output region is the environment.
• The set R is formed by the following rules:

1. Division rule:
(a) [ai]2 → [Ti]2 [Fi]2, for i = 1, 2, . . . , n.

2. Communication rules:
(b) (1, bi/b

2
i+1, 0), for i = 1, . . . , n.

(c) (1, ci/c
2
i+1, 0), for i = 1, . . . , n.

(d) (1, di/d
2
i+1, 0), for i = 1, . . . , n.

(e) (1, ei/ei+1, 0), for i = 1, . . . , 2n + 2m + nm + 2.
(f) (1, bn+1cn+1/f, 2).
(g) (1, dn+1/g, 2).
(h∗) (1, f 2/f, 0).
(h) (2, cn+1Ti/cn+1 Ti,1, 0), for i = 1, . . . , n.
(i) (2, cn+1Fi/cn+1 Fi,1, 0), for i = 1, . . . , n.
(j) (2, Ti,j /ti Ti,j+1, 0), for i = 1, . . . , n and j = 1, . . . ,m.
(k) (2, Fi,j /fi Fi,j+1, 0), for i = 1, . . . , n and j = 1, . . . ,m.
(l) (2, bi/bi+1, 0).
(m) (2, di/di+1, 0), for i = n + 1, . . . , 2n + m.
(n) (2, b2n+m+1 ti xi,j /b2n+m+1 rj , 0).
(o) (2, b2n+m+1 fi xi,j /b2n+m+1 rj , 0), for 1 ≤ i ≤ n and 1 ≤ j ≤ m.
(p) (2, di/di+1, 0), for i = 2n + m + 1, . . . , 2n + m + nm.
(q) (2, d2n+m+nm+j rj /d2n+m+nm+j+1, 0), for j = 1, . . . ,m.
(r) (2, d2n+2m+nm+1/f yes, 1).
(s) (2,yes/λ, 0).
(t) (1, e2n+2m+nm+3 f no/λ, 0).

Next, we consider a polynomial encoding (cod, s) of the SAT problem in the
family �tsp−SAT = {�tsp−SAT (t) | t ∈ N}. The function cod associates to
the previously described propositional formula ϕ that is an instance of SAT with
parameters n (number of variables) and m (number of clauses), with the following
multiset of objects

cod(ϕ) =
m⋃

i=1

{xi,j |xi ∈ Cj } ∪ {xi,j |¬xi ∈ Cj }

In this case, object xi,j represents that variable xi belongs to clause Cj . The size

function, s, is defined as follows s(ϕ) = 〈m,n〉 = (m+n)·(m+n+1)
2 + m. The

system of the family �tsp−SAT to process the instance ϕ will be the tissue P system
�tsp−SAT (s(ϕ)) with input multiset cod(ϕ).

202 6 P Systems Implementation on GPUs

The execution of the system �tsp−SAT (s(ϕ)) with input cod(ϕ) is structured in
six phases:

• Valuations generation phase: in this phase all the possible relevant truth valua-
tions are generated for the set of variables of the formula {x1, . . . , xn}. This is
accomplished by using division rules (a), whereby each object xi produces two
new cells, one having the object Ti that codifies the true value of the variable xi ,
y and the other having the object Ti that codifies the false value of the variable
xi . Thus, 2n cells are obtained in n computation steps. These cells are labeled
by 2, and each one codifies each possible truth valuation of the set of variables
{x1, . . . , xn}. Meanwhile, the objects f, g are replicated in each created cell. This
phase spends n computation steps.

• Counter generation phase: simultaneously, and using the rules (b), (c), (d), and
(e), the counters bi, ci, di , ei of the cell labeled by 1 are evolving such that in
each computation step the number of objects in each one is doubling. Thereby,
through this process and after n steps, we get 2n copies of the objects bn+1, cn+1,
and dn+1. Objects b′s will be used to check which clauses are satisfied for each
truth valuation. Objects c′s are used to obtain a sufficient number of copies of
ti , fi (namely, m). Objects d ′s will be used to check if there is at least one
valuation satisfying all clauses. Finally, objects e′s will be used to produced,
in its case, the object no at the end of the computation.

• Checking preparation phase: this phase aims at preparing the system for check-
ing clauses. For this, at step n + 1 of the computation, and by the application of
the rules (f) and (g), the counters bn+1, cn+1, dn+1 of the cell 1 are exchanged
for the objects f and g of the 2n cell 2. Thus, after this step, each cell labeled by
two has a copy of the objects bn+1, cn+1, dn+1, while cell 1 has 2 copies of the
objects f and g.

Subsequently, the presence of an object cn+1 in each one of the 2n cells labeled
by 2 allows to generate the objects Ti,1 and Fi,1. By the application of rules (j)

and (k), these objects allow the emergence of m copies of ti and m copies of
fi , according to the values of truth or falsity that a cell 2 assigns to a variable
xi . This process spends n + m steps since there is only one object cn+1 in each
cell 2, and moreover, for each i = 1, . . . , n, the rules (j) and (k) are applied
exactly m consecutively times. Simultaneously, in the first steps of this process,
the application of the rule (h∗) makes the cell labeled by 1 to appear only one
copy of the object yes. Simultaneously in this phase, the counters bi, di and ei

are evolving by the applications of the corresponding rules.
• Checking clauses phase: in this phase it is determined which clauses are true

for every truth valuation encoded by a cell labeled by 2. This phase starts at
the computation step (n + 1) + (n + m) + 1 = 2n + m + 2. Using the rules
(n) and (o), the true clauses are checked for each valuation encoded by a cell,
so that the appearance of an object rj in a cell 2 means that the corresponding
valuation makes true the clause Cj . Bearing in mind that a single copy of the
object b2n+m+1 is in each cell, the phase takes nm computation steps.

6.4 Specific Simulations 203

Thus, the configuration C2n+m+nm+1 is characterized by the following:
– It contains exactly 2n cells labeled by 2. Each one contains the object

d2n+m+nm+1, and copies of objects rj for each clause Cj are made true by
the encoded valuation in the cell.

– It contains a unique cell labeled by 1, containing a copy of objects
yes, no, f, g and the counter e2n+m+nm+2.

This phase consumes m computation steps.
• Formula checking phase: in this phase it is determined if there exists any

valuation making true the m clauses of the formula. For this, the rules of
type (q) are used, analyzing in an ordered way (first the clause C1, after that
clause C2, and so on) if the clauses of the formula are being satisfied by the
represented valuation in the corresponding cell labeled by 2. For example, from
counter d2n+m+nm+1 appearing in every cell 2, the appearance of the object r1
(the valuation makes true clause C1) permits to generate in that cell the object
d2n+m+nm+2. This object, in turn, permits to evolve object d2n+m+nm+3 if in that
cell appears the object r2. In this manner, a valuation represented by a cell labeled
by 2 makes true the formula ϕ if and only if the object d2n+m+nm+m+1 appears
in the content of that cell in the configuration C2n+m+nm+m+1.

• Output phase: in this phase, the system will provide the corresponding output,
depending on the analysis in the formula checking phase.

If the formula ϕ is satisfiable, then there is some cell in the configuration
C2n+m+nm+m+1 that contains an object d2n+m+nm+m+1. In this case, the applica-
tion of rule (r) sends an object f and the object yes to the cell 1. The object yes
therefore disappears from cell 1, and consequently, rule (t) cannot be applied. In
the next computation step, the application of the rule (s) produces an object yes
in the environment (for the first time during the whole computation) and the
process ends.

If the formula ϕ is not satisfiable, then there no exist any cell in the
configuration C2n+m+nm+m+1 containing an object d2n+m+nm+m+1. In this case,
the rule (r) is not applicable, and in the next computation step, the counter ei

evolves, providing an object e2n+m+nm+m+3 in cell 1. This object permits the
application of rule (t), since the objects no and f remain in cell 1. In this way,
the object no is sent in the next computation step, and the computation finalizes.

6.4.3.3 Sequential Simulation and Data Structure
For an easier implementation, the simulation algorithm has been divided into five
(simulation) phases, instead of the six phases in �tsp−SAT since we merge some
of them. Each of these simulation phases are implemented in code as separated
functions whenever is possible. They corresponds to the application of certain rules,
as explained below:

• Generation phase: it performs the application of rules from (a) to (e) of systems
from �tsp−SAT. Therefore, it comprises the two first phases of the theoretical
model: valuations generation phase and counters generation phase.

204 6 P Systems Implementation on GPUs

• Exchange phase: it simulates the application of rules (f) and (g). It comprises
the first part of the checking preparation phase.

• Synchronization phase: it applies the rules from (h) to (m), so comprising the
second part of the checking preparation phase.

• Checking phase: it performs the application of rules from (n) to (p). Thus, it is
the checking clauses phase we identified in the theoretical model.

• Output phase: it applies rules from (q) to (t). It then performs both the formula
checking phase and the output phase identified in the theoretical model.

The sequential simulator implements these five simulation phases directly in
code. The input of the simulator is the same than the one used in the simulator for
the cell-like solution �am−SAT. A DIMACS CNF file is provided, and the simulator
outputs the response of the computation. Therefore, it acts merely as a SAT solver,
but the implementation follows the computation of the systems from the family
�tsp−SAT.

Furthermore, we have adopted a set of optimizations to improve the performance
of the sequential simulator. After several tests, we show that the best optimizations
are as follows [21]:

• As the exchange phase is very simple, it is then implemented after the generation
phase loop, within the same function.

• The full synchronization phase is applied to one cell before going to the next one.
This allows to exploit data locality in cache memories.

• In the checking phase, the objects rj , for 1 ≤ j ≤ m, are inserted in order in
the corresponding array whenever they are created. Thus, the output phase can
be easily performed, in such a way that it is not necessary to loop all the objects
coming from the input multiset (literals). Now it is enough to check if there exists
the m objects rj .

For this solution, the memory layout for the representation of the tissue P
system differentiates between cells labeled 1 and 2, having a different data structure
representing each type of cell in the system.

First, cell 1 is represented as an array having a maximum dimension of five
elements. That is, the multiset for cell 1 has the maximum amount of five objects.
These five objects are the three counters, b, c, and d (which are initially in this cell),
and the two objects yes and no (that will final answer to the problem). Note that
the size of the array for cell 1 is always constant, as it is independent of the input
parameters of the simulator.

Second, the cells labeled by 2 are also represented by a one-dimensional array.
All of them are stored inside this large array, since it is initially allocated to store
the maximum amount of cells (2n). By studying a computation of the systems

6.4 Specific Simulations 205

�tsp−SAT, we conclude that the maximum number of objects appearing in a cell
2 is (2n) + 4 + |cod(ϕ)|, where:

• |cod(ϕ)| elements for the initial multiset,
• n elements for objects Ti,j and Fi,j , for 1 ≤ i ≤ n and 1 ≤ j ≤ m. Note that an

object Ti,j and an object Fi,j , for any i, cannot be simultaneously placed within
a cell 2. Moreover, the index j is used sequentially in the computation steps of
the system, i.e., replacing objects in the evolution process of incrementing the
second index. For all of this, n elements are enough to store those objects.

• n elements for objects ti and fi , for 1 ≤ i ≤ n. Note that objects fi and tj , for
i = j , cannot be simultaneously placed within a cell 2, so n elements are enough
to store those objects.

• 4 elements for counter objects a, b, c, and d . They will be replaced for counter
objects f and g.

The objects are represented similarly to the simulator for �am−SAT. In this
case, we recover the reserved space utilized to store the multiplicity of the object,
inasmuch as it exceeds 1. In summary, they are encoded at bit-level within integers
of 32 bits that store the following (8 bits for each field):

1. The name of the object (x or x)
2. Multiplicity of the object. As there are objects whose multiplicity can exceed 28,

this field can eventually be joined to the next one (variable).
3. Variable (subindex i).
4. Clause (subindex j).

6.4.3.4 Design of the Parallel Simulator
The design of this parallel simulator is driven by the same structure of phases we
have used for the sequential one. Separated CUDA kernels are utilized to speedup
the execution of each phase.

The general assignment of work for threads and thread blocks is summarized in
Fig. 6.11. Each thread block corresponds to each cell labeled by 2 created in the
system. However, unlike the previous simulator for the cell-like solution, we do not
assign a thread per literal. The assignment of each thread, this time, is different for
each simulation phase. The work mapping per phase is therefore as follows:

• Generation phase: the number of thread blocks is iteratively increased together
with the amount of cells created in each computation step. We distribute cells
along the two-dimensional grid through successive kernel calls. Each thread
block contains (2n) + 4 + |cod(ϕ)| threads. That is, the amount of elements
assigned to each cell in the global array storing multisets. Threads are then used
to copy each individual elements of the corresponding cell when it is divided.

• Exchange phase: it is executed at the kernel for generation phase, using the
same amount of thread blocks, but only the corresponding threads perform the
exchange.

206 6 P Systems Implementation on GPUs

Fig. 6.11 General design of the parallel simulator for �tsp−SAT. From [21, 26]

• Synchronization phase: the thread blocks are assigned to the cells labeled by
2, like in the last step of the generation phase. For this phase, the number of
threads is n (number of variables). If we use the same amount of threads than
in generation phase, most of them will be idle. So it is preferred to launch less
threads, but performing effective work. We have experimentally corroborated this
fact.

• Checking phase: the number of thread blocks is again assigned to be the number
of cells labeled by 2. However, for this phase we use a block size of |cod(ϕ)|.
That is, each thread is used to execute, in parallel, rules of type (n) and
(o). The result at the SAT problem resolution level, each thread checks if the
corresponding literal makes true its clause, depending on the truth assignment
encoded by the cell assigned to the thread block.

• Output phase: rules of type (q) are sequentially executed in a separate kernel,
again using |cod(ϕ)| threads per block and 2n thread blocks (2n is the number of
cells labeled by 2).

For this solution, we have applied a small set of optimizations, focused on
the GPU implementation, to improve the performance of the parallel simulator.
We identify that the simulator runs twice faster than the simulator without these

6.4 Specific Simulations 207

optimizations. We will use the optimized version of the parallel simulator to perform
the comparisons. These optimizations are oriented to improve two performance
aspects of GPU computing, what leads us to consider two kind of optimizations.
The first one is to emphasize the parallelism. This optimization aims to increase
the number of threads per block (to the recommended amount from 64 to 256),
so it allows to fulfill warps and hide latency. The second is to exploit streaming
bandwidth. To do this, the data is loaded first to the shared memory, and operated
there, avoiding global memory (expensive) accesses. Next, we show the specific
optimizations we have carried out for each phase:

• Generation phase: no optimizations were implemented here, since the implemen-
tation already satisfies the first optimization type. The second type will require a
more sophisticated implementation, like the one presented in Sect. 6.4.2.

• Exchange phase: this phase, as it is joined with the generation phase, has no
optimizations.

• Synchronization phase: the two optimization types are implemented here. The
second optimization type is carried out by using shared memory to avoid global
memory accesses. The first type is performed by increasing the number of threads
per block. For the simulator, we can assume that n (number of variables, and the
number of threads per block) is a small number, since the number of cells grows
exponentially with respect to it. For example, let n = 32. Then, 232 cells will be
created, what require 232(68 + |cod(ϕ)|) bytes (in gigabytes: 272 + 4|cod(ϕ)|).
This number obviously exceeds the amount of available device memory. We
therefore need to increase the number of threads per block, since n < 32 means
to not fulfil a CUDA warp. A solution here is to assign more than one cell to
each thread block. This amount is 256

n
, being 256 the optimum number of threads

per block. It allows us to reach a number of threads close to the optimum one.
However, we have to take care also of having enough shared memory to load the
data of every assigned cell.

• Checking phase: since |cod(ϕ)| can be greater than 32, we then keep this number
as the number of threads per block. However, we use shared memory to speedup
the accesses to the elements of the array.

• Output phase: as in the previous phase, we also use shared memory, and the
number of threads per block is kept to |cod(ϕ)|.

6.4.3.5 Performance Analysis
In this subsection, we analyze the performance of the two simulators developed for
the family of tissue-like P systems �tsp−SAT: the sequential simulator developed in
C++ (from now, tsp-sat-seq) and the parallel simulator on the GPU (tsp-sat-gpu).

Figure 6.12 shows the results for both simulators when increasing the number of
cells (by increasing the number of variables in the input CNF formulas), considering
only kernel runtime for tsp-sat-gpu. For this case, we can observe that again the
kernels of tsp-sat-gpu run faster than tsp-sat-seq. However, the performance gain is
increased with the amount of cell 2 created by the system. For 64 membranes, the
speedup is of 2×, but for 2 M cells it is of 8.3×.

208 6 P Systems Implementation on GPUs

Fig. 6.12 Simulation performance for tsp-sat-seq and tsp-sat-gpu when increasing the number of
membranes (x-axis). From [21, 26]

Fig. 6.13 Speedup achieved running Test 2 (256 Objects/Cell) for tsp-sat-gpu and tsp-sat-seq
considering also the GPU data management, when increasing the number of membranes (x-axis).
From [21, 26]

Finally, we show the speedup achieved by the simulator tsp-sat-gpu, taking into
account also the amount of time consumed by the data management (allocation and
transfer). It is observed that, since the data management time is fixed for all the sizes
(copy the initial multiset and retrieve the final answer), the speedup exceeds 1 only
after 128 K membranes. Systems with smaller number of cells are executed slower
than in the CPU, because of the data management. However, for very large systems,
the speedup is as large as with only kernels. The maximum speedup we report for
this simulator is given for 4 M cells, up to 10× (Fig. 6.13).

6.5 Adaptive Simulations 209

6.5 Adaptive Simulations

In this section, we will introduce a third type of simulation of P systems, which is
called adaptive simulation.

6.5.1 Definition

We have discussed the difference between generic and specific simulators. In
this section, we will discuss a hybrid type, which is called adaptative, or simply
adaptive, simulation. A simulator of this kind is initially a generic simulator, which
is designed to simulate a wide range of P systems within a variant. However, the
simulator is provided with high-level information that can be either discarded (then
remaining as generic) or used to adapt the simulation to improve its efficiency.

In this sense, an adaptative simulator has the goal of getting closer to specific
simulators without losing generality; that is, they are generic simulators with
improved performance by taking advantage of extra information provided directly
by designers (e.g., modules). For example, if the algorithm scheme of the computa-
tion is known by the designer (as it is, as discussed for the specific simulators), then
it can be given to the simulator in order to be able to discard rules at selection stage
(because the algorithm scheme is known).

Next, we will overview the first adaptive simulator for P systems implemented
so far, which is published in [29]. This simulation framework is implemented
within ABCD-GPU, and it can be downloaded from the official website http://
sourceforge.net/p/pmcgpu [45] or the repository https://github.com/RGNC/abcd-
gpu/tree/adaptative.

6.5.2 Simulating Population Dynamics P Systems

The idea of adaptative simulators was introduced and analyzed in [29]. It is inspired
in the way directives work in common programming languages. They are special
syntactic elements that tell extra information to the compiler, allowing to better
adapt the code for some purposes if the compiler accepts it (e.g., in OpenMP, one
call can easily ask to parallelize the iterations of a loop). This way, a P system model
designer can also provide very useful information to the simulator, rather than just
the syntactic and/or semantic elements of the P system to simulate, such as the
algorithmic scheme of the computation.

Specifically in PDP systems, ecosystem modelers often use algorithmic schemes
for their models [6]. This is given as cycle that is repeated (per year, per season, etc.).
A cycle in the model is a fixed amount of transition steps where a sequence of mod-
ules take place. These modules reproduce certain processes such as reproduction of
species, feeding, migration, etc. Moreover, these modules consist of certain rules
that are carefully designed to model the corresponding process. Therefore, we can

http://sourceforge.net/p/pmcgpu
http://sourceforge.net/p/pmcgpu
https://github.com/RGNC/abcd-gpu/tree/adaptative
https://github.com/RGNC/abcd-gpu/tree/adaptative

210 6 P Systems Implementation on GPUs

say that somehow the model designer already knows which rules can be executed in
each time step. Thus, if they are able to provide that information, the simulator can
take advantage of this to dismiss rules automatically at each step.

The PDP system simulator was turned into adaptative. First, the model designer is
able to provide the information of the modules they are defining by using the new P-
Lingua 5 software [37]. This new version now includes new syntax elements called
features. They are written as @featureName = featureValue and can be
defined globally (for the whole system) or locally (for individual rules). ABCD-
GPU takes this information to organize the rules by modules. If the simulator does
not recognize the information provided by the features, it can proceed and simulate
the system without problems.

In summary, there are two main pieces of information that has to be declared in
order to define modules:

1. Information about the modular structure of the model. This includes module
names and their temporal relation. The latter indicates when a module starts
inside a cycle and which modules will follow a given one.

2. Information about distribution of rules in modules. That is, which module each
rule belongs to.

The simulator precomputes which modules are active in each step within the
cycle before starting the simulation. In this way, this information can be used to
easily identify the rules that might be applicable at each transition step. For this
purpose, the rule blocks and the rules are sorted in order to compact them into
modules; rules belonging to the same module are put one after the other. The kernels
of ABCD-GPU are expanded to accept extra indexes indicating the modules and
where the rules of the modules are. In this way, the threads as distributed in Fig. 6.4
will have a shorter loop, because the rule blocks (and rules) are just those from
the module being active. Furthermore, if the solution has parallel modules in a
cycle, then they can also run in parallel thanks to CUDA streams. We can launch
the kernels for phase 1 also in parallel at different streams, one per module. As for
environments and simulations, the behavior remains as before.

6.5.2.1 Analysis of Performance Results
Next, the behavior and performance of the adaptative PDP system simulators for
GPU and OpenMP are analyzed. The model employed as benchmark is based on
the tritrophic interactions presented in [9, 10]. This is a virtual ecosystem that
was defined to illustrate PDP systems as a modeling framework. In this model,
three trophic levels are represented: grass, herbivores, and carnivores. These species
interact with each other, reproduce, and move along the 10 environments when no
food is encountered. Rule block competitions take place. For instance, all herbivores
compete for grass that is represented by a single object, G.

For benchmarking purposes, the model has been generalized so that the number
of species can be changed. The corresponding parameters (probabilities, amount of
copies eaten per species, etc.) are generated randomly. This was possible thanks to

6.5 Adaptive Simulations 211

the ability of P-Lingua 5 to incorporate calls from the model to random number
generation functions. Moreover, the modules of the model are identified by P-
Lingua 5 features.

In this section, the benchmark carried out to the adaptative PDP systems
simulator is analyzed. The two versions of the simulator are compared: generic and
adaptive versions of ABCD-GPU. The extended tritrophic model is used as input. In
all experiments, 20 years of the virtual ecosystem are simulated (corresponding to
180 transition steps of the PDP systems). The A parameter of DCBA is set to 2. No
output was asked, so only the simulation runtimes were measured. The scalability
of the simulators is analyzed by increasing the number of species. Specifically, 7
will be used to denote the base model, which has in fact 7 species. In order to
have an idea of the dimensions of the model, the ratio of rule blocks per species is
approximately 22: 21985 rule blocks are generated for 1000 species, being 9990
communication rule blocks and 11,995 skeleton rule blocks. Another parameter
affecting scalability is the amount of simulations running in parallel. For this reason,
50 simulations were launched for the tests. The following two configurations of CPU
and GPU hardware were used to run the simulations (short names are provided in
bold):

• (i7) Intel i7-8700 CPU at 3.20 GHz, having 12 logical cores (6 physical)
• (P100) Tesla P100 GPU, having 3584 cores at 1.33 GHz

A cross comparison of runtimes and speedups achieved by GPU compared to
CPU is shown in Fig. 6.14, which corresponds to the speedups reached by the above
simulation times. The GPU is faster, in both adaptive and generic versions, than
the multicore counterparts when handling middle and large models. Only for the

Fig. 6.14 Comparison of P100 versus i7 with 8 threads, for both generic and adaptive versions of
abcd-gpu tested for different number of species in the model. It shows the corresponding speedups
of P100 against i7 for both version. 50 simulations were run. Bar plots use logarithmic scale for
y-axis. From [29]

212 6 P Systems Implementation on GPUs

small base model, the GPU is a bit slower (above 0.9×). Speedups are higher with
larger models, being around 30× and 50× for adaptive and generic simulators,
respectively, and for 2000 species. When simulating hundreds of species, 6× and
10× accelerations were obtained for adaptive and generic versions. Finally, the
speedup of the GPU is lower when using the adaptive version, given that the impact
of the modular scheme is better for the CPU than for the GPU.

We can conclude that this design helped to improve the performance by 2.5×
extra when using a P100 GPU [29].

6.6 Conclusions

GPUs have been established as a massively parallel processor and an enabling
technology where programmers currently accelerate scientific applications. They
provide a good parallel platform to simulate P systems due to the double parallel
nature that both GPUs and P systems present. Their shared memory system also
helps to efficiently synchronize the simulation of the models. Moreover, they are a
cheap and scalable parallel architecture that can be seen in current HPC solutions.

However, the results in the literature [22, 48] show that P systems simulations
are memory bandwidth bound: they spend more time accessing and updating data
(multisets) than executing computation. The main cause is that simulating P systems
requires a high synchronization degree (e.g., the global clock of the models, rule
cooperation, rules competition, etc.), and the number of operations to execute per
memory access is very small (P systems execute rewriting rules). This restricts the
design of parallel simulators. A parallel simulator designer has to be careful with
the representation and management of each P system ingredient. A bad step taken
on GPU programming can easily break parallelism and, so, performance.

We can identify a taxonomy of simulators developed so far. Generic parallel
simulators are intended to be flexible enough to simulate a wide range of P systems
within a variant. They also take advantage of P systems parallelism to speedup the
simulation. However, when working with highly flexible simulators, the P systems
design has to be reconsidered to achieve performance, in such a way that they
execute as many rules as possible in each computation step. Some variants simulated
by generic simulators are P systems with active membranes and elementary division
and Population Dynamic P systems. Other related works also include spiking neural
P systems variants [1, 2].

On the other hand, specific simulators are designed for just certain P systems
within a solution or family. This way, the simulator can be designed adapting
all parts to the P systems, since their scheme is known at developing time. The
performance achieved in these simulators are much higher, but it comes at restricting
the P systems to simulate. For example, one cannot define new rules to simulate,
since they are already predetermined. In the middle term, we have a new type of
simulation called adaptive. Basically, it is a generic simulator but that includes high
level information that can be either discarded by the simulator (going generic) or
used to adapt the simulation and achieve better performance (adaptive).

References 213

We can identify some challenges for the future. For example, concerning the
memory bandwidth limit, one challenge is to design P system variants where the
model contains a higher computational intensity. Moreover, memory accesses can
be partially reduced by improving data structures using a compacted, dense, and
well-ordered memory representation of P systems. A challenge is to use a dense
representation in an effective way in generic simulators. Finally, a P system model
with cooperation in the LHS usually leads to this issue, making it more difficult
when the cooperation is larger.

References

1. J.P. Carandang, F.G.C. Cabarle, H.N. Adorna, N.H.S. Hernandez, M.A. Martínez-del-Amor,
Handling non-determinism in spiking neural P systems: algorithms and simulations. Fundam.
Inf. 164(2–3), 139–155 (2019). https://doi.org/10.3233/FI-2019-1759

2. J.P. Carandang, J.M.B. Villaflores, F.G.C. Cabarle, H.N. Adorna, M.A. Martínez-del-Amor,
CuSNP: spiking neural P systems simulators in CUDA. Rom. J Inf Sci Technol. 20(1), 57–70
(2017)

3. J.M. Cecilia, J.M. García, G.D. Guerrero, M.A. Martínez-del-Amor, I. Pérez-Hurtado, M.J.
Pérez-Jiménez, Simulating a P system based efficient solution to SAT by using GPUs. J Logic
Algebraic Program. 79(6), 317–325 (2010). https://doi.org/10.1016/j.jlap.2010.03.008

4. J.M. Cecilia, J.M. García, G.D. Guerrero, M.A. Martínez-del-Amor, I. Pérez-Hurtado, M.J.
Pérez-Jiménez, Simulation of P systems with active membranes on CUDA. Briefings in Bioinf.
11(3), 313–322 (2010). https://doi.org/10.1093/bib/bbp064

5. J.M. Cecilia, J.M. García, G.D. Guerrero, M.A. Martínez-del-Amor, M.J. Pérez-Jiménez, M.
Ujaldón, The GPU on the simulation of cellular computing models. Soft Comput. 16(2), 231–
246 (2012). https://doi.org/10.1007/s00500-011-0716-1

6. M.A. Colomer, A. Margalida, M.J. Pérez-Jiménez, Population Dynamics P system (PDP)
models: a standardized protocol for describing and applying novel bio-inspired computing
tools. PLOS ONE 8(5), e60698 (2013). https://doi.org/10.1371/journal.pone.0060698

7. M.A. Colomer, A. Margalida, D. Sanuy, M.J. Pérez-Jiménez, A bio-inspired computing model
as a new tool for modeling ecosystems: the avian scavengers as a case study. Ecol. Model.
222(1), 33–47 (2011). https://doi.org/10.1016/j.ecolmodel.2010.09.012

8. M.A. Colomer, A. Margalida, L. Valencia, A. Palau, Application of a computational model for
complex fluvial ecosystems: the population dynamics of zebra mussel Dreissena polymorpha
as a case study. Ecol. Complexity 20, 116–126 (2014). https://doi.org/10.1016/j.ecocom.2014.
09.006

9. M.A. Colomer, I. Pérez-Hurtado, M.J. Pérez-Jiménez, A. Riscos-Núñez. Comparing simulation
algorithms for multienvironment probabilistic P systems over a standard virtual ecosystem, in
IEEE Fifth International Conference on Bio-Inspired Computing: Theories and Applications
(BIC-TA 2010), vol. 1 (2010). https://doi.org/10.1109/BICTA.2010.5645258

10. M.A. Colomer, I. Pérez-Hurtado, M.J. Pérez-Jiménez, A. Riscos-Núñez, Comparing simulation
algorithms for multienvironment probabilistic P systems over a standard virtual ecosystem.
Nat. Comput. 11(3), 369–379 (2012). https://doi.org/10.1007/s11047-011-9289-2

11. T.S. Crow, Evolution of the graphical processing unit. Master’s thesis, University of Nevada
Reno (2004). http://www.cse.unr.edu/~fredh/papers/thesis/023-crow/GPUFinal.pdf

12. A.C. Elster, High-Performance Computing: past, present, and future, in Applied Parallel
Computing, Lecture Notes in Computer Science, ed. by J. Fagerholm, J. Haataja, J. Järvinen,
M. Lyly, P. Raback, V. Savolainen, vol. 2367 (2006), pp. 433–444. https://doi.org/10.1007/3-
540-48051-X_43

https://doi.org/10.3233/FI-2019-1759
https://doi.org/10.1016/j.jlap.2010.03.008
https://doi.org/10.1093/bib/bbp064
https://doi.org/10.1007/s00500-011-0716-1
https://doi.org/10.1371/journal.pone.0060698
https://doi.org/10.1016/j.ecolmodel.2010.09.012
https://doi.org/10.1016/j.ecocom.2014.09.006
https://doi.org/10.1016/j.ecocom.2014.09.006
https://doi.org/10.1109/BICTA.2010.5645258
https://doi.org/10.1007/s11047-011-9289-2
http://www.cse.unr.edu/~fredh/papers/thesis/023-crow/GPUFinal.pdf
https://doi.org/10.1007/3-540-48051-X_43
https://doi.org/10.1007/3-540-48051-X_43

214 6 P Systems Implementation on GPUs

13. M. García-Quismondo, R. Gutiérrez-Escudero, M.A. Martínez-del-Amor, E. Orejuela-Pinedo,
I. Pérez-Hurtado, P-Lingua 2.0: A software framework for cell-like P systems. Int. J. Comput.
Commun. Control 4(3), 234–243 (2009). https://doi.org/10.15837/ijccc.2009.3.2431

14. M.A. Gutiérrez-Naranjo, M.J. Pérez-Jiménez, A. Riscos-Núñez, A fast P system for finding
a balanced 2-partition. Soft Comput. 9, 673–678 (2005). https://doi.org/10.1007/s00500-004-
0397-0

15. Inside HPC blog. http://insidehpc.org
16. B.W. Kernighan, D. Ritchie. The C Programming Language, 2nd edn. (Prentice Hall, Engle-

wood Cliffs 1988)
17. D.B. Kirk, W.W. Hwu, Programming Massively Parallel Processors: A Hands-on Approach,

3rd edn. (Morgan Kaufmann, San Francisco, 2016). https://www.sciencedirect.com/science/
book/9780128119860

18. A. Krizhevsky, I. Sutskever, G.E. Hinton, Imagenet classification with deep convolutional
neural networks. Adv. Neural Inf. Process. Syst. 25(2) (2012). https://doi.org/10.1145/3065386

19. E. Lindholm, J. Nickolls, S. Oberman, J. Montrym, NVIDIA Tesla: a unified graphics and
computing architecture. IEEE Micro 28(2), 39–55 (2008). https://doi.org/10.1109/MM.2008.
31

20. C. Martín-Vide, Gh. Păun, J. Pazos, A. Rodríguez-Patón, Tissue P systems. Theor. Comput.
Sci. 296(2), 295–326 (2003). https://doi.org/10.1016/S0304-3975(02)00659-X

21. M.A. Martínez-del-Amor, Accelerating Membrane Systems Simulators Using High Perfor-
mance Computing with GPU. Ph.D. Thesis, Universidad de Sevilla, 2013. http://hdl.handle.
net/11441/15644

22. M.A. Martínez-del-Amor, M. García-Quismondo, L.F. Macías-Ramos, L. Valencia-Cabrera, A.
Riscos-Núñez, M.J. Pérez-Jiménez, Simulating P systems on GPU devices: a survey. Fundam.
Inf. 136(3), 269–284 (2015). https://doi.org/10.3233/FI-2015-1157

23. M.A. Martínez-del-Amor, I. Karlin, R.E. Jensen, M.J. Pérez-Jiménez, A.C. Elster, Parallel
simulation of probabilistic P systems on multicore platforms, in Proceedings of the Tenth
Brainstorming Week on Membrane Computing, ed. by M. García-Quismondo, L.F. Macías-
Ramos, Gh. Păun, L. Valencia-Cabrera, vol. II (Fénix Editora, 2012), pp. 17–26

24. M.A. Martínez-del-Amor, L.F. Macías-Ramos, L. Valencia-Cabrera, M.J. Pérez-Jiménez,
Parallel simulation of Population Dynamics P systems: updates and roadmap. Nat. Comput.
15(4), 565–573 (2015). https://doi.org/10.1007/s11047-016-9566-1

25. M.A. Martínez-del Amor, D. Orellana-Martín, I. Pérez-Hurtado, L. Valencia-Cabrera, A.
Riscos-Núñez, M.J. Pérez-Jiménez, Design of specific P systems simulators on GPUs, in
Membrane Computing. CMC 2018, ed. by T. Hinze, G. Rozenberg, A. Salomaa, C. Zandron.
Lecture Notes in Computer Science, vol. 11399 (2019), pp. 202–207. https://doi.org/10.1007/
978-3-030-12797-8_14

26. M.A. Martínez-del-Amor, J. Pérez-Carrasco, M.J. Pérez-Jiménez, Characterizing the parallel
simulation of P systems on the GPU. Int. J. Unconv. Comput. 9(5–6), 405–424 (2013)

27. M.A. Martínez-del-Amor, I. Pérez-Hurtado, M. García-Quismondo, L.F. Macías-Ramos, L.
Valencia-Cabrera, A. Romero-Jiménez, C. Graciani-Díaz, A. Riscos-Núñez., M.A. Colomer,
M.J. Pérez-Jiménez, DCBA: simulating Population Dynamics P Systems with proportional
object distribution, in Membrane Computing. CMC 2012, ed. by E. Csuhaj-Varjú, M. Gheo-
rghe, G. Rozenberg, A. Salomaa, G. Vaszil. Lecture Notes in Computer Science, vol. 7762
(2012), pp. 291–310. https://doi.org/10.1007/978-3-642-36751-9_18

28. M.A. Martínez-del-Amor, I. Pérez-Hurtado, A. Gastalver-Rubio, A.C. Elster, M.J. Pérez-
Jiménez, Population Dynamics P Systems on CUDA, in Computational Methods in Systems
Biology, ed. by D. Gilbert, M. Heiner. Lecture Notes in Computer Science, vol. 7605 (2012),
pp. 247–266. https://doi.org/10.1007/978-3-642-33636-2_15

29. M.A. Martínez-del-Amor, I. Pérez-Hurtado, D. Orellana-Martín, M.J. Pérez-Jiménez, Adapta-
tive parallel simulators for bioinspired computing models. Future Gener. Comput. Syst. 107,
469–484 (2020). https://doi.org/10.1016/j.future.2020.02.012

https://doi.org/10.15837/ijccc.2009.3.2431
https://doi.org/10.1007/s00500-004-0397-0
https://doi.org/10.1007/s00500-004-0397-0
http://insidehpc.org
https://www.sciencedirect.com/science/book/9780128119860
https://www.sciencedirect.com/science/book/9780128119860
https://doi.org/10.1145/3065386
https://doi.org/10.1109/MM.2008.31
https://doi.org/10.1109/MM.2008.31
https://doi.org/10.1016/S0304-3975(02)00659-X
http://hdl.handle.net/11441/15644
http://hdl.handle.net/11441/15644
https://doi.org/10.3233/FI-2015-1157
https://doi.org/10.1007/s11047-016-9566-1
https://doi.org/10.1007/978-3-030-12797-8_14
https://doi.org/10.1007/978-3-030-12797-8_14
https://doi.org/10.1007/978-3-642-36751-9_18
https://doi.org/10.1007/978-3-642-33636-2_15
https://doi.org/10.1016/j.future.2020.02.012

References 215

30. M.A. Martínez-del-Amor, I. Pérez-Hurtado, M.J. Pérez-Jiménez, A. Riscos-Núñez, M.A.
Colomer, A new simulation algorithm for multienvironment probabilistic P systems, in 2010
IEEE Fifth International Conference on Bio-Inspired Computing: Theories and Applications
(BIC-TA), Changsha, 2010, vol. 1 (2010), pp. 59–68. https://doi.org/10.1109/BICTA.2010.
5645352

31. A. Munshi, B.R. Gaster, T.G. Mattson, J. Fung, D. Ginsburg, OpenCL Programming Guide,
1st edn. (Addison-Wesley, Reading, 2011)

32. J. Nickolls, I. Buck, M. Garland, K. Skadron, Scalable parallel programming with CUDA: is
CUDA the parallel programming model that application developers have been waiting for?
Queue 6(2), 40–53 (2008). https://doi.org/10.1145/1365490.1365500

33. NVIDIA CUDA C Programming Guide. https://docs.nvidia.com/cuda/cuda-c-programming-
guide/index.html. Accessed June 2019

34. N. Otterness, J. Anderson, AMD GPUs as an alternative to NVIDIA for supporting real-time
workloads, in Proceedings of the 32nd Euromicro Conference on Real-Time Systems, (2020),
pp. 10:1–10:23. https://doi.org/10.4230/LIPIcs.ECRTS.2020.10

35. J.D. Owens, M. Houston, D. Luebke, S. Green, J.E. Stone, J.C. Phillips, GPU computing. Proc.
IEEE 96(5), 879–899 (2008). https://doi.org/10.1109/JPROC.2008.917757

36. Gh. Păun, P systems with active membranes: attacking NP-complete problems. J. Autom. Lang.
Comb. 6, 75–90 (1999)

37. I. Pérez-Hurtado, D. Orellana-Martín, G. Zhang, M.J. Pérez-Jiménez, P-lingua in two steps:
flexibility and efficiency. J. Membr. Comput. 1(2), 93–102 (2019). https://doi.org/10.1007/
s41965-019-00014-1

38. M.J. Pérez-Jiménez, A. Riscos-Núñez, Solving the Subset-Sum problem by P systems
with active membranes. N. Gener. Comput. 23(4), 339–356 (2005). https://doi.org/10.1007/
BF03037637

39. M.J. Pérez-Jiménez, A. Riscos-Núñez, A linear-time solution for the knapsack problem with
active membranes, in Membrane Computing. WMC 2003, ed. by C. Martín-Vide, G. Mauri,
Gh. Păun, G. Rozenberg, A. Salomaa. Lecture Notes in Computer Science, vol. 2933 (2004),
pp. 250–268. https://doi.org/10.1007/b95207

40. M.J. Pérez-Jiménez, A. Romero-Jiménez, F. Sancho-Caparrini, Complexity classes in models
of cellular computing with membranes. Nat. Comput. 2(3), 265–285 (2003). https://doi.org/10.
1023/A:1025449224520

41. M.J. Pérez-Jiménez, A. Romero-Jiménez, F. Sancho-Caparrini, Decision P systems and the
P 	= NP conjecture, in Membrane Computing. WMC 2002, ed. by Gh. Păun, G. Rozenberg,
A. Salomaa, C. Zandron. Lecture Notes in Computer Science, vol. 2597 (2003), pp. 388–399.
https://doi.org/10.1007/3-540-36490-0_27

42. M.J. Pérez-Jiménez, A. Romero-Jiménez, F. Sancho-Caparrini, A polynomial complexity class
in P systems using membrane division. J. Autom. Lang. Comb. 11, 423–434 (2006)

43. N. Satish, M. Harris, M. Garland, Designing efficient sorting algorithms for manycore GPUs, in
Proceedings of the 2009 IEEE International Symposium on Parallel & Distributed Processing
(IPDPS ’09), Rome, 2009 (IEEE Computer Society, Silver Spring, 2009), pp. 1–10. https://doi.
org/10.1109/IPDPS.2009.5161005

44. W. Shin, K.H. Yoo, N. Baek, Large-scale data computing performance comparisons on SYCL
heterogeneous parallel processing layer implementations. Appl. Sci. 10, 1656 (2020). https://
doi.org/10.3390/app10051656

45. The PMCGPU (Parallel simulators for Membrane Computing on the GPU) project website.
http://sourceforge.net/p/pmcgpu. Accessed June 2019

46. The top 500 supercomputer site. http://www.top500.org
47. A. Torres-Moríño, M.A. Martínez-del-Amor, F. Sancho-Caparrini, GPU-parallel crowd sim-

ulation with Vulkan, in Proceedings of the 18th High Performance Computing & Simulation
(HPCS 2020). (2020, in press)

48. G. Zhang, Z. Shang, S. Verlan, M.A, Martínez-del-Amor, C. Yuan, L. Valencia-Cabrera, M.J.
Pérez-Jiménez, An overview of hardware implementation of Membrane Computing models.
ACM Comput. Surv. 53(4), 90 (2020). https://doi.org/10.1145/3402456

https://doi.org/10.1109/BICTA.2010.5645352
https://doi.org/10.1109/BICTA.2010.5645352
https://doi.org/10.1145/1365490.1365500
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://doi.org/10.4230/LIPIcs.ECRTS.2020.10
https://doi.org/10.1109/JPROC.2008.917757
https://doi.org/10.1007/s41965-019-00014-1
https://doi.org/10.1007/s41965-019-00014-1
https://doi.org/10.1007/BF03037637
https://doi.org/10.1007/BF03037637
https://doi.org/10.1007/b95207
https://doi.org/10.1023/A:1025449224520
https://doi.org/10.1023/A:1025449224520
https://doi.org/10.1007/3-540-36490-0_27
https://doi.org/10.1109/IPDPS.2009.5161005
https://doi.org/10.1109/IPDPS.2009.5161005
https://doi.org/10.3390/app10051656
https://doi.org/10.3390/app10051656
http://sourceforge.net/p/pmcgpu
http://www.top500.org
https://doi.org/10.1145/3402456

7PSystems Implementation on FPGA

7.1 Introduction

P systems feature a highly distributed heterogeneous parallel computation governed
by a global clock. They are a very tempting candidate for parallel algorithms
description, and there are several such attempts in the literature [1, 3, 11, 18].
However, these investigations remain purely theoretical, as any simulation of P
systems on traditional computers is more-or-less sequential, as the parallelism
should be broken because current-day CPUs have a low number of cores. Even using
graphical processing unit (GPU) hardware featuring thousands of computational
cores does not solve the problem, as it is tailored for single instruction multiple data
(SIMD) computations that are mostly homogeneous. In contrast, most algorithms
developed using P systems are not homogeneous and have different types of
instructions to be executed in parallel.

In contrast, sequential digital circuits (which are the basic building block of any
today digital device) consist of many different computational cores distributed all
over the chip and synchronized by a global clock signal. While not a requirement,
it is important to have a local interaction between cores, as long-distance signal
transmission cannot happen at high clock speeds. Field-programmed gate array
(FPGA) is a reconfigurable hardware that allows to implement such type of circuits.
Because of the reconfigurability, it is possible to use FPGA for quick prototyping as
they allow a fast hardware development cycle.

P systems correspond well to the computing specificity exhibited by sequential
digital circuits. So, several implementations of different variants of P systems were
done using FPGAs. It should be noted that in contrast to the software simulation
on a CPU or GPU, a unique hardware design should be used for each concrete P
system. More precisely, in the first case a software program is written, and each
concrete P system, as well as its corresponding initial parameters or input values, is
fed to this program as input. The program then simulates the execution of each step
of the considered P system and provides the necessary output. Unfortunately, using

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2021
G. Zhang et al., Membrane Computing Models: Implementations,
https://doi.org/10.1007/978-981-16-1566-5_7

217

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-16-1566-5_7&domain=pdf
https://doi.org/10.1007/978-981-16-1566-5_7

218 7 P Systems Implementation on FPGA

such approach for FPGA implementations would take too much time and effort to be
implemented, and it is not clear whether it would give any advantage over software
implementations, as in this case it is not easy to keep a large-scale parallelism. So,
from the beginning, FPGA implementations chose a different strategy by providing
for each concrete system a unique hardware design, thus allowing to exploit the
maximum parallel performance of the underlying hardware. In order to be able
to consider more than a single example, most of the projects considered software
generators that starting from the description of a P system and of its initial conditions
generate a hardware design implementing the given description. Unfortunately,
there is still a need for manual touch-ups, so hardware design skills are needed
in order to use such implementations.

Early attempts were concentrated on the simulation of the functioning of some
variant of P systems on FPGA [15–17, 26, 28, 33]. An overview of these results
is given in Sect. 7.5. They show the feasibility of the approach and feature quite
important speed-ups of order greater than 104 with respect to best software (or GPU-
based) simulations. While important as proof of concept, the usability difficulties
and the required hardware design skills make these implementations difficult to be
used by large public for practical problems.

Recently, a different approach emerged in hardware simulation of P systems.
It started from the observation that several ingredients of the model are not well
adapted to FPGA and are extremely difficult to implement in a parallel manner, e.g.,
the computation of the set of rules for the maximally parallel evolution. Also, the
multiset data structure is not sufficiently efficient for many real-world applications
because of the unary encoding. Based on these observations, a particular model of P
systems, called generalized numerical P systems (GNPS), was designed allowing
efficient implementations in FPGA [29, 30], achieving speedups of order 106.
This model is based on an older notion of numerical P systems (NPS) [21], a
P systems model that was introduced to model economical processes. Numerical
P systems and their extension enzymatic numerical P systems (ENPS) [23] were
used in practical applications for the design of robot controllers [24, 25] using a
software simulator connected to the robot microcontroller. Using GNPS, a similar
application is targeted, but based on an FPGA implementation [30]. The definition
of GNPS and the implementation details of the corresponding applications are given
in Sects. 7.3, 7.4, and 8.3, 8.4.

7.2 FPGA Hardware

In this chapter, we will consider the FPGA structure and we will use the FPGA-
related terminology as provided by Xilinx [37], the company which was at the origin
of this technology. Other FPGA vendors may use a slightly different structure and
terminology, but the main concepts are similar.

The FPGA is a reconfigurable hardware used to prototype digital circuits. The
basic unit of an FPGA is a slice that is mainly composed of several look-up tables
(LUTs), flip-flops (FFs), multiplexers (MX), and fast carry chain(s). For Xilinx

7.2 FPGA Hardware 219

CLB

Slice

Slice
LUT6

FF

LUT6

LUT6

LUT6

FF

FF

FF

FF

FF

FF

FF

F
a
s
t

c
a
r
r
y

c
h
a
i
n

Fig. 7.1 Internal structure of FPGA. Each configurable logic block (CLB) is composed of two
slices. Each slice contains 4 6-lookup tables (LUT6), 8 flip-flops (FFs) and a fast carry chain,
interconnected by several muxes that are not shown for readability. Dotted FFs can be connected
to any LUT

7 series devices, a slice is composed of 4 LUTs and 8 FFs [36]; see Fig. 7.1. For
other vendors and older Xilinx devices, these numbers may vary. LUTs are used to
implement different combinatorial circuits such as logic gates, multiplexers, adders,
encoders, and decoders. The flip-flop is a sequential logic component acting as a
1-bit memory element in the circuit.

Technically, a LUT defines a Boolean function having up to n inputs. At the
moment of writing, the most common value for n is 6 (the corresponding type of
LUT is named as LUT6). Another popular value is 4, which is also used in the virtual
generic unit logic cell (LC) that corresponds to a LUT4 combined with two flip-
flops. The notion of LC is used mostly to compare the computational capabilities
of FPGA devices, especially from different vendors. However, we note that it is not
possible to interconnect any LUT to any FF in a slice; commonly, a LUT can be
easily connected to two associated FFs [36]. This is why sometimes LC is presented
as a base unit instead of slice.

Slices are grouped into configurable logic blocks (CLBs). A CLB on Xilinx
7 series devices contains 2 slices [35, 36]; other vendors and devices may use up
to 4 slices per CLB. All CLBs on a device are organized in a matrix form and
have configurable interconnections, i.e., it is possible to interconnect any block
with any other block; see Fig. 7.2. It should be clear that it is important to group
connected blocks physically in close locations because long interconnection paths
induce additional propagation delay and slow down the computation. The process
of placement and interconnection (called routing) is highly specific for each device,
and it is automatized by vendor tools, so the user does not interact with it directly.

Besides CLBs and interconnect matrix, an FPGA device contains input/output
blocs used for external communication, a quartz clock oscillator generating a stable
clock signal, and a clock distribution tree allowing to distribute the clock signal
all over device with a minimum delay. A clock cycle is the time interval between
two rising (going from low to high level) edges of the clock oscillator. An FPGA

220 7 P Systems Implementation on FPGA

CLB CLB CLB

CLB CLB CLB

CLB CLB CLB

CLB CLB CLB

(a) (b)

Fig. 7.2 Internal structure of FPGA. Configurable logic blocks (CLBs) are inlaid in the matrix of
interconnects (a). Two distant configurable logic blocks (CLBs) can be interconnected by a path
using the matrix of interconnects (b)

may also contain on-device memory of different types, analog/digital converters,
and digital signal processing (DSP) blocks. The latter ones are particularly useful
in implementations as they can be used to perform fast arithmetical operations
(addition, subtraction, and multiplication) for multi-bit integer values (typically 48-
bit).

The design of the circuit for an FPGA device is performed using a hardware
description language (HDL). The most common HDLs are VHDL and Verilog.
The design can be performed on several levels of abstraction, ranging from
the switch/transistor level until the behavioral level, corresponding to a Mealy
machine [12]. Usually, the design is performed at this latter level, unless there
is a requirement for specific optimizations, or high-speed execution. An HDL
design looks like a program; however, it is not executed but rather synthesized
using vendor tools. This results in a register-transfer level (RTL) description of the
circuit. Next, this description is mapped to the actual FPGA device’s CLBs and
interconnects using place and route step. If there are no errors during these steps,
then the bitstream is generated, which contains all necessary information for the
FPGA programming (values of LUT tables and positions of interconnect switches).
Finally, this bitstream is transferred to FPGA that is reprogrammed according to it.
This programming is volatile and should be renewed each time the device powers
on; so usually, the bitstream is stored on additional flash memory, and a special
microcontroller charges it at each FPGA boot. A typical problem arising during
the place and route step are timing violations—the total delay of several operations
and/or the delay of the interconnection between CLBs is more than the system clock
cycle. Such problems should be solved (using different methods); otherwise the
design would not function on FPGA device.

Since the whole process described above is time consuming and since it is
very difficult to capture errors on the device running at 50–100 MHz clock speed,
several simulation steps are usually performed before going to synthesis. During
the simulation phase, the design as well as its external inputs are simulated stepwise

7.3 Generalized Numerical P Systems (GNPS) 221

using a software simulator. Verilog and VHDL provide language constructs and
simulators to seamlessly perform this task. However, different tools can also be
used, e.g., Verilator that compiles Verilog code to C++ in order to achieve a better
performance.

7.3 Generalized Numerical P Systems (GNPS)

The model of (generalized) numerical P systems ((G)NPS) is very different from the
classical models of membrane computing. While still having a structural relation
and compartments, (G)NPS consider real-valued variables instead of multisets in
each cell/compartment. Consequently, the evolution rules, called programs, do not
correspond to multiset rewriting anymore and have a more complex semantics.
Another key difference is how the result of the computation is considered. When
using (G)NPS, the main interest is not the value of a variable at some time moment
(e.g., after halting), but rather the dynamics of variables’ evolution. So, in some
sense the value of each variable at each time step is the output of the system,
although we may be interested only in a subset of them. This naturally leads to the
inclusion of the concept of dedicated input and output variables. The functioning
of the system supposes that input variables are read-only and can be updated by an
external entity at each step. The output variables are write-only, and an external
entity may use their values at each step. Such a definition allows to effectively
build controllers based on GNPS, without using any additional tools or mechanisms
to pass the values and start/stop the computation. Moreover, properties of GNPS
discussed above map well to the structure and the functioning of an FPGA design.

7.3.1 Formal Definition

We give below the formal definition of GNPS following [30].

Definition 7.1. A generalized numerical P system is the following tuple

� = (m, V, I,O, (V ar1, V ar1(0)), . . . , (V arm, V arm(0)), P r),

where

• m > 0 is the number of cells/membranes,
• V is an alphabet of variables,
• I ⊆ V is the set of input variables, I ∩ O = ∅,
• O ⊆ V is the set of output variables, I ∩ O = ∅,
• V ari ⊆ V is the list of internal variables for cell i; we may use the notation where

variables are labeled with two indices, the second one indicating their location,
i.e., V ari = {x1i, . . . , xki i},

• V ari(0) is the vector of initial values for variables internal to cell i,

222 7 P Systems Implementation on FPGA

• Pr is the set of rules of the system (see their description below).

A program (rule) r ∈ Pr has the following form:

P(x1i , . . . , xki; E1, . . . , El); F(x1i, . . . , xki) → c1|v1, . . . , cn|vn, (7.1)

where

• {x1i , . . . , xki} ⊆ V ari for some i, 1 ≤ i ≤ m, are variables located altogether in
the same cell i,

• {E1, . . . , El} ∩ V ari = ∅ are variables not located in cell i above,
• {v1, . . . , vn} ⊆ V are any variables of the system,
• cj ∈ N, 1 ≤ j ≤ n are repartition coefficients that together with variables vj

form the repartition protocol,
• P is the applicability condition, which is a decidable predicate over indicated

variables,
• F is the production function, which is a computable function.

In the definitions above, the values of variables are considered to be real. Then
it is clear that the predicate P should be decidable and the function F should be
computable on reals. In the case of an always true predicate, it can be omitted.

We remark that the definition above considers GNPS to be composed from a
certain number of cells each of them containing one or several variables, so each
variable has a unique associated cell it is contained in. Because of this property, it
becomes clear that the set of rules Pr induces a structural relation between cells
whose variables are involved in the same rule (in the predicate, in the function, or in
the repartition protocol). Since there are no particular restrictions, this dependency
induces a hypergraph, in the general case. Of course, special topologies like trees
or graphs are of a particular interest for the membrane computing, and in the
former case, we will use a Venn diagram notation and place rules and variables
in corresponding cells. Abstracting from concrete details, GNPS use a structural
abstraction intermediate between a tree-based structure and a flattened system, being
the equivalent of the network of cells [6] in NPS. This allows to have the notion of
the locality (useful for hardware implementation as it can trigger the use of neighbor
cells), but does not impose the strong restriction of a tree structure like in classical
variants of P systems and NPS—some examples of robot controllers based on NPS
spend an enormous amount of time for data propagation because of the imposed tree
structure.

In order to apply a rule r as described above, first its applicability condition is
checked. If predicate P is true, then the rule is called applicable, and it is applied
as follows [21, 30]. First the value of the production function is computed, based
on current values of the variables. Second, each variable vj , 1 ≤ j ≤ n from the
repartition protocol part receives the fraction

cj∑n
t=1 ct

of the computed production

function value. If there are several applicable rules, then all of them are applied. If

7.3 Generalized Numerical P Systems (GNPS) 223

several rules update the same variable, then the corresponding amounts are added.
Finally, the value of a variable at the beginning of each new step is reset to 0 if it
was used in a computation of some production function. If more than one applicable
rule is present, then all of them are applied at the same time.

Example 7.1. Consider the following GNPS

Pi = (1, {a, b},∅,∅, ({a, b}, (1, 2)), P r),

where the set of rules Pr contains the following rules:

r1 : a < b; 3(b + 1) → 2|a, 1|b
r2 : b < a; 3(a + 1) → 1|a, 2|b
r3 : a + b → 1|a, 2|b

At step 0, only rules r1 and r3 are applicable (the latter one is always applicable,
as the corresponding predicate is always true). The value of the production function
F for r1 is equal to 3(b(0) + 1) = 3(2 + 1) = 9. This value is then redistributed
according to the repartition protocol. 2

2+1 = 2
3 of this value (=6) will be added to

a(1), while 1
3 of this value (=3) will be added to b(1). A similar computation for

rule r3 gives the value 1 (resp. 2) to be added to a(1) (resp. b(1)). Since both a

and b were used to compute the production functions for r1 and r3, their values are
reset to zero before step 1. So, finally we obtain that a(1) = 0 + 6 + 1 = 7 and
b(1) = 0 + 3 + 2 = 5. Proceeding similarly, we compute a(2) = 12 and b(2) = 24
(this time rules r2 and r3 are applicable).

By examining the explanation above, it results that the evolution of the system
can be described by the following discrete time series (we suppose that r is described
as in (7.1)):

xls(t + 1) =
∑

r∈Pr and r is applicable
r has xls in rhs as vj

F (x1i(t), . . . , xki(t))
cj

∑n
t=1 ct

+ x̄ls(t), (7.2)

where x̄ls(t) =

⎧
⎪⎪⎨

⎪⎪⎩

xls(t) if xls does not appear in any production function F

of an applicable rule,

0 otherwise.
We recall that the initial values (at time 0) of variables from membrane i are

given by the set V ari(0).

224 7 P Systems Implementation on FPGA

Example 7.2. Consider the following GNPS

� = (3, V , I,O, (V ar1, V ar1(0)), (V ar2, V ar2(0)), (V ar3, V ar3(0)), P r),

where

• V = {a, b, c, d, e}, I = {d}, O = {a},
• V ar1 = {a, b}, V ar1(0) = (0, 0),
• V ar2 = {d, e}, V ar2(0) = (−, 0),
• V ar3 = {c}, V ar3(0) = (0).
• The set of rules Pr is defined as follows

r1 : b < e; 2b + 1 → 1|a,

r2 : 0 < e; e − 1 → 1|e,
r3 : ¬(0 < e) ∧ ¬(0 < c); 2d → 1|e,
r4 : c < e; 2(c + 1) → 1|c, 1|b.

The rules above induce the following structure of � (a circular graph):

1

2

3

To understand the functioning of the system, we will rewrite it in terms of time
series. In order to do this, we shall first consider the individual rule contributions to
each variable of the distribution protocol. For example, rule r4 is equivalent to the
following two rules:

r4a : c < e; c + 1 → 1|c,
r4b : c < e; c + 1 → 1|b.

Hence, this rule updates variables b and c with the value of c + 1, under the
assumption that c < e.

By decomposing rules’ contribution and then summing on all possibilities for
each variable, we obtain that the evolution of the system can be described by the
following system of equations:

a(t + 1) = if b(t) < e(t) then 2b(t) + 1 else a(t)

b(t + 1) = if c(t) < e(t) then c(t) + 1 else b(t)

c(t + 1) = if c(t) < e(t) then c(t) + 1 else c(t)

e(t + 1) = if not 0 < e(t) and not 0 < c(t) then 2d(t) else e(t) − 1

a(0) = 0, b(0) = 0, c(0) = 0, e(0) = 0

7.3 Generalized Numerical P Systems (GNPS) 225

0

1

2

3

4

5

6

7

8

9

10

0 1 2 3 4 5 6 7 8 9 10

Va
lu

e

Time t

d

a

b & c

e

Fig. 7.3 The dynamics of system from Example 7.2 for the input d = 3 at time t = 2. The output
a stabilizes at 32 = 9 after 3 + 1 = 4 steps from the first change of d. Subsequent variations of the
value of d are ignored

During the first step, only rule r3 is applicable (all other conditions are initially
false). If the value of d is zero, then there is no change in the system. When the
value of d becomes n > 0 at step t ′, e receives the double of this value 2n on the
next time step (t ′ + 1). At this moment, rules r1, r2, and r3 become applicable. It is
easy to observe that in this case a(t ′ + 1 + k) = ∑k

b=0 2b + 1 = k2 (for k ≤ n).
At time t ′ + 1 + n, the value of e becomes equal to the value of c and b; hence
rules r1 and r4 are not applicable anymore, and since c > 0, rule r3 can never be
applied as well. Hence, the value of the output a remains stable and equal to n2.
To conclude, the system waits for a non-zero input d . Starting from this moment,
the squares of numbers from 1 to d are output at each step, after what the system
permanently outputs d2. Only the first change of value of d is taken into account;
all other changes of d are ignored. An example of dynamics of � for d = 3 at time
t = 2 is shown on Fig. 7.3.

7.3.2 Basic Variant

For practical applications, it is reasonable to limit the values of variables to be
integer, or even natural. The main reason for this is that the representation of real
numbers in digital form is an approximation based on their floating-point or fixed-
point encodings using unsigned integer values. Hence, it possible to assume that
the implementation always uses integer numbers (and maybe different arithmetic
functions). Moreover, the representation of negative numbers is usually done using
the 2n complement, so they can be considered as positive integers too. Of course, the
arithmetic operations like addition and the comparison relation should be defined a
bit differently with this assumption.

226 7 P Systems Implementation on FPGA

Another important limitation for practical applications are the restrictions on the
type of predicates P and functions F in the rules. For example, NPS considers
always true predicates only, by definition. Also in the case of NPS, generally,
functions F in rules are polynomials. For FPGA implementation reasons, it is
interesting to limit P and F to be linear, somehow similar to Presburger definability.
We recall that the Presburger arithmetic is the first-order theory of natural numbers
with addition and equality, i.e., one can use comparisons, Boolean operations,
additions, subtractions, and constant multiplications in expressions. Since GNPS
model allows negative and real values, it is not correct to say that P and F are
Presburger-definable, because the domain is different. However, it can be argued
as above that all cited operations can be reduced to some particular operations on
natural numbers having properties identical to those of Presburger arithmetic, more
precisely being semi-linear over corresponding domains [9]. So, we will use the
notion of Presburger-definable expression also in the case of GNPS (with real or
integer values).

The above remarks motivate to consider a basic variant of GNPS where all
rules have predicates and functions defined using only the operations of addition,
subtraction, constant multiplication, integer comparison, and Boolean operators.
The system from Example 7.2 is of such type. To accommodate functions that
cannot be defined in this manner, an algebraic signature is added to the definition
collecting corresponding symbols. Hence, such a system can be defined as the tuple

� = (m, V, I,O, (V ar1, V ar1(0)), . . . , (V arm, V arm(0)), P r, σ),

where all components except σ are defined in the same manner as in Definition 7.1.
The finite algebraic signature σ contains the list of additional functions used in
� with respect to the addition/subtraction and constant multiplication. The rules
of � have the same form as in Eq. (7.1); however, it is required for P to be a
predicate over indicated variables written in Presburger arithmetic enhanced with
the signature σ . Similarly, it is required for F to be a function written in Presburger
arithmetic enhanced with the signature σ from the definition of �; see Example 7.3.

Example 7.3. We can consider the following predicate for a rule

P(x, y, z; E,F) = ¬E < x ∧ (F < 2y + 3z).

If we consider an algebraic signature containing the ordinary multiplication opera-
tion (σ = {×}), then it would be possible to write the following predicate

P(x, y, z; E,F) = ¬E < x ∧ ((F < 2y + 3z) ∨ (E + F < x × y + z)).

Finally, we remark that by taking σ to be a full signature (containing both
functional and relational symbols), the definition above can replace Definition 7.1.
Indeed, in the case of real or integer numbers, appropriate relations and functions

7.3 Generalized Numerical P Systems (GNPS) 227

can be added to σ in order to ensure the definability of functions and predicates in
rules.

We illustrate the usage of the signature by the following example.

Example 7.4. Consider the following GNPS � = (1, V , I,O, (V ar1, V ar1(0)),

P r, σ), where

• V = {a, b, in1, in2, out1, out2}, I = {in1, in2}, O = {out1, out2},
• V ar0 = V , V ar1(0) = (0, 0,−,−, 0, 0),
• σ = {| · |,√·}.
• The set of rules Pr is defined as follows:

r1 :
√

in1 + in2

2
→ 1|a,

r2 : 2a → 1|b, 1|out1

r3 : |a − b| < 0.001; 0 → 1|out2,

r4 : ¬(|a − b| < 0.001); 1 → 1|out2.

This system has a single cell and two input, two output, and two internal
variables.

The set of equations corresponding to this system is the following:

a(t + 1) =
√

in1(t) + in2(t)

2
a(0) = 0

b(t + 1) = a(t) b(0) = 0

out1(t + 1) = a(t) out1(0) = 0

out2(t + 1) = if |a(t) − b(t)| < 0.001 then 0 else 1 out2(0) = 0

By looking at equations above, it is clear that the system computes the square
root of the average value of its inputs with a two-step delay and also indicates if this
value changed by more than 0.1% on the previous step. We recall that all rules are
executed in parallel and that the modulo function is defined in the signature.

According to [30], NPS (but also GNPS) allow an interesting normal form.

Definition 7.2. A GNPS is said to be in the binary normal form if all rules are of
form

P(x1i , . . . , xki; E1, . . . , Em); F(x1i, . . . , xki) → c|v,L|λ,

for some i,m, k > 0; c, L ≥ 0 and where v ∈ V and λ is a special dummy variable.

228 7 P Systems Implementation on FPGA

Moreover, if the condition that variables of the production function should be
from the same membrane is relaxed, then it is possible to obtain a stronger result by
combining all rules related to a single variable into one rule by choosing appropriate
coefficients and predicates, yielding rules of following form:

P(x1, . . . , xn); F(y1, . . . , ym) → 1|v,

where xi, yj , v ∈ V , 1 ≤ i ≤ n, 1 ≤ j ≤ m.
Such special (G)NPS having only rules of the above type are said to be in unary

normal form. As shown in [30], the corresponding time series are identical to those
described by Eq. (7.2).

7.3.3 Historical Remarks

We conclude this section by pointing out the difference between GNPS and previous
models of NPS and ENPS. First of all, the structure of (E)NPS is always a tree, so
variables present in predicates and the repartition protocol are either from the child
or parent cells/membranes.

Next, in the case of NPS, all predicates P from any rule are always true, so all
rules are always applicable. The rules of NPS are grouped by cell, depending on the
origin of variables from their production function (we recall that they are all from
the same cell). The standard semantics of NPS allows to apply a single rule per cell
and requires a non-deterministic choice if there are several rules in the same cell. A
variant of NPS using the all-parallel derivation mode [10] applies all rules, even if
there are several rules per cell.

For the sake of completeness, we give below the traditional notation used
for NPS; see [21, 22]. There is a slight difference in syntax with respect to
Definition 7.1; however, semantically, all elements have the same meaning.

Definition 7.3. A numerical P system (NPS) is the following tuple

� = (m,μ, (V ar1, V ar1(0), P r1), . . . , (V arm, V arm(0), P rm)),

where

• m > 0 is the number of membranes,
• μ is the membrane structure,
• V ari ⊆ V is the list of internal variables for membrane i; by convention variables

are labeled with two indices, the second one indicating their location, i.e., V ari =
{x1i , . . . , xki i},

• V ari(0) is the vector of initial values for variables internal to membrane i,
• Pri is the set of rules located in membrane i.

They are of form F(x1i, . . . , xki) → c1|v1 + . . . + cn|vn.

7.3 Generalized Numerical P Systems (GNPS) 229

In the case of ENPS, the applicability predicate has always the same form,
comparing a value of a variable e with the smallest value of other variables from
the production function: P(x1i , . . . , xni; e) ≡ e > min(x1i, . . . , xni).

This definition is the most common one [23]. Unfortunately, there are
also different definitions with the same syntax, but a different semantics:
e > min(|x1i|, . . . , |xni |) in [25] and e > min(c(x1i), . . . , c(xni)) in [23], with
c(x) being the concentration of x in the biological sense, which may induce in
confusion. For the rule execution semantics, generally all rules that are applicable
are applied; however, the first papers on ENPS also considered the same mode of a
single non-deterministic rule application, like in the case of NPS.

Like above, for the sake of completeness, we give below the traditional notation
used for ENPS; see [23,24]. Again, there is a slight difference in syntax with respect
to Definition 7.1; however, semantically, all elements have the same meaning.

Definition 7.4. An enzymatic numerical P system (ENPS) is the following tuple

� = (m,μ, (V ar1, V ar1(0), E1, P r1), . . . , (V arm, V arm(0), Em, P rm)),

where

• m > 0 is the number of membranes,
• μ is the membrane structure,
• V ari ⊆ V is the list of internal variables for membrane i; by convention,

variables are labeled with two indices, the second one indicating their location,
i.e., V ari = {x1i, . . . , xki i},

• V ari(0) is the vector of initial values for variables internal to membrane i,
• Ei is the set of enzymatic variables of membrane i, i.e variables that can be used

in comparison operators,
• Pri is the set of rules located in membrane i. They are of form (esi ∈ Ei):

F(x1i , . . . , xki) → c1|v1 + . . . + cn|vn, or
F(x1i , . . . , xki)(esi →)c1|v1 + . . . + cn|vn.

The second type of rules corresponds to rules with the comparison predicate.
However, we recall that several different predicates are considered with the same
rule notation, so it is important to read the details of each paper in order to
understand which one is used. We recall that GNPS requires to explicitly indicate
the predicate, eliminating any possible confusion.

In the case of NPS, the obtained time series do not use conditions, so sometimes
they can be solved analytically as in the following example.

Example 7.5. Consider the following NPS:

� = (2, V , I,O, (V ar1, V ar1(0)), (V ar2, V ar2(0)), P r),

230 7 P Systems Implementation on FPGA

[0] [1] [3]

1 : 4(+) → 1 | + 1 | + 2 |

[0] [1]

2 : 3(+) → 1 | + 1 | + 1 |

1
2

Fig. 7.4 Numerical P system from Example 7.5. The nested (membrane) structure is represented
by a Venn diagram; the variables and the rules are placed in corresponding locations; the initial
value of variables follow them in square brackets

where I = ∅, O = {f }, V ar1 = {a, b, f }, V ar2 = {x, y}, V ar1(0) = (0, 1, 3),
V ar2(0) = (0, 1). The rules of the system are defined as follows:

r1 : 4(a + b) → 1|a + 1|f + 2|x.

r2 : 3(x + y) → 1|b + 1|x + 1|y.

The system has two cells that are connected, so they can be considered in a tree
relation. Hence, it can be represented by a Venn diagram as depicted in Fig. 7.4.

It is not difficult to observe that the corresponding system can be rewritten as
the following time series with initial conditions a(0) = 0, b(0) = 1, f (0) = 3,
x(0) = 0, y(0) = 1.

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

a(t + 1) = a(t) + b(t)

b(t + 1) = x(t) + y(t)

f (t + 1) = f (t) + a(t) + b(t)

x(t + 1) = x(t) + y(t) + 2 (a(t) + b(t))

y(t + 1) = x(t) + y(t)

(7.3)

This system of recurrences can be solved analytically using standard methods.
The analytical solution for system defined by Eq. (7.3) is given as follows:

a(t) = 2 × 3t−2, b(t) = 4 × 3t−2, f (t) = 3t−1 + 3,

x(t) = 8 × 3t−2, y(t) = 2 × 3t−2 + 1, t > 1

7.4 Implementing GNPS on FPGA

The basic variant of GNPS admits quite a straightforward implementation in FPGA.
To better explain the translation process, we will concentrate first on the NPS
translation, i.e., supposing that all predicates are always true; hence all rules are

7.4 Implementing GNPS on FPGA 231

applicable at each step. In this case, Eq. (7.2) can be rewritten as follows (where
X(t), Y (t), and Q(t) are the vectors of input, output. and internal variables,
respectively, at time t):

Q(t + 1) = F(Q(t),X(t)) (7.4)

Y (t + 1) = G(Q(t),X(t)) (7.5)

These equations are the generalization (using real numbers instead of Boolean
values) of equations used in switching algebra [31] for the definition of the concept
of Mealy automaton [12], which together with Moore automaton [13] form the basis
of modern synchronous circuit design. Since from the implementation point of view
real numbers should be encoded, e.g., using a fixed-point encoding, it appears that
NPS are equivalent to (bit) vector1 Moore/Mealy machines. It should be noted that
because we consider basic (G)NPS without signature, functions F and G from
the above equation are linear. This in turn allows a straight implementation using
hardware FPGA technology.

First we indicate how to handle the variables of the system. The main idea is
to represent each of them by vectors of (bit) registers using a fixed-point encoding
having a fixed bit size WIDT H and the binary point position BPOS. We recall
that a fixed-point encoding of real numbers uses WIDT H − BPOS bits for the
integer part of the number (using a standard binary encoding) and BPOS bits for the
fractional part indicating the coefficients of the negative powers of 2. For example,
3.5 in fixed-point encoding with WIDT H = 5 and BPOS = 2 is written as 01110.

Because the addition and subtraction in fixed-point encoding correspond to
ordinary binary addition and subtraction, they can be directly represented as adders
in FPGA. In Verilog terms, it is even more straightforward as it has + and −
operators that synthesize to corresponding adders. The constant multiplication can
be replaced by several additions, but this is impractical and time consuming as
it would add a long combinatorial path in the circuit that would fail the timing
constraints (it will be longer than the system clock cycle). It is possible to use
Verilog ∗ operator, which is further replaced by a sequence of adders and bit shifts
(when one operand is constant). Since such an operation requires the manipulation
of numbers having the 2 ∗ WIDT H bit size and then a right shift by BPOS, we
introduce a helper function _mult handling this transparently. Finally, we remark
that the implementation of the next time step value of variables is done using a non-
blocking assignment (whose semantics is to update all values simultaneously at the
end of the clock edge).

The whole NPS becomes a Verilog module (it is possible to further subdivide it
in modules according to NPS cell/membrane structure). The input variables become
input signals for the module, and the output variables become output registers for
the module.

1An integer or fixed-point encoded real is a bit vector.

232 7 P Systems Implementation on FPGA

Example 7.6. Consider the NPS system from Example 7.5. It has 1 output variable
f and two rules:

r1 : 4(a + b) → 1|a + 1|f + 2|x.

r2 : 3(x + y) → 1|b + 1|x + 1|y.

By applying the reasoning above, we obtain the following Verilog code:

1 module A #(p a r a m e t e r WIDTH = 32 , p a r a m e t e r BPPOS = 12)
2 (o u t p u t r e g [WIDTH−1:0] f = 32 ’ h3000 , / / 3 . 0 i n f i x e d −p o i n t encod ing
3 i n p u t c l k
4) ;
5 r e g [WIDTH−1:0] a = 0 ;
6 r e g [WIDTH−1:0] b = 32 ’ h1000 ; / / 1 . 0 i n f i x e d −p o i n t encod ing
7 r e g [WIDTH−1:0] x = 0 ;
8 r e g [WIDTH−1:0] y = 32 ’ h1000 ; / / 1 . 0 i n f i x e d −p o i n t encod ing
9

10 a lways @(pos edge c l k) b e g i n
11 a <= a + b ;
12 b <= x + y ;
13 f <= f + a + b ;
14 x <= x + y + _mult (a + b , 32 ’ h2000) ; / / 2 . 0 i n f i x e d −p o i n t encod ing
15 y <= x + y ;
16 end
17 endmodule

The synthesis of this circuit using Vivado 2020.1 tools uses 160 LUT6 and 128
registers (using a total of 41 slices), which is about 0.5% of those available on
Digilent Basys-3 FPGA.

Now let us return to the general GNPS case. The main difficulty that should be
taken into account is how to handle predicates associated to each rule. However,
since we consider the basic case with an empty signature, these predicates are
Presburger, i.e., expressions involving Boolean operators, comparison, and linear
functions. Such conditions can be directly transferred to Verilog using the condi-
tional if expression operator ?.

Example 7.7. We consider here a slightly modified version of Example 7.4, where
we exclude the square root operator. We keep all parts of the system and use the
following modified rules:

r1 : 0.5(in1 + in2) → 1|a,

r2 : 2a → 1|b, 1|out1

r3 : |a − b| < 0.001; 0 → 1|out2,

r4 : ¬(|a − b| < 0.001); 1 → 1|out2.

We remark that the modulo function | · | is Presburger-definable, so it does not need
to be handled in a special manner.

7.4 Implementing GNPS on FPGA 233

The translation to Verilog makes use of the conditional ? operator:

1 module B #(p a r a m e t e r WIDTH = 32 , p a r a m e t e r BPPOS = 12)
2 (o u t p u t r e g [WIDTH−1:0] out1 , o u t p u t r e g [WIDTH−1:0] out2 ,
3 i n p u t [WIDTH−1:0] in1 , i n p u t [WIDTH−1:0] in2 ,
4 i n p u t c l k
5) ;
6 r e g [WIDTH−1:0] a = 0 ;
7 r e g [WIDTH−1:0] b = 0 ;
8
9 a lways @(pos edge c l k) b e g i n

10 a <= _mult (i n 1 + in2 , 2 0 4 8) ; / / 0 . 5
11 b <= a ;
12 ou t1 <= a ;
13 ou t2 <= a−b < 4 && a−b > −4 ? 0 : 4096 ; / / 0 . 001 and 1
14 end
15 endmodule

The synthesis of this circuit using Vivado 2020.1 tools uses 33 LUT6 and 94
registers, which is about 0.16% of those available on Digilent Basys-3 FPGA.

As it can be seen from the examples above, the translation of GNPS to Verilog is
rather straightforward, but still tedious to do by hand. A compiler FPNtoVerilog
was developed in order to assist in this translation [4,30]. As input, it takes the GNPS
model in form of Eqs. (7.4) and (7.2) and produces as output behavioral Verilog code
implementing the corresponding Mealy/Moore automaton.

The compiler performs the following steps:

1. Parse the input file.
2. Identify input and output symbols.
3. Flatten the obtained system.
4. Perform constant propagation.
5. Convert all constants to fixed-point real number representation.
6. Write Verilog output.

These steps are performed using standard compiling techniques. The last step is
a transformation as described above. As a result, a file containing the synthesizable
(in FPGA) Verilog module whose code simulates each step of the GNPS at each
clock tick is generated.

Remark 7.1. In the basic case, an empty signature σ is considered as this allows
a straight translation to Verilog. For more complex computations, corresponding
functions should be implemented additionally as Verilog modules. This can induce
a delay; as in many cases, it is not possible to compute corresponding functions in
one clock step.

Remark 7.2. In the case of fixed-point encoding, it is possible to easily implement
the multiplication operation working in one time step. This can be done either
directly (by using multiplication code dependent on the width of the encoding)
or using a special component of FPGA called DSP block (sometimes referred as

234 7 P Systems Implementation on FPGA

Table 7.1 A short overview of capacities of these boards

Board FPGA type Max/default clock speed LUTsa FFs DSPs

Digilent Basys 3 Artix-7 35T 450/100 MHz 20,800 41,600 90

Digilent Arty A7-100 Artix-7 100T 450/100 MHz 63,400 126,800 240

Xilinx VC707 Virtex-7 X485 800/200 MHz 303,600 607,200 2800
aThese devices use LUT6

DSP slice) that allows to perform multiplication operations in one step (up to 48-bit
width).

Remark 7.3. Contrary to multiplication, it is not easy to implement the division
operation in one time step. However, the division by a constant c can be seen as the
multiplication by c−1.

Besides examples above, several case studies were considered. Two of these
cases concentrating on robot controller design and robot path-planning algorithm
are detailed in Chap. 8. As hardware target, development board Digilent BASYS 3
was used. It is equipped with a Xilinx Artix-7 XC7A35-TCPG236C-1 FPGA as
core component. Several tests were also performed on Digilent Arty A7-100 board,
featuring also an Artrix-7 XC7A100TCSG324-1 FPGA. Finally, some tests were
performed on a Xilinx VC707 board featuring a Virtex-7 FPGA XC7VX485-
TFFG1761-2. Table 7.1 below gives a short overview of capacities of these boards:

The development was performed mainly using Xilinx Vivado 2019.1 developing
environment.

7.5 FPGA Implementations of OtherModels of P Systems

In this section, we present all existing FPGA implementations of P systems different
from GNPS. At the end of the section, a short discussion highlighting the strong and
weak points of each implementation is performed.

7.5.1 Petreska and Teuscher Implementation

The first FPGA implementation of P systems was done by Petreska and
Teuscher [26]. The targeted model was transitional P systems with priorities;
see e.g., [20,22] for the definitions. Also membrane creation/dissolution extensions
were considered.

The system is organized as follows. The (multiset) contents of each membrane
is represented by a set of 8-bit registers corresponding to each symbol from the
alphabet. It is possible to increase the width of registers to 16-bit. A similar
representation is used for rules: for each of them, a multiset corresponding to
its lhs and rhs is used (more precisely, the rhs part is split into 3 components,

7.5 FPGA Implementations of Other Models of P Systems 235

corresponding to here, in, and out targets). In addition to these 4 vectors of 8-bit
registers, several additional 8-bit registers are used to store the priority information
and the creation/dissolution details.

The communication between outer to inner membranes is performed by a
shared bus. A message containing the multiset of objects to be sent and the id
of the target are posted by the outer membrane to the bus, and the corresponding
inner membrane (having the mentioned id) collects this information, while other
membranes are ignoring it. The communication in the other direction (from inner
to outer membranes) is done via a channel passing through all inner membranes.
During the communication phase, a message is initiated and passed through all inner
membranes that can append the multiset they would like to send out, or just pass
through the message if no objects should be sent out.

The application of rules is deterministic—the rules are used in a predefined order
in each membrane. Each rule in a sequence is applied exactly once (if possible);
then this process is repeated until no more rules are applicable.

The dissolution of a membrane is performed by setting its Enable signal to 0.
The application of rules and the communication is dependent on this signal; so if it
is not set, then no rule application can happen, and also the membrane works like a
passthrough for any inner to outer communication.

The hardware description of the system is generated by a Java program that inputs
the desired P system description via a graphical interface and outputs corresponding
VHDL files (as well as simulation scripts). After the simulation phase, these files are
used for synthesis and then for the place and route phase. As target board, a Xilinx
Virtex-II Pro 2VP50 FPGA7 is used, containing about 96000 LUT4 and the same
amount of FFs.

As test bed several membrane systems having 10 or 20 membranes as well as 6
or 12 objects were considered. The results show that the system can run at about
200 MHz clock speed for the simplest cases (without any extension) and at about
30 MHz when using the creation of membranes. The resource usage is between
4.2% for the simplest case (10 membranes and an alphabet of 6 objects) and 33%
(20 membranes and an alphabet of 12 objects).

7.5.2 Nguyen Implementation

Another important attempt to tackle the FPGA implementation of transitional and
symport/antiport P systems was done by Nguyen [14–17]. She tried to approach the
problem from different points of view and thus providing several designs having
different characteristics.

The rule-based design places the rewriting rule as the central computational unit.
Membrane contents are represented by an array of 8-bit registers corresponding to
each membrane/symbol combination. Somehow, this corresponds to a flattened view
of the system, where only one membrane is present; see [5, 32] for more details
on this topic. The bit width is a parameter of the system and can be updated if
necessary. Rules access directly to the symbols’ array. Their execution is performed

236 7 P Systems Implementation on FPGA

by first computing the maximal possible number of applications of each rule (using
division or min-based approaches) and then by executing the corresponding rule that
number of times. It might happen for several rules to compete for the same objects;
hence all of them cannot be executed the maximum number of times. The solution
proposed by Nguyen is to assume a total priority among such rules and apply the
rule with the highest priority first, then the next one up to the remaining maximum,
and so on. Therefore, this solution allows deterministic computations only, with the
predefined rule application order.

In Petreska’s implementation, rule execution is sequential (one after another). In
Nguyen’s design, all rules are applied at the same time. While this allows important
performance (and resource) gain, a synchronization procedure should be employed
when multisets are updated by several rules at the same time. Two strategies were
used to tackle this problem. Time-oriented strategy inserted delays in the rule
execution allowing to ensure that the rules are executed in the correct order (a
rule with a lower priority would wait more time before being executed than a rule
with higher priority). Space-oriented strategy uses duplicates of each corresponding
multiset for each involved rule. Then a special component synchronizes the contents
of all these duplicates to a single final destination register. It is clear that the first
strategy is time-consuming, as delays should be inserted in the rule execution;
however, it is more economic in resource usage than the second one, which takes
more hardware resources (i.e., space on the device).

A different design called region-based is also proposed. It aims to physically
highlight the membrane processing unit on the FPGA device. According to the
author, it allows better extensibility. The multisets of objects are represented as
arrays of registers in some particular place (corresponding to a region). The commu-
nication between membranes is implemented using message passing via a dedicated
channel: whenever it is possible for objects to move from one region to another
region, the implementation includes a channel connecting the region processing unit
for the source region to the region processing unit for the destination region. There
are several proposed implementations for these communication channels; we refer
to [14] for more details.

In all above cases, the evolution of the obtained system is maximally parallel
and deterministic. In order to deal with the non-determinism, Nguyen proposed a
special procedure, called Direct Non-deterministic Distribution (DND) algorithm,
which corresponds to the construction of specific Pareto-optimal solution for
the multicriteria optimization problem specified by the maximality conditions;
see [15, 34] for more details. By varying the initial conditions, e.g., by a pseudo-
random number generator, different solutions are obtained (corresponding to a
non-deterministic choice of rules to be executed). This procedure was conceptually
tested in hardware and found to be feasible. However, it was not implemented as
part of the above architectures.

As in Petreska case, the hardware description of the system is generated by a Java
program, called P Builder, that inputs the desired P system description via a text file
and outputs corresponding files of the design written in Handel-C HDL. These files
can be used for simulation and for synthesis (and further for place and route phase).

7.5 FPGA Implementations of Other Models of P Systems 237

As target board, a Xilinx Virtex-II XC2V6000-FF1152-4 is used, containing about
76000 LUT4 and the same amount of FFs.

Many examples were used to test the obtained designs. The largest P system
tested for the rule-based design had 49 regions and 176 rules and used about 22%
of the device resources. The clock speed was around 60–80 MHz. In the case of
region-based design, the biggest considered system had 50 rules, 25 regions, and
200 objects. The obtained clock speed was around 60 MHz.

7.5.3 Quiros and Verlan Implementation

The implementation of Quiros and Verlan is different from the two above as from
the beginning its main goal was to perform a true non-deterministic execution
of the target P system. A generic variant of the model based on the formal
framework for P systems and being equivalent to most models of P systems
having a static (non-varying) structure was used [6, 32]. In order to achieve the
design goal, a completely different strategy was used. Previous ideas for non-
deterministic evolution implied the construction of one of Pareto-optimal solutions
for the corresponding multi-criteria optimization problem [34]. However, this does
not guarantee a non-deterministic evolution, as this supposes that at each moment
all possible evolutions must have the same probability to be chosen. By using an
algorithm (like DND) that constructs a concrete solution, there is no guarantee that
all of them can be reached and also have the same probability. A simple solution
would be to construct all (maximally) parallel rule sets and then chose one of them
equiprobably. Unfortunately, such a construction requires an enormous amount of
resources. A better approach consists in computing the number n of such rule sets
and then choosing one value from 1 to n equiprobably and then constructing the
corresponding rule set.

The implementation by Quiros and Verlan is using the above idea. First, a
theoretical model was defined based on the notion of rule dependency, e.g., when
two rules may compete for the same object. Next, it was shown that it is possible to
implement the idea above if for each configuration it is possible to express all rule
application possibilities in form of words of some length of some regular (or non-
ambiguous context-free) language. The number of sets of rules that can be applied
is then computed using the Chomsky–Schutzenberger theorem giving the number of
words of size n, n > 0 for a non-ambiguous context free language [2]. Technically,
this is performed by constructing the generating series for corresponding languages.
In the case of regular languages, these series are equivalent to linear recurrences
and can be easily solved analytically. As a consequence, it becomes possible to
compute the number of (maximally) parallel sets of rules by just computing the
result of a function. Moreover, since this function is defined by a recurrence relation,
it becomes relatively easy to implement it on FPGA as only several previous values
(which can be memorized) are used to compute the new value. Next, a random
choice is performed using a uniform pseudo-random number generator. Then, based
on the representation of rule sets in terms of words of a regular language, this

238 7 P Systems Implementation on FPGA

number is converted to a set of rules by exploring the corresponding automata. We
refer to [27, 28, 33] for more technical details of the algorithm.

From the hardware design point of view, an array of hardware registers is used
to represent the current configuration of the system (which is a network of cells or
a flattened P system). Several register sizes were used: 8, 16, and 32 bits. Rules are
not represented directly. Instead, the algorithms for the number of applicable rule
sets, the choice of a set, and the construction of the configuration difference with
the previous step are implemented. Their resource usage is not dependent on the
rule number, but rather on rules’ dependencies (more complex dependencies need
more resources). Because of the mathematical features of the algorithms, only five
clock cycles were needed to simulate one step of a target P system.

As in previous cases, the hardware description of the system is generated by a
Java program that inputs the desired P system description via a text file and outputs
corresponding files of the design written in VHDL. These files can be used for
simulation and for synthesis (and further for place and route phase). Three target
boards from Xilinx were used featuring following FPGA core components: Virtex-
5 FX70T (44,800 LUT6 and FFs, 128DSP), Virtex-6 LX240T (150,720 LUT6 and
FFs, 768 DSP), and Virtex-7 VX485T (303,600 LUT6, 607,200 FFs, and 2,800
DSP).

Several types of examples were tested having 10–200 rules with different
dependencies. The clock speed was around 130 MHz. Resource usage were up to
40% in terms of LUTs; however, a high number of DSP was used (up to 99%), due
to the usage of many multiplication and division operations.

7.5.4 Comments

While Petreska and Teuscher implementation is important as the first attempt to
implement P systems on FPGA hardware, it suffers from many drawbacks. First,
the rule execution strategy does not correspond to maximal parallelism, or to any
other common execution strategy in P systems. Next, it is completely deterministic,
which cuts off possible non-deterministic evolutions very common in P systems
area. Another weak point of this implementation is the communication strategy by
message passing that is sequential and slows down the overall computation. Finally,
the proposed approach requires a high number of hardware resources, limiting its
applicability mostly to toy examples.

Nguyen’s approach allows realistic implementations of small- to medium-size
P systems. The main drawback resides however in the deterministic rule execution
(although maximally parallel). The implementation of the DND algorithm is not
integrated in designs, and the prototype of DND implementation exhibits a high
resource consumption. The second issue related to Nguyen’s implementation is
related to low implementation speed—it reaches only 80 MHz clock rate and
because several dozens of cycles are needed to perform all necessary computations;
the final speedup is not very big: according to the author, it is of order 500 with
respect to a software implementation [14].

7.6 Discussion 239

Quiros and Verlan approach provides a non-deterministic evolution of the system.
Moreover, due to the architecture of the design, each P system step is performed
in 5 steps on FPGA, which guarantees a high-speed execution. According to
authors [28], a speed of 2×107 computational steps per second is achieved, yielding
a speedup of order 3 × 104 with respect to the reference software implementation.
The main drawback of the method is that it is applicable only for particular classes
of P systems (those where the set of rules to be chosen at each step can be
described by a word in a regular language). The corresponding class of P systems
is quite large and includes universal systems; however, it is not easy to show that
a particular P system belongs to it. To facilitate this search, a special set-maximal
derivation mode was introduced. In this mode and under some assumptions about
rule structure, the corresponding regular languages can be easily deduced [28, 33].
Another drawback of the method is the high usage of DSP blocks that limits
the number of handled rules to about 200. However, we note that corresponding
operations can be performed using CLBs. Then, as trade-off, the number of clock
cycles for a single step simulation is increased. According to authors [33], up to
1000 rules can be handled in this manner on modern FPGA architectures.

7.6 Discussion

As it can be seen, despite of numerous benefits, there are not many examples of
implementation of P systems using FPGA hardware. The main reason for this is
the necessity of skills related to hardware design, and this requires a high learning
curve. Next, since each design is unique, often a long time is needed before an
HDL generator for specific types of problems is produced. One of long-term aims
of FPNtoVerilog project [4] is to explore the possibilities to provide a complete
solution in software development style, where one has only to write the GNPS
system description, chose input/output modules, and let the compiler to generate the
bitstream suitable to be sent to the FPGA and that implements the desired behavior
on the device. However, it should be clear that efficient designs exploiting to the
maximum capacities of FPGA cannot be obtained in this manner.

At the same time, the basic variant of P systems is not well-suited for an
FPGA implementation. Features like maximal parallelism or membrane division
were shown to be hard to implement on such devices. The main reason is their
theoretical unboundedness, which adds an overhead when handled on FPGA.
It was shown in several works that the maximal parallelism is not the only
ingredient allowing to reach the computational completeness and universality. Other
mechanisms like bounded derivation modes [7,19] or context conditions (promoters
and inhibitors) [22] are as powerful as the maximal parallelism and at the same time
are easier to implement in FPGA. Moreover, many examples of P systems, e.g.,
from the Handbook on Membrane Computing [22], are made in a way to bound the
maximal parallelism application to a fixed predefined number. In our opinion, there
are no cases that would justify the usage of the maximal parallelism for problem
solving in practice. So, we expect that further implementation efforts would first

240 7 P Systems Implementation on FPGA

select the features of P systems based on the easiness of their implementation, before
actually starting it.

Another important point of FPGA implementations, which is often not men-
tioned, is the necessity to handle the input and the output. When using P systems for
practical problem solving, it becomes important to have designs specific for classes
of problems and then chose a concrete instance of the problem by considering an
appropriate input. It is also important to read the result of the computation in some
way. Most of the efforts for FPGA implementation of P systems are concentrated
only on the design of the core computational unit, simulating some variant of a
P system, leaving the input/output acquisition as an unimportant side problem.
However, we think that it should be treated with great attention from the beginning,
as our experience shows that most of the development time is related to it. Also,
while the promised speedups are high (up to 106 times), in the reality the speed of
the implementation is limited by the input/output throughput. Realizations described
in Sect. 7.5 do not handle any input (the initial configuration is hardcoded in the
design), and the output is not captured, but examined using the integrated logic
analyzer (ILA), which is slow and feasible only for several values as its primary
function is the debug. The implementation presented in Sect. 7.4, additionally to
ILA, is considered an input/output over device pins and also over the serial port
(Universal Asynchronous Receiver Transmitter (UART)). It is clear that the overall
response time (from input till the corresponding output) cannot be faster than the
selected speed for UART, so most of the time the design is idle, waiting for the
input to arrive. Hence, it becomes important to associate the FPGA implementation
of a P system with high-speed data transfer buses in order to benefit from the high
computational speed.

7.7 Conclusion

As mentioned before, not every type of P system can be efficiently implemented
on FPGA. Moreover, taking into account the overall time needed from the problem
coding until the obtention of the result, a software implementation would be faster in
most of the cases. However, we see two use cases when a hardware implementation
would significantly outperform any software one. The first case are Monte-Carlo-
like simulations, where, starting from same initial conditions, rules are applied based
on probability, so different trajectories can be obtained. The computation is repeated
many times, and as a result, some mean value of all these trajectories is considered.
Since there is no input and only a single output, the system can run at the fastest
possible speed (repeating the same cycle and using a good (pseudo-)random number
generator). Even taking into account the delay needed to get the final result, one
can expect tens or even hundreds of thousands rounds of computations per second,
clearly outperforming any possible software (and GPU-based) implementation by
3–4 orders of magnitude.

The second case exploits the ability of the implementation to work at high-speed
throughput. Data coming from a high-speed input is processed fast and then sent

References 241

to a high-speed output. Typical examples would be a robot controller dealing with
very fast sensors, image processing, and generally any differential equation-based
transformation of the input signal. For these cases, it is also quite evident that the
FPGA implementation would outperform any software one by several orders of
magnitude. At the same time, we note that, at the moment, robot sensors reaction
time is of order of milliseconds, while the designs proposed in Sect. 7.4 are running
at nanosecond level; hence still a lot of time is wasted for the input acquisition.
However, we expect that in the future faster sensors would appear, coming with a
need for a fast processing unit that can be provided by FPGA-based designs.

A question arises: what advantages a design flow based on P systems can propose
with respect to a traditional one. There are several strong points in its favor. First,
traditional design flows are performed at a very low level of abstraction. Even
behavioral designs are still done in terms of the Mealy/Moore machine. High-level
synthesis (HLS) tools usually expect a microprocessor to be implemented in FPGA,
so they are not perfect for dealing with the parallelism. Matlab/Simulink FPGA
translation tends to produce very large designs. P systems abstraction is higher
than the cited ones, and it allows to better concentrate on the problem solution,
still yielding designs exploiting the large-scale parallelism. Another advantage of
using P systems for hardware circuit design is the compartment structure that
allows to localize interactions and possibly map them to close regions of the FPGA
hardware. P systems having a matrix-like inner structure are particularly well-suited
to fulfill this goal. Finally, another advantage of using a workflow based on P
systems resides in the additional verification possibilities for the design. There exist
many verification tools for different models of P systems [8] that can be used in
conjunction with traditional verification flows based on low-level Verilog or System
Verilog assertions.

References

1. C. Buiu, A.G. Florea, Membrane Computing models and robot controller design, current results
and challenges. J. Membr. Comput. 1(4), 262–269 (2019). https://doi.org/10.1007/s41965-019-
00029-8

2. N. Chomsky, M. Schützenberger. The algebraic theory of context-free languages, in Computer
Programming and Formal Systems, Studies in Logic and the Foundations of Mathematics, ed.
by P. Braffort, D. Hirschberg, vol. 35 (1963), pp. 118–161

3. D. Díaz-Pernil, M.A. Gutiérrez-Naranjo, H. Peng, Membrane computing and image process-
ing: a short survey. J. Membr. Comput. 1(1), 58–73 (2019). https://doi.org/10.1007/s41965-
018-00002-x

4. FPNtoVerilog GitHub repository. https://github.com/sverlan/FPNtoVerilog
5. R. Freund, A. Leporati, G. Mauri, A.E. Porreca, S. Verlan, C. Zandron, Flattening in (tissue) P

systems, in Membrane Computing. CMC 2013, ed. by A. Alhazov, S. Cojocaru, M. Gheorghe,
Y. Rogozhin, G. Rozenberg, A. Salomaa. Lecture Notes in Computer Science, vol. 8340, pp.
173–188 (2013). https://doi.org/10.1007/978-3-642-54239-8_13

6. R. Freund, S. Verlan. A formal framework for static (tissue) P systems, in Membrane Com-
puting. WMC 2007, ed. by G. Eleftherakis, P. Kefalas, Gh. Păun, G. Rozenberg, A. Salomaa.
Lecture Notes in Computer Science, vol. 4860 (2007), pp. 271–284. https://doi.org/10.1007/
978-3-540-77312-2_17

https://doi.org/10.1007/s41965-019-00029-8
https://doi.org/10.1007/s41965-019-00029-8
https://doi.org/10.1007/s41965-018-00002-x
https://doi.org/10.1007/s41965-018-00002-x
https://github.com/sverlan/FPNtoVerilog
https://doi.org/10.1007/978-3-642-54239-8_13
https://doi.org/10.1007/978-3-540-77312-2_17
https://doi.org/10.1007/978-3-540-77312-2_17

242 7 P Systems Implementation on FPGA

7. R. Freund, S. Verlan, (tissue) P systems working in the k-restricted minimally or maximally
parallel transition mode. Nat. Comput. 10(2), 821–833 (2011). https://doi.org/10.1007/s11047-
010-9215-z

8. M. Gheorghe, F. Ipate, R. Lefticaru, C. Dragomir, An integrated approach to P systems formal
verification, in Membrane Computing. CMC 2010, ed. by M. Gheorghe, T. Hinze, Gh. Păun,
G. Rozenberg, A. Salomaa. Lecture Notes in Computer Science, vol. 6501 (2010), pp. 226–
239. https://doi.org/10.1007/978-3-642-18123-8_18

9. S. Ginsburg, E.H. Spanier, Semigroups, presburger formulas, and languages. Pac. J. Math.
16(2), 285–296 (1966). https://projecteuclid.org/euclid.pjm/1102994974

10. A. Leporati, A.E. Porreca, C. Zandron, G. Mauri, Improved universality results for parallel
enzymatic numerical P systems. Int. J. Unconv. Comput. 9(5–6), 385–404 (2013)

11. B. Li, H. Peng, J. Wang, X. Huang, Multi-focus image fusion based on dynamic threshold
neural P systems and surfacelet transform. Knowl. Based Syst. 196, 105794 (2020). https://
doi.org/10.1016/j.knosys.2020.105794

12. G.H. Mealy, A method for synthesizing sequential circuits. Bell Syst. Tech. J. 34(5), 1045–
1079 (1955). https://doi.org/10.1002/j.1538-7305.1955.tb03788.x

13. E.F. Moore, Gedanken-experiments on sequential machines, Automata Studies, ed. by C.
E. Shannon, J. McCarthy. Annals of Mathematics Studies, vol. 34, litho-printed (Princeton
University Press, Princeton 1956), pp. 129–153

14. V.T.T. Nguyen, Implementation of the Parallelism, Distribution and Nondeterminism of
Membrane Computing Models on Reconfigurable Hardware. Ph.D. thesis

15. V.T.T. Nguyen, D. Kearney, G. Gioiosa, An algorithm for non-deterministic object distribution
in P systems and its implementation in hardware, in Membrane Computing. WMC 2008, D.W.
Corne, P. Frisco, Gh. Păun, G. Rozenberg, A. Salomaa. Lecture Notes in Computer Science,
vol. 5391 (2008), pp. 325–354. https://doi.org/10.1007/978-3-540-95885-7_24

16. V.T.T. Nguyen, D. Kearney, G. Gioiosa, An implementation of membrane computing using
reconfigurable hardware. Comput. Inf. 27(3+), 551–569 (2008)

17. V.T.T. Nguyen, D. Kearney, G. Gioiosa, A region-oriented hardware implementation for
Membrane Computing applications, in Membrane Computing. WMC 2009, ed. by Gh. Păun,
M.J. Pérez-Jiménez, A. Riscos, G. Rozenberg, A. Salomaa. Lecture Notes in Computer
Science, vol. 5957 (2010), pp. 385–409. https://doi.org/10.1007/978-3-642-11467-0_27

18. R. Nicolescu, Parallel and distributed algorithms in P systems, in Membrane Computing. CMC
2011, ed. by M. Gheorghe, Gh. Păun, G. Rozenberg, A. Salomaa, S. Verlan. Lecture Notes
in Computer Science, vol. 7184 (2011), pp. 35–50. https://doi.org/10.1007/978-3-642-28024-
5_4

19. L. Pan, Gh. Păun, B. Song, Flat maximal parallelism in P systems with promoters. Theor.
Comput. Sci. 623, 83–91 (2016). https://doi.org//10.1016/j.tcs.2015.10.027

20. Gh. Păun, Membrane Computing: An Introduction (Springer, Berlin, 2002)
21. Gh. Păun, R.A. Păun, Membrane computing and economics: numerical P systems. Fundam.

Inf. 73(1–2), 213–227 (2006)
22. Gh. Păun, G. Rozenberg, A. Salomaa (eds.), The Oxford Handbook of Membrane Computing

(Oxford University Press, Oxford, 2010)
23. A.B. Pavel, O. Arsene, C. Buiu, Enzymatic numerical P systems: a new class of membrane

computing systems, in 2010 IEEEFifth International Conference on Bio-Inspired Computing:
Theories and Applications, BIC-TA 2010, Changsha, China, September 23–26 (2010), pp.
1331–1336. https://doi.org/10.1109/BICTA.2010.5645071

24. A.B. Pavel, C. Buiu, Using enzymatic numerical P systems for modeling mobile robot
controllers. Nat. Comput. 11(3), 387–393 (2012). https://doi.org/10.1007/s11047-011-9286-5

25. A.B. Pavel, C.I. Vasile, I. Dumitrache, Robot localization implemented with enzymatic
numerical P systems, in Biomimetic and Biohybrid Systems. Living Machines 2012, ed. by T.J.
Prescott, N.F. Lepora, A. Mura, P.F.M.J. Verschure. Lecture Notes in Computer Science, vol.
7375. Barcelona, Spain, July 9–12, 2012 (2012), pp. 204–215. https://doi.org/10.1007/978-3-
642-31525-1_18

https://doi.org/10.1007/s11047-010-9215-z
https://doi.org/10.1007/s11047-010-9215-z
https://doi.org/10.1007/978-3-642-18123-8_18
https://projecteuclid.org/euclid.pjm/1102994974
https://doi.org/10.1016/j.knosys.2020.105794
https://doi.org/10.1016/j.knosys.2020.105794
https://doi.org/10.1002/j.1538-7305.1955.tb03788.x
https://doi.org/10.1007/978-3-540-95885-7_24
https://doi.org/10.1007/978-3-642-11467-0_27
https://doi.org/10.1007/978-3-642-28024-5_4
https://doi.org/10.1007/978-3-642-28024-5_4
https://doi.org//10.1016/j.tcs.2015.10.027
https://doi.org/10.1109/BICTA.2010.5645071
https://doi.org/10.1007/s11047-011-9286-5
https://doi.org/10.1007/978-3-642-31525-1_18
https://doi.org/10.1007/978-3-642-31525-1_18

References 243

26. B. Petreska, C. Teuscher, A reconfigurable hardware membrane system, in Membrane
Computing. WMC 2003, ed. by C. Martín-Vide, G. Mauri, Gh. Păun, G. Rozenberg, A.
Salomaa. Lecture Notes in Computer Science, vol. 2933 (2003), pp. 269–285. https://doi.org/
10.1007/978-3-540-24619-0_20

27. J. Quirós, Implementación sobre hardware reconfigurable de una arquitectura no determinista,
paralela y distribuida de alto rendimiento, basada en modelos de computación con
membranas. Ph.D. thesis, Universidad de Sevilla, 2015 (in Spanish). http://hdl.handle.net/
11441/39088

28. J. Quirós, S. Verlan, J. Viejo, A. Millán, M.J. Bellido, Fast hardware implementations of static
P systems. Comput. Inf. 35(3), 687–718 (2016)

29. Z. Shang, S. Verlan, G. Zhang, Hardware implementation of numerical P systems, in
Proceedings of the 20th International Conference on Membrane Computing, CMC20, ed. by
Gh. Păun, August 5–8, 2019, Curtea de Arges, Romania (2019), pp. 463–474.

30. Z. Shang, S. Verlan, G. Zhang, H. Rong, FPGA implementation of numerical P systems. Int.
J. Unconven. Comput. 16 (2021, in press)

31. C.E. Shannon, The synthesis of two-terminal switching circuits. Bell Syst. Tech. J. 28(1),
59–98 (1949). https://doi.org/10.1002/j.1538-7305.1949.tb03624.x

32. S. Verlan, Using the formal framework for P systems, in Membrane Computing. CMC 2013,
ed. by A. Alhazov, S. Cojocaru, M. Gheorghe, Y. Rogozhin, G. Rozenberg, A. Salomaa.
Lecture Notes in Computer Science, vol. 8340 (2013), pp. 56–79. https://doi.org/10.1007/978-
3-642-54239-8_6

33. S. Verlan, J. Quirós, Fast hardware implementations of P systems, in Membrane Computing,
CMC 2012, ed. by E. Csuhaj-Varjú, M. Gheorghe, G. Rozenberg, A. Salomaa, G. Vaszil.
Lecture Notes in Computer Science, vol. 7762 (2012), pp. 404–423. https://doi.org/10.1007/
978-3-642-36751-9_27

34. G. Zhang, Z. Shang, S. Verlan, M.A. Martínez-del-Amor, C. Yuan, L. Valencia-Cabrera, M.J.
Pérez-Jiménez, An overview of hardware implementation of membrane computing models.
ACM Comput. Surv. 53(4), 90 (2020). https://doi.org/10.1145/3402456

35. Xilinx 7 Series FPGAs Packaging and PinoutProduct Specification. https://www.xilinx.com/
support/documentation/user_guides/ug475_7Series_Pkg_Pinout.pdf

36. Xilinx 7 Series FPGAs Configurable Logic Block User Guide. https://www.xilinx.com/
support/documentation/user_guides/ug474_7Series_CLB.pdf

37. Xilinx web site. https://www.xilinx.com/

https://doi.org/10.1007/978-3-540-24619-0_20
https://doi.org/10.1007/978-3-540-24619-0_20
http://hdl.handle.net/11441/39088
http://hdl.handle.net/11441/39088
https://doi.org/10.1002/j.1538-7305.1949.tb03624.x
https://doi.org/10.1007/978-3-642-54239-8_6
https://doi.org/10.1007/978-3-642-54239-8_6
https://doi.org/10.1007/978-3-642-36751-9_27
https://doi.org/10.1007/978-3-642-36751-9_27
https://doi.org/10.1145/3402456
https://www.xilinx.com/support/documentation/user_guides/ug475_7Series_Pkg_Pinout.pdf
https://www.xilinx.com/support/documentation/user_guides/ug475_7Series_Pkg_Pinout.pdf
https://www.xilinx.com/support/documentation/user_guides/ug474_7Series_CLB.pdf
https://www.xilinx.com/support/documentation/user_guides/ug474_7Series_CLB.pdf
https://www.xilinx.com/

8Applications of Hardware Implementation of P
Systems

8.1 Introduction

The inherent large-scale parallelism of membrane computing has the profound
potential for the progress of extreme data processing. An interesting topic is the
implementation of P systems on contemporary silicon integrated circuits. This
allows to exploit the desirable parallel computational capability of P systems to
explore a new orientation for high performance computing (HPC). Hence, it is
important to propose hardware implementations of P systems as specific architec-
tures. There are two main directions for such research: using (1) field-programmable
gate arrays (FPGA) and (2) graphical processing units (GPUs) relying on compute
unified device architecture (CUDA) platform [30,31]. In the first case, a completely
new parallel circuit is specially designed to implement some variants of P systems.
In the second case, the pre-defined CUDA parallel platform [4–6, 10, 11] is used
to simulate P systems. Achieved performance and model correspondence are lower
in the second case, but the development effort is also lower relatively. So finally, it
becomes a compromise between traditional computer simulations and ad hoc highly
parallel circuits.

Chapter 7 presented methods of implementation of several variants of P systems
on FPGA. As discussed, these implementations are not very suitable for practical
problem solving, because the implementation of the maximal parallelism and the
unary encoding of problems require more resources that the device possesses. It
was suggested that the model of numerical P systems (NPS) is more suitable for an
FPGA application, especially for engineering fields.

This chapter discusses the usage of FPGA implementations of several important
problems. Sections 8.2 and 8.3 concentrate on implementations of solutions for
robot control and path planning problems.

We refer to Chap. 7 for the description of FPGA hardware, as well as for
definitions of numerical P systems (NPS), enzymatic numerical P systems (ENPS),
and generalized numerical P systems (GNPS). We also refer to Chap. 6 for the

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2021
G. Zhang et al., Membrane Computing Models: Implementations,
https://doi.org/10.1007/978-981-16-1566-5_8

245

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-16-1566-5_8&domain=pdf
https://doi.org/10.1007/978-981-16-1566-5_8

246 8 Applications of Hardware Implementation of P Systems

definition of generic versus specific simulators [8, 13, 14, 16, 17] and also the
definitions of P systems with active membranes [33,39] and population dynamics P
systems [34] and their implementations in generic simulators.

8.2 Robot Membrane Controllers with FPGA Implementation

Since 2011, adopting numerical P systems (NPS) and enzymatic numerical P
systems (ENPS) to model autonomous mobile robots controllers has been one
of the research highlight of P system applications. The first example of using
NPS in real-life application is given in [2, 3], featuring three NPS models for
controllers for Khepera III and e-puck robots to perform obstacle avoidance, wall
following, and following leader behaviors. These three NPSs were simulated by
a software called SNUPS, which is designed as Java servlet. During the run, the
robot invokes the SNUPS engine via a communication channel, transmitting sensor
values. After computation, the results are returned to the robot to control motors’
speeds, performing specific behaviors. Both experiments on simulated robots and
real robots were conducted to verify the control effect of NPS.

The first ENPS robot controller performing obstacle avoidance behavior was
proposed in [35]. It is a general controller not targeting particular robots. The
portability of NPS and ENPS robot controllers was validated in [48] by adapting the
control law, the number and placement of sensors, and the dimension parameters of
robots. ENPSs with different functionalities were developed later on, expanding the
utilizing range of ENPS besides robot motion control. For instance, an ENPS doing
the robot localization was presented in [36]. Robot trajectory tracking ENPS was
designed in [52].

In this section, we show examples of robot obstacle avoidance membrane
controllers based on (E)NPS and generalized numerical P systems (GNPS) imple-
mented on FPGA. We provide the procedure and the methodology of FPGA
implementation of NPS variants. We give in details the experiments and the per-
formance comparison between the FPGA implementations and reference software
simulations [43].

8.2.1 Numerical P Systems-BasedMembrane Controllers on FPGA

As stated above, the first obstacle avoidance NPS controller was proposed in [2]. It
was targeting e-puck robot, equipped by eight infrared sensors situated around the
body. This controller was run by invoking the SNUPS engine at each step, so there
was a lost in parallelism.

The obstacle avoidance control law is given by Eqs. (8.1) and (8.2). It is not
too complex, so it was chosen as a starting point for the implementation. We
will further refer to this control law as control law 1. The target robot of FPGA
implementation research is Pioneer 3 DX with 16 sonar sensors arranged in 2 arrays,
whose placements are shown in Fig. 8.1.

8.2 Robot Membrane Controllers with FPGA Implementation 247

Fig. 8.1 Plan view of
Pioneer 3 robot which is
covered by a hinged deck on
the top. The 16 rectangles in
light blue are the sonar
sensors surrounding the
robot, just beneath the hinged
deck. Sensors are arranged in
two arrays in the front and in
the rear. The layout of sensors
in two arrays is identical, as
shown explicitly. From [43]

0

1
2

3 4
5

6
7

8

9
10

1112
13

14
15

Front

Rear

Sonar Sensors

Hinged Deck

90.0°

The obstacle avoidance NPS to be implemented is adapted on the basis of the
first NPS in [2] according to the number of sensors of Pioneer 3 DX robot, since
both the infrared sensors in e-puck and sonar sensors in Pioneer 3 DX return the
distances between the robot and obstacles. The revised NPS to be implemented is
illustrated in Fig. 8.2.

lw = CruiseSpeedLef t +
16∑

i=1

si ∗ weithtLef ti (8.1)

rw = CruiseSpeedRight +
16∑

i=1

si ∗ weithtRighti (8.2)

248 8 Applications of Hardware Implementation of P Systems

WeightRighti

weightRighti[input]

i iweightRight weightLeft

WeightLefti

weightLefti[input]
1|i iweightLeft w

Sensori

si[input]
2 1| 1|i i is s sval

Computei, i=0,1, ,15.
svali[0] wi[0]

* 1|i isval w rw

CruiseSpeedRight
cruiseSpeedRight[input]

1|cruiseSpeedRight cruiseSpeedLeft

CruiseSpeedLeft
cruiseSpeedLeft[input]

1|cruiseSpeedLeft cruiseSpeed

CruiseSpeed
cruiseSpeed[0]

1|cruiseSpeed rw

SpeedRight

rw[0]

1|rw lw

SpeedRight lw[0]

Fig. 8.2 The numerical P system NPS1. It derives from Figure 7 in [2]. The 8 infrared sensors
around the target robot are replaced by 16 sonar sensors. From [43]

In Eq. (8.1)

• lw is the speed value accepted by left motor as the required speed to follow.
• CruiseSpeedLeft is the cruise speed, the speed when no obstacles are detected.
• si is the transformed sensor readings.
• weithtLef ti are the weight values of sensors placed in the left-hand side of

robot.

Variables in Eq. (8.2) are the counterparts of those from Eq. (8.1). i takes values
from 0 to 15, corresponding to the numbers of sensors.

To easily distinguish variables, membranes, and Verilog modules described
below, italics denote variables, boldfaced italics indicate membranes, and boldface
signifies modules. In Fig. 8.2, variables weightLef ti and weightRighti (i =
1, . . . , 16) are sensors’ weights whose values reflect the influences of sensors on
different positions to the speed of left and right wheel. Supposing an obstacle is
detected on the left side, then the speed of the left wheel should be larger than the
speed of the right wheel, so the robot can turn right to avoid this obstacle. Based on
this assumption and taking Eq. (8.2) in account, the weight values of sensors 0, 1, 2,
3, and 15 should impose negative effects to right wheel speed in order to diminish
its speed. At the same time, sensors 0, 1, 2, 3, and 15 should impose positive effects
to the left wheel speed in order to raise its speed. Similarly, sensors 4, 5, 6, 7, and 8
impose negative effect to the left wheel but positive effect to the right wheel. Sensors
located in the rear part of the robot are unhelpful for detecting obstacles in front, so
their weight values are set to zero.

8.2 Robot Membrane Controllers with FPGA Implementation 249

Table 8.1 Calibrated values of weightLef ti and weightRighti , along with a set of sampled
sensors readings used to verify the correctness of RTL translation

i 1 2 3 4 5 6 7 8

weightLef ti 0.1 0.4 0.6 0.8 −0.8 −0.6 −0.4 −0.1

weightRighti −0.1 −0.4 −0.6 −0.8 0.8 0.6 0.4 0.1

si 277 0 0 0 0 0 17 208

i 9 10 11 12 13 14 15 16

weightLef ti −0.1 0 0 0 0 0 0 0.1

weightRighti 0.1 0 0 0 0 0 0 −0.1

si 190 576 704 745 733 659 451 296

Consequently, the weight values of 16 sensors, namely, variables weightLef ti
and weightRighti , have inverse values to manifest the positive and negative effects.
Pioneer 3 DX should be calibrated to determine the values of weightLef ti and
weightRighti . The general calibration process can be stated as follows: use control
law given in Eqs. (8.1) and (8.2), assign some initial value to weightLef ti and
weightRighti , and then run Pioneer 3 DX robot. If it bumps into obstacles, alter
initial values of these two arrays to some extent in line with the collision severity
until it no longer hits any obstacles. The corresponding values of these two variable
arrays are shown in Table 8.1.

Membranes of NPS1 can be classified into two types according to their functions:
delivery membranes and computing membranes. WeightRighti , WeightLef ti ,
Sensori (i = 1, . . . , 16), CruiseSpeedRight, CruiseSpeedLeft, and SpeedRight
are delivery membranes whose role is to transmit values of one variable to another.
For instance, values of variables weightRighti are sent to variables weightLef ti ,
which are transferred to variables wi that are used in membrane Computei fur-
thermore. Membranes Computei (i = 1, . . . , 16) and CruiseSpeed are computing
membranes that compute new values of variable rw. Computations performed by
computing membranes should be synchronized to reflect the parallelism of NPS.
We recall that NPS1 should compute three steps to get results in such a cycle: after
the first step finished, rw = 0, lw = 0; for the second step, rw obtained the left
wheel speed value which will be assigned to lw in step 3 and lw = 0; in the next
step, rw acquires the expected right wheel speed value and lw attains the second
step value of rw. This process repeats as computing proceeds. The slowness of the
process is related to delivery membranes that just delay the data transfer.

To coordinate the value transfer process in delivery membranes, counters
are adopted aiming at this action. Taking the value transfer in WeightRighti
and WeightLef ti as an example, the initial values of variables weightRighti ,
weightLef ti , and counter are zeros. Variable counter counts in a loop from 0
to 2, corresponding to computational step 1–3. The weight values from Table 8.1
are assigned to weightRighti and weightLef ti . At the next step, the values
of weightRighti become zero and remain such until the end of the third step,
because their values are consumed by production functions and do not appear in any

250 8 Applications of Hardware Implementation of P Systems

repartition protocols. The values of weightRighti loop in accordance with counter
value loop. The second step values of weightRighti are transferred to weightLef ti
according to programs in membrane WeightLef ti . The third step values of
weightLef ti become zero again. Timing diagrams below exhibit this behavior.

Membranes Sensori are omitted in the Verilog code, and programs svali ∗wi →
1|rw in membrane Computei are substituted with si ∗ weightLef ti → 1|rw.
Because the effect of program 2si → 1|si +1|svali in Sensori is to assign sensors’
readings to svali and the effect of program weightLef ti → 1|wi in WeightLef ti
is to transfer values of weightLef ti to wi , using Sensori modules would add 1
more clock cycle, which can be reduced by performing si ∗ weightLef ti → 1|rw.
Assuming that variables si have sonar sensors’ readings as initial values, computing
membranes (Computei and CruiseSpeed) are triggered to compute rw at the next
step. In the first clock cycle, rw = 0 and initial values of weightLef ti are zeros. In
the second cycle, rw obtains the speed of the left wheel because weightLef ti got
their exact values during the second cycle. In the third cycle, rw acquires the speed
of the right wheel because weightLef ti got the values of weightRighti in the
first cycle, which are transferred during the second cycle. Hence, NPS1 accurately
computes in three steps to get results. The timing diagram of the mentioned process
is depicted in Fig. 8.3.

Two types of Verilog modules are designed to carry out value transfer and com-
puting operations described above. Module WeightRight assigns right weight val-
ues (in Table 8.1) of sensors to variables weightRighti , while module WeightLeft
assigns left weight values of sensors and transfers the values of weightRighti to
weightLef ti . Analogously, modules CruiseSpeedRight and CruiseSpeedRight
perform a similar operation on variables cruiseSpeedRight and cruiseSpeedLeft.
ModuleCruiseSpeed transfers the value of cruiseSpeedLeft to cruiseSpeed. Module
Compute is designed to conduct parallel computations originated from Computei .
Module SpeedLeft passes the value of rw to lw. No module corresponds to
membrane SpeedRight because there are no programs within it. The value of
counter together with clock cycling guarantees the whole processes to be controlled
accurately. Modules are connected to each other according to signals’ input-output
relationships, for example, the output of WeightRight is the input of WeightLeft.

From Fig. 8.2, it is obvious that membranes are organized in nested structure.
At the Verilog level, modules are not nested but independent from each other.
Another difference is that the function of modules is not the same as the function
of membranes; hence, there is no one-to-one correspondence. At the same time, the
behavior of Verilog code and NPS1 is identical: at each computation step, the value
of each variable and computing outcome are the same. The register transfer level
(RTL) model is shown in Fig. 8.4, where input/output ports and their connection
relationships are indicated as well.

As can be seen the third data line in Table 8.1, variables have real numbers as
values. Since they cannot be represented in digital circuits directly, a fixed-point
or a floating point integer encoding should be used. In this example, real numbers
are encoded using a fixed-point encoding. To be specific, each variable is assigned
a 24-bit register. The first 11 bits correspond to integer part and the following 13

8.2 Robot Membrane Controllers with FPGA Implementation 251

1 2 3 4 5 6 7 8 9 10 11

clock

counter 0 1 2 0 1 2 0 1 2 0 1

weightRight1 0 -0.1 0 -0.1 0 -0.1 0 -0.1

weightRight2 0 -0.4 0 -0.4 0 -0.4 0 -0.4

...

weightRight16 0 -0.1 0 -0.1 0 -0.1 0 -0.1

weightLeft1 0 0.1 -0.1 0 0.1 -0.1 0 0.1 -0.1 0 0.1

weightLeft2 0 0.4 -0.4 0 0.4 -0.4 0 0.4 -0.4 0 0.4

...

weightLeft16 0 0.1 -0.1 0 0.1 -0.1 0 0.1 -0.1 0 0.1

s1 sensor reading 1

s2 sensor reading 2

...

s16 sensor reading 16

rw 0 0 slw srw 0 slw srw 0 slw srw 0

lw 0 slw srw 0 slw srw 0 slw srw

a

b

c

t d m

e n

f p

w g h

k s

Fig. 8.3 The desired timing diagram of NPS1. At the first rising edge of clock, transfer and
computation operations are triggered simultaneously. During the first clock cycle, weightRighti
and weightLef ti obtain values given in Table 8.1. The outcomes obtained are 0s for the initial
values of weightLef ti , although sensor variables have readings. At the next clock cycle, rw gets
the speed of the left wheel (denoted by “slw”) for weightLef ti is delivered the left wheel weight
values. It is the same reason why rw attains the speed of the right wheel (denoted by “srw”) at the
third clock cycle. Red lines indicate value transfers from weightRighti to weightLef ti and from
rw to lw. Blue lines highlight parallel computing of programs in associated membranes. From [43]

bits to the fractional part of a variable value. This encoding allows to represent
numbers in the range [−2047, 1023], which includes the value range of sensors’
reading [0,1000].

In order to compute the speed-up of the hardware implementation, we use a
reference implementation and simulation using the NPS simulator PeP. The host
computer is a Dell Latitude equipped with a Intel Core i7-7820HQ and 16 GB
RAM. Target FPGA of this research is Xilinx Artix-7 xc7a35t-1cpg236c which is
the core part of BASYS 3 FPGA developing board; see Sect. 7.4 for more details.
The development was done using Xilinx Vivado 2018.2 software.

252 8 Applications of Hardware Implementation of P Systems

clk weightRight1

state

WeightRight

weightRight2

weightRight16

clk

weightRight1
state

WeightLeft

weightRight1

weightRight16

weightLeft1
weightLeft2

weightLeft16

clk
cruiseSpeedRightstate

CruiseSpeedRight

clk

cruiseSpeedRight
state

CruiseSpeedLeft
cruiseSpeedLeft

clock

state

clk

cruiseSpeedLeft
state

CruiseSpeed
cruiseSpeed

clk

s1
state

Compute

s2

s16
weightLeft1
weightLeft2

weightLeft16

rw

cruiseSpeed

clk

rw
state

SpeedLeft
lw

Sensors
Reading

rw_out

lw_out

output

output

Fig. 8.4 Register transfer level (RTL) model of NPS1. It consists of 7 modules, although NPS1
has 69 membranes. There is a one-to-one correspondence between membranes and programs.
Programs can be synchronized in one module with parallel constructs of Verilog. This is the reason
why the number of modules can be reduced substantially. Also, a state port was added to NPS1;
hence the system is able to report idle and busy conditions. From [43]

First, a testbench of NPS1 implementation was designed to verify whether it
performs correctly. Figure 8.5 shows the behavioral simulation waveform obtained
in Vivado 2018.2. In the first three cycles, the value of rw-out (corresponding to rw)
holds 0, 310.6953125 and 289.3046875, thus behaving exactly as the computing
process of NPS1.

The Post implementation timing simulation and PeP simulation results of NPS1
are shown in Figs. 8.6 and 8.7 respectively. The speedup of FPGA implementation of
NPS1 comparing CPU simulation (in PeP) is calculated in Eq. (8.3). By comparing
these results obtained on FPGA with those obtained by PeP, we observe small
differences due to the different representation and precision of real numbers. The
error is given in Eq. (8.4), and its order of magnitude is 10−5, which is small
for engineering applications like robot control. Data accuracy can be improved by
assigning more bits to fractional part of a real number variable.

1.1703 × 107

1.2334 × 102
= 9.49 × 104 (8.3)

{
erw = | 289.3−289.3046875

289.3 | = 1.6203 × 10−5

elw = 310.7−310.6953125
310.7 = 1.5087 × 10−5

(8.4)

8.2 Robot Membrane Controllers with FPGA Implementation 253

Fig. 8.5 Waveform of the behavioral simulation of NPS1. The values of weightLef ti alternate
as expected. Sensors’ readings si take the value in the last row of Table 8.1, and they are not shown
on this screenshot. The computing results are rw-out and lw-out. From [43]

Fig. 8.6 Post implementation timing simulation waveform of NPS1. From [43]

Fig. 8.7 Results of simulation of NPS1 using PeP simulator. Computation results together with
computing steps and time costs are printed on screen to show users. (E)NPS should be described
in a particular format that meets the requirements of PeP before running simulation. From [43]

8.2.2 Enzymatic Numerical P Systems (ENPS)-Based Membrane
Controllers on FPGA

ENPS work in all-parallel mode, so multiple programs are executed concurrently
in one membrane. This allows to greatly simplify the membrane structure. ENPS1
from Fig. 8.8 has the same function as NPS1 illustrated from Fig. 8.2, but is
composed of a considerably smaller number membranes: 17 vs 69 in NPS1. More

254 8 Applications of Hardware Implementation of P Systems

Avoid
leftSpeed[0] rigthSpeed[0] cruiseSpeed[input] e[2] f [1]

1,Pr : ()1|Avoid f cruiseSpeed e leftSpeed

2,Pr : ()1|Avoid f cruiseSpeed e rightSpeed

si[input]

Sensori, i=1, ,16

weightLefti[input] weightRighti[input] ei[2]

1,Pr : ()1|
iSensor i i iweightLeft s e leftSpeed

2,Pr : ()1|
iSensor i i iweightRight s e rightSpeed

Fig. 8.8 Target enzymatic numerical P system ENPS1. The value of variable e is larger than that
of f in membrane Avoid, so these two programs can take place. Variables ei have greater values
than si so the 16 programs in membrane Sensori can execute in parallel. From [43]

importantly, ENPS1 needs only one step to get the result, improving performance
by three times comparing to NPS1, which calculates three steps. Performance
improvement is achieved by getting rid of delivery membranes, and the speed of
the left wheel and right wheel is calculated at the same time, not sequentially as in
NPS1 case.

ENPS1 Verilog RTL model contains one module named Enps to perform the
behavior of ENPS1. The behavioral simulation waveform of Enps is depicted in
Fig. 8.9. PeP simulation results of ENPS1 are given in Fig. 8.10.

The post implementation timing simulation results of ENPS1 are shown in
Fig. 8.11. The speedup of FPGA implementation of ENPS1 comparing CPU
simulation (in PeP) is calculated in Eq. (8.5). Because ENPS1 is a simple model,
CPU performs its computation also fast. So the speedup declines contrasting to that
of NPS1.

2.993 × 106

1.07025 × 102
= 2.8 × 104 (8.5)

8.2.3 GNPS-Based Membrane Controllers on FPGA

The control law given in Eqs. (8.1) and (8.2) is targeting the e-puck robot that has a
small size (its diameter is 70 mm) and low velocity (its max speed is 0.129 m/s) [2].
Using it for Pioneer 3 DX that has the dimension of 510 ×380 mm and cruise speed
of 0.4 m/s [32] does not fit quite well this new platform. More precisely, control law
1 neglects the dimension of robot and supposes that its angular velocity is constant,
which gives rise to a high chance to bump on obstacles when the robot is close to
obstacles.

Based on kinetics analysis, control law 1 was extended to control law 2 [42]
(see Eq. (8.6)), originating from [15]. In this equation, xi are the readings of sonar

8.2 Robot Membrane Controllers with FPGA Implementation 255

Fig. 8.9 Waveform of behavioral simulation of ENPS1. The left and right wheel speed variables
gain their expected values after the first rising edge. From [43]

Fig. 8.10 PeP simulation results of ENPS1. From [43]

Fig. 8.11 Post implementation timing simulation waveform of ENPS1. From [43]

256 8 Applications of Hardware Implementation of P Systems

sensor, i = 2, 3, 4, 5, r1 is the robot gyration radius, di are the concerned distances
detected by sensors, min selects the nearest distance, H ∈ (0, 1) is a safety factor,
ω is the angular velocity of robot, and θi are the angles between symmetric line of
robot and the connecting line of robot and obstacles. Other variables have the same
meaning as that of control law 1. GNPS3 is devised to accommodate control law 2,
as illustrated in Fig. 8.12.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

di = (xi + r1) cos θi(i = 2, 3, 4, 5)

d = min(d2, d3, d4, d5)

cruisespeed = H ∗ |ω|(d2−r2
1)

2r1

lw = CruiseSpeedLef t +∑16
i=1 si ∗ weithtLef ti

rw = CruiseSpeedRight +∑16
i=1 si ∗ weithtRighti

si = −xi + M

(8.6)

This GNPS is implemented in FPGA using the method described in Sect. 7.4.
Post implementation timing simulation and PeP software simulation are given in
Figs. 8.13 and 8.14, respectively. The speedup is calculated in Eq. (8.7). Hardware
resource and power consumption are shown in Fig. 8.15.

2.0997 × 107

2.60657 × 102 ≈ 8.06 × 104 (8.7)

Comparing to software simulation of P systems, FPGA implementation of P
systems can achieve a remarkable speedup which can be as high as 104 in the case
of (E)NPS and GNPS in which non-determinism does not exist. A NPS, ENPS and
GNPS which are used as robot controllers are implemented in FPGA. NPS with
universal asynchronous receiver/transmitter (UART) communication ability which
has the potential to substitute on-board computer of Pioneer 3 robot was designed
and implemented as well. As a consequence, the host FPGA has the potential to
substitute the on-board computer of Pioneer 3 DX robot to perform computational
tasks.

8.3 Robot Path Planning with FPGA Implementation

Besides robot motion control, path planning is another domain which can benefit
from the parallelism of NPS (regarding all variants as a whole) with respect to the
computation-intensive tasks involved to produce an obstacle-free path. Comparing
to applications of NPS accomplished in control area, few works had been done. In
this section, a path planning algorithm called rapid-exploring random tree (RRT) is
selected as the object, which will be arranged in the framework of ENPS to speedup
its procedures that can be executed in parallel. Then the ENPS-RRT model will be
implemented in FPGA, achieving a considerable speedup in contrast with software
simulation [44].

8.3 Robot Path Planning with FPGA Implementation 257

M[1] e1[1]r1[0.26] d2[0] d3[0] d4[0] d5[0] k[0] e2[-1]

sd2[0] sd3[0] sd4[0] sd5[0] e3[0]

2

3 4

e4[0]

5

e5[0] ssd2[0]

6

e6[0]

7

e7[0] sd1[0] sr1[0] 8e8[0]

si[input] weightLefti[input] weightRighti[input]

9

H[0] Vm[0] e9[0]

10

leftSpeed[0]

rw[0] lw[0]

rightSpeed[0]

1

2
2112112121 : min(, , ,);Pr : 0 () cos30º 1|

1000
sP e k M s r e k M r d1|

3
3112113122 : min(, , ,);Pr : 0 () cos10º 1|

1000
sP e k M s r e k M r d1|

4
4112114123 : min(, , ,);Pr : 0 () cos(10º) 1|

1000
sP e k M s r e k M r d) 1)

5
5112115124 : min(, , ,);Pr : 0 () cos(30º) 1|

1000
sP e k M s r e k M r d) 1)

5 2 1 1 5 2 1 1 1: min(,);Pr : 0 1|P e k r e k r r

6 2 1 6 2 1 2: ;Pr : 0 1 1|P e k e k e
16

221227
1

|10:rP;),,(nim: iiii
i

P e k s weightLeft e k weightLeft s leftSpeed
16

28228
1

|1:rP;),,(nim: iiii
i

P e k s weightRight k weightRight s rightSpeed

9 2 2 9 2 2 2: ;Pr : 0 1 1|P e k e k e

1 3 2 2 1 3 2 2 2: min(,);Pr : 0 1|P e k d e k d sd

2 3 2 3 2 3 2 3 3: min(,);Pr : 0 1|P e k d e k d sd

3 3 2 3 3 2 3: ;Pr : 0 1 1|P e k e k e

1 4 2 4 1 4 2 4 2: ;Pr : 0 1|P sd d sd d sd

2 4 3 5 2 4 3 5 3: ;Pr : 0 1|P sd d sd d sd

3 4 3 3 4 3 4: ;Pr : 0 1 1|P e k e k e

1 5 4 2 1 5 4 2 2: min(,);Pr : 0 1|P e k sd e k sd ssd

2 5 4 2 5 4 5: ;Pr : 0 1 1|P e k e k e
1 6 2 3 1 6 2 3 2: ;Pr : 0 1|P ssd sd ssd sd ssd

2 6 5 2 6 5 6: ;Pr : 0 1 1|P e k e k e

1 7 6 2 1 7 6 2 1: min(,);Pr : 0 1|P e k ssd e k ssd sd

2 7 6 1 2 7 6 1 1 1: min(,);Pr : 0 2 1|P e k r e k r sr r

3 7 6 3 7 6 7: ;Pr : 0 1 1|P e k e k e

1 8 1 1 1 8 1 1 1: ;Pr : 0 1|P sd sr sd sr sd

2 8 7 2 8 7 7 8: ;Pr : 0 1()1|P e k e k e e

2 2
1 1

1 9 8 1 1 1 9 8
1

() |10:rP;),,,(nim:
2

H sd r deepSesiurckerdskeP
r

9292 : ;Pr : 0 1|mmP cruiseSpeed V cruiseSpeed V cruiseSpeed

3 9 8 3 9 8 8 9: ;Pr : 0 1()1|P e k e k e e

90119011 : min(, ,);Pr : 0 1000 1|P e k leftSpeed cruiseSpeed e k leftSpeed cruiseSpeed lw

90129012 : min(, ,);Pr :0 1000 1|P e k rightSpeed cruiseSpeed e k rightSpeed cruiseSpeed rw

Fig. 8.12 GNPS3 implementing control law 2. From [42]

258 8 Applications of Hardware Implementation of P Systems

(a) Post implementation of GNPS3 with period of 44 ns.

(b) Post implementation of GNPS3 with period of 46 ns.

Fig. 8.13 Post implementation of GNPS3. From [42]

Fig. 8.14 PeP simulation of GNPS3. It takes 0.020997 s to output the result. From [42].

The first attempt to arrange RRT in ENPS is presented in [38], where a variant
of ENPS named random enzymatic numerical P systems with proteins and shared
memory is designed to organize RRT. This model is simulated with an extended P-
Lingua software [12]. On the other side, FPGA implementation of RRT algorithm
is also a new topic. There are not many researches reported before. A hierarchical
FPGA architecture for RRT algorithm is given in [27], while a hybrid architecture
composed of combinatorial and hierarchical architectures is proposed in [26, 28].
In [53], a FPGA parallel architecture is devised for RRT star (RRT ∗) achieving
speedups from 30∼90 times comparing embedded/desktop software simulation.

8.3.1 RRT Algorithm

As a randomized planning technique, rapidly exploring random tree (RRT) has
several good qualities such as it is biased to unexplored state space, the vertices
(referred to as RRT points in this paper) are nearly uniformly distributed, and only

8.3 Robot Path Planning with FPGA Implementation 259

(a) Hardware resource dissipation of GNPS3. (b) Power consumption of GNPS3 is 0.076 W.

Fig. 8.15 Hardware resource dissipation and power consumption of hardened GNPS3. From [42]

nearest-neighbor queries are needed [22,23]. RRT has had been increasingly applied
in path planning since its establishment in 1998. There are many researches on this
topic; refer to [1, 9, 18, 37, 47]. RRT algorithm can be explained as follows.

Assume that the map is a rectangle whose two legs have the length of p and q ,
respectively. There are m obstacle points in this map. The duty of RRT algorithm is
to produce an obstacle free path generated by linking n path nodes which should be
calculated at first. The path node generated by RRT algorithm is called RRT point.
The distance between two neighboring RRT points is a predefined value τ . The
rotation radius of robot is ξ . The lower left intersection point of two legs is deemed
as the original point O , and the robot initial position I is the root RRT point. The
first random point R1 whose two coordinates are the products of p and q multiplying
two random numbers in the range of [0, 1] respectively. Compute a point RTp1, so
that the distance of point I and RTp1 equals to τ , i.e., |IRTp1| = τ . Before claiming
that RTp1 is the first RRT point, it should be confirmed. The verification procedures
are composed of computing all the distances between m obstacle points to the line
segment IRTp1. If the minimum distance of these m distances is larger than ξ , the
RTp1 is saved as RT1, the first RRT point. Otherwise, discard RTp1 and re-begin by
feeding two new random numbers to produce a new R1, until RT1 is obtained.

At the beginning of computing the second RRT point RT2, there are two path
node now (I and RT1). Generate a random number denoted as R2 in the same way
stated, and calculate the distances |IR2| and |RT1R2|. Choose the RRT point which
is closer to R2 as starting point; then compute RTp2 in the line segment SR2 where
S ∈ {I, RT1} (note that |SRTp2| = τ). Next perform verification procedures to
validate RTp2. After RT2 is produced, proceed to compute RT3. So, to generate the
n-th RRT point RTn (I is excluded), n distances (|IRn|,|RT1Rn|,. . . ,|RTn−1Rn|)
should be calculated and the smallest one should be selected. Keep in mind that in
the verification procedures, there are m distances that will be computed, then find
out the minimum one, the computation amount of RRT algorithm is huge, especially
when m and n are large numbers. Although RRT points are computed in serial order,

260 8 Applications of Hardware Implementation of P Systems

these distance calculations can be done in parallel. Obviously, by the parallelization,
RRT can be accelerated to a large extent.

The main body of RRT algorithm is given in Algorithm 5, where xinit is
robot initial point and Sample() gives the random points. Extend(G, xrand) is the
verification procedure which is described in Algorithm 6, where Nearest (G, x)

returns the nearest RRT point in G to x and Steer(xnearest , xnew) runs a simulated
motion from x to y in consideration of robot rotation radius ξ . If trajectory is
obstacle free, then ObstacleF ree(xnearest, xnew) returns true, otherwise false.

Algorithm 5: RRT algorithm
Input: xinit , N

Output: G′ = (V ′, E′)
1 E = ∅; i = 0;
2 while i < N do
3 G ← (V ,E);
4 xrand ← Sample();
5 i ← i + 1;
6 (V ,E) ← Extend(G, xrand);
7 end

Algorithm 6: Extend(G, xrand) of RRT algorithm
Input: V , E

Output: G′
1 V ′ ← V ;E′ ← E;
2 xnearest ← Nearest (G, x);
3 xnew ← Steer(xnearest , xnew);
4 if ObstacleF ree(xnearest , xnew) then
5 V ′ ← V ′ ∪ {xnew};
6 E′ ← E′ ∪ {(xnearest , xnew)};
7 end
8 return G′ = (V ′, E);

This research arranges RRT algorithm into a bio-inspired parallel model—
enzymatic numerical P system (ENPS), and implement this model on the FPGA
which is a prototyping platform supporting sequential/parallel processing. IEEE
754 floating point (FP) number is selected as the real number format for its large
dynamic range and high precision. This format allows the future application of RRT
into a large-scale map with an amount of obstacle points. Taking into account of the
complexity of RRT algorithm and IEEE 754 format, and the capacity of the target
FPGA chip, the RRT procedure generating 2 RRT points in an environment with 8
obstacles points is considered. In spite of the simplicity of the RRT considered, the
method proposed is easy to scale to incorporate more obstacle points and generate
more RRT points, provided that target FPGA has enough hardware resources. On
the other hand, as an incremental algorithm, it is impractical to implement an RRT

8.3 Robot Path Planning with FPGA Implementation 261

generating a great number of RRT points in FPGA for it requires substantial amount
of resources. The designed ezymatic numerical P system rapid-exploring random
tree (ENPS-RRT) model is depicted in Fig. 8.16.

8.3.2 Arithmetic Units Design

In the IEEE 754 single precision floating point format, 32 bits are assigned to a
FP number. Bits 0–22 store mantissa and bits 23–30 represent the exponent. The
last bit denotes the sign, 0 for positive and 1 for negative. The exponent is an 8-bit
unsigned number, so it cannot represent negative exponent. To resolve this problem,
exponent is biased by the constant 127. But it does not mean the exponent range is
[−127, 128] since several special cases called exceptions utilize the range endpoint.

We cannot write arithmetical expressions in Verilog always blocks because
these expressions are described by a series of instantiated adders, multipliers, and
other arithmetical units, other than those fixed point format formulas represented
explicitly by Verilog operators. If all the arithmetical units are triggered only by
clock rising edge, they will always be active, and the timing is tremendously chaotic.
In this research, these floating point arithmetical units are designed in such a way
that they are sequentially triggered instead of synchronous triggered. To be specific,
the adder and multiplier are designed to output results one clock period later (this
latency can only be observed in behavioral simulations; their actual latencies are
larger than one clock period). A counter is added to count the clock cycle, and a
flag signal generated by rising edge detection bears a rising edge at the clock rising
edge. At the next rising edge of clock, the flag has a falling edge and keeps low. This
flag signal holds value one only for one clock period so it can be used to fire the unit
whose trigger signal port connects to this flag just once.

Addition and subtraction are closely related so that a + b does not always mean
an addition; it can be a subtraction as well. The ultimate action is determined not
only by the operator but also by the signs and magnitudes of both operands. As a
consequence, an adder can be a subtractor at the same time. We design adders in line
with this thought. So the adder must have a port to input desired operator, + (binary
1) or − (binary 0). The final operation is the XOR of the sign of two operands and
the input operator. The main procedures of the multiplier are illustrated in Fig. 8.17.

The design of floating point multiplier is relatively easy compared to the design
of a floating point adder. Add the exponents of two operands and multiply their
mantissas; then extract specific 23-bit according to the first bit of the mantissa
product. The main procedures of the multiplier is illustrated in Fig. 8.18.

It is trivial to compare magnitude of two fixed point numbers for we can use
Verilog ≥ and ≤ operator. However, to compare two floating point numbers is not
such intuitive because we have to design comparator, no operators to use. There
are three parts in a floating point number: sign, exponent, and mantissa. At first the
sign bit is compared then comparing exponent and mantissa successively. Two FP
numbers are equal only when these three parts are equal correspondingly. Absolute
value comparison which combines exponent and mantissa compare can simplify

262 8 Applications of Hardware Implementation of P Systems

p[17.85]

q[16.25]

randomp1[input]

randomq1[input]

xnearest1[x1]

1 1 1 1 1Pr : ()1|p randp random e x

2 1 1 1 1 1Pr : 0 ()1|q rande q random e y

2 2 1
4 1 2 1 1 1 1 2 1Pr : 0 () () ()1|rand rande k x x y y e d

1

1 1
131316 1

() |1)(0:rP rand nearest
wentseraen

x x xexke
d

1

1 1
13117 1

() |1)(:rP rand nearest
wentseraen

y y yeyk
d

1
1 2 1 1 1 1 1 1 1 1 4 1_1Pr : ()() ()()()x nearest new nearest y nearest new nearestk ob x x x ob y y y e u

122
2 2 4 1 1 1 1 4Pr : 0 () () ()1|

srnew nearest new neareste k x x y y e d

1_1

1
1

6 2 5 5 2_11Pr : 0 ()1|
sr

u
e k e u

d

1

122
3 2 1 1 1 1 4Pr : () () ()1|

nonearest x nearest yk x ob y ob e d

1

122
4 2 1 1 1 1 4Pr : () () ()1|

nbnew x new yk x ob y ob e d

11_2

11
8 2 1 1 1 6Pr : ()()1|

xnearest new nearestk x u x x e p

11_2

11
9 2 6 1 1 1 6Pr : 0 ()()1|

ynearest new neareste k y u y y e p

1 1
1 2_1

111
13 2 8 1 2_1 8 1

1
1

, 0

Pr : 0 , 1 ()1|

,

no

nb

po

d u

e k d u e psd

d else

111

1 2 1 2 1
7117211Pr : 0 () () ()1|

opyx x ye k p ob p ob e d

obx1[input] oby1[input]

ynearest1[y1]

e1[1]

e2[0]

e3[0]

3 1 1 2Pr : 1()1|k e e

k[0]

5 1 2 3Pr : 1()1|k e e

8 1 3 4Pr : 1()1|k e e

5 2 4 5Pr : 1()1|k e e

e5[0]

7 2 5 6Pr : 1()1|k e e

10 2 6 7Pr : 1()1|k e e

12 2 7 8Pr : 1()1|k e e

e6[0] e7[0] e8[0] e9[0]

14 2 8 9Pr : 1()1|k e e

1_ 8

1
1 9 8 1 1 1 8 1 1 1 4Pr : ()() ()()()x nearest new nearest y nearest new nearestk ob x x x ob y y y e u

8

122
2 9 1 8 1 8 4Pr : () () ()1|

nonearest x nearest yk x ob y ob e d

8

122
3 9 1 8 1 8 4Pr : () () ()1|

nbnew x new yk x ob y ob e d

4 9 4 5Pr : 1()1|k e e

1_ 8

2 _ 8

1
1

5 9 5 51Pr : 0 ()1|
sr

u
e k e u

d

6 9 5 6Pr : 1()1|k e e

2 _ 8

11
7 9 1 1 1 6 8Pr : ()()1|nearest new nearest xk x u x x e p

88_2

11
8 9 6 1 1 1 6Pr : 0 ()()1|

ynearest new neareste k y u y y e p

9 9 6 7Pr : 1()1|k e e

888

1 2 1 2 1
7887901Pr : 0 () () ()1|

opyx x ye k p ob p ob e d

11 9 7 8Pr : 1()1|k e e

8

8

8

1
2_8

11
12 9 8 2_8 8 8

1

, 0

Pr : 0 , 1 ()1|

,

no

nb

po

d u

e k d u e psd

d else

δ [0.15]

obx8[input] oby8[input]

2 2
4 18 18 1 2 1 2 18 1Pr :0 () () ()1|rand rand rte k x x y y e d

22
5 18 18 1 2 1 2 18 2Pr :0 () () ()1|rrt rand rrt rand rte k x x y y e d

6 18 18 19Pr : 1()1|k e e

1 1 2
29191817

1 1 2

,
|1)(0:rP

,
rt rt

nearest
rrt rt rt

x d d
e k e x

x d d

1 1 2
29191818

1 1 2

,
|1)(0:rP

,
rt rt

nearest
rrt rt rt

y d d
e k e y

y d d

randomp2[input]
randomq2[input]

271271811Pr : 0 ()1|p rande p random e x

2 18 2 17 2Pr : ()1|q randq random e y

3 18 17 18Pr : 1()1|k e e

xrand1[0]

yrand1[0]

x1[8]

y1[10]

xnew1[0]

ynew1[0] e4[0]

xrand2[0]
yrand2[0]

drt1[0]
drt2[0]

xnearest2[0]
ynearest2[0]

e18[0]

e23[0]

e24[0] e25[0] e26[0] e27[0]

9 18 19 20Pr : 1()1|k e e

2
1 19 1 2 2 2 1 2 2 2 22 1_1Pr : ()() ()()()x nearest new nearest y nearest new nearestk ob x x x ob y y y e u

1

222
10 18 20 2 2 2 2 20Pr : 0 () () ()1|nearest rand nearest rande k x x y y e d

10 18 20 21Pr : 1()1|k e e

1

2 2
2122128111 2

() |1)(0:rP rand nearest
wentseraen

x x xexke
d

1

2 2
21228121 2

() |1)(:rP rand nearest
wentseraen

y y yeyk
d

13 18 21 22Pr : 1()1|k e e

222
2 19 22 2 2 2 2 22Pr : 0 () () ()1|

srnew nearest new neareste k x x y y e d

1

222
3 19 2 1 2 1 22Pr : () () ()1|

nonearest x nearest yk x ob y ob e d

1

222
4 19 2 1 2 1 22Pr : () () ()1|

nbnew x new yk x ob y ob e d

5 19 22 23Pr : 1()1|k e e
1_1

2
2

6 19 23 23 2_12Pr : 0 ()1|
sr

u
e k e u

d
7 19 23 24Pr : 1()1|k e e

11_2

22
8 19 2 2 2 24Pr : ()()1|

xnearest new nearestk x u x x e p

11_2

22
9 19 24 2 2 2 24Pr : 0 ()()1|

ynearest new neareste k y u y y e p

10 19 24 25Pr : 1()1|k e e

111

2 2 2 2 2
5211529111Pr : 0 () () ()1|

opyx x ye k p ob p ob e d

12 19 25 26Pr : 1()1|k e e
2 2

1 2_1

222
13 19 26 1 2_1 26 1

2
1

, 0

Pr : 0 , 1 ()1|

,

no

nb

po

d u

e k d u e psd

d else

14 19 26 27Pr : 1()1|k e e

e19[0]
e20[0]
e21[0]

1
1_1[0]u

1 [0]srd 1
1[0]nod 1

1[0]nbd 1
2 _1[0]u 1

1[0]xp 1
1[0]yp 1

1[0]pod

2
1 [0]psd

1_ 8

2
1 26 8 2 2 2 8 2 2 2 22Pr : ()() ()()()x nearest new nearest y nearest new nearestk ob x x x ob y y y e u

8

222
2 26 2 8 2 8 22Pr : () () ()1|

nonearest x nearest yk x ob y ob e d

8

222
3 26 2 8 2 8 22Pr : () () ()1|

nbnew x new yk x ob y ob e d

4 26 22 23Pr : 1()1|k e e

1_ 8

2 _ 8

2
2

5 26 23 232Pr : 0 ()1|
sr

u
e k e u

d

6 26 23 24Pr : 1()1|k e e

88_2

22
7 26 2 2 2 24Pr : ()()1|

xnearest new nearestk x u x x e p

88_2

22
8 26 24 2 2 2 24Pr : 0 ()()1|

ynearest new neareste k y u y y e p

9 26 24 25Pr : 1()1|k e e

888

2 2 2 2 2
5288526201Pr : 0 () () ()1|

opyx x ye k p ob p ob e d

11 26 25 26Pr : 1()1|k e e

8 2 _ 8

8 2 _ 8

8

2 2

222
862626221

2

, 0

Pr : 0 , 1 ()1|

,

no

nb

po

d u

e k d u e psd

d else

2
1_ 8[0]u 2

8[0]nod 2
8[0]nbd 2

2 _ 8[0]u 2
8[0]xp 2

8[0]yp 2
8[0]pod 2

8[0]psd 2
8 [0]psd

e22[0]
2

1 [0]d
xnew2[0]
ynew2[0]

1
1_ 8[0]u 1

8[0]nod 1
8[0]nbd 1

2 _ 8[0]u 1
8[0]xp 1

8[0]yp 1
8[0]pod

mem1

mem2

mem9

mem18

mem19

mem26

skin

1
1[0]d

1
1 [0]psd

111

1 1 1
99011Pr : 0 2 ()1| 1|e k psd e sd psd

1 1 1
2 10 9 2 9 2 2Pr :0 2 ()1| 1|e k psd e sd psd

1 1 1
3 10 9 3 9 3 3Pr :0 2 ()1| 1|e k psd e sd psd

1 1 1
4 10 9 4 9 4 4Pr :0 2 ()1| 1|e k psd e sd psd

5 10 9 10Pr : 1()1|k e e

1
1 [0]sd 1

2[0]sd 1
3[0]sd 1

4[0]sd e10[0]

5111

1 1 1 1 1
5111Pr : 0 2 ()1| 1|sd psd sd sd psd

2

1 1 1 1 1
6226112Pr : 0 2 ()1| 1|sd psd sd sd psd

3

1 1 1 1 1
7337113Pr : 0 2 ()1| 1|sd psd sd sd psd

4

1 1 1 1 1
8448114Pr : 0 2 ()1| 1|sd psd sd sd psd

5 11 10 11Pr : 1()1|k e e

e11[0]

1 1
1 12 11 1 11 12Pr :0 ()1|e k sd e sd

1 1
2 12 11 2 11 22Pr :0 ()1|e k sd e sd

3 12 11 12Pr : 1()1|k e e

1
12[0]sd 1

22[0]sd e12[0]

1 1 1 1
1 13 12 3 12 12Pr :0 ()1|sd sd sd sd

1 1 1 1
2 13 22 4 22 22Pr :0 ()1|sd sd sd sd

3 13 12 13Pr : 1()1|k e e

e13[0]

1
1513151611Pr :0 ()1|e k sd e collision

2 16 15 16Pr : 1()1|k e e

1 1
1 14 13 12 13 13Pr :0 ()1|e k sd e sd

2 14 13 14Pr : 1()1|k e e

1 1 1 1
1 15 13 22 13 13Pr :0 ()1|sd sd sd sd
2 15 14 15Pr : 1()1|k e e

e14[0]1
13[0]sd

e15[0] e16[0]

mem10

mem11

mem12

mem13

mem14

mem15

mem16

compare1

111

2 2 2
7272721Pr : 0 2 ()1| 1|e k psd e sd psd

2 2 2
2 27 27 2 27 2 2Pr :0 2 ()1| 1|e k psd e sd psd

2 2 2
3 27 27 3 27 3 3Pr :0 2 ()1| 1|e k psd e sd psd

2 2 2
4 27 27 4 27 4 4Pr :0 2 ()1| 1|e k psd e sd psd

5 27 27 28Pr : 1()1|k e e

2
1 [0]sd 2

2 [0]sd 2
3 [0]sd 2

4 [0]sd e28[0]

5111

2 2 2 2 2
5821Pr : 0 2 ()1| 1|sd psd sd sd psd

2

2 2 2 2 2
6226822Pr : 0 2 ()1| 1|sd psd sd sd psd

3

2 2 2 2 2
7337823Pr : 0 2 ()1| 1|sd psd sd sd psd

4

2 2 2 2 2
8448824Pr : 0 2 ()1| 1|sd psd sd sd psd

5 28 28 29Pr : 1()1|k e e

e29[0]

2 2
1 29 29 1 29 12Pr :0 ()1|e k sd e sd

2 2
2 29 29 2 29 22Pr :0 ()1|e k sd e sd

3 29 29 30Pr : 1()1|k e e

2
12[0]sd 2

22[0]sd e30[0]

2 2 2 2
1 30 12 3 12 12Pr :0 ()1|sd sd sd sd

2 2 2 2
2 30 22 4 22 22Pr :0 ()1|sd sd sd sd

3 30 30 31Pr : 1()1|k e e

e31[0]

2
2333133331Pr :0 ()1|e k sd e collision

2 33 33 34Pr : 1()1|k e e

2 2
1 31 31 12 31 13Pr :0 ()1|e k sd e sd

2 31 31 32Pr : 1()1|k e e

2 2 2 2
1 32 13 22 13 13Pr :0 ()1|sd sd sd sd

2 32 32 33Pr : 1()1|k e e

e32[0]2
13[0]sd

e33[0]
stop[0]

mem27

mem28

mem29

mem30

mem31

mem32

mem33
compare2

1
8[0]psd

1[0]collision

2[0]collision e34[0]

4 33 35 35Pr :0 1()1|e k e stop

e18[0]xrrt1[0] yrrt1[0]

1 17 1 17 1Pr : ()1|new rrtk x e x

2 17 17 1 17 1Pr :0 ()1|new rrte k y e y

3 17 17 18Pr : 1()1|k e e mem17

ξ [0.04]

2
1_1[0]u 2 [0]srd 2

1[0]nod 2
1[0]nbd 2

2 _1[0]u 2
1[0]xp 2

1[0]yp 2
1[0]pod

1 1
3 16 16 16

17 1

1| , 0
Pr : 0 1()

1| , 0
e collision

e k e
e collision

17 2
3 33 34 34

35 2

1| , 0
Pr : 0 1()

1| , 0
e collision

e k e
e collision

e35[0]

Fig. 8.16 The ENPS-RRT executing RRT algorithm which generates two RRT points in eight
obstacle points. From [44]

8.3 Robot Path Planning with FPGA Implementation 263

Fig. 8.17 Procedure
diagram of the adder. This is
a composite unit which can
perform addition and
subtraction. From [44]

Decompose of operands

Determine final operation

Determine the sign of the
result

Compute the difference of
two exponents

Shift the mantissa of
smaller operand

Operand a Operand bOperator

Mantissa addtion/
subtraction

Leading one detection

Shift mantissa according to
leading one position

Normalization &
underflow checking

Result

Fig. 8.18 Procedure diagram
of the multiplier. From [44]

Decompose of operands

Mantissa
multiplication Exponent addition

Operand a Operand b

Underflow checking

Result

Mantissa
truncation Exponent shift

Normalization

264 8 Applications of Hardware Implementation of P Systems

this process to some extent. This is the trick adopted to design the comparator that
compares two input FP numbers and output the smaller one.

RRT algorithm involves inverse square root calculation in new RRT point
generation. The hardware resources/power consumption and time latency are too
expensive to afford if it is tackled in frontal attack. A method based on Newton
approximation that arose in the source code of Quake3 3D game [41] launched in
the 1990s presents an incredible solution to this intractable problem. A deduction of
this approach is detailed in [24].

Solving an arithmetical expression is a serial process for the precedence of
operators are different. Even for operators with the same priority, they should
be executed in sequential. The intrinsic serialism of arithmetic is the origin why
adders and multipliers are triggered at distinct time. For the difficulty of designing
high-performance FP divider, we use Xilinx FP IP core to do divisions instead of
developing it from scratch. The latency of FP divider is customized to one clock
cycle, in accordance with devised FP adder and multiplier. However, this divider is
triggered at rising edge of clock; we cannot change this because it is a packed IP
core. To make divider triggers by flag generated by preceding unit, assign zero to
dividend and one to divisor so the result is zero before the flag is one. When at the
clock rising edge and flag has value one, assign actual dividend and divisor value to
the divider. By this way, the divider timing is ordered.

There are two types of random number generator which can be implemented
in FPGA: true random number generator (TRNG) and pseudo random number
generator (PRNG) [21, 25, 46]. In consideration of the difficulty to design a TRNG,
this research designs a PRNG producing IEEE 754 FP number in the range of
(0, 1) basing on linear feedback shift register (LFSR). XOR is utilized as the
operation among certain bits of the register to jumble up the order of pseudo
numbers. The penalty of LFSR-based PRNG is that the sequence of generated
pseudo number is invariant if the seed is constant. To address this problem, two
LFSRs are concatenated so that the output of the first LFSR is input to the other
as seeds, making the seed always in dynamic to augment randomness. The LFSR-
based PRNG is triggered only by clock rising edge so is always active.

RRT algorithm requires the random number range to be [0, 1] instead of (0, 1).
However, 0 is an exception FP number with unique bit representation. The exponent
of any IEEE 754 real number in (0, 1) is “0111_1110,” while 1’s exponent is
“0111_1111’ (its mantissa is all-zero). Thereby, it is more pragmatic to sacrifices
0 and 1 because of their uniqueness. In the first attempt, we try to produce the 23-
bit pseudo random number by giving a 23-bit number as the static seed for the first
LFSR and input the pseudo random number to the second LFSR as its dynamic seed.
Then, concatenate “0_0111_1110” to the output of the second LFSR to constitute
a 32-bit FP number. However, the final pseudo random number tends to be very
small. This method is modified by generating 27-bit pseudo random number, setting
the exponent to “0111_1110” if it is larger, and concatenating “0_0111” to the 27-
bit number. By this way, a more uniform distributed FP random number sequence is
obtained.

8.3 Robot Path Planning with FPGA Implementation 265

8.3.3 Enzymatic Numerical P System Rapid-Exploring Random
Tree Register Transfer Level (ENPS-RRT RTL) Model Design

IEEE 754 single precision FP standard is resource/power hungry for its long bit
width [45]. As stated above, considering the complexity of RRT algorithm and the
capacity of our target FPGA, we contrive an ENPS-arranged RRT model generates
two RRT points in an environment with merely eight obstacle points. Despite its
simplicity in terms of the quite limit RRT points and obstacles, the methodology
presented takes effect to generate more RRT points in an environment with large-
scale obstacle points for it is scalable. Verilog is employed as the HDL to design
RTL model of ENPS-RRT. The “module” hereafter refers to Verilog module.

On account of the interaction between enzymatic variables and conditional
rules, the computational process of an ENPS is deterministic. Meanwhile, the
introduction of flag signal sequences the processing order of ENPS-RRT. Under
this circumstance, the function of enzymes is substituted by flag signals. The root
cause of this replacement is that we cannot instantiate a module (e.g., a FP unit)
in the if-else construct of HDL, while fixed point arithmetic can be contained for
the using of operators, where the quantitative relations of enzymatic variables and
variables in the production functions are expressed in the condition of if.

As computing arithmetic by instantiating FP units correspondingly, the RTL
model of ENPS-RRT illustrated in Fig. 8.19 is designed in accordance with arith-
metic operations in it. Figure 8.19 presents the RTL model generating one RRT
point in an environment with two obstacle points. Due to the conspicuous structural
complicity, it is unfeasible to present a legible panorama RTL model block diagram
of ENPS-RRT so only this part is given (in effect, Vivado indeed draws an
exhaustive schematic. Nevertheless, because of the sophistication, the connections
are too small to read when expanding modules to FP unit level). Robot initial point
(x1, y1) is the root of all RRT point. When computing the first potential RRT point,
it is the only RRT point and regarded as the nearest point to the first random point.
So there is no comparison module to determine the nearest RRT point to the random
point.

Two LFSR-based PRNG modules random keep working all the time to produce
FP number sequence, and their random number output ports are connected to
module co_rand1 which generates the first random point (xrand1, yrand1). The
RTL model of ENPS-RRT begins to work after the port begin of co_rand1
receiving a rising edge. This is done by connecting port begin to the pin of a button
in the FPGA developing board. co_rand1 contains two Fp_mul_Eg multipliers
to execute rule Pr1−1 and Pr2−1 of ENPS-RRT concurrently. After random point
(xrand1, yrand1) is obtained, the control port of co_rand1 emits a flag signal to
the state port of module d1_1 to stimulate it, which begins to calculate the square
distance between (x1, y1) and (xrand1, yrand1) (Pr4−1). d1_1 is composed of two
Fp_add_Egs which compute the coordinate differences between initial point and
the random point, two Fp_mul_Es that calculates the squares of two differences,
and one Fp_add_Egsc that gives the square sum.

266 8 Applications of Hardware Implementation of P Systems

co_rand1

r_x

r_y

d1_1
x2

control

Fp_invsqrt1

clk
p

begin

q

state

y2

clk

seed

r_x
random fp_rand

clk

seed

r_x
random fp_rand

control

d1_1

clk

x1

state

clk
control

insq

Fp_add_Egsx1

state

y1

clk

Fp_add_Egsx1

state

y1

clk

coor_new1

state

clk

x1

y1

r_x

r_y

control

dif_mul_sum

state

clk

x1

y1

u1

control

y2

x2

Fp_divdvd

dvr qut

controlstate

clk

x1

y1

d_2
x2

state

y2

control

d_2

clk

x1

y1

d_3
x2

state

y2

control

d_3

clk

x1

y1

coor_p1

state

clk

x1

y1

r_x

r_y

control

y2

x2

d_4
x2

state

y2

control

d_4

clk

x1

y1

Comp

pvd

evd1

evd2
psd

d_1
x2

state

y2

control

d_1

clk

x1

y1

dif_mul_sum

state

clk

x1

y1

u1

control

y2

x2

d_1
x2

state

y2

control

d_1

clk

x1

y1

Fp_divdvd

dvr qut

controlstate

clk

d_2
x2

state

y2

control

d_2

clk

x1

y1

d_3
x2

state

y2

control

d_3

clk

x1

y1

coor_p1

state

clk

x1

y1

r_x

r_y

control

y2

x2

d_4
x2

state

y2

control

d_4

clk

x1

y1

Comp

pvd

evd1

evd2
psd

Fp_add_Egsx1

state

y1

clk

Fp_add_Egsx1

state

y1

clk

Min_sq
c

control1

control2
a

state

b

clk

c

c

δ

Fig. 8.19 RTL model of the ENPS-RRT generating the first RRT point. The detailed interconnec-
tions of modules are omitted for they are excessively complicated. From [44]

8.3 Robot Path Planning with FPGA Implementation 267

Module Fp_invsqrt1 calculates inverse square root of d1
1 . Alongside the

processing of Fp_invsqrt1, compute coordinate difference of (xrand1, yrand1)
and (x1, y1) with two Fp_add_Egs. Then, flag signal fromFp_invsqrt1 activates
module coor_new1 comprising four Fp_mul_Ess and two Fp_add_Egsc to
calculate the first potential RRT point (xnew1, ynew1) (Pr6−1 and Pr7−1).

After the potential RRT point is derived, if the line segment taking (x1, y1) and
(xnew1, ynew1) as the two endpoints is obstacle free, i.e., all the distances from
obstacle points to this segment are larger than robot rotation radius (ξ), then this
potential point is indeed a RRT point. This verification begins with the simultaneous
computation of Pr1−2, Pr2−2, Pr3−2, and Pr4−2 by module dif_mul_sum,d_1,
d_2, and d_3, respectively. Module coor_p1 deals with rule Pr8−2 and Pr9−2.
Pr11−2 is coped with d_4. The distance selection rule Pr13−2 is determined by
Comp. All these modules are packed in a higher level module pdist.

Distances between eight obstacle points and the line segment (x1, y1) −
(xnew1, ynew1) are computed in parallel so the performance will be improved to
a large extent, especially for large amount of obstacle points. When the eight
distances are obtained, seven Min_sqs in total are needed to figure out the smallest
distance. Execute ξ − distance to the two smallest distances, and utilize another
Min_sq to output the minimal distance. If it is negative, the segment is obstacle
free, and the potential point is a valid RRT point. Then the first RRT point is stored
as (xrrt1, yrrt1), sending a flag signal from port control2 of Min_sq to activate
the computation of the second potential RRT point. Otherwise discard this point;
transmit a flag signal from port control1 of Min_sq to port state of co_rand1
to resume the calculation of (xnew1, ynew1) until it is a RRT point. Membranes
included in a dashed block called compare1/2 in Fig. 8.16 carries out the work of
the eight Min_sqs.

In order to compute the second potential RRT point, the nearest point to
the second random point (xrand2, yrand2) should be chosen from (x1, y1) and
(xrrt1, yrrt1). This process corresponds to rules Pr1−18 to Pr8−18 in ENPS-RRT,
and module nearest2 performs this work. After the second potential point
(xnew2, ynew2) is obtained, carry out the verification stated above to confirm whether
it is a RRT point. To scale the module to incorporate more obstacle points, one can
instantiate more pdist modules and enlarge the comparison logic for selecting the
minimum distance.

NPS and ENPS can be simulated by a software named PeP. PeP can also
offer elapsed time (in seconds) used to compute some predefined steps. From a
hardware point of view, the software simulation is a CPU implementation of an
algorithm. As a result, this returns time reflecting the performance of the CPU
in host computer. Furthermore, this CPU implementation time is indispensable to
compute the speedup of FPGA implementation of NPS. The PeP simulation results
of ENPS-RRT are given in Fig. 8.20.

268 8 Applications of Hardware Implementation of P Systems

(a) ENPS-RRT membrane 1 simulation results which contains the first RRT point (8.06, 9.86) .

(b) ENPS-RRT membrane 18 simulation results which contains the second RRT point (8.18, 9.78) .

Fig. 8.20 PeP simulation of ENPS-RRT which performs 34 steps and costs 0.097948 s to get
results. The results of PeP save two significant digits. From [44]

8.3.4 ENPS-RRT on FPGA

The hardware facilities involved in FPGA implementation are a host computer
equipped with an Intel Core i7-7820HQ and 16 GB RAM; a Xilinx VC707
evaluation board featured a Virtex-7 XC7VX485T-2FFG1761 FPGA [49]. The
FPGA integrated developing environment employed is Xilinx Vivado 2019.1.

For the sake of ensuring that RTL model behaves as expected, a testbench should
be designed to validate it. An ENPS-RRT RTL model is instantiated in the testbench,
together with the clock cycle declaration and initial value setup of input variables.
Then, perform RTL model behavioral simulation which presents the model behavior
by drawing waveforms of variables. The RTL model turned out to function well
if waveforms and values meet design objectives. Set clock period as 10 ns; the
behavioral simulation waveform of ENPS-RRT is given in Fig. 8.21. Note, the
length of clock period is not important for behavioral simulation because it is a
software simulation conducted by host computer CPU, and all the gate latencies
and datapath latencies are neglected. As a consequence, behavioral simulation can
verify the functionality of a RTL model but void of timing analysis.

8.3 Robot Path Planning with FPGA Implementation 269

Fig. 8.21 The behavioral simulation waveform of RRT-GNPS RTL model. The red waveforms are
caused by the lack of initial values of variables. This phenomenon can be eliminated by assigning
initial values to reg variables. From [44]

If the behavior of RTL model meets requirements, the subsequent action is
to synthesize design which is done automatically after clicking synthesis icon in
Vivado. Once synthesis completes, two important procedures should be performed:
set constraints and hardware debug cores. Constraints include physical constants
and timing constraints. Physical constants define the correspondence relationship
between RTL model input/output ports and FPGA input/out pins. Timing constraints
set clock cycle and input/output delays and other constraints related to clock.
Obstacle points are assigned to corresponding variables via Verilog system task
“$readmemh” from a .txt file stored in host computer, instead of accessing these
data through pins. So the input ports are clock input and co_rand1’s begin port.
The computational results of FPGA cannot be observed directly but can be checked
by performing hardware debug in the integrated logic analyzer (ILA). To observe
a variable, a debug core should be set in the synthesized model to probe values
obtained in FPGA. Perform debug core setting after synthesizing model at least
once.

Target FPGA has two differential clock pins. To generate a clock from these
two pins, a global clock input buffer IBUFGDS whose input ports are the two pins
should be instantiated to output a clock with period defined by timing constraints.
The second RRT point’s y-coordinate (y3) is selected to output so pins should be
allocated to y3 port. This is a vector port with 32-bit; hence it needs 32pins. With
respect to the complicity of ENPS-RRT, the clock period is set to 40 ns, which means
the FPGA harden ENPS-RRT computes 2.5 × 107 times per second (the frequency
is 25 MHz). This set may be modified after implementation if it fails to meet timing
closure.

9.7948 × 107 ÷ 3.05901 × 103 = 3.20195 × 104 (8.8)

270 8 Applications of Hardware Implementation of P Systems

(a) Post implementation timing simulation waveform of (2 2) .

(b) Post implementation timing simulation waveform of (3 3) .

Fig. 8.22 The stable value of first RRT point (x2, y2) appears at 1428979 ps (1428.979 ns),
while the second RRT point (x3, y3)arises at 1630027 ps (1630.027 ns). The total elapsed time
is 1428.979 + 1630.027 = 3059.01 ns. From [44]

(a) Hardware resource utilization of RRT-GNPS. (b) Power consumption of RRT-GNPS is 0.716 w.

Fig. 8.23 The resource utilization and power consumption of ENPS-RRT. From [44]

After RTL model is synthesized successfully, carry on implementation in
which conducts netlist/power optimization, reports timing together with hardware
resource/power consumption, and completes Place & Route. Gate delay and
datapath delay are taken into account during implementation to evaluate timing
situation so post implementation timing simulation can reflect the real performance
of the implemented model. Post implementation timing simulation of ENPS-RRT is
shown in Fig. 8.22. FPGA costs nearly 3059.01 ns to obtain two RRT points, while
host computer CPU costs 0.097948 s to get them. So the speedup is computed in
Eq. (8.8).

The resource utilization and power consumption of ENPS-RRT are shown in
Fig. 8.23. ENPS-RRT costs 43% of look-up table (LUT) because of the long bit
width of IEEE 754 representation. If narrow bit width FP format, e.g., 16-bit FP, or
floating point representation is used, the LUT utilization can be reduced by almost

8.3 Robot Path Planning with FPGA Implementation 271

Fig. 8.24 The Place & Route of ENPS-RRT

half. 16% of DSP resource is utilized by arithmetic operations. Narrow bit width FP
or fixed point format will decrease this amount as well. The consumptions of other
resources make up small percentages. The Place & Route of ENPS-RRT is given in
Fig. 8.24.

This research organizes RRT algorithm into the formal framework of ENPS and
resorts to the parallel architecture of FPGA to speedup this computation-intensive
algorithm. An ENPS-RRT FPGA implementation method working on IEEE 754
floating point arithmetic units is proposed. Since the fact that carries out arithmetic
operations by instantiating a serial of FP units, the function of enzymatic variables
is replaced by flag signals signifying the completion of FP units. A tandem LFSR-
based FP number generator producing IEEE 754 compliant FP numbers in the range
of (0, 1) is devised to provide random numbers for ENPS-RRT. Compared to CPU
simulation of ENPS-RRT, the FPGA hardened counterpart achieves a speedup of
104 order of magnitude. If narrow bit width FP units or fixed point arithmetic are
used to represent arithmetical expressions, the potential speedup could be an order
of 105.

272 8 Applications of Hardware Implementation of P Systems

8.4 Conclusion

This chapter concentrated on two examples of concrete applications using P systems
and implemented using FPGA hardware. The applications discussed in Sects. 8.2
and 8.3 target the area of robotic control that already has many successful applica-
tions using variants of numerical P systems. Traditional approaches in robotics use
on-board computers or remote control to perform many computationally intensive
tasks, as the power of robot microcontroller driving actuators and analyzing sensors
is not sufficient for most of them.

The approach presented in this chapter is different. It aims to create a specialized
FPGA-based hardware unit that would quickly carry out the needed computations
and that would communicate directly with the robot microcontroller. This allows
to conceive autonomous robots that do not require a computer for operation. The
applications described earlier in this chapter show that it is possible to design a chip
that would control the robot movement at a local (PID with obstacle avoidance) and
global (path-planning to a goal) level.

Moreover, it is also possible to replace the robot microcontroller by FPGA
either by integrating a soft or hard microprocessor in the FPGA design or by
writing appropriate drivers that would allow the FPGA to interact directly with
the sensors and actuators. This opens the possibility for a very fast reaction time,
3–4 magnitudes faster than traditional approaches. As pointed out in Chap. 7, at
the moment data acquisition speed from sensors is relatively low with respect to
the FPGA speed, so there are no immediate gains using the proposed approach.
However, with the advent of faster sensors, the gains will be consequent. We remark
that the traditional architecture hits its limits because the communication between
the robot microcontroller and the external computing device is usually performed
using a serial port (either directly, or via WiFi or Bluetooth bridges), which features
relatively low communication speeds. Hence, at the moment, there is a bottleneck
that does not allow to use high-speed data acquisition directly on the device. This
problem can be easily solved by using FPGA-based designs, as they allow to
incorporate faster communication channels. In our opinion, this is a very promising
research direction.

As discussed in Chap. 7, the translation of GNPS to a hardware design is not very
complex, and it is quite well investigated (see the PhD [42]). So, the main challenge
is to encode algorithms in a parallel manner using the formalism of GNPS. As
shown in Sect. 8.3, complex algorithms like RRT can be parallelized and expressed
in GNPS, so it is reasonable to admit that more applications of such type would
appear in the nearest future.

The hardware implementation of tissue P systems [29], SN P systems [7, 19,
20] and their variants [40, 50, 51] to real-life applications is also promising future
direction.

References 273

References

1. I. Aguinaga, D. Borro, L. Matey, Parallel RRT-based path planning for selective disassembly
planning. Int. J. Adv. Manuf. Technol. 36(11–12), 1221–1233 (2008). https://doi.org/10.1007/
s00170-007-0930-2

2. C. Buiu, C. I. Vasile, O. Arsene, Development of membrane controllers for mobile robots. Inf.
Sci. 187, 33–51 (2012). https://doi.org//10.1016/j.ins.2011.10.007

3. C. Buiu, A. George. Membrane Computing models and robot controller design, current results
and challenges. J. Membr. Comput. 1(4), 262–269 (2019). https://doi.org/10.1007/s41965-019-
00029-8

4. F.G.C. Cabarle, H.N. Adorna, M.A. Martínez-del-Amor, A Spiking neural P system simulator
based on CUDA, in Membrane Computing. CMC 2011, ed. by M. Gheorghe, Gh. Păun, G.
Rozenberg, A. Salomaa, S. Verlan. Lecture Notes in Computer Science, vol. 7184 (2012), pp.
87–103. https://doi.org/10.1007/978-3-642-28024-5_8

5. J.M. Cecilia, J.M. García, G.D. Guerrero, M.A. Martínez-del-Amor, I. Pérez-Hurtado, M.J.
Pérez-Jiménez, Implementing P systems parallelism by means of GPUs, Membrane Comput-
ing. WMC 2009, ed. by in Gh. Păun, M.J. Pérez-Jiménez, A. Riscos, G. Rozenberg, A. Salomaa.
Lecture Notes in Computer Science, vol. 5957 (2010), pp. 227–241. https://doi.org/10.1007/
978-3-642-11467-0_17

6. J.M. Cecilia, J.M. García, G.D. Guerrero, M.A. Martínez-del-Amor, M.J. Pérez-Jiménez, M.
Ujaldón, The GPU on the simulation of cellular computing models. Soft Comput. 16(2), 231–
246 (2012). https://doi.org/10.1007/s00500-011-0716-1

7. R.T.A. de la Cruz, F.G.C. Cabarle, H.N. Adorna, Generating context-free languages using
spiking neural P systems with structural plasticity. J. Membr. Comput. 1(3), 161–177 (2019).
https://doi.org/10.1007/s41965-019-00021-2

8. E. Csuhaj-Varjú, M. Gheorghe, R. Lefticaru, P colonies and kernel P systems. Int. J. Adv. Eng.
Sci. Appl. Math. 10 (3), 181–192 (2018). https://doi.org/10.1007/s12572-018-0224-y

9. D. Devaurs, T. Siméon, J. Cortés, A multi-tree extension of the transition-based RRT: appli-
cation to ordering-and-pathfinding problems in continuous cost spaces, in 2014 Proceedings
of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (2014), pp.
2991–2996. https://doi.org/10.13140/RG.2.1.1210.3523

10. N. Elkhani, R. C. Muniyandi, G. Zhang, Multi-Objective Binary PSO with kernel P system on
GPU. Int. J. Comput. Commun. Control 13(3), 323–336 (2018). https://doi.org/10.15837/ijccc.
2018.3.3282

11. S. Fan, Y. Gong, G. Zhang, Y. Xiao, H. Rong, P. Paul, X. Ma, H. Huang, M. Gheorghe,
Implementation of kernel P systems in CUDA for solving NP-hard problems. Int. J. Unconv.
Comput. 16(2/3), 259–278 (2021)

12. M. García-Quismondo, R. Gutiérrez-Escudero, M.A. Martínez-del-Amor, E. Orejuela-Pinedo,
I. Pérez-Hurtado, P-Lingua 2.0: a software framework for cell-like P systems. Int. J. Comput.
Commun. Control 4(3), 234–243 (2009). https://doi.org/10.15837/ijccc.2009.3.2431

13. M. Gheorghe, F. Ipate, R. Lefticaru, M.J. Pérez-Jiménez, A. Turcanu, L. Valencia-Cabrera, M.
García-Quismondo, L. Mierla, 3-COL problem modelling using simple kernel P systems. Int.
J. Comput. Math. 90(4), 816–830 (2013). https://doi.org/10.1080/00207160.2012.743712

14. M. Gheorghe, R. Ceterchi, F. Ipate, S. Konur, R. Lefticaru. Kernel P systems: from modelling
to verification and testing. Theor. Comput. Sci. 724, 45–60 (2018). https://doi.org/10.1016/j.
tcs.2017.12.010

15. Z. Huang, J. Dong, Y. Duan, G. Zhang, Mobile robot membrane controller design with
enzymatic numerical P systems for obstacle avoidance behavior. Comput. Syst. Appl. 28(7),
17–25 (2019) (in Chinese). https://doi.org/10.15888/j.cnki.csa.006976

16. F. Ipate, C. Dragomir, R. Lefticaru, L. Mierla, M.J. Pérez-Jiménez, Using a kernel P system
to solve the 3-COL problem, in Pre-Proceedings of the 13th International Conference on
Membrane Computing, CMC13 (2012), pp. 243–258

https://doi.org/10.1007/s00170-007-0930-2
https://doi.org/10.1007/s00170-007-0930-2
https://doi.org//10.1016/j.ins.2011.10.007
https://doi.org/10.1007/s41965-019-00029-8
https://doi.org/10.1007/s41965-019-00029-8
https://doi.org/10.1007/978-3-642-28024-5_8
https://doi.org/10.1007/978-3-642-11467-0_17
https://doi.org/10.1007/978-3-642-11467-0_17
https://doi.org/10.1007/s00500-011-0716-1
https://doi.org/10.1007/s41965-019-00021-2
https://doi.org/10.1007/s12572-018-0224-y
https://doi.org/10.13140/RG.2.1.1210.3523
https://doi.org/10.15837/ijccc.2018.3.3282
https://doi.org/10.15837/ijccc.2018.3.3282
https://doi.org/10.15837/ijccc.2009.3.2431
https://doi.org/10.1080/00207160.2012.743712
https://doi.org/10.1016/j.tcs.2017.12.010
https://doi.org/10.1016/j.tcs.2017.12.010
https://doi.org/10.15888/j.cnki.csa.006976

274 8 Applications of Hardware Implementation of P Systems

17. F. Ipate, R. Lefticaru, L. Mierla, L. Valencia-Cabrera, H. Han, G. Zhang, C. Dragomir,
M.J. Pérez-Jiménez, M. Gheorghe, Kernel P systems: applications and implementations, in
Proceedings of The Eighth International Conference on Bio-Inspired Computing: Theories and
Applications (BIC-TA), 2013, ed. by Z. Yin, L. Pan, X. Fang. Advances in Intelligent Systems
and Computing (2013), pp.1081–1089. https://doi.org/10.1007/978-3-642-37502-6_126

18. L. Jaillet, J. Cortés, T. Simeon, Transition-based RRT for path planning in continuous cost
spaces, in 2008 Proceedings of IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS) (2008), pp. 2145–2150. https://doi.org/10.1109/IROS.2008.4650993

19. Y. Jiang, Y. Su, F. Luo, An improved universal spiking neural P system with generalized use of
rules. J. Membr. Comput. 1(4), 270–278 (2019). https://doi.org/10.1007/s41965-019-00025-y.

20. Z.B. Jiménez, F.G.C. Cabarle, R.T.A. de la Cruz, K.C. Buño, H.N. Adorna, N.H.S. Hernandez,
X. Zeng, Matrix representation and simulation algorithm of spiking neural P systems with
structural plasticity. J. Membr. Comput. 1(3), 145–160 (2019). https://doi.org/10.1007/s41965-
019-00020-3

21. P. Kohlbrenner, K. Gaj, An embedded true random number generator for FPGAs, in Proceed-
ings of the ACM/SIGDA 12th International Symposium on Field Programmable Gate Arrays.
Monterey, California, USA, February 22–24 (2004), pp. 71–78 https://doi.org/10.1145/968280.
968292

22. S.M. LaValle, Rapidly-Exploring Random Trees: A New Tool for Path Planning. TR 98-11,
Computer Science Dept., Iowa State University, October 1998. http://lavalle.pl/papers/Lav98c.
pdf

23. S.M. LaValle, J.J. Kuffner, Rapidly-exploring random trees: progress and prospects, in 2000
Proceedings of IEEE International Conference on Robotics and Automation, (2000), pp. 995–
1001

24. C. Lomont, Fast Inverse Square Root. Technical Report, Department of Mathematics, Purdue
University (2003)

25. M. Majzoobi, F. Koushanfar, S. Devadas, FPGA-based true random number generation
using circuit metastability with adaptive feedback control, in Cryptographic Hardware and
Embedded Systems—CHES 2011. CHES 2011, ed. by B. Preneel, T. Takagi. Lecture Notes in
Computer Science, vol. 6917 (2011), pp. 17–32. https://doi.org/10.1007/978-3-642-23951-9_
2

26. G.S. Malik, FPGA Based Massively Parallel Architectures for Super Fast Path Planning via
Rapidly Exploring Random Trees (RRT). Master Thesis, International Institute of Information
Technology, Hyderabad, 2016

27. G.S. Malik, K. Gupta, K.M. Krishna, S.R. Chowdhury, FPGA based hierarchical architecture
for parallelizing RRT, in Proceedings of the 2015 Conference on Advances in Robotics. AIR
2015, Goa, India, July 2–4 (2015), pp. 121–126

28. G. Malik, K. Gupta, R. Dharani, K.M. Krishna, FPGA based hybrid architecture for paralleliz-
ing RRT. Comput. Res. Rep. (2015). abs/1607.05704

29. C. Martín-Vide, Gh. Păun, J. Pazos, A. Rodrıguez-Patón, Tissue P systems. Theor. Comput.
Sci. 296(2), 295–326 (2003). https://doi.org/10.1016/S0304-3975(02)00659-X

30. M.A. Martínez-del-Amor, Accelerating Membrane Systems Simulators using High Perfor-
mance Computing with GPU, Ph.D. Thesis, Universidad de Sevilla, 2013. http://hdl.handle.
net/11441/15644

31. C. Nvidia, NVIDIA CUDA programming guide. http://docs.nvidia.com/cuda/cuda-c-best-
practices-guide/

32. Omron Co. Ltd., Pioneer 3 Operations Manual (2017)
33. D. Orellana-Martín, L. Valencia-Cabrera, A. Riscos-Núñez, M.J. Pérez-Jiménez, P systems

with proteins: a new frontier when membrane division disappears. J. Membr. Comput. 1(1),
29–39 (2019). https://doi.org/10.1007/s41965-018-00003-w

34. Gh. Păun, G. Rozenberg, A. Salomaa (eds.), The Oxford Handbook of Membrane Computing
(Oxford University Press, Oxford, 2010)

https://doi.org/10.1007/978-3-642-37502-6_126
https://doi.org/10.1109/IROS.2008.4650993
https://doi.org/10.1007/s41965-019-00025-y
https://doi.org/10.1007/s41965-019-00020-3
https://doi.org/10.1007/s41965-019-00020-3
https://doi.org/10.1145/968280.968292
https://doi.org/10.1145/968280.968292
http://lavalle.pl/papers/Lav98c.pdf
http://lavalle.pl/papers/Lav98c.pdf
https://doi.org/10.1007/978-3-642-23951-9_2
https://doi.org/10.1007/978-3-642-23951-9_2
https://doi.org/10.1016/S0304-3975(02)00659-X
http://hdl.handle.net/11441/15644
http://hdl.handle.net/11441/15644
http://docs.nvidia.com/cuda/cuda-c-best-practices-guide/
http://docs.nvidia.com/cuda/cuda-c-best-practices-guide/
https://doi.org/10.1007/s41965-018-00003-w

References 275

35. A.B. Pavel, C. Buiu, Using enzymatic numerical P systems for modeling mobile robot
controllers. Nat. Comput. 11(3), 387–393 (2012). https://doi.org/10.1007/s11047-011-9286-
5

36. A.B. Pavel, C.I. Vasile, I. Dumitrache, Robot localization implemented with enzymatic
numerical P systems, in Biomimetic and Biohybrid Systems. Living Machines 2012, ed. by
T.J. Prescott, N.F. Lepora, A. Mura, P.F.M.J. Verschure. Lecture Notes in Computer Science,
vol. 7375 (2012), pp. 204–215. https://doi.org/10.1007/978-3-642-31525-1_18

37. R. Pepy, A. Lambert, Safe path planning in an uncertain-configuration space using RRT, in
2006 Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS) (2006), pp. 5376–5381. https://doi.org/10.1109/IROS.2006.282101

38. I. Pérez-Hurtado, M.J. Pérez-Jiménez, G. Zhang, D. Orellana-Martín, Simulation of rapidly-
exploring random trees in membrane computing with P-lingua and automatic programming.
Int. J. Comput. Commun. Control 13(6), 1007–1031 (2018). https://doi.org/10.15837/ijccc.
2018.6.3370

39. M.J. Pérez-Jiménez, A. Riscos-Núñez, Solving the subset-sum problem by P systems
with active membranes. N. Gener. Comput. 23(4), 339–356 (2005). https://doi.org/10.1007/
BF03037637

40. H. Rong, K. Yi, G. Zhang, J. Dong, P. Paul, Z. Huang, Automatic implementation of
fuzzy reasoning spiking neural P systems for diagnosing faults in complex power systems.
Complexity 2019, 2635714 (2019). https://doi.org/10.1155/2019/2635714

41. Ryszard. Origin of Quake3’s Fast InvSqrt(). https://www.beyond3d.com/content/articles/8/
42. Z. Shang, Hardware Implementation of Cell-inspired Computational Models. Ph.D. Thesis,

University Paris-Est Créteil Val de Marne, 2020
43. Z. Shang, S. Verlan, G. Zhang, I. Pérez-Hurtado, FPGA Implementation of robot obstacle

avoidance controller based on enzymatic numerical P systems, in Pre-proceedings of the 8th
Asian Branch of International Conference on Membrane Computing, November 14–17, 2019,
Xiamen, China, 184–214

44. Z. Shang, S. Verlan, G. Zhang, I. Pérez-Hurtado. FPGA Architecture for generalized numerical
P system arranged rapid-exploring random tree algorithm, in Pre-Proceedings of the 2020
International Conference on Membrane Computing. September 14–18, 2020, Ulaanbaatar,
Mongolia

45. J.Y.F. Tong, D. Nagle, R.A. Rutenbar, Reducing power by optimizing the necessary pre-
cision/range of floating-point arithmetic. IEEE Trans. Very Large Scale Integr. Syst. 8(3),
273–286 (2000). https://doi.org/10.1109/92.845894

46. K.H. Tsoi, K.H. Leung, P.H.W. Leong, Compact FPGA-based true and pseudo random number
generators, in 11th Annual IEEE Symposium on Field-Programmable Custom Computing
Machines, FCCM 2003, Napa, CA, USA, 2003, pp. 51–61. https://doi.org/10.1109/FPGA.
2003.1227241

47. H. Umari, S. Mukhopadhyay, Autonomous robotic exploration based on multiple rapidly-
exploring randomized trees, in 2017 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), Vancouver, BC, 2017, pp. 1396–1402. https://doi.org/10.1109/IROS.
2017.8202319

48. C.I. Vasile, A.B. Pavel, I. Dumitrache, J. Kelemen, Implementing obstacle avoidance and
follower behaviors on Koala robots using numerical P systems, in Proceedings of the Tenth
Brainstorming Week on Membrane Computing, ed. by M. García-Quismondo, L.F. Macías-
Ramos, Gh. Păun, L. Valencia-Cabrera, vol. II (Fénix Editora, 2012), pp. 215–228

49. Virtex-7 FPGA VC707 Evaluation Kit. https://www.xilinx.com/products/boards-and-kits/ek-
v7-vc707-g.html#overview

50. T. Wang, G. Zhang, H. Rong, M.J. Pérez-Jiménez, Application of fuzzy reasoning spiking
neural P systems to fault diagnosis. Int. J. Comput. Commun. Control 9(6), 786–799 (2014).
https://doi.org/10.15837/ijccc.2014.6.1485

51. T. Wang, G. Zhang, J. Zhao, Z. He, J. Wang, M. Pérez-Jiménez, Fault diagnosis of electric
power systems based on fuzzy reasoning spiking neural P systems. IEEE Trans. Power Syst.
30(3), 1182–1194 (2015). https://doi.org/10.1109/TPWRS.2014.2347699

https://doi.org/10.1007/s11047-011-9286-5
https://doi.org/10.1007/s11047-011-9286-5
https://doi.org/10.1007/978-3-642-31525-1_18
https://doi.org/10.1109/IROS.2006.282101
https://doi.org/10.15837/ijccc.2018.6.3370
https://doi.org/10.15837/ijccc.2018.6.3370
https://doi.org/10.1007/BF03037637
https://doi.org/10.1007/BF03037637
https://doi.org/10.1155/2019/2635714
https://www.beyond3d.com/content/articles/8/
https://doi.org/10.1109/92.845894
https://doi.org/10.1109/FPGA.2003.1227241
https://doi.org/10.1109/FPGA.2003.1227241
https://doi.org/10.1109/IROS.2017.8202319
https://doi.org/10.1109/IROS.2017.8202319
https://www.xilinx.com/products/boards-and-kits/ek-v7-vc707-g.html#overview
https://www.xilinx.com/products/boards-and-kits/ek-v7-vc707-g.html#overview
https://doi.org/10.15837/ijccc.2014.6.1485
https://doi.org/10.1109/TPWRS.2014.2347699

276 8 Applications of Hardware Implementation of P Systems

52. X. Wang, G. Zhang, F. Neri, T. Jiang, J. Zhao, M. Gheorghe, F. Ipate, R. Lefticaru, Design
and implementation of membrane controllers for trajectory tracking of nonholonomic wheeled
mobile robots. Integr. Comput. Aided Eng. 23(1), 15–30 (2016). https://doi.org/10.3233/ICA-
150503

53. S. Xiao, N. Bergmann, A. Postula, Parallel RRT star architecture design for motion planning,
in 2017 27th International Conference on Field Programmable Logic and Applications (FPL),
Ghent, 2017, pp. 1–4. https://doi.org/10.23919/FPL.2017.8056773

https://doi.org/10.3233/ICA-150503
https://doi.org/10.3233/ICA-150503
https://doi.org/10.23919/FPL.2017.8056773

Correction to: Membrane ComputingModels:
Implementations

Gexiang Zhang • Mario J. Pérez-Jiménez • Agustín Riscos-Núñez •
Sergey Verlan • Savas Konur • Thomas Hinze • Marian Gheorghe

Correction to:
G. Zhang et al.,Membrane ComputingModels: Implementations,
https://doi.org/10.1007/978-981-16-1566-5

In the online version of the book, the name of the author Augustín Riscos-Núñes
was incorrect in all chapters, which has now been revised to Agustín Riscos-Núñez.

The updated online version of the chapter can be found at
https://doi.org/10.1007/978-981-16-1566-5

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2021
G. Zhang et al., Membrane Computing Models: Implementations,
https://doi.org/10.1007/978-981-16-1566-5_9

C1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-16-1566-5_9&domain=pdf
https://doi.org/10.1007/978-981-16-1566-5
https://doi.org/10.1007/978-981-16-1566-5
https://doi.org/10.1007/978-981-16-1566-5_9

Index

A
Activation energy, 122, 125
Activator, 1
Active membrane, 134
Agarose gel, 144
Alphabet, 32
Alternating current (AC), 132
Antiport, 1
Arrhenius equation, 129
Atom, 108, 137
Autocatalysis, 142
Automatic design of cell-like P systems, 34
Axon, 153
Axon segment, 153

B
Binding energy, 113
Bond length, 113
Brownian motion, 119

C
Carbon, 109
Catalyst, 1, 127
Cation, 152
Centrifugal force, 149
Centrifugation, 149
Chamber, 117, 144
Chemical bond, 112
Chemical Lotka-Volterra oscillator, 142
Chemical reaction

endothermic, 128
exothermic, 128

Chemical reaction rule, 122, 126, 137, 142
activate, 136
deactivate, 136

Collision, 122
central, 124
effective, 125, 126
elastic, 124
non-elastic, 124

Complexity, 1
Compound, 116
Computational model, 2
Computational power, 1
Compute Unified Device Architecture

(CUDA), 3
Concentration, 119, 135
Coulomb force, 111, 121, 133
Covalent, 112
Cuboid, 117

D
Delimiter, 117, 135, 137
Dendrites, 152
Direct current (DC), 132
Discretisation of space, 118
Dispersion, 149
Dissolution rule, 33

E
Electric field, 132, 145
Electrophoresis, 144
Elementary electric charge, 111
Emulsion, 149
ENPS, see Enzymatic numerical P system

(ENPS)
Environmental stimulus, 134
Enzymatic numerical P system (ENPS), 229
Exocytosis, 153

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2021
G. Zhang et al., Membrane Computing Models: Implementations,
https://doi.org/10.1007/978-981-16-1566-5

277

https://doi.org/10.1007/978-981-16-1566-5

278 Index

External force, 130, 137
electrical, 132, 145
mechanical, 131, 149

F
Field programmable gate array (FPGA), 3, 218

DSP, 220
flip-flop, 218
HDL, 220
lookup table, 218
LUT, 218
multiplexer, 218
RTL, 220
slice, 219

Force field
constant, 131
cylindrical, 132
oscillatory, 134
pulse, 134
radial, 133, 149

Force vector, 130
FPGA, see Field programmable gate array

(FPGA)

G
Generalized numerical P system (GNPS), 221

basic variant, 226
signature, 226

implementation on FPGA, 230
normal form, 227
rule, 222

Genetic algorithm, 32
Genetic algorithm with permutation encoding

technique, 45
Gillespie algorithm, 77
Global quantity, 130
GNPS, see Generalized numerical P system

(GNPS)
Graphic processing units (GPUs), 3

H
Hard problem, 2
Hash table, 140
Hill climbing, 149

I
Implementation, 2
Infobiotics Workbench (IBW), 71
Inhibitor, 1

Inner energy, 128
Instruction, 128, 134, 137
Ion, 110, 137
Ion channel, 154
Ion lattice, 113

J
Java Environment for Nature-Inspired

Approaches (JENA), 101

K
Kinetic energy, 122
KPWorkbench, 93

L
Lattice, 73
Lattice population P systems, 73
Length, 32
Living cell, 1
LPP modules, 76

M
Mass conservation, 127
Maxwell-Boltzmann distribution, 120
MC2 model checker, 82
Membrane computing, 1
Membrane electrical charge, 1
Membrane potential, 153
Membrane system, 1
Membrane thickness, 1
Method of growing bubbles, 118
Model checking, 80
Model optimisation, 83
Molecule, 112, 137
Momentum conservation, 124
Multi-compartmental stochastic simulation

(MCSS), 77
Multiplicity, 32
Multiset, 32

N
Natural computing, 1
Neural signal transduction, 152
Neuron, 152
Neurotransmitter, 153
NPS, see Numerical P system (NPS)
Numerical P system (NPS), 228

Index 279

O
Object, 1
Optimisation in IBW, 82

P
Parameter optimisation, 82
Particle, 137

immoveable, 114, 129, 135
moveable, 114, 129, 136
solid, 114

Pellet, 150
Permutation penalty genetic algorithm

(PPGA), 40
Phase, 150
Plane, 131
Plasmid, 147
P-Lingua simulator, 34
PModelchecker, 82
Point charge, 132
Point of injection, 119
POptimizer, 83
Position vector, 113, 121
Presburger arithmetic, 226
Prism model checker, 82
Probabilistic model checking, 81
Product, 125
Programmability of a P system, 31
P system modules, 75
P systems, 1, 71
Pulse generator, 85
Pulsing cell, 85

Q
Qualitative analysis, 93
Queries, 88

R
Reflection, 122
Repressilator, 90
Rewriting-communication rule, 33
Rewriting rules, 33, 73
Rooted tree, 33
Rotor, 149

S
Sender cell, 85

Simulation in IBW, 77
Spatial separation, 130
Species, 119
Speed vector, 119, 121
Spheric cover, 113
Spike, 142, 152
Spontaneous decay, 129
SRSim, 141
Statistical model checking, 82
Stochastic P systems, 72
Stochastic simulation algorithm, 77
Stoichiometric factor, 126
Stokes’ law, 145
String, 32
Substance, 125
Suspension, 149
Symbol, 32
Symport, 1
Synapse, 153
Synaptic cleft, 153
Synaptic vesicle, 153
Synthetic biology, 94
Synthetic biology open language (SBOL), 94
Systems biology, 71
Systems Biology Markup Language (SBML),

94

T
Temperature, 118, 127, 134
Thermodynamics, 126
Time, 121
Time step, 121
Translocation rules, 75

U
Undirected graph, 32

V
Vector field, 130
Verification in IBW, 80
Vessel, 117, 137
Viscosity, 145
Voxel, 118, 121, 135

W
Water molecule, 114, 119

	Foreword
	Preface
	Acknowledgments
	Contents
	Acronyms
	1 Introduction
	1.1 Membrane Computing Overview
	1.2 Software Implementation of P Systems
	1.3 Hardware Implementation of P Systems
	1.4 Challenges of P Systems Implementation
	1.5 Concluding Remarks
	References

	2 P Systems Implementation on P-Lingua Framework
	2.1 Introduction
	2.2 P-Lingua Language
	2.2.1 P System Models
	2.2.2 Membrane Structure
	2.2.3 Initial Multisets
	2.2.4 P System Rules

	2.3 Simulation Algorithms
	2.4 Membrane Computing Simulator (MeCoSim)
	2.4.1 Primary goals
	2.4.2 Main Functional Components

	2.5 Conclusion
	References

	3 Applications of Software Implementations of P Systems
	3.1 Introduction
	3.2 Automatic Design of Cell-Like P Systems with P-Lingua
	3.2.1 Preliminaries
	3.2.1.1 Alphabet and Multisets
	3.2.1.2 Rooted Tree
	3.2.1.3 Cell-Like P System/Transition P System

	3.2.2 Automatic Design of P Systems with an Elitist Genetic Algorithm
	3.2.2.1 Problem Statement
	3.2.2.2 Design Method

	3.2.3 Automatic Design of P Systems with a Permutation Penalty Genetic Algorithm

	3.3 Automatic Design of Spiking Neural P Systems with P-Lingua
	3.4 Modelling Real Ecosystems with MeCoSim
	3.4.1 Problem Description

	3.5 Robot Motion Planning
	3.5.1 Problem Definition
	3.5.2 Path Planning for Mobile Robots
	3.5.3 Rapidly-Exploring Random Tree (RRT) Algorithm

	3.6 Conclusion
	References

	4 Infobiotics Workbench: An In Silico Software Suite for Computational Systems Biology
	4.1 Introduction
	4.2 Stochastic P Systems
	4.3 Software Description
	4.3.1 Simulation
	4.3.2 Verification
	4.3.3 Optimization

	4.4 Case Studies
	4.4.1 Pulse generator
	4.4.2 Repressilator

	4.5 KPWorkbench: A Qualitative Analysis Tool
	4.6 Next-Generation Infobiotics for Synthetic Biology
	4.7 Conclusion
	References

	5 Molecular Physics and Chemistry in Membranes: The Java Environment for Nature-Inspired Approaches (JENA)
	5.1 Introduction
	5.2 JENA at a Glance and Its Descriptive Capacity
	5.2.1 Atoms, Ions, Molecules, and Particles
	5.2.2 Vessels and Delimiters
	5.2.3 Brownian Motion and Thermodynamics
	5.2.4 Chemical Reactions by Effective Collisions and by Spontaneous Decay
	5.2.5 Applying External Forces
	5.2.6 Active Membranes and Dynamical Delimiters
	5.2.7 Simulation, Monitoring, Logging, and Analyses

	5.3 JENA Source Code Design
	5.4 Selection of JENA Case Studies
	5.4.1 Chemical Lotka-Volterra Oscillator
	5.4.2 Electrophoresis
	5.4.3 Centrifugation
	5.4.4 Neural Signal Transduction Across Synaptic Cleft

	5.5 Conclusions and Prospectives
	References

	6 P Systems Implementation on GPUs
	6.1 Introduction
	6.2 GPU Computing
	6.2.1 The Graphics Processing Unit
	6.2.2 CUDA Programming Model
	6.2.3 GPU Architecture
	6.2.4 Good Practices

	6.3 Generic Simulations
	6.3.1 Definition
	6.3.2 Simulating P Systems with Active Membranes
	6.3.2.1 Recognizer P Systems with Active Membranes
	6.3.2.2 Simulation Algorithm
	6.3.2.3 Sequential Simulator
	6.3.2.4 Parallel Simulation on CUDA
	6.3.2.5 Performance Comparative Analysis

	6.3.3 Simulating Population Dynamics P Systems
	6.3.3.1 Population Dynamics P Systems
	6.3.3.2 Simulation Algorithm
	6.3.3.3 Design of the Parallel Simulator
	6.3.3.4 GPU Implementation of the DCBA Phases
	6.3.3.5 Performance Results of the Simulator

	6.4 Specific Simulations
	6.4.1 Definition
	6.4.2 Simulating a SAT Solution with Active Membrane P Systems
	6.4.2.1 SAT Solution with Active Membranes
	6.4.2.2 Sequential Simulator and Data Structures
	6.4.2.3 Design of the GPU Simulator
	6.4.2.4 Performance Analysis

	6.4.3 Simulating a SAT Solution with Tissue P Systems
	6.4.3.1 Recognizer Tissue P System with Cell Division
	6.4.3.2 SAT Solution with Tissue P Systems
	6.4.3.3 Sequential Simulation and Data Structure
	6.4.3.4 Design of the Parallel Simulator
	6.4.3.5 Performance Analysis

	6.5 Adaptive Simulations
	6.5.1 Definition
	6.5.2 Simulating Population Dynamics P Systems
	6.5.2.1 Analysis of Performance Results

	6.6 Conclusions
	References

	7 P Systems Implementation on FPGA
	7.1 Introduction
	7.2 FPGA Hardware
	7.3 Generalized Numerical P Systems (GNPS)
	7.3.1 Formal Definition
	7.3.2 Basic Variant
	7.3.3 Historical Remarks

	7.4 Implementing GNPS on FPGA
	7.5 FPGA Implementations of Other Models of P Systems
	7.5.1 Petreska and Teuscher Implementation
	7.5.2 Nguyen Implementation
	7.5.3 Quiros and Verlan Implementation
	7.5.4 Comments

	7.6 Discussion
	7.7 Conclusion
	References

	8 Applications of Hardware Implementation of P Systems
	8.1 Introduction
	8.2 Robot Membrane Controllers with FPGA Implementation
	8.2.1 Numerical P Systems-Based Membrane Controllers on FPGA
	8.2.2 Enzymatic Numerical P Systems (ENPS)-Based Membrane Controllers on FPGA
	8.2.3 GNPS-Based Membrane Controllers on FPGA

	8.3 Robot Path Planning with FPGA Implementation
	8.3.1 RRT Algorithm
	8.3.2 Arithmetic Units Design
	8.3.3 Enzymatic Numerical P System Rapid-Exploring Random Tree Register Transfer Level (ENPS-RRT RTL) Model Design
	8.3.4 ENPS-RRT on FPGA

	8.4 Conclusion
	References

	Correction to: Membrane Computing Models: Implementations
	Index

