
Chapter 6
Consensus of Networked Multi-agent
Systems with Antagonistic Interactions
and Communication Delays

A common feature of previous consensus results is the focus on cooperative
systems [1–3]. The consensus of these systems is asymptotically achieved through
collaboration, which is characterized by the diffusive coupling [4] and the non-
negative weights among agents [5–8]. In many real-world cases, however, it is
more reasonable to consider that some agents collaborate with each other, while
others are competitive. Networks with antagonistic interactions are ubiquitous in
real world [9], and it becomes a focus for studying in recent years [10–15]. Altafini
[10] proved that bipartite consensus can be achieved over networks with antagonistic
interactions. Furthermore, in [16], emergent behaviors were investigated over signed
random dynamical networks. In [17], flocking behaviors were studied by using
results about signed graph. In [18], the leader-following bipartite consensus issue
for single-integrator multi-agent systems was investigated, where the signed digraph
was considered to be structurally balanced and had a spanning tree.

To achieve the consensus, each node in a network has to transmit its state
information to its neighbors via connections. However, because of physical and
environmental limitations, communication constraints between connected nodes
are unavoidable. As is well-known, the communication delay is one of the most
universal communication constraints. Motivated by the aforementioned discussions,
we investigate the consensus problem of signed networks with antagonistic inter-
actions and communication delays in this chapter. To the best of our knowledge,
only a few results have been done concerning such problem. Due to the difficulty
that antagonistic interactions and communication delays need to be simultaneously
considered, new techniques are required to deal with this problem. According to
matrix theory, Lyapunov theorem, and some other mathematical analysis, we found
that bipartite consensus can be achieved for those systems with communication
delays. Furthermore, in order to obtain the final bipartite consensus solution, we
construct an invariant function to study the relationship of the states of nodes and
their initial states. Using some mathematical analysis skills, we provide the bipartite
consensus solution with an explicit expression.
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6.1 Continuous-Time Multi-agent Consensus

6.1.1 Linear Coupling

In this section, we consider a multi-agent system formed by N linearly coupled
identical nodes, where each node’s dynamic is described as follows:

ẋi (t) =
N∑

j=1
| aij | [sgn(aij )xj (t − τij ) − xi(t)], i ∈ N , (6.1)

where xi(t) ∈ R
n is the state of node i at time t , and τij > 0 denotes the

communication delay from νj to νi for i �= j and τii = 0. A = [aij ]N×N is the
adjacency matrix of the network that is symmetric. Here it is assumed that there is
no self-closed loop, which means that aii = 0.

Throughout this section, the bipartite consensus of dynamical system (6.1) is said
to be realized if limt→∞ xi(t) = α for i ∈ V1 and limt→∞ xi(t) = −α for i ∈ V2.

Theorem 6.1 Consider the networked multi-agent system (6.1) with a connected
signed graph G(A). The bipartite consensus can be asymptotically reached if
G(A) is structurally balanced. If instead G(A) is structurally unbalanced, then
limt→∞ x(t) = 0.

Proof We first consider the case that G(A) is structurally balanced. According to
Lemma 1.8, one can obtain that ∃D ∈ D such that DAD has all nonnegative entries.
Let z(t) = Dx(t), we obtain that

zi(t) = σixi(t) , i ∈ N . (6.2)

Substituting (6.2) into (6.1) results in

σi żi(t) =
N∑

j=1
| aij | [sgn(aij )σj zj (t − τij ) − σizi(t)] , i ∈ N .

Since DAD is a nonnegative matrix, we have σisgn(aij )σj = 1. Using σ 2
i = 1, one

can obtain the following equation:

żi (t) =
N∑

j=1

| aij | [σisgn(aij )σj zj (t − τij ) − σ 2
i zi(t)]

=
N∑

j=1

| aij | [zj (t − τij ) − zi(t)] , i ∈ N . (6.3)



6.1 Continuous-Time Multi-agent Consensus 123

Following [19], the consensus of networks system (6.3) is asymptotically reached.
That is

lim
t→∞ zi(t) → α, ∀i ∈ N , (6.4)

where α ∈ R
n is a constant vector.

Hence, we can get that lim
t→∞ xi(t) → σiα for i ∈ N . Then, the bipartite

consensus of system (6.1) can be reached if G(A) is structurally balanced.
Next, we consider the case that G(A) is structurally unbalanced. Following

Lemma 1.10, we can conclude that G(A) contains one or more negative cycles.
For the sake of simplicity, let us first consider the simplest case of G(A) with only
one negative cycle. Without loss of generality, we assume that (ν1, ν2) belongs to the
negative cycle and a12 = a21 = a < 0. According to Lemma 1.10, one can obtain
that there is no D ∈ D such that DAD is a nonnegative matrix. However, for the
subgraph G(B), which denotes the rest part of G(A) reducing the edge (ν1, ν2), it
admits a bipartition of the nodes V1 and V2. Furthermore, one can find that G(B) is
connected and matrix B is irreducible. Now, we can make a hypothesis that nodes ν1
and ν2 simultaneously belong to V1 ( or V2 ) and the rest nodes remain unchanged.
Based on this hypothesis, we can choose D1 = diag(σ ) with σ satisfying σi = 1 for
νi ∈ V1 and σi = −1 for νi ∈ V2. Then D1AD1 = A′ = [a′

ij ]N×N has exactly two
negative elements, i.e., a′

12 = a′
21 = a < 0, and the rest elements are nonnegative.

The following is a decomposition of the matrix A′:

A′ = A12 + A21 + B ′ , (6.5)

where Aij , i, j ∈ {1, 2}, denotes a matrix in which the element lied in the
intersection of ith row and j th column is aij �= 0 and others all are 0. B ′ = [b′

ij ]N×N

is a nonnegative adjacency matrix. In order to clearly express the matrix B ′, we
define a function as follows:

c(i, j) =
{

0, (i, j) = (1, 2) or (2, 1);
1, otherwise.

Hence, we get b′
ij = c(i, j)|aij |. It is easy to find that B ′ is irreducible. Let B̄ =

[b̄ij ]N×N be the Laplacian matrix of G(B ′), and its elements are defined as : b̄ij =
b′
ij (i �= j), b̄ii = −∑N

j=1 b′
ij . Therefore, ξ = (1, 1, · · ·, 1)	 is the left eigenvector

of B̄ corresponding to the zero eigenvalue, i.e., ξ	B̄ = 0 , which implies that

b̄ii = −
N∑

j=1,j �=i

b̄j i . (6.6)
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Further because b̄ii = −∑N
j=1 b′

ij , one can obtain that

N∑

j=1

b′
ij =

N∑

j=1

b′
j i and

N∑

i=1

b′
j i =

N∑

i=1

b′
ij . (6.7)

Let z(t) = Dx(t), i.e., zi(t) = σixi(t) for any i ∈ N , we have

żi (t) =
N∑

j=1

| aij | [σiσj sgn(aij )zj (t − τij ) − zi(t)]. (6.8)

Consider the following Lyapunov functional for system (6.1):

V (t) = V1(t) + V2(t), (6.9)

where

V1(t) = 1

2

N∑

i=1

x	
i (t)xi(t), (6.10)

and

V2(t) = 1

2

N∑

i=1

N∑

j=1

∫ t

t−τji

|aji |x	
i (θ)xi(θ)dθ. (6.11)

Calculating the time derivative of Vi(t) (i = 1, 2) along the trajectories of system
(6.1), we have

V̇1(t) =
N∑

i=1

x	
i (t)ẋi (t)

=
N∑

i=1

N∑

j=1

|aij |[x	
i (t)sgn(aij )xj (t − τij ) − x	

i (t)xi(t)]

=
N∑

i=1

N∑

j=1

|aij |[σiσj z
	
i (t)sgn(aij )zj (t − τij ) − z	

i (t)zi(t)]

=
N∑

i=1

N∑

j=1

b′
ij [z	

i (t)zj (t − τij ) − z	
i (t)zi(t)] + a12[z	

1 (t)z2(t − τ12)

+ z	
1 (t)z1(t)] + a21[z	

2 (t)z1(t − τ21) + z	
2 (t)z2(t)]
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=
N∑

i=1

N∑

j=1

b′
ij [z	

i (t)zj (t − τij ) − z	
i (t)zi(t)] + 1

2
a[2z	

1 (t)z2(t − τ12)

+ 2z	
2 (t)z1(t − τ21) + 2z	

1 (t)z1(t) + 2z	
2 (t)z2(t)], (6.12)

and

V̇2(t) =1

2

N∑

i=1

N∑

j=1

|aji |[x	
i (t)xi(t) − x	

i (t − τji)xi(t − τji)]

=1

2

N∑

i=1

N∑

j=1

b′
j i[x	

i (t)xi(t) − x	
i (t − τji)xi(t − τji)]

+ 1

2
a12[x	

2 (t − τ12)x2(t − τ12) − x	
2 (t)x2(t)]

+ 1

2
a21[x	

1 (t − τ21)x1(t − τ21) − x	
1 (t)x1(t)]

=1

2

N∑

i=1

N∑

j=1

b′
ij z

	
i (t)zi(t) − 1

2

N∑

i=1

N∑

j=1

bij z
	
j (t − τij )zj (t − τij )

+ 1

2
a[z	

2 (t − τ12)z2(t − τ12 + z	
1 (t − τ21)z1(t − τ21)

− z	
2 (t)z2(t) − z	

1 (t)z1(t)]. (6.13)

Using Eqs. (6.12) and (6.13) gives that

V̇ (t) = − 1

2

N∑

i=1

N∑

j=1

b′
ij [z	

i (t)zi(t) − 2z	
i (t)zj (t − τij ) + z	

j (t − τij )]

+ 1

2
a{[2z	

1 (t)z2(t − τ12) + z	
1 (t)z1(t) + z	

2 (t − τ12)z2(t − τ12)]

+ [2z	
2 (t)z1(t − τ21)] + z	

2 (t)z2(t) + z	
1 (t − τ21)z1(t − τ21)]}

= − 1

2

N∑

i=1

N∑

j=1

b′
ij [zi − zj (t − τij )]	[zi − zj (t − τij )]

+ 1

2
a{[z1(t) + z2(t − τ12)]	[z1(t) + z2(t − τ12)]

+ [z2(t) + z1(t − τ21)]	[z2(t) + z1(t − τ21)]}
≤0.
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Hence, V (t) is non-increasing. Referring to the construction of V (t), one has that
V (t) ≥ 0, which shows that limt→∞ V (t) exists and is finite. Then, we can get the
boundedness of xi(t) for i ∈ N . Combining with the expression of V (t), further one
can easily show the boundedness of ẋi (t) for i ∈ N by referring to system (6.1).
Thus, żi (t) = σi ẋi(t) is bounded, which implies V̈ (t) is also bounded.

According to Barbalat’s Lemma ([20]), we can obtain that limt→∞ b′
ij [zi − zj (t −

τij )]	[zi −zj (t −τij )] = 0, limt→∞[z1(t)+z2(t −τ12)]	[z1 +z2(t −τ12)] = 0, and
limt→∞[z2(t)+z1(t−τ21)]	[z2(t)+z1(t−τ21)] = 0, i.e., limt→∞[zi−zj (t−τij )] =
0, if b′

ij > 0,limt→∞[z1 + z2(t − τ12)] = 0, and limt→∞[z2(t) + z1(t − τ21)] = 0.
Further considering the expression (6.8), we have

ż1(t) =
N∑

j=1

| a1j | [σ1σj sgn(a1j )zj (t − τ1j ) − z1(t)]

=a12[z1(t) + z2(t − τ12)] +
N∑

j=3

b′
1j [zj (t − τ1j ) − z1(t)]

→0, as t → ∞ ,

ż2(t) =
N∑

j=1

| a2j | [σ2σj sgn(a2j )zj (t − τ2j ) − z2(t)]

=a21[z2(t) + z1(t − τ21)] +
N∑

j=3

b′
2j [zj (t − τ2j ) − z2(t)]

→0, as t → ∞ ,

and

żi (t) =
N∑

j=1

b′
ij [zj (t − τij ) − zi(t)] → 0, as t → ∞ for i ≥ 3.

Therefore, we get that limt→∞ żi (t) → 0 for any i ∈ N . Since the adjacency
matrix B ′ is irreducible, one can obtain that limt→∞ z1(t) = limt→∞ z2(t) =
· · · = limt→∞ zN(t) by referring to limt→∞ b′

ij [zi − zj (t − τij )] = 0. In addition,
we can also get limt→∞ z1(t) = − limt→∞ z2(t) by referring to limt→∞[z2(t) +
z1(t − τ21)] = 0. Thus, the following continued equality can be concluded:
limt→∞ z1(t) = limt→∞ z2(t) = · · · = limt→∞ zN(t) = 0. Therefore, we obtain
that limt→∞ xi(t) = limt→∞ σizi(t) = 0 for i ∈ N .
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Now consider the case of G(A) with m (m ≥ 2) negative cycles. Referring to the
above approach, we respectively select m negative cycles as follows: (νi1 , νj1), · ·
·, (νim, νjm). There exists a diagonal matrix D2 ∈ D such that

D2AD2 = Ai1j1 + Aj1i1 + · · · + Aimjm + Ajmim + B ′′.

Similarly we can get that limt→∞ xi(t) = 0 for any i ∈ N .

Remark 6.2 For the structurally unbalanced network, since the number of negative
cycles is not the essential attribute of structurally unbalanced network, we just
need to think about those structurally unbalanced networks with one negative cycle
instead of all structurally unbalanced networks. This consideration reduces the
difficulty of the problem.

Remark 6.3 There is a situation that needs to be considered. If a negative edge
simultaneously belongs to two or more negative cycles, we should admit that the
edge only belongs to one of those cycles and the rest negative cycles should be
viewed positive cycles. Then we can still make a hypothesis that two vertices on this
negative edge belong to V1 or V2. According to the proof progress of Theorem 6.1,
it is obvious that the results of Theorem 6.1 still hold.

According to Theorem 6.1, if G(A) is structurally balanced, the bipartite
consensus can be asymptotically reached, and we have limt→∞ xi(t) = α for
i ∈ V1, limt→∞ xi(t) = −α for i ∈ V2. Calculating the bipartite consensus
value of α = (α1, α2, · · ·, αn)

	 is not an easy task due to the existence of
time delays. Here, the value of α = (α1, α2, · · ·, αn)

	 will be obtained by an
exact expression when the initial conditions of system (6.1) are given. We define
1 = (1, 1, · · ·, 1)	1×N . The initial conditions about system (6.1) are provided as
xi(s) = σiϕi(s) ∈ C([−τ, 0],Rn), where τ = maxi,j {τij }. Hence, we have
zi(s) = ϕi(s) ∈ C([−τ, 0],Rn). Let ξ(t) = (ξ1(t), ξ2(t), · · ·, ξn(t))

	, where
ξr (t) = (1/N)(

∑N
i=1 zir (t) + ∑N

i=1
∑N

j=1 |aij |
∫ t

t−τij
zjr (s)ds), r ∈ {1, 2, · · ·, n}.

Theorem 6.4 Consider a connected signed graph G(A) that is structurally bal-
anced. If D ∈ D renders DAD nonnegative, then the bipartite solution of (6.1) is
limt→∞ x(t) = (D1) ⊗ [Nξ(0)/

∑N
i=1(1 + ∑N

j=1 |aij |τij )].
Proof Referring to the proof of Theorem 6.1, one can obtain that limt→∞ zi(t) = α

and limt→∞ x(t) = (D1) ⊗ α. Using (6.3), we can obtain

ξ̇r (t) = 1

N

N∑

i=1

N∑

j=1

|aij |[zjr (t − τij ) − zir (t)]

+ 1

N

N∑

i=1

N∑

j=1

|aij |[zjr (t) − zjr (t − τij )]
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= − 1

N

N∑

i=1

N∑

j=1

|aij |zir (t) + 1

N

N∑

i=1

N∑

j=1

|aij |zjr (t)

=0 . (6.14)

Therefore, ξr (t) in (6.14) is a constant. That is,

ξr (t) =ξr(0)

= 1

N
(

N∑

i=1

zir (0) +
N∑

i=1

N∑

j=1

|aij |
∫ 0

−τij

ϕjr (s)ds). (6.15)

Then, we can get

ξr(0) = lim
t→∞ ξr(t)

= 1

N
(

N∑

i=1

αr +
N∑

i=1

N∑

j=1

|aij |τijαr)

=αr

N

N∑

i=1

(1 +
N∑

j=1

|aij |τij ) . (6.16)

Hence, we have

α = Nξ(0)
∑N

i=1(1 + ∑N
j=1 |aij |τij )

, (6.17)

and

lim
t→∞ x(t) = (D1) ⊗ Nξ(0)

∑N
i=1(1 + ∑N

j=1 |aij |τij )
. (6.18)

Remark 6.5 Referring to expression (6.17), for the case of network without com-
munication delays, one can obtain that α = (1/N)

∑N
i=1 ϕi(0). This result is

consistent with the one obtained in [10]. This shows that our results are more
general. Moreover, we conclude that a bipartite consensus solution is not only
associated with initial values of xi(t) but also closely related to communication
delays and network structure.

Remark 6.6 According to Theorem 6.4, it is obvious that α �= 0 if G(A) is
structurally balanced unless ξr (0) = 0.



6.1 Continuous-Time Multi-agent Consensus 129

6.1.2 Nonlinear Coupling

In this subsection, we will investigate the multi-agent systems with nonlinear
coupling. Consider the following multi-agent systems:

ẋi (t) =
N∑

j=1

| aij | {sgn(aij )h[xj (t − τij )] − h[xi(t)]}, i ∈ N , (6.19)

where xi(t) ∈ R is the state of node i. The function h(·) : R → R is assumed to be
odd and strictly monotone increasing, which implies h(0) = 0 and h(−x) = −h(x).
Further we assume that h(·) is unbounded.

Theorem 6.7 Consider the nonlinear coupled system (6.19) with a connected
signed graph G(A). The bipartite consensus can be asymptotically reached if
G(A) is structurally balanced. If instead G(A) is structurally unbalanced, then
limt→∞ x(t) = 0.

Proof Following Lemma 1.8, if G(A) is structurally balanced, we can obtain that
∃D ∈ D such that DAD has all nonnegative entries. Let Z(t) = Dx(t), i.e., zi(t) =
σixi(t), one can easily get that

żi (t) =
N∑

j=1

| aij | {h[zj (t − τij )] − h[zi(t)]} , i ∈ N . (6.20)

Following [19], we obtain that limt→∞ zi(t) → β ∈ R for any i ∈ N , which shows
that limt→∞ xi(t) → σiβ ∈ R for i ∈ N . Therefore, the bipartite consensus of
system (6.19) can be reached if G(A) is structurally balanced.

Next, we consider the case that G(A) is structurally unbalanced. From
Lemma 1.10, it follows that G(A) contains one or more negative cycles. We
first consider the case of G(A) with only one negative cycle. The edge (ν1, ν2)

is assumed to be a negative weighted edge belonging to the negative cycle, and
a12 = a21 = a < 0. Choosing D1 = diag(σ ) with σ satisfying σi = 1 for νi ∈ V1
and σi = −1 for νi ∈ V2, one can obtain that D1AD1 = A′ has exactly two
negative elements, i.e., a′

12 = a′
21 = a < 0, and the rest elements are nonnegative.

The decomposition of the matrix A′ is shown as follows:

A′ = A12 + A21 + B ′,

where the definitions of A12, A21, and B ′ are similar to the proof in Theorem 6.1.
Let Z(t) = Dx(t), i.e., zi(t) = σixi(t) for any i ∈ N , we have

żi (t) =
N∑

j=1

| aij | {σiσj sgn(aij )h[zj (t − τij )] − h[zi(t)]}. (6.21)
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Consider the following Lyapunov–Krasovskii functional for system (6.19)

W(x(t)) = W1(x(t)) + W2(x(t)) ,

where

W1(x(t)) =
N∑

i=1

∫ xi (t)

0
h(s)ds ,

and

W2(x(t)) = 1

2

N∑

i=1

N∑

j=1

∫ t

t−τij

|aij |h2[xj (s)]ds .

Calculating the time derivative of Wi(t)(i = 1, 2) along the trajectories of system
(6.19), we have

Ẇ1(x(t)) =1

2

N∑

i=1

N∑

j=1

b′
ij {2h[zi(t)]h[zj (t − τij )] − 2h2[zi(t)]}

+ a{h[z1(t)]h[z2(t − τ12)] + h2[z1(t)]
+ h[z2(t)]h[z1(t − τ21)] + h2[z2(t)] , (6.22)

and

Ẇ2(x(t)) =1

2

N∑

i=1

b′
ij

N∑

j=1

h2[zi(t)] − 1

2

N∑

i=1

N∑

j=1

bijh
2[zj (t − τij )]

+ 1

2
a{h2[z2(t − τ12)] − h2[z2(t)]

+ h2[z1(t − τ21)] − h2[z1(t)]} . (6.23)

Using Eqs. (6.22) and (6.23), we get that

Ẇ (x(t)) = − 1

2

N∑

i=1

N∑

j=1

b′
ij {h[zi(t)] − h[zj (t − τij )]}2

+ 1

2
a{h[z1(t)] + h[z2(t − τ12)]}2

+ 1

2
a{h[z2(t)] + h[z1(t − τ21)]}2

≤0 . (6.24)
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Let S = {x(t) | Ẇ (x(t)) = 0}. Then it follows from Eq. (6.24) that S = {x ∈
C([t − τ, t],RN) | b′

ij {h[zi(t)] − h[zj (t − τij )]} = 0, h[z1(t)] + h[z2(t − τ12)] =
0, and h[z2(t)] + h[z1(t − τ21)] = 0}. Combining with the property of h(·), we
can get that the set S is an invariant set with respect to system (6.21). According
to the LaSalle invariance principle [21], one can easily show that x(t) → S as
t → ∞. Thus, we have limt→∞{h[zi(t)] − h[zj (t − τij )]} = 0 for b′

ij > 0,
limt→∞{h[z1(t)]+h[z2(t −τ12)]} = 0, and limt→∞{h[z2(t)]+h[z1(t −τ21)]} = 0.
Hence, we have limt→∞ żi (t) = 0. In addition, since h(·) is unbounded and strictly
increasing with h(0) = 0, we get that limt→∞[zi(t) − zj (t − τij )] = 0 when
b′
ij > 0 and limt→∞[z1(t) − z2(t − τ12)] = 0. According to the fact that B is

irreducible, we conclude that z1(t) = z2(t) = · · · = zN(t) as t → ∞. It follows
from limt→∞[z1(t) − z2(t − τ12)] = 0 that z1(t) = −z2(t) as t → ∞. Hence,
the following equality can be concluded: limt→∞ z1(t) = limt→∞ z2(t) = · · · =
limt→∞ zN(t) = 0. Therefore, we obtain that limt→∞ xi(t) = limt→∞ σizi(t) = 0
for i ∈ N .

The result still holds for the case of G(A) with two or more negative cycles. The
proof is similar to the case of linear coupling and is omitted for simplicity.

Similar to the case of linear coupling, we can give the bipartite solution of (6.19).
The initial conditions about system (6.19) are provided as xi(s) = σiψi(s) ∈
C([−τ, 0],R). Hence, we have zi(s) = ψi(s) ∈ C([−τ, 0],R). Let ζ(0) =
(1/N)(

∑N
i=1 ψi(0) + ∑N

i=1
∑N

j=1 |aij |
∫ 0
−τij

h(ψj (s))ds).

Theorem 6.8 Consider a connected signed graph G(A) that is structurally bal-
anced. If D ∈ D renders DAD nonnegative, then the bipartite solution of (6.19) is
limt→∞ x(t) = βD1, where β ∈ R meets a relational expression as follows:

β + h(β)

N∑

i=1

N∑

j=1

(|aij |τij ) − N × ζ(0) = 0. (6.25)

Proof Referring to the proof of Theorem 6.4, one can get the bipartite solution of
(6.19) similarly. Let

ζ(t) = (1/N)(

N∑

i=1

zi(t) +
N∑

i=1

N∑

j=1

|aij |
∫ t

t−τij

h(zj (s))ds) . (6.26)

Combining with (6.20), we have ζ̇ (t) = 0, which implies ζ(t) = ζ(0). From ζ(0) =
limt→∞ ζ(t), we can get the expression (6.25).

Remark 6.9 In this theorem, although the value of β cannot be given by an explicit
expression, we can get a numerical solution by iterative algorithm from (6.25). In
numerical examples, Example 6.10 gives a numerical solution to (6.25) for h(x) =
x + 0.5sin(x), which illustrates the computational feasibility.
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Fig. 6.1 Structurally balanced signed undirected connectivity graphs with seven nodes

6.1.3 Numerical Examples

In this subsection, numerical examples will be provided to demonstrate the effec-
tiveness of our theoretical results.

Example 6.10 Now, we will give an example to illustrate the correctness of our
main results. Consider the structurally balanced graph of Fig. 6.1.
For systems (6.1) and (6.19), all nonzero communication delays are listed as
follows: τ12 = 0.1, τ13 = 0.3, τ21 = 0.15, τ23 = 0.2, τ24 = 0.1, τ31 = 0.11,
τ32 = 0.16, τ35 = 0.23, τ42 = 0.1, τ45 = 0.2, τ47 = 0.12, τ53 = 0.1,
τ54 = 0.15, τ56 = 0.24, τ65 = 0.25, and τ74 = 0.15, and the initial states are
chosen as x1(s) = 1, x2(s) = 2, x3(s) = 3, x4(s) = 4, x5(s) = 5, x6(s) = −3,
and x7(s) = −5, ∀s ∈ [−0.3, 0]. Let D = diag{−1, 1, 1, 1, 1, 1, 1}. Then,
we have z(t) = [−1, 2, 3, 4, 5,−3,−5], ∀s ∈ [−0.3, 0]. Further, we define that
h(s) = s + 0.5sin(s). According to Theorem 6.4, one can easily conclude that
α = 1.44. Following Theorem 6.8, one can get the numerical solution β = 1.42 by
iterative algorithm. Numerical results are depicted in Figs. 6.2 and 6.3, which verify
our theoretical results very well.

Example 6.11 Now let us consider a more general network topology with 100
nodes and signed weight edges. Here two simple signed networks with 100 nodes
are constructed, where one is structurally balanced and another one is structurally
unbalanced. The network with structurally balanced coupling is constructed as
follows: we present 20 identical circular networks with 5 nodes, whose 5 nodes
are numbered 1, 2, 3, 4, 5, respectively, and their adjacency matrix is A = [aij ]5×5,
where aij is chosen from (−10, 0) or (0, 10). Now the first two edges of the circular
network are defined as negative edges and others are not negative edges, i.e. a12 < 0,
a23 < 0, and the rest elements are non-negative Here these circular networks are
arranged in a sequence. A connected graph with 100 nodes and structurally balanced
coupling can be obtained by stochastic interconnections among the 3rd, 4th, and
5th nodes of adjacent circular networks. Similarly the network with structurally
unbalanced coupling can be obtained according to the above method when the first
three edges of pentagon are defined as negative edges and other steps are the same.
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Fig. 6.2 The bipartite consensus on multi-agent system (6.1) with structurally balanced graph and
linear coupling in Example 6.10
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Fig. 6.3 The bipartite consensus on multi-agent system (6.19) with structurally balanced graph
and nonlinear coupling in Example 6.10
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Fig. 6.4 The states of system (6.1) with structurally unbalanced graph and linear coupling in
Example 6.11

All communication delays of systems (6.1) and (6.19) are uniformly distributed in
(0, 1). Figure 6.4 shows that the consensus of system (6.1) can be achieved for
aij ∈ (−10, 10) and τij ∈ (0, 1). Figure 6.5 shows that the consensus of system
(6.19) can also be achieved for the above conditions. Throughout this example,
the nonlinear function h(x) = x + 0.5sin(x) is not changed. Figures 6.6 and 6.7
show that the bipartite consensus of systems (6.1) and (6.19) can be asymptotically
reached, respectively.

6.2 Discrete-Time Multi-agent Consensus

6.2.1 Distributed Event-Based Bipartite Consensus

Consider a discrete-time multi-agent network with the dynamics described by

xi(k + 1) = xi(k) + ui(k), i ∈ N , (6.27)

where xi(k) ∈ R is the state of the agent i, and ui(k) is called the consensus
protocol.

In this section, we assume that the protocol ui(k) is based on the event-triggered
information transmission. The event-triggered time sequence of the agent i is given
by t i1, t i2, · · · , t il , · · · . At each triggering time t il , the agent i will transmit the
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Fig. 6.5 The states of system (6.19) with structurally unbalanced graph and nonlinear coupling in
Example 6.11
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Fig. 6.6 The bipartite consensus on multi-agent system (6.1) with structurally balanced graph and
linear coupling in Example 6.11
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Fig. 6.7 The bipartite consensus on multi-agent system (6.19) with structurally balanced graph
and nonlinear coupling in Example 6.11

state information to its neighboring agents. Considering time delays during the
information transmission, the consensus protocol is proposed as follows:

ui(k) =
∑

j∈Ni

|aij |(sgn(aij )̂xj (k − τij ) − x̂i (k)), i ∈ N , (6.28)

where τij > 0 denotes the communication delay from agent j to i, x̂j (k − τij ) =
xj (k

j

l
′ ), k − τij ∈ [kj

l
′ , k

j

l
′+1

), and x̂i (k) = xi(k
i
l ), k ∈ [ki

l , ki
l+1). It is assumed in

this section that τii = 0, i.e., delays exist only in the information that is actually
being transmitted between two different agents. The state measurement error of
agent i is defined as

ei(k) = xi(k) − x̂i (k). (6.29)

Denote τ = max{τij , i, j ∈ N }. The initial conditions associated with (6.27) are
given as xi(s), s = −τ, · · · , −1, 0.

In this subsection, we will give the distributed event-based bipartite consensus
criteria for the considered signed network model. We always assume that the
network topology of the signed digraph is strongly connected in this section. Let
ξ = (ξ1, ξ2, . . . , ξN) be the normalized left eigenvector of matrix |A| with respect

to the eigenvalue 1. From Lemma 1.6, we obtain that
N∑

i=1

ξi = 1 and ξi > 0.
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Theorem 6.12 Consider the multi-agent system (6.27) with arbitrary finite commu-
nication delay τij under control law (6.28). If the first triggering time is t i1 = 0, and
agent i, i ∈ N , determines the triggering time sequence t il |∞l=2 by

inf

⎧
⎨

⎩
k > til−1 : e2

i (k) >
σa2

ii

4(1 − aii)

N∑

j=1, j �=i

|aij |(̂xi(k) − sgn(aij )̂xj (k − τij ))
2

⎫
⎬

⎭
,

where 0 < σ < 1 is a constant. Then, we can obtain the following results:

(i) System (6.27) can achieve bipartite consensus asymptotically if the signed
digraph G is structurally balanced. Moreover, the consensus value of the
network is

∑N
i=1 ξidixi(0) + ∑N

i=1 ξi

∑N
j=1, j �=i |aij | ∑−1

s=−τij
dj xj (s)

1 + ∑N
i=1 ξi

∑N
j=1, j �=i |aij |τij

.

(ii) If the signed digraph G is structurally unbalanced, then the system (6.27)
can achieve consensus and the final consensus value is 0, i.e., lim

k→+∞ xi(k) =
0, ∀i ∈ N .

Proof We take two steps for the remaining part of the proof.
Step 1: According to Lemma 1.8, if the network structure is balanced, there exists

D = {d1, · · · , dN } ∈ D, such that DAD is a stochastic matrix. Since DAD has
all nonnegative entries, one can get disgn(aij )dj ≥ 0. Denote yi(k) = dixi(k) and
ŷi (k) = di x̂i(k). Note that τii = 0, ∀i ∈ N , then we can obtain that

yi(k+1) = yi(k)+
∑

j∈Ni

|aij |(disgn(aij )dj ŷj (k−τij )−ŷi (k)), i ∈ N , (6.30)

i.e.,

yi(k + 1) = yi(k) +
∑

j∈Ni

|aij |(ŷj (k − τij ) − ŷi (k))

= yi(k) +
N∑

j=1, j �=i

|aij |(ŷj (k − τij ) − ŷi (k)), i ∈ N . (6.31)

Let Ei(k) = diei(k). Referring to Theorem 1 in [22], the consensus of system (6.31)
can be asymptotically reached under the event-triggered condition

E2
i (k) >

σa2
ii

4(1 − aii)

N∑

j=1, j �=i

|aij |(ŷj (k − τij ) − ŷi (k))2
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= σa2
ii

4(1 − aii)

N∑

j=1, j �=i

|aij |(ŷ2
j (k − τij ) + ŷ2

i (k) − 2ŷj (k − τij )ŷi(k))

= σa2
ii

4(1 − aii)

N∑

j=1, j �=i

|aij |(̂x2
j (k − τij ) + x̂2

i (k)

− 2sgn(aij )̂xj (k − τij )̂xi(k)),

= σa2
ii

4(1 − aii)

N∑

j=1, j �=i

|aij |(sgn(aij )̂xj (k − τij ) − x̂i (k))2, i ∈ N .

(6.32)

That is, lim
k→+∞ dixi(k) = c, where c is a constant value. Note that E2

i (k) = e2
i (k).

Hence, the event-triggered condition (6.32) can be rewritten as

e2
i (k) >

σa2
ii

4(1 − |aii |)
N∑

j=1, j �=i

|aij |(sgn(aij )̂xj (k − τij ) − x̂i (k))2, i ∈ N .

(6.33)

Therefore, under the event-triggered condition (6.33), the bipartite consensus of
system (6.27) can be asymptotically reached if G is structurally balanced.

Next, the bipartite consensus value c of the multi-agent networks is shown below.
Let η(k) = ∑N

i=1 ξiyi(k) + ∑N
i=1 ξi

∑N
j=1, j �=i |aij | ∑k−1

k−τij
ŷj (s). Substituting

(6.31) into η(k + 1), we can calculate the difference of η(k) as follows:

Δη(k) = η(k + 1) − η(k)

=
N∑

i=1

ξi(yi(k + 1) − yi(k))

+
N∑

i=1

ξi

N∑

j=1, j �=i

|aij |(
k∑

k+1−τij

ŷj (s) −
k−1∑

k−τij

ŷj (s))

=
N∑

i=1

ξi

N∑

j=1, j �=i

|aij |(ŷj (k − τij ) − ŷi (k))

+
N∑

i=1

ξi

N∑

j=1, j �=i

|aij |(ŷj (k) − ŷj (k − τij )). (6.34)
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Note that the row sum of matrix |A| is 1 and {ξ1, ξ2, . . . , ξN } is the normalized left
eigenvector of matrix |A| with respect to the eigenvalue 1, we have

N∑

j=1

|aij | = 1 and
N∑

i=1

ξi |aij | = ξj .

Hence, we can obtain that

Δη(k) = −
N∑

i=1

ξi

N∑

j=1, j �=i

|aij |̂yi(k) +
N∑

i=1

ξi

N∑

j=1, j �=i

|aij |̂yj (k)

= −
N∑

i=1

ξi ŷi (k)

N∑

j=1, j �=i

|aij | +
N∑

i=1

ξi

N∑

j=1

|aij |̂yj (k) −
N∑

i=1

ξiaii ŷi (k)

= −
N∑

i=1

ξi(1 − aii)ŷi (k) +
N∑

i=1

ξi |aij |
N∑

j=1

ŷj (k) −
N∑

j=1

ξj ajj ŷj (k)

= −
N∑

i=1

ξi(1 − aii)ŷi (k) +
N∑

j=1

ξj (1 − ajj )ŷj (k)

= 0. (6.35)

Due to Δη(k) = 0 for k ≥ 0, it can be easily obtained that η(k) is a constant. That
is,

η(k) = η(0) =
N∑

i=1

ξiyi(0) +
N∑

i=1

ξi

N∑

j=1, j �=i

|aij |
−1∑

−τij

ŷj (s)

=
N∑

i=1

ξiyi(0) +
N∑

i=1

ξi

N∑

j=1, j �=i

|aij |
−1∑

−τij

yj (s).
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Hence,

η(0) = lim
k→+∞ η(k) = c +

N∑

i=1

ξi

N∑

j=1, j �=i

|aij |τij c.

Therefore, we can conclude that

c =
∑N

i=1 ξidixi(0) + ∑N
i=1 ξi

∑N
j=1, j �=i |aij | ∑−1

s=−τij
dj xj (s)

1 + ∑N
i=1 ξi

∑N
j=1, j �=i |aij |τij

. (6.36)

This completes the proof of this step.
Step 2: If the network structure is unbalanced, according to Lemma 1.10, there

does not exist D = {d1, · · · , dN } ∈ D, such that DAD is a stochastic matrix. For
the sake of simplicity, the case of G with only one negative cycle is studied firstly.
Here, we assume that this negative cycle contains an edge ai0j0 < 0. Without loss
of generality, we can assume that there exists B = {b1, · · · , bN } ∈ D, such that
BAB = [biaij bj ]N×N is a nonnegative matrix except the element bi0ai0j0bj0 < 0.
(If G contains k (k ≥ 2) negative cycles, there exists Dl ∈ D such that DlADl has
exactly l (1 ≤ l ≤ k) negative elements. The following proof for this case is similar
to the case k = 1, and we omit it here due to space limit.) Denoting yi(k) = bixi(k)

and ŷi (k) = bi x̂i(k), then we can obtain that

yi(k + 1) = yi(k) +
∑

j∈Ni

|aij |(bisgn(aij )bj ŷj (k − τij ) − ŷi (k)), i ∈ N .

(6.37)

Define the matrix W = [wij ]N×N as follows: wi0j0 = 0, wii = 1 −∑N
j=1 wij ,∀i ∈

N , and wij = biaij bj otherwise. Let Ei(k) = yi(k)−ŷi (k). Consider the Lyapunov
functional as

V (k) = V1(k) + V2(k), (6.38)

where

V1(k) =
N∑

i=1

ξiy
2
i (k), (6.39)

and

V2(k) =
N∑

i=1

ξi

N∑

j=1

|aij |
k−1∑

s=k−τij

ŷ2
j (s). (6.40)
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Notice that wi0i0 = ai0i0 +|ai0j0 |, and difference of V (k) along the solution of (6.37)
gives that

ΔV (k) ≤ −
N∑

i=1

ξi

N∑

j=1, j �=i

N∑

l>j, l �=i

wijwil(ŷj (k − τij ) − ŷl(k − τil))
2

− ξi0 |ai0j0 |
N∑

l �=i0, l �=j0

|ai0l |(ŷj0(k − τi0j0) − ŷl(k − τi0l ))
2

−
N∑

i=1

ξi

N∑

j=1, j �=i

|aij |(aii − αi)(ŷi(k) − bisgn(aij )bj ŷj (k − τij ))
2

+
N∑

i=1

ξi(1 − aii)
1

αi

E2
i (k). (6.41)

Actually,

ΔV (k) = ΔV1(k) + ΔV2(k). (6.42)

Note that for i ∈ N , τii = 0, and Ei(k) = yi(k) − ŷi (k), it holds that

yi(k + 1) = yi(k) +
∑

j∈Ni

|aij |(bisgn(aij )bj ŷj (k − τij ) − ŷi (k))

= yi(k) +
N∑

j=1

|aij |(bisgn(aij )bj ŷj (k − τij ) − ŷi (k))

= yi(k) − ŷi (k) +
N∑

j=1

|aij |bisgn(aij )bj ŷj (k − τij ),

and

N∑

i=1

ξiy
2
i (k + 1) =

N∑

i=1

ξi[Ei(k) +
N∑

j=1

|aij |bisgn(aij )bj ŷj (k − τij )]2

=
N∑

i=1,i �=i0

ξi[Ei(k) +
N∑

j=1

wij ŷj (k − τij )]2 + ξi0[Ei0(k)

+
N∑

j=1

wi0j ŷj (k − τi0j ) − |ai0j0 |(ŷi0(k) + ŷj0(k − τi0j0))]2.
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Hence, we have

ΔV1(k) =
N∑

i=1

ξiy
2
i (k + 1) −

N∑

i=1

ξiy
2
i (k)

=
N∑

i=1

ξi[Ei(k)+
N∑

j=1

wij ŷj (k − τij )]2+ξi0 [a2
i0j0

(ŷi0(k) + ŷj0(k − τi0j0))
2

− 2|ai0j0 |(ŷi0(k) + ŷj0(k − τi0j0))(Ei0(k) +
N∑

j=1

wi0j ŷj (k − τi0j ))]

−
N∑

i=1

ξiy
2
i (k)

=
N∑

i=1

ξi[E2
i (k) +

N∑

j=1, j �=i

w2
ij ŷ

2
j (k − τij ) + wii ŷ

2
i (k)

+ 2
N∑

j=1, j �=i

N∑

l>j, l �=i

wijwil · ŷj (k − τij )ŷl(k − τij )

+ 2
N∑

j=1, j �=i

wijwii ŷj (k − τij )ŷi(k) + 2wii ŷi(k)Ei(k)

+ 2
N∑

j=1, j �=i

wij ŷj (k − τij )Ei(k) −
N∑

i=1

ξi [̂y2
i (k)

+ E2
i (k) + 2ŷi (k)Ei(k)] + ξi0 [a2

i0j0
(ŷi0(k) + ŷj0(k − τi0j0))

2

− 2|ai0j0 |(ŷi0(k) + ŷj0(k − τi0j0))(Ei0(k) +
N∑

j=1

wi0j ŷj (k − τi0j ))],

(6.43)

and

ΔV2(k) =
N∑

i=1

ξi

N∑

j=1

|aij |[
k∑

k+1−τij

ŷ2
j (s) −

k−1∑

k−τij

ŷ2
j (s)]

=
N∑

i=1

ξi

N∑

j=1

|aij |[̂y2
j (k) − ŷ2

j (k − τij )]
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=1

2

N∑

i=1

ξi

N∑

j=1

N∑

l=1

|aij ||ail |[̂y2
j (k) − ŷ2

j (k − τij ) + ŷ2
l (k) − ŷ2

l (k − τil)]

=
N∑

i=1

ξi[
N∑

j=1, j �=i

a2
ij (ŷ

2
j (k) − ŷ2

j (k − τij )) +
N∑

j=1, j �=i

N∑

l>j, l �=i

|aij ||ail |

(ŷ2
j (k) − ŷ2

j (k − τij ) + ŷ2
l (k) − ŷ2

l (k − τij )) +
N∑

j=1, j �=i

|aij ||aii |(ŷ2
j (k)

− ŷ2
j (k − τij ))]

=
N∑

i=1

ξi[
N∑

j=1, j �=i

w2
ij (ŷ

2
j (k) − ŷ2

j (k − τij )) +
N∑

j=1, j �=i

N∑

l>j, l �=i

wijwil(ŷ
2
j (k)

− ŷ2
j (k − τij ) + ŷ2

l (k) − ŷ2
l (k − τil)) +

N∑

j=1, j �=i

wijwii(ŷ
2
j (k)

− ŷ2
j (k − τij ))]+ξi0 [a2

i0j0
(ŷ2

j0
(k)−ŷ2

j0
(k − τi0j0))+|ai0j0 ||ai0i0 |(ŷ2

j0
(k)

− ŷ2
j0

(k − τi0j0)) − |ai0j0 |
N∑

j=1, j �=i0

wi0j (ŷ
2
j (k) − ŷ2

j (k − τi0j ))

+ |ai0j0 |
N∑

l �=i0, l �=j0

|ai0l |(ŷ2
j0

(k) − ŷ2
j0

(k − τi0j0)+ŷ2
l (k) − ŷ2

l (k − τi0l ))].

(6.44)

Let

Δ1 =
N∑

i=1

ξi[
N∑

j=1, j �=i

w2
ij ŷ

2
j (k − τij ) + wii ŷ

2
i (k) + 2

N∑

j=1, j �=i

N∑

l>j, l �=i

wijwil

ŷj (k − τij )ŷl(k − τij ) + 2
N∑

j=1, j �=i

wijwii ŷj (k − τij )ŷi(k) −
N∑

i=1

ξi ŷ
2
i (k)

+
N∑

i=1

ξi[
N∑

j=1, j �=i

w2
ij (ŷ

2
j (k) − ŷ2

j (k − τij )) +
N∑

j=1, j �=i

N∑

l>j, l �=i

wijwil(ŷ
2
j (k)

−ŷ2
j (k − τij )+ŷ2

l (k)−ŷ2
l (k − τil))+

N∑

j=1, j �=i

wijwii(ŷ
2
j (k) − ŷ2

j (k − τij ))]
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=
N∑

i=1

ξi[
N∑

j=1, j �=i

w2
ij ŷ

2
j (k) + w2

ii ŷ
2
i (k) +

N∑

j=1, j �=i

N∑

l>j, l �=i

wijwil(ŷ
2
j (k) + ŷ2

l (k)

−ŷ2
j (k − τij ) − ŷ2

l (k − τil) + 2ŷj (k − τij )ŷl(k − τij )) +
N∑

j=1, j �=i

wijwii

·(ŷ2
j (k) − ŷ2

j (k − τij ) + 2ŷj (k − τij )ŷi(k))] −
N∑

i=1

ξi ŷ
2
i (k)

=
N∑

i=1

ξi[
N∑

j=1

w2
ij ŷ

2
j (k) +

N∑

j=1, j �=i

N∑

l>j, l �=i

wijwil(ŷ
2
j (k) + ŷ2

l (k)) +
N∑

j<i

wijwii

·(ŷ2
j (k) + ŷ2

i (k)) +
N∑

l>i

wilwii(ŷ
2
l (k) + ŷ2

i (k)) − ŷ2
i (k)]

−
N∑

i=1

ξi[
N∑

j=1, j �=i

N∑

l>j, l �=i

wijwil(ŷj (k − τij ) − ŷl(k − τil))
2 +

N∑

j=1, j �=i

wijwii(ŷi (k) − ŷj (k − τij ))
2]

=
N∑

i=1

ξi[
N∑

j=1

w2
ij ŷ

2
j (k) +

N∑

j=1

N∑

l=1, l �=j

wijwil ŷ
2
j (k) − ŷ2

i (k)]

−
N∑

i=1

ξi[
N∑

j=1, j �=i

N∑

l>j, l �=i

wijwil(ŷj (k − τij ) − ŷl(k − τil))
2 +

N∑

j=1, j �=i

wijwii(ŷi (k) − ŷj (k − τij ))
2]

=
N∑

i=1

ξi[
N∑

j=1

N∑

l=1

wijwil ŷ
2
j (k) − ŷ2

i (k)]

−
N∑

i=1

ξi[
N∑

j=1, j �=i

N∑

l>j, l �=i

wijwil(ŷj (k − τij )

−ŷl(k − τil))
2 +

N∑

j=1, j �=i

wijwii(ŷi (k) − ŷj (k − τij ))
2]
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=
N∑

i=1

ξi[
N∑

j=1

wij ŷ
2
j (k) − ŷ2

i (k)] −
N∑

i=1

ξi[
N∑

j=1, j �=i

N∑

l>j, l �=i

wijwil(ŷj (k − τij )

−ŷl(k − τil))
2 +

N∑

j=1, j �=i

wijwii(ŷi (k) − ŷj (k − τij ))
2], (6.45)

Δ2 = ξi0 [a2
i0j0

(ŷi0(k)+ŷj0(k − τi0j0))
2 − 2|ai0j0 |(ŷi0(k) + ŷj0(k − τi0j0))

N∑

j=1

wi0j

·̂yj (k − τi0j )] + ξi0[a2
i0j0

(ŷ2
j0

(k) − ŷ2
j0

(k − τi0j0)) + |ai0j0 ||ai0i0 |(ŷ2
j0

(k)

−ŷ2
j0

(k − τi0j0)) − |ai0j0 |
N∑

j=1, j �=i0

wi0j (ŷ
2
j (k) − ŷ2

j (k − τi0j ))

+|ai0j0 |
N∑

l �=i0, l �=j0

|ai0l |(ŷ2
j0

(k) − ŷ2
j0

(k − τi0j0) + ŷ2
l (k) − ŷ2

l (k − τi0l ))]

= ξi0 [a2
i0j0

(ŷ2
i0
(k) + 2ŷi0(k)ŷj0(k − τi0j0)) − 2|ai0j0 |wi0i0 ŷ

2
i0
(k) − 2|ai0j0 |wi0i0

·̂yi0(k)ŷj0(k − τi0j0) + a2
i0j0

ŷ2
j0

(k) + |ai0j0 ||ai0i0 |(ŷ2
j0

(k) + ŷ2
i0
(k)

−ŷ2
j0

(k − τi0j0)L − ŷ2
i0
(k)) − |ai0j0 |

N∑

j=1, j �=i0

wi0j (ŷ
2
j (k) + ŷ2

i0
(k))

−|ai0j0 |
N∑

l �=i0, l �=j0

|ai0l |(ŷ2
j0

(k)

+ŷ2
l (k)) + |ai0j0 |

N∑

j=1, j �=i0

wi0j (−ŷ2
i0
(k) − ŷ2

j (k − τi0j )

−2ŷi0(k)ŷj (k − τi0j ))

+|ai0j0 |
N∑

l �=i0, l �=j0

|ai0l |(−ŷ2
j0

(k − τi0j0)

−ŷ2
l (k − τi0l ) − 2ŷj0(k − τi0j0)ŷl(k − τi0j )]

= ξi0 [a2
i0j0

ŷ2
i0
(k) − 2|ai0j0 |wi0i0 ŷ

2
i0
(k) + a2

i0j0
ŷ2
j0

(k) + |ai0j0 ||ai0i0 |(ŷ2
j0

(k)

+ŷ2
i0
(k)) + |ai0j0 ||ai0i0 |(−ŷ2

i0
(k) − ŷ2

j0
(k − τi0j0)
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−2ŷi0(k)ŷj0(k − τi0j0)) − |ai0j0 |
N∑

j=1, j �=i0

wi0j (ŷ
2
j (k) + ŷ2

i0
(k)) + |ai0j0 |

N∑

l �=i0, l �=j0

|ai0l |(ŷ2
j0

(k) + ŷ2
l (k))

+|ai0j0 |
N∑

j=1, j �=i0

wi0j · (ŷi0(k)

−ŷj (k − τi0j ))
2 − |ai0j0 |

N∑

l �=i0, l �=j0

|ai0l |(ŷj0(k − τi0j0) − ŷl(k − τi0l ))
2]

= ξi0 [−|ai0j0 |̂y2
i0
(k) + |ai0j0 |̂y2

j0
(k) − |ai0j0 ||ai0i0 |(ŷi0(k)

+ŷj0(k − τi0j0))
2 + |ai0j0 |

·
N∑

j=1, j �=i0

wi0j (ŷi0(k) − ŷj (k − τi0j ))
2 − |ai0j0 |

N∑

l �=i0, l �=j0

|ai0l |(ŷj0(k − τi0j0)

−ŷl(k − τi0l ))
2], (6.46)

and

Δ3 =
N∑

i=1

ξi[2wii ŷi(k)Ei(k) + 2
N∑

j=1, j �=i

wij ŷj (k − τij )Ei(k)] − 2
N∑

i=1

ξi ŷi (k)

Ei(k) − 2|ai0j0 |(ŷi0(k) + ŷj0(k − τi0j0))Ei0(k)

= 2
N∑

i=1

ξi

N∑

j=1, j �=i

wijEi(k)(ŷj (k − τij ) − ŷi (k)) − 2ξi0 |ai0j0 |Ei0(k)(ŷi0(k)

+ŷj0(k − τi0j0))

≤
N∑

i=1

ξi

N∑

j=1, j �=i

wij [ 1

αi

E2
i (k) + αi(ŷj (k − τij ) − ŷi (k))2] + ξi0 |ai0j0 |

[ 1

αi0

E2
i0
(k) + αi0(ŷi0(k) + ŷj0(k − τi0j0))

2]. (6.47)
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Substituting (6.45), (6.46), and (6.47) into (6.42), we can obtain that

ΔV (k) = Δ1 + Δ2 + Δ3

=
N∑

i=1

ξi[
N∑

j=1

wij ŷ
2
j (k) − ŷ2

i (k)] + ξi0[−|ai0j0 |̂y2
i0
(k) + |ai0j0 |̂y2

j0
(k)]

−
N∑

i=1

ξi[
N∑

j=1, j �=i

N∑

l>j, l �=i

wijwil(ŷj (k − τij ) − ŷl(k − τil))
2

+
N∑

j=1, j �=i

wijwii(ŷi(k) − ŷj (k − τij ))
2] + ξi0[−|ai0j0 ||ai0i0 |(ŷi0(k)

+ŷj0(k − τi0j0))
2 + |ai0j0 |

N∑

j=1, j �=i0

wi0j (ŷi0(k) − ŷj (k − τi0j ))
2

−|ai0j0 |
N∑

l �=i0, l �=j0

|ai0l |(ŷj0(k − τi0j0) − ŷl(k − τi0l ))
2]

+2
N∑

i=1

ξi

N∑

j=1, j �=i

wijEi(k)(ŷj (k − τij ) − ŷi (k))

−2ξi0 |ai0j0 |Ei0(k)(ŷi0(k) + ŷj0(k − τi0j0))

=
N∑

i=1

ξi

N∑

j=1

|aij |̂y2
j (k) −

N∑

i=1

ξi ŷ
2
i (k) −

N∑

i=1

ξi[
N∑

j=1, j �=i

N∑

l>j, l �=i

wijwil ·

(ŷj (k − τij ) − ŷl(k − τil))
2 +

N∑

j=1, j �=i

wij aii(ŷi (k) − ŷj (k − τij ))
2]

−ξi0 [|ai0j0 ||ai0i0 |(ŷi0(k) + ŷj0(k − τi0j0))
2

+|ai0j0 |
N∑

l �=i0, l �=j0

|ai0l |(ŷj0(k − τi0j0) − ŷl(k − τi0l ))
2]

+2
N∑

i=1

ξi

N∑

j=1, j �=i

wijEi(k)(ŷj (k − τij ) − ŷi (k))

−2ξi0 |ai0j0 |Ei0(k)(ŷi0(k) + ŷj0(k − τi0j0))

≤ −
N∑

i=1

ξi[
N∑

j=1, j �=i

N∑

l>j, l �=i

wijwil(ŷj (k − τij ) − ŷl(k − τil))
2
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+
N∑

j=1, j �=i

wij (aii − αi)(ŷi(k) − ŷj (k − τij ))
2]

−ξi0 [|ai0j0 |(ai0i0 − αi0)(ŷi0(k) + ŷj0(k − τi0j0))
2

+|ai0j0 |
N∑

l �=i0, l �=j0

|ai0l |(ŷj0(k − τi0j0) − ŷl(k − τi0l ))
2]

+ξi0 |ai0j0 |
1

αi0

E2
i0
(k) +

N∑

i=1

ξi

N∑

j=1, j �=i

wij

1

αi

E2
i (k)

= −
N∑

i=1

ξi

N∑

j=1, j �=i

N∑

l>j, l �=i

wijwil(ŷj (k − τij ) − ŷl(k − τil))
2

−ξi0 |ai0j0 |
N∑

l �=i0, l �=j0

|ai0l |(ŷj0(k − τi0j0) − ŷl(k − τi0l ))
2

−
N∑

i=1

ξi

N∑

j=1, j �=i

|aij |(aii − αi)(ŷi(k) − bisgn(aij )bj ŷj (k − τij ))
2

+
N∑

i=1

ξi(1 − aii)
1

αi

E2
i (k), (6.48)

which implies (6.41) holds.
Let f (αi) = αi(aii−αi)

1−aii
. We aim to reduce the number of event-triggering time

instants as much as possible when the parameter αi is chosen. That is to say, the
event-triggered condition needs to be more difficult to be satisfied when we select
the parameter αi . To realize this objective, we choose αi = aii

2 such that f (αi) can
be maximized. Note that the event-triggered condition (6.32) can be rewritten as
follows for i ∈ N :

E2
i (k) = e2

i (k) >
σa2

ii

4(1 − aii)

N∑

j=1, j �=i

|aij |(sgn(aij )̂xj (k − τij ) − x̂i (k))2

= σa2
ii

4(1 − aii)

N∑

j=1, j �=i

|aij |(bisgn(aij )bj ŷj (k − τij ) − ŷi (k))2.

(6.49)
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Under the event-triggered condition (6.49), we have that

−
N∑

i=1

ξi

N∑

j=1, j �=i

|aij |(aii − αi)(ŷi(k) − bisgn(aij )bj ŷj (k − τij ))
2

+
N∑

i=1

ξi(1 − aii)
1

αi

E2
i (k)

≤ −
N∑

i=1

ξi(aii − aii

2
)
4(1 − aii)

σa2
ii

e2
i (k) +

N∑

i=1

ξi(1 − aii)
2

aii

E2
i (k)

= −
N∑

i=1

ξi

2(1 − aii)

aii

(
1

σ
− 1)E2

i (k). (6.50)

Note that 0 < σ < 1. Hence, under the trigger condition (6.49), it holds that for
∀k ≥ 0,

ΔV (k) ≤ −
N∑

i=1

ξi

N∑

j=1, j �=i

N∑

l>j, l �=i

wijwil(ŷj (k − τij ) − ŷl(k − τil)
2

− ξi0 |ai0j0 | ·
N∑

l �=i0, l �=j0

|ai0l |(ŷj0(k − τi0j0) − ŷl(k − τi0l ))
2

−
N∑

i=1

ξi

2(1 − aii)

aii

· (
1

σ
− 1)E2

i (k)

≤0. (6.51)

According to LaSalle’s invariance principle, all the agents in the network will
converge to the maximal positively invariant set of Φ = {θ ∈ Υ−τ , x(k + θ) ∈
X : ΔV (k) = 0} asymptotically. Note that ΔV (k) = 0 if and only if ei(k) = 0,

−
N∑

i=1

ξi

N∑

j=1, j �=i

N∑

l>j, l �=i

wijwil(ŷj (k − τij ) − ŷl(k − τil)
2 − ξi0 |ai0j0 |

N∑

l �=i0, l �=j0

|ai0l |(ŷj0(k − τi0j0) − ŷl(k − τi0l ))
2 = 0, (6.52)

and

N∑

i=1

ξi

aii

2

N∑

j=1, j �=i

aij (bisgn(aij )bj ŷj (k − τij ) − ŷi (k))2 = 0. (6.53)
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Hence, ΔV (k) = 0 if and only if ei(k) = 0, and

ŷj (k − τij ) = sgn(aij )ŷi(k), ∀i, j ∈ Ni , (6.54)

or

ŷj (k − τij ) = ŷi (k), if wij > 0, (6.55)

ŷj0(k − τij ) = −ŷi0(k). (6.56)

Substituting (6.54) into (6.37) yields that

yi(k + 1) = yi(k), ∀i ∈ N . (6.57)

Hence, we have

yi(k) = ŷi (k) = ŷj (k − τij ) = yj (k − τij ) = yj (k), ∀wij > 0. (6.58)

It follows that G is strongly connected, and it implies

yi(k) = yj (k), k ≥ −τij , ∀i, j ∈ N , (6.59)

and

yi0(k) = −yj0(k), k ≥ −τij . (6.60)

Hence, ΔV (k) = 0 if and only if yi(k) = 0, ∀i ∈ N . By LaSalle’s invariance
principle, we have

lim
k→+∞ y1(k) = lim

k→+∞ y2(k) = · · · = lim
k→+∞ yN(k) = 0,

which implies that

lim
k→+∞ x1(k) = lim

k→+∞ x2(k) = · · · = lim
k→+∞ xN(k) = 0.

Remark 6.13 It can be observed that only the received neighboring states are used in
the trigger condition (6.30). Hence, the event-based protocol proposed in this section
is distributed. Zeno behavior is defined as an infinite number of triggering occurring
in a finite-time interval, which should be avoided in the event-based consensus
protocol. Nevertheless, the Zeno behavior can always be excluded in discrete-time
multi-agent system since the maximum triggering number is the length of the finite-
time interval.
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6.2.2 Self-triggered Approach

In Theorem 6.12, we have proved that the proposed event-based protocol is effective
to realize the bipartite consensus of the network model. However, the triggering
condition needs to be continuously verified for each agent. In this section, we
aim to solve this difficult problem by designing a self-triggered algorithm, i.e.,
the next update time is precomputed based on predictions using the received
data. Under the proposed self-triggered algorithm, the signal remains unchanged
until next triggering time of multi-agent networks. The appropriate equation for
obtaining the triggering time guarantees desired levels of performance. Hence, self-
triggered communication schemes for multi-agent networks can effectively reduce
the communication costs.

Different from the event-triggered communication strategy, for self-triggered
algorithm, the agent i will predict next triggering time instant t il+1 according to
the information at time t il . Next, we will give an algorithm to determine the time
instant t il+1.

Denote

l(k − τij ) = arg maxl∈N{tjl |tjl ≤ k − τij }. (6.61)

Let

pi(k) =
N∑

j=1, j �=i

|aij |(sgn(aij )̂xj (t
j

l(k−τij )) − xi(t
i
l )), (6.62)

and

qi(k) = σa2
ii

4(1 − aii)

N∑

j=1, j �=i

|aij |(̂xi(t
i
l ) − sgn(aij )̂xj (t

j

l(k−τij )))
2. (6.63)

For k ∈ [t il , t il+1), recall that e2
i (k) = (xi(k) − xi(t

i
l ))

2. For the positive integer m,
we have

xi(t
i
l + m) =xi(t

i
l + m − 1) +

∑

j∈Ni

|aij |(sgn(aij )̂xj (t
i
l + m − 1 − τij )

− x̂i (t
i
l + m − 1))

=xi(t
i
l + m − 2) +

∑

j∈Ni

|aij |(sgn(aij )̂xj (t
i
l + m − 2 − τij )

− x̂i (t
i
l + m − 2)) +

∑

j∈Ni

|aij |(sgn(aij )̂xj (t
i
l + m − 1 − τij )
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− x̂i (t
i
l + m − 1))

= · · · · · ·
=xi(t

i
l ) +

∑

j∈Ni

|aij |(sgn(aij )̂xj (t
i
l − τij ) − xi(t

i
l )) + · · · +

+
∑

j∈Ni

|aij |(sgn(aij )̂xj (t
i
l + m − 1 − τij ) − x̂i (t

i
l + m − 1)).

(6.64)

To propose the self-triggered algorithm to find t il+1, set Σ = 0 and s = t il . The
following two cases are considered:

Case 1: For k > s, if agent i does not receive the renewed information from its
neighbors, it follows from (6.64) that

(xi(k) − xi(s))
2 = [Σ + pi(s)(k − s)]2, i ∈ N . (6.65)

Solving the inequality [Σ + pi(s)(k − s)]2 − qi(s) > 0, we can obtain that the
minimum k = ωi

l satisfying the above inequality. Hence, according to the event-
triggered condition (6.33), the event-triggered time instant is is t il+1 = ωi

l in this
case.

Case 2: If agent i firstly receives the renewed information from some of its
neighbors at time k0 < ωi

l , it follows from (6.64) that

(xi(k
0) − xi(s))

2 = [pi(s)(k
0 − s)]2, i ∈ N . (6.66)

Set Σ = 0 + pi(s)(k
0 − s). According to the event-triggered condition (6.33),

we should update s = k0 and then go back to Case 1.
Based on the above discussions, an efficient algorithm to find t il+1, ∀i ∈ N can
be summarized as follows.

Algorithm 6.1 Self-triggered algorithm for system (6.27)

Step 1. For each agent i ∈ N , set Σ = 0 and s = t il .
Step 2. Solving the inequality [Σ + pi(s)(k − s)]2 − qi(s) > 0, we can obtain the minimum

k = ωi
l such that the inequality holds.

Step 3. For k ≥ s, if agent i does not receive the renewed information from its neighbors until
k = ωi

l , then set t il+1 = ωi
l and stop the algorithm.

Step 4. If agent i firstly receives the renewed information from some of its neighbors at time
k0 < ωi

l , set Σ = Σ + pi(s)(k
0 − s). Update s = k0 and go to Step 2.

According to the above analysis, the following Theorem 6.14 can be obtained.
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Theorem 6.14 Consider the multi-agent system (6.27) with arbitrary finite com-
munication delay τij under control law (6.28). If the first triggering time t i1 = 0,
agent i, i ∈ N , determines the triggering time sequence t il |∞l=2 by self-triggered
algorithm 6.1. Then, we can obtain the following results:

(i) System (6.27) can achieve bipartite consensus asymptotically if signed digraph
G is structurally balanced.

(ii) If signed digraph G is structurally unbalanced, then the system (6.27) can
achieve consensus and the final consensus value is 0, i.e., lim

k→+∞ xi(k) =
0, ∀i ∈ N .

6.2.3 Numerical Example

Example 6.15 Consider a signed multi-agent network with structurally balanced
topology and structurally unbalanced topology, respectively (see Fig. 6.8). Set σ =
0.9 in event-triggered condition (6.30) and the distinct communication delays are as
follows:

Γ = (τij )6×6 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 2 0 0 0 0
0 0 3 0 0 0
1 0 0 0 0 2
0 0 2 0 3 0
0 0 0 0 0 1
0 0 0 2 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

According to Theorem 6.12, one can easily conclude that under the proposed
event-triggered condition (6.30),

(i) the system with communication delays will achieve bipartite consensus when
the network topology is shown in Fig. 6.8a;

(ii) the states of all the agents will converge to zero when the network topology is
shown in Fig. 6.8b.

The evolvement of the agents under the event-triggered condition (6.30) is shown
in Figs. 6.9 and 6.10, respectively. The numerical results in Fig. 6.9 show that the
individual state of the multi-agent system converges to the bipartite constant limit
that has the same modulus and different signs. The numerical results in Fig. 6.10
show that the individual state of the multi-agent system converges to zero. Figures
6.9 and 6.10 agree well with the proposed theoretical result.
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Fig. 6.8 Network topology in Example 6.15. (a) structurally balanced. (b) Structurally unbalanced

The individual event time instants corresponding to Figs. 6.9 and 6.10 under the
proposed event-triggered protocol are shown in Figs. 6.11 and 6.12, respectively.
Table 6.1 illustrates the event-triggering frequency under two different network
topologies. One can conclude from the simulation example that the event-based
strategy in this chapter can significantly decrease the information transmission
during the bipartite consensus process of the signed network model with distinct
communication delays.

6.3 Summary

In this chapter, the bipartite consensus of continuous-time and discrete-time multi-
agent system was studied. For the continuous-time model, according to Perron–
Frobenius theorem and some other mathematical analysis, it was found that the
bipartite consensus can be asymptotically reached if the strongly connected signed
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Fig. 6.9 The states of multi-agent system (6.27) associated with signed diagraph with balanced
structure in Fig. 6.8a

Fig. 6.10 The states of multi-agent system (6.27) associated with signed digraph with unbalanced
structure in Fig. 6.8b

digraph G is structurally balanced. For the discrete-time model, communication
delays and event-based strategy were considered simultaneously. It is shown
that under the proposed event-triggered condition the bipartite consensus can be
asymptotically achieved if the network topology is structurally balanced, and all the
agents converge to zero if the signed digraph is structurally unbalanced. Numerical
examples were provided to demonstrate the effectiveness of our derived results.



156 6 Consensus of Networked Multi-agent Systems with Antagonistic Interactions. . .

0 50 100 150

k

agent1

agent2

agent3

agent4

agent5

agent6

Fig. 6.11 Event-trigger times associated with signed digraph in Fig. 6.8a
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Fig. 6.12 Event-trigger times associated with signed digraph in Fig. 6.8b

Table 6.1 The total number of triggering over the total number of iterations in simulation under
structurally balanced topology and structurally unbalanced topology, respectively

Node 1 2 3 4 5 6

Balanced 26.6% 25.3% 21.3% 28.6% 26.0% 26.0%

Unbalanced 27.3% 26.6% 31.3% 34% 26.0% 28.6%
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