
Chapter 2
Consensus Over Directed Static
Networks with Arbitrary Finite
Communication Delays

A particularly interesting aspect of the dynamics in complex networks is that certain
types of globally collective behaviors emerge from local interactions among the
nodes [1–5]. Such behavior arises ubiquitously in biological systems [6], ecosys-
tems [7], and physical systems [8]. Moreover, there are many practical applications
for the consensus of networks including cooperative robotics, formation flying of
unmanned aerial vehicles [9], and coordinated control of land robots [10].

It can be observed that the consensus behavior is realized via the interconnections
among the nodes [11–16]. However, due to the finite switching speed of amplifiers,
time delays are ubiquitous at the moment of information exchanges among the
nodes in many physical systems. The introduction of the communication delays
will largely increase the complexity and difficulty of the consensus problem. In the
literature [17], the consensus problem for systems with both diverse communication
delays and diverse input delays was investigated. The unknown communication
delays were considered in the high-order consensus problem for heterogeneous
multi-agent systems [18]. Moreover, the directed information flow is another
important challenge for the consensus problem. In the literature [19], the consensus
problem for second-order multi-agent systems with inherent nonlinear dynamics
under directed topologies was studied. In this chapter, we present results on
the consensus problem in directed networks with arbitrary finite communication
delays. By employing different techniques, we show that, under linear coupling
as well as nonlinear coupling, consensus will be eventually realized for arbitrary
finite communication delays. That is, the consensus behavior is robust against
communication delays.

In the presence of communication delays, the final consensus state of the
networked system is very hard to predict. For many physical, social, and biological
systems, there is a common need to regulate the final behavior of large ensembles
of interacting nodes [20–23]. However, it is very difficult and costly, if not
impossible, to inform all the nodes about the objective state because of the limited
communication abilities of individual nodes. Hence, new techniques are strongly
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required to make the regulation process much easier and cheaper for the complex
network with arbitrary finite communication delays. After detailed analyses, we
shall show that only one well-informed leader is enough for the success of consensus
regulation in networked coupled systems with arbitrary finite delays. Also such
navigational signal could be very weak. Moreover, the obtained results will be
extended to complex networks with hierarchical structure. The derived results are
beneficial for the better understanding of emergent behavior in networked coupled
systems.

2.1 Linear Coupling

We first consider a set of N linearly coupled identical nodes, with each node being
an n-dimensional continuous dynamical system, in the following form

ẋi (t) =
N∑

j=1

aij (xj (t − τij ) − xi(t)), i ∈ N , (2.1)

where xi(t) ∈ R
n denotes the state of node i, and τij > 0 is the communication

delay from node j to node i for i �= j and τii = 0. A = (aij )N×N is the adjacency
matrix representing the network topology of the complex network, and aij is defined
as follows: if there exists information flow from node j to node i, then aij > 0
(i �= j ); aij = 0 otherwise, and the diagonal elements aii = 0 for i ∈ N . The
coupling network among the nodes is assumed to be strongly connected.

Let Ā = (āij )N×N be the Laplacian matrix with its elements defined as follows:
āij = aij for i �= j , and āii = −∑N

j=1 aij for i ∈ N . Ā is irreducible since the
corresponding network is strongly connected.

Let ξ = (ξ1, ξ2, . . . , ξN )� be the normalized left eigenvector of Ā with respect
to the zero eigenvalue satisfying maxi{ξi} = 1. By the Perron–Frobenius theorem
[24], one obtains that ξi > 0 for i ∈ N .

Throughout this section, the consensus of the networked system (2.1) is said to
be asymptotically realized if limt→∞ ‖xi(t) − xj (t)‖ = 0, ∀i, j ∈ N .

2.1.1 The Case of Leaderless

In this subsection, we study the consensus seeking of linear coupling system (2.1).
The following theorem shows that the consensus of linear system (2.1) is robust
against communication delays.
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Theorem 2.1 Consider a linear coupled system (2.1) with a strongly connected
graph G. Whatever finite communication delays τij are, the consensus is asymptoti-
cally reached for arbitrary initial conditions. That is,

lim
t→∞ xi(t) → c, ∀ i ∈ N , (2.2)

where c ∈ R
n is a constant vector.

Proof Since ξ is the left eigenvalue of matrix Ā corresponding to eigenvalue zero,
one has that ξ�Ā = 0, which implies that

ξi āii = −
N∑

j=1,j �=i

ξj āj i . (2.3)

Further because āii = −
N∑

j=1
aij , we can obtain that

N∑

j=1

ξiaij =
N∑

j=1

ξj aji, and
N∑

i=1

ξj aji =
N∑

i=1

ξiaij . (2.4)

Consider the following Lyapunov functional:

V (t) = V1(t) + V2(t), (2.5)

where

V1(t) = 1

2

N∑

i=1

ξix
�
i (t)xi(t), (2.6)

and

V2(t) = 1

2

N∑

i=1

N∑

j=1

∫ t

t−τji

ξj ajix
�
i (θ)xi(θ)dθ. (2.7)

Differentiating the functional V (t) along the trajectories of system (2.1) gives that

V̇1(t) =
N∑

i=1

ξix
�
i (t)ẋi (t)

=
N∑

i=1

N∑

j=1

ξiaij [x�
i (t)xj (t − τji) − x�

i (t)xi(t)], (2.8)
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and

V̇2(t) = 1

2

N∑

i=1

N∑

j=1

ξj aji[x�
i (t)xi(t) − x�

i (t − τji)xi(t − τji)]

= 1

2

N∑

i=1

N∑

j=1

ξiaij x
�
i (t)xi(t)

−1

2

N∑

i=1

N∑

j=1

ξiaij x
�
j (t − τij )xj (t − τij ). (2.9)

Therefore, by combining Eqs. (2.8) and (2.9), we obtain that

V̇ (t) = V̇1(t) + V̇2(t)

= −1

2

N∑

i=1

N∑

j=1

ξiaij

[
x�
i (t)xi(t) − 2x�

i (t)xj (t − τij )

+x�
j (t − τij )xj (t − τij )

]

= −1

2

N∑

i=1

N∑

j=1

ξiaij

(
xi(t) − xj (t − τij )

)�(
xi(t) − xj (t − τij )

)

≤ 0. (2.10)

Hence, V (t) is non-increasing. Together with V (t) ≥ 0, it implies that limt→∞ V (t)

exists and is finite. Then, one can easily show the boundedness of xi(t) for i ∈ N
by referring to the construction of V (t). By referring to system (2.1), it can be
concluded that ẋi (t) is bounded for any i ∈ N . Thus, we can conclude that V̈ (t) is
also bounded by referring to the expression of V̇ (t).

According to Barbalat’s Lemma [25], we get that limt→∞ ξiaij (xi(t) − xj (t −
τij ))

�(
xi(t) − xj (t − τij )

) = 0, i.e., limt→∞(xi(t) − xj (t − τij )) = 0 if aij > 0. In
addition, one can conclude that ẋi (t) → 0 as t → ∞ for i ∈ N .

Since the network is strongly connected, for each pair of nodes i, j ∈ N , one
can find two constants τ ∗

ij and τ ∗
j i such that xi(t) → xj (t − τ ∗

ij ) and xi(t − τ ∗
j i) →

xj (t). In fact, the constants τ ∗
ij and τ ∗

j i are certain linear combinations of all
communication delays τij . Hence, xi(t − τ ∗

ij − τ ∗
j i) → xi(t) for each i ∈ N , which

implies that xi(t) tends to be periodic with the constant period τ ∗
ij + τ ∗

j i . Noting the
fact that ẋi (t) → 0 as t → ∞, we yield that xi(t) tends to a steady state ci ∈ R

n.
Since the matrix A is irreducible, it follows that the largest invariant manifold of

system (2.1) is M = {x1(t), x2(t), . . . , xN(t)|x1(t) = x2(t) = · · · = xN(t)}. This
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implies that there exists a constant vector c ∈ R
n such that ci = c for each i ∈ N .

Hence, xi(t) → c as t → ∞ for i ∈ N .
Therefore, regardless of the communication delay values and for arbitrary finite

initial values, the consensus of the directed interconnected system (2.1) can be
realized asymptotically.

2.1.2 The Case with One Well-Informed Leader

Let us now consider the regulation of networked coupled system (2.1). It has been
shown in Sect. 2.1.1 that the consensus among nodes can be realized whatever the
finite communication delays are. However, due to the injection of arbitrary finite
communication delays, the final consensus state c is very hard to predict. While
in many physical, social, and biological systems, there are usually some needs to
regulate the behavior of large ensembles of interconnected nodes [20, 26]. In many
papers, it is assumed that all the nodes should be informed about the objective state,
but such a regulation scheme is very difficult and expensive to implement.

In order to force the dynamics of the nodes onto a desired trajectory, we include
here a well-informed leader. Such a well-informed leader exists in many natural
processes [27], such as genetic regulatory networks and biological systems. In the
following, we propose a much cheaper and easily implemented method, in which
only one of the nodes is informed about the objective state to be reached.

Let the objective reference state be x∗, and the regulation of the linear system
(2.1) is said to be successful if xi(t) → x∗ as t → ∞ for any i ∈ N . The first node
with state x1(t) is chosen as the well-informed leader. Then the networked control
system corresponding to (2.1) with leader x1 can be written as

ẋi (t) =
N∑

j=1

aij (xj (t − τij ) − xi(t)) + ui(t), i ∈ N , (2.11)

where ui(t) =
{−k(x1(t) − x∗), for i = 1;

0, otherwise; for k > 0. Let ei(t) = xi(t) − x∗,

and we obtain the following regulated dynamical system:

ėi (t) =
N∑

j=1

aij (ej (t − τij ) − ei(t)) + ui(t), i ∈ N . (2.12)

The following theorem shows that one well-informed leader is sufficient for an
efficient regulation of the networked system (2.11).
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Theorem 2.2 Consider a controlled system (2.11) with a strongly connected graph
G. Whatever the values of the finite communication delays τij are, the states of all
nodes will be successfully controlled by the objective state x∗. That is,

lim
t→∞ xi(t) → x∗, ∀ i ∈ N , (2.13)

where x∗ ∈ R
n is the objective state.

Proof Let ξ = (ξ1, ξ2, . . . , ξN )� be the normalized left eigenvector of Ā with
respect to the zero eigenvalue. Consider the Lyapunov–Krasovskii functional
as E(t) = E1(t) + E2(t) with E1(t) = 1

2

∑N
i=1 ξie

�
i (t)ei(t) and E2(t) =

1
2

∑N
i=1

∑N
j=1

∫ t

t−τji
ξj ajie

�
i (θ)ei(θ)dθ. By some calculations, the derivative of the

functional E(t) along with the solution to system (2.12) can be obtained as

Ė(t) = −1

2

N∑

i=1

N∑

j=1

ξiaij

(
ei(t) − ej (t − τij )

)�

×(
ei(t) − ej (t − τij )

) − ξ1ke�
1 (t)e1(t). (2.14)

It is obvious that Ė(t) = 0 if and only if ei(t) = ej (t − τij ) for each pair of indexes
(i, j) satisfying aij > 0 and e1(t) = 0. Hence, the set S = {e1(t) = 0, ei(t) =
ej (t − τij ) for (i, j) satisfying aij > 0} is the largest invariant set contained in
Ė(t) = 0 for system (2.12). Then by using the well-known invariance principle
of functional differential equations [28], the orbit of system (2.12) converges
asymptotically to the set S . That is, ei(t) → ej (t−τij ) for each pair (i, j) satisfying
aij > 0 and e1(t) → 0 as t → ∞. By a similar analysis as in Theorem 2.1, it follows
that ei(t) → ej (t) for any i and j , and further that ei(t) → 0 for i ∈ N . Hence, all
the nodes have been regulated to the objective state x∗ by only informing one of the
nodes.

Remark 2.3 The advantage of this scheme is that we do not need to inform all the
nodes about the objective state. Instead, we proved that regulation process will be
successfully implemented by only informing one of the nodes about the objective
state, which will be spread efficiently via numerous local connections. It should
be noted that any node can be chosen as the well-informed leader, and then the
objective state will be realized. The “strongest" node with the highest out-degree
should be a good choice to make the regulation process effective. The feedback
strength k is just required to be positive, i.e., the strength of the external signal
can be very weak. Hence, the proposed regulation scheme is simple and cheap to
implement.
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2.2 Nonlinear Coupling

Now, we generalize the above approach to the class of nonlinearly coupled systems.
Consider the following nonlinearly coupled system with directed information flow:

ẋi (t) =
N∑

j=1

aij (h(xj (t − τij )) − h(xi(t))), i ∈ N , (2.15)

where xi(t) ∈ R denotes the state of node i at time t . Let τ = maxi,j {τij }.
Throughout this section, the function h(·) : R → R is assumed to be strictly
increasing. Without loss of generality, we assume that h(0) = 0.

In the following theorem, we prove that the consensus of nonlinearly coupled
system (2.15) is also quiet robust against the communication delays.

Theorem 2.4 Suppose that the graph G is strongly connected. Then, for nonlinear
system (2.15), the consensus can be realized globally for all initial conditions and
arbitrary finite communication delays τij . That is,

lim
t→∞ xi(t) → c, ∀ i ∈ N , (2.16)

where c ∈ R is a constant.

Proof Let x(t) = [x�
1 (t), x�

2 (t), . . . , x�
N(t)]�, and consider the following

Lyapunov–Krasovskii functional as

W(x(t)) = W1(x(t)) + W2(x(t)), (2.17)

where

W1(x(t)) =
N∑

i=1

ξi

∫ xi (t)

0
h(s)ds

and

W2(x(t)) = 1

2

N∑

i=1

N∑

j=1

∫ t

t−τij

ξiaij h
2(xj (θ))dθ.



26 2 Consensus Over Directed Static Networks with Arbitrary Finite Communication. . .

Now, differentiating the functions W1(x(t)) and W2(x(t)) along the solution of
system (2.15), it yields

Ẇ1(x(t)) =
N∑

i=1

ξih(xi(t))

N∑

j=1

aij

[
h(xj (t − τij )) − h(xi(t))

]

= 1

2

N∑

i=1

N∑

j=1

ξiaij

[
2h(xi(t))h(xj (t − τij )) − 2h2(xi(t))

]
,

and from (2.4), it follows that

Ẇ2(x(t)) = 1

2

N∑

i=1

N∑

j=1

ξiaij [h2(xj (t)) − h2(xj (t − τij ))]

= 1

2

N∑

i=1

N∑

j=1

ξj ajih
2(xj (t)) − 1

2

N∑

i=1

N∑

j=1

ξiaij h
2(xj (t − τij ))

= 1

2

N∑

i=1

N∑

j=1

ξiaij h
2(xi(t)) − 1

2

N∑

i=1

N∑

j=1

ξiaij h
2(xj (t − τij ))

= 1

2

N∑

i=1

N∑

j=1

ξiaij

[
h2(xi(t)) − h2(xj (t − τij ))

]
.

Therefore, we obtain that

Ẇ (x(t)) = −1

2

N∑

i=1

N∑

j=1

ξiaij · [
h(xi(t)) − h(xj (t − τij ))

]2 ≤ 0. (2.18)

Let S = {x(t) : Ẇ (x(t)) = 0}. Since ξi > 0 for i ∈ N , it follows from (2.18)
that S = {

x ∈ C([t − τ, t],RN) : aij (h(xi(t)) − h(xj (t − τij ))) = 0
}
. It can

be concluded that the set S is invariant with respect to system (2.15). By using the
LaSalle invariance principle [28], we get that x → S as t → +∞. Hence, for any
ordered pair of subscripts i and j satisfying aij �= 0, we have h(xi(t)) − h(xj (t −
τij )) → 0 as t → +∞. Since h(·) is strictly increasing with h(0) = 0, we yield that
lim

t→∞(xi(t) − xj (t − τij )) = 0 when aij �= 0.

Since the graph G is strongly connected, for any ordered pair of distinct nodes
i and j , one can find a directed path from node i to node j and simultaneously
a directed path from node j to node i. Hence, for each pair of nodes i, j ∈ N ,
one can find two constants τ ∗

ij and τ ∗
j i , which are certain linear combinations of all

communication delays τij , such that xi(t) → xj (t − τ ∗
ij ) and xi(t − τ ∗

j i) → xj (t).
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Hence, xi(t − τ ∗
ij − τ ∗

j i) → xi(t) holds for each i ∈ N , which implies that xi(t)

tends to be periodic with the constant period τ ∗
ij + τ ∗

j i . It follows from (2.15) that
ẋi (t) → 0. Consequently, we obtain that xi(t) tends to a constant ci ∈ R as t → ∞.

According to the facts that A is irreducible and xi(t) → ci , we conclude that
the largest invariant set of system (2.15) is M = {x1(t), x2(t), . . . , xN(t)|x1(t) =
x2(t) = · · · = xN(t)}. This implies that there exists a common constant c such that
ci = c ∈ R for each i ∈ N . Hence, xi(t) → c as t → ∞.

Remark 2.5 If communication delays are not included (i.e., τij = 0 in (2.15)),
nonlinearly coupled system (2.15) becomes the model as discussed in [29] and
our result in Theorem 2.4 still holds. Therefore, Theorem 2.4 can be regarded as
a generation of the nonlinear consensus problem without communication delays
discussed in [29].

2.3 Hierarchical Structure

The above results hold under the assumption that the network structure is strongly
connected. However, for many real life networks, from machines to government,
this condition can hardly be satisfied. A typical example is the consensus decision-
making among a group of people, in which underlings usually have few or no
influence on their big bosses, while the bosses always have great influence on the
underlings. In such systems, the individual nodes are divided into several levels and
hence form a hierarchical structure. In this section, we study the networked coupled
system with hierarchical topology.

Consider a networked coupled system with N = ∑p

i=1 mi nodes. The N nodes
are divided into p different groups with mi nodes in the i-th group. The graph
generated by the local connections of the nodes is assumed to have a rooted directed
spanning tree [30]. In real life systems, this condition is not restrictive due to the
ubiquitous existence of hierarchical structure.

Let A be the coupling matrix of the networked coupled system with hierarchical

structure in the form of A=
⎡

⎢⎣

A11 A12 · · · A1p
0 A22 · · · A2p

.

.

.

.

.

.

.
.
.

.

.

.

0 0 · · · App

⎤

⎥⎦ after certain permutations. Here the

matrices Aqq ∈ R
mq×mq are irreducible for q = 1, 2, . . . , p. Due to the existence

of rooted directed spanning trees, we obtain that for each q (q < p), there must
exist a κ > q such that Aqκ �= 0.

The nodes denoted by the matrix App can be regarded as the leader group in
the complex network. From Theorem 2.1, the consensus will be firstly realized in
the p-th group due to the irreducibility of App. Then the consensus state will be
propagated to the nodes in the (p − 1)-th group due to the existence of the nonzero
matrix Ap−1,p by using Theorem 2.2. By induction, we obtain that consensus of N

nodes will eventually be realized. A typical example of such consensus transmitted
mechanism is the chain of President–Governor–Mayor in a governmental system.
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Moreover, the regulation of such a networked coupled system with hierarchical
structure can also be realized by choosing a node within the leader group as the
well-informed leader.

2.4 Numerical Examples

In this section, numerical examples will be given to demonstrate the derived theo-
retical results. Throughout the examples, all communication delays are uniformly
distributed in (0, 1). The initial conditions are also randomly chosen from (−5, 5).
It will be shown that the consensus process and the regulation are effective even for
large-scale networks.

As the first example, networked coupled system with linear coupling (2.1) is
considered. The connecting topology among the nodes is assumed to be a small-
world directed network [31]. Opinion formation in small-world network [32] is
simulated to see how the number of nodes and the communication delay affect the
convergence time of reaching the consensus. Figure 2.1 shows that the consensus
time increases with the increment of communication delay τij = τ . We also studied
how the consensus time changes as a function of the number of nodes. Figure 2.2
shows that the consensus time increases on the whole when the number of people
increases. Furthermore, the consensus seeking and controlling of 1000 nodes small-
world networks are respectively simulated in Figs. 2.3 and 2.4. In the simulations,
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Fig. 2.1 Convergence time versus communication delays for opinion formation in small-world
network, which is generated by setting N = 100, k̄ = 4 and p̄ = 0.01 [31]
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Fig. 2.2 Convergence time versus the number of nodes for opinion formation in small-world
network, which is generated by setting k̄ = 4 and p̄ = 0.01 [31]

Fig. 2.3 Consensus of 1000 nodes (three dimensions) with small-world coupling topology, which
is generated by setting k̄ = 4 and p̄ = 0.02 [31]. Same initial conditions and different
communication delays are used for two sub-figures
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Fig. 2.4 Consensus of 1000 nodes (three dimensions) with small-world coupling with one well-
informed leader. Small-world network is generated by setting k̄ = 4 and p̄ = 0.02 [31]. The
node with maximum out-degree 38 is controlled with a feedback gain 1. Initial conditions and
communication delays are both different between two sub-figures

the initial degree of nodes and adding probability of directed edges are, respectively,
chosen as k̄ = 4 and p̄ = 0.02 [31]. The dimension of each node is set to be n = 3.
It follows from Theorem 2.1 that the consensus of these nodes will be realized.
Our simulation results are shown in Fig. 2.3. It can be observed that even under the
same initial conditions, the final agreement states could be distinct due to different
communication delays. Hence, an external controller is needed if we want to force
the final consensus state onto the original point x∗ = 0. The node with maximum
out-degree 38 is selected to be the well-informed leader with κ̄ = 1 (a relative
weak and low-cost signal compared with the out-degree 38). Numerical results are
depicted in Fig. 2.4, which clearly show the power of the proposed scheme.
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For the second example, we consider the nonlinear coupled system (2.15). The
nonlinear function is set as h(x) = αx + sin(x). It is obvious that h(·) is a strictly
increasing function when α ≥ 1, but h(·) is not strictly increasing when α < 1.
A BA scale-free network [33] is used to describe the coupling structure of the
networked system (2.15). The parameters for constructing the scale-free network are
chosen as m = m0 = 3. After the generation of the scale-free network, each directed
edge is assigned a weighted value that is uniformly distributed in the interval [1, 2].
The dimension of each node is set to be 1. From Theorem 2.4, we conclude that
the consensus of this nonlinearly coupled system can be realized if α ≥ 1. From
Fig. 2.5, we can observe that the consensus is indeed successful when α = 2.
However, for α = 0.2, the consensus cannot be guaranteed by Theorem 2.4 (see
Fig. 2.6).

Fig. 2.5 Consensus of nonlinearly scale-free coupled system with α = 2. BA scale-free network
composed of 100 nodes is obtained by taking m = m0 = 3 [33]. The dimension of each agent is
one
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Fig. 2.6 Consensus failure of nonlinearly scale-free coupled system with α = 0.2. BA scale-free
network composed of 100 nodes is obtained by setting m = m0 = 3 [33]. The dimension of each
agent is one

2.5 Summary

The consensus in complex networked system has been studied in this chapter
under the constraint of directed information flow and arbitrary finite communication
delays. We consider both linear coupling and nonlinear coupling. Compared with
the existing results, our analyses and methods yield the following new results:
(i) the information flow between each pair of nodes can be asymmetrical; (ii)
communication delays can be arbitrarily finite and unknown; (iii) only one well-
informed leader is sufficient to guarantee the successful regulation process; (iv) the
external signal pinned to the leader can be very weak. Items (iii) and (iv) make the
regulation process very easy and cheap to implement. The studied models are very
close to real life, and the derived results would be valuable for the understanding of
emergent and/or self-organized behaviors in social and biological systems.
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