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Preface

Recently, complex networked systems, such as distributed robots and mobile sensor
networks, have been widely studied due to their broad applications. One of the
focuses of studying complex networked systems is on how collective behavior
emerges as a result of local interactions among agents.

Most of the literatures concerning collective behavior of complex networks
concentrate on the analysis of network models with perfect communication, which
assumed that each agent can receive information from its neighbors timely and
accurately. Unfortunately, such models cannot reflect the most real circumstances,
as the information flow between two neighboring nodes is generally affected by
many uncertain factors including limited communication capacity, network-induced
time delays, communication noise, random packet loss, and so on. Moreover, in
many realistic complex networked systems, due to the complexity of systems and
external attacks (or disturbance), the failure inevitably occurs in nodes or links.
Therefore, the aforementioned communication constraints should be considered
in the design of control strategies or algorithms. In this book, we investigate the
collective behavior of complex networked systems under imperfect communication.
The following issues will be presented in detail: (a) the consensus of continuous-
time multi-agent networks with communication delays; (b) the consensus of
continuous-time multi-agent networks with quantization and time delays; (c) the
consensus of discrete-time multi-agent networks with quantization and time delays;
(d) the distributed event-triggered control approach for consensus of discrete-
time/continuous-time multi-agent networks; (e) the bipartite consensus problem of
cooperative-antagonistic multi-agent networks with communication delays; (f) the
synchronization problem of general dynamical networks with time delays; (g) the
consensus recovery approach to nonlinear multi-agent system under node failure.

This book aims to introduce some recent research work on the collective
behavior of complex networked systems under imperfect communication. The book
is organized as follows:

Chapter 1: This chapter begins with the background of complex networked
systems. Subsequently, the organization of this book, some important definitions,
useful lemmas, and some basic knowledge about graph theory are introduced.

v
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Chapter 2: The consensus problem of networks is investigated under the con-
straint of directed information flow and arbitrary finite communication delays. It is
shown that the consensus can be realized whatever the finite communication delays
are. Furthermore, one well-informed leader is proved to be enough for the regulation
of final states for all nodes, even if the external signal is very weak.

Chapter 3: The consensus problem of continuous-time multi-agent networks with
quantization and communication delays is investigated. Two types of communi-
cation constraints are discussed in this chapter: (i) each agent can only exchange
quantized data with its neighbors, and (ii) each agent can only obtain the delayed
information from its neighbors. Solutions of the resulting system are defined in
the Filippov sense. By nonsmooth analysis technique, the existence of the global
Filippov solution to the resulting system is proved. For the consensus protocol which
only considers the quantization effect, we prove that Filippov solutions converge to
a practical consensus set in a finite time. For the consensus protocol considering
quantization and time delays simultaneously, it is shown that Filippov solutions
will converge to a practical consensus set asymptotically. In addition, based on
the nonsmooth analysis, convergence results are derived for the proposed model
with uniform quantizers. It is pointed out that the multi-agent network will achieve
consensus asymptotically under the proposed distributed protocols.

Chapter 4: The consensus problem of multi-agent networks with communica-
tion quantization and time delays is investigated. Both discrete-time model and
continuous-time model are considered. For the discrete-time model, we present that
the multi-agent network with communication quantization and arbitrary communi-
cation delays can achieve consensus. For the continuous-time model, we show that
the global Filippov solution exists and the consensus can be achieved under com-
munication quantization and communication delays simultaneously. Furthermore,
a new distributed event-triggered scheme is proposed for the considered multi-
agent network model. It is shown that the multi-agent network achieves consensus
asymptotically under the proposed distributed event-triggered protocols.

Chapter 5: The consensus problem of discrete-time multi-agent networks under
event-triggered control strategy is considered. We discuss networks of single-
integrator without delays under centralized event-triggered control and single-
integrator with communication delays under distributed event-triggered control,
respectively. For each consensus protocol, we prove that the multi-agent network
will achieve consensus asymptotically. In addition, the effect of communication
delays for the discrete-time event-triggered multi-agent consensus is also discussed.
Furthermore, a self-triggered consensus algorithm is proposed in which a set of
iterative procedures is given to compute the event-triggered instants. Significantly,
the final consensus value is theoretically obtained even in the presence of event-
based communication and distinct finite delays.

Chapter 6: The consensus problem for multi-agent networks with antagonistic
interactions and communication delays is investigated. For undirected signed
networks, we establish two dynamic models corresponding to linear and nonlinear
coupling, respectively. Based on matrix theory, Lyapunov stability theory, and some
other mathematical analysis, it is proved that all agents on signed networks can reach
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an agreement on consensus values which are the same in modulus but opposite in
sign. Further, a bipartite consensus solution is given for linear coupling networks,
and an explicit expression associating with bipartite consensus solution is provided
for nonlinear coupling networks.

Chapter 7: The fixed-time consensus problem for multi-agent systems with
structurally balanced signed graph is studied. A new class of fixed-time nonlinear
consensus protocols is designed by employing the neighbors’ information. By using
the Lyapunov stability method, states of all agents can be guaranteed to reach
agreement in a fixed time under our presented protocols, and the consensus values
are the same in modulus but different in sign. Moreover, it is shown that the settling
time is independent of the initial conditions, and it provides great convenience for
estimating the convergence time by just knowing the graph topology and the infor-
mation flow of the multi-agent systems. In addition, finite-time bipartite consensus
problem of multi-agent systems with detail-balanced antagonistic interactions is
investigated. To be specific, two valid protocols are designed and expressed in a
unified form. Further, by taking advantage of some recent findings on network
stability, we obtain theoretical results to guarantee that the states of all agents reach
agreement in finite time under our proposed protocols.

Chapter 8: The globally exponential synchronization problem is considered for
general dynamical networks. One quantity is extracted from the coupling matrix to
characterize the synchronizability of the corresponding dynamical networks. The
calculation of such a quantity is very convenient even for large-scale networks. The
network topology is assumed to be directed and weakly connected, which implies
that the coupling configuration matrix can be asymmetric, weighted, and reducible.
By using the Lyapunov functional method and the Kronecker product technique,
some criteria are obtained to guarantee the globally exponential synchronization of
general dynamical networks.

Chapter 9: Under event-based mechanism, pinning cluster synchronization in
an array of coupled neural networks is studied. A new event-triggered sampled-
data transmission strategy, where only local and event-triggering states are utilized
to update the broadcasting state of each agent, is proposed to realize cluster syn-
chronization of the coupled neural networks. Furthermore, a self-triggered pinning
cluster synchronization algorithm is proposed, and a set of iterative procedures
is given to compute the event-triggered time instants. Hence, this will reduce the
computational load significantly.

Chapter 10: The consensus recovery approach under node failure is studied.
First, consensus analysis is given for nonlinear multi-agent networks with arbitrary
communication topology, which fully utilizes the global information of the network
structure. Before presenting the consensus recovery approach, a new network
reduction approach is proposed to reduce the size of the networks. Subsequently,
a consensus recovery approach is proposed to investigate the consensus of general
nonlinear multi-agent networks with node failure. The objective of the consensus
recovery is to remove the failure nodes of the networks meanwhile the consensus
property is reserved.
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Chapter 1
Introduction

1.1 Background

With the rapid development of modern technology, the world has entered the age
of networks. Typical examples of networks include the World Wide Web, routes of
airlines, biological networks, human relationships, and so on [1]. As a special kind
of network, complex networked systems consisting of large groups of cooperating
agents have made a significant impact on a broad range of applications including
cooperative control of autonomous underwater vehicles (AUVs) [2], scheduling
of automated highway systems [3], and congestion control in communication
networks [4].

The study of complex networks can be traced back to Euler’s celebrated solution
of the Königsberg bridge problem in 1735, which is often regarded as the first
true proof in the theory of networks. In the early 1960s, a random-graph model
was proposed by Paul Erdös and Alfréd Rényi [5], which laid a solid foundation
for modern network theory. Watts and Strogatz proposed a model of small-world
networks in 1998 [6], after that Albert and Barabasi proposed a model of scale-
free networks in 1999 based on preferential attachment [7]. These two works
reveal small-world effect and scale-free property of the complex networks and the
reasons for the above phenomena. Over the past two decades, complex dynamical
networks have been widely exploited by researchers in various fields of physics [8],
mathematics [9], engineering [10, 11], biology [12], and sociology [13].

What makes complex networked systems distinct from other kinds of systems
is that they make it possible to deploy a large number of subsystems as a team to
cooperatively carry out a prescribed task. Furthermore, the most striking feature that
can be observed in complex networked systems is their ability to show collective
behavior that cannot be well explained in terms of individual dynamics of each
single node. Two significant kinds of cooperative behaviors are synchronization and
consensus [9, 14–18], both of which mean that all agents reach an agreement on
certain quantities of interest.

© Springer Nature Singapore Pte Ltd. and Science Press, China 2021
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The formal study of consensus dates back to 1974 [19], where a mathematical
model was presented to describe how the group reaches agreement. Another
interesting discovery is the collective behavior of a group of birds exhibited in
foraging or flight, which is found by biologists in the observation of birds’ flocking
[20]. If attention is paid, one can find that consensus is a universal phenomenon
in nature, such as the shoaling behavior of fish [21], the synchronous flashing of
fireflies [22], the swarming behavior of insects [20, 23, 24], and herd behavior of
land animals [25]. The key feature of consensus is how local communications and
cooperations among agents, i.e., consensus protocols (or consensus algorithms),
can lead to certain desirable global behavior [26–29]. Various models have been
proposed to study the mechanism of multi-agent consensus problem [30–37]. In
[38], the consensus problem was considered of a switched multi-agent system which
composed of continuous-time and discrete-time subsystems. The authors in [39]
investigated consensus problems of a class of second-order continuous-time multi-
agent systems with time-delay and jointly-connected topologies. Literature [40]
focused on the mean square practical leader-following consensus of second-order
nonlinear multi-agent systems with noises and unmodeled dynamics.

Synchronization, as typical collective behavior and basic motion in nature, means
that the difference among the states of any two different subsystems goes to
zero as time goes to infinity or time goes to certain fixed value. Synchronization
phenomena exist widely and can be found in different forms in nature and man-
made systems, such as fireflies’ synchronous flashing, attitude alignment, and the
synchronized applause of audiences. To reveal the mechanism of synchronization
of complex dynamical networks, a vast volume of work on synchronization has
been done over the past few years. Before the appearance of small-world [6]
and scale-free [7] network models, Wu in [41, 42] investigated synchronization
of an array of linearly coupled systems and gave some effective synchronization
criteria. In 1998, Pecora and Carroll [43] proposed the concept of master stability
function as synchronization criterion, which revealed that synchronization highly
depends on the coupling strategy or the topology of the network. In [14, 44–46],
synchronization in small-world and scale-free networks was studied in detail. Over
the past few years, different kinds of synchronization have been found and studied,
such as complete synchronization [14, 41, 42, 47, 48], cluster synchronization [49–
52], phase synchronization [53], lag synchronization [54, 55], and generalized
synchronization [56].

In the literatures, most works on the consensus/synchronization of complex net-
works mainly focus on the analysis of network models with perfect communication,
in which it is assumed that each agent can receive timely and accurate information
from its neighbors. However, such models cannot reflect real circumstances, since
the information flow between two neighboring nodes can always be affected
by many uncertain factors including limited communication capacity, network
induced time delays, communication noise, random packet loss, and so on. The
aforementioned constraints should be considered in the design of control strategy or
algorithms. Hence, it is desirable to formulate more realistic models to describe such
complex dynamical networks under imperfect communication constraints and node
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failure. In this book, three kinds of specific imperfect communications and node fail-
ure will be investigated, and some detailed analysis of consensus/synchronization of
complex dynamical networks will be presented.

1.2 Research Problems

The following three kinds of imperfect communication problems are considered in
this book:

• Quantization: In real-world networked systems, the amount of information that
can be reliably transmitted over the communication channels is always bounded.
To comply with such a communication constraint, the signals in real-world
systems are required to be quantized before transmission, and the number of
quantization levels is closely related to the information transmitting capacity
between the components of the system. For example, information such as data
and codes in computers is stored digitally in the form of a finite number of bits
and hence all the signals need to be quantized before they are processed by the
computer. In this book, two kinds of quantizations in networks are considered.
One is called communication quantization which is related to communication
from one agent to another. The other is called input quantization which is related
to processing of the information arriving at each own agent. One natural question
is how does the state of a networked systems evolve under quantization?

• Communication delays: In many real complex networked systems, due to the
remote location of agents or the unreliable communication medium (such as
Internet), communication delays will occur during the information exchange
between the agents and their neighbors. Generally, communication delays can
have a negative effect on the stability and consensus/synchronization perfor-
mance of the complex networks. Thus, it is important to investigate the effect
of time delays on the coordinate performance of the complex networked systems
and design the delay-tolerant communication protocol. Moreover, it would be
very interesting to study the collective behavior of the complex networked
systems simultaneously with communication delays and quantization.

• Event-driven sampled data: In complex networked systems, it is assumed that
all information exchange between the agent and its neighbors is timely. However,
the communication channels generally are unreliable and the communication
capacity is limited in many real networks such as sensor networks. Moreover,
the sensing ability of each agent is restricted in the networked systems. Thus, it
is more practical to use sampled information transmission, i.e., the nodes of the
network can only use the information at some particular time instants instead of
employing the whole spectrum of information of their neighbors. Sampled-data
control has been widely studied in many areas such as tracking problems and
consensus problems. Unlike traditional time-driven sampled control approach
(i.e., periodic sampling), event-triggered control means the control signals are
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kept constant until a certain condition is violated and then the control signal
is updated (or recomputed). Event-driven control is more similar to the way
in which a human being behaves as a controller since his or her behavior is
event-driven rather than time-driven when control manually. Thus, an interesting
question arises, i.e., is it possible to propose an effective distributed event-
triggered communication protocol to realize expected collective behaviors?

Traditional distributed communication protocols require that the agents exchange
perfect information with their neighbors over the complex networked systems. This
kind of information exchange can be an implicit property of complex networked
systems. The objective of this book is to design efficient distributed protocols or
algorithms for the complex networked systems with imperfect communication and
node failure in order to comply with bandwidth limitation and tolerate communi-
cation delays and node failure. Specifically, the following problems concerning the
collective behavior analysis of complex networked systems will be addressed and
investigated in detail:

Problem 1. How does one model the multi-agent networks with arbitrary finite
communication delays and directed information flow simultaneously
[57]? Can consensus be realized no matter what kind of form the finite
communication delays are? How to regulate all nodes’ final state of
the multi-agent networks, even when the external signal is very weak?
These three questions will be addressed in Chap. 2.

Problem 2. How can we model the multi-agent consensus model with input
quantization and communication delays simultaneously [58, 59]? Does
there exist the global solution for the considered consensus model
with discontinuous quantization function? How do quantization and
communication delays affect the final consensus result? These three
questions will be addressed in Chap. 3.

Problem 3. When the communication quantization and communication delays
exist simultaneously in discrete-time multi-agent networks, can
the complex networked system achieve consensus [60, 61]? For
the continuous-time cases, does the global solution exist? Can the
consensus of such a kind of multi-agent network be realized? These
questions will be explored in Chap. 4.

Problem 4. Can the discrete-time and the continuous-time multi-agent networks
with communication delays achieve consensus via non-periodic sam-
pled information transmission [62, 63]? How to decide when should
the information be transmitted for each agent? What effect does the
communication delay have on the multi-agent networks with non-
periodic sampling information? Chap. 5 will focus on these problems.

Problem 5. It can be found in many real multi-agent networks that the agents
possess not only cooperative but also antagonistic interactions. Ensur-
ing the desired performance of the cooperative-antagonistic multi-
agent networks in the presence of communication constraints is an
important task in many applications of real systems. How does one
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model the cooperative-antagonistic multi-agent networks with arbi-
trary finite communication delays [64–66]? How to deal with the diffi-
culty stemmed from communication delays in cooperative-antagonistic
multi-agent networks? What are the final consensus results for this kind
of networks with communication delays? How to design the consensus
protocol for cooperative-antagonistic multi-agent networks under the
event-triggered control? Chap. 6 will focus on these problems.

Problem 6. Finite-time (or fixed-time) consensus problem has become a hot topic
due to its wide applications. For the cooperative-antagonistic multi-
agent networks, how to design finite-time (or fixed-time) bipartite
consensus protocols [67, 68]? How to establish criteria to guarantee
the bipartite agreement of all agents, and show the explicit expression
of the settling time? Chap. 7 will focus on these problems.

Problem 7. It should be pointed out that many of the real-world networks are
very large. A nature question is how to obtain synchronization criteria
for large-scale directed dynamical networks? When energy constraint
is imposed, how to design event-triggered sampled-data transmis-
sion strategy to realize expected synchronization behaviors [69, 70]?
Chaps. 8 and 9 will discuss these synchronization problems.

Problem 8. The size of most real-world networks is very large, which would
greatly increase the complexity and difficulty of the consensus analysis
of the corresponding networks. Is it possible to greatly reduce the size
of the networks, but reserve the consensus property [71]? In large-scale
networks, is it possible to isolate (or remove) the failure nodes of the
networks and meanwhile reserve the consensus property? Chap. 10
will focus on these problems.

1.2.1 Consensus and Practical Consensus

Consider a multi-agent network A with N agents. Let xi ∈ R be the information
state of the ith agent which may be position, velocity, decision variable, and so on,
where i ∈ N .

Definition 1.1 (Consensus) If for all xi(0) ∈ R, i = 1, 2, . . . , N , xi(t) converges
to some common equilibrium point x∗ (dependent on the initial values of some
agents), as t → +∞, then we say that multi-agent network A solves a consensus
problem asymptotically. The common value x∗ is called the group decision value.

Now, we give the definition of the distance from a point to a set and practical
consensus which will be used in Chap. 3.
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Definition 1.2 The distance from a point p ∈ R to a set U ⊆ R is defined as the
minimum distance between the given point and the points on the set, i.e.,

dist (p,U) = min
r∈U{dist (p, r)} = min

r∈U{|p − r|}.

Definition 1.3 If for all xi(0) ∈ R, i ∈ N , the distance of xi(t) to a set U ⊆ R

converges to 0 as t → +∞. Then, the set U is called practical consensus set.

1.2.2 General Model Description

In this subsection, a brief introduction of the multi-agent consensus model [32] is
presented, which requires that each agent receives timely and accurate information
from its neighbors.

1.2.2.1 Continuous-time Multi-agent Consensus Model

The continuous-time multi-agent consensus model is as follows:

ẋi (t) =
∑

j∈Ni

aij (xj (t)− xi(t)), i ∈ N , (1.1)

where xi(t) ∈ R
n, N = {1, 2, . . . , N}, N > 1, Ni = {j | aij > 0, j =

1, 2, . . . , N}, and aij is defined as follows:

• when i is not equal to j :

If there is a connection from node j to node i, aij > 0;
otherwise, aij = 0;

• when i is equal to j : aii = 0, for all i ∈ N .

Let lij = −aij for i �= j , and lii = −∑N
j=1,j �=i lij . The continuous-time linear

consensus protocol (1.1) can be written in matrix form as

ẋ(t) = −(L⊗ In)x(t), (1.2)

where L = (lij )N×N is the graph Laplacian matrix and x = [x�
1 , . . . , x

�
N ]�.
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1.2.2.2 Discrete-time Multi-agent Consensus Model

A general discrete-time multi-agent consensus model can be constructed as follows:

xi(k + 1) = xi(k)+ ι
∑

j∈Ni

āij (xj (k)− xi(k)), i ∈ N , (1.3)

where xi(k) ∈ R
n, the constant ι > 0 denotes the step size; āij is defined as

follows:

• when j is not equal to i:

If there is a connection from node j to node i, āij > 0;
otherwise, āij = 0;

• when i is equal to j : āii = 0, for all i ∈ N .

Ā = (āij )N×N represents the topological structure of the system. Let A =
(aij )N×N with aij = ιāij ≥ 0 for i �= j , and aii = 1 −

N∑

j=1, j �=i
aij . Then, the

dynamic of multi-agent networks can be written in a compact form as

x(k + 1) = (A⊗ In)x(k). (1.4)

Proposition 1.4 ([72]) System (1.4) solves a consensus problem if and only if

(1) ρ(A) = 1, where ρ(A) is the spectral radius of A;
(2) 1 is an algebraically simple eigenvalue of A, and is the unique eigenvalue of

maximum modulus;
(3) A1 = 1, where 1 = (1, 1, . . . , 1)� ∈ R

N ;
(4) There exists a nonnegative left eigenvector ξ = (ξ1, ξ2, . . . , ξN)

� ∈ R
N of A

associated with eigenvalue 1 such that ξ�1 = 1.

1.3 Mathematical Preliminaries

1.3.1 Matrices and Graphs

A graph is an essential tool of the diagrammatical representation of the multi-agent
networks. The set of vertices for the network are described as V , and the set of
edges among these vertices are described as E . The graph is denoted as G(V, E). To
distinguish graphs from digraphs (directed graph), we generally refer to graphs as
undirected graphs.

A graph G(V, E), where V containing N vertices is said to have order N .
Analogously, the size of a graph is the number of its edges m, i.e., the number
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of elements in set E . An edge of G is denoted by eij = (vi, vj ), where vi and vj are
called neighbors.

• Self-loop: If two vertices of an edge are the same, we call this edge a self-loop.
• Directed graph: A graph in which all the edges are directed from one vertex to

another.
• Digraph: A path in a digraph is an ordered sequence of vertices such that the

sequence of any two consecutive vertices is a directed edge of the digraph.
• Connected graph: A graph is connected, if there is a path between any pair of

vertices.
• Strongly connected graph: A graph is strongly connected, if there is a directed

path between every two different vertices.
• Subgraph: A subgraph of a graph G1(V1, E1) is a graph G2(V2, E2) such that

V2 ⊆ V1, E2 ⊆ E1.
• Directed tree: A directed tree is a digraph with n vertices and n − 1 edges with

a root vertex such that there is a directed path from the root vertex to every other
vertex.

• Rooted spanning tree: A rooted spanning tree of a graph is a subgraph which is
a directed tree with the same vertex set.

In general, graphs are weighted, i.e., a positive weight is associated to each edge.
There is an intrinsic relationship between graph theory and matrix theory, which

can help us to better understand the main concept of them.

• Reducible: A matrix is said to be reducible if it can be written as

P ·
(
A1 A3

O A2

)
·Q, (1.5)

where P and Q are permutation matrices, A1 and A2 are square matrices and O
is a null matrix.

• Irreducible: An irreducible matrix is a matrix which is not reducible.
• Adjacency matrix: The adjacency matrix A = [aij ] of a (di)graph is a

nonnegative matrix defined as aji = ω if and only if (i, j) is an edge with
weight ω.

• Out-degree: The out-degree do(v) of a vertex v is the sum of the weights of edges
emanating from v.

• In-degree: The in-degree di(v) of a vertex v is the sum of the weights of edges
into v.

• Balance graph: A vertex is balanced if its out-degree is equal to its in-degree. A
graph is balanced if all of its vertices are balanced.

• Laplacian matrix: The Laplacian matrix of a graph is a zero row sums nonnega-
tive matrix L denoted as L = D − A, where A is the adjacency matrix and D is
the diagonal matrix of vertex in-degrees.
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Lemma 1.5 ([73]) A network is strongly connected if and only if its Laplacian
matrix is irreducible.

Lemma 1.6 ([73]) For an irreducible matrix A = (aij )N×N with nonnegative
off-diagonal elements, which satisfies the diffusive coupling condition aii =
−∑N

j=1,j �=i aij , we have the following propositions:

• If λ is an eigenvalue of A and λ �= 0, then Re(λ) < 0;
• A has an eigenvalue 0 with multiplicity 1 and the right eigenvector

[1, 1, . . . , 1]�;
• Suppose that ξ = [ξ1, ξ2, . . . , ξN ]� ∈ R

N satisfying
∑N

i=1 ξi = 1 is the
normalized left eigenvector of A corresponding to eigenvalue 0. Then, ξi > 0
for all i = 1, 2, . . . , N . Furthermore, if A is symmetric, then we have ξi = 1

N
for

i = 1, 2, . . . , N .

1.3.2 Signed Graphs

LetG(V, ε,A) be an undirected signed graph, where V = {ν1, ν2, . . . , νN } is the set
of finite nodes, ε ⊆ V × V is the set of edges, A = [aij ] ∈ R

N×N is the adjacency
matrix of G with the elements aij , and aij �= 0 ⇐⇒ (νj , νi) ∈ ε. Since aij can
be positive or negative, the adjacency matrix A uniquely corresponds to a signed
graph. G(A) is used to denote the signed graph corresponding to A for simplicity,
and assume that G(A) has no self-loops, i.e., aii = 0.

• Path: Let a path of G(A) be a sequence of edges in ε of the form: (νil , νil+1) ∈ ε

for l = 1, 2, . . . , j − 1, where νi1 , νi2 , . . . , νij are distinct vertices.
• Connected: We say that an undirected graph G(A) is connected when any two

vertices of G(A) can be connected through paths.
• Structurally Balanced: A signed graph G(A) is structurally balanced if it admits

a bipartition of the nodes V1, V2, V1 ∪ V2 = V , V1 ∩ V2 = ∅, such that aij ≥ 0,
∀νi, νj ∈ Vq, (q ∈ {1, 2}); and aij ≤ 0, ∀νi ∈ Vq , νj ∈ Vr , q �= r , (q, r ∈
{1, 2}). It is said structurally unbalanced otherwise.

Definition 1.7 D = {diag(σ ) | σ = [σ1, σ2, . . . , σN ], σi ∈ {±1}} is a set of
diagonal matrices, where

diag(σ ) =

⎡

⎢⎢⎢⎣

σ1 0 · · · 0
0 σ2 · · · 0
...

...
. . .

...

0 0 · · · σN

⎤

⎥⎥⎥⎦ .

In the sequel, we consider {σi, i = 1, 2, . . . , N} as defined in Definition 1.7
for a structurally balanced signed graph. By following [74], the Laplacian matrix
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L = (lij )N×N for a signed graph G(A) is defined with elements given in the form
of

lij =

⎧
⎪⎪⎨

⎪⎪⎩

N∑

k=1

|aik|, j = i,

− aij , j �= i.

Lemma 1.8 ([74]) A connected signed graph G(A) is structurally balanced if and
only if one of the following equivalent conditions holds:

(1) all cycles of G(A) are positive;
(2) ∃D ∈ D such that DAD has all nonnegative entries.

Remark 1.9 This lemma can be proved in a special way. The adjacency matrix A

can be rewritten as A =
[
A+

11 A
−
12

A−
12 A

+
22

]
, then let D =

[
I 0
0 −I

]
, we have DAD ≥ 0.

This proof is simple and explicit.

Lemma 1.10 ([74]) A connected signed graph G(A) is structurally unbalanced if
and only if one of the following equivalent conditions holds:

(1) one or more cycles of G(A) are negative;
(2) � ∃D ∈ D such that DAD has all nonnegative entries.

Lemma 1.11 ([74]) Consider a connected signed graph G(A). Let λk(L), k =
1, 2, . . . , N be the k-th smallest eigenvalue of the Laplacian matrix L. If G(A)
is structurally balanced, then 0 = λ1(L) < λ2(L) ≤ · · · ≤ λN(L).

Lemma 1.12 ([75]) If a directed signed graph G contains a rooted spanning tree,
then there exists a proper invertible matrix P satisfying PP� = I such that the
Laplacian matrix L can be depicted in the following Frobenius normal form:

P�LP =

⎡

⎢⎢⎢⎣

L11 0 · · · 0
L21 L22 · · · 0
...

...
. . .

...

Lp1 Lp2 · · · Lpp

⎤

⎥⎥⎥⎦ , (1.6)

where Lii , i = 1, 2, . . . , p, are irreducible matrices, and for any 1 < k ≤ p, there
exists at least one q < k such that Lkq is nonzero.

1.3.3 Quantizer

A quantizer is a device which converts a real-valued signal into a piecewise constant
one taking on a finite or countable infinite set of values, i.e., a piecewise constant
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Fig. 1.1 The first kind of
uniform quantizer
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function q : R → Q, where Q is a finite or countable infinite subset of R (see
[76, 77]). Next, we introduce two kinds of uniform quantizers which will be used in
Chaps. 2 and 3, respectively.

The first kind of uniform quantizer is defined as (see Fig. 1.1)

q(x) =
⌊
x + 1

2

⌋
, (1.7)

where �·� denote the lower integer function.
The second kind of uniform quantizer is defined as (see Fig. 1.2)

q(x) =
{ �x�, x ≥ 0,

−�−x�, x < 0.
(1.8)

In this book, we will use the one-parameter family of quantizers qμ(x) :=
μq( x

μ
), μ > 0.

Fig. 1.2 The second kind of
uniform quantizer
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1.3.4 Discontinuous Differential Equations

For differential equations with discontinuous right hand sides, we understand the
solutions in terms of differential inclusions following Filippov [78].

Definition 1.13 Let I be an interval in the real line R. A function f : I ⊆ R → R is
absolutely continuous on I if for every positive number ε, there is a positive number
δ such that whenever a finite sequence of pairwise disjoint sub-intervals (xk, yk) of
I satisfies

∑

k

|yk − xk| < δ, then

∑

k

|f (yk)− f (xk)| < ε. (1.9)

Moreover, we call the function f̄ = (f1, f2, . . . , fn) : I ⊆ R → R
n is absolutely

continuous on I if every fi, i = 1, . . . , n is absolutely continuous.

Now we introduce the concept of Filippov solution. Consider the following
system:

dx(t)

dt
= f (x(t)), (1.10)

where x ∈ R
n, f : R

n → R
n is Lebesgue measurable and locally essentially

bounded.

Definition 1.14 A set-valued map is defined as

K(f (x)) =
⋂

δ>0

⋂

μ(N)=0

c̄o[f (B(x, δ) \N)], (1.11)

where c̄o(Ω) is the closure of the convex hull of setΩ ,B(x, δ) = {y : ‖y−x‖ ≤ δ},
and μ(N) is Lebesgue measure of set N .

Definition 1.15 ([78]) A solution in the sense of Filippov of the Cauchy problem
for Eq. (1.10) with initial condition x(0) = x0 is an absolutely continuous function
x(t), t ∈ [0, T ], which satisfies x(0) = x0 and differential inclusion:

dx

dt
∈ K(f (x)), a.e. t ∈ [0, T ], (1.12)

where K(f (x)) = (K[f1(x)], . . . ,K[fn(x)]).
A property of Filippov differential inclusion K is presented in the following

lemma:

Lemma 1.16 ([79]) Assume that f, g : R
m → R

n are locally bounded. Then,

K(f + g)(x) ⊆ K(f )(x)+ K(g)(x). (1.13)
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Let h : R
n → R be a locally Lipschitz function and Sh be the set of points where

h fails to be differentiable. Then,

• Clarke generalized gradient [80]: Clarke generalized gradient of h at x ∈ R
n is

the set ∂ch(x) = co{ lim
i→+∞ ∇h(x(i)) : x(i) → x, x(i) ∈ R

n, x(i) �∈ S ∪ Sh},
where co(Ω) denotes the convex hull of set Ω and S can be any set of zero
measure.

• Maximal solution [80]: A Filippov solution to (1.10) is a maximal solution if it
cannot be extended further in time.

Definition 1.17 ([81]) (Ω,A) is a measurable space and X is a complete separable
metric space. Consider a set-valued map F : Ω � X. A measurable map f : Ω �→
X satisfying

∀ω ∈ Ω, f (ω) ∈ F(ω) (1.14)

is called a measurable selection of F .

Lemma 1.18 ([81] Measurable Selection) Let X be a complete separable metric
space, (Ω,A) a measurable space, and F a measurable set-valued map from Ω to
closed nonempty subsets of X. Then there exists a measurable selection of F .

Lemma 1.19 ([82] Chain Rule) If V : R
n → R is a locally Lipschitz function and

ψ : R → R
n is absolutely continuous, then for almost everywhere (a.e.) t there

exists p0 ∈ ∂cV (ψ(t)) such that d
dt
V (ψ(t)) = p0 · ψ̇(t).

1.3.5 Some Lemmas

Lemma 1.20 ([83] Jensen Inequality) Assume that the vector function
ω : [0, r] −→ R

m is well defined for the following integrations. For any symmetric
matrixW ∈ R

m×m and scalar r > 0, one has

r

∫ r

0
ω�(s)Wω(s)ds ≥

(∫ r

0
ω(s)ds

)�
W

(∫ r

0
ω(s)ds

)
.

Lemma 1.21 ([84]) Consider the differential equation

ẋ(t) = f (t, xt ).

Suppose that f is continuous and f : R × C → R
n takes R×(bounded sets of

C) into bounded sets of Rn, and u, v, w: R+ → R
+ are continuous and strictly

monotonically non-decreasing functions, u(s), v(s), w(s) are positive for s > 0
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with u(0) = v(0) = 0. If there exists a continuous functional V : R × C → R such
that

u(‖x(t)‖) ≤ V (t, x(t)) ≤ v(‖x(t)‖),
V̇ (t, x(t)) ≤ −w(‖x(t)‖),

where V̇ is the derivative of V along the solution of the above delayed differential
equation, then the solution x = 0 of this equation is uniformly asymptotically stable.

Lemma 1.22 ([85]) Let x(t) be a solution to

ẋ = g(x), (1.15)

where x(0) = x0 ∈ R
N , and letΩ be a bounded closed set. Suppose that there exists

a continuous differentiable positive definite function V (x) such that the derivative

of V (t) along the trajectories of system (1.15) satisfies
dV

dt
≤ 0. Let E = {x|dV

dt
=

0, x ∈ Ω} and M ⊂ E be the biggest invariant set, then one has x(t) → M as
t → +∞.

Lemma 1.23 ([86]) If A = (aij ) ∈ R
N×N is an irreducible matrix satisfying aij =

aji ≥ 0, if i �= j , and
∑N

j=1 aij = 0, for i = 1, 2, . . . , N . For any ε > 0, all
eigenvalues of the matrix

A =

⎛

⎜⎜⎜⎝

a11 − ε a12 · · · a1N

a21 a22 · · · a2N
...

...
. . .

...

aN1 aN2 · · · aNN

⎞

⎟⎟⎟⎠ (1.16)

are negative.
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Chapter 2
Consensus Over Directed Static
Networks with Arbitrary Finite
Communication Delays

A particularly interesting aspect of the dynamics in complex networks is that certain
types of globally collective behaviors emerge from local interactions among the
nodes [1–5]. Such behavior arises ubiquitously in biological systems [6], ecosys-
tems [7], and physical systems [8]. Moreover, there are many practical applications
for the consensus of networks including cooperative robotics, formation flying of
unmanned aerial vehicles [9], and coordinated control of land robots [10].

It can be observed that the consensus behavior is realized via the interconnections
among the nodes [11–16]. However, due to the finite switching speed of amplifiers,
time delays are ubiquitous at the moment of information exchanges among the
nodes in many physical systems. The introduction of the communication delays
will largely increase the complexity and difficulty of the consensus problem. In the
literature [17], the consensus problem for systems with both diverse communication
delays and diverse input delays was investigated. The unknown communication
delays were considered in the high-order consensus problem for heterogeneous
multi-agent systems [18]. Moreover, the directed information flow is another
important challenge for the consensus problem. In the literature [19], the consensus
problem for second-order multi-agent systems with inherent nonlinear dynamics
under directed topologies was studied. In this chapter, we present results on
the consensus problem in directed networks with arbitrary finite communication
delays. By employing different techniques, we show that, under linear coupling
as well as nonlinear coupling, consensus will be eventually realized for arbitrary
finite communication delays. That is, the consensus behavior is robust against
communication delays.

In the presence of communication delays, the final consensus state of the
networked system is very hard to predict. For many physical, social, and biological
systems, there is a common need to regulate the final behavior of large ensembles
of interacting nodes [20–23]. However, it is very difficult and costly, if not
impossible, to inform all the nodes about the objective state because of the limited
communication abilities of individual nodes. Hence, new techniques are strongly
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required to make the regulation process much easier and cheaper for the complex
network with arbitrary finite communication delays. After detailed analyses, we
shall show that only one well-informed leader is enough for the success of consensus
regulation in networked coupled systems with arbitrary finite delays. Also such
navigational signal could be very weak. Moreover, the obtained results will be
extended to complex networks with hierarchical structure. The derived results are
beneficial for the better understanding of emergent behavior in networked coupled
systems.

2.1 Linear Coupling

We first consider a set of N linearly coupled identical nodes, with each node being
an n-dimensional continuous dynamical system, in the following form

ẋi (t) =
N∑

j=1

aij (xj (t − τij )− xi(t)), i ∈ N , (2.1)

where xi(t) ∈ R
n denotes the state of node i, and τij > 0 is the communication

delay from node j to node i for i �= j and τii = 0. A = (aij )N×N is the adjacency
matrix representing the network topology of the complex network, and aij is defined
as follows: if there exists information flow from node j to node i, then aij > 0
(i �= j ); aij = 0 otherwise, and the diagonal elements aii = 0 for i ∈ N . The
coupling network among the nodes is assumed to be strongly connected.

Let Ā = (āij )N×N be the Laplacian matrix with its elements defined as follows:
āij = aij for i �= j , and āii = −∑N

j=1 aij for i ∈ N . Ā is irreducible since the
corresponding network is strongly connected.

Let ξ = (ξ1, ξ2, . . . , ξN )
� be the normalized left eigenvector of Ā with respect

to the zero eigenvalue satisfying maxi{ξi} = 1. By the Perron–Frobenius theorem
[24], one obtains that ξi > 0 for i ∈ N .

Throughout this section, the consensus of the networked system (2.1) is said to
be asymptotically realized if limt→∞ ‖xi(t)− xj (t)‖ = 0, ∀i, j ∈ N .

2.1.1 The Case of Leaderless

In this subsection, we study the consensus seeking of linear coupling system (2.1).
The following theorem shows that the consensus of linear system (2.1) is robust
against communication delays.
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Theorem 2.1 Consider a linear coupled system (2.1) with a strongly connected
graph G. Whatever finite communication delays τij are, the consensus is asymptoti-
cally reached for arbitrary initial conditions. That is,

lim
t→∞ xi(t) → c, ∀ i ∈ N , (2.2)

where c ∈ R
n is a constant vector.

Proof Since ξ is the left eigenvalue of matrix Ā corresponding to eigenvalue zero,
one has that ξ�Ā = 0, which implies that

ξi āii = −
N∑

j=1,j �=i
ξj āj i . (2.3)

Further because āii = −
N∑
j=1

aij , we can obtain that

N∑

j=1

ξiaij =
N∑

j=1

ξj aji, and
N∑

i=1

ξj aji =
N∑

i=1

ξiaij . (2.4)

Consider the following Lyapunov functional:

V (t) = V1(t)+ V2(t), (2.5)

where

V1(t) = 1

2

N∑

i=1

ξix
�
i (t)xi(t), (2.6)

and

V2(t) = 1

2

N∑

i=1

N∑

j=1

∫ t

t−τji
ξj ajix

�
i (θ)xi(θ)dθ. (2.7)

Differentiating the functional V (t) along the trajectories of system (2.1) gives that

V̇1(t) =
N∑

i=1

ξix
�
i (t)ẋi (t)

=
N∑

i=1

N∑

j=1

ξiaij [x�
i (t)xj (t − τji)− x�

i (t)xi(t)], (2.8)
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and

V̇2(t) = 1

2

N∑

i=1

N∑

j=1

ξj aji[x�
i (t)xi(t)− x�

i (t − τji)xi(t − τji)]

= 1

2

N∑

i=1

N∑

j=1

ξiaij x
�
i (t)xi(t)

−1

2

N∑

i=1

N∑

j=1

ξiaij x
�
j (t − τij )xj (t − τij ). (2.9)

Therefore, by combining Eqs. (2.8) and (2.9), we obtain that

V̇ (t) = V̇1(t)+ V̇2(t)

= −1

2

N∑

i=1

N∑

j=1

ξiaij
[
x�
i (t)xi(t)− 2x�

i (t)xj (t − τij )

+x�
j (t − τij )xj (t − τij )

]

= −1

2

N∑

i=1

N∑

j=1

ξiaij
(
xi(t)− xj (t − τij )

)�(
xi(t)− xj (t − τij )

)

≤ 0. (2.10)

Hence, V (t) is non-increasing. Together with V (t) ≥ 0, it implies that limt→∞ V (t)

exists and is finite. Then, one can easily show the boundedness of xi(t) for i ∈ N
by referring to the construction of V (t). By referring to system (2.1), it can be
concluded that ẋi (t) is bounded for any i ∈ N . Thus, we can conclude that V̈ (t) is
also bounded by referring to the expression of V̇ (t).

According to Barbalat’s Lemma [25], we get that limt→∞ ξiaij (xi(t) − xj (t −
τij ))

�(
xi(t)− xj (t − τij )

) = 0, i.e., limt→∞(xi(t)− xj (t − τij )) = 0 if aij > 0. In
addition, one can conclude that ẋi (t) → 0 as t → ∞ for i ∈ N .

Since the network is strongly connected, for each pair of nodes i, j ∈ N , one
can find two constants τ ∗

ij and τ ∗
j i such that xi(t) → xj (t − τ ∗

ij ) and xi(t − τ ∗
j i) →

xj (t). In fact, the constants τ ∗
ij and τ ∗

j i are certain linear combinations of all
communication delays τij . Hence, xi(t − τ ∗

ij − τ ∗
j i) → xi(t) for each i ∈ N , which

implies that xi(t) tends to be periodic with the constant period τ ∗
ij + τ ∗

j i . Noting the
fact that ẋi (t) → 0 as t → ∞, we yield that xi(t) tends to a steady state ci ∈ R

n.
Since the matrix A is irreducible, it follows that the largest invariant manifold of

system (2.1) is M = {x1(t), x2(t), . . . , xN(t)|x1(t) = x2(t) = · · · = xN(t)}. This
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implies that there exists a constant vector c ∈ R
n such that ci = c for each i ∈ N .

Hence, xi(t) → c as t → ∞ for i ∈ N .
Therefore, regardless of the communication delay values and for arbitrary finite

initial values, the consensus of the directed interconnected system (2.1) can be
realized asymptotically.

2.1.2 The Case with One Well-Informed Leader

Let us now consider the regulation of networked coupled system (2.1). It has been
shown in Sect. 2.1.1 that the consensus among nodes can be realized whatever the
finite communication delays are. However, due to the injection of arbitrary finite
communication delays, the final consensus state c is very hard to predict. While
in many physical, social, and biological systems, there are usually some needs to
regulate the behavior of large ensembles of interconnected nodes [20, 26]. In many
papers, it is assumed that all the nodes should be informed about the objective state,
but such a regulation scheme is very difficult and expensive to implement.

In order to force the dynamics of the nodes onto a desired trajectory, we include
here a well-informed leader. Such a well-informed leader exists in many natural
processes [27], such as genetic regulatory networks and biological systems. In the
following, we propose a much cheaper and easily implemented method, in which
only one of the nodes is informed about the objective state to be reached.

Let the objective reference state be x∗, and the regulation of the linear system
(2.1) is said to be successful if xi(t) → x∗ as t → ∞ for any i ∈ N . The first node
with state x1(t) is chosen as the well-informed leader. Then the networked control
system corresponding to (2.1) with leader x1 can be written as

ẋi (t) =
N∑

j=1

aij (xj (t − τij )− xi(t))+ ui(t), i ∈ N , (2.11)

where ui(t) =
{−k(x1(t)− x∗), for i = 1;

0, otherwise; for k > 0. Let ei(t) = xi(t) − x∗,

and we obtain the following regulated dynamical system:

ėi (t) =
N∑

j=1

aij (ej (t − τij )− ei(t))+ ui(t), i ∈ N . (2.12)

The following theorem shows that one well-informed leader is sufficient for an
efficient regulation of the networked system (2.11).
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Theorem 2.2 Consider a controlled system (2.11) with a strongly connected graph
G. Whatever the values of the finite communication delays τij are, the states of all
nodes will be successfully controlled by the objective state x∗. That is,

lim
t→∞ xi(t) → x∗, ∀ i ∈ N , (2.13)

where x∗ ∈ R
n is the objective state.

Proof Let ξ = (ξ1, ξ2, . . . , ξN )
� be the normalized left eigenvector of Ā with

respect to the zero eigenvalue. Consider the Lyapunov–Krasovskii functional
as E(t) = E1(t) + E2(t) with E1(t) = 1

2

∑N
i=1 ξie

�
i (t)ei(t) and E2(t) =

1
2

∑N
i=1

∑N
j=1

∫ t

t−τji ξj ajie
�
i (θ)ei(θ)dθ. By some calculations, the derivative of the

functional E(t) along with the solution to system (2.12) can be obtained as

Ė(t) = −1

2

N∑

i=1

N∑

j=1

ξiaij
(
ei(t)− ej (t − τij )

)�

×(
ei(t)− ej (t − τij )

) − ξ1ke
�
1 (t)e1(t). (2.14)

It is obvious that Ė(t) = 0 if and only if ei(t) = ej (t − τij ) for each pair of indexes
(i, j) satisfying aij > 0 and e1(t) = 0. Hence, the set S = {e1(t) = 0, ei(t) =
ej (t − τij ) for (i, j) satisfying aij > 0} is the largest invariant set contained in
Ė(t) = 0 for system (2.12). Then by using the well-known invariance principle
of functional differential equations [28], the orbit of system (2.12) converges
asymptotically to the set S . That is, ei(t) → ej (t−τij ) for each pair (i, j) satisfying
aij > 0 and e1(t) → 0 as t → ∞. By a similar analysis as in Theorem 2.1, it follows
that ei(t) → ej (t) for any i and j , and further that ei(t) → 0 for i ∈ N . Hence, all
the nodes have been regulated to the objective state x∗ by only informing one of the
nodes.

Remark 2.3 The advantage of this scheme is that we do not need to inform all the
nodes about the objective state. Instead, we proved that regulation process will be
successfully implemented by only informing one of the nodes about the objective
state, which will be spread efficiently via numerous local connections. It should
be noted that any node can be chosen as the well-informed leader, and then the
objective state will be realized. The “strongest" node with the highest out-degree
should be a good choice to make the regulation process effective. The feedback
strength k is just required to be positive, i.e., the strength of the external signal
can be very weak. Hence, the proposed regulation scheme is simple and cheap to
implement.
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2.2 Nonlinear Coupling

Now, we generalize the above approach to the class of nonlinearly coupled systems.
Consider the following nonlinearly coupled system with directed information flow:

ẋi (t) =
N∑

j=1

aij (h(xj (t − τij ))− h(xi(t))), i ∈ N , (2.15)

where xi(t) ∈ R denotes the state of node i at time t . Let τ = maxi,j {τij }.
Throughout this section, the function h(·) : R → R is assumed to be strictly
increasing. Without loss of generality, we assume that h(0) = 0.

In the following theorem, we prove that the consensus of nonlinearly coupled
system (2.15) is also quiet robust against the communication delays.

Theorem 2.4 Suppose that the graph G is strongly connected. Then, for nonlinear
system (2.15), the consensus can be realized globally for all initial conditions and
arbitrary finite communication delays τij . That is,

lim
t→∞ xi(t) → c, ∀ i ∈ N , (2.16)

where c ∈ R is a constant.

Proof Let x(t) = [x�
1 (t), x

�
2 (t), . . . , x

�
N(t)]�, and consider the following

Lyapunov–Krasovskii functional as

W(x(t)) = W1(x(t))+W2(x(t)), (2.17)

where

W1(x(t)) =
N∑

i=1

ξi

∫ xi (t)

0
h(s)ds

and

W2(x(t)) = 1

2

N∑

i=1

N∑

j=1

∫ t

t−τij
ξiaij h

2(xj (θ))dθ.



26 2 Consensus Over Directed Static Networks with Arbitrary Finite Communication. . .

Now, differentiating the functions W1(x(t)) and W2(x(t)) along the solution of
system (2.15), it yields

Ẇ1(x(t)) =
N∑

i=1

ξih(xi(t))

N∑

j=1

aij
[
h(xj (t − τij ))− h(xi(t))

]

= 1

2

N∑

i=1

N∑

j=1

ξiaij
[
2h(xi(t))h(xj (t − τij ))− 2h2(xi(t))

]
,

and from (2.4), it follows that

Ẇ2(x(t)) = 1

2

N∑

i=1

N∑

j=1

ξiaij [h2(xj (t))− h2(xj (t − τij ))]

= 1

2

N∑

i=1

N∑

j=1

ξj ajih
2(xj (t))− 1

2

N∑

i=1

N∑

j=1

ξiaij h
2(xj (t − τij ))

= 1

2

N∑

i=1

N∑

j=1

ξiaij h
2(xi(t))− 1

2

N∑

i=1

N∑

j=1

ξiaij h
2(xj (t − τij ))

= 1

2

N∑

i=1

N∑

j=1

ξiaij
[
h2(xi(t))− h2(xj (t − τij ))

]
.

Therefore, we obtain that

Ẇ (x(t)) = −1

2

N∑

i=1

N∑

j=1

ξiaij · [h(xi(t))− h(xj (t − τij ))
]2 ≤ 0. (2.18)

Let S = {x(t) : Ẇ (x(t)) = 0}. Since ξi > 0 for i ∈ N , it follows from (2.18)
that S = {

x ∈ C([t − τ, t],RN) : aij (h(xi(t)) − h(xj (t − τij ))) = 0
}
. It can

be concluded that the set S is invariant with respect to system (2.15). By using the
LaSalle invariance principle [28], we get that x → S as t → +∞. Hence, for any
ordered pair of subscripts i and j satisfying aij �= 0, we have h(xi(t)) − h(xj (t −
τij )) → 0 as t → +∞. Since h(·) is strictly increasing with h(0) = 0, we yield that
lim
t→∞(xi(t)− xj (t − τij )) = 0 when aij �= 0.

Since the graph G is strongly connected, for any ordered pair of distinct nodes
i and j , one can find a directed path from node i to node j and simultaneously
a directed path from node j to node i. Hence, for each pair of nodes i, j ∈ N ,
one can find two constants τ ∗

ij and τ ∗
j i , which are certain linear combinations of all

communication delays τij , such that xi(t) → xj (t − τ ∗
ij ) and xi(t − τ ∗

j i) → xj (t).
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Hence, xi(t − τ ∗
ij − τ ∗

j i) → xi(t) holds for each i ∈ N , which implies that xi(t)
tends to be periodic with the constant period τ ∗

ij + τ ∗
j i . It follows from (2.15) that

ẋi (t) → 0. Consequently, we obtain that xi(t) tends to a constant ci ∈ R as t → ∞.
According to the facts that A is irreducible and xi(t) → ci , we conclude that

the largest invariant set of system (2.15) is M = {x1(t), x2(t), . . . , xN(t)|x1(t) =
x2(t) = · · · = xN(t)}. This implies that there exists a common constant c such that
ci = c ∈ R for each i ∈ N . Hence, xi(t) → c as t → ∞.

Remark 2.5 If communication delays are not included (i.e., τij = 0 in (2.15)),
nonlinearly coupled system (2.15) becomes the model as discussed in [29] and
our result in Theorem 2.4 still holds. Therefore, Theorem 2.4 can be regarded as
a generation of the nonlinear consensus problem without communication delays
discussed in [29].

2.3 Hierarchical Structure

The above results hold under the assumption that the network structure is strongly
connected. However, for many real life networks, from machines to government,
this condition can hardly be satisfied. A typical example is the consensus decision-
making among a group of people, in which underlings usually have few or no
influence on their big bosses, while the bosses always have great influence on the
underlings. In such systems, the individual nodes are divided into several levels and
hence form a hierarchical structure. In this section, we study the networked coupled
system with hierarchical topology.

Consider a networked coupled system with N = ∑p

i=1 mi nodes. The N nodes
are divided into p different groups with mi nodes in the i-th group. The graph
generated by the local connections of the nodes is assumed to have a rooted directed
spanning tree [30]. In real life systems, this condition is not restrictive due to the
ubiquitous existence of hierarchical structure.

Let A be the coupling matrix of the networked coupled system with hierarchical

structure in the form of A=
⎡

⎢⎣

A11 A12 · · · A1p
0 A22 · · · A2p
.
.
.

.

.

.

.
.
.

.

.

.

0 0 · · · App

⎤

⎥⎦ after certain permutations. Here the

matrices Aqq ∈ R
mq×mq are irreducible for q = 1, 2, . . . , p. Due to the existence

of rooted directed spanning trees, we obtain that for each q (q < p), there must
exist a κ > q such that Aqκ �= 0.

The nodes denoted by the matrix App can be regarded as the leader group in
the complex network. From Theorem 2.1, the consensus will be firstly realized in
the p-th group due to the irreducibility of App. Then the consensus state will be
propagated to the nodes in the (p − 1)-th group due to the existence of the nonzero
matrix Ap−1,p by using Theorem 2.2. By induction, we obtain that consensus of N
nodes will eventually be realized. A typical example of such consensus transmitted
mechanism is the chain of President–Governor–Mayor in a governmental system.
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Moreover, the regulation of such a networked coupled system with hierarchical
structure can also be realized by choosing a node within the leader group as the
well-informed leader.

2.4 Numerical Examples

In this section, numerical examples will be given to demonstrate the derived theo-
retical results. Throughout the examples, all communication delays are uniformly
distributed in (0, 1). The initial conditions are also randomly chosen from (−5, 5).
It will be shown that the consensus process and the regulation are effective even for
large-scale networks.

As the first example, networked coupled system with linear coupling (2.1) is
considered. The connecting topology among the nodes is assumed to be a small-
world directed network [31]. Opinion formation in small-world network [32] is
simulated to see how the number of nodes and the communication delay affect the
convergence time of reaching the consensus. Figure 2.1 shows that the consensus
time increases with the increment of communication delay τij = τ . We also studied
how the consensus time changes as a function of the number of nodes. Figure 2.2
shows that the consensus time increases on the whole when the number of people
increases. Furthermore, the consensus seeking and controlling of 1000 nodes small-
world networks are respectively simulated in Figs. 2.3 and 2.4. In the simulations,
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Fig. 2.1 Convergence time versus communication delays for opinion formation in small-world
network, which is generated by setting N = 100, k̄ = 4 and p̄ = 0.01 [31]
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Fig. 2.2 Convergence time versus the number of nodes for opinion formation in small-world
network, which is generated by setting k̄ = 4 and p̄ = 0.01 [31]

Fig. 2.3 Consensus of 1000 nodes (three dimensions) with small-world coupling topology, which
is generated by setting k̄ = 4 and p̄ = 0.02 [31]. Same initial conditions and different
communication delays are used for two sub-figures
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Fig. 2.4 Consensus of 1000 nodes (three dimensions) with small-world coupling with one well-
informed leader. Small-world network is generated by setting k̄ = 4 and p̄ = 0.02 [31]. The
node with maximum out-degree 38 is controlled with a feedback gain 1. Initial conditions and
communication delays are both different between two sub-figures

the initial degree of nodes and adding probability of directed edges are, respectively,
chosen as k̄ = 4 and p̄ = 0.02 [31]. The dimension of each node is set to be n = 3.
It follows from Theorem 2.1 that the consensus of these nodes will be realized.
Our simulation results are shown in Fig. 2.3. It can be observed that even under the
same initial conditions, the final agreement states could be distinct due to different
communication delays. Hence, an external controller is needed if we want to force
the final consensus state onto the original point x∗ = 0. The node with maximum
out-degree 38 is selected to be the well-informed leader with κ̄ = 1 (a relative
weak and low-cost signal compared with the out-degree 38). Numerical results are
depicted in Fig. 2.4, which clearly show the power of the proposed scheme.
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For the second example, we consider the nonlinear coupled system (2.15). The
nonlinear function is set as h(x) = αx + sin(x). It is obvious that h(·) is a strictly
increasing function when α ≥ 1, but h(·) is not strictly increasing when α < 1.
A BA scale-free network [33] is used to describe the coupling structure of the
networked system (2.15). The parameters for constructing the scale-free network are
chosen asm = m0 = 3. After the generation of the scale-free network, each directed
edge is assigned a weighted value that is uniformly distributed in the interval [1, 2].
The dimension of each node is set to be 1. From Theorem 2.4, we conclude that
the consensus of this nonlinearly coupled system can be realized if α ≥ 1. From
Fig. 2.5, we can observe that the consensus is indeed successful when α = 2.
However, for α = 0.2, the consensus cannot be guaranteed by Theorem 2.4 (see
Fig. 2.6).

Fig. 2.5 Consensus of nonlinearly scale-free coupled system with α = 2. BA scale-free network
composed of 100 nodes is obtained by taking m = m0 = 3 [33]. The dimension of each agent is
one
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Fig. 2.6 Consensus failure of nonlinearly scale-free coupled system with α = 0.2. BA scale-free
network composed of 100 nodes is obtained by setting m = m0 = 3 [33]. The dimension of each
agent is one

2.5 Summary

The consensus in complex networked system has been studied in this chapter
under the constraint of directed information flow and arbitrary finite communication
delays. We consider both linear coupling and nonlinear coupling. Compared with
the existing results, our analyses and methods yield the following new results:
(i) the information flow between each pair of nodes can be asymmetrical; (ii)
communication delays can be arbitrarily finite and unknown; (iii) only one well-
informed leader is sufficient to guarantee the successful regulation process; (iv) the
external signal pinned to the leader can be very weak. Items (iii) and (iv) make the
regulation process very easy and cheap to implement. The studied models are very
close to real life, and the derived results would be valuable for the understanding of
emergent and/or self-organized behaviors in social and biological systems.
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Chapter 3
Practical Consensus of Multi-agent
Networks with Communication
Constraints

Due to the limited bitrate of communication channels and limited bandwidth,
communication constraints always exist in real-world systems which should be
well considered in the design of control strategy or algorithm (see, e.g.,[1–8]). Two
important communication constraints are signal quantization and time delay [9, 10].
Unlike the error-free information exchange, the signals in real-world systems are
required to be quantized before transmission when high data rate is not available.
On the other hand, consensus problems with quantization are also challenging and
should be investigated.

In addition to quantization, another significant communication constraint in
multi-agent networks is the time delay, which is usually caused by an agent waiting
to send out messages via a busy channel, or by a signal processing and propagation
[11–15]. In [11], under a new protocol and strongly connected network topology,
consensus can be achieved for arbitrary finite time delays. In [13], a second-
order consensus protocol for multi-agent systems with communication delay was
proposed and it has been shown that consensus can be reached if the delays are
small enough. The most important feature of the results obtained in [16] was that
they do not impose restrictive conditions on the communication topologies and
the communication time delays, and allow for arbitrary bounded nonuniform time
delays. Recently, based on the delay-induced consensus protocol, the second-order
consensus issue for multi-agent systems was discussed in [17].

In this chapter, the communication constraints are considered in the multi-
agent consensus problem. Specifically, two types of communication constraints are
discussed: (1) each agent can only exchange quantized data with its neighbors and
(2) each agent can only obtain the delayed information from its neighbors. These
two communication constraints can be frequently observed in many real multi-
agent networks and lead to incomplete or inaccurate information of the node being
available for its neighboring nodes. In Sect. 3.1, finite-time practical consensus of
multi-agent networks with quantized data is studied. In Sect. 3.2, quantization and
time delay are simultaneously investigated for continuous-time multi-agent network
consensus problems.
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3.1 Practical Consensus with Quantized Data

In this section, consensus problem of continuous-time multi-agent networks with
quantized data is studied. Ground work has been laid in [18, 19], which extended
the quantized consensus model to the continuous-time case and quantized consensus
results have been obtained for the network model. In [18], some mathematical
difficulties resulting from the inherent discontinuity of the quantization function
were analyzed in detail. In this section, we shall further extend the previous results
of [18, 19] by using different methods.

The remainder of this section is organized as follows. In Sect. 3.1.1, the
multi-agent network model with quantized data is presented. In Sect. 3.1.2, the
consensus analysis of the proposed protocol is presented in detail. Finally, a
numerical simulation is given to demonstrate the validity of the theoretical analysis
in Sect. 3.1.3.

3.1.1 Model Description

Consider the following multi-agent system with dynamics:

ẋi (t) = ui(t), i = 1, . . . , N,

where xi(t) ∈ R is the state of the agent i, and ui(t) is called the consensus protocol.
The following consensus protocol:

ui(t) =
∑

j∈Ni

aij (xj (t)− xi(t)), i = 1, . . . , N, (3.1)

has been proposed in [20], which requires that each agent receives information from
its neighbors timely and accurately.

Due to the communication bandwidth constraints in many real multi-agent
networks, the agents can only use the quantized information of the neighboring
agents. The following consensus protocol will be studied in this part:

dxi(t)

dt
=

∑

j∈Ni

aij [qμ(xj (t))− qμ(xi(t))], i = 1, . . . , N, (3.2)

where qμ(z) denotes one-parameter family of uniform quantizers defined by
qμ(z) = � z

Δμ
+ 1

2�μ. Here, μ and Δ are called the quantization parameter and

sensitivity of the quantizer, respectively. Moreover, if x = (x1, x2, . . . , xN)
� ∈

R
N , we denote qμ(x) = (qμ(x1), qμ(x2), . . . , qμ(xN))

�.
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We know that the system (3.2) may not have the global solution in the sense
of Carathéodory due to the discontinuous of function qμ(·) [18]. Hence, we shall
consider solutions in a more general sense, i.e., the Filippov solution of system (3.2).
The concept of the Filippov solution to the differential equation (3.2) is provided in
the following:

Definition 3.1 An absolutely continuous function x : [0, T ) → R
N is a solution

in the sense of Filippov for discontinuous system (3.2) if x(t) satisfies that

dxi(t)

dt
∈ K

⎡

⎣
∑

j∈Ni

aij (qμ(xj (t))− qμ(xi(t)))

⎤

⎦ , i = 1, . . . , N.

Based on Lemma 1.18, if x(t) is a Filippov solution of system (3.2), then there
exists a measurable function γ (t) ∈ K[qμ(x(t))] such that for almost all t ∈ [0, T ),
the following equation is true:

dxi(t)

dt
=

N∑

j=1, j �=i
aij (γj (t)− γi(t)), i = 1, . . . , N. (3.3)

Any function γ as in (3.3) is called an output function associated to the solution x.

Remark 3.2 Due to the introduction of the quantization effect, complete consensus
cannot be ensured by the proposed protocol, but only practical consensus can be
achieved, as discussed in [18] and [19].

3.1.2 Finite-Time Practical Consensus Under Quantization

To prove main results of this section, the following lemma is needed:

Lemma 3.3 Suppose x(t) be a Filippov solution to (3.2). Note that N =
{1, . . . , N}. LetM(t) = maxi∈N {xi(t)} and m(t) = mini∈N {xi(t)}. Then,M(t) is
a non-increasing function for t , and m(t) is a non-decreasing function for t .

Proof The proof is similar to the one of Lemma 3 in [21]. We omit here.

Let ξ = (ξ1, ξ2, . . . , ξN) be the normalized left eigenvector of Laplacian matrix

with respect to the zero eigenvalue satisfying
N∑

i=1

ξi = 1. It can be obtained that

ξi > 0 from Lemma 1.6.



38 3 Practical Consensus of Multi-agent Networks with Communication Constraints

Theorem 3.4 Consider multi-agent network (3.2) with a strongly connected
graph G. The initial conditions associated with (3.2) are given as xi(0), (i =
1, 2, . . . , N). Let k = �

∑N
i=1 ξixi (0)
μΔ

+ 1
2�. Then xi(t) will converge to the set

D = [(k − 1
2 )μΔ, (k + 1

2 )μΔ] for any i ∈ N in a finite time.

Proof The proof of Theorem 3.4 is divided into two parts.

Part (I) We shall take three steps to prove that each agent in the network will
converge to an interval [(k − 1

2 )μΔ, (k + 1
2 )μΔ] in finite time.

Step 1. Consider the Lyapunov functional as

V (t) =
N∑

i=1

ξi

∫ xi (t)

0
qμ(s)ds. (3.4)

Note that cqμ(c) ≥ 0 for any c ∈ R, we have V (t) ≥ 0.
In addition, for pi(s) = ∫ s

0 qμ(u)du, we have ∂pi(s) = {v ∈ R : q−
μ (s) ≤

v ≤ q+
μ (s)}. Based on the chain rule (Lemma 1.19), V (t) is differentiable for

a.e. t ≥ 0. Differentiating V (t) along the solution of (3.3) gives that

dV (t)

dt
=

N∑

i=1

ξiγi(t)

N∑

j=1, j �=i
aij [γj (t)− γi(t)]

= 1

2

N∑

i=1

N∑

j=1, j �=i
ξiaij [2γi(t)γj (t)− 2γ 2

i (t)]. (3.5)

Notice that

N∑

i=1

N∑

j=1, j �=i
ξiaij γ

2
i (t) =

N∑

i=1

(−aii)ξiγ 2
i (t) =

N∑

j=1

(−ajj )ξj γ 2
j (t)

=
N∑

j=1

N∑

i=1, i �=j
ξiaij γ

2
j (t) =

N∑

i=1

N∑

j=1, j �=i
ξiaij γ

2
j (t), (3.6)

we have

dV (t)

dt
= −1

2

N∑

i=1

N∑

j=1, j �=i
ξiaij (γi(t)− γj (t))

2. (3.7)
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Step 2. Let Φ = {x(t) ∈ R
N : |γi(t) − γj (t)| < μ

N+1 , ∀i, j ∈ N , i �= j, aij �=
0}. We claim that the agents in the network converge to the set Φ in finite time.
Let J = {t ≥ 0 : x(t) /∈ Φ}. For x(t) ∈ R

N and t ∈ J , there exist i, j ∈
{1, 2, . . . , N}, i �= j and aij �= 0 such that |γi(t) − γj (t)| ≥ μ

N+1 . Hence, for
a.e. t ∈ J , it holds that

dV (t)

dt
≤ −1

2
ξiaij

(
μ

N + 1

)2

≤ −1

2
ζμ2, (3.8)

where ζ = min
1≤i, j≤N, aij>0

{( 1

N + 1
)2aij ξi}. Further, we can obtain

0 ≤ V (t) ≤ V (0)− 1

2
ζμ2t, t ≥ 0. (3.9)

It follows from V (0) ≥ 0 that (3.9) holds if and only if t ≤ 2V (0)
ζμ2 . Therefore,

x(t) will arrive to the set Φ in finite time.
Step 3. We shall prove that there exists k ∈ Z such that xi(t) will converge to the

interval [(k − 1
2 )μΔ, (k + 1

2 )μΔ] in finite time for every i ∈ N .

Note that γi(t) ∈ K[qμ(xi(t))] and γj (t) ∈ K[qμ(xj (t)], we can get that there
exists kij ∈ Z such that xi(t) and xj (t) belong to the interval [(kij − 1

2 )μΔ, (kij +
1
2 )μΔ] if |γi(t) − γj (t)| < μ

N+1 . Hence, based on the proof of Step 2, there exists
a T0 ≥ 0 such that ∀i, j ∈ N , i �= j, aij �= 0, xi(T0) and xj (T0) belong to the
interval [(kij − 1

2 )μΔ, (kij + 1
2 )μΔ]. Due to the network being strongly connected,

there exists a k ∈ Z such that kij = k.
It follows from Lemma 3.3 that xi(t) ∈ [(k − 1

2 )μΔ, (k + 1
2 )μΔ] for ∀i ∈

N , t ≥ T0.

Part (II) Estimate the value of k.
Up till now, we have proved the first part of the Theorem 3.4. Next, we shall give

the value of k which is shown to be dependent on the initial values of the multi-
agent network. Let η(t) = ∑N

i=1 ξixi(t). We can calculate the derivative of η(t) as
follows:

η̇(t) =
N∑

i=1

ξi

N∑

j=1, j �=i
aij [γj (t)− γi(t)]

=
N∑

i=1, i �=j
ξiaij

N∑

j=1

γj (t)−
N∑

i=1

ξiγi(t)

N∑

j=1, j �=i
aij
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= −
N∑

j=1

ξj ajj γj (t)+
N∑

i=1

ξiaiiγi(t)

= 0.

Due to η̇(t) = 0 for a.e. t ∈ [0, ∞) and the continuity of η(t), it can be easily
obtained that η(t) is a constant. That is, η(t) = η(0) = ∑N

i=1 ξixi(0).
Next, we need to estimate the value of k. Let D = [(k − 1

2 )μΔ, (k + 1
2 )μΔ],

we have proved that there exists a T0 such that xi(t) ∈ D, ∀t ≥ T0, ∀i ∈ N . It
follows from

∑N
i=1 ξi = 1 that

N∑

i=1

ξixi(t) ∈ D, ∀t ≥ T0.

Thus,

N∑

i=1

ξixi(0) ∈
[(

k − 1

2

)
μΔ,

(
k + 1

2

)
μΔ

]
.

We consider the following two cases:

Case 1: If there exists a k0 ∈ Z such that
∑N

i=1 ξixi(0) = (k0 − 1
2 )μΔ, then

k = k0 or k0 − 1. Since

xi(t) ∈ D, ∀t ≥ T0, ∀i ∈ N ,

we have

xi(t) =
(
k0 − 1

2

)
μΔ, ∀t ≥ T0.

In this case, we can select k = k0. That is,

k = 1

μΔ

N∑

i=1

ξixi(0)+ 1

2
=

⌊
1

μΔ

N∑

i=1

ξixi(0)+ 1

2

⌋
.

Case 2: If
∑N

i=1 ξixi(0) �= (k0 − 1
2 )μΔ for any k ∈ Z, then,

N∑

i=1

ξixi(0) ∈
((

k − 1

2

)
μΔ,

(
k + 1

2

)
μΔ

)
.
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Hence,

k =
⌊

1

μΔ

N∑

i=1

ξixi(0)+ 1

2

⌋
.

Therefore, k = � 1
μΔ

∑N
i=1 ξixi(0)+ 1

2�. This completes the proof of this theorem.

Remark 3.5 As discussed in Theorem 2 and Proposition 4 of [18], the practical
consensus results for model (3.2) with Δ = 1 are investigated via LaSalle invariance
principle of differential inclusions. While in this section, using different methods,
we extend the previous results from the following three aspects:

• We do not assume the network is undirected or balanced.
• We show that the Filippov solutions of (3.2) reach interval D = [(k− 1

2 )μ, (k+
1
2 )μ] in a finite time even if xave(0) = 1

N

∑N
i=1 xi(0) = (k0 + 1

2 )μ for some
k0 ∈ Z.

• We present an explicit relationship between the practical consensus set and initial
conditions.

Corollary 3.6 Consider multi-agent network (3.2) with a strongly connected
graph G. The initial conditions associated with (3.2) are given as xi(0), (i =
1, 2, . . . , N). Let k = � 1

μΔ

∑N
i=1 ξixi(0) + 1

2�. Then xi(t) will converge to the

interval Ω = [∑N
i=1 ξixi(0)− μΔ,

∑N
i=1 ξixi(0)+ μΔ] in a finite time.

Proof According to Theorem 3.4, xi(t) converges to the interval [(k− 1
2 )μΔ, (k+

1
2 )μΔ] in a finite time, where k = � 1

μΔ

∑N
i=1 ξixi(0) + 1

2�. It follows from
∑N

i=1 ξixi(0) − 1
2μΔ ≤ kμΔ ≤ ∑N

i=1 ξixi(0) + 1
2μΔ that x(t) will converge

to the interval Ω = [∑N
i=1 ξixi(0)− μΔ,

∑N
i=1 ξixi(0)+ μΔ] in a finite time.

Remark 3.7 From Corollary 3.6, how the initial condition of the agents and
quantization parameter μ affect the practical consensus set Ω can be observed
explicitly. It is interesting to observe that the size of the practical consensus set
can be made arbitrarily small by decreasing the quantization parameter μ.

3.1.3 Numerical Example

In this section, an example is given to illustrate the correctness of the theoretical
results.

Consider multi-agent system (3.2) with five agents, where μ = 1 and Δ = 1.
The directed network topology is displayed in Fig. 3.1, and the weight of each edge
is set as 1.

Figure 3.2 shows the state responses of (3.2) with the initial condition randomly
chosen from (−5, 5). It can be observed from Fig. 3.2 that the state of each agent
converges to a practical consensus set in a finite time, which illustrates Theorem 3.4
very well.
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Fig. 3.1 Network topology in example
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Fig. 3.2 The states of the multi-agent network in example

3.2 Consensus with Hybrid Communication Constraints

In Sect. 3.1, multi-agent network consensus problem with quantization was studied.
In this section, we investigate the consensus problem of multi-agent networks
subject to quantization and time delays. It is worth noting that most of the
aforementioned results about multi-agent consensus only consider one aspect of the
communication constraints. Therefore, it is necessary to develop a new consensus
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protocol for multi-agent network with quantization and time delays. Moreover, from
the viewpoint of both mathematics and engineering, it is worth noting that the
quantization will lead to a system with time delays with no solutions in classical
sense. Hence, considering solutions in a more general sense is necessary. This study
focuses on solving these problems. The organization of the remaining part is given
as follows. In Sect. 3.2.1, consensus protocol with quantization and time delays
are formulated. In Sect. 3.2.2, the existence of Filippov solution is presented. In
Sect. 3.2.3, consensus analysis of the proposed protocol is presented in detail. In
Sect. 3.2.4, a numerical example is given to show the effectiveness of the theoretical
results.

3.2.1 Model Description and Preliminaries

Considering time delays as another very important communication constraint in
the process of information exchange, we propose the following practical consensus
protocol:

dxi(t)

dt
=

∑

j∈Ni

aij [qμ(xj (t − τ))− qμ(xi(t))], i ∈ N , (3.10)

where τ is the communication delay from agent j to agent i and qμ(z) denotes
one-parameter family of uniform quantizers defined by qμ(z) = � z

Δμ
+ 1

2�μ.
Here μ and Δ are called the quantization parameter and sensitivity of the
quantizer, respectively. For x = (x1, x2, . . . , xN)

� ∈ R
N , let qμ(x) =

(qμ(x1), qμ(x2), . . . , qμ(xN))
�. The initial conditions associated with (3.10)

are given as

xi(s) = φi(s) ∈ C([−τ, 0], R), i ∈ N .

Remark 3.8 It should be pointed out that in many physical systems, time delay
is ubiquitous at the moment of information exchanges among agents due to finite
information transmission rate. Hence, it is more important and practical to consider
time delay and quantization constraints simultaneously in real multi-agent networks.
These two constraints are simultaneously considered in our model, which is more
general than that of the previous results, such as [11, 18], and [19]. However,
considering these two kinds of communication constraints together in (3.10) makes
the consensus problem more difficult. Since the mathematical techniques, which
were proposed and useful only for one of these two constraints, cannot be directly
used for our model, relevant issues become more challenging.

Remark 3.9 Generally, μ > 0 is an adjustable parameter and Δ is a fixed parameter
in the quantizer. Supposeμ = 1, we can see that on the interval [(k− 1

2 )Δ, (k+ 1
2 )Δ)

of length Δ, the quantizer q takes the value k. R is thereby divided into a number
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of quantization intervals, each with length Δ and corresponding to a fixed value of
q(·). For Δ = 1, the quantizer q becomes the standard uniform round quantizer. For
Δ > 1, the length of quantization interval will be larger than the standard uniform
round quantizer, which means that the quantizer q is less sensitive than the standard
uniform round quantizer. For Δ < 1, the length of quantization interval will be
smaller than the standard uniform round quantizer, which means that the quantizer
q is more sensitive than the standard uniform round quantizer. Hence, the quantizer
q is more general than the standard uniform round quantizer.

3.2.2 The Existence of the Filippov Solution

We know that system (3.10) may not have global solution in the sense of
Carathéodory due to the discontinuity of the function q(·) [18]. Hence, we shall
consider solutions in a more general sense, i.e., the Filippov solution of system
(3.10). The concept of the Filippov solution to the differential equation (3.10) is
given as follows:

Definition 3.10 A function x(t) : [−τ, T ) → R
N (T might be ∞) is a solution in

the sense of Filippov for the discontinuous system (3.10) on [−τ, T ), if

1. x(t) is continuous on [−τ, T ) and absolutely continuous on [0, T );
2. x(t) satisfies that

dxi(t)

dt
∈ K

⎡

⎣
∑

j∈Ni

aij (qμ(xj (t − τ))− qμ(xi(t)))

⎤

⎦ , i ∈ N . (3.11)

From Lemma 1.16, we have that

K
⎡

⎣
∑

j∈Ni

aij (qμ(xj (t − τ))− qμ(xi(t)))

⎤

⎦

⊆
∑

j∈Ni

aij (K[qμ(xj (t − τ))] − K[qμ(xi(t))]). (3.12)

According to Lemma 1.18, if x(t) is the solution of system (3.10), then there exists a
measurable function γ (t) ∈ K[qμ(x(t))] such that for a.e. t ∈ [0, T ), the following
equation is true:

dxi(t)

dt
=

∑

j∈Ni

aij (γj (t − τ)− γi(t)), i ∈ N . (3.13)

Any function γ as in (3.13) is called an output function associated to the solution x.
Now, we shall present the definition of an initial value problem associated to (3.10).
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Definition 3.11 For any continuous function φ : [−τ, 0] → R
N and any

measurable selection ψ : [−τ, 0] → R
N , such that ψ(s) ∈ K[qμ(φ(s))] for

a.e. s ∈ [−τ, 0], an absolute continuous function x(t) = x(t, φ, ψ) is said to
be a solution of the Cauchy problem for system (3.10) on [0, T ) with initial value
(φ, ψ), if

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

.
xi(t) =

N∑

j=1, j �=i
aij (γj (t − τ)− γi(t))

f or a.e. t ∈ [0, T ), i ∈ N ,

x(s) = φ(s), ∀s ∈ [−τ, 0],
γ (s) = ψ(s) a.e. s ∈ [−τ, 0].

(3.14)

Note that solution to the system (3.14) depends on the initial function φ and also on
the selection of the output function ψ(s) ∈ K[qμ(φ(s))]. Next, we shall study the
existence of the global solution to the system (3.14).

Theorem 3.12 For any initial function φ and the selection of the output function
ψ(s) ∈ K[qμ(φ(s))], there exists a global solution for system (3.14).

Proof The proof of Theorem 3.12 is divided into two parts:

Part (I) Existence of local solution.
Similar to the proof of Lemma 1 [21], one can conclude the existence of the

solution defined on [0, T ) for system (3.14).
According to the theory of functional differential equations, a global solution

can be guaranteed by the boundedness of the local solution (see, e.g., [22], p.46, Th.
3.2). Hence, we need to prove the boundedness of solution to system (3.14) in Part
(II).

Part (II) The boundedness of the solution.
Suppose x(t, φ, ψ) is a solution of system (3.14). Denote M(t) =

maxi∈N maxθ∈[−τ, 0]{xi(t + θ)} and m(t) = mini∈N minθ∈[−τ, 0]{xi(t + θ)}. We
claim that M(t) is a non-increasing function for t and m(t) is a non-decreasing
function for t . Next, we shall prove that M(t) is a non-increasing function for t by
contradiction.

Suppose M(t) is not a non-increasing function with respect to t , i.e., there exist
t0 and t0 such that t0 > t0 ≥ 0 and M(t0) > M(t0). Next, we will divide four steps
to find the contradiction.

Step 1. Claim: there exists t∗0 ∈ [t0, t0) such that M(t∗0 ) = M(t0) and M(t) >

M(t∗0 ), ∀t ∈ (t∗0 , t0].
Let t∗0 = sup(t ∈ [t0, t0] : M(t) = M(t0)). Then, we have M(t∗0 ) = M(t0) due
to the continuity of the function M(t). Next, we will prove M(t) > M(t∗0 ), ∀t ∈
(t∗0 , t0] by contradiction. Suppose there exists t̃0 ∈ (t∗0 , t0] such that M(t̃0) ≤
M(t∗0 ). It follows from M(t0) > M(t0) and the intermediate value theorem of
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continuous functions, there exists a t̄1 ∈ (t̃0, t0] ⊆ (t∗0 , t0] such that M(t̄1) =
M(t0), which is contradictory with the definition of t∗0 .

Step 2. Claim: there exist i0 ∈ N and δ > 0 such that M(t) = xi0(t + θ(t)) for
t ∈ [t∗0 , t∗0 + δ), where θ(t) ∈ [−τ, 0].
Let Hi(t) = maxθ∈[−τ, 0]{xi(t + θ)} = xi(t + θ(t)). Then, using the definition
of continuity, it can be easily proved that Hi(t) is continuous with respect
to t . It follows from M(t) = maxi∈N maxθ∈[−τ, 0]{xi(t + θ)} that M(t) =
maxi∈N {Hi(t)}. Hence, for i ∈ N , there exist i0 ∈ N and δ > 0 such that
M(t) = Hi0(t) for t ∈ [t∗0 , t∗0 +δ), i.e., M(t) = xi0(t+θ(t)) for t ∈ [t∗0 , t∗0 +δ),
where θ(t) ∈ [−τ, 0].

Step 3. Claim: θ(t∗0 ) = 0.
Assume by contradiction that θ(t∗0 ) �= 0, then, we have M(t∗0 ) = xi0(t

∗
0 +

θ(t∗0 )) > xi0(t
∗
0 ). Let �(t) = xi0(t

∗
0 + θ(t∗0 )) − xi0(t). Then, we have that

�(t∗0 ) > 0. According to the continuity of the function �(t), there exists
δ0 ∈ (0, δ) such that xi0(t

∗
0 + θ(t∗0 )) > xi0(t) for t ∈ (t∗0 , t∗0 + δ0). Hence,

M(t) ≤ M(t∗0 ) for t ∈ (t∗0 , t∗0 + δ0), which is a contradiction with the Claim of
Step 1. Thus, θ(t∗0 ) = 0.

Step 4. Claim:M(t) is a non-increasing function for t . Here, two cases are divided
as follows:

Case 1: If xi0(t
∗
0 ) �= (k + 1

2 )μΔ for any k ∈ Z, the continuity of xi0(t) implies
that there exists δ1 < δ0 such that xi0(t) �= (k + 1

2 )μΔ for any k ∈ Z and
γi0(t) = γi0(t

∗
0 ) = qμ(xi0(t

∗
0 )) for any t ∈ (t∗0 , t∗0 + δ1). Due to M(t∗0 ) = xi0(t

∗
0 ),

we have xj (t
∗
0 − τ) ≤ xi0(t

∗
0 ) for any j ∈ N . Since γj (t) ∈ K[qμ(xj (t))]

and qμ(·) is a non-decreasing function, there exists a δ2 ∈ (0, δ1) such that
γj (t − τ) ≤ γi0(t) for any t ∈ (t∗0 , t∗0 + δ2). As ẋi0(t) = ∑N

j=1, j �=i0 aij (γj (t −
τ) − γi0(t)), we get that ẋi0(t) ≤ 0 for a.e. t ∈ (t∗0 , t∗0 + δ2). Additionally,
since xi0(t + θ(t)) = M(t) > M(t∗0 ) = xi0(t

∗
0 ), ∀t ∈ (t∗0 , t∗0 + δ2), there exists a

t∗∗
0 ∈ (t∗0 , t∗0 +δ2) such that xi0(t

∗∗
0 ) > xi0(t

∗
0 ). Then, there must exist a subset I1

of (t∗0 , t∗∗
0 ) (⊆ (t∗0 , t∗0 + δ2)) such that I1 has a positive measure and ẋi0(t) > 0

for a.e. t ∈ I1, which is contradict with ẋi0(t) ≤ 0 for a.e. t ∈ (t∗0 , t∗0 + δ2).
Case 2: If xi0(t

∗
0 ) = (k + 1

2 )μΔ for some k ∈ Z, according to the previous
analysis, for any δ̄ < δ0, there exists t1 ∈ (t∗0 , t∗0 + δ̄] such that xi0(t1) > xi0(t

∗
0 ).

Let t∗1 = sup(t ∈ [t∗0 , t1] : xi0(t) = xi0(t
∗
0 )). Due to the continuity of function

xi0(t), we have t∗0 ≤ t∗1 < t1 and xi0(t
∗
1 ) = xi0(t

∗
0 ). Hence, for any t ∈ (t∗1 , t1],

we have xi0(t) ≥ M(t∗0 ) and xi0(t) �= (k + 1
2 )μΔ for any k ∈ Z. Similar to

the proof of Case 1, ẋi0(t) ≤ 0 for a.e. t ∈ (t∗1 , t1]. Due to xi0(t1) > xi0(t
∗
1 ),

there must exist a subset I2 of (t∗1 , t1] such that I2 has a positive measure and
ẋi0(t) > 0 for a.e. t ∈ I2, which is contradict with ẋi0(t) ≤ 0 for a.e. t ∈ (t∗1 , t1].
Therefore, M(t) is a non-increasing function for t . Similarly, m(t) can also be
proved to be a non-decreasing function for t using the same approach. Hence, for
any i ∈ N one has m(0) ≤ xi(t) ≤ M(0), i.e., the solution x(t) is bounded. This
completes the proof of this theorem.
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3.2.3 Practical Consensus Under Quantization and Time Delay

In this section, we shall study the consensus result with protocol (3.10). The initial
conditions associated with (3.10) are given as xi(s) = φi(s) ∈ C([−τ, 0], R), i ∈
N . The Filippov solution of system (3.10) is defined in (3.14), and ψj (s), s ∈
[−τ, 0] is the initial condition of measurable selection of γj (s). Let

η(0) = 1

N

N∑

i=1

xi(0)+ 1

N

N∑

i=1

N∑

j=1, j �=i
aij

∫ 0

−τ
ψj (s)ds (3.15)

and

A = μ

(
Δ− τ

N

N∑

i=1

aii

)
, (3.16)

where μ and Δ are quantization parameter and sensitivity of the quantizer.

Theorem 3.13 Consider the multi-agent network (3.10) with communication topol-
ogy that is defined by an undirected, connected graph G. Then, for any finite
communication delay τ , each agent in the network will converge to the set of
Ω1 = [(k − 1

2 )μΔ, (k + 1
2 )μΔ] asymptotically, where k = � η(0)

A
� or � η(0)

A
� + 1,

η(0) and A are defined in (3.15) and (3.16), respectively.

Proof The proof of Theorem 3.13 is divided into two parts.

Part (I) We shall take three steps to prove that each agent in the network will
converge to an interval [(k − 1

2 )μΔ, (k + 1
2 )μΔ] asymptotically.

Step 1. We shall prove that for any ε > 0 and i ∈ N , there exists T0, such that

|xi(t + ϑ)− xi(t)| ≤ ε, ∀t ≥ T0, ∀ϑ ∈ [0, τ ]. (3.17)

Consider the function

V (t) = V1(t)+ V2(t), (3.18)

where

V1(t) =
N∑

i=1

∫ xi (t)

0
qμ(s)ds, (3.19)
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and

V2(t) = 1

2

N∑

i=1

N∑

j=1, j �=i

∫ t

t−τ
aij γ

2
j (s)ds. (3.20)

Note that cqμ(c) ≥ 0 for any c ∈ R, we have V1(t) ≥ 0 and V2(t) ≥ 0.
Notice that for pi(s) = ∫ s

0 qμ(u)du, we have

∂cpi(s) = {v ∈ R : q−
μ (s) ≤ v ≤ q+

μ (s)}, (3.21)

where q+
μ (s) and q−

μ (s) denote the right and left limits of the function qμ at the
point s. Based on the Lemma 1.19, V1(t) is differentiable for a.e. t ≥ 0 and

dV1(t)

dt
=

N∑

i=1

γi(t)

N∑

j=1, j �=i
aij [γj (t − τ)− γi(t)]

= 1

2

N∑

i=1

N∑

j=1, j �=i
aij [2γi(t)γj (t − τ)− 2γ 2

i (t)]. (3.22)

Since γj (t) ∈ K[qμ(xj (t))], ∀j ∈ N , we have γj (t) is local integrable. Hence,
V2(t) is differentiable for a.e. t ≥ 0 and

dV2(t)

dt
= 1

2

N∑

i=1

N∑

j=1, j �=i
aij [γ 2

j (t)− γ 2
j (t − τ)]

= 1

2

N∑

j=1

N∑

i=1, i �=j
ajiγ

2
i (t)− 1

2

N∑

i=1

N∑

j=1, j �=i
aij γ

2
j (t − τ)

= 1

2

N∑

i=1

N∑

j=1, j �=i
aij [γ 2

i (t)− γ 2
j (t − τ)]. (3.23)

Combining (3.22) and (3.23) gives that

dV (t)

dt
= dV1(t)

dt
+ dV2(t)

dt

= −1

2

N∑

i=1

N∑

j=1, j �=i
aij (γi(t)− γj (t − τ))2

≤ 0. (3.24)
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Hence, V (t) is non-increasing for t . Further, V (t) ≥ 0 gives that lim
t→+∞V (t)

exists. Let ā = max1≤i<j≤N, aij>0{aij }. Then, we have that for any ε > 0 and
i, j ∈ N , there exists T0 such that for ∀t ≥ T0, ϑ ∈ [0, τ ],

ε2

2Nāτ
≥ |V (t + ϑ)− V (t)|

=
∣∣∣∣
∫ t+ϑ

t

V̇ (s)ds

∣∣∣∣

= 1

2

N∑

i=1

N∑

j=1, j �=i
aij

∫ t+ϑ

t

(γi(s)− γj (s − τ))2ds, (3.25)

which implies that for any i ∈ N and t ≥ T0, ϑ ∈ [0, τ ], we have

N∑

j=1, j �=i
aij

∫ t+ϑ

t

(γi(s)− γj (s − τ))2ds ≤ ε2

Nāτ
. (3.26)

It follows from Jensen’s inequality (see [23]) that

ε2 ≥ τN

N∑

j=1, j �=i
aij ā

∫ t+ϑ

t

(γi(s)− γj (s − τ))2ds

≥ ϑN

N∑

j=1, j �=i
aij ā

∫ t+ϑ

t

(γi(s)− γj (s − τ))2ds

≥ N

N∑

j=1, j �=i
a2
ij

(∫ t+ϑ

t

|γj (s − τ)− γi(s)|ds
)2

≥
⎛

⎝
N∑

j=1, j �=i
aij

∫ t+ϑ

t

|γj (s − τ)− γi(s)|ds
⎞

⎠
2

≥
∣∣∣∣∣∣

N∑

j=1, j �=i
aij

∫ t+ϑ

t

(γj (s − τ)− γi(s))ds

∣∣∣∣∣∣

2

. (3.27)

Hence, for any i ∈ N and t ≥ T0, ϑ ∈ [0, τ ], one has

∣∣∣∣∣∣

N∑

j=1, j �=i
aij

∫ t+ϑ

t

(γj (s − τ)− γi(s))ds

∣∣∣∣∣∣
≤ ε.
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It follows from (3.14) that

|xi(t + ϑ)− xi(t)| =
∣∣∣∣
∫ t+ϑ

t

ẋi (s)ds

∣∣∣∣

=
∣∣∣∣∣∣

N∑

j=1, j �=i
aij

∫ t+ϑ

t

(γj (s − τ)− γi(s))ds

∣∣∣∣∣∣

≤ ε. (3.28)

Thus, for any ε > 0 and i ∈ N , there exists T0 such that for ∀t ≥ T0, ϑ ∈ [0, τ ],

|xi(t + ϑ)− xi(t)| ≤ ε. (3.29)

Step 2. Let Φ = {x(t+θ) ∈ C([−τ, 0]; RN) : |γi(t)−γj (t−τ)| < μ
N+1 , ∀i, j ∈

N , i �= j, aij �= 0}. We claim that for arbitrary fixed t0 ≥ 0, there exists t̄0 ≥ t0
such that the agents in the network will go into the set of Φ at time t̄0.
Let J = {t ≥ t0 : x(t + θ) /∈ Φ}. For x(t + θ) ∈ C([−τ, 0]; RN) and t ∈ J ,
there exist i, j ∈ N , i �= j and aij �= 0 such that

|γi(t)− γj (t − τ)| ≥ μ

N + 1
. (3.30)

Hence, for a.e. t ∈ J , one has

V̇ (t) ≤ −1

2
aij

(
μ

N + 1

)2

≤ −1

2
ςμ2, (3.31)

where ς = min
i, j∈N , aij>0

{( 1

N + 1
)2aij }. Next, we will prove the claim of Step 2

by contradiction.
Suppose that t ∈ J for any t ≥ t0. Then, inequality (3.31) implies that

V (t)− V (t0) ≤ −1

2
ςμ2(t − t0), t ≥ t0. (3.32)

For t > 2V (t0)
ςμ2 + t0, it follows from inequality (3.32) that V (t) < 0, which is

a contradiction to the definition of V (t). Therefore, for arbitrary t0 ≥ 0, there
exists t̄0 ≥ t0 such that the agents in the network will go into the set of Φ at time
t̄0.

Step 3. We shall prove that there exists k ∈ Z such that xi(t) converges to the set
of [(k − 1

2 )μΔ, (k + 1
2 )μΔ] asymptotically for every i ∈ N .
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It follows from qμ(xi(t)) = � xi (t)
Δμ

+ 1
2�μ and the definition of set value function

K (defined in Sect. 1.3.4) that

K[qμ(xi(t))] =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

k0μ, if xi(t) ∈
((
k0 − 1

2

)
μΔ,

(
k0 + 1

2

)
μΔ

)

for some k0 ∈ Z,

[k0μ, (k0 + 1)μ], if xi(t) =
(
k0 + 1

2

)
μΔ

for some k0 ∈ Z.

(3.33)

In Step 2, we have proved that for arbitrary fixed t0 ≥ 0, there exists t̄0 ≥ t0 such
that the agents in the network will go into the set of Φ at time t̄0. It means that
∀i, j ∈ N , i �= j, aij �= 0,

|γi(t̄0)− γj (t̄0 − τ)| < μ

N + 1
. (3.34)

Note that γi(t̄0) ∈ K[qμ(xi(t̄0))] and γj (t̄0 − τ) ∈ K[qμ(xj (t̄0 − τ))]. Next, we
will prove that Claim I: there exists kij ∈ Z such that

xi(t̄0) ∈
[(

kij − 1

2

)
μΔ,

(
kij + 1

2

)
μΔ

]
(3.35)

and

xj (t̄0 − τ) ∈
[(

kij − 1

2

)
μΔ,

(
kij + 1

2

)
μΔ

]
. (3.36)

In order to show the relationship of xi(t̄0) and xj (t̄0 − τ) for i and j satisfying
aij �= 0 and |γi(t̄0) − γj (t̄0 − τ)| < μ

N+1 , we consider the following four cases,
which cover all possibilities.

Case 1: There exist k1, k2 ∈ Z such that

K[qμ(xi(t̄0))] = k1μ (3.37)

and

K[qμ(xj (t̄0 − τ)] = k2μ. (3.38)

Then we have k1 = k2, which implies that xi(t̄0) and xj (t̄0 − τ) belong to the
interval of ((k1 − 1

2 )μΔ, (k1 + 1
2 )μΔ).

Case 2: There exist k1, k2 ∈ Z such that

K[qμ(xi(t̄0))] = k1μ (3.39)
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and

K[qμ(xj (t̄0 − τ)] = [k2μ, (k2 + 1)μ]. (3.40)

It means that

xi(t̄0) ∈
((

k1 − 1

2

)
μΔ,

(
k1 + 1

2

)
μΔ

)
(3.41)

and

xj (t̄0 − τ) =
(
k2 + 1

2

)
μΔ. (3.42)

Hence, the inequality

|γi(t̄0)− γj (t̄0 − τ)| < μ

N + 1
(3.43)

implies that k1 = k2 or k1 = k2 + 1. Therefore, we can conclude that xi(t̄0) and
xj (t̄0 − τ) belong to the interval of [(k2 − 1

2 )μΔ, (k2 + 1
2 )μΔ].

Case 3: There exist k1, k2 ∈ Z such that

K[qμ(xi(t̄0))] = [k1μ, (k1 + 1)μ] (3.44)

and

K[qμ(xj (t̄0 − τ)] = k2μ. (3.45)

Following similar analysis of Case 2 gives that xi(t̄0) and xj (t̄0 − τ) belong to
the interval of [(k1 − 1

2 )μΔ, (k1 + 1
2 )μΔ].

Case 4: There exist k1, k2 ∈ Z such that

K[qμ(xi(t̄0))] = [k1μ, (k1 + 1)μ] (3.46)

and

K[qμ(xj (t̄0 − τ)] = [k2μ, (k2 + 1)μ]. (3.47)

It means that

xi(t̄0) =
(
k1 + 1

2

)
μΔ (3.48)
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and

xj (t̄0 − τ) =
(
k2 + 1

2

)
μΔ. (3.49)

The inequality

|γi(t̄0)− γj (t̄0 − τ)| < μ

N + 1
(3.50)

implies that k1 = k2 or |k1 − k2| = 1. Hence, there exists kij (= k1 or k2) ∈ Z

such that xi(t̄0) and xj (t̄0 − τ) belong to the interval of [(kij − 1
2 )μΔ, (kij +

1
2 )μΔ].
Therefore, we can conclude that there exists kij (= k1 or k2) ∈ Z such that xi(t̄0)
and xj (t̄0 − τ) belong to the interval of [(kij − 1

2 )μΔ, (kij + 1
2 )μΔ].

Fix an agent i0 ∈ N . Consider the neighbors of agent i0, i.e., Ni0 . Without loss of
generality, we assume i1 ∈ Ni0 . Claim I implies that

xi0(t̄0) ∈
[(

ki0i1 − 1

2

)
μΔ,

(
ki0i1 + 1

2

)
μΔ

]
(3.51)

and

xi1(t̄0 − τ) ∈
[(

ki0i1 − 1

2

)
μΔ,

(
ki0i1 + 1

2

)
μΔ

]
. (3.52)

Let ki0i1 = k. Next, we can consider the neighbors of agent i1 similarly. Assume
i2 ∈ Ni1 . Claim I implies that

xi2(t̄0) ∈
[(

ki2i1 − 1

2

)
μΔ,

(
ki2i1 + 1

2

)
μΔ

]
(3.53)

and

xi1(t̄0 − τ) ∈
[(

ki2i1 − 1

2

)
μΔ,

(
ki2i1 + 1

2

)
μΔ

]
. (3.54)

Since the network is undirected and connected, we have that for any i′ ∈ N , the
minimum number of nodes (exclude i0) is no more than N − 1 for the path from i0
to i′. According to the claim of Step 2, we can conclude that for any i′ ∈ N \{i0, i1},
at least one of the following statement holds:

1. |γi0(t̄0)− γi′(t̄0 − τ)| < N−1
N+1μ and |γi1(t̄0 − τ)− γi′(t̄0 − τ)| < N

N+1μ;

2. |γi0(t̄0)− γi′(t̄0)| < N−1
N+1μ and |γi1(t̄0 − τ)− γi′(t̄0)| < N

N+1μ.
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Hence, for arbitrary t0 ≥ 0 there exists t̄0 such that, for any i′ ∈ N , either xi′(t̄0)
or xi′(t̄0 − τ) belongs to the set of Ω1 = [(k − 1

2 )μΔ, (k + 1
2 )μΔ].

Denote M(t) = maxi∈N maxθ∈[−τ, 0]{xi(t+θ)} and m(t) = mini∈N minθ∈[−τ, 0]
{xi(t + θ)}. It follows from the proof of Theorem 3.12 that M(t) is a non-increasing
function for t , and m(t) is a non-decreasing function for t . Select t0 = T0 + τ .
According to the definition of M(t) and m(t), there exist iM, θM , and im, θm such
that

M(t̄0) = xiM (t̄0 + θM) (3.55)

and

m(t̄0) = xim(t̄0 + θm). (3.56)

Without loss of generality, we can assume that xiM (t̄0) and xim(t̄0 − τ) belongs to
the set of Ω1 = [(k − 1

2 )μΔ, (k + 1
2 )μΔ].

It follows from (3.29) that

M(t̄0)− xiM (t̄0) ≤ ε (3.57)

and

xim(t̄0)−m(t̄0) ≤ ε. (3.58)

Hence,

xim(t̄0 − τ)− ε ≤ m(t̄0) ≤ M(t̄0) ≤ xiM (t̄0)+ ε.

The non-increasing property of M(t) and the non-decreasing property of m(t) imply
that for any t ≥ t̄0,

xim(t̄0 − τ)− ε ≤ m(t̄0) ≤ m(t) ≤ M(t)

≤ M(t̄0) ≤ xiM (t̄0)+ ε. (3.59)

Hence, for any ε > 0 and i ∈ N , we have

dist (xi(t), Ω1) ≤ ε, ∀t ≥ t̄0. (3.60)

That is, for every i ∈ N , xi(t) converges to the interval of [(k− 1
2 )μΔ, (k+ 1

2 )μΔ]
asymptotically.
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Part (II) Estimate the value of k.
Next, we shall give the value of k which depends on the initial values of the

multi-agent network. Let

η(t) = 1

N

⎛

⎝
N∑

i=1

xi(t)+
N∑

i=1

N∑

j=1, j �=i
aij

∫ t

t−τ
γj (s)ds

⎞

⎠ . (3.61)

By some calculations, we obtain

η̇(t) =
N∑

i=1

N∑

j=1, j �=i

1

N
aij [γj (t − τ)− γi(t)] −

N∑

i=1

N∑

j=1, j �=i

1

N
aij [γj (t − τ)− γj (t)]

= −
N∑

i=1

N∑

j=1, j �=i

1

N
aij γi(t)+

N∑

i=1

N∑

j=1, j �=i

1

N
aij γj (t)

= −
N∑

i=1

N∑

j=1, j �=i

1

N
aij γi(t)+

N∑

j=1

N∑

i=1, i �=j

1

N
ajiγi(t)

= 0. (3.62)

Due to the fact that η̇(t) = 0 for a.e. t ∈ [0, ∞) and the continuity of η(t), η(t) in
(3.61) is a constant. That is,

η(t) = η(0)

= 1

N

⎛

⎝
N∑

i=1

xi(0)+
N∑

i=1

N∑

j=1, j �=i
aij

∫ 0

−τ
γj (s)ds

⎞

⎠

= 1

N

N∑

i=1

xi(0)+ 1

N

N∑

i=1

N∑

j=1, j �=i
aij

∫ 0

−τ
ψj (s)ds. (3.63)

η(t) in (3.63) will be used in the rest of the proof. To estimate the value of k, let

Ω1 =
[(

k − 1

2

)
μΔ,

(
k + 1

2

)
μΔ

]
. (3.64)

In Step 3, we have proved that

lim
t→+∞ dist (xi(t), Ω1) = 0, ∀i ∈ N .
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Next, we will prove that

lim
t→+∞ dist

(
N∑

i=1

1

N
xi(t), Ω1

)
= 0. (3.65)

It follows from

lim
t→+∞ dist (xi(t), Ω1) = 0, ∀i ∈ N (3.66)

that for any ε > 0, there exists Ti > 0 such that, when t > Ti ,

dist (xi(t), Ω1) < ε. (3.67)

Let T = maxi∈N {Ti} + 1, it can be obtained that, when t > T ,

dist (xi(t), Ω1) < ε, ∀i ∈ N . (3.68)

Since Ω1 = [(k − 1
2 )μΔ, (k + 1

2 )μΔ] is a closed set, for arbitrary t > T there
exists a point cit ∈ Ω1 such that

dist (xi(t), c
i
t ) = |xi(t)− cit | < ε. (3.69)

Note that Ω1 is a convex set, we have
1

N

N∑

i=1

cit ∈ Ω1. Hence,

dist

(
N∑

i=1

1

N
xi(t),

1

N

N∑

i=1

cit

)
= 1

N

∣∣∣∣∣

N∑

i=1

xi(t)−
N∑

i=1

cit

∣∣∣∣∣ < ε. (3.70)

Therefore, for any ε > 0, there exists T > 0 such that, when t > T ,

dist

(
N∑

i=1

1

N
xi(t), Ω1

)
< ε. (3.71)

That is,

lim
t→+∞ dist

(
N∑

i=1

1

N
xi(t), Ω1

)
= 0. (3.72)
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Note that for large enough t ,

γi(t) ∈ [(k − 1)μ, (k + 1)μ], ∀i ∈ N . (3.73)

It follows from (3.72) and (3.73) that

η(0) = lim
t→+∞ η(t)

= lim
t→+∞

⎛

⎝
N∑

i=1

1

N
xi(t)+

N∑

i=1

1

N

N∑

j=1, j �=i
aij

∫ t

t−τ
γj (s)ds

⎞

⎠

∈
[(

k − 1

2

)
μΔ+

N∑

i=1

1

N
(−aiiτ )(k − 1)μ,

(
k + 1

2

)
μΔ+

N∑

i=1

1

N
(−aiiτ )(k + 1)μ

]

=
[
kA−

(
A− 1

2
μΔ

)
, kA+

(
A− 1

2
μΔ

)]
, (3.74)

where A = μ(Δ− τ
N

∑N
i=1 aii). Then, one obtains

η(0)

A
∈

[
k − A− 1

2μΔ

A
, k + A− 1

2μΔ

A

]
, (3.75)

which together with 1
2 <

A− 1
2μΔ

A
< 1 gives that

k ∈
{⌊

η(0)

A

⌋
,

⌊
η(0)

A

⌋
+ 1

}
. (3.76)

This completes the proof of this theorem.

Remark 3.14 Since Theorem 3.13 is obtained based on the Filippov solution of the
time-delay system (3.10), we cannot completely determine the value of k. In fact,
we can overcome this problem by alternatively choosing the practical consensus set
Ω2 = [(k − 1

2 )μΔ, (k + 3
2 )μΔ], where k = � η(0)

A
�.
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According to Theorem 3.13, the multi-agent network (3.10) achieves practical
consensus asymptotically. The practical consensus set depends on the initial condi-
tion of the system and also on the initial condition of the selected output function
ψ(s) ∈ K[qμ(φ(s))]. However, in some cases, we need to find a different form of
practical consensus set which is not related to the selection of the output function.
In Theorem 3.15, we shall investigate and solve this problem by using inequality
techniques. Moreover, the explicit effect of time delay and quantization parameter
on the practical consensus set will be obtained.

In Theorem 3.15, we assume that the initial functions associated with (3.10) are
given as

xi(s) = φi(s) ∈ C([−τ, 0], R), ∀i ∈ N . (3.77)

Let

ζ(0) = 1

N

N∑

i=1

xi(0)+ 1

NΔ

N∑

i=1

N∑

j=1, j �=i
aij

∫ 0

−τ
φj (s)ds (3.78)

and

D = 1 − τ

NΔ

N∑

i=1

aii . (3.79)

Theorem 3.15 Consider the multi-agent network (3.10) with communication topol-
ogy that is defined by an undirected, connected graph G. For any finite communi-
cation delay τ , the states of multi-agent network (3.10) will converge to the set of
Ω = [ ζ(0)D − (2 − 1

D )μΔ,
ζ(0)
D + (2 − 1

D )μΔ] asymptotically.
Proof By Theorem 3.13, one has that xi(t) will converge to the set of [(k −
1
2 )μΔ, (k + 1

2 )μΔ] asymptotically for every i ∈ N . It follows from (3.75) that

η(0)

A
− B

A
≤ k ≤ η(0)

A
+ B

A
, (3.80)

where A = μ(Δ− τ
N

∑N
i=1 aii) and B = μ( 1

2Δ− τ
N

∑N
i=1 aii).

According to the definition of the quantizer, for t ∈ [−τ, 0], we have

γj (t) = μ

⌊
φj (t)

μΔ
+ 1

2

⌋

≤ μ

(
φj (t)

μΔ
+ 1

2

)

= φj (t)

Δ
+ 1

2
μ. (3.81)
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Similarly, to obtain the lower bound of γj (t), t ∈ [−τ, 0], the problem is divided
into two cases as presented in the following:

Case 1: If φj (t) �= (k + 1
2 )μΔ for any k ∈ Z, then,

γj (t) = μ

⌊
φj (t)

μΔ
+ 1

2

⌋

≥ μ

(
φj (t)

μΔ
+ 1

2
− 1

)

= φj (t)

Δ
− 1

2
μ. (3.82)

Case 2: If φj (t) = (k + 1
2 )μΔ for some k ∈ Z, then,

γj (t) ≥ μ

(⌊
φj (t)

μΔ
+ 1

2

⌋
− 1

)

= μ

(
φj (t)

μΔ
+ 1

2
− 1

)

= φj (t)

Δ
− 1

2
μ. (3.83)

Hence, for t ∈ [−τ, 0], we can obtain that

γj (t) ≥ φj (t)

Δ
− 1

2
μ. (3.84)

It follows from (3.63), (3.81), and (3.84) that

η(0) ≤ 1

N

⎡

⎣
N∑

i=1

xi(0)+
N∑

i=1

N∑

j=1, j �=i
aij

∫ 0

−τ

(
φj (s)

Δ
+ 1

2
μ

)
ds

⎤

⎦

= ζ(0)− 1

2

τ

N

N∑

i=1

aiiμ, (3.85)
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and

η(0) ≥ 1

N

⎡

⎣
N∑

i=1

xi(0)+
N∑

i=1

N∑

j=1, j �=i
aij

∫ 0

−τ

(
φj (s)

Δ
− 1

2
μ

)
ds

⎤

⎦

= ζ(0)+ 1

2

τ

N

N∑

i=1

aiiμ, (3.86)

where ζ(0) = 1

N

N∑

i=1

xi(0)+ 1

NΔ

N∑

i=1

N∑

j=1, j �=i
aij

∫ 0

−τ
φj (s)ds.

Then, we obtain

(
k − 1

2

)
μΔ ≥

(
η(0)

A
− B

A
− 1

2

)
μΔ

≥
(
ζ(0)

A
− B − 1

2
τ
N

∑N
i=1 aiiμ

A
− 1

2

)
μΔ

= ζ(0)

A
μΔ− 2B + A− τ

N

∑N
i=1 aiiμ

2A
μΔ

= ζ(0)

D −
(

2 − 1

D
)
μΔ, (3.87)

and
(
k + 1

2

)
μΔ ≤

(
η(0)

A
+ B

A
+ 1

2

)
μΔ

≤
(
ζ(0)

A
+ B − 1

2
τ
N

∑N
i=1 aiiμ

A
+ 1

2

)
μΔ

= ζ(0)

A
μΔ+ 2B + A− τ

N

∑N
i=1 aiiμ

2A
μΔ

= ζ(0)

D +
(

2 − 1

D
)
μΔ, (3.88)

where D = 1 − τ
NΔ

∑N
i=1 aii .

Therefore, we can conclude that all of the agents in the network (3.10) will converge
to the practical consensus set Ω = [ ζ(0)D − (2 − 1

D )μΔ,
ζ(0)
D + (2 − 1

D )μΔ].
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Remark 3.16 Different from Theorem 3.13, the practical consensus set in The-
orem 3.15 is not related to the initial condition of the selected output function
ψ(s) ∈ K[qμ(φ(s))]. Instead, the way how time delay and quantization parameter
μ affect the practical consensus set Ω is obtained explicitly. It is interesting to
observe that the size of the practical consensus set can be made arbitrarily small
by decreasing the quantization parameter μ.

Remark 3.17 In Theorems 3.13 and 3.15, it has been shown that the states of
multi-agent network would reach a set of steady-states, which is a function
of time delay, quantization parameter, and initial state of the system. In some
particular situations, it would be more interesting to study the average consensus
problem of the multi-agent system. With the effect of quantization and delay,
the average consensus cannot be exactly realized in our protocol. In fact, our
practical consensus set Ω can also be expressed as Ω∗ = [ 1

N

∑N
i=1 xi(0) −

f (μ,Δ, τ, x(0)), 1
N

∑N
i=1 xi(0) + g(μ,Δ, τ, x(0))], where f (μ,Δ, τ, x(0)) =

(2− NΔ

NΔ−∑N
i=1 aii τ

)μΔ− τ
∑N

i=1 aii

NΔ−∑N
i=1 aii τ

( 1
N

∑N
i=1 xi(0))−

∑N
i=1

∑N
j=1, j �=i aij

∫ 0
−τ φj (s)ds

NΔ−∑N
i=1 aii τ

,

and g(μ,Δ, τ, x(0)) = (2 − NΔ

NΔ−∑N
i=1 aii τ

) μΔ+ τ
∑N

i=1 aii

NΔ−∑N
i=1 aii τ

( 1
N

∑N
i=1 xi(0))+

∑N
i=1

∑N
j=1, j �=i aij

∫ 0
−τ φj (s)ds

NΔ−∑N
i=1 aii τ

. Simple calculation gives that g ≥ −f , which makes

final consensus set meaningful. Moreover, according to the derived practical
consensus set Ω∗, one can observe that the functions f and g are not necessary
to be positive functions. It implies that the value of 1

N

∑N
i=1 xi(0) can be outside the

practical consensus set Ω∗.

Remark 3.18 It is worthy to investigate the bounds of f, g and how f and g change
with respect to tunable parameters since they can show the size of the practical
consensus set and how far is the consensus set from the average consensus value.
The size of the practical consensus set is g + f = (4 − 2

D )μΔ, where D = 1 −
τ
NΔ

∑N
i=1 aii . Hence, we can observe that g + f → 4μΔ as τ → +∞ and g +

f → 2μΔ as τ → 0. Moreover, it follows from the expressions of f and g in
Remark 3.17 that the values of f and g will become smaller by decreasing the
quantization parameter μ. Unfortunately, it is not easy to find exactly how f and
g change with respect to τ since the values of f and g also depend on the initial
value of the agents, i.e., φi(θ), θ ∈ [−τ, 0]. Hence, it is interesting to estimate
more precise consensus set in future.

3.2.4 Numerical Example

In order to illustrate the effect of quantization parameter μ on the practical
consensus set, a multi-agent network (3.10) with 20 agents is considered. The graph
(Fig. 3.3) is generated by small-world algorithm, in which each node has 2 nearest
neighbors and the rewiring probability of the edges is 0.5 (see [24]). Let initial
conditions be randomly chosen from (0, 20).
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Fig. 3.3 Network topology in the simulation example

Figures 3.4, 3.5, and 3.6 show the states responses of multi-agent network (3.10)
with respect to μ = 5, 1, and 0.2, respectively. It can be observed that for different
values of μ, the agents converge to different practical consensus sets. Interestingly,
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Fig. 3.4 The states responses of the multi-agent networks with μ = 5



3.2 Consensus with Hybrid Communication Constraints 63

0 2 4 6 8 10
0

2

4

6

8

10

12

14

16

18

20

t

x i(t
),

i=
1,

...
20

0

2

4

6

8

10

12

14

16

18

20

Fig. 3.5 The states responses of the multi-agent networks with μ = 1
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Fig. 3.6 The states responses of the multi-agent networks with μ = 0.2
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we observe that the size of the practical consensus sets becomes smaller along with
the decreasing of μ. These three figures also verify Theorem 3.15 very well.

3.2.5 Discussions

3.2.5.1 Can the “Time Delay” and “Quantization” Be Handled
Independently in This Work?

1. The answer is NO. We shall discuss in the following sections.
2. For the individual case, we can deal with them as follows:

• Without considering quantization in model (3.10), system (3.10) becomes

ẋ(t) = Ax(t − τ)−Dx(t). (3.89)

If x(t) converges to some final value x̄, then that final value is a consensus
vector, because it satisfies

Ax̄ −Dx̄ = 0. (3.90)

It remains to show that x(t) does indeed converge in the time-delay system.
This problem can be solved by using Laplace transforms and the final-value
theorem;

• Without considering time delay in (3.10), system (3.10) will become reference
[18] considered the system

ẋ = −Lq(x), (3.91)

where q is a nonlinear, vector-valued quantizer. This is now a nonlinear
robustness question. Reference [18] gives a rigorous treatment of this prob-
lem.

3. Next, we shall present the reasons why these two communication constraints
cannot be dealt with independently.

• We need to emphasize that these two communication constraints are mixed
problems and cannot be treated as two separate independent issues. The
main difficulty of this section lies in the discontinuity of function q(·) in
a time delay system. We present a unified approach to handle these two
communication constraints in the continuous-time consensus problem. This
is one of our main contributions.

• Due to the quantization discussed in this section, we cannot use Laplace
transforms and the final-value theorem to treat time-delay system (3.10) (i.e.,
L (q(x(t))) is hard to compute). Moreover, the system (3.10) is continuous-
time setting, and quantization function q(·) is not continuous. Hence, we
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cannot use the Laplace transforms and the final-value theorem to change the
system (3.10) into an algebra setting. Therefore, the Laplace transforms and
the final-value theorem cannot be used to deal with the difficulty arising from
time-delay system (3.10).

• In [18], the practical consensus problem for model (3.2) is investigated via
the LaSalle invariance principle for differential inclusions. Since both time
delay and quantization are considered simultaneously in this section and
the LaSalle invariance principle for differential inclusions system with time
delay is unknown, the technique used in [18] cannot be used in this section.
Moreover, we present a new practical consensus analysis technique which is
completely different from [18]. Moreover, we should mention that the results
of reference [18] (with quantization only) have been further improved in
Sect. 3.1 by using the new proofing technique.

• Due to the consideration of quantization together with time delay, we need
to study the consensus of multi-agent system which is described by func-
tional differential equation with discontinuous right hand side. Under this
circumstance, there may not exist Carathéodory solution. Hence, we studied
the solution of the multi-agent system in the Filippov sense and proved
its existence, which we believe that it is theoretically important. A great
deal of mathematics is used here to prove the existence of the solution and
analyze its dynamical behavior. However, we would like to point out that the
proof of some other papers on quantization seems simpler, since these papers
studied their dynamical behavior by ignoring the existence of the solution. In
this section, under the circumstance of the Filippov solution, we proved the
convergence of the multi-agent system with quantization and delay, and found
out its final consensus set. Moreover, by this theory, it would be interesting
to explicitly present the relationship among the quantization parameter, time
delay, and the convergence set.

3.2.5.2 A New Result Stemming from Theorem 3.15

It follows from Theorem 3.15 that the final states of the networks will converge to
the set Ω = [ ζ(0)D − (2 − 1

D )μΔ,
ζ(0)
D + (2 − 1

D )μΔ]. For Δ = 1, as μ → 0,
qμ(x) → x and set Ω will be reduced to one point

c′ =
1
N

∑N
i=1 xi(0)+ 1

N

∑N
i=1

∑N
j=1, j �=i aij

∫ 0
−τ xj (s)ds

1 − 1
N

∑N
i=1 aiiτ

. (3.92)

Moreover, as μ → 0, the model (3.10) will degrade into

dxi(t)

dt
=

∑

j∈Ni

aij [xj (t − τ)− xi(t)], i = 1, . . . , N. (3.93)
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It follows from Theorem 1 of [11] that model (3.93) can achieve consensus and
the consensus value is c. However, the exact consensus value is not explicitly given
in [11]. By the aforementioned analysis, we may conjecture that the final consensus
value of model (3.93) is c′. In the following Proposition 3.19, using the proof method
given in the Part II of Theorem 3.13, we can strictly prove that our conjecture is
right. In the following, we shall present a more general result which can be seen as
the supplementations of the Theorem 1 in [11]. The model proposed in [11] is as
follows:

dxi(t)

dt
=

∑

j∈Ni

aij (xj (t − τij )− xi(t)), i = 1, . . . , N. (3.94)

Proposition 3.19 Consider the linear coupled system (3.94) with a strongly con-
nected graph G. Whatever finite communication delays τij are, consensus is
asymptotically reached for arbitrary initial conditions and the final consensus value

is c =
∑N

i=1 ξixi (0)+
∑N

i=1 ξi
∑N

j=1 aij
∫ 0
−τij xj (s)ds

1+∑N
i=1 ξi

∑N
j=1 aij τij

, where ξ = (ξ1, ξ2, . . . , ξN) is the

normalized left eigenvector of matrix L with respect to the zero eigenvalue.

Proof Let

η(t) =
N∑

i=1

ξixi(t)+
N∑

i=1

ξi

N∑

j=1

aij

∫ t

t−τij
xj (s)ds. (3.95)

Similar to the proof of (3.62), we can get η̇(t) = 0. Thus, η(t) is a constant.
We have known that the model (3.94) can achieve consensus and the consensus

value is c (see [11], Theorem 1).
Assume

η(t) = d

=
N∑

i=1

ξixi(0)+
N∑

i=1

ξi

N∑

j=1

aij

∫ 0

−τij
xj (s)ds, (3.96)

then, we have

d = η(t)

= lim
t→∞ η(t)

=
N∑

i=1

ξic +
N∑

i=1

ξi

N∑

j=1

aij τij c

=
⎛

⎝1 +
N∑

i=1

ξi

N∑

j=1

aij τij

⎞

⎠ c. (3.97)
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Therefore, we have

c =
∑N

i=1 ξixi(0)+ ∑N
i=1 ξi

∑N
j=1 aij

∫ 0
−τij xj (s)ds

1 + ∑N
i=1 ξi

∑N
j=1 aij τij

. (3.98)

Remark 3.20 In [11], it is mentioned that the final consensus state is hard to predict
due to the injection of arbitrary finite communication delays although consensus
can be achieved for multi-agent system (3.94). Here, Proposition 3.19 has solved
this difficult problem and is an important extension for the results of [11].

3.3 Summary

In this chapter, we mainly addressed the consensus problem of continuous-time
multi-agent networks where each agent can only obtain the quantized and delayed
measurements of the states of its neighbors. Filippov solutions of the resulting
system exist for any initial condition. We have proved that under certain network
topology, the states of the multi-agent network which only considers quantization
effect will converge to a practical consensus set in a finite time. For the multi-
agent network model considering quantization and time delay simultaneously, it is
shown that Filippov solutions converge to a practical consensus set asymptotically.
Moreover, we also present how the initial states of the agents, time delay, and
quantization parameter affect the final practical consensus set. The theoretical
results have been well illustrated by two numerical examples.
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Chapter 4
Multi-agent Consensus with Quantization
and Communication Delays

Recently, substantial consensus problems have been studied in many previous
literature [1–6]. Due to the energy and bandwidth constraints of the communication
channels, the transmitted information in the multi-agent network needs to be
quantized. The study on control problems using quantized information has a long
history [7]. Over the past few years, considerable effort has been devoted to studying
the information quantization on feedback control systems [8–11].

How to realize a distributed consensus with quantization has drawn considerable
attention [12–18]. In [16], a coding–decoding scheme was developed to solve the
average consensus problem with quantized information. In [14, 19], under the
condition that each uniform quantizer has infinite quantization levels, it was shown
that the multi-agent network could achieve practical consensus.

In this chapter, we will discuss the multi-agent network consensus problem
with communication quantization and time delays simultaneously. It is shown that
consensus can be achieved for the network under communication quantization and
delays under certain topology conditions. Different from Chap. 3, the consensus
protocol proposed in this chapter only considers quantized transmitted information.
Moreover, the protocol does not assume that the communication delay is the same
between different neighboring agents.

4.1 Discrete-Time Case

In this section, the consensus problem of discrete-time multi-agent networks
with quantized data and delays is studied. The remainder of this section is
organized as follows. In Sect. 4.1.1, the discrete-time multi-agent network model
with communication quantization and time delays is presented. In Sect. 4.1.2,
the consensus analysis of the proposed protocol is presented in detail. Finally, a
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numerical simulation is given to demonstrate the validity of the theoretical results
in Sect. 4.1.3.

4.1.1 Model Description

Consider the following network model with discrete-time integrator agents with
dynamics:

xi(k + 1) = xi(k)+ ui(k), i ∈ N , (4.1)

where xi(k) ∈ R is the state of the agent i and ui(k) is called the protocol.
The goal is to design the protocol ui(k) yielding the consensus of the states, i.e.,

lim
k→+∞ xi(k) = c, ∀i ∈ N , (4.2)

where c is a constant.
Due to the communication bandwidth constraints in many real multi-agent

networks, the agents can only use quantized information of the neighboring agents.
The following consensus protocol

ui(k) =
∑

j∈Ni

aij [qμ(xj (k − τij ))− xi(k)], i ∈ N ,

will be studied in this section, i.e.,

xi(k + 1) = xi(k)+
∑

j∈Ni

aij [qμ(xj (k − τij ))− xi(k)], i ∈ N , (4.3)

where τij is a nonnegative integer representing the communication delays from
agent j to agent i, and qμ(·) denotes one-parameter family of uniform quantizers
which is defined by (1.8), i.e.,

qμ(x) =
{

� x
μ
�μ, x ≥ 0,

−�−x
μ

�μ, x < 0.
(4.4)

In this section, we assume that time delays only exist when the information is
transmitted from one agent to another, i.e., τii = 0, i ∈ N . Moreover, the following
assumption is proposed in this section.

Assumption 4.1 A is a stochastic matrix such that aii > 0, i ∈ N , and G is
strongly connected.
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4.1.2 Main Results

We introduce the main notations here which will be used in this section. For arbitrary
fixed k0 ∈ R, denote

• τ = max{τij , i, j ∈ N }; Υ−τ = {−τ,−τ + 1, · · · , 0};
• Zμ = {lμ, l ∈ Z}; X = {ψ : Υ−τ �−→ R};
• V (k) = maxθ∈Υ−τ maxi∈N {qμ(xi(k + θ))}; v(k) = min

θ∈Υ−τ
min
i∈N

{qμ(xi(k + θ))};
• for any b ∈ Zμ, Γb(k) = {i ∈ N : ∃θ ∈ Υ−τ , qμ(xi(k + θ)) = b}.
For a set B with finite elements, |B| denotes the cardinality of B, i.e., the number of
the element in the set B.

In the following, we will study the consensus result of model (4.3). The initial
conditions associated with (4.3) are given as xi(s) ∈ X, i ∈ N . Before the main
theorem of this section be given, we here give two important lemmas first, which
will be used in the proof of Theorem 4.4.

Lemma 4.2 Suppose that x(t) is the solution to (4.3). Under Assumption 4.1, for
any finite communication delays τij , V (k) is a non-increasing function for k, and
v(k) is a non-decreasing function for k.

Proof For ∀i ∈ N , we have

xi(k + 1) = xi(k)+
∑

j∈Ni

aij (qμ(xj (k − τij ))− xi(k))

≤ xi(k)+
∑

j∈Ni

aij (V (k)− xi(k))

= V (k)+ aii(xi(k)− V (k))

< V (k)+ μ. (4.5)

Note that qμ(xi(k + 1)) ∈ Zμ and V (k) ∈ Zμ; then, we can obtain that

qμ(xi(k + 1)) ≤ V (k), (4.6)

which implies that V (k + 1) ≤ V (k). Hence, V (k) is a non-increasing function for
k. Similarly, it can be proved that v(k) is a non-decreasing function for k.

Lemma 4.3 For arbitrary fixed k0 ∈ R, suppose M = V (k0) and m = v(k0). If
M �= m, we have the following conclusion:

(i) If M > 0, then |ΓM(k)| is a non-increasing function for k, and ΓM(k) = ∅ in
finite time.

(ii) If m < 0, then |Γm(k)| is a non-increasing function for t , and Γm(k) = ∅ in
finite time.
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Proof We only prove conclusion (i). Conclusion (ii) can be proved similarly, and
hence the proof is omitted here. For M = V (k0) > 0 and arbitrary k1 ≥ k0, it
follows from Lemma 4.2 that

qμ(xj (k1 − τij )) ≤ M, ∀j ∈ Ni . (4.7)

If xi(k1) < M , we can deduce that

xi(k1 + 1) = xi(k1)+
∑

j∈Ni

aij (qμ(xj (k1 − τij ))− xi(k1))

≤ xi(k1)+
∑

j∈Ni

aij (M − xi(k1))

= M + aii(xi(k1)−M)

< M, (4.8)

which implies that

qμ(xi(k1 + 1)) < M. (4.9)

The inequalities (4.8) and (4.9) imply that i �∈ ΓM(k1 + 1) if i �∈ ΓM(k1). Hence,
|ΓM(k)| is a non-increasing function for k ≥ k0.

Next, we shall prove ΓM(k) = ∅ in finite time, i.e., there exists a k̃0 > k0 such
that ΓM(k̃0) = ∅.

According to M �= m, there exist j1 ∈ N and θ1 ∈ Υ−τ such that

qμ(xj1(k0 + θ1)) = m < M. (4.10)

Equations (4.7)–(4.10) imply that

qμ(xj1(k)) < M, ∀k ≥ k0 + θ1. (4.11)

Hence,

j1 �∈ ΓM(k), ∀k ≥ k0 + τ. (4.12)

Let Λj1 = {l ∈ N : j1 ∈ Nl}. For any j2 ∈ Λj1 , we consider the following two
cases:

Case 1: j2 �∈ ΓM(k0).
Equations (4.8) and (4.9) imply that j2 �∈ ΓM(k), ∀k ≥ k0.

Case 2: j2 ∈ ΓM(k0).

Claim I There exists a k2 > k0, such that j2 �∈ ΓM(k2). Next, we shall prove Claim
I by using a contradiction approach. If for any k > k0, j2 ∈ ΓM(k), we can obtain
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that

qμ(xj2(k)) = M, ∀k ≥ k0. (4.13)

Then, we have

xj2(k + 1) = xj2(k)+
∑

j∈Nj2

aj2j (qμ(xj (k − τj2j ))− xj2(k))

≤ xj2(k)+ aj2j1(qμ(xj1(k − τj2j1))− xj2(k))

≤ xj2(k)− aj2j1μ. (4.14)

Hence, qμ(xj2(k)) ≤ xj2(k) < M in finite time, which contradicts with (4.13).
Thus, Claim I holds, which means that there exists k2 > k0, such that for any
j2 ∈ Λj1 , it holds j2 �∈ ΓM(k), ∀k ≥ k2.

For any j2 ∈ Λj1 , same procedure applies to the agents set Λj2 = {l̃ ∈ N :
j2 ∈ N

l̃
}. It can be obtained that there exists k3 > k2, such that for any j3 ∈ Λj2 ,

j3 �∈ ΓM(k), ∀k ≥ k3.
Repeat the above procedure. Given that the network is strongly connected, it

implies that there exists a k̃0 > k0 such that ΓM(k) = ∅, ∀k ≥ k̃0. This completes
the proof of Lemma 4.3.

Theorem 4.4 Under Assumption 4.1, for any finite communication delays τij , the
multi-agent network (4.3) will asymptotically achieve consensus for arbitrary initial
conditions. That is,

lim
t→+∞ xi(t) = c, ∀i ∈ N , (4.15)

where c is a constant.

Proof The proof of Theorem 4.4 is divided into two steps.

Step 1 We shall prove that for any fixed k0 ∈ R, there exists k̄0 ≥ k0 such that

V (k̄0) = v(k̄0). (4.16)

The following three cases are considered:

Case 1: V (k0) ≥ 0 and v(k0) ≥ 0.

• If V (k0) = v(k0), select k̄0 = k0.
• If V (k0) �= v(k0), it follows from Lemma 4.3 that there exists k1 > k0, such that

ΓV (k0)
(k1) = ∅, which implies that V (k1) < V (k0).

• If V (k1) = v(k1), select k̄0 = k1.

• If V (k1) �= v(k1), there exists k2 ≥ k1, such that v(k2) < V (k2).

Repeat the above procedure, we can finally find a k̄2 ∈ R, such that V (k̄2) =
v(k̄2). Select k̄0 = k̄2.
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Case 2: V (k0) ≤ 0 and v(k0) ≤ 0. Similar to the procedure of Case 1 (replace
ΓV (k0)

(k) by Γv(k0)(k)), we can find a k̄0 ≥ k0 such that

V (k̄0) = v(k̄0). (4.17)

Case 3: V (k0) > 0 and v(k0) < 0.

According to Lemma 4.3, there exists k1 > k0 such that

ΓV (k0)
(k1) = ∅, and Γv(k0)(k1) = ∅,

which implies that V (k1) < V (k0) and v(k1) > v(k0).

• If V (k1) = v(k1), select k̄0 = k1.

• If V (k1) �= v(k1), one of the following three subcases holds:

(1) V (k1) = v(k1) = 0; (2) V (k1) > 0 and v(k1) ≥ 0; and (3) V (k1) ≤ 0 and
v(kl) < 0.

For subcase (1), choose k̄0 = k1. Subcases (2) and (3) have been reduced to the
Cases 2 and 3, respectively.

This completes Step 1 of the proof, i.e., there exists k̄0 ≥ k0 such that

V (k̄0) = v(k̄0). (4.18)

Step 2 We shall prove that the multi-agent network (4.3) achieves consensus
asymptotically.

From (4.18) and Lemma 4.2, it can be obtained that

V (k) = v(k), k ≥ k̄0, (4.19)

which implies

qμ(xi(k + θ1)) = qμ(xj (k + θ2)), ∀i, j ∈ N , ∀θ1, θ2 ∈ Υ−τ , k ≥ k̄0. (4.20)

Let c = qμ(xi(k̄0)). It follows from (4.20) that for any i ∈ N and k ≥ k̄0, system
(4.3) can be written as follows:

xi(k + 1) = xi(k)+
∑

j∈Ni

aij (qμ(xj (k − τij ))− xi(k))

= xi(k)+
∑

j∈Ni

aij (c − xi(k))

= aiixi(k)+ (1 − aii)c. (4.21)

From (4.21), we have

xi(k + 1)− xi(k) = aii(xi(k)− xi(k − 1)), k ≥ k̄0 + 1, (4.22)
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which implies that

xi(k + 1)− xi(k) = a
k−k̄0
ii (xi(k̄0 + 1)− xi(k̄0)), k ≥ k̄0 + 1. (4.23)

Hence, it follows from Assumption 4.1 that

lim
k→+∞(xi(k + 1)− xi(k)) = lim

k→+∞ a
k−k̄0
ii (xi(k̄0 + 1)− xi(k̄0)) = 0. (4.24)

It follows from (4.21) and (4.24) that there exists a constant c ∈ R such that

lim
k→+∞ xi(k) = c, ∀i ∈ N . (4.25)

4.1.3 Numerical Example

In this section, an example is given to illustrate the correctness of the theoretical
results.

Consider network (4.3) with the topology shown in Fig. 4.1. Assume that μ = 1
and τij = 1, ∀i ∈ N , j ∈ Ni . The initial condition of network (4.3) is randomly
chosen from (−5, 5). Suppose the weight of each edge is set as 1

4 . The stochastic
matrix A is

A =

⎛

⎜⎜⎜⎜⎜⎝

3
4 0 1

4 0 0
1
4

3
4 0 0 0

0 1
4

1
2 0 1

4
0 0 1

4
3
4 0

0 0 0 1
4

3
4

⎞

⎟⎟⎟⎟⎟⎠
. (4.26)

Fig. 4.1 Network topology in example
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Fig. 4.2 The state responses of the multi-agent system

The state responses of multi-agent networks (4.3) are shown in Fig. 4.2. It
can be observed from Fig. 4.2 that the multi-agent network achieves consensus
asymptotically, which illustrates Theorem 4.4 very well.

4.2 Continuous-Time Case

In Sect. 4.1, discrete-time multi-agent network consensus problem with quantization
and time delays is studied. In this section, we shall investigate the corresponding
continuous-time cases. The organization of the remaining part is given as follows.
In Sect. 4.2.1, consensus protocol with quantization and time delays is formulated.
In Sect. 4.2.2, the existence of the Filippov solution is presented. In Sect. 4.2.3, the
consensus analysis of the proposed protocol is presented in detail. In Sect. 4.2.4, a
numerical example is given to show the correctness of the theoretical results.

4.2.1 Model Description and Preliminaries

In Chap. 3, the following multi-agent network model has been investigated:

dxi(t)

dt
=

∑

j∈Ni

aij [qμ(xj (t − τ))− qμ(xi(t))], i ∈ N ,

where τ is the communication delays from agent j to agent i.
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In many real multi-agent networks, each agent can obtain its own precise
information, which will not be effected by the limited communication bandwidth.
Moreover, communication delays may be different between different neighboring
agents. Hence, the following consensus protocol will be studied in this section:

dxi(t)

dt
=

∑

j∈Ni

aij [qμ(xj (t − τij ))− xi(t)], i ∈ N , (4.27)

where τij is the communication delay from agent j to agent i and qμ(z) is defined
by (4.4). For x = (x1, x2, . . . , xN)

� ∈ R
N , let qμ(x) = (qμ(x1), qμ(x2), . . . ,

qμ(xN))
�. The initial conditions associated with (4.27) are given as

xi(s) = φi(s) ∈ C([−τ, 0], R), i ∈ N .

Different from the discrete-time cases, system (4.27) may not have global
solution in the sense of Carathéodory due to the discontinuity of the function q(·).
Hence, we need to prove the existence of the global Filippov solution to differential
equation (4.27) as in Chap. 1.

4.2.2 The Existence of the Filippov Solution

The concept of the Filippov solution to the differential equation (4.27) is given as
follows.

Definition 4.5 A function x(t) : [−τ, T ) → R
N (T might be ∞) is a solution in

the sense of Filippov for the discontinuous system (4.27) on [−τ, T ), if

1. x(t) is continuous on [−τ, T ) and absolutely continuous on [0, T );
2. x(t) satisfies that

dxi(t)

dt
∈ K[

∑

j∈Ni

aij (qμ(xj (t − τij ))− xi(t))], i ∈ N . (4.28)

It follows from Lemma 1.16 that

K[
∑

j∈Ni

aij (qμ(xj (t − τij ))− xi(t))]

⊆
∑

j∈Ni

aij (K[qμ(xj (t − τij ))] − xi(t)). (4.29)
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Similar to Chap. 3, if x(t) is the solution of system (4.27), there exists the output
function γ (t) ∈ K[qμ(x(t))] such that for a.e. t ∈ [0, T ), the following equation is
true:

dxi(t)

dt
=

∑

j∈Ni

aij (γj (t − τij )− xi(t)), i ∈ N . (4.30)

Definition 4.6 For any continuous function φ : [−τ, 0] → R
N and any

measurable selection ψ : [−τ, 0] → R
N , such that ψ(s) ∈ K[qμ(φ(s))] for

a.e. s ∈ [−τ, 0], an absolute continuous function x(t) = x(t, φ, ψ) is said to
be a solution of the Cauchy problem for system (4.27) on [0, T ) with initial value
(φ, ψ), if

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

.
xi(t) =

N∑

j=1, j �=i
aij (γj (t − τij )− xi(t)), f or a.e. t ∈ [0, T ), i ∈ N ,

x(s) = φ(s), ∀s ∈ [−τ, 0],
γ (s) = ψ(s) a.e. s ∈ [−τ, 0].

(4.31)

Next, we shall study the existence of the global solution to the system (4.31).

Lemma 4.7 Suppose x(·) is a Filippov solution to (4.27). Let M(t) =
maxi∈Nmaxθ∈[−τ, 0]{xi(t + θ)} and m(t) = mini∈Nminθ∈[−τ, 0]{xi(t + θ)}. Then,
we have the following conclusion:

(i) IfM(t) ≥ 0, thenM(t) is a non-increasing function for t .
(ii) If m(t) ≤ 0, then m(t) is a non-decreasing function for t .

Proof We only prove the conclusion (i). (ii) can be proved similarly. For any fixed
t0 ≥ 0, suppose M(t0) ≥ 0. Next, we will show that M(t) ≤ M(t0) for any t ≥ t0
by contradiction.

Suppose there exist t0 and t0 such that

M(t0) > M(t0), t0 > t0 ≥ 0. (4.32)

Similar to the proof of Steps 1 and 2 of Theorem 3.12, it can be proved that there
exist i0 ∈ N , t∗0 ∈ [t0, t0), and δ > 0 such that

M(t0) = M(t∗0 ) = xi0(t
∗
0 ), (4.33)

and

M(t) > M(t∗0 ), ∀t ∈ (t∗0 , t0], (4.34)
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and

M(t) = xi0(t + θ(t)), θ(t) ∈ [−τ, 0], ∀t ∈ (t∗0 , t∗0 + δ). (4.35)

Let δ1 = minj∈Ni
{τij } and δ2 = min{δ, δ1}. Since

xi0(t + θ(t)) = M(t) > M(t∗0 ) = xi0(t
∗
0 ), ∀t ∈ (t∗0 , t∗0 + δ2), (4.36)

there exists t1 ∈ (t∗0 , t∗0 + δ2] such that

xi0(t1) > xi0(t
∗
0 ). (4.37)

Let t∗1 = sup{t ∈ [t∗0 , t1] : xi0(t) = xi0(t
∗
0 )}. Due to the continuity of function

xi0(t), we have

xi0(t
∗
1 ) = xi0(t

∗
0 ). (4.38)

Hence, for any t ∈ (t∗1 , t1], we have

xi0(t) ≥ M(t∗0 ) ≥ maxj∈Ni
maxt∈[t∗1 , t1]{xj (t − τij )}

≥ maxj∈Ni
maxt∈[t∗1 , t1]{γj (t − τij )}.

It follows from

ẋi0(t) =
N∑

j=1, j �=i0
aij (γj (t − τ)− xi0(t)), a.e. t ∈ (t∗1 , t1], (4.39)

that ẋi0(t) ≤ 0, a.e. t ∈ (t∗1 , t1]. However, since xi0(t1) ≥ xi0(t
∗
1 ), there must exist

a subset I1 of (t∗1 , t1] such that I1 has a positive measure and

ẋi0(t) > 0, a.e. t ∈ I1, (4.40)

which is contradictory with ẋi0(t) ≤ 0 for a.e. t ∈ (t∗1 , t1].
Therefore, M(t) is a non-increasing function for t if M(t) ≥ 0. Similarly, m(t)

is a non-decreasing function for t if m(t) ≤ 0.

Theorem 4.8 For any initial function φ and the selection of the output function
ψ(s) ∈ K[qμ(φ(s))], there exists a global solution for the system (4.31).

Proof Similar to the proof of Theorem 3.12, the proof of Theorem 4.8 can also be
divided into two parts:

Part (I) Existence of local solution
Similar to the proof of Lemma 1 in [20], one can conclude the existence of the

solution defined on [0, T ) for system (4.31).
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Part (II) The boundedness of the solution
Suppose x(t, φ, ψ) is a solution of system (4.31). Let M(t) = maxi∈N

maxθ∈[−τ, 0]{xi(t + θ)}, and m(t) = mini∈N minθ∈[−τ, 0]{xi(t + θ)}. It follows
from Lemma 4.7 that M(t) ≤ max{M(0), 0} and m(t) ≥ min{m(0), 0}. Hence, the
solution x(t) is bounded. According to the theory of functional differential equations
[21], a global solution can be guaranteed by the boundedness of the local solution.
This completes the proof of this theorem.

4.2.3 Consensus Analysis Under Quantization
and Time Delays

In this section, we shall study the consensus result of the multi-agent system (4.27).
We assume that the network topology is undirected in this section. The initial
conditions associated with (4.27) are given as xi(s) = φi(s) ∈ C([−τ, 0], R), (i ∈
N ). The Filippov solution of system (4.27) is defined in (4.31), and ψj(s), s ∈
[−τ, 0] is the initial condition of measurable selection of γj (s).

Lemma 4.9 Suppose x(t) is a Filippov solution to (4.27). For any ε > 0, let Φ =
{x(t + θ) ∈ C([−τ, 0]; RN) : |γi(t) − γj (t − τij )| < ε

2 , |xi(t) − γj (t − τij )| <
ε
2 , ∀i ∈ N , j ∈ Ni}. Then, we have the following conclusion:

(i) There exists T0, such that for any i ∈ N ,

|xi(t + ϑ)− xi(t)| ≤ ε, ∀t ≥ T0, ∀ϑ ∈ [0, τ ]. (4.41)

(ii) For arbitrary fixed t0 ≥ 0, there exists t1 ≥ t0 such that the agents in the
network will go into the set of Φ at time t1.

Proof Consider the function

V (t) = V1(t)+ V2(t), (4.42)

where

V1(t) =
N∑

i=1

x2
i (t)+

N∑

i=1

∫ xi (t)

0
qμ(s)ds, (4.43)

and

V2(t) =
N∑

i=1

N∑

j=1, j �=i

∫ t

t−τij
aij γ

2
j (s)ds. (4.44)

Note that cqμ(c) ≥ 0 for any c ∈ R, and then we have V1(t) ≥ 0 and V2(t) ≥ 0.
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Notice that for pi(s) = ∫ s

0 qμ(u)du, and we have

∂cpi(s) = {v ∈ R : q−
μ (s) ≤ v ≤ q+

μ (s)}, (4.45)

where q+
μ (s) and q−

μ (s) denote the right and left limits of the function qμ at the
point s. Based on Lemma 1.19, V1(t) is differentiable for a.e. t ≥ 0 and

dV1(t)

dt
=

N∑

i=1

xi(t)

N∑

j=1, j �=i
aij [γj (t − τij )− xi(t)] +

N∑

i=1

γi(t)

N∑

j=1, j �=i
aij

×[γj (t − τij )− xi(t)]

= 1

2

N∑

i=1

N∑

j=1, j �=i
aij [2xi(t)γj (t − τij )− 2x2

i (t)] + 1

2

N∑

i=1

N∑

j=1, j �=i
aij

×[2γi(t)γj (t − τij )− 2γi(t)xi(t)]

≤ 1

2

N∑

i=1

N∑

j=1, j �=i
aij [2xi(t)γj (t − τij )− 2x2

i (t)] + 1

2

N∑

i=1

N∑

j=1, j �=i
aij

×[2γi(t)γj (t − τij )− 2γ 2
i (t)]. (4.46)

Since γj (t) ∈ K[qμ(xj (t))], ∀j ∈ N , we have that γj (t) is locally integrable.
Hence, V2(t) is differentiable for a.e. t ≥ 0 and

dV2(t)

dt
=

N∑

i=1

N∑

j=1, j �=i
aij [γ 2

j (t)− γ 2
j (t − τij )]

= 1

2

N∑

i=1

N∑

j=1, j �=i
aij [2γ 2

i (t)− 2γ 2
j (t − τij )]

≤ 1

2

N∑

i=1

N∑

j=1, j �=i
aij [γ 2

i (t)− γ 2
j (t − τij )] + 1

2

N∑

i=1

N∑

j=1, j �=i
aij [x2

i (t)

−γ 2
j (t − τij )]. (4.47)

Combining (4.46) and (4.47) gives that

dV (t)

dt
= dV1(t)

dt
+ dV2(t)

dt

≤ 1

2

N∑

i=1

N∑

j=1, j �=i
aij [2γi(t)γj (t − τij )− γ 2

i (t)− γ 2
j (t − τij )]
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+1

2

N∑

i=1

N∑

j=1, j �=i
aij [2xi(t)γj (t − τij )− x2

i (t)− γ 2
j (t − τij )]

= −1

2

N∑

i=1

N∑

j=1, j �=i
aij (γi(t)− γj (t − τij ))

2

−1

2

N∑

i=1

N∑

j=1, j �=i
aij (xi(t)− γj (t − τij ))

2

≤ 0. (4.48)

Hence, V (t) is non-increasing for t . Together with V (t) ≥ 0, it gives that
lim

t→+∞V (t) exists. Let ā = max1≤i<j≤N, aij>0{aij }. Then, for any ε > 0 and

i, j ∈ N , there exists T0 such that ∀t ≥ T0, ϑ ∈ [0, τ ],

ε2

2Nāτ
≥ |V (t + ϑ)− V (t)|

= |
∫ t+ϑ

t

V̇ (s)ds|

≥ 1

2

N∑

i=1

N∑

j=1, j �=i
aij

∫ t+ϑ

t

(xi(s)− γj (s − τij ))
2ds

+1

2

N∑

i=1

N∑

j=1, j �=i
aij

∫ t+ϑ

t

(γi(s)− γj (s − τij ))
2ds. (4.49)

Hence, for any i ∈ N and t ≥ T0, ϑ ∈ [0, τ ],
N∑

j=1, j �=i
aij

∫ t+ϑ

t

(xi(s)− γj (s − τij ))
2ds ≤ ε2

Nāτ
. (4.50)

It follows from Lemma 1.20 that

∣∣∣∣∣∣

N∑

j=1, j �=i
aij

∫ t+ϑ

t

(γj (s − τij )− xi(s))ds

∣∣∣∣∣∣

2

≤
⎛

⎝
N∑

j=1, j �=i
aij

∫ t+ϑ

t

|γj (s − τij )− xi(s)|ds
⎞

⎠
2
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≤ N

N∑

j=1, j �=i
a2
ij

(∫ t+ϑ

t

|γj (s − τij )− xi(s)|ds
)2

≤ τN

N∑

j=1, j �=i
aij ā

∫ t+ϑ

t

(xi(s)− γj (s − τij ))
2ds

≤ ε2. (4.51)

Hence, for any i ∈ N and t ≥ T0, ϑ ∈ [0, τ ],
∣∣∣∣∣∣

N∑

j=1, j �=i
aij

∫ t+ϑ

t

(γj (s − τ)− xi(s))ds

∣∣∣∣∣∣
≤ ε.

It follows from (4.31) that

|xi(t + ϑ)− xi(t)| =
∣∣∣∣
∫ t+ϑ

t

ẋi (s)ds

∣∣∣∣

=
∣∣∣∣∣∣

N∑

j=1, j �=i
aij

∫ t+ϑ

t

(γj (s − τ)− xi(s))ds

∣∣∣∣∣∣

≤ ε. (4.52)

Thus, for any ε > 0 and i ∈ N , there exists T0 such that for ∀t ≥ T0, ϑ ∈ [0, τ ],

|xi(t + ϑ)− xi(t)| ≤ ε. (4.53)

Next, we will prove conclusion (ii). Let J = {t ≥ t0 : x(t + θ) /∈ Φ}. For
x(t + θ) ∈ C([−τ, 0]; RN) and t ∈ J , there exist i, j ∈ N , i �= j and aij �= 0 such
that

|γi(t)− γj (t − τij )| ≥ ε

2
, (4.54)

or

|xi(t)− γj (t − τij )| ≥ ε

2
. (4.55)



84 4 Multi-agent Consensus with Quantization and Communication Delays

Hence, for a.e. t ∈ J ,

V̇ (t) ≤ −1

8

N∑

i=1

N∑

j=1, j �=i
aij ε

2

≤ −1

8
ςε2, (4.56)

where ς =
N∑

i=1

N∑

j=1, j �=i
aij . Next, we will prove the claim by contradiction.

Suppose that t ∈ J for any t ≥ t0. Then, inequality (4.56) implies that

V (t)− V (t0) ≤ −1

8
ςε2(t − t0), t ≥ t0. (4.57)

For t > 8V (t0)
ςε2 + t0, it follows from inequality (4.57) that V (t) < 0, which is a

contradiction to the definition of V (t). Therefore, for arbitrary t0 ≥ 0, there exists
t̄0 ≥ t0 such that the agents in the network will go into the set of Φ at time t̄0.

This completes the proof of this lemma.

Theorem 4.10 Consider the multi-agent network (4.27) with communication topol-
ogy that is defined by an undirected, connected graph G. Then, for any finite
communication delay τij , the multi-agent network will achieve consensus, i.e., there
exists a constant c such that

lim
t→+∞ xi(t) = c. (4.58)

Proof Step 1 We shall show some inequality to be used at later steps.

For arbitrary ε > 0 (without loss of generality, assume ε < μ
N

), it follows from
Lemma 4.9 that there exists T0 > 0 such that for any i ∈ N ,

|xi(t + ϑ)− xi(t)| ≤ ε, ∀t ≥ T0, ∀ϑ ∈ [0, τ ]. (4.59)

Moreover, there exists T1 ≥ T0 such that for any i ∈ N and j ∈ Ni ,

|γi(T1)− γj (T1 − τij )| < ε

4
, (4.60)

and

|xi(T1)− γj (T1 − τij )| < ε

4
. (4.61)



4.2 Continuous-Time Case 85

It follows from (4.60) and (4.61) that

|xi(T1)− γi(T1)| ≤ |γi(T1)− γj (T1 − τij )| + |xi(T1)− γj (T1 − τij )|
<

ε

4
+ ε

4
= ε

2
. (4.62)

Step 2 Fix xi(T1), and without loss of generality, we assume xi(T1) ≥ 0 (the proof
is similar for xi(T1) < 0). We shall prove that |xj (T1) − xi(T1)| ≤ ε, j ∈ Ni , by
considering the following two cases:

Case 1: xi(T1) �= k0μ, ∀k0 ∈ Z. Then,

γi(T1) = qμ(xi(T1)) = �xi(t)
μ

�μ. (4.63)

If γi(T1) = 0, it is easy to see from (4.59) and (4.62) that γi(T1−τji) = γi(T1) =
0. Hence, it can be obtained that

|xj (T1)− xi(T1)| ≤ |xj (T1)− γi(T1 − τji)| + |γi(T1 − τji)− γi(T1)|
+|γi(T1)− xi(T1)|

≤ ε

4
+ 0 + ε

2
< ε. (4.64)

If γi(T1) �= 0, we claim that for any j ∈ Ni ,

xj (T1) ≥ �xi(T1)

μ
�μ. (4.65)

Otherwise, we have xj (T1) < � xi (T1)
μ

�μ, which implies that

γj (T1) ≤ (�xi(T1)

μ
� − 1)μ. (4.66)

It follows from (4.59) that

xj (T1 − τij ) ≤ xj (T1)+ ε

≤ (�xi(T1)

μ
� − 1)μ+ 2ε

< �xi(T1)

μ
�μ, (4.67)
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which implies γj (T1 − τij ) ≤ (� xi (t)
μ

� − 1)μ. Hence, it can be obtained that

|xi(T1)− γj (T1 − τij )| ≥ |γi(T1)− γj (T1 − τij )| − |xi(T1)− γi(T1)|
≥ μ− ε

2
> ε, (4.68)

which contradicts with (4.60). Hence,

xj (T1) ≥ �xi(t)
μ

�μ. (4.69)

The inequality |xj (T1)− γi(T1 − τji)| ≤ ε
4 implies that

γi(T1 − τji) ≥ �xi(t)
μ

�μ− ε

4
. (4.70)

It follows from (4.59) and (4.63) that

γi(T1 − τji) ≤ �xi(t)
μ

�μ. (4.71)

Hence, we have

|xj (T1)− xi(T1)| ≤ |xj (T1)− γi(T1 − τji)| + |γi(T1 − τji)− γi(T1)|
+|γi(T1)− xi(T1)|

≤ ε

4
+ ε

4
+ ε

2
= ε. (4.72)

Case 2: There exists a k̄0 ∈ Z such that xi(T1) = k̄0μ.

If k̄0 = 0, it follows from |xi(T1)− xi(T1 − τji)| < ε that

γi(T1 − τji) = γi(T1) = 0. (4.73)

Hence, we have

|xj (T1)− xi(T1)| ≤ |xj (T1)− γi(T1 − τji)| + |γi(T1 − τji)− γi(T1)|
+|γi(T1)− xi(T1)|

≤ ε

4
+ 0 + ε

2
< ε. (4.74)
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If k̄0 ≥ 1, we claim that xj (T1) ≥ xi(T1). Otherwise, we have γj (T1) ≤ (k̄0 −
1)μ. It follows from (4.59) and (4.62) that

xj (T1 − τji) ≤ xj (T1)+ ε

≤ γj (T1)+ ε + ε

≤ (k̄0 − 1)μ+ 2ε, (4.75)

which implies that

γj (T1 − τji) ≤ (k̄0 − 1)μ. (4.76)

However, we can obtain from (4.61) that

γj (T1 − τji) ≥ xi(T1)− ε

4
≥ k̄0μ− ε

4
, (4.77)

which contradicts with (4.76). Hence, xj (T1) ≥ xi(T1).
If xj (T1) = xi(T1) = k̄0μ, then

|xj (T1)− xi(T1)| = 0 < ε. (4.78)

If xj (T1) > xi(T1) = k̄0μ, it can be easily obtained that γj (T1) = k̄0μ. Then,

|xj (T1)− xi(T1)| = |xj (T1)− γj (T1)| ≤ ε. (4.79)

In conclusion, we proved that for any ε > 0, there exists T1 > 0 such that for
any fixed xi(T1),

|xj (T1)− xi(T1)| ≤ ε, j ∈ Ni . (4.80)

Step 3 We shall show that the multi-agent network (4.27) can achieve consensus.
Since the network is connected, we can obtain from (4.80) that for any fixed

xi(T1) and ∀j ∈ N ,

|xj (T1)− xi(T1)| ≤ (N − 1)ε. (4.81)

Denote M(t) = max
i∈N

max
θ∈[−τ, 0]{xi(t + θ)} and m(t) = min

i∈N
min

θ∈[−τ, 0]{xi(t + θ)}. It

follows from (4.59) and (4.81) that

|M(T1)−m(T1)| ≤ (N + 1)ε. (4.82)

From (4.82), we can assume that m(T1) and M(T1) belong to the set of Ω1 = ((k0 −
1)μ, (k0 + 1)μ), k0 = �m(T1)

μ
�. Without loss of generality, we assume k0 ≥ 0 (the

proof for k0 < 0 is similar to the case k0 > 0, which we omitted here). Next, we will
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prove that multi-agent networks achieve consensus by considering the following
four cases.

Case 1: μ > M(T1) ≥ m(T1) > −μ, i.e., k0 = 0. From the definition of the
quantizer function qμ(·) and output function γ (·), we have that

γi(T1 + θ1) = γj (T1 + θ2) = 0, ∀i, j ∈ N , ∀θ1, θ2 ∈ [−τ, 0]. (4.83)

It follows from Lemma 4.9 that

γi(t) = 0, ∀i ∈ N , t ≥ T1. (4.84)

Hence, for t ≥ T1, the multi-agent network model is reduced to be

dxi(t)

dt
= −(1 − aii)xi(t), i ∈ N . (4.85)

From (4.85), it is easy to find that all the agents will achieve consensus and the
final consensus value is 0.

Case 2: k0 ≥ 1 and M(T1) ≥ k0μ ≥ m(T1). From the definition of the quantizer
function qμ(·) and output function γ (·), we can obtain that

γi(T1 + θ1) ∈ [(k0 − 1)μ, k0μ], ∀i ∈ N , ∀θ1 ∈ [−τ, 0]. (4.86)

It follows from Lemma 4.9 that

γi(t) ∈ [(k0 − 1)μ, k0μ], ∀i ∈ N , ∀t ≥ T1. (4.87)

If there exists t1 ≥ T1 such that xi(t1) < k0μ, (4.27) implies that

xi(t) < k0μ, ∀i ∈ N , ∀t ≥ t1. (4.88)

If m(T1) < k0μ, clearly, there exist im ∈ N and θm ∈ [−τ, 0] such that

m(T1) = xim(T1 + θm) and γim(T1 + θm) = (k0 − 1)μ. (4.89)

For t ≥ T1, we obtain that

(k0 − 1)μ < xim(t) < k0μ and γim(t) = (k0 − 1)μ. (4.90)

For any j such that im ∈ Nj , we have

dxj (t)

dt
=

∑

l∈Nj

ajl(γl(t − τjl)− xj (t)). (4.91)
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Hence, if xj (t1) ≥ k0μ, there exists t2 ≥ t1 such that xj (t2) < k0μ. Since the
network is connected, it follows from (4.88) and (4.91) that there exists T2 ≥ t2
such that

(k0 − 1)μ < xi(t) < k0μ, ∀i ∈ N , ∀t ≥ T2, (4.92)

and Eq. (4.30) is reduced to be

dxi(t)

dt
= −(1 − aii)(xi(t)− (k0 − 1)μ), i ∈ N , t ≥ T2 + τ. (4.93)

Hence, the multi-agent network will achieve consensus, and the final consensus
value is (k0 − 1)μ.
If m(T1) = k0μ, by similar analyses, we can also obtain that the multi-agent
network will achieve consensus and the final consensus value is (k0 − 1)μ or
k0μ.

Case 3: M(T1) ≥ m(T1) > k0μ. In this case, we have

γi(T1 + θ1) = k0μ, ∀i ∈ N , ∀θ1 ∈ [−τ, 0].

It follows from (4.30) and Lemma 4.9 that

(k0 + 1)μ > xi(t) > k0μ and γi(t) = k0μ, ∀i ∈ N , ∀t ≥ T1.

Then, the system (4.30) is reduced to be

dxi(t)

dt
= −(1 − aii)(xi(t)− k0μ), i ∈ N . (4.94)

It is easy to see that all the agents will achieve consensus and the final consensus
value is k0μ.

Case 4: k0μ > M(T1) ≥ m(T1).
The analysis of this case is similar to Case 3, which is omitted here. In this case,
the multi-agent network will achieve consensus and the final consensus value is
(k0 − 1)μ.
In conclusion, the multi-agent network (4.27) achieves consensus asymptotically.
This completes the proof of this theorem.

Remark 4.11 Different from Chap. 3, we have shown that the multi-agent network
can achieve complete consensus other than practical consensus in this section.
However, it is difficult to estimate the final consensus state c of model (4.27). It
is an interesting problem to estimate how the final consensus value depends on the
quantization and time delays in our future work.
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Fig. 4.3 Network topology in the simulation example

4.2.4 Numerical Example

Consider the multi-agent system (4.27) with communication quantization and time
delays, where the network structure is shown in Fig. 4.3 with the weights on the
connections. The graph (Fig. 4.3) is generated by the scale-free algorithm. Suppose
that initial conditions are randomly chosen from (0, 10).

Figure 4.4 shows the state responses of multi-agent network (4.27) with respect
to μ = 1. It can be observed that the agents converge to a constant value, which
illustrates Theorem 4.10 very well.

4.3 Summary

In this chapter, we mainly addressed the consensus problem of multi-agent networks
where each agent can only obtain the quantized and delayed measurements of the
states of its neighbors. Discrete-time formulation of the problem was studied first.
We showed that the multi-agent network can achieve consensus for arbitrary finite
communication delays. For the continuous-time cases, it was shown that Filippov
solutions of the resulting system exist for any initial condition. We have proved
that for the multi-agent network model considering quantization and time delays
simultaneously, Filippov solutions of the resulting system converged to a constant
value asymptotically under certain network topology. The theoretical results have
been well illustrated by numerical examples.
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Chapter 5
Event-Based Network Consensus
with Communication Delays

Since the broad bandwidth of networks is unavailable in some cases, sampled
control for multi-agent system is more coincident with the applications in our real
life [1–3]. Under fixed undirected/directed interaction, two consensus algorithms for
double-integrator dynamics within a uniform sampled-data setting were proposed
in [4]. The results of reference [4] were extended to the dynamic network topology
cases in [5]. Unlike time-driven control approach (i.e., periodic sampling), event-
triggered control means that the control signals are kept constant until the certain
condition is violated, and then the control signal will be updated (or recomputed).
Some related results about event-triggered control have been reported in [6–14].

In [6], event-triggered control was applied to the continuous-time multi-agent
consensus problem. Centralized and distributed triggering conditions that ensure the
consensus of multi-agent network are presented, respectively. In [12], Seyboth et al.
studied the multi-agent consensus under event-triggered control and three kinds of
problems of networks of single-integrator agents with and without communication
delays, and networks of double-integrator agents were discussed. It is worth noting
that the framework in [6] and [12] about event-triggered multi-agent consensus only
considered the continuous-time cases, and the network topology was assumed to be
undirected or balanced.

In this chapter, the event-triggered cooperative control strategies are proposed for
discrete-time/continuous-time directed multi-agent network. The distributed event-
triggered controls with communication delays are analyzed. Under the assumption
that the multi-agent network is strongly connected, consensus can be achieved for
the proposed multi-agent networks.

© Springer Nature Singapore Pte Ltd. and Science Press, China 2021
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5.1 Distributed Discrete-Time Event-Triggered Consensus
with Delays

Time delay is a very important communication constraint in the process of informa-
tion exchange and should be considered in the consensus protocol. In this section,
we shall apply the event-triggered control to the problem of multi-agent consensus
with communication delays. In particular, each agent decides when to transmit
current state to its neighbors based on the received neighbors’ information, latest
broadcast information, and current state, i.e., only local information is used. The
organization of the remaining part is given as follows. In Sect. 5.1.1, the problem
formulation is presented. In Sect. 5.1.2, the consensus analysis of the proposed
protocol is presented in detail. In Sect. 5.1.3, a numerical simulation example is
given to show the effectiveness of the theoretical results.

We make the following assumption in this chapter:

Assumption 5.1 aii > 0 for any i ∈ N .

5.1.1 Model Description

The distributed event-triggered cooperative control strategy requires that each agent
can only use received neighbors’ information and its own information to decide
whether the event-triggered condition is satisfied.

In this section, we assume that each agent i will broadcast its latest state to
neighbors when the state measurement error of agent i exceeds the prescribed
level (i.e., the “event” occurs). Suppose that ki0, k

i
1, · · · , kil , · · · is the sequence

of the event times of the agent i which is defined based on the event-triggering
condition. x̂i (k) denotes the latest broadcast state of agent i, which is given by
x̂i (k) = xi(k

i
l ), k ∈ [kil , kil+1). Hence, the consensus model in this case is given

by

xi(k + 1) = xi(k)+ ι
∑

j∈Ni

aij (̂xj (k − τij )− x̂i (k)), (5.1)

where τij > 0 is the communication delay from agent j to agent i, τii = 0. x̂j (k −
τij ) = xj (k

j

l
′ ), k − τij ∈ [kj

l
′ , k

j

l
′+1

), and x̂i (k) = xi(k
i
l ), k ∈ [kil , kil+1).

Let A = [aij ] with aij = ιāij ≥ 0 for i �= j and aii = 1 −
N∑

j=1, j �=i
aij . The state

measurement error of agent i is defined as

ei(k) = xi(k)− x̂i (k). (5.2)
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Then, the dynamics of multi-agent network (5.1) can be rewritten as

xi(k + 1) = ei(k)+
N∑

j=1

aij x̂j (k − τij ), i ∈ N . (5.3)

In this section, Assumption 5.1 is required.

5.1.2 Distributed Event-Triggered Approach

Denote τ = max{τij , i = 1, · · · , N, j ∈ Ni} and X = {ψ : {−τ, −τ +
1, · · · , −1, 0} → R

N }, and suppose that the initial condition of the network is
φi ∈ X, i ∈ N .

Theorem 5.2 Consider the multi-agent network (5.1), and assume that the com-
munication graph G is strongly connected. Then, for any finite communication
delay τij , the network will achieve consensus asymptotically under the triggering
condition given by

e2
i (k) >

σa2
ii

4(1 − aii)

N∑

j=1, j �=i
aij (̂xj (k − τij )− x̂i (k))

2, i ∈ N , (5.4)

where 0 < σ < 1 is a constant. Moreover, the final consensus value is

∑N
i=1 ξixi(0)+ ∑N

i=1 ξi
∑N

j=1, j �=i aij
∑−1

s=−τij xj (s)

1 + ∑N
i=1 ξi(1 − aii)τij

.

Proof Consider the Lyapunov functional as

V (k) = V1(k)+ V2(k), (5.5)

where

V1(k) =
N∑

i=1

ξix
2
i (k), (5.6)

and

V2(k) =
N∑

i=1

N∑

j=1

aij

k−1∑

s=k−τij
x̂2
j (s). (5.7)
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Differencing V (k) along the solution of (5.3) gives that

ΔV (k) = ΔV1(k)+ΔV2(k), (5.8)

where

ΔV1(k) =
N∑

i=1

ξix
2
i (k + 1)−

N∑

i=1

ξix
2
i (k)

=
N∑

i=1

ξi[ei(k)+
N∑

j=1

aij x̂j (k − τij )]2 −
N∑

i=1

ξix
2
i (k)

=
N∑

i=1

ξi[e2
i (k)+

N∑

j=1, j �=i
a2
ij x̂

2
j (k − τij )+ a2

ii x̂
2
i (k)+ 2

N∑

j=1, j �=i

N∑

l>j, l �=i

aij ail x̂j (k − τij )̂xl(k − τil)+ 2
N∑

j=1, j �=i
aij aii x̂j (k − τij )̂xi(k)

+2aii x̂i (k)ei(k)+ 2
N∑

j=1, j �=i
aij x̂j (k − τij )ei(k)] −

N∑

i=1

ξi [̂x2
i (k)

+e2
i (k)+ 2x̂i (k)ei(k)], (5.9)

and

ΔV2(k) =
N∑

i=1

ξi

N∑

j=1

aij [
k∑

k+1−τij
x̂2
j (s)−

k−1∑

k−τij
x̂2
j (s)]

=
N∑

i=1

ξi

N∑

j=1

aij [̂x2
j (k)− x̂2

j (k − τij )]

= 1

2

N∑

i=1

ξi

N∑

j=1

N∑

l=1

aij ail [̂x2
j (k)− x̂2

j (k − τij )+ x̂2
l (k)− x̂2

l (k − τil)]

=
N∑

i=1

ξi[
N∑

j=1, j �=i
a2
ij (̂x

2
j (k)− x̂2

j (k − τij ))+
N∑

j=1, j �=i

N∑

l>j, l �=i
aij ail (̂x

2
j (k)

−x̂2
j (k − τij )+ x̂2

l (k)− x̂2
l (k − τil))+

N∑

j=1, j �=i
aij aii (̂x

2
j (k)

−x̂2
j (k − τij ))]. (5.10)
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Substituting (5.9) and (5.10) into (5.8), we can obtain that

ΔV (k) =
N∑

i=1

ξi[
N∑

j=1, j �=i
a2
ij x̂

2
j (k)+ a2

ii x̂
2
i (k)+

N∑

j=1, j �=i

N∑

l>j, l �=i
aij ail (̂x

2
j (k)

+x̂2
l (k)− x̂2

j (k − τij )− x̂2
l (k − τil)+ 2aij ail x̂j (k − τij )̂xl(k − τil))

+
N∑

j=1, j �=i
aij aii (̂x

2
j (k)− x̂2

j (k − τij )+ 2x̂j (k − τij )̂xi(k))+ 2aii x̂i (k) ·

ei(k)+ 2
N∑

j=1, j �=i
aij x̂j (k − τij )ei(k)] −

N∑

i=1

ξi [̂x2
i (k)+ 2x̂i (k)ei(k)]

=
N∑

i=1

ξi[
N∑

j=1

a2
ij x̂

2
j (k)+

N∑

j=1, j �=i

N∑

l>j, l �=i
aij ail (̂x

2
j (k)+ x̂2

l (k))− x̂2
i (k)

+
N∑

j=1, j �=i
aij aii (̂x

2
j (k)+ x̂2

i (k))−
N∑

j=1, j �=i
aij aii (̂xj (k − τij )− x̂i (k))

2

−
N∑

j=1, j �=i

N∑

l>j, l �=i
aij ail (̂xj (k − τij )− x̂l(k − τil))

2]

+2
N∑

i=1

ξi[
N∑

j=1, j �=i
aij ei(k)(̂xj (k − τij )− x̂i (k))]. (5.11)

Note that

N∑

i=1

ξi[
N∑

j=1

a2
ij x̂

2
j (k)+

N∑

j=1, j �=i

N∑

l>j, l �=i
aij ail (̂x

2
j (k)+ x̂2

l (k))

+
N∑

j=1, j �=i
aij aii (̂x

2
j (k)+ x̂2

i (k))− x̂2
i (k)]

=
N∑

i=1

ξi[
N∑

j=1

a2
ij x̂

2
j (k)+

N∑

j=1, j �=i

N∑

l>j, l �=i
aij ail (̂x

2
j (k)+ x̂2

l (k))

+
N∑

j<i

aij aii (̂x
2
j (k)+ x̂2

i (k))+
N∑

l>i

ailaii (̂x
2
l (k)+ x̂2

i (k))− x̂2
i (k)]
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=
N∑

i=1

ξi[
N∑

j=1

a2
ij x̂

2
j (k)+

N∑

j=1

N∑

l=1, l �=j
aij ail x̂

2
j (k)− x̂2

i (k)]

=
N∑

i=1

ξi[
N∑

j=1

N∑

l=1

aij ail x̂
2
j (k)− x̂2

i (k)]

=
N∑

i=1

ξi

N∑

j=1

aij x̂
2
j (k)−

N∑

i=1

ξi x̂
2
i (k)

=
N∑

j=1

ξj x̂
2
j (k)−

N∑

i=1

ξi x̂
2
i (k)

= 0, (5.12)

and

2
N∑

i=1

ξi[
N∑

j=1, j �=i
aij ei(k)(̂xj (k − τij )− x̂i (k))]

≤
N∑

i=1

ξi

N∑

j=1, j �=i
aij [ 1

αi
e2
i (k)+ αi (̂xj (k − τij )− x̂i (k))

2].

(5.13)

Hence,

ΔV (k) = −
N∑

i=1

ξi[
N∑

j=1, j �=i

N∑

l>j, l �=i
aij ail (̂xj (k − τij )− x̂l(k − τil))

2

+
N∑

j=1, j �=i
aij aii (̂xi(k)− x̂j (k − τij ))

2]

+2
N∑

i=1

ξi[
N∑

j=1, j �=i
aij ei(k) · (̂xj (k − τij )− x̂i (k))]

≤ −
N∑

i=1

ξi[
N∑

j=1, j �=i

N∑

l>j, l �=i
aij ail (̂xj (k − τij )− x̂l(k − τil))

2 +
N∑

j=1, j �=i
aij

×(aii − αi)(̂xj (k − τij )− x̂i (k))
2] +

N∑

i=1

ξi

N∑

j=1, j �=i

aij

αi
e2
i (k). (5.14)
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Thus, a sufficient condition for ΔV (k) ≤ 0 is given by

e2
i (k) ≤ σαi(aii − αi)

1 − aii

N∑

j=1, j �=i
aij (̂xj (k − τij )− x̂i (k))

2. (5.15)

Let f (αi) = αi(aii−αi)
1−aii . Then, we can easily obtain the maximum of f (αi) by taking

α = aii
2 , which makes (5.15) become

e2
i (k) ≤ σa2

ii

4(1 − aii)

N∑

j=1, j �=i
aij (̂xj (k − τij )− x̂i (k))

2. (5.16)

Hence, we can choose the trigger condition

e2
i (k) >

σa2
ii

4(1 − aii)

N∑

j=1, j �=i
aij (̂xj (k − τij )− x̂i (k))

2, i ∈ N . (5.17)

Hence, under the trigger condition (5.17), we have ΔV (k) ≤ 0, ∀k ≥ 0. According
to LaSalle’s invariance principle, we can conclude that all agents in the network will
converge to the maximal positively invariant set of the set Φ = {x(k + θ) ∈ X :
ΔV (k) = 0} asymptotically. Note that ΔV (k) = 0 if and only if ei(k) = 0 and

x̂j (k − τij ) = x̂i (k), ∀i, j ∈ Ni . (5.18)

Substituting (5.18) into (5.1) yields that

xi(k + 1) = xi(k), ∀i ∈ N . (5.19)

Hence, we have

xi(k) = x̂i (k) = x̂j (k − τij ) = xj (k − τij ) = xj (k), ∀j ∈ Ni . (5.20)

Since the topology of the network is strongly connected, we have

xi(k) = xj (k), k ≥ −τij , ∀i, j ∈ N . (5.21)

Therefore, by LaSalle’s invariance principle, we obtain

lim
k→∞(xj (k)− xi(k)) = 0. (5.22)
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Next, the consensus value c of the multi-agent network is shown below. One can
prove that the value c is dependent on the initial values of the multi-agent network.
Let

η(k) =
N∑

i=1

ξixi(k)+
N∑

i=1

ξi

N∑

j=1

aij

k−1∑

s=k−τij
x̂j (s). (5.23)

We can calculate the difference of η(k) as follows:

Δη(k) = η(k + 1)− η(k)

=
N∑

i=1

ξi(xi(k + 1)− xi(k))+
N∑

i=1

ξi

N∑

j=1

aij (

k∑

s=k+1−τij
x̂j (s)−

k−1∑

s=k−τij
x̂j (s))

=
N∑

i=1

ξiaij

N∑

j=1

(̂xj (k − τij )− x̂i (k))+
N∑

i=1

ξi

N∑

j=1

aij (̂xj (k)− x̂j (k − τij ))

= −
N∑

i=1

ξiaij

N∑

j=1

x̂i (k)+
N∑

i=1

ξiaij

N∑

j=1

x̂j (k)

= −
N∑

i=1

ξi x̂i (k)+
N∑

j=1

ξj x̂j (k)

= 0. (5.24)

Due to Δη(k) = 0 for k ≥ 0, it can be easily obtained that η(k) is a constant; that
is,

η(k) = η(0)

=
N∑

i=1

ξixi(0)+
N∑

i=1

ξi

N∑

j=1

aij

−1∑

s=−τij
x̂j (s)

=
N∑

i=1

ξixi(0)+
N∑

i=1

ξi

N∑

j=1

aij

−1∑

s=−τij
xj (s). (5.25)

Hence,

η(0) = lim
k→+∞ η(k) = c +

N∑

i=1

ξi

N∑

j=1

aij τij c. (5.26)
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Therefore, we can conclude that

c =
∑N

i=1 ξixi(0)+ ∑N
i=1 ξi

∑N
j=1 aij

∑−1
s=−τij xj (s)

1 + ∑N
i=1 ξi

∑N
j=1 aij τij

. (5.27)

This completes the proof of this theorem.

Remark 5.3 In Theorem 5.2, we have proved that the multi-agent network will
achieve consensus under the event-triggered condition (5.17). For each agent i, the
sequence of event times 0 = ki0 < ki1 < · · · < kil < · · · is defined iteratively as

kil+1 = inf{k : k > kil , gi(k) > 0}, (5.28)

where

gi(k) = (xi(k)− xi(k
i
l ))

2 − σa2
ii

4(1 − aii)

N∑

j=1, j �=i
aij (̂xj (k − τij )− xi(k

i
l ))

2.

(5.29)

Remark 5.4 It should be emphasized that the event-triggered condition (5.17) is
verified by each agent only based on its own and its neighboring agents’ information,
i.e., only local information is used to verify the event-triggered condition.

Remark 5.5 It can be observed that the number of event-triggered times will be
reduced as the step size ι decreases. This is an advantage to reduce the traffic loading
of the communication channel. However, the convergence speed of the network will
be decreased as the step size ι decreases. In practice, for achieving the consensus of
the system (5.1) under the event-triggered control, there is often a tradeoff between
the number of event-triggered and convergence speed.

Remark 5.6 In [15], event-triggered average consensus control for discrete-time
multi-agent model without communication delays is investigated. In this chapter,
using different methods, we extend the previous results from the following three
aspects:

• We do not assume the network to be undirected or balanced.
• The event-triggered condition given in Sect. 5.1 is not expressed in terms of

the linear matrix inequality. Moreover, the event-triggered condition given in
Sect. 5.1 does not use the final consensus information of the network.

• The event-triggered condition given in [15] is centralized. In Sect. 5.1, the
distributed event-triggered condition is provided when the communication delays
exist in multi-agent networks.
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5.1.3 Numerical Example

Consider the multi-agent system (5.1) with 7 agents. The directed network topology
is displayed in Fig. 5.1, and the weight of each edge is set as 1, i.e., aij = 1. The step
size ι and constant σ are set to be 1

5 and 0.9. Assume τij = 1. The initial conditions
are randomly chosen from [−5, 5].

Figure 5.2 shows the simulation result for the distributed event-triggered control
for multi-agent network (5.1). We can see from Fig. 5.2 that the multi-agent system
reaches consensus. It can be seen from Fig. 5.3 that the event is triggered totally
36, 39, 37, 36, 35 times, respectively, during the evolution of the agents’ states.

Fig. 5.1 Network topology in example

Fig. 5.2 The states of the system in example
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Fig. 5.3 Event-triggered times in example

This example demonstrates that the event-triggered control approach is an effective
method for the multi-agent network consensus problem.

Suppose that the consensus error of multi-agent network (5.1) is defined by

e(k) =

√√√√√
7∑

i=1

7∑

j=1, j �=i
(xi(k)− xj (k))2.

Select ε = 0.001, and the convergence time k (select T = 10 in this simulation
example) of the multi-agent network is defined to make

1

T

k+T∑

s=k
e(k) ≤ ε.

In the simulation, the system runs for 200 iterations. In Table 5.1, [min, max] and
average denote the minimum, the maximum and the average event-triggered times
of the agents in the evolvement of the state of multi-agent networks. It can be seen
from Table 5.1 that as the decreasing of the step size ι, the number of event-triggered
times will be reduced, but the convergence time of the agents will be increased.



104 5 Event-Based Network Consensus with Communication Delays

Table 5.1 The number of
event-triggered and
convergence time versus ι

ι [min, max] Average Convergence time
1
3 121,132 126.6 58
1
5 55,79 73 79
1
8 37,46 43.8 99
1

10 27,39 34 116
1

20 15,19 17.7 161

5.2 Distributed Continuous-Time Event-Triggered
Consensus with Delays

Different from previous work, this section will study the continuous-time multi-
agent consensus problem with distinct communication delays under event-triggered
control. The main contributions of this section can be listed as follows:

• Event-based consensus protocol considering distinct finite communication delays
is proposed. Different from [16–18], our communication protocol does not
require the agents continuously send their state to their neighboring agents.
Distributed event-triggered condition is designed to achieve the multi-agent
consensus.

• In [16, 19, 20], the final consensus value is hard to estimate due to the constraint
of the event-triggered protocol. In this section, by distilling an invariant value of
the multi-agent system, the final consensus value is theoretically obtained even in
the presence of event-based communication and distinct communication delays.

• A novel synchronously event-triggered consensus protocol is proposed. Further-
more, it is shown that the Zeno behavior can be excluded under our proposed
event-based protocol with communication delays. To avoid verifying the event-
triggered condition continuously, a self-triggered algorithm is proposed for the
multi-agent system with distinct communication delays.

5.2.1 Model Description

Consider a continuous-time multi-agent network with N agents. The dynamics of
each agent can be described by

ẋi (t) = ui(t), i ∈ N , (5.30)

where xi(t) ∈ R is the state of the agent i, and ui(t) is called the consensus protocol.
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Suppose that t i1, t
i
2, · · · , t il , · · · is the sequence of the event-triggered instants

of the agent i which will be defined based on the event-triggering condition.
Considering time delay as another very important communication constraint in the
process of information exchanging, we propose the following protocol:

ui(t) =
∑

j∈Ni

aij (̂xj (t − τij )− x̂i (t)), i ∈ N , (5.31)

where τij > 0 is the communication delay from agent j to agent i, x̂j (t − τij ) =
xj (t

j

l
′ ), t − τij ∈ [tj

l
′ , t

j

l
′+1

), and x̂i (t) = xi(t
i
l ), t ∈ [t il , t il+1). We assume that

delays affect only the information that is actually being transmitted from one agent
to another, i.e., τii = 0, and the communication delays τij > 0, i �= j , can be
distinct from each other.

The state measurement error of agent i is defined as

ei(t) = xi(t)− x̂i (t). (5.32)

Remark 5.7 Comparing with the previous event-triggered consensus work [6, 12,
21], the proposed consensus protocol does not assume the network topology to be
undirected or balanced. Different from the pull-based communication protocol

ui(t) =
∑

j∈Ni

aij (xj (t
i
k)− xi(t

i
k)), ∀i ∈ N , t ∈ [t ik, t ik+1), (5.33)

proposed in [16–20], our communication protocol does not require that the agents
j ∈ Ni send their states to agent i at agent i’s event-triggered time instants.
Moreover, the distinct communication delays are considered, and it makes our
protocol more realistic compared with previous consensus models.

5.2.2 Asynchronously Distributed Event-Triggered Approach

In this section, we mainly consider the distributed event-triggered consensus for
multi-agent network with communication delays. Denote τ = max{τij , i =
1, · · · , N, j ∈ Ni}. Let ξ = (ξ1, ξ2, . . . , ξN) be the normalized left eigenvector

of Laplacian matrix L with respect to the eigenvalue 0 satisfying
N∑

i=1

ξi = 1.

It can be obtained that ξi > 0 from the Perron–Frobenius theorem (see [22]).
The initial conditions associated with (5.30) are given as xi(s) = φi(s) ∈
C([−τ, 0], R), i ∈ N .

Theorem 5.8 Consider the multi-agent network (5.30) with a strongly connected
graph G and a control law (5.33). For any finite communication delay τij , the
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network will achieve consensus asymptotically under the triggering condition given
by

e2
i (t) >

σ

4di

N∑

j=1, j �=i
aij (̂xj (t − τij )− x̂i (t))

2, i ∈ N ,

and the difference of the inter-event time instants for each node is strictly positive,
where 0 < σ < 1 is a constant and di = ∑

j∈Ni
aij . Moreover, the final consensus

value is

∑N
i=1 ξixi(0)+ ∑N

i=1 ξi
∑N

j=1 aij
∫ 0
−τij φj (s)ds

1 + ∑N
i=1 ξi

∑N
j=1 aij τij

.

Proof The Lyapunov stability theory is applied to show that the multi-agent
system (5.30) with distinct communication delays can achieve consensus under the
proposed the event-triggered protocol.

Consider the Lyapunov functional as

V (t) =
N∑

i=1

ξix
2
i (t)+

N∑

i=1

ξi

N∑

j=1, j �=i

∫ t

t−τij
aij x̂

2
j (s)ds. (5.34)

Differentiating (Dini right-upper derivative) V (t) along the solution of (5.30) gives
that

V̇ (t) = 2
N∑

i=1

ξixi(t)

N∑

j=1, j �=i
aij [̂xj (t − τij )− x̂i (t)]

+
N∑

i=1

ξi

N∑

j=1, j �=i
aij [̂x2

j (t)− x̂2
j (t − τij )]

= 2
N∑

i=1

ξi(ei(t)+ x̂i (t))

N∑

j=1, j �=i
aij [̂xj (t − τij )− x̂i (t)]

+
N∑

i=1

ξi

N∑

j=1, j �=i
aij [̂x2

j (t)− x̂2
j (t − τij )]

= 2
N∑

i=1

ξi

N∑

j=1, j �=i
aij ei(t)[̂xj (t − τij )− x̂i (t)]
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+
N∑

i=1

ξi

N∑

j=1, j �=i
aij [2x̂i (t) · x̂j (t − τij )− 2x̂2

i (t)]

+
N∑

i=1

ξi

N∑

j=1, j �=i
aij [̂x2

j (t)− x̂2
j (t − τij )]. (5.35)

Note that

N∑

i=1

ξi

N∑

j=1, j �=i
aij x̂

2
j (t) =

N∑

i=1

N∑

j=1, j �=i
ξiaij x̂

2
j (t) =

N∑

j=1

N∑

i=1, i �=j
ξiaij x̂

2
j (t)

= −
N∑

j=1

ξj ajj x̂
2
j (t) = −

N∑

i=1

ξiaii x̂
2
i (t)

=
N∑

i=1

ξi

N∑

j=1, j �=i
aij x̂

2
i (t). (5.36)

Substituting (5.36) into (5.35), we obtain that

V̇ (t) =
N∑

i=1

ξi

N∑

j=1, j �=i
aij [2x̂i (t )̂xj (t − τij )− x̂2

i (t)− x̂2
j (t)]

+2
N∑

i=1

ξi

N∑

j=1, j �=i
aij ei(t)[̂xj (t − τij )− x̂i (t)]

+
N∑

i=1

ξi

N∑

j=1, j �=i
aij [̂x2

j (t)− x̂2
j (t − τij )]

= −
N∑

i=1

ξi

N∑

j=1, j �=i
aij [̂xj (t − τij )− x̂i (t)]2

+2
N∑

i=1

ξi

N∑

j=1, j �=i
aij ei(t)[̂xj (t − τij )− x̂i (t)]. (5.37)
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Note that

2
N∑

i=1

ξi

N∑

j=1, j �=i
aij ei(t)[̂xj (t − τij )− x̂i (t)]

≤
N∑

i=1

ξi

N∑

j=1, j �=i
aij [ 1

αi
e2
i (t)+ αi (̂xj (t − τij )− x̂i (t))

2].

Hence, we can obtain that

V̇ (t) ≤ −
N∑

i=1

ξi

N∑

j=1, j �=i
aij [(̂xj (t − τij )− x̂i (t))

2 − (
1

αi
e2
i (t)

+αi (̂xj (t − τij )− x̂i (t))
2)]

= −
N∑

i=1

ξi

N∑

j=1, j �=i
aij (1 − αi)(̂xj (t − τij )− x̂i (t))

2 +
N∑

i=1

ξidi
1

αi
e2
i (t),

(5.38)

where di = ∑
j∈Ni

aij . Thus, a sufficient condition to ensure V̇ (t) ≤ 0 is that

e2
i (t) ≤ σαi(1 − αi)

di

N∑

j=1, j �=i
aij (̂xj (t − τij )− x̂i (t))

2. (5.39)

Let f (αi) = αi(1−αi)
di

. Then, we can easily obtain the maximum of f (αi) by taking

αi = 1
2 , which makes (5.39) become

e2
i (t) ≤ σ

4di

N∑

j=1, j �=i
aij (̂xj (t − τij )− x̂i (t))

2. (5.40)

Hence, we can choose the trigger condition as follows:

e2
i (t) >

σ

4di

N∑

j=1, j �=i
aij (̂xj (t − τij )− x̂i (t))

2, i ∈ N . (5.41)
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Under the trigger condition (5.41), we can conclude that for any t ≥ 0,

V̇ (t) ≤ −1

2

N∑

i=1

ξi

N∑

j=1, j �=i
aij (1 − σ)(̂xj (t − τij )− x̂i (t))

2

≤ 0. (5.42)

From (5.42), it is noted that V̇ (t) = 0 if and only if

|̂xj (t − τij )− x̂i (t)| = 0, ∀i, j ∈ Ni , (5.43)

which combined with (5.41) implies that ei(t) = 0. Hence, by LaSalle’s invariance
principle, we have

lim
t→∞(̂xj (t − τij )− x̂i (t)) = 0, ∀i, j ∈ Ni , (5.44)

and

lim
t→∞ ei(t) = 0, ∀i = 1, . . . , N, (5.45)

which combined with network model (5.30) implies that

lim
t→∞ ẋi (t) = 0, ∀i = 1, . . . , N. (5.46)

It follows from the mean value theorem that

lim
t→∞(xj (t − τij )− xj (t)) = 0. (5.47)

Note that

|xi(t)− xj (t)| ≤ |xi(t)− x̂i (t)| + |̂xi(t)− x̂j (t − τij )| + |̂xj (t − τij )

−xj (t − τij )| + |xj (t − τij )− xj (t)|, (5.48)

and G is strongly connected, and therefore we can obtain that

lim
t→∞(xj (t)− xi(t)) = 0. (5.49)

Therefore, the multi-agent system can realize consensus.
Next we show that ∀i ∈ N , and the inter-event time t ik+1 − t ik is strictly larger

than 0. For t ∈ [t ik, t ik+1), we have

ėi (t) = d

dt
(xi(t)− xi(t

i
k)) = ẋi (t).
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Hence,

|ei(t)| = |
N∑

j=1, j �=i
aij

∫ t

t ik

(̂xj (s − τij )− xi(t
i
k))ds|, t ∈ [t ik, t ik+1).

Note that

x̂j (t − τij ) = xj (t
j

l(t−τij )),

where l(t − τij ) = arg maxl∈N{tjl |tjl ≤ t − τij }. Let τmin = min{τij , i �= j},

pi(t) =
⎛

⎝
N∑

j=1, j �=i
aij

∫ t

t ik

(̂xj (s − τij )− xi(t
i
k))ds

⎞

⎠
2

, t ∈ [t ik, t ik+1),

qi(t) = σ

4di

N∑

j=1, j �=i
aij (̂xj (t − τij )− xi(t

i
k))

2, t ∈ [t ik, t ik+1),

and

Δi(t) = pi(t)− qi(t). (5.50)

For t i0 = 0 and t ∈ [0, τmin], it can be observed that

Δi(t) =
⎛

⎝
N∑

j=1, j �=i
aij

∫ t

0
(φj (s − τij )− xi(0))ds

⎞

⎠
2

− σ

4di

N∑

j=1, j �=i
aij (φj (t − τij )− xi(0))

2, (5.51)

and

Δi(0) = − σ

4di

N∑

j=1, j �=i
aij (φj (−τij )− xi(0))

2 ≤ 0.

• If Δi(0) < 0, due to the continuity of the function Δi(t) for t ∈ [0, τmin], there
exists a constant β1 > 0, such that for any t ∈ [0, β1), Δi(t) < 0. Hence,
t i1 − t i0 ≥ β1 > 0.
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• If Δi(0) = 0, then pi(0) = 0 and qi(0) = 0. If there exists δ1 ∈ (0, 1) such
that qi(t) = 0 for any t ∈ [0, δ1). Then, we have Δi(t) = 0 for any t ∈ [0, δ1).
Hence, t i1 − t i0 ≥ δ1 > 0. If there is not δ1 ∈ (0, 1) such that qi(t) = 0 for
any t ∈ [0, δ1). We can choose a small enough constant 0 < δ < 1, such that
Δi(t) ≤ 0, ∀t ∈ [0, δ). Hence, t i1 − t i0 ≥ δ > 0.

Similarly, for the event-triggered time instant satisfying t ik ≤ τ , we can prove one
by one that the inter-event time satisfies t ik − t ik−1 > 0. Next, we will consider the
case t ik > τ . For t > tik , suppose that agent i firstly receives the renewed information
from some of its neighbors at time ν. Set ϑ = min{τmin, ν}. For t ∈ [t ik, t ik +
ϑ), the received state of agent i, x̂j (t − τij ) = xj (t

j

l(t−τij )), where l(t − τij ) =
arg maxl∈N{tjl |tjl ≤ t−τij }. It follows fromΔi(t

i
k) ≤ 0 that the event is not triggered

at time instant t ik . If Δi(t
i
k) = 0, then Δi(t) = 0 for any t ∈ [t ik, t ik + ϑ). If

Δi(t
i
k) < 0, we can obtain that for t ∈ [t ik, t ik + ϑ), Δi(t) is continuous since

x̂j (t − τij ) is a constant. Hence, there exists a constant δ2 ∈ [0, ϑ), such that for
any t ∈ [t ik, t ik + δ2), Δi(t) < 0. So, t ik+1 − t ik ≥ δ2 > 0.

Therefore, for each agent i, i ∈ N , the inter-event time t ik+1 − t ik is strictly larger
than 0.

At last, we estimate the final consensus value c by constructing an invariant value
of multi-agent system (5.30). Let

η(t) =
N∑

i=1

ξixi(t)+
N∑

i=1

ξi

N∑

j=1, j �=i
aij

∫ t

t−τij
x̂j (s)ds. (5.52)

Differentiating (Dini right derivative) η(t) along the solution of (5.30), we obtain
from (5.36) that

η̇(t) =
N∑

i=1

ξi

N∑

j=1, j �=i
aij [̂xj (t − τij )− x̂i (t)] −

N∑

i=1

ξi

N∑

j=1, j �=i
aij [̂xj (t − τij )

−x̂j (t)]

= −
N∑

i=1

ξi

N∑

j=1, j �=i
aij x̂i (t)+

N∑

i=1

ξi

N∑

j=1, j �=i
aij x̂j (t)

= 0. (5.53)



112 5 Event-Based Network Consensus with Communication Delays

Since η̇(t) = 0 for t ∈ [0, ∞) and the continuity of η(t), η(t) in (5.52) is a constant;
that is,

η(t) = η(0)

= ξi(

N∑

i=1

xi(0)+
N∑

i=1

N∑

j=1, j �=i
aij

∫ 0

−τij
x̂j (s)ds)

=
N∑

i=1

ξixi(0)+
N∑

i=1

ξi

N∑

j=1, j �=i
aij

∫ 0

−τij
φj (s)ds.

Hence,

η(0) = lim
t→+∞ η(t) = c +

N∑

i=1

ξi

N∑

j=1

aij τij c. (5.54)

Therefore, we can conclude that

c =
∑N

i=1 ξixi(0)+ ∑N
i=1 ξi

∑N
j=1 aij

∫ 0
−τij φj (s)ds

1 + ∑N
i=1 ξi

∑N
j=1 aij τij

.

This completes the proof.

Remark 5.9 It can be observed that the final consensus value is not explicitly
obtained for the event-triggered consensus protocol (5.33) proposed in [16–20].
Nevertheless, by constructing an invariant value η(t) in (5.52) of the multi-
agent system in this chapter, the final consensus value is theoretically obtained
even in the presence of distinct finite communication delays. Moreover, since the
directed topology and communication delays are considered in our protocol, average
consensus cannot be reached.

Remark 5.10 In Theorem 5.8, event-triggered condition (5.41) is verified by only
using its received neighboring information, which means that only local information
is used to verify the event-triggered condition. Furthermore, the inter-event times
{t ik+1 − t ik} have been proved to be larger than 0. In order to give a positive lower
bound of the inter-event time and avoid the Zeno behaviors, a synchronously event-
triggered control method will be presented in the following section.

5.2.3 Synchronously Event-Triggered Control

We now present a synchronously event-triggered control for the multi-agent system
(5.30). In Theorem 5.8, although it has been proved that the inter-event time is
strictly larger than 0, it is hard to find a positive lower bound under the consideration
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of the communication delays. In this section, we aim to solve this difficult problem
by designing a synchronously event-triggered protocol for the constant time delays,
i.e., τij = τ .

Notice that ∀i = 1, · · · , N, j ∈ Ni , ā = max1≤i<j≤N, aij>0{aij }. Define

gi(t) = e2
i (t)− σ

4di

N∑

j=1, j �=i
aij (̂xj (t − τ)− x̂i (t))

2.

Consider the synchronously event-triggered time sequence t0 < t1 < · · · < tk <

tk+1 < · · · . Assume t0 = 0, t1 = max{τ, t1} and tk = tk, k ≥ 2, where tk, k ≥ 1,
is defined iteratively as

tk+1 = inf{t : t > tk, maxi∈N {gi(t)} > 0}. (5.55)

It follows from Theorem 5.8 that the multi-agent network (5.30) will achieve
consensus under the synchronously event-triggered time sequence.

Note that

ėi (t) = d

dt
(xi(t)− xi(tk)) = ẋi (t).

Hence, one can get

ei(t) =
N∑

j=1, j �=i
aij

∫ t

tk

(̂xj (s − τ)− xi(tk))ds.

It is obvious that t1 ≥ τ . For t ∈ [t1, t1 + τ), we have

x̂j (t − τ) = xj (t0), (5.56)

and

gi(t) = [
N∑

j=1, j �=i
aij (xj (t0)− xi(t1))]2(t − t1)

2 − σ

4di

N∑

j=1, j �=i
aij (xj (t0)

−xi(t1))2

≤ N

N∑

j=1, j �=i
a2
ij (xj (t0)− xi(t1))

2(t − t1)
2 − σ

4di

N∑

j=1, j �=i
aij (xj (t0)

−xi(t1))2

≤ [Nā(t − t1)
2 − σ

4di
][

N∑

j=1, j �=i
aij (xj (t0)− xi(t1))

2]. (5.57)
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Hence, a necessary condition for gi(t) > 0 is that

Nā(t − t1)
2 − σ

4di
> 0, (5.58)

i.e., t−t1 > 2
√

σ
4diNā

. If we require τ ≤ mini∈N
{

2
√

σ
4diNā

}
, then we have t2−t1 ≥ τ .

For t ∈ [tk, tk+1], similar to the discussions presented as above, we have

tk+1 − tk ≥ τ.

Hence, a non-trivial inter-transmission time τ is obtained.
The aforementioned synchronously event-triggered multi-agent consensus is thus

summarized as follows.

Theorem 5.11 Consider the multi-agent network (5.30) with control law (5.33).

If communication delay τ ≤ mini∈N
{

2
√

σ
4diNā

}
, the network achieves consensus

asymptotically with the synchronous event time instants t0 < t1 < · · · < tk <

tk+1 < · · · iteratively determined by t0 = 0, t1 = max{τ, t1}, and tk = tk, k ≥ 2,
where tk is defined in (5.55). Final consensus value is

∑N
i=1 ξixi(0)+ ∑N

i=1 ξi
∑N

j=1 aij
∫ 0
−τ xj (s)ds

1 + ∑N
i=1 ξi

∑N
j=1,j �=i aij τ

.

Moreover, the Zeno behavior can be excluded since the lower bound of the inter-
event time is τ .

Remark 5.12 Based on above analysis, it can be found that under the synchronously
event-triggered protocol, the Zeno behavior can be excluded for the multi-agent
network with distinct communication delays. Unfortunately, the protocol requires
all agents to be triggered simultaneously. It can be noted that, in many real networks,
the agents use multi-channels to exchange different kinds of information with
their neighboring agents [23]. The synchronously event-triggered protocol can be
applied to such kinds of networks. Here, we can assume that neighboring agents
can communicate via two different channels. One channel is used to transmit the
state information, and another one is used to inform agents the occurrence of the
events. It is still challenging for the considered model to design an asynchronously
distributed event-triggered mechanism to realize consensus and meanwhile to avoid
the Zeno behavior.

In the following, we shall propose a self-triggered consensus algorithm to achieve
multi-agent consensus based on Theorem 5.11. Self-triggered algorithm means that
the agents can predict next triggered time instant tk+1 based on the information at
time tk . The advantage of the self-triggered algorithm lies that all agents are not
required to verify the event-triggered condition continuously and hence could save
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more energy for the multi-agent system. Recall that

e2
i (t) =

⎛

⎝
N∑

j=1, j �=i
aij

∫ t

tk

(xj (tl(s−τ))− xi(tk))ds

⎞

⎠
2

,

and

qi(t) = σ

4di

N∑

j=1, j �=i
aij (xj (tl(t−τ))− xi(tk))

2,

where

l(t − τ) = arg maxl∈N{tl |tl ≤ t − τ }. (5.59)

Let

λi(t) =
N∑

j=1, j �=i
aij (xj (tl(t−τ))− xi(tk)). (5.60)

Based on Theorem 5.11, we develop the following triggering strategy to find tk+1.
Note that once there exists an agent l ∈ N , which finds self-triggering time instant
t lk+1, the algorithm will stop and tk+1 = t lk+1. For agent i, we propose Algorithm 1.

Algorithm 1 Self-triggered algorithm
Step 1. For each agent i ∈ N , set Λ = 0 and s = tk .
Step 2. Solving the equation [Λ+ λi(s)(t − s)]2 − qi(s) = 0, we can obtain the solution ςik+1.
Step 3. For t ≥ s, if agent i does not receive the renewed information from its neighbors until

t = ςik+1, then, set t ik+1 = ςik+1 and stop the algorithm.
Step 4. If agent i firstly receive the renewed information from some of its neighbors at time

t0 < ςik+1, set Λ = Λ+ λi(s)(t
0 − s). Update s = t0 and go to Step 2.

Different from the previous self-triggered algorithm [16], the communication
delay is considered in our algorithm, and it brings some difficulties but beneficial
for conforming realistic situations. More importantly, one can observe that the Zeno
behavior can be avoided by using this algorithm.
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5.2.4 Numerical Example

In this section, an example is given to illustrate the effectiveness of the proposed
event-triggered consensus protocol. Consider a multi-agent network with five
agents, and its Laplacian matrix is given by

L =

⎛

⎜⎜⎜⎜⎜⎝

1 0 −1 0 0
−1 1 0 0 0
0 0 1 −1 0
0 0 0 1 −1
0 −1 0 0 1

⎞

⎟⎟⎟⎟⎟⎠
.

The dynamics of the agents are given in (5.30). Set σ = 0.9 and the communication
delays τij = 0.04, ∀j ∈ Ni . The initial states of the system are chosen as φ1(s) =
−4.3, φ2(s) = 1, φ3(s) = −1.4, φ4(s) = 2.4, and φ5(s) = −2, ∀s ∈ [−0.04, 0].
We consider the evolvement of the agents under the asynchronously distributed
event-triggered protocol in Theorem 5.8 and the synchronously event-triggered
protocol in Theorem 5.11, respectively.

It can be seen from Figs. 5.4 and 5.6 that the multi-agent networks can achieve
consensus under asynchronously and synchronously event-triggered communica-
tion protocol. Moreover, based on Theorems 5.8 and 5.11, the final consensus value
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Fig. 5.4 The states of the system under asynchronously event-triggered communication protocol
in Example 5.2.4
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Fig. 5.5 Event-triggered times in Example 5.2.4
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Fig. 5.6 The states of the system under synchronously event-triggered communication protocol in
Example 5.2.4
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of the system should be

∑N
i=1 ξixi(0)+ ∑N

i=1 ξi
∑N

j=1 aij
∫ 0
−τij φj (s)ds

1 + ∑N
i=1 ξi

∑N
j=1 aij τij

= −0.86,

which can also be seen from Figs. 5.4 and 5.6. The individual event time instants
under asynchronously and synchronously event-triggered protocols are shown
in Figs. 5.5 and 5.6, respectively. One can also conclude from the simulation
example that the event-based strategy in this chapter can significantly decrease the
information transmission during the consensus process of the multi-agent system
with distinct communication delays.

5.3 Summary

In this chapter, we have investigated the discrete-time and continuous-time multi-
agent consensus problems where each agent transmits its current state to its
neighbors only when a certain “event” occurs. The network topology of the multi-
agent system is directed. Distributed event-triggered conditions have been estab-
lished. Under the proposed distributed event-triggered protocols, it has been proved
that consensus can be achieved for the discrete-time/continuous-time multi-agent
network with communication delays. The theoretical results are well illustrated by
two numerical examples.
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Chapter 6
Consensus of Networked Multi-agent
Systems with Antagonistic Interactions
and Communication Delays

A common feature of previous consensus results is the focus on cooperative
systems [1–3]. The consensus of these systems is asymptotically achieved through
collaboration, which is characterized by the diffusive coupling [4] and the non-
negative weights among agents [5–8]. In many real-world cases, however, it is
more reasonable to consider that some agents collaborate with each other, while
others are competitive. Networks with antagonistic interactions are ubiquitous in
real world [9], and it becomes a focus for studying in recent years [10–15]. Altafini
[10] proved that bipartite consensus can be achieved over networks with antagonistic
interactions. Furthermore, in [16], emergent behaviors were investigated over signed
random dynamical networks. In [17], flocking behaviors were studied by using
results about signed graph. In [18], the leader-following bipartite consensus issue
for single-integrator multi-agent systems was investigated, where the signed digraph
was considered to be structurally balanced and had a spanning tree.

To achieve the consensus, each node in a network has to transmit its state
information to its neighbors via connections. However, because of physical and
environmental limitations, communication constraints between connected nodes
are unavoidable. As is well-known, the communication delay is one of the most
universal communication constraints. Motivated by the aforementioned discussions,
we investigate the consensus problem of signed networks with antagonistic inter-
actions and communication delays in this chapter. To the best of our knowledge,
only a few results have been done concerning such problem. Due to the difficulty
that antagonistic interactions and communication delays need to be simultaneously
considered, new techniques are required to deal with this problem. According to
matrix theory, Lyapunov theorem, and some other mathematical analysis, we found
that bipartite consensus can be achieved for those systems with communication
delays. Furthermore, in order to obtain the final bipartite consensus solution, we
construct an invariant function to study the relationship of the states of nodes and
their initial states. Using some mathematical analysis skills, we provide the bipartite
consensus solution with an explicit expression.

© Springer Nature Singapore Pte Ltd. and Science Press, China 2021
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6.1 Continuous-Time Multi-agent Consensus

6.1.1 Linear Coupling

In this section, we consider a multi-agent system formed by N linearly coupled
identical nodes, where each node’s dynamic is described as follows:

ẋi (t) =
N∑
j=1

| aij | [sgn(aij )xj (t − τij )− xi(t)], i ∈ N , (6.1)

where xi(t) ∈ R
n is the state of node i at time t , and τij > 0 denotes the

communication delay from νj to νi for i �= j and τii = 0. A = [aij ]N×N is the
adjacency matrix of the network that is symmetric. Here it is assumed that there is
no self-closed loop, which means that aii = 0.

Throughout this section, the bipartite consensus of dynamical system (6.1) is said
to be realized if limt→∞ xi(t) = α for i ∈ V1 and limt→∞ xi(t) = −α for i ∈ V2.

Theorem 6.1 Consider the networked multi-agent system (6.1) with a connected
signed graph G(A). The bipartite consensus can be asymptotically reached if
G(A) is structurally balanced. If instead G(A) is structurally unbalanced, then
limt→∞ x(t) = 0.

Proof We first consider the case that G(A) is structurally balanced. According to
Lemma 1.8, one can obtain that ∃D ∈ D such that DAD has all nonnegative entries.
Let z(t) = Dx(t), we obtain that

zi(t) = σixi(t) , i ∈ N . (6.2)

Substituting (6.2) into (6.1) results in

σi żi(t) =
N∑
j=1

| aij | [sgn(aij )σj zj (t − τij )− σizi(t)] , i ∈ N .

Since DAD is a nonnegative matrix, we have σisgn(aij )σj = 1. Using σ 2
i = 1, one

can obtain the following equation:

żi (t) =
N∑

j=1

| aij | [σisgn(aij )σj zj (t − τij )− σ 2
i zi(t)]

=
N∑

j=1

| aij | [zj (t − τij )− zi(t)] , i ∈ N . (6.3)
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Following [19], the consensus of networks system (6.3) is asymptotically reached.
That is

lim
t→∞ zi(t) → α, ∀i ∈ N , (6.4)

where α ∈ R
n is a constant vector.

Hence, we can get that lim
t→∞ xi(t) → σiα for i ∈ N . Then, the bipartite

consensus of system (6.1) can be reached if G(A) is structurally balanced.
Next, we consider the case that G(A) is structurally unbalanced. Following

Lemma 1.10, we can conclude that G(A) contains one or more negative cycles.
For the sake of simplicity, let us first consider the simplest case of G(A) with only
one negative cycle. Without loss of generality, we assume that (ν1, ν2) belongs to the
negative cycle and a12 = a21 = a < 0. According to Lemma 1.10, one can obtain
that there is no D ∈ D such that DAD is a nonnegative matrix. However, for the
subgraph G(B), which denotes the rest part of G(A) reducing the edge (ν1, ν2), it
admits a bipartition of the nodes V1 and V2. Furthermore, one can find that G(B) is
connected and matrix B is irreducible. Now, we can make a hypothesis that nodes ν1
and ν2 simultaneously belong to V1 ( or V2 ) and the rest nodes remain unchanged.
Based on this hypothesis, we can chooseD1 = diag(σ )with σ satisfying σi = 1 for
νi ∈ V1 and σi = −1 for νi ∈ V2. Then D1AD1 = A′ = [a′

ij ]N×N has exactly two
negative elements, i.e., a′

12 = a′
21 = a < 0, and the rest elements are nonnegative.

The following is a decomposition of the matrix A′:

A′ = A12 + A21 + B ′ , (6.5)

where Aij , i, j ∈ {1, 2}, denotes a matrix in which the element lied in the
intersection of ith row and j th column is aij �= 0 and others all are 0.B ′ = [b′

ij ]N×N
is a nonnegative adjacency matrix. In order to clearly express the matrix B ′, we
define a function as follows:

c(i, j) =
{

0, (i, j) = (1, 2) or (2, 1);
1, otherwise.

Hence, we get b′
ij = c(i, j)|aij |. It is easy to find that B ′ is irreducible. Let B̄ =

[b̄ij ]N×N be the Laplacian matrix of G(B ′), and its elements are defined as : b̄ij =
b′
ij (i �= j), b̄ii = −∑N

j=1 b
′
ij . Therefore, ξ = (1, 1, · · ·, 1)� is the left eigenvector

of B̄ corresponding to the zero eigenvalue, i.e., ξ�B̄ = 0 , which implies that

b̄ii = −
N∑

j=1,j �=i
b̄j i . (6.6)
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Further because b̄ii = −∑N
j=1 b

′
ij , one can obtain that

N∑

j=1

b′
ij =

N∑

j=1

b′
j i and

N∑

i=1

b′
j i =

N∑

i=1

b′
ij . (6.7)

Let z(t) = Dx(t), i.e., zi(t) = σixi(t) for any i ∈ N , we have

żi (t) =
N∑

j=1

| aij | [σiσj sgn(aij )zj (t − τij )− zi(t)]. (6.8)

Consider the following Lyapunov functional for system (6.1):

V (t) = V1(t)+ V2(t), (6.9)

where

V1(t) = 1

2

N∑

i=1

x�
i (t)xi(t), (6.10)

and

V2(t) = 1

2

N∑

i=1

N∑

j=1

∫ t

t−τji
|aji |x�

i (θ)xi(θ)dθ. (6.11)

Calculating the time derivative of Vi(t) (i = 1, 2) along the trajectories of system
(6.1), we have

V̇1(t) =
N∑

i=1

x�
i (t)ẋi (t)

=
N∑

i=1

N∑

j=1

|aij |[x�
i (t)sgn(aij )xj (t − τij )− x�

i (t)xi(t)]

=
N∑

i=1

N∑

j=1

|aij |[σiσj z�i (t)sgn(aij )zj (t − τij )− z�i (t)zi(t)]

=
N∑

i=1

N∑

j=1

b′
ij [z�i (t)zj (t − τij )− z�i (t)zi(t)] + a12[z�1 (t)z2(t − τ12)

+ z�1 (t)z1(t)] + a21[z�2 (t)z1(t − τ21)+ z�2 (t)z2(t)]
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=
N∑

i=1

N∑

j=1

b′
ij [z�i (t)zj (t − τij )− z�i (t)zi(t)] + 1

2
a[2z�1 (t)z2(t − τ12)

+ 2z�2 (t)z1(t − τ21)+ 2z�1 (t)z1(t)+ 2z�2 (t)z2(t)], (6.12)

and

V̇2(t) =1

2

N∑

i=1

N∑

j=1

|aji |[x�
i (t)xi(t)− x�

i (t − τji)xi(t − τji)]

=1

2

N∑

i=1

N∑

j=1

b′
j i[x�

i (t)xi(t)− x�
i (t − τji)xi(t − τji)]

+ 1

2
a12[x�

2 (t − τ12)x2(t − τ12)− x�
2 (t)x2(t)]

+ 1

2
a21[x�

1 (t − τ21)x1(t − τ21)− x�
1 (t)x1(t)]

=1

2

N∑

i=1

N∑

j=1

b′
ij z

�
i (t)zi(t)− 1

2

N∑

i=1

N∑

j=1

bij z
�
j (t − τij )zj (t − τij )

+ 1

2
a[z�2 (t − τ12)z2(t − τ12 + z�1 (t − τ21)z1(t − τ21)

− z�2 (t)z2(t)− z�1 (t)z1(t)]. (6.13)

Using Eqs. (6.12) and (6.13) gives that

V̇ (t) = − 1

2

N∑

i=1

N∑

j=1

b′
ij [z�i (t)zi(t)− 2z�i (t)zj (t − τij )+ z�j (t − τij )]

+ 1

2
a{[2z�1 (t)z2(t − τ12)+ z�1 (t)z1(t)+ z�2 (t − τ12)z2(t − τ12)]

+ [2z�2 (t)z1(t − τ21)] + z�2 (t)z2(t)+ z�1 (t − τ21)z1(t − τ21)]}

= − 1

2

N∑

i=1

N∑

j=1

b′
ij [zi − zj (t − τij )]�[zi − zj (t − τij )]

+ 1

2
a{[z1(t)+ z2(t − τ12)]�[z1(t)+ z2(t − τ12)]

+ [z2(t)+ z1(t − τ21)]�[z2(t)+ z1(t − τ21)]}
≤0.
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Hence, V (t) is non-increasing. Referring to the construction of V (t), one has that
V (t) ≥ 0, which shows that limt→∞ V (t) exists and is finite. Then, we can get the
boundedness of xi(t) for i ∈ N . Combining with the expression of V (t), further one
can easily show the boundedness of ẋi (t) for i ∈ N by referring to system (6.1).
Thus, żi (t) = σi ẋi(t) is bounded, which implies V̈ (t) is also bounded.

According to Barbalat’s Lemma ([20]), we can obtain that limt→∞ b′
ij [zi − zj (t −

τij )]�[zi−zj (t−τij )] = 0, limt→∞[z1(t)+z2(t−τ12)]�[z1 +z2(t−τ12)] = 0, and
limt→∞[z2(t)+z1(t−τ21)]�[z2(t)+z1(t−τ21)] = 0, i.e., limt→∞[zi−zj (t−τij )] =
0, if b′

ij > 0,limt→∞[z1 + z2(t − τ12)] = 0, and limt→∞[z2(t)+ z1(t − τ21)] = 0.
Further considering the expression (6.8), we have

ż1(t) =
N∑

j=1

| a1j | [σ1σj sgn(a1j )zj (t − τ1j )− z1(t)]

=a12[z1(t)+ z2(t − τ12)] +
N∑

j=3

b′
1j [zj (t − τ1j )− z1(t)]

→0, as t → ∞ ,

ż2(t) =
N∑

j=1

| a2j | [σ2σj sgn(a2j )zj (t − τ2j )− z2(t)]

=a21[z2(t)+ z1(t − τ21)] +
N∑

j=3

b′
2j [zj (t − τ2j )− z2(t)]

→0, as t → ∞ ,

and

żi (t) =
N∑

j=1

b′
ij [zj (t − τij )− zi(t)] → 0, as t → ∞ for i ≥ 3.

Therefore, we get that limt→∞ żi (t) → 0 for any i ∈ N . Since the adjacency
matrix B ′ is irreducible, one can obtain that limt→∞ z1(t) = limt→∞ z2(t) =
· · · = limt→∞ zN(t) by referring to limt→∞ b′

ij [zi − zj (t − τij )] = 0. In addition,
we can also get limt→∞ z1(t) = − limt→∞ z2(t) by referring to limt→∞[z2(t) +
z1(t − τ21)] = 0. Thus, the following continued equality can be concluded:
limt→∞ z1(t) = limt→∞ z2(t) = · · · = limt→∞ zN(t) = 0. Therefore, we obtain
that limt→∞ xi(t) = limt→∞ σizi(t) = 0 for i ∈ N .
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Now consider the case of G(A) with m (m ≥ 2) negative cycles. Referring to the
above approach, we respectively select m negative cycles as follows: (νi1 , νj1), · ·
·, (νim, νjm). There exists a diagonal matrix D2 ∈ D such that

D2AD2 = Ai1j1 + Aj1i1 + · · · + Aimjm + Ajmim + B ′′.

Similarly we can get that limt→∞ xi(t) = 0 for any i ∈ N .

Remark 6.2 For the structurally unbalanced network, since the number of negative
cycles is not the essential attribute of structurally unbalanced network, we just
need to think about those structurally unbalanced networks with one negative cycle
instead of all structurally unbalanced networks. This consideration reduces the
difficulty of the problem.

Remark 6.3 There is a situation that needs to be considered. If a negative edge
simultaneously belongs to two or more negative cycles, we should admit that the
edge only belongs to one of those cycles and the rest negative cycles should be
viewed positive cycles. Then we can still make a hypothesis that two vertices on this
negative edge belong to V1 or V2. According to the proof progress of Theorem 6.1,
it is obvious that the results of Theorem 6.1 still hold.

According to Theorem 6.1, if G(A) is structurally balanced, the bipartite
consensus can be asymptotically reached, and we have limt→∞ xi(t) = α for
i ∈ V1, limt→∞ xi(t) = −α for i ∈ V2. Calculating the bipartite consensus
value of α = (α1, α2, · · ·, αn)� is not an easy task due to the existence of
time delays. Here, the value of α = (α1, α2, · · ·, αn)� will be obtained by an
exact expression when the initial conditions of system (6.1) are given. We define
1 = (1, 1, · · ·, 1)�1×N . The initial conditions about system (6.1) are provided as
xi(s) = σiϕi(s) ∈ C([−τ, 0],Rn), where τ = maxi,j {τij }. Hence, we have
zi(s) = ϕi(s) ∈ C([−τ, 0],Rn). Let ξ(t) = (ξ1(t), ξ2(t), · · ·, ξn(t))�, where
ξr (t) = (1/N)(

∑N
i=1 zir (t)+ ∑N

i=1
∑N

j=1 |aij |
∫ t

t−τij zjr (s)ds), r ∈ {1, 2, · · ·, n}.
Theorem 6.4 Consider a connected signed graph G(A) that is structurally bal-
anced. If D ∈ D renders DAD nonnegative, then the bipartite solution of (6.1) is
limt→∞ x(t) = (D1)⊗ [Nξ(0)/

∑N
i=1(1 + ∑N

j=1 |aij |τij )].
Proof Referring to the proof of Theorem 6.1, one can obtain that limt→∞ zi(t)= α

and limt→∞ x(t) = (D1)⊗ α. Using (6.3), we can obtain

ξ̇r (t) = 1

N

N∑

i=1

N∑

j=1

|aij |[zjr (t − τij )− zir (t)]

+ 1

N

N∑

i=1

N∑

j=1

|aij |[zjr (t)− zjr (t − τij )]
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= − 1

N

N∑

i=1

N∑

j=1

|aij |zir (t)+ 1

N

N∑

i=1

N∑

j=1

|aij |zjr (t)

=0 . (6.14)

Therefore, ξr (t) in (6.14) is a constant. That is,

ξr (t) =ξr(0)

= 1

N
(

N∑

i=1

zir (0)+
N∑

i=1

N∑

j=1

|aij |
∫ 0

−τij
ϕjr (s)ds). (6.15)

Then, we can get

ξr(0) = lim
t→∞ ξr(t)

= 1

N
(

N∑

i=1

αr +
N∑

i=1

N∑

j=1

|aij |τijαr)

=αr

N

N∑

i=1

(1 +
N∑

j=1

|aij |τij ) . (6.16)

Hence, we have

α = Nξ(0)
∑N

i=1(1 + ∑N
j=1 |aij |τij )

, (6.17)

and

lim
t→∞ x(t) = (D1)⊗ Nξ(0)

∑N
i=1(1 + ∑N

j=1 |aij |τij )
. (6.18)

Remark 6.5 Referring to expression (6.17), for the case of network without com-
munication delays, one can obtain that α = (1/N)

∑N
i=1 ϕi(0). This result is

consistent with the one obtained in [10]. This shows that our results are more
general. Moreover, we conclude that a bipartite consensus solution is not only
associated with initial values of xi(t) but also closely related to communication
delays and network structure.

Remark 6.6 According to Theorem 6.4, it is obvious that α �= 0 if G(A) is
structurally balanced unless ξr (0) = 0.
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6.1.2 Nonlinear Coupling

In this subsection, we will investigate the multi-agent systems with nonlinear
coupling. Consider the following multi-agent systems:

ẋi (t) =
N∑

j=1

| aij | {sgn(aij )h[xj (t − τij )] − h[xi(t)]}, i ∈ N , (6.19)

where xi(t) ∈ R is the state of node i. The function h(·) : R → R is assumed to be
odd and strictly monotone increasing, which implies h(0) = 0 and h(−x) = −h(x).
Further we assume that h(·) is unbounded.

Theorem 6.7 Consider the nonlinear coupled system (6.19) with a connected
signed graph G(A). The bipartite consensus can be asymptotically reached if
G(A) is structurally balanced. If instead G(A) is structurally unbalanced, then
limt→∞ x(t) = 0.

Proof Following Lemma 1.8, if G(A) is structurally balanced, we can obtain that
∃D ∈ D such that DAD has all nonnegative entries. Let Z(t) = Dx(t), i.e., zi(t) =
σixi(t), one can easily get that

żi (t) =
N∑

j=1

| aij | {h[zj (t − τij )] − h[zi(t)]} , i ∈ N . (6.20)

Following [19], we obtain that limt→∞ zi(t) → β ∈ R for any i ∈ N , which shows
that limt→∞ xi(t) → σiβ ∈ R for i ∈ N . Therefore, the bipartite consensus of
system (6.19) can be reached if G(A) is structurally balanced.

Next, we consider the case that G(A) is structurally unbalanced. From
Lemma 1.10, it follows that G(A) contains one or more negative cycles. We
first consider the case of G(A) with only one negative cycle. The edge (ν1, ν2)

is assumed to be a negative weighted edge belonging to the negative cycle, and
a12 = a21 = a < 0. Choosing D1 = diag(σ ) with σ satisfying σi = 1 for νi ∈ V1
and σi = −1 for νi ∈ V2, one can obtain that D1AD1 = A′ has exactly two
negative elements, i.e., a′

12 = a′
21 = a < 0, and the rest elements are nonnegative.

The decomposition of the matrix A′ is shown as follows:

A′ = A12 + A21 + B ′,

where the definitions of A12, A21, and B ′ are similar to the proof in Theorem 6.1.
Let Z(t) = Dx(t), i.e., zi(t) = σixi(t) for any i ∈ N , we have

żi (t) =
N∑

j=1

| aij | {σiσj sgn(aij )h[zj (t − τij )] − h[zi(t)]}. (6.21)
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Consider the following Lyapunov–Krasovskii functional for system (6.19)

W(x(t)) = W1(x(t))+W2(x(t)) ,

where

W1(x(t)) =
N∑

i=1

∫ xi (t)

0
h(s)ds ,

and

W2(x(t)) = 1

2

N∑

i=1

N∑

j=1

∫ t

t−τij
|aij |h2[xj (s)]ds .

Calculating the time derivative of Wi(t)(i = 1, 2) along the trajectories of system
(6.19), we have

Ẇ1(x(t)) =1

2

N∑

i=1

N∑

j=1

b′
ij {2h[zi(t)]h[zj (t − τij )] − 2h2[zi(t)]}

+ a{h[z1(t)]h[z2(t − τ12)] + h2[z1(t)]
+ h[z2(t)]h[z1(t − τ21)] + h2[z2(t)] , (6.22)

and

Ẇ2(x(t)) =1

2

N∑

i=1

b′
ij

N∑

j=1

h2[zi(t)] − 1

2

N∑

i=1

N∑

j=1

bijh
2[zj (t − τij )]

+ 1

2
a{h2[z2(t − τ12)] − h2[z2(t)]

+ h2[z1(t − τ21)] − h2[z1(t)]} . (6.23)

Using Eqs. (6.22) and (6.23), we get that

Ẇ (x(t)) = − 1

2

N∑

i=1

N∑

j=1

b′
ij {h[zi(t)] − h[zj (t − τij )]}2

+ 1

2
a{h[z1(t)] + h[z2(t − τ12)]}2

+ 1

2
a{h[z2(t)] + h[z1(t − τ21)]}2

≤0 . (6.24)



6.1 Continuous-Time Multi-agent Consensus 131

Let S = {x(t) | Ẇ (x(t)) = 0}. Then it follows from Eq. (6.24) that S = {x ∈
C([t − τ, t],RN) | b′

ij {h[zi(t)] − h[zj (t − τij )]} = 0, h[z1(t)] + h[z2(t − τ12)] =
0, and h[z2(t)] + h[z1(t − τ21)] = 0}. Combining with the property of h(·), we
can get that the set S is an invariant set with respect to system (6.21). According
to the LaSalle invariance principle [21], one can easily show that x(t) → S as
t → ∞. Thus, we have limt→∞{h[zi(t)] − h[zj (t − τij )]} = 0 for b′

ij > 0,
limt→∞{h[z1(t)]+h[z2(t−τ12)]} = 0, and limt→∞{h[z2(t)]+h[z1(t−τ21)]} = 0.
Hence, we have limt→∞ żi (t) = 0. In addition, since h(·) is unbounded and strictly
increasing with h(0) = 0, we get that limt→∞[zi(t) − zj (t − τij )] = 0 when
b′
ij > 0 and limt→∞[z1(t) − z2(t − τ12)] = 0. According to the fact that B is

irreducible, we conclude that z1(t) = z2(t) = · · · = zN(t) as t → ∞. It follows
from limt→∞[z1(t) − z2(t − τ12)] = 0 that z1(t) = −z2(t) as t → ∞. Hence,
the following equality can be concluded: limt→∞ z1(t) = limt→∞ z2(t) = · · · =
limt→∞ zN(t) = 0. Therefore, we obtain that limt→∞ xi(t) = limt→∞ σizi(t) = 0
for i ∈ N .

The result still holds for the case of G(A) with two or more negative cycles. The
proof is similar to the case of linear coupling and is omitted for simplicity.

Similar to the case of linear coupling, we can give the bipartite solution of (6.19).
The initial conditions about system (6.19) are provided as xi(s) = σiψi(s) ∈
C([−τ, 0],R). Hence, we have zi(s) = ψi(s) ∈ C([−τ, 0],R). Let ζ(0) =
(1/N)(

∑N
i=1 ψi(0)+ ∑N

i=1
∑N

j=1 |aij |
∫ 0
−τij h(ψj (s))ds).

Theorem 6.8 Consider a connected signed graph G(A) that is structurally bal-
anced. If D ∈ D renders DAD nonnegative, then the bipartite solution of (6.19) is
limt→∞ x(t) = βD1, where β ∈ R meets a relational expression as follows:

β + h(β)

N∑

i=1

N∑

j=1

(|aij |τij )−N × ζ(0) = 0. (6.25)

Proof Referring to the proof of Theorem 6.4, one can get the bipartite solution of
(6.19) similarly. Let

ζ(t) = (1/N)(

N∑

i=1

zi(t)+
N∑

i=1

N∑

j=1

|aij |
∫ t

t−τij
h(zj (s))ds) . (6.26)

Combining with (6.20), we have ζ̇ (t) = 0, which implies ζ(t) = ζ(0). From ζ(0) =
limt→∞ ζ(t), we can get the expression (6.25).

Remark 6.9 In this theorem, although the value of β cannot be given by an explicit
expression, we can get a numerical solution by iterative algorithm from (6.25). In
numerical examples, Example 6.10 gives a numerical solution to (6.25) for h(x) =
x + 0.5sin(x), which illustrates the computational feasibility.
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Fig. 6.1 Structurally balanced signed undirected connectivity graphs with seven nodes

6.1.3 Numerical Examples

In this subsection, numerical examples will be provided to demonstrate the effec-
tiveness of our theoretical results.

Example 6.10 Now, we will give an example to illustrate the correctness of our
main results. Consider the structurally balanced graph of Fig. 6.1.
For systems (6.1) and (6.19), all nonzero communication delays are listed as
follows: τ12 = 0.1, τ13 = 0.3, τ21 = 0.15, τ23 = 0.2, τ24 = 0.1, τ31 = 0.11,
τ32 = 0.16, τ35 = 0.23, τ42 = 0.1, τ45 = 0.2, τ47 = 0.12, τ53 = 0.1,
τ54 = 0.15, τ56 = 0.24, τ65 = 0.25, and τ74 = 0.15, and the initial states are
chosen as x1(s) = 1, x2(s) = 2, x3(s) = 3, x4(s) = 4, x5(s) = 5, x6(s) = −3,
and x7(s) = −5, ∀s ∈ [−0.3, 0]. Let D = diag{−1, 1, 1, 1, 1, 1, 1}. Then,
we have z(t) = [−1, 2, 3, 4, 5,−3,−5], ∀s ∈ [−0.3, 0]. Further, we define that
h(s) = s + 0.5sin(s). According to Theorem 6.4, one can easily conclude that
α = 1.44. Following Theorem 6.8, one can get the numerical solution β = 1.42 by
iterative algorithm. Numerical results are depicted in Figs. 6.2 and 6.3, which verify
our theoretical results very well.

Example 6.11 Now let us consider a more general network topology with 100
nodes and signed weight edges. Here two simple signed networks with 100 nodes
are constructed, where one is structurally balanced and another one is structurally
unbalanced. The network with structurally balanced coupling is constructed as
follows: we present 20 identical circular networks with 5 nodes, whose 5 nodes
are numbered 1, 2, 3, 4, 5, respectively, and their adjacency matrix is A = [aij ]5×5,
where aij is chosen from (−10, 0) or (0, 10). Now the first two edges of the circular
network are defined as negative edges and others are not negative edges, i.e. a12 < 0,
a23 < 0, and the rest elements are non-negative Here these circular networks are
arranged in a sequence. A connected graph with 100 nodes and structurally balanced
coupling can be obtained by stochastic interconnections among the 3rd, 4th, and
5th nodes of adjacent circular networks. Similarly the network with structurally
unbalanced coupling can be obtained according to the above method when the first
three edges of pentagon are defined as negative edges and other steps are the same.
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Fig. 6.2 The bipartite consensus on multi-agent system (6.1) with structurally balanced graph and
linear coupling in Example 6.10
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Fig. 6.3 The bipartite consensus on multi-agent system (6.19) with structurally balanced graph
and nonlinear coupling in Example 6.10
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Fig. 6.4 The states of system (6.1) with structurally unbalanced graph and linear coupling in
Example 6.11

All communication delays of systems (6.1) and (6.19) are uniformly distributed in
(0, 1). Figure 6.4 shows that the consensus of system (6.1) can be achieved for
aij ∈ (−10, 10) and τij ∈ (0, 1). Figure 6.5 shows that the consensus of system
(6.19) can also be achieved for the above conditions. Throughout this example,
the nonlinear function h(x) = x + 0.5sin(x) is not changed. Figures 6.6 and 6.7
show that the bipartite consensus of systems (6.1) and (6.19) can be asymptotically
reached, respectively.

6.2 Discrete-Time Multi-agent Consensus

6.2.1 Distributed Event-Based Bipartite Consensus

Consider a discrete-time multi-agent network with the dynamics described by

xi(k + 1) = xi(k)+ ui(k), i ∈ N , (6.27)

where xi(k) ∈ R is the state of the agent i, and ui(k) is called the consensus
protocol.

In this section, we assume that the protocol ui(k) is based on the event-triggered
information transmission. The event-triggered time sequence of the agent i is given
by t i1, t

i
2, · · · , t il , · · · . At each triggering time t il , the agent i will transmit the
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Fig. 6.5 The states of system (6.19) with structurally unbalanced graph and nonlinear coupling in
Example 6.11
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Fig. 6.6 The bipartite consensus on multi-agent system (6.1) with structurally balanced graph and
linear coupling in Example 6.11
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Fig. 6.7 The bipartite consensus on multi-agent system (6.19) with structurally balanced graph
and nonlinear coupling in Example 6.11

state information to its neighboring agents. Considering time delays during the
information transmission, the consensus protocol is proposed as follows:

ui(k) =
∑

j∈Ni

|aij |(sgn(aij )̂xj (k − τij )− x̂i (k)), i ∈ N , (6.28)

where τij > 0 denotes the communication delay from agent j to i, x̂j (k − τij ) =
xj (k

j

l
′ ), k − τij ∈ [kj

l
′ , k

j

l
′+1

), and x̂i (k) = xi(k
i
l ), k ∈ [kil , kil+1). It is assumed in

this section that τii = 0, i.e., delays exist only in the information that is actually
being transmitted between two different agents. The state measurement error of
agent i is defined as

ei(k) = xi(k)− x̂i (k). (6.29)

Denote τ = max{τij , i, j ∈ N }. The initial conditions associated with (6.27) are
given as xi(s), s = −τ, · · · , −1, 0.

In this subsection, we will give the distributed event-based bipartite consensus
criteria for the considered signed network model. We always assume that the
network topology of the signed digraph is strongly connected in this section. Let
ξ = (ξ1, ξ2, . . . , ξN) be the normalized left eigenvector of matrix |A| with respect

to the eigenvalue 1. From Lemma 1.6, we obtain that
N∑

i=1

ξi = 1 and ξi > 0.
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Theorem 6.12 Consider the multi-agent system (6.27) with arbitrary finite commu-
nication delay τij under control law (6.28). If the first triggering time is t i1 = 0, and
agent i, i ∈ N , determines the triggering time sequence t il |∞l=2 by

inf

⎧
⎨

⎩k > til−1 : e2
i (k) >

σa2
ii

4(1 − aii)

N∑

j=1, j �=i
|aij |(̂xi(k)− sgn(aij )̂xj (k − τij ))

2

⎫
⎬

⎭ ,

where 0 < σ < 1 is a constant. Then, we can obtain the following results:

(i) System (6.27) can achieve bipartite consensus asymptotically if the signed
digraph G is structurally balanced. Moreover, the consensus value of the
network is

∑N
i=1 ξidixi(0)+ ∑N

i=1 ξi
∑N

j=1, j �=i |aij |
∑−1

s=−τij dj xj (s)

1 + ∑N
i=1 ξi

∑N
j=1, j �=i |aij |τij

.

(ii) If the signed digraph G is structurally unbalanced, then the system (6.27)
can achieve consensus and the final consensus value is 0, i.e., lim

k→+∞ xi(k) =
0, ∀i ∈ N .

Proof We take two steps for the remaining part of the proof.
Step 1: According to Lemma 1.8, if the network structure is balanced, there exists

D = {d1, · · · , dN } ∈ D, such that DAD is a stochastic matrix. Since DAD has
all nonnegative entries, one can get disgn(aij )dj ≥ 0. Denote yi(k) = dixi(k) and
ŷi (k) = di x̂i(k). Note that τii = 0, ∀i ∈ N , then we can obtain that

yi(k+1) = yi(k)+
∑

j∈Ni

|aij |(disgn(aij )dj ŷj (k−τij )−ŷi (k)), i ∈ N , (6.30)

i.e.,

yi(k + 1) = yi(k)+
∑

j∈Ni

|aij |(ŷj (k − τij )− ŷi (k))

= yi(k)+
N∑

j=1, j �=i
|aij |(ŷj (k − τij )− ŷi (k)), i ∈ N . (6.31)

Let Ei(k) = diei(k). Referring to Theorem 1 in [22], the consensus of system (6.31)
can be asymptotically reached under the event-triggered condition

E2
i (k) >

σa2
ii

4(1 − aii)

N∑

j=1, j �=i
|aij |(ŷj (k − τij )− ŷi (k))

2
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= σa2
ii

4(1 − aii)

N∑

j=1, j �=i
|aij |(ŷ2

j (k − τij )+ ŷ2
i (k)− 2ŷj (k − τij )ŷi(k))

= σa2
ii

4(1 − aii)

N∑

j=1, j �=i
|aij |(̂x2

j (k − τij )+ x̂2
i (k)

− 2sgn(aij )̂xj (k − τij )̂xi(k)),

= σa2
ii

4(1 − aii)

N∑

j=1, j �=i
|aij |(sgn(aij )̂xj (k − τij )− x̂i (k))

2, i ∈ N .

(6.32)

That is, lim
k→+∞ dixi(k) = c, where c is a constant value. Note that E2

i (k) = e2
i (k).

Hence, the event-triggered condition (6.32) can be rewritten as

e2
i (k) >

σa2
ii

4(1 − |aii |)
N∑

j=1, j �=i
|aij |(sgn(aij )̂xj (k − τij )− x̂i (k))

2, i ∈ N .

(6.33)

Therefore, under the event-triggered condition (6.33), the bipartite consensus of
system (6.27) can be asymptotically reached if G is structurally balanced.

Next, the bipartite consensus value c of the multi-agent networks is shown below.
Let η(k) = ∑N

i=1 ξiyi(k) + ∑N
i=1 ξi

∑N
j=1, j �=i |aij |

∑k−1
k−τij ŷj (s). Substituting

(6.31) into η(k + 1), we can calculate the difference of η(k) as follows:

Δη(k) = η(k + 1)− η(k)

=
N∑

i=1

ξi(yi(k + 1)− yi(k))

+
N∑

i=1

ξi

N∑

j=1, j �=i
|aij |(

k∑

k+1−τij
ŷj (s)−

k−1∑

k−τij
ŷj (s))

=
N∑

i=1

ξi

N∑

j=1, j �=i
|aij |(ŷj (k − τij )− ŷi (k))

+
N∑

i=1

ξi

N∑

j=1, j �=i
|aij |(ŷj (k)− ŷj (k − τij )). (6.34)
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Note that the row sum of matrix |A| is 1 and {ξ1, ξ2, . . . , ξN } is the normalized left
eigenvector of matrix |A| with respect to the eigenvalue 1, we have

N∑

j=1

|aij | = 1 and
N∑

i=1

ξi |aij | = ξj .

Hence, we can obtain that

Δη(k) = −
N∑

i=1

ξi

N∑

j=1, j �=i
|aij |̂yi(k)+

N∑

i=1

ξi

N∑

j=1, j �=i
|aij |̂yj (k)

= −
N∑

i=1

ξi ŷi (k)

N∑

j=1, j �=i
|aij | +

N∑

i=1

ξi

N∑

j=1

|aij |̂yj (k)−
N∑

i=1

ξiaii ŷi (k)

= −
N∑

i=1

ξi(1 − aii)ŷi (k)+
N∑

i=1

ξi |aij |
N∑

j=1

ŷj (k)−
N∑

j=1

ξj ajj ŷj (k)

= −
N∑

i=1

ξi(1 − aii)ŷi (k)+
N∑

j=1

ξj (1 − ajj )ŷj (k)

= 0. (6.35)

Due to Δη(k) = 0 for k ≥ 0, it can be easily obtained that η(k) is a constant. That
is,

η(k) = η(0) =
N∑

i=1

ξiyi(0)+
N∑

i=1

ξi

N∑

j=1, j �=i
|aij |

−1∑

−τij
ŷj (s)

=
N∑

i=1

ξiyi(0)+
N∑

i=1

ξi

N∑

j=1, j �=i
|aij |

−1∑

−τij
yj (s).
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Hence,

η(0) = lim
k→+∞ η(k) = c +

N∑

i=1

ξi

N∑

j=1, j �=i
|aij |τij c.

Therefore, we can conclude that

c =
∑N

i=1 ξidixi(0)+ ∑N
i=1 ξi

∑N
j=1, j �=i |aij |

∑−1
s=−τij dj xj (s)

1 + ∑N
i=1 ξi

∑N
j=1, j �=i |aij |τij

. (6.36)

This completes the proof of this step.
Step 2: If the network structure is unbalanced, according to Lemma 1.10, there

does not exist D = {d1, · · · , dN } ∈ D, such that DAD is a stochastic matrix. For
the sake of simplicity, the case of G with only one negative cycle is studied firstly.
Here, we assume that this negative cycle contains an edge ai0j0 < 0. Without loss
of generality, we can assume that there exists B = {b1, · · · , bN } ∈ D, such that
BAB = [biaij bj ]N×N is a nonnegative matrix except the element bi0ai0j0bj0 < 0.
(If G contains k (k ≥ 2) negative cycles, there exists Dl ∈ D such that DlADl has
exactly l (1 ≤ l ≤ k) negative elements. The following proof for this case is similar
to the case k = 1, and we omit it here due to space limit.) Denoting yi(k) = bixi(k)

and ŷi (k) = bi x̂i(k), then we can obtain that

yi(k + 1) = yi(k)+
∑

j∈Ni

|aij |(bisgn(aij )bj ŷj (k − τij )− ŷi (k)), i ∈ N .

(6.37)

Define the matrix W = [wij ]N×N as follows: wi0j0 = 0, wii = 1 −∑N
j=1 wij ,∀i ∈

N , and wij = biaij bj otherwise. Let Ei(k) = yi(k)−ŷi (k). Consider the Lyapunov
functional as

V (k) = V1(k)+ V2(k), (6.38)

where

V1(k) =
N∑

i=1

ξiy
2
i (k), (6.39)

and

V2(k) =
N∑

i=1

ξi

N∑

j=1

|aij |
k−1∑

s=k−τij
ŷ2
j (s). (6.40)
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Notice that wi0i0 = ai0i0 +|ai0j0 |, and difference of V (k) along the solution of (6.37)
gives that

ΔV (k) ≤ −
N∑

i=1

ξi

N∑

j=1, j �=i

N∑

l>j, l �=i
wijwil(ŷj (k − τij )− ŷl(k − τil))

2

− ξi0 |ai0j0 |
N∑

l �=i0, l �=j0

|ai0l |(ŷj0(k − τi0j0)− ŷl(k − τi0l ))
2

−
N∑

i=1

ξi

N∑

j=1, j �=i
|aij |(aii − αi)(ŷi(k)− bisgn(aij )bj ŷj (k − τij ))

2

+
N∑

i=1

ξi(1 − aii)
1

αi
E2
i (k). (6.41)

Actually,

ΔV (k) = ΔV1(k)+ΔV2(k). (6.42)

Note that for i ∈ N , τii = 0, and Ei(k) = yi(k)− ŷi (k), it holds that

yi(k + 1) = yi(k)+
∑

j∈Ni

|aij |(bisgn(aij )bj ŷj (k − τij )− ŷi (k))

= yi(k)+
N∑

j=1

|aij |(bisgn(aij )bj ŷj (k − τij )− ŷi (k))

= yi(k)− ŷi (k)+
N∑

j=1

|aij |bisgn(aij )bj ŷj (k − τij ),

and

N∑

i=1

ξiy
2
i (k + 1) =

N∑

i=1

ξi[Ei(k)+
N∑

j=1

|aij |bisgn(aij )bj ŷj (k − τij )]2

=
N∑

i=1,i �=i0
ξi[Ei(k)+

N∑

j=1

wij ŷj (k − τij )]2 + ξi0[Ei0(k)

+
N∑

j=1

wi0j ŷj (k − τi0j )− |ai0j0 |(ŷi0(k)+ ŷj0(k − τi0j0))]2.
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Hence, we have

ΔV1(k) =
N∑

i=1

ξiy
2
i (k + 1)−

N∑

i=1

ξiy
2
i (k)

=
N∑

i=1

ξi[Ei(k)+
N∑

j=1

wij ŷj (k − τij )]2+ξi0 [a2
i0j0

(ŷi0(k)+ ŷj0(k − τi0j0))
2

− 2|ai0j0 |(ŷi0(k)+ ŷj0(k − τi0j0))(Ei0(k)+
N∑

j=1

wi0j ŷj (k − τi0j ))]

−
N∑

i=1

ξiy
2
i (k)

=
N∑

i=1

ξi[E2
i (k)+

N∑

j=1, j �=i
w2
ij ŷ

2
j (k − τij )+ wii ŷ

2
i (k)

+ 2
N∑

j=1, j �=i

N∑

l>j, l �=i
wijwil · ŷj (k − τij )ŷl(k − τij )

+ 2
N∑

j=1, j �=i
wijwii ŷj (k − τij )ŷi(k)+ 2wii ŷi(k)Ei(k)

+ 2
N∑

j=1, j �=i
wij ŷj (k − τij )Ei(k)−

N∑

i=1

ξi [̂y2
i (k)

+ E2
i (k)+ 2ŷi (k)Ei(k)] + ξi0 [a2

i0j0
(ŷi0(k)+ ŷj0(k − τi0j0))

2

− 2|ai0j0 |(ŷi0(k)+ ŷj0(k − τi0j0))(Ei0(k)+
N∑

j=1

wi0j ŷj (k − τi0j ))],

(6.43)

and

ΔV2(k) =
N∑

i=1

ξi

N∑

j=1

|aij |[
k∑

k+1−τij
ŷ2
j (s)−

k−1∑

k−τij
ŷ2
j (s)]

=
N∑

i=1

ξi

N∑

j=1

|aij |[̂y2
j (k)− ŷ2

j (k − τij )]
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=1

2

N∑

i=1

ξi

N∑

j=1

N∑

l=1

|aij ||ail |[̂y2
j (k)− ŷ2

j (k − τij )+ ŷ2
l (k)− ŷ2

l (k − τil)]

=
N∑

i=1

ξi[
N∑

j=1, j �=i
a2
ij (ŷ

2
j (k)− ŷ2

j (k − τij ))+
N∑

j=1, j �=i

N∑

l>j, l �=i
|aij ||ail |

(ŷ2
j (k)− ŷ2

j (k − τij )+ ŷ2
l (k)− ŷ2

l (k − τij ))+
N∑

j=1, j �=i
|aij ||aii |(ŷ2

j (k)

− ŷ2
j (k − τij ))]

=
N∑

i=1

ξi[
N∑

j=1, j �=i
w2
ij (ŷ

2
j (k)− ŷ2

j (k − τij ))+
N∑

j=1, j �=i

N∑

l>j, l �=i
wijwil(ŷ

2
j (k)

− ŷ2
j (k − τij )+ ŷ2

l (k)− ŷ2
l (k − τil))+

N∑

j=1, j �=i
wijwii(ŷ

2
j (k)

− ŷ2
j (k − τij ))]+ξi0 [a2

i0j0
(ŷ2

j0
(k)−ŷ2

j0
(k − τi0j0))+|ai0j0 ||ai0i0 |(ŷ2

j0
(k)

− ŷ2
j0
(k − τi0j0))− |ai0j0 |

N∑

j=1, j �=i0
wi0j (ŷ

2
j (k)− ŷ2

j (k − τi0j ))

+ |ai0j0 |
N∑

l �=i0, l �=j0

|ai0l |(ŷ2
j0
(k)− ŷ2

j0
(k − τi0j0)+ŷ2

l (k)− ŷ2
l (k − τi0l ))].

(6.44)

Let

Δ1 =
N∑

i=1

ξi[
N∑

j=1, j �=i
w2
ij ŷ

2
j (k − τij )+ wii ŷ

2
i (k)+ 2

N∑

j=1, j �=i

N∑

l>j, l �=i
wijwil

ŷj (k − τij )ŷl(k − τij )+ 2
N∑

j=1, j �=i
wijwii ŷj (k − τij )ŷi(k)−

N∑

i=1

ξi ŷ
2
i (k)

+
N∑

i=1

ξi[
N∑

j=1, j �=i
w2
ij (ŷ

2
j (k)− ŷ2

j (k − τij ))+
N∑

j=1, j �=i

N∑

l>j, l �=i
wijwil(ŷ

2
j (k)

−ŷ2
j (k − τij )+ŷ2

l (k)−ŷ2
l (k − τil))+

N∑

j=1, j �=i
wijwii(ŷ

2
j (k)− ŷ2

j (k − τij ))]
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=
N∑

i=1

ξi[
N∑

j=1, j �=i
w2
ij ŷ

2
j (k)+ w2

ii ŷ
2
i (k)+

N∑

j=1, j �=i

N∑

l>j, l �=i
wijwil(ŷ

2
j (k)+ ŷ2

l (k)

−ŷ2
j (k − τij )− ŷ2

l (k − τil)+ 2ŷj (k − τij )ŷl(k − τij ))+
N∑

j=1, j �=i
wijwii

·(ŷ2
j (k)− ŷ2

j (k − τij )+ 2ŷj (k − τij )ŷi(k))] −
N∑

i=1

ξi ŷ
2
i (k)

=
N∑

i=1

ξi[
N∑

j=1

w2
ij ŷ

2
j (k)+

N∑

j=1, j �=i

N∑

l>j, l �=i
wijwil(ŷ

2
j (k)+ ŷ2

l (k))+
N∑

j<i

wijwii

·(ŷ2
j (k)+ ŷ2

i (k))+
N∑

l>i

wilwii(ŷ
2
l (k)+ ŷ2

i (k))− ŷ2
i (k)]

−
N∑

i=1

ξi[
N∑

j=1, j �=i

N∑

l>j, l �=i

wijwil(ŷj (k − τij )− ŷl(k − τil))
2 +

N∑

j=1, j �=i
wijwii(ŷi (k)− ŷj (k − τij ))

2]

=
N∑

i=1

ξi[
N∑

j=1

w2
ij ŷ

2
j (k)+

N∑

j=1

N∑

l=1, l �=j
wijwil ŷ

2
j (k)− ŷ2

i (k)]

−
N∑

i=1

ξi[
N∑

j=1, j �=i

N∑

l>j, l �=i

wijwil(ŷj (k − τij )− ŷl(k − τil))
2 +

N∑

j=1, j �=i
wijwii(ŷi (k)− ŷj (k − τij ))

2]

=
N∑

i=1

ξi[
N∑

j=1

N∑

l=1

wijwil ŷ
2
j (k)− ŷ2

i (k)]

−
N∑

i=1

ξi[
N∑

j=1, j �=i

N∑

l>j, l �=i
wijwil(ŷj (k − τij )

−ŷl(k − τil))
2 +

N∑

j=1, j �=i
wijwii(ŷi (k)− ŷj (k − τij ))

2]



6.2 Discrete-Time Multi-agent Consensus 145

=
N∑

i=1

ξi[
N∑

j=1

wij ŷ
2
j (k)− ŷ2

i (k)] −
N∑

i=1

ξi[
N∑

j=1, j �=i

N∑

l>j, l �=i
wijwil(ŷj (k − τij )

−ŷl(k − τil))
2 +

N∑

j=1, j �=i
wijwii(ŷi (k)− ŷj (k − τij ))

2], (6.45)

Δ2 = ξi0 [a2
i0j0

(ŷi0(k)+ŷj0(k − τi0j0))
2 − 2|ai0j0 |(ŷi0(k)+ ŷj0(k − τi0j0))

N∑

j=1

wi0j

·̂yj (k − τi0j )] + ξi0[a2
i0j0

(ŷ2
j0
(k)− ŷ2

j0
(k − τi0j0))+ |ai0j0 ||ai0i0 |(ŷ2

j0
(k)

−ŷ2
j0
(k − τi0j0))− |ai0j0 |

N∑

j=1, j �=i0
wi0j (ŷ

2
j (k)− ŷ2

j (k − τi0j ))

+|ai0j0 |
N∑

l �=i0, l �=j0

|ai0l |(ŷ2
j0
(k)− ŷ2

j0
(k − τi0j0)+ ŷ2

l (k)− ŷ2
l (k − τi0l ))]

= ξi0 [a2
i0j0

(ŷ2
i0
(k)+ 2ŷi0(k)ŷj0(k − τi0j0))− 2|ai0j0 |wi0i0 ŷ

2
i0
(k)− 2|ai0j0 |wi0i0

·̂yi0(k)ŷj0(k − τi0j0)+ a2
i0j0

ŷ2
j0
(k)+ |ai0j0 ||ai0i0 |(ŷ2

j0
(k)+ ŷ2

i0
(k)

−ŷ2
j0
(k − τi0j0)L− ŷ2

i0
(k))− |ai0j0 |

N∑

j=1, j �=i0
wi0j (ŷ

2
j (k)+ ŷ2

i0
(k))

−|ai0j0 |
N∑

l �=i0, l �=j0

|ai0l |(ŷ2
j0
(k)

+ŷ2
l (k))+ |ai0j0 |

N∑

j=1, j �=i0
wi0j (−ŷ2

i0
(k)− ŷ2

j (k − τi0j )

−2ŷi0(k)ŷj (k − τi0j ))

+|ai0j0 |
N∑

l �=i0, l �=j0

|ai0l |(−ŷ2
j0
(k − τi0j0)

−ŷ2
l (k − τi0l )− 2ŷj0(k − τi0j0)ŷl(k − τi0j )]

= ξi0 [a2
i0j0

ŷ2
i0
(k)− 2|ai0j0 |wi0i0 ŷ

2
i0
(k)+ a2

i0j0
ŷ2
j0
(k)+ |ai0j0 ||ai0i0 |(ŷ2

j0
(k)

+ŷ2
i0
(k))+ |ai0j0 ||ai0i0 |(−ŷ2

i0
(k)− ŷ2

j0
(k − τi0j0)
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−2ŷi0(k)ŷj0(k − τi0j0))− |ai0j0 |
N∑

j=1, j �=i0

wi0j (ŷ
2
j (k)+ ŷ2

i0
(k))+ |ai0j0 |

N∑

l �=i0, l �=j0

|ai0l |(ŷ2
j0
(k)+ ŷ2

l (k))

+|ai0j0 |
N∑

j=1, j �=i0
wi0j · (ŷi0(k)

−ŷj (k − τi0j ))
2 − |ai0j0 |

N∑

l �=i0, l �=j0

|ai0l |(ŷj0(k − τi0j0)− ŷl(k − τi0l ))
2]

= ξi0 [−|ai0j0 |̂y2
i0
(k)+ |ai0j0 |̂y2

j0
(k)− |ai0j0 ||ai0i0 |(ŷi0(k)

+ŷj0(k − τi0j0))
2 + |ai0j0 |

·
N∑

j=1, j �=i0
wi0j (ŷi0(k)− ŷj (k − τi0j ))

2 − |ai0j0 |
N∑

l �=i0, l �=j0

|ai0l |(ŷj0(k − τi0j0)

−ŷl(k − τi0l ))
2], (6.46)

and

Δ3 =
N∑

i=1

ξi[2wii ŷi(k)Ei(k)+ 2
N∑

j=1, j �=i
wij ŷj (k − τij )Ei(k)] − 2

N∑

i=1

ξi ŷi (k)

Ei(k)− 2|ai0j0 |(ŷi0(k)+ ŷj0(k − τi0j0))Ei0(k)

= 2
N∑

i=1

ξi

N∑

j=1, j �=i
wijEi(k)(ŷj (k − τij )− ŷi (k))− 2ξi0 |ai0j0 |Ei0(k)(ŷi0(k)

+ŷj0(k − τi0j0))

≤
N∑

i=1

ξi

N∑

j=1, j �=i
wij [ 1

αi
E2
i (k)+ αi(ŷj (k − τij )− ŷi (k))

2] + ξi0 |ai0j0 |

[ 1

αi0
E2
i0
(k)+ αi0(ŷi0(k)+ ŷj0(k − τi0j0))

2]. (6.47)
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Substituting (6.45), (6.46), and (6.47) into (6.42), we can obtain that

ΔV (k) = Δ1 +Δ2 +Δ3

=
N∑

i=1

ξi[
N∑

j=1

wij ŷ
2
j (k)− ŷ2

i (k)] + ξi0[−|ai0j0 |̂y2
i0
(k)+ |ai0j0 |̂y2

j0
(k)]

−
N∑

i=1

ξi[
N∑

j=1, j �=i

N∑

l>j, l �=i
wijwil(ŷj (k − τij )− ŷl(k − τil))

2

+
N∑

j=1, j �=i
wijwii(ŷi(k)− ŷj (k − τij ))

2] + ξi0[−|ai0j0 ||ai0i0 |(ŷi0(k)

+ŷj0(k − τi0j0))
2 + |ai0j0 |

N∑

j=1, j �=i0
wi0j (ŷi0(k)− ŷj (k − τi0j ))

2

−|ai0j0 |
N∑

l �=i0, l �=j0

|ai0l |(ŷj0(k − τi0j0)− ŷl(k − τi0l ))
2]

+2
N∑

i=1

ξi

N∑

j=1, j �=i
wijEi(k)(ŷj (k − τij )− ŷi (k))

−2ξi0 |ai0j0 |Ei0(k)(ŷi0(k)+ ŷj0(k − τi0j0))

=
N∑

i=1

ξi

N∑

j=1

|aij |̂y2
j (k)−

N∑

i=1

ξi ŷ
2
i (k)−

N∑

i=1

ξi[
N∑

j=1, j �=i

N∑

l>j, l �=i
wijwil ·

(ŷj (k − τij )− ŷl(k − τil))
2 +

N∑

j=1, j �=i
wij aii(ŷi (k)− ŷj (k − τij ))

2]

−ξi0 [|ai0j0 ||ai0i0 |(ŷi0(k)+ ŷj0(k − τi0j0))
2

+|ai0j0 |
N∑

l �=i0, l �=j0

|ai0l |(ŷj0(k − τi0j0)− ŷl(k − τi0l ))
2]

+2
N∑

i=1

ξi

N∑

j=1, j �=i
wijEi(k)(ŷj (k − τij )− ŷi (k))

−2ξi0 |ai0j0 |Ei0(k)(ŷi0(k)+ ŷj0(k − τi0j0))

≤ −
N∑

i=1

ξi[
N∑

j=1, j �=i

N∑

l>j, l �=i
wijwil(ŷj (k − τij )− ŷl(k − τil))

2
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+
N∑

j=1, j �=i
wij (aii − αi)(ŷi(k)− ŷj (k − τij ))

2]

−ξi0 [|ai0j0 |(ai0i0 − αi0)(ŷi0(k)+ ŷj0(k − τi0j0))
2

+|ai0j0 |
N∑

l �=i0, l �=j0

|ai0l |(ŷj0(k − τi0j0)− ŷl(k − τi0l ))
2]

+ξi0 |ai0j0 |
1

αi0
E2
i0
(k)+

N∑

i=1

ξi

N∑

j=1, j �=i
wij

1

αi
E2
i (k)

= −
N∑

i=1

ξi

N∑

j=1, j �=i

N∑

l>j, l �=i
wijwil(ŷj (k − τij )− ŷl(k − τil))

2

−ξi0 |ai0j0 |
N∑

l �=i0, l �=j0

|ai0l |(ŷj0(k − τi0j0)− ŷl(k − τi0l ))
2

−
N∑

i=1

ξi

N∑

j=1, j �=i
|aij |(aii − αi)(ŷi(k)− bisgn(aij )bj ŷj (k − τij ))

2

+
N∑

i=1

ξi(1 − aii)
1

αi
E2
i (k), (6.48)

which implies (6.41) holds.
Let f (αi) = αi(aii−αi)

1−aii . We aim to reduce the number of event-triggering time
instants as much as possible when the parameter αi is chosen. That is to say, the
event-triggered condition needs to be more difficult to be satisfied when we select
the parameter αi . To realize this objective, we choose αi = aii

2 such that f (αi) can
be maximized. Note that the event-triggered condition (6.32) can be rewritten as
follows for i ∈ N :

E2
i (k) = e2

i (k) >
σa2

ii

4(1 − aii)

N∑

j=1, j �=i
|aij |(sgn(aij )̂xj (k − τij )− x̂i (k))

2

= σa2
ii

4(1 − aii)

N∑

j=1, j �=i
|aij |(bisgn(aij )bj ŷj (k − τij )− ŷi (k))

2.

(6.49)
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Under the event-triggered condition (6.49), we have that

−
N∑

i=1

ξi

N∑

j=1, j �=i
|aij |(aii − αi)(ŷi(k)− bisgn(aij )bj ŷj (k − τij ))

2

+
N∑

i=1

ξi(1 − aii)
1

αi
E2
i (k)

≤ −
N∑

i=1

ξi(aii − aii

2
)
4(1 − aii)

σa2
ii

e2
i (k)+

N∑

i=1

ξi(1 − aii)
2

aii
E2
i (k)

= −
N∑

i=1

ξi
2(1 − aii)

aii
(

1

σ
− 1)E2

i (k). (6.50)

Note that 0 < σ < 1. Hence, under the trigger condition (6.49), it holds that for
∀k ≥ 0,

ΔV (k) ≤ −
N∑

i=1

ξi

N∑

j=1, j �=i

N∑

l>j, l �=i
wijwil(ŷj (k − τij )− ŷl(k − τil)

2

− ξi0 |ai0j0 | ·
N∑

l �=i0, l �=j0

|ai0l |(ŷj0(k − τi0j0)− ŷl(k − τi0l ))
2

−
N∑

i=1

ξi
2(1 − aii)

aii
· ( 1

σ
− 1)E2

i (k)

≤0. (6.51)

According to LaSalle’s invariance principle, all the agents in the network will
converge to the maximal positively invariant set of Φ = {θ ∈ Υ−τ , x(k + θ) ∈
X : ΔV (k) = 0} asymptotically. Note that ΔV (k) = 0 if and only if ei(k) = 0,

−
N∑

i=1

ξi

N∑

j=1, j �=i

N∑

l>j, l �=i
wijwil(ŷj (k − τij )− ŷl(k − τil)

2 − ξi0 |ai0j0 |
N∑

l �=i0, l �=j0

|ai0l |(ŷj0(k − τi0j0)− ŷl(k − τi0l ))
2 = 0, (6.52)

and

N∑

i=1

ξi
aii

2

N∑

j=1, j �=i
aij (bisgn(aij )bj ŷj (k − τij )− ŷi (k))

2 = 0. (6.53)
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Hence, ΔV (k) = 0 if and only if ei(k) = 0, and

ŷj (k − τij ) = sgn(aij )ŷi(k), ∀i, j ∈ Ni , (6.54)

or

ŷj (k − τij ) = ŷi (k), if wij > 0, (6.55)

ŷj0(k − τij ) = −ŷi0(k). (6.56)

Substituting (6.54) into (6.37) yields that

yi(k + 1) = yi(k), ∀i ∈ N . (6.57)

Hence, we have

yi(k) = ŷi (k) = ŷj (k − τij ) = yj (k − τij ) = yj (k), ∀wij > 0. (6.58)

It follows that G is strongly connected, and it implies

yi(k) = yj (k), k ≥ −τij , ∀i, j ∈ N , (6.59)

and

yi0(k) = −yj0(k), k ≥ −τij . (6.60)

Hence, ΔV (k) = 0 if and only if yi(k) = 0, ∀i ∈ N . By LaSalle’s invariance
principle, we have

lim
k→+∞ y1(k) = lim

k→+∞ y2(k) = · · · = lim
k→+∞ yN(k) = 0,

which implies that

lim
k→+∞ x1(k) = lim

k→+∞ x2(k) = · · · = lim
k→+∞ xN(k) = 0.

Remark 6.13 It can be observed that only the received neighboring states are used in
the trigger condition (6.30). Hence, the event-based protocol proposed in this section
is distributed. Zeno behavior is defined as an infinite number of triggering occurring
in a finite-time interval, which should be avoided in the event-based consensus
protocol. Nevertheless, the Zeno behavior can always be excluded in discrete-time
multi-agent system since the maximum triggering number is the length of the finite-
time interval.
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6.2.2 Self-triggered Approach

In Theorem 6.12, we have proved that the proposed event-based protocol is effective
to realize the bipartite consensus of the network model. However, the triggering
condition needs to be continuously verified for each agent. In this section, we
aim to solve this difficult problem by designing a self-triggered algorithm, i.e.,
the next update time is precomputed based on predictions using the received
data. Under the proposed self-triggered algorithm, the signal remains unchanged
until next triggering time of multi-agent networks. The appropriate equation for
obtaining the triggering time guarantees desired levels of performance. Hence, self-
triggered communication schemes for multi-agent networks can effectively reduce
the communication costs.

Different from the event-triggered communication strategy, for self-triggered
algorithm, the agent i will predict next triggering time instant t il+1 according to
the information at time t il . Next, we will give an algorithm to determine the time
instant t il+1.

Denote

l(k − τij ) = arg maxl∈N{tjl |tjl ≤ k − τij }. (6.61)

Let

pi(k) =
N∑

j=1, j �=i
|aij |(sgn(aij )̂xj (tjl(k−τij ))− xi(t

i
l )), (6.62)

and

qi(k) = σa2
ii

4(1 − aii)

N∑

j=1, j �=i
|aij |(̂xi(t il )− sgn(aij )̂xj (t

j

l(k−τij )))
2. (6.63)

For k ∈ [t il , t il+1), recall that e2
i (k) = (xi(k) − xi(t

i
l ))

2. For the positive integer m,
we have

xi(t
i
l +m) =xi(t il +m− 1)+

∑

j∈Ni

|aij |(sgn(aij )̂xj (t il +m− 1 − τij )

− x̂i (t
i
l +m− 1))

=xi(t il +m− 2)+
∑

j∈Ni

|aij |(sgn(aij )̂xj (t il +m− 2 − τij )

− x̂i (t
i
l +m− 2))+

∑

j∈Ni

|aij |(sgn(aij )̂xj (t il +m− 1 − τij )
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− x̂i (t
i
l +m− 1))

= · · · · · ·
=xi(t il )+

∑

j∈Ni

|aij |(sgn(aij )̂xj (t il − τij )− xi(t
i
l ))+ · · · +

+
∑

j∈Ni

|aij |(sgn(aij )̂xj (t il +m− 1 − τij )− x̂i (t
i
l +m− 1)).

(6.64)

To propose the self-triggered algorithm to find t il+1, set Σ = 0 and s = t il . The
following two cases are considered:

Case 1: For k > s, if agent i does not receive the renewed information from its
neighbors, it follows from (6.64) that

(xi(k)− xi(s))
2 = [Σ + pi(s)(k − s)]2, i ∈ N . (6.65)

Solving the inequality [Σ + pi(s)(k − s)]2 − qi(s) > 0, we can obtain that the
minimum k = ωi

l satisfying the above inequality. Hence, according to the event-
triggered condition (6.33), the event-triggered time instant is is t il+1 = ωi

l in this
case.

Case 2: If agent i firstly receives the renewed information from some of its
neighbors at time k0 < ωi

l , it follows from (6.64) that

(xi(k
0)− xi(s))

2 = [pi(s)(k0 − s)]2, i ∈ N . (6.66)

Set Σ = 0 + pi(s)(k
0 − s). According to the event-triggered condition (6.33),

we should update s = k0 and then go back to Case 1.
Based on the above discussions, an efficient algorithm to find t il+1, ∀i ∈ N can
be summarized as follows.

Algorithm 6.1 Self-triggered algorithm for system (6.27)

Step 1. For each agent i ∈ N , set Σ = 0 and s = t il .
Step 2. Solving the inequality [Σ + pi(s)(k − s)]2 − qi(s) > 0, we can obtain the minimum

k = ωi
l such that the inequality holds.

Step 3. For k ≥ s, if agent i does not receive the renewed information from its neighbors until
k = ωi

l , then set t il+1 = ωi
l and stop the algorithm.

Step 4. If agent i firstly receives the renewed information from some of its neighbors at time
k0 < ωi

l , set Σ = Σ + pi(s)(k
0 − s). Update s = k0 and go to Step 2.

According to the above analysis, the following Theorem 6.14 can be obtained.
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Theorem 6.14 Consider the multi-agent system (6.27) with arbitrary finite com-
munication delay τij under control law (6.28). If the first triggering time t i1 = 0,
agent i, i ∈ N , determines the triggering time sequence t il |∞l=2 by self-triggered
algorithm 6.1. Then, we can obtain the following results:

(i) System (6.27) can achieve bipartite consensus asymptotically if signed digraph
G is structurally balanced.

(ii) If signed digraph G is structurally unbalanced, then the system (6.27) can
achieve consensus and the final consensus value is 0, i.e., lim

k→+∞ xi(k) =
0, ∀i ∈ N .

6.2.3 Numerical Example

Example 6.15 Consider a signed multi-agent network with structurally balanced
topology and structurally unbalanced topology, respectively (see Fig. 6.8). Set σ =
0.9 in event-triggered condition (6.30) and the distinct communication delays are as
follows:

Γ = (τij )6×6 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

0 2 0 0 0 0
0 0 3 0 0 0
1 0 0 0 0 2
0 0 2 0 3 0
0 0 0 0 0 1
0 0 0 2 0 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

.

According to Theorem 6.12, one can easily conclude that under the proposed
event-triggered condition (6.30),

(i) the system with communication delays will achieve bipartite consensus when
the network topology is shown in Fig. 6.8a;

(ii) the states of all the agents will converge to zero when the network topology is
shown in Fig. 6.8b.

The evolvement of the agents under the event-triggered condition (6.30) is shown
in Figs. 6.9 and 6.10, respectively. The numerical results in Fig. 6.9 show that the
individual state of the multi-agent system converges to the bipartite constant limit
that has the same modulus and different signs. The numerical results in Fig. 6.10
show that the individual state of the multi-agent system converges to zero. Figures
6.9 and 6.10 agree well with the proposed theoretical result.
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Fig. 6.8 Network topology in Example 6.15. (a) structurally balanced. (b) Structurally unbalanced

The individual event time instants corresponding to Figs. 6.9 and 6.10 under the
proposed event-triggered protocol are shown in Figs. 6.11 and 6.12, respectively.
Table 6.1 illustrates the event-triggering frequency under two different network
topologies. One can conclude from the simulation example that the event-based
strategy in this chapter can significantly decrease the information transmission
during the bipartite consensus process of the signed network model with distinct
communication delays.

6.3 Summary

In this chapter, the bipartite consensus of continuous-time and discrete-time multi-
agent system was studied. For the continuous-time model, according to Perron–
Frobenius theorem and some other mathematical analysis, it was found that the
bipartite consensus can be asymptotically reached if the strongly connected signed
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Fig. 6.9 The states of multi-agent system (6.27) associated with signed diagraph with balanced
structure in Fig. 6.8a

Fig. 6.10 The states of multi-agent system (6.27) associated with signed digraph with unbalanced
structure in Fig. 6.8b

digraph G is structurally balanced. For the discrete-time model, communication
delays and event-based strategy were considered simultaneously. It is shown
that under the proposed event-triggered condition the bipartite consensus can be
asymptotically achieved if the network topology is structurally balanced, and all the
agents converge to zero if the signed digraph is structurally unbalanced. Numerical
examples were provided to demonstrate the effectiveness of our derived results.
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Fig. 6.11 Event-trigger times associated with signed digraph in Fig. 6.8a
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Fig. 6.12 Event-trigger times associated with signed digraph in Fig. 6.8b

Table 6.1 The total number of triggering over the total number of iterations in simulation under
structurally balanced topology and structurally unbalanced topology, respectively

Node 1 2 3 4 5 6

Balanced 26.6% 25.3% 21.3% 28.6% 26.0% 26.0%

Unbalanced 27.3% 26.6% 31.3% 34% 26.0% 28.6%
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Chapter 7
Finite-Time and Fixed-Time Bipartite
Consensus for Multi-agent Systems
with Antagonistic Interactions

In the last decades, many typical consensus problems have been investigated, such
as pinning consensus [1], impulsive consensus [2, 3], event-based consensus [4–9],
minimum-energy consensus [10], and references therein [11–13]. Note that most
results of consensus problem of multi-agent systems are only reached asymptoti-
cally. From the viewpoint of time optimization, it is one of the best control results
that all states of the multi-agent systems are convergent in a finite time. Motivated
by the discussion, a finite-time consensus problem has been studied to reach a high-
speed convergence which can bring some good performances for the multi-agent
systems. For single-integrator dynamics, Wang and Xiao [14] proposed a finite-time
protocol for consensus of multi-agent systems with time-varying topologies. By
applying the observer-based control algorithms, the finite-time consensus tracking
in multi-agent systems was achieved in [15]. With the consideration that the global
formation information was only available for a small number of agents, the authors
in [16] addressed the finite-time formation control of multi-agent systems. For
double-integrator dynamics, the finite-time consensus problem for leaderless and
leader–follower multi-agent systems with external disturbances was discussed in
literature [17]. Since the finite-time control theory has attracted much attention for
researchers, there is a rich body of literature about finite-time control problems [18–
21].

From the aspect of the convergence rate, consensus problems can be separated
into asymptotic consensus problems and finite-time consensus problems. In many
practical situations, consensus over a finite time is more efficient than asymptotic
convergence because the finite-time consensus has a broader range of applications
[22]. The study of finite-time consensus problems has drawn much attention from
researchers because of their faster convergence and better robustness [23, 24].
Xiao and Wang [25] first proposed two finite-time protocols, one of them being
ui(t) = ∑

k∈Ni
aiksgn(xk(t) − xi(t))|xk(t) − xi(t)|α(0 < α < 1), and this

protocol can be used to solve the finite-time consensus problem of multi-agent
systems with fixed undirected topology. Then, they [14] extended the finite-time

© Springer Nature Singapore Pte Ltd. and Science Press, China 2021
J. Lu et al., Collective Behavior in Complex Networked Systems under Imperfect
Communication, https://doi.org/10.1007/978-981-16-1506-1_7

159

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-16-1506-1_7&domain=pdf
https://doi.org/10.1007/978-981-16-1506-1_7


160 7 Finite-Time and Fixed-Time Bipartite Consensus for Multi-agent Systems. . .

consensus results to directed networks with time-varying topologies. The finite-
time consensus for leader-following models was further discussed in [26], and
homogeneous functions were used to prove the finite-time consensus. Using binary
control protocols, Chen et al. in [18] studied the finite-time distributed consensus
problem for multi-agent systems. Since the protocols are discontinuous, the concept
of differential inclusion was used to deal with this problem [27]. For fractional-
order multi-agent systems, the exponential finite-time consensus problem with a
directed communication network was investigated in [28]. Du et al. considered the
consensus tracking problem of multiple nonholonomic high-order chained-form
systems in [29], and a finite-time observer-based distributed control strategy is
proposed. In literature [30], Ning et al. firstly proposed a new distributed observer
for each follower to estimate the leader state and the leader input in a prescribed
nonholonomic chained-form dynamics. Due to some indispensable symmetric
requirements, many results concerning the finite-time consensus were restricted
to multi-agent systems with undirected graphs. However, the attraction–repulsion
rule and coupled strength between two individuals in many practical networks are
potentially not identical. Therefore, a concept named detail-balanced graph was
proposed in [31] to describe more general models whose communication channels
among agents are also bidirectional but different weights. Motivated by this, most of
the finite-time consensus results can be extended to detail-balanced graphs, such as
[32]. A general nonlinear finite-time consensus protocol was designed in [20], and
the network topology was extended to detail-balanced directed graphs containing a
rooted spanning tree.

Although many interesting finite-time consensus results have been obtained, the
bound of the finite settling time heavily depends upon the initial conditions. This
limits the practical applications, since the knowledge of initial states of agents in
networks is unavailable in advance. Therefore, to overcome this drawback, Parsegov
et al. [33] and Zuo et al. [34] have independently given a new concept called fixed-
time stability for multi-agent systems, which can guarantee that the consensus in a
finite time as well as the settling time is uniformly bounded for any initial conditions.
This makes it possible to predetermine an accurate estimation for the settling
time even though initial states of agents are unavailable in advance. Following
this streamline of dealing with fixed-time consensus, many new results have been
obtained, see [19, 35–37].

Recently, networks with antagonistic interactions were studied in [38, 39], and
it becomes a focus for studying. As claimed in [40], bipartite consensus, where
the sign of the edges of the graph can be negative or positive, can be realized
over networks with antagonistic interactions. Thus, the resulting Laplacian graph
is called signed Laplacian, which is distinguished from the normal Laplacian
graph. The signed Laplacian graph is commonly used in bipartite consensus,
cluster consensus, optimization control, affine formation control, and distance-based
localization [41–43]. In [44], the results of bipartite consensus have been extended to
higher-order multi-agent systems. Furthermore, the finite-time bipartite consensus,
where all the agents can achieve the same value in modulus within a finite time, was
investigated in [45]. Meng et al. proposed two consensus protocols and then gave
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some sufficient conditions to guarantee that all the agents can reach an agreement
in finite time. Unfortunately, until now, few results of fixed-time consensus have
been proposed for multi-agent systems with mixed cooperative and antagonistic
interactions. It is challenging to generalize the fixed-time consensus to the networks
with antagonistic interactions.

Motivated by the aforementioned discussions, in this chapter, we will consider
a general nonlinear finite-time bipartite consensus and a new class of fixed-time
bipartite consensus protocols for the multi-agent systems with structurally balanced
signed graphs. By using the Lyapunov stability method, all agents can be guaranteed
to reach bipartite consensus at some settling time.

7.1 Preliminaries

A vector function g(z) = [g1(z), g2(z), . . . , gN(z)]� with z ∈ R
N is said to be

homogeneous if there exist ι ∈ R and (l1, l2, . . . , lN ) (li > 0, i ∈ N ) such that
for any ε > 0, i ∈ N , gi(εl1z1, ε

l2z2, . . . , ε
lN zN) = ει+li gi(z). We also call g(z)

homogeneous with dilation (l1, l2, . . . , lN ) of degree ι.

Definition 7.1 ([46]) For a given N -dimensional system,

ż(t) = g(z), z = (z1, z2, . . . , zN)
� ∈ R

N, (7.1)

if g(z) : D → R
N , where D ∈ R

N is the domain of g, is homogeneous with dilation
(l1, l2, . . . , lN ) of degree ι, then we call system (7.1) an ι degree homogeneous
system.

Definition 7.2 ([46]) For a given N -dimensional system,

ż(t) = g(z)+ g̃(z), g̃(0) = 0, (7.2)

if g(z) : D → R
N is homogeneous with dilation (l1, l2, . . . , lN ) of degree ι and

g̃(z) is a continuous vector function satisfying the condition

lim
ε→0

g̃i
(
εl1z1, ε

l2z2, . . . , ε
lN zN

)

ει+li
= 0, ∀z �= 0, i ∈ N , (7.3)

then we say that system (7.2) is an ι degree locally homogeneous system.

Definition 7.3 ([47]) The equilibrium z = 0 of system (7.1) is said to be finite-time
stable if the following conditions hold:

1. For any open neighborhood of the origin Û ⊆ D, z = 0 is asymptotically stable.
2. For any initial condition z0 ∈ D\{0}, there exists a settling time T > 0 such that

every solution z(t, z0) of system (7.1) satisfies z(t, z0) ∈ D\{0} for t ∈ [0, T )
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and

lim
t→T

z(t, z0) = 0.

Furthermore, for any t > T , one has z(t, z0) = 0.

In particular, if z = 0 is a finite-time stable point with Û = D = R
N , then the

equilibrium is said to be globally finite-time stable.

Lemma 7.4 ([46]) Suppose that system (7.1) is an ι degree homogeneous system
and z = 0 is a stable equilibrium. If ι < 0, then the equilibrium of system (7.1) is
finite-time stable; furthermore, if Eq. (7.3) holds, then system (7.2) is locally finite-
time stable.

7.2 Finite-Time Bipartite Consensus

In this section, we will discuss the finite-time bipartite consensus problem for detail-
balanced multi-agent networks with antagonistic interactions. First, consider the
multi-agent systems with a structurally balanced signed graph G, and assume that
the agents have the following dynamics:

ẋi (t) = ui(t), i ∈ N , (7.4)

where xi(t) ∈ R denotes the state of agent i, and ui(t) ∈ R is the protocol to be
designed.

7.2.1 Finite-Time Bipartite Consensus Protocol

For the detail-balanced multi-agent systems (7.4) with cooperative and competitive
coupling, we first design a bipartite consensus protocol as follows:

ui(t) =
N∑

k=1

[aiksgn(xk(t)− sgn(aik)xi(t))

× ϕ(|xk(t)− sgn(aik)xi(t)|)], (7.5)

where ϕ : R≥0 → R≥0 is a continuous function satisfying the following
assumption: ϕ(x) = 0 if and only if x = 0.

Under protocol (7.5), we now give the definition of finite-time bipartite consensus
for system (7.4).
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Definition 7.5 System (7.4) achieves bipartite consensus if limt→+∞ |xi(t)| =
c (∀i ∈ N ). Moreover, if there exists a settling time T0 ∈ (0,+∞) such that
limt→T0 |xi(t)| = c and |xi(t)| = c (∀t ≥ T0), then it achieves finite-time bipartite
consensus.

Before investigating the finite-time bipartite consensus problems for multi-agent
system (7.4) under protocol (7.5), we first introduce the concept of the order of
function ϕ(x).

Definition 7.6 The order of ϕ(x) is said to be r if there exists a positive scalar r
satisfying ϕ(x) = limx→0+ O(xr), i.e., ϕ(x) = qxr +o(xr) around x = 0 for some
positive constant q.

Remark 7.7 This section aims to use the homogeneous function theory to study the
bipartite consensus problems; thus, the function ϕ with order r is adopted to design
protocol (7.5). Here, to make our results suitable for a wider range of systems, we
adopt a function with order r rather than the standard power function ϕ(x) = xr . In
addition, in contrast to the standard power function, the item o(xr) may increase the
convergence speed in some special cases.

Consider the special case of ϕ(x) = xr : If r = 1, then protocol (7.5) is described
as ui(t) = ∑N

k=1 aik(xk − sgn(aik)xi), which is a consensus protocol to handle
the bipartite consensus problem of multi-agent systems [40]. If 0 < r < 1, then
protocol (7.5) can be transformed into the finite-time bipartite consensus control
protocol which has been studied in [48]. Furthermore, if r = 0, it is a discontinuous
consensus protocol called the binary control protocol, and differential inclusion is
used to investigate the binary consensus problem with the binary control protocol
[18].

Lemma 7.8 Suppose that the structurally balanced signed graph G is strongly
connected with a detail-balanced structure; then, under protocol (7.5), the following
equation holds:

ψ(t) :=
(

1/
N∑

i=1

ξi

)
N∑

i=1

ξisixi(t) ≡ ψ(0) � ψ∗. (7.6)

Proof By Lemma 1.8, since G is structurally balanced, we can conclude that there
exists S ∈ D such that all the elements of SAS are nonnegative. Then, we have
siskaik = |aik|, which implies sisk = sgn(aik). Combined with the fact that
sgn(si) = si , the following equation can be obtained:

aiksgn(xk − sgn(aik)xi)ϕ(|xk − sgn(aik)xi |)
=aiksgn

(
s2
k xk − siskxi

)
ϕ
(|s2

k xk − siskxi |
)

=aiksgn(sk)sgn(skxk − sixi)ϕ(|skxk − sixi |)
=aiksksgn(skxk − sixi)ϕ(|skxk − sixi |). (7.7)
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Furthermore, we have

ξisi

N∑

k=1

aiksksgn(skxk − sixi)ϕ(|skxk − sixi |)

=
N∑

k=1

ξisiaiksksgn(skxk − sixi)ϕ(|skxk − sixi |)

=
N∑

k=1

|ξiaik|sgn(skxk − sixi)ϕ(|skxk − sixi |). (7.8)

Since G is detail-balanced with ξiaik = ξkaki , we can conclude that

N∑

i=1

N∑

k=1

|ξiaik|sgn(skxk − sixi)ϕ(|skxk − sixi |)

=
N∑

i=1

N∑

k=1

|ξkaki |sgn(sixi − skxk)ϕ(|sixi − skxk|)

= −
N∑

i=1

N∑

k=1

|ξkaki |sgn(skxk − sixi)ϕ(|skxk − sixi |)

= −
N∑

i=1

N∑

k=1

|ξiaik|sgn(skxk − sixi)ϕ(|skxk − sixi |),

which leads to
∑N

i=1
∑N

k=1 |ξiaik|sgn(skxk − sixi)ϕ(|skxk − sixi |) =0. Then,
calculating the derivative of ψ(t) along the trajectories of system (7.4) gives

ψ̇(t) =
(

1/
N∑

i=1

ξi

)
N∑

i=1

ξisi ẋ(t) =
(

1/
N∑

i=1

ξi

)
N∑

i=1

ξisiui(t)

= (1/
N∑

i=1

ξi)

N∑

i=1

N∑

k=1

|ξiaik|sgn(skxk − sixi)ϕ(|skxk − sixi |)

= 0. (7.9)

The Proof of Lemma 7.8 is completed.

Here, ψ∗ is called the weighted signed-average.
Throughout this section, we always assume that the order of ϕ is r .
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Theorem 7.9 Suppose that the structurally balanced signed graph G is strongly
connected with a detail-balanced structure. Then, under protocol (7.5), if r ≥ 0,
system (7.4) can achieve bipartite consensus. In particular, if r ∈ (0, 1), system
(7.4) can reach finite-time bipartite consensus.

Proof By Lemma 1.8, there exists a sign matrix S ∈ D such that SAS ≥ 0 for the
structurally balanced graph G. Let z(t) = Sx(t) and set z0 = z(0) = Sx(0). We can
obtain

zi(t) = sixi(t), i ∈ N . (7.10)

Substituting (7.10) into (7.4) with protocol (7.5) results in

żi (t) = si ẋi (t) = siui(t)

=
N∑

k=1

|aik|sgn(skxk − sixi)ϕ(|skxk − kixi |)

=
N∑

k=1

|aik|sgn(zk − zi)ϕ(|zk − zi |). (7.11)

Let ei(t) = zi(t) − ψ∗. Lemma 7.8 guarantees that ėi = żi . Set e(t) =
[e1(t), e2(t), . . . , eN(t)]� and ξ = [ξ1, ξ2, . . . , ξN ]�. We have that ξ� · e(t) = 0.
Consider the following Lyapunov function:

V (t) = 1

2

N∑

i=1

ξie
2
i (t). (7.12)

Obviously, V (t) is a continuous positive definite function. Calculating the derivative
of V (t) along the trajectories yields

dV

dt
=

N∑

i=1

ξiei

N∑

k=1

|aik|sgn(ek − ei)ϕ(|ek − ei |)

=
N∑

i=1

N∑

k=1

ei |ξiaik|sgn(ek − ei)ϕ(|ek − ei |)

= −
N∑

i=1

N∑

k=1

ek|ξiaik|sgn(ek − ei)ϕ(|ek − ei |)

= −1

2

N∑

i=1

N∑

k=1

|ξiaik|(ek − ei)sgn(ek − ei)ϕ(|ek − ei |)
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= −1

2

N∑

i=1

N∑

k=1

|ξiaik||ek − ei |ϕ(|ek − ei |)

≤ 0. (7.13)

If V̇ = 0, following ξ� · e(t) = 0, one has e(t) = 0. Together with LaSalle’s
invariance principle (Lemma 1.22), one can conclude that zi(t) converges to ψ∗.
zi(t) = sixi(t), so one has xi(t) → siψ

∗ when t → +∞. The first conclusion of
Theorem 7.9 is proved.

Next, we prove the case of r ∈ (0, 1). According to Definition 7.6, one can
conclude that there exists a constant d such that every x ∈ (0, d) satisfies ϕ(x) =
qxr + o(xr). Then, we can describe ėi (t) in the following form:

ėi (t) = q

N∑

k=1

|aik|sgn(ek − ei)|ek − ei |r

+
N∑

k=1

|aik|sgn(ek − ei)o(|ek − ei |r )

= gi + g̃i , i ∈ N , (7.14)

where gi = q
∑N

k=1 |aik|sgn(ek − ei)|ek − ei |r and g̃i = ∑N
k=1 |aik|sgn(ek −

ei)o(|ek − ei |r ). Let (l1, l2, . . . , lN ) = (1, 1, . . . , 1). Furthermore, we have

gi
(
εl1x1, ε

l2x2, . . . , ε
lN xN

)

= gi(εx1, εx2, . . . , εxN)

= q

N∑

k=1

|aik|sgn(εek − εei)|εek − εei |r

= εrq

N∑

k=1

|aik|sgn(ek − ei)|ek − ei |r

= ει+1gi, (7.15)

where ι = r − 1. Similarly, we can obtain that g̃i satisfies equation (7.3); thus,
Eq. (7.14) is a homogeneous system of degree ι. From Lemma 7.4 and the fact that
ι < 0, there exists a settling time T2 such that system (7.14) converges to zero
before T2. Since system (7.14) is globally stable from the first conclusion, system
(7.14) will converge to (0, d) in time T1. Let T0 = T1 + T2, and then, system (7.14)
will converge to zero in settling time T0, which means that the finite-time bipartite
consensus is obtained. The Proof of Theorem 7.9 is completed.
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Remark 7.10 Similarly to [32], if the signed graph G is structurally unbalanced,
we can prove that the states of all agents of multi-agent system (7.4) reach zero in
finite time by assuming the Lyapunov function as V (t) = 1

2

∑N
i=1 ξix

2
i (t). For the

detailed proof, one can refer to Theorem 7.9, and it is omitted here.

Corollary 7.11 Suppose that the structurally balanced signed graph G is connected
with an undirected structure. Then, under protocol (7.5), if r ≥ 0, system (7.4) can
achieve bipartite consensus. In particular, if r ∈ (0, 1), then system (7.4) can reach
finite-time bipartite consensus.

Remark 7.12 Since an undirected graph G is always detail-balanced with ξi ≡ 1 for
any i ∈ N , the Proof of Corollary 7.11 is omitted here. When the signed graph G is
structurally unbalanced and other conditions remain unchanged, we can also prove
that the states of all agents for system (7.4) converge to zero in finite time.

7.2.2 Pinning Bipartite Consensus Protocol

Theorem 7.9 demonstrates that system (7.4) can reach finite-time bipartite con-
sensus under protocol (7.5), and the agreement value is obtained as the weighted
signed-average of the initial value. However, in many real-world applications, the
final agreement is expected to be certain ideal value. To deal with this problem,
pinning control is a helpful tool. In this part, we will investigate the finite-
time bipartite consensus problem of multi-agent systems with a detail-balanced
antagonistic interaction topology via a pinning controller. Consider the following
multi-agent systems with pinning controller:

ẋi =
N∑

k=1

aiksgn(xk − sgn(aik)xi)ϕ(|xk − sgn(aik)xi |)− ηi, (7.16)

where

ηi =
{

sgn(x1 − c)ϕ(|x1 − c|), i = 1,

0, i = 2, 3, . . . , N

is the pinning control protocol, and c is the objective state, which all agents
need to be forced to. Since the signed graph G is structurally balanced, let V1 =
{1, 2, . . . , j} and V2 = {j + 1, j + 2, . . . , N}. Additionally, we can choose S ∈ D
with si = 1, vi ∈ V1 and si = −1, vi ∈ V2. Since G is strongly connected, we only
need to control one agent, which is assumed to be v1. The definition of finite-time
pinning bipartite consensus is as follows.
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Definition 7.13 For system (7.4) under protocol (7.16), if T = +∞ satisfies
⎧
⎪⎨

⎪⎩

lim
t→T

[xi(t)− c] = 0, i ∈ V1

lim
t→T

[xi(t)+ c] = 0, i ∈ V2,
(7.17)

then system (7.4) reaches pinning bipartite consensus. Furthermore, if there exists
a settling time T ∈ (0,+∞) such that xi(t) = c (i ∈ V1) and xi(t) = −c (i ∈
V2) hold for any t ≥ T , then system (7.4) achieves finite-time pinning bipartite
consensus.

Theorem 7.14 Suppose that the structurally balanced signed graph G is strongly
connected with a detail-balanced structure; then, under protocol (7.16), if r ≥ 0,
system (7.4) can achieve bipartite consensus. In particular, if r ∈ (0, 1), then system
(7.4) can reach finite-time bipartite consensus.

Proof Let z(t) = Sx(t) (respectively, zi(t) = sixi(t)). Calculating the derivative of
z(t) along the trajectories gives

żi (t) =
N∑

k=1

|aik|sgn(zk − zi)ϕ(|zk − zi |)− ηi. (7.18)

Let ei(t) = zi(t)− c; then, we have

ėi (t) =
N∑

k=1

|aik|sgn(zk − zi)ϕ(|zk − zi |)− ηi

=
N∑

k=1

|aik|sgn(ek − ei)ϕ(|ek − ei |)− ηi. (7.19)

The Lyapunov function V (t) = 1

2

N∑

i=1

ξie
2
i (t) is considered here. Calculating its

derivative yields

dV

dt
=

N∑

i=1

ξiei

[
N∑

k=1

|aik|sgn(ek − ei)ϕ(|ek − ei |)− ηi

]

= −1

2

N∑

i=1

N∑

k=1

|ξiaik||ek − ei |ϕ(|ek − ei |)−
N∑

i=1

ξieiηi

= −1

2

N∑

i=1

N∑

k=1

|ξiaik||ek − ei |ϕ(|ek − ei |)− ξ1|e1|ϕ(|e1|)

≤ 0. (7.20)
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Note that V̇ = 0 if and only if ek = ei and e1 = 0. Hence, we can obtain ei = 0 for
any i ∈ N . From LaSalle’s invariance principle (Lemma 1.22), zi(t) converges to
c. The first conclusion of Theorem 7.14 is completed.

Now, we prove the case of r ∈ (0, 1). Based on Definition 7.6, we know that
there exists a positive constant d such that for any x ∈ (0, d), ϕ(x) = qxr + o(xr)

is satisfied. Then, ėi (t) can be reduced to the following form:

ė1(t) =
N∑

k=1

a1ksgn(ek − e1)ϕ(|ek − e1|)− η1

= q

N∑

k=1

a1ksgn(ek − e1)|ek − e1|r − qsgn(e1)|e1|r

+ sgn(e1)o(e1)
r −

N∑

k=1

a1ksgn(ek − e1)o(|ek − e1|r )

= g1 + g̃1, (7.21)

where g1 = q
∑N

j=1 a1j sgn(ej − e1)|ej − e1|β − qsgn(e1)|e1|β and g̃1 =
sgn(e1)o(e1)

β −∑N
j=1 a1j sgn(ej −e1)o(|ej −e1|β). Similarly, for i = 2, 3, . . . , N ,

ėi (t) =
N∑

k=1

aiksgn(ek − ei)ϕ(|ek − ei |)− ηi

= q

N∑

k=1

aiksgn(ek − ei)|ek − ei |r

+
N∑

k=1

aiksgn(ek − ei)o(|ek − ei |r )

= gi + g̃i , (7.22)

where gi = q
∑N

j=1 aij sgn(ej −ei)|ej −ei |β and g̃i = ∑N
j=1 aij sgn(ej −ei)o(|ej −

ei |β). Similarly to the Proof of Theorem 7.9, system (7.22) is a homogeneous system
with degree ι. Thus, zi(t) converges to c in finite time T0. This proof is completed.

Corollary 7.15 Suppose that the structurally balanced signed graph G is connected
with an undirected structure. Then, under protocol (7.16), if r ≥ 0, then system (7.4)
can achieve bipartite consensus. In particular, if r ∈ (0, 1), then system (7.4) can
reach finite-time bipartite consensus.

In the following, we will consider more general network topology.
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Theorem 7.16 Suppose that the structurally balanced signed graph G has a
rooted spanning tree and each strongly connected component has a detail-balanced
structure. Then, under protocol (7.5), if r ≥ 0, system (7.4) can achieve bipartite
consensus. In particular, if r ∈ (0, 1), then system (7.4) can reach finite-time
bipartite consensus.

Proof We only consider the case of r ∈ (0, 1). The proof of bipartite consensus for
r > 0 can be similarly derived.

Without loss of generality, based on Lemma 1.12, we assume that

L =

⎡

⎢⎢⎢⎣

L11 0 · · · 0
L21 L22 · · · 0
...

...
. . .

...

Lp1 Lp2 · · · Lpp

⎤

⎥⎥⎥⎦ ,

where Lii ∈ R
mi×mi , i = 1, 2, . . . , p, are irreducible matrices, and for any 1 <

k ≤ p, there exists at least one q < k such that Lkq is nonzero. Then, we can
conclude that every subgraph Gi corresponding to matrix Lii is strongly connected.
For arbitrary subgraph Gi , the vertex vi ∈ Gi is only influenced by the vertexes in
Gj , j ≤ i.

For G1, we have

ėi =
∑

k∈G1

|aik|sgn(ek − ei)ϕ(|ek − ei |)− ηi, i ≤ m1,

where ei was defined in Theorem 7.14. Since G1 is strongly connected, it follows
from Theorem 7.14 that the vertexes in G1 will achieve finite-time bipartite
consensus. Hence, there exists a constant T1 such that lim

t→T1
ei = 0, i ∈ G1.

For i ∈ G2, one has

ėi =
∑

k∈G1

|aik|sgn(ek − ei)ϕ(|ek − ei |)

+
∑

j∈G2

|aij |sgn(ej − ei)ϕ(|ej − ei |).

When t ≥ T1, ek(t) = 0, k ∈ G1. Then, for i ∈ G2,

ėi = ∑
j∈G2

|aij |sgn(ej − ei)ϕ(|ej − ei |)

−sgn(ei)ϕ(|ei |) ∑
k∈G1

|aik|, t ≥ T1.
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It follows from Lemma 1.11 that L21 is nonzero. Hence, there exists at least agent
i ∈ G2 such that

∑
k∈G2

|aik| �= 0. Based on Theorem 7.9 and the fact that G2 is

strongly connected, we can conclude that the vertexes in G2 will achieve finite-time
bipartite consensus, where the item sgn(ei)ϕ(|ei |) ∑

j∈G1

|aij | plays the same role as

ηi in (7.19). Hence, there exists T2 ≥ T1 such that lim
t→T2

ei = 0, i ∈ G2.

Hence, the finite-time bipartite consensus of subgraph G1 propagates to the
second group. By mathematical induction, we can conclude that all agents in the
system can reach finite-time bipartite consensus.

Remark 7.17 Note that Theorem 7.16 is a general extension of Theorems 7.9
and 7.14. In the Proof of Theorem 7.16, we can observe the evolution of multi-
agent systems: the strongly connected component that includes the root vertex
will achieve bipartite consensus first, which then leads to the other connected
components converging to the agreement state.

7.2.3 Numerical Examples

In this subsection, we will give two numerical examples to illustrate our main
results. Consider two structurally balanced signed graphs as shown in Fig. 7.1.

Here, the structurally balanced signed graph of Fig. 7.1a corresponds to the
following adjacency matrix:

A1 =
⎡

⎣
0 −2 3

−4 0 −3
2 −1 0

⎤

⎦ ,

Fig. 7.1 Structurally balanced graph: (a) strongly connected and (b) contains a rooted spanning
tree
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while the structurally balanced signed graph of Fig. 7.1b corresponds to the
following adjacency matrix:

A2 =

⎡

⎢⎢⎢⎢⎢⎢⎣

0 −2 3 0 0 0
−4 0 −3 0 0 0
2 −1 0 0 0 0
0 2 0 0 2 0
0 0 0 1 0 0
0 0 1 0 −2 0

⎤

⎥⎥⎥⎥⎥⎥⎦
.

Consider the adjacency matrix A1, and let ξ = (ξ1, ξ2, ξ3)
� = (2, 1, 3)�. We can

verify that ξiaik = ξkaki(i, k = 1, 2, 3); hence, A1 is strongly connected and detail-
balanced. Similarly, for matrix A2 with the three strongly connected components
{v1, v2, v3}, {v4, v5}, and {v6}, we can take ξa = (2, 1, 3)�, ξb = (1, 2)�, and
ξc = (1) to illustrate that the three connected components are detail-balanced.

Example 7.18 In this example, we illustrate the effectiveness of Theorem 7.9 with
graph, Fig. 7.1a. Consider the initial states x(0) = (8, 4,−2)� together with
Eq. (7.6), leading to ψ∗ = (1/

∑3
i=1 ξi)

∑3
i=1 ξisixi(0) = 1. The function ϕ(x)

is selected as x
1
3 , x

1
3 + x, and x

1
3 + |sin(6x)|. When x → 0+, ϕ(x) = O(x

1
3 ), i.e.,

the order of ϕ(x) is 1
3 . The numerical results are listed in Figs. 7.2 and 7.3, which

Fig. 7.2 The agent state responses with protocol (7.5): from top to bottom, function ϕ(x)

corresponding to x
1
3 , x

1
3 + x, and x

1
3 + |sin(6x)|
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Fig. 7.3 The responses of |xmax| − |xmin| with protocol (7.5) corresponding to x
1
3 , x

1
3 + x, and

x
1
3 + |sin(6x)|

verify Theorem 7.9 very well. For the simulation of Theorem 7.14, the pinning value
c is chosen as c = 2, and the other parameters are the same as those in the simulation
of Theorem 7.9. The effectiveness is illustrated in Fig. 7.4.

Example 7.19 We consider the case of 6 vertexes. The topological structure can
be seen in Fig. 7.1b, which contains a rooted spanning tree and is detail-balanced.
The function ϕ(x) is chosen to be the same as that in Example 7.18. Consider the
initial value x(0) = (16, 8,−4, 6,−12, 2)�. From Theorem 7.16, we can obtain
x∗ = (1/(2 + 1 + 3))× (16 × 2 − 8 × 1 + (−4)× 2) = 2, which is consistent with
the results of the numerical simulations shown in Figs. 7.5 and 7.6. Figure 7.7 shows
the results when the initial values are randomly uniformly selected from [0, 100]. It
also illustrates the validity of Theorem 7.16.

7.3 Fixed-Time Bipartite Consensus

The bipartite consensus problem involves finding a dynamic protocol such that a
group of agents in a signed network can reach agreement, regarding consensus
values that are the same in modulus but different in sign. This section investigates
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Fig. 7.4 The agent state responses with protocol (7.16): from top to bottom, function ϕ(x)

corresponding to x
1
3 , x

1
3 + x, and x

1
3 + |sin(6x)|

fixed-time bipartite consensus protocols based on undirected information flow for
structurally balanced signed graph.

Consider multi-agent systems with N agents under a structurally balanced signed
graph G(A), and assume that the agents have the following dynamics:

ẋi (t) = ui(t), i = 1, 2 . . . , N. (7.23)

where xi(t) ∈ R denotes the state of agent i, and ui(t) ∈ R is the protocol to be
designed. With the given protocol ui(t), we now give the definition of fixed-time
bipartite consensus of the system in (7.23).

Definition 7.20 It is said to achieve fixed-time bipartite consensus if, for
∀xi(0), i ∈ {1, 2, . . . , N}, there exists a settling time T ∈ (0,∞), which is
independent with initial condition such that

⎧
⎨

⎩

lim
t→T

|xi(t)| = c,

|xi(t)| = c,∀t ≥ T ,

(7.24)
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Fig. 7.5 The agent state responses with signed graph (B): from top to bottom, function ϕ(x)

corresponding to x
1
3 , x

1
3 + x, and x

1
3 + |sin(6x)|

where c ≥ 0 is the absolute value of the states about which all agents reach
consensus in a fixed time. If c = 1

N

∑N
i=1 σixi(0), we say that it reaches signed-

average consensus.

The problem considered in this section is formulated as follows.

Problem 7.21 Given system (7.23) and a signed graph G(A), we aim to design a
distributed feedback control law ui , such that the states of system (7.23) starting
from any initial conditions reach fixed-time bipartite consensus, i.e., Eq. (7.24) is
satisfied.

To solve Problem 7.21, some lemmas are given as follows.

Lemma 7.22 ([34]) Let ξ1, ξ2, . . . , ξN ≥ 0 and p ∈ (0, 1]. Then,
N∑

i=1

ξ
p
i ≥

(
N∑

i=1

ξi

)p

. (7.25)
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Fig. 7.6 The responses of |xmax| − |xmin| with signed graph (B) corresponding to x
1
3 , x

1
3 + x,

and x
1
3 + |sin(6x)|

Lemma 7.23 ([34]) Let ξ1, ξ2, . . . , ξN ≥ 0 and p ∈ (1,+∞). Then,

N∑

i=1

ξ
p
i ≥ N1−p

(
N∑

i=1

ξi

)p

. (7.26)

In this section, we will develop a new class of fixed-time bipartite consensus
protocols for a group of multi-agent systems with signed graph in Eq. (7.23). Before
that and to make the idea clear, we first give a retrofit lemma as follows.

Lemma 7.24 ([34]) Consider a scalar system

ẏ = −αy2− p
q − βy

p
q , y(0) = y0, (7.27)

where α, β > 0, and p and q both are positive odd integers satisfying p < q. Then,
the equilibrium of Eq. (7.27) is fixed-time stable, and the settling time is bounded by

T ≤ qπ

2
√
αβ(q − p)

. (7.28)
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Fig. 7.7 The agent state trajectories corresponding to x
1
3 , x

1
3 + x, and x

1
3 + |sin(6x)|. The initial

values are randomly uniformly chosen from [0,100]

7.3.1 General Fixed-Time Bipartite Consensus

With the above preparations for Problem (7.21), a protocol is firstly proposed as

ui(t) = α

⎛

⎝
N∑

j=1

aij (xj (t)− sign(aij )xi(t))

⎞

⎠
2− p

q

+ β

⎛

⎝
N∑

j=1

aij (xj (t)− sign(aij )xi(t))

⎞

⎠

p
q

, i = 1, 2, . . . , N.

(7.29)

Let x(t) = [x1(t), x2(t), . . . , xN(t)]� ∈ R
N . Obviously, the substitution of protocol

(7.29) to system (7.23) leads to ẋ = −Lx when α+β = 1, p = q. The system ẋ =
−Lx was discussed in [40] for consensus of networks with antagonistic interactions,
so it is the special case of our model. Now, we have the following result.
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Theorem 7.25 Consider system (7.23) with structurally balanced signed graph
G(A), which is undirected and connected; then, Problem (7.21) can be solved by
protocol (7.29) with c > 0, and the settling time T is bounded by

T ≤ qπN
q−p
4q

2
√
αβλ2(L)(q − p)

. (7.30)

Proof Following Lemma 1.8, since G(A) is structurally balanced, we can conclude
that ∃D ∈ D such that DAD has all nonnegative entries. Let z(t) = Dx(t) and
denote z0 = z(0) = Dx(0); then, we obtain that

zi(t) = σixi(t) , i = 1, 2, . . . , N. (7.31)

Substituting (7.31) into (7.23) with protocol (7.29) results in

żi (t) = σi ẋi(t) = σiui(t). (7.32)

Since DAD ≥ 0, we have σiσjaij = |aij |, which implies σiσj = sign(aij ). Since

σ
2−p/q
i = σ

p/q
i = σi, σ

2
i = 1. Using these facts, one can obtain the following

equation:

żi (t) (7.33)

= σiα

⎛

⎝
N∑

j=1

aij (xj (t)− sign(aij )xi(t))

⎞

⎠
2− p

q

+ σiβ

⎛

⎝
N∑

j=1

aij (xj (t)− sign(aij )xi(t))

⎞

⎠

p
q

= α

⎛

⎝
N∑

j=1

σiaij (σ
2
j xj (t)− σiσjxi(t))

⎞

⎠
2− p

q

+ β

⎛

⎝
N∑

j=1

σiaij

(
σ 2
j xj (t)− σiσjxi(t)

)
⎞

⎠

p
q

= α

⎛

⎝
N∑

j=1

σiσjaij (σj xj (t)− σixi(t))

⎞

⎠
2− p

q
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+ β

⎛

⎝
N∑

j=1

σiσjaij (σj xj (t)− σixi(t))

⎞

⎠

p
q

= α

⎛

⎝
N∑

j=1

|aij |(zj (t)− zi(t))

⎞

⎠
2− p

q

+ β

⎛

⎝
N∑

j=1

|aij |(zj (t)− zi(t))

⎞

⎠

p
q

. (7.34)

Consider the following Lyapunov function for (7.31):

V (t) = 1

2
z(t)�L̂z(t) = 1

4

N∑

i=1

N∑

j=1

|aij |(zj (t)− zi(t))
2,

where L̂ = DLD. Then, calculating the time derivative of V (t) along the
trajectories of system (7.31) gives that

dV

dt
= −α

N∑

i=1

⎛

⎝
N∑

j=1

|aij |(zj (t)− zi(t))

⎞

⎠

3q−p
q

− β

N∑

i=1

⎛

⎝
N∑

j=1

|aij |(zj (t)− zi(t))

⎞

⎠

p+q
q

= −α
N∑

i=1

⎛

⎜⎝

⎛

⎝
N∑

j=1

|aij |(zj (t)− zi(t))

⎞

⎠
2
⎞

⎟⎠

3q−p
2q

− β

N∑

i=1

⎛

⎜⎝

⎛

⎝
N∑

j=1

|aij |(zj (t)− zi(t))

⎞

⎠
2
⎞

⎟⎠

p+q
2q

≤ −αN p−q
2q

⎛

⎜⎝
N∑

i=1

⎛

⎝
N∑

j=1

|aij |(zj (t)− zi(t))

⎞

⎠
2
⎞

⎟⎠

3q−p
2q

− β

⎛

⎜⎝
N∑

i=1

⎛

⎝
N∑

j=1

|aij |(zj (t)− zi(t))

⎞

⎠
2
⎞

⎟⎠

p+q
2q

, (7.35)
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where Lemmas 7.22 and 7.23 are used in view of (3q − p)/2q > 1 and 0 <

(p+ q)/2q ≤ 1. The semi-positive definite property of L̂ ensures that there exists a
unique semi-positive definite matrix M such that L̂ = M�M [49]. By Lemma 1.12,
we have

∑N
i=1

(∑N
j=1 |aij |(zj (t)− zi(t))

)2

V (t)
= 2z(t)�M�MM�Mz(t)

z(t)�M�Mz(t)

= 2z(t)�M�L̂�Mz(t)

z(t)�M�Mz(t)
≥ 2λ2(L̂) = 2λ2(L).

(7.36)

Substituting (7.36) into (7.35), we have

dV

dt
≤ −αN p−q

2q (2λ2(L)V )
3q−p

2q − β(2λ2(L)V )
p+q
2q

= −
[
αN

p−q
2q (2λ2(L)V )

q−p
q + β

]
(2λ2(L)V )

p+q
2q . (7.37)

If V �= 0, then assume that y(t) = √
2λ2(L)V is the solution to the following

differential equation:

ẏ(t) ≤ −αN p−q
2q λ2(L)y(t)

2q−p
q − βλ2(L)y(t)

p
q . (7.38)

By Lemma 7.24 and comparison principle of differential equations [50], one has

lim
t→T

V (t) = 0, and V (t) = 0, ∀ t ≥ T ,

where the settling time is given by

T = qN
q−p
4q

√
αβλ2(L)(q − p)

tan−1
(
N

p−q
4q

√
α/βV (z0)

)

≤ qπN
q−p
4q

2
√
αβλ2(L)(q − p)

,

(7.39)

which leads to

lim
t→T

|zj (t)− zi(t)| = 0, and zj (t) = zi(t), ∀t ≥ T , ∀ i, j.

Together with the fact zi(t) = σixi(t), Theorem 7.25 is proved.

Remark 7.26 From Theorem 7.25, for multi-agent systems with structurally bal-
anced signed graphs, one can see that protocol (7.29) not only solves the general
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bipartite consensus problem in a fixed time but also enables the settling time to be
independent of the initial condition. Furthermore, from Eq. (7.30), the settling time
depends on the design parameters and the algebraic connectivity of the signed graph.
This overcomes the drawback of finite-time consensus that T depends on the initial
states of agents.

Remark 7.27 Since multi-agent systems with nonnegative adjacency matrix can be
viewed as a special case of structurally balanced signed graph, Theorem 7.25 can
be considered as a significant extension of the fixed-time consensus results in, e.g.,
[34] in a more general way.

Remark 7.28 If G(A) is structurally unbalanced, we can prove that the states of all
agents go to zero by constructing Lyapunov function V (t) = 1

2x(t)
�Lx(t). The

detailed proof can be referred to Theorem 7.25, and it is omitted here.

7.3.2 Signed-Average Fixed-Time Bipartite Consensus

To study the signed-average consensus, we next propose the following protocol:

ui(t) = α

N∑

j=1

aij (xj (t)− sign(aij )xi(t))
2− p

q

+ β

N∑

j=1

aij (xj (t)− sign(aij )xi(t))
p
q , i = 1, 2, . . . , N.

(7.40)

Firstly, we have the following lemma for the application of protocol (7.40). This
lemma is similar with the lemma proposed in [43].

Lemma 7.29 Let LB = [
lB,ij

] ∈ R
N×N and LC = [

lC,ij
] ∈ R

N×N with elements
given by

lB,ij =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

N∑

k=1

|aik|
2q

3q−p , j = i,

− sign(aij )|aij |
2q

3q−p , j �= i.

lC,ij =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

N∑

k=1

|aik|
2q
p+q , j = i,

− sign(aij )|aij |
2q
p+q , j �= i.
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If G(A) is structurally balanced, then LB and LC are semi-positive definite with
eigenvalues given as λN(LB) ≥ · · · ≥ λ2(LB) > λ1(LB) = 0 and λN(LC) ≥
· · · ≥ λ2(LC) > λ1(LC) = 0.

Remark 7.30 This lemma can be established because LB and LC can be viewed as
a Laplacian matrix of a connected graph which shares the same vertex set and edge
set with G(A), while with different edge weights (see, e.g., [51]).

With Lemma 7.29, we can give the following fixed-time signed-average consen-
sus results.

Theorem 7.31 Consider system (7.23) with structurally balanced signed graph
G(A), which is undirected and connected; then, Problem (7.21) can be solved by
the protocol (7.40) with c = 1

N

∑N
i=1 σixi(0), i.e., the signed-average is achieved,

and the settling time T is bounded by

T ≤ qπN
q−p
2q

2
√
αβλ(q − p)

, (7.41)

where λ = min{λ2(LB), λ2(LC)} > 0.

Proof We first prove that φ(t) = 1
N

∑N
i=1 σixi(t) is time-invariant, i.e., φ(t) ≡

φ(0) = 1
N

∑N
i=1 σixi(0). From Lemma 1.8, it follows that when G(A) is struc-

turally balanced, then DAD is nonnegative. Since A is symmetric, we can derive
σiσj = sign(aij ) = sign(aji). Regarding agents under protocol (7.29) and also

noting σ 2
i = 1, σ 2−p/q

i = σ
p/q
i = σi , we can obtain

σiaij (xj (t)− sign(aij )xi(t))
2− p

q = −σjaji(xi(t)− sign(aji)xj (t))
2− p

q ,

which can be further used to deduce

N∑

i=1

N∑

j=1

σiaij (xj (t)− sign(aij )xi(t))
2− p

q

= −
N∑

i=1

N∑

j=1

σjaji(xi(t)− sign(aji)xj (t))
2− p

q

= −
N∑

i=1

N∑

j=1

σiaij (xj (t)− sign(aij )xi(t))
2− p

q .

Then,
N∑
i=1

N∑
j=1

σiaij (xj (t)−sign(aij )xi(t))
2− p

q = 0. Similarly,
N∑
i=1

N∑
j=1

σiaij (xj (t)−

sign(aij )xi(t))
p
q = 0. Then, calculating the time derivative of φ(t) along the
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trajectories of system gives that

φ̇(t) = α

N

N∑

i=1

N∑

j=1

σiaij (xj (t)− sign(aij )xi(t))
2− p

q

+ β

N

N∑

i=1

N∑

j=1

σiaij (xj (t)− sign(aij )xi(t))
p
q

= 0.

Let δi(t) = σixi(t)−φ(0). Then, the group disagreement vector [51] can be written
as δ(t) = [δ1(t), δ2(t). . . . , δN (t)]� and denote δ(0) = δ0. Consider the following
Lyapunov function:

V (t) = 1

2

N∑

i=1

δ2
i (t).

Differentiating V (t) along the trajectories yields

dV

dt

= α

N∑

i=1

δi(t)

N∑

j=1

σiaij
(
σ 2
j xj (t)− σiσjxi(t)

)2− p
q

+ β

N∑

i=1

δi(t)

N∑

j=1

σiaij
(
σ 2
j xj (t)− σiσjxi(t)

) p
q

= α

N∑

i=1

δi(t)

N∑

j=1

|aij |(δj (t)− δi(t))
2− p

q + β

N∑

i=1

δi(t)

N∑

j=1

|aij |(δj (t)− δi(t))
p
q

= −1

2
α

N∑

i=1

N∑

j=1

|aij |(δj (t)− δi(t))
3q−p
q − 1

2
β

N∑

i=1

N∑

j=1

|aij |(δj (t)− δi(t))
p+q
q

= −1

2
α

N∑

i=1

N∑

j=1

[
|a

2q
3q−p
ij |(δj (t)− δi(t))

2
] 3q−p

2q

− 1

2
β

N∑

i=1

N∑

j=1

[
|a

2q
p+q
ij |(δj (t)− δi(t))

2
] p+q

2q
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≤ −1

2
αN

p−q
q

⎡

⎣
N∑

i=1

N∑

j=1

|a
2q

3q−p
ij |(δj (t)− δi(t))

2

⎤

⎦

3q−p
2q

− 1

2
β

⎡

⎣
N∑

i=1

N∑

j=1

|a
2q
p+q
ij |(δj (t)− δi(t))

2

⎤

⎦

p+q
2q

, (7.42)

where Lemmas 7.22 and 7.23 are inserted. Since 1�
Nδ(t) = 0, Lemma 7.29 gives

that

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

N∑

i=1

N∑

j=1

|a
2q

3q−p
ij |(δj (t)− δi(t))

2 ≥ 2λ2(LB)δ(t)
�δ(t)

N∑

i=1

N∑

j=1

|a
2q
p+q
ij |(δj (t)− δi(t))

2 ≥ 2λ2(LC)δ(t)
�δ(t).

Since λ = min{λ2(LB), λ2(LC)} > 0, then

dV

dt
≤ −1

2
αN

p−q
q (4λ2(LB)V )

3q−p
2q − 1

2
β(4λ2(LC)V )

p+q
2q

≤ −1

2

[
αN

p−q
q (4λV )

q−p
q + β

]
(4λV )

p+q
2q . (7.43)

If V �= 0, then let y(t) = √
4λV , and we can get the following differential equation:

ẏ(t) ≤ −αN p−q
q λy(t)

2q−p
q − βλy(t)

p
q . (7.44)

Similarly, by Lemma 7.24 and comparison principle, we conclude that

lim
t→T

δ(t) = 0, and δ(t) = 0 for ∀t ≥ T ,

where the settling time is given by

T = qN
q−p
2q

√
αβλ(q − p)

tan−1
(
N

p−q
2q

√
α/βV (δ0)

)

≤ qπN
q−p
2q

2
√
αβλ(q − p)

,

(7.45)
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which leads to

lim
t→T

xj (t) = 1

N

N∑

i=1

σixi(0), and xj (t) = 1

N

N∑

i=1

σixi(0), ∀t ≥ T , ∀i, j.

Thus, protocol (7.40) solves the fixed-time signed-average consensus problem.

Remark 7.32 From Theorem 7.31, when G(A) is structurally unbalanced, we can
also prove that states of all agents will reach zero by constructing Lyapunov function
V (t) = 1

2

∑N
i=1 x

2
i (t). Also, it should be noted that we can determine the final

consensus states of all agents, i.e., the signed-average of the initial values.

Remark 7.33 From Theorems 7.25 and 7.31, when the signed graph G(A) is
structurally balanced, the null space of DLD is spanned by 1N . Hence, the finial
states of agents are D1Nc for some c ∈ R. When the signed graph G(A) is
structurally unbalanced, the null space ofL is spanned by 0. Hence, all of the agents’
states would reach zero. From the aspect of consensus, the case of structurally
unbalanced signed graph does not make sense, since all sates go to zero and the
cooperation among the agents cannot be well displayed. So, Remarks 7.28 and 7.32
are given to explain the dynamical behavior of multi-agent systems with structurally
unbalanced signed graph.

7.3.3 Numerical Examples

In this subsection, numerical examples will be given to illustrate the derived fixed-
time bipartite consensus of our main results. Consider the structurally balanced
signed graphs in Fig. 7.8.

Fig. 7.8 Structurally
balanced signed graph
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Consider the structurally balanced signed graph of Fig. 7.8 with the adjacency
matrix:

A1 =

⎡

⎢⎢⎢⎢⎢⎢⎣

0 2 0 −4 −1 0
2 0 1 0 −3 0
0 1 0 0 0 0

−4 0 0 0 0 0
−1 −3 0 0 0 2
0 0 0 0 2 0

⎤

⎥⎥⎥⎥⎥⎥⎦
.

Example 7.34 Now, we will illustrate the effectiveness of Theorem 7.25 with
protocol (7.29). The initial states are randomly uniformly selected from [0, 10], and
the parameters are selected as α = β = 2, p = 5, and q = 7. Calculating the
eigenvalues of the Laplacian matrix corresponding to the signed graph of Fig. 7.8,
one can obtain λ1 = 0, λ2 = 0.989, λ3 = 1.39, λ4 = 4.030, λ5 = 9.128,
λ6 = 10.465. Furthermore, by Eq. (7.30), we have T ≤ 3.159. We take step length
Δt = 0.001, and then numerical results are depicted in Figs. 7.9 and 7.10, which
verify Theorem 7.25 very well.

Example 7.35 Now, let us consider the structurally balanced signed graphs in
Fig. 7.8 again. From Theorem 7.31, using protocol (7.40) leads to fundamentally
a finite-time stability objective in the form of 1

N

∑N
i=1 σixi(0). Also, we can

employ (7.41) to estimate the settling time. The initial states of agents are given
as [9, 6, 3,−1, 7,−2], and the parameters are chosen the same with Example 7.34.
Then, we can calculate that the signed-average value is 2.333. This can be illustrated
from Fig. 7.11. These two sub-figures show that the consensus under protocol

t
0 1 2 3 4 5 6

x i(t
)
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0

2

4

6

8

10

X: 3.159
Y: 1.895

X: 3.159
Y: -1.895

Fig. 7.9 Fixed-time bipartite consensus of protocol (7.29) in Example 7.34
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Fig. 7.10 The error of max(|x|)− min(|x|) in Example 7.34
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Fig. 7.11 The initial states are selected as [9, 6, 3,−1, 7,−2] under structurally balanced graph.
Upper: the protocol of [40]. Lower: our protocol (7.40)



188 7 Finite-Time and Fixed-Time Bipartite Consensus for Multi-agent Systems. . .

(7.40) in this chapter is much faster than the protocol of [40], i.e., ui(t) =∑N
j=1 aij (xj (t)− sign(aij )xi(t)).

7.4 Summary

In this chapter, two new classes of fixed-time and finite-time bipartite consensus
protocols were developed for the multi-agent systems with structurally balanced
signed graph. With the Lyapunov analysis, it has been shown that fixed-time and
finite-time bipartite consensus problems can be solved under the proposed protocols.
Some criteria have been established to guarantee the bipartite agreement of all
agents. Numerical examples were also given to demonstrate the effectiveness of
our proposed consensus strategy.
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Chapter 8
Globally Exponential Synchronization
and Synchronizability for General
Dynamical Networks

Recently, there has been a growing interest in the study of synchronization of
complex dynamical networks [1–8]. In [1], Wang and Chen introduced a uni-
form dynamical network model and investigated its synchronization in scale-free
topology networks. In [3], Lü et al. studied chaos synchronization of time-varying
complex dynamical networks. In [5], some sufficient conditions were derived for the
globally exponential synchronization in arrays of coupled identical delayed neural
networks. In [2], Wu showed that an array of coupled systems synchronizes for
sufficiently large cooperative coupling if the underlying graph contains a spanning
directed tree. Exponential synchronization of asymmetrically coupled dynamical
networks has been studied in [9]. However, in [1, 3] and some other references,
a common approach is to linearize the nonlinearly dynamical nodes around the
synchronized state, and hence only local results were obtained. This scheme will
fail if the underlying dynamical system is unknown or uncertain since linearization
is very difficult in such cases. In [1, 3–5], the configuration coupling matrix was
assumed to be symmetric and irreducible, which implies that the topology of
the corresponding complex network is undirected and strongly connected. It is
obviously not consistent with the realistic world. Moreover, only asymptotic or/and
local results as well as small-scale network examples were discussed in most of
the literatures. However, many of the real-world networks are very large. Hence,
it is desirable to derive synchronization criteria for large-scale directed dynamical
networks.

In order to overcome the aforementioned shortcomings arising from the local
analysis and the constraints on the configuration coupling matrix, some alternative
methods without using linearization are used in this chapter for the globally
exponential synchronization of complex dynamical networks. The configuration
coupling matrix is assumed to be asymmetric and reducible, which means that
the structure of a network can be directed, weighted, or even weakly connected.
Some sufficient conditions are derived for the globally exponential synchronization
of dynamical networks by using the Lyapunov functional method and Kronecker

© Springer Nature Singapore Pte Ltd. and Science Press, China 2021
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product techniques. One quantitative measure is distilled from the network’s cou-
pling matrix to characterize the synchronizability of complex dynamical networks.
The extraction of such a quantity can be easily and conveniently realized by using
a normal computer, even for large-scale networks. Moreover, numerical simulations
are given to show that our derived criteria can be easily used to make judgements
on synchronization for large-scale dynamical networks. By referring to our criteria,
it can be observed from simulations that directed small-world dynamical networks
possess better synchronizability than undirected ones.

8.1 Preliminaries

We consider a complex dynamical network consisting of N identical linearly
coupled nodes being an n-dimensional neural network, which can be stable,
periodic, almost-periodic, or even chaotic. The ith isolated node can be described
by the following retarded functional differential equation:

ẋi (t) = −Cxi(t)+ B1f (xi(t))+ B2f (xi(t − τ))+ I (t), (8.1)

where xi(t) = [xi1(t), xi2(t), . . . , xin(t)]� is the state vector of the ith node at time
t ; C = diag{c1, c2, . . . , cn}, with ck > 0, denotes the rate with which the cell k
resets its potential to the resting state when isolated from other cells and inputs;
B1 ∈ R

n×n, B2 ∈ R
n×n represent the connection weight matrix and the delayed

connection weight matrix, respectively; f (xi(t)) = [f1(xi1(t)), f2(xi2(t)), . . . ,

fn(xin(t))]�, and fi(·) (i = 1, 2, . . . , n) are activation functions; I (t) =
[I1(t), I2(t), . . . , In(t)] ∈ R

n is an external input vector.
The dynamical behavior of the complex dynamical network can be described by

the following linearly coupled delayed differential equations [1]:

ẋi (t) = −Cxi(t)+ B1f (xi(t))+ B2f (xi(t − τ))+ I (t)

+c
N∑

j=1

aijΓ xj (t), i = 1, 2, . . . , N, (8.2)

where xi(t) = [xi1(t), xi2(t), . . . , xin(t)]� ∈ R
n (i = 1, 2, . . . , N) is the state

vector of the node i; Γ = diag{γ1, γ2, . . . , γn} (satisfying γi > 0 for i =
1, 2, . . . , n) is the diagonal inner coupling matrix between two connected nodes
i and j (i �= j) at time t for all 1 ≤ i, j ≤ N ; c is the coupling strength;
A = (aij )N×N is the negative Laplacian matrix representing the structure of the
network, in which aij is defined as follows: if there is a connection from node j to
node i (j �= i), then aij > 0; otherwise, aij = 0. It means that the network topology
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could be directed and weighted. The diagonal entries of matrix A are determined by
the following diffusive coupling condition [10]:

aii = −
N∑

j=1,j �=i
aij , i = 1, 2, . . . , N, (8.3)

which implies that the general complex dynamical network (8.2) would be decou-
pled at the synchronized state.

Remark 8.1 It should be noted that we are mainly concerned about the structure of
the complex dynamical network model (8.2). The topology discussed in this chapter
could be undirected, directed, or weakly connected containing rooted spanning tree.

Let x(t) = (x�
1 (t), x

�
2 (t), . . . , x

�
N(t))

�, F(x(t)) = (f�(x1(t)), f
�(x2(t)), . . . ,

f�(xN(t)))�, and I(t) = (I�(t), I�(t), . . . , I�(t))�, then the general dynamical
network (8.2) can be rewritten in the following Kronecker product form:

ẋ(t) = −(IN ⊗ C)x(t)+ (IN ⊗ B1)F (x(t))

+(IN ⊗ B2)F (x(t − τ))+ I(t)+ c(A⊗ Γ )x(t). (8.4)

For the activation functions fk(·) of an isolated neural network and the coupling
configuration matrix A, we have the following assumptions:

Assumption 8.2 fk(·) (k = 1, 2, . . . , n) are globally Lipschitz continuous func-
tions, i.e., there exist constants lk > 0 (k = 1, 2, . . . , n) such that |fk(x1) −
fk(x2)| ≤ lk|x1 − x2| (k = 1, 2, . . . , n) hold for any x1, x2 ∈ R. For convenience,
denote L = diag{l1, l2, . . . , ln}.
Assumption 8.3 The coupling configuration matrix A is irreducible.

Assumption 8.4 Real parts of eigenvalues of A are all negative except an eigen-
value 0 with multiplicity 1.

In order to derive our main results, the following lemmas and definitions are
needed.

Definition 8.5 The dynamical network (8.2) or (8.4) is said to be globally exponen-
tially synchronized if there exist ε > 0, T > 0, and M > 0 such that for any initial
values φi(s) (i = 1, 2, . . . , N),

‖xi(t)− xj (t)‖ ≤ Me−εt

hold for all t > T , and for any i, j = 1, 2, . . . , N .

Definition 8.6 For an N × N irreducible square matrix A with non-negative
off-diagonal elements, which satisfies the diffusive coupling condition (8.3), the
quantity α(A) is defined as follows: Let ξ = (ξ1, ξ2, . . . , ξN )

� be the unique
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normalized left eigenvector of A with respect to the eigenvalue zero satisfying∑N
k=1 ξk = 1, and Ξ = diag{ξ1, ξ2, . . . , ξN }. Then α(A) is defined to be the

second largest eigenvalue of the symmetric matrix Ã = ΞA + A�Ξ , that is,
α(A) = λ2(ΞA+ A�Ξ).

Definition 8.7 ([11]) The ability that the structure of the network, which is rep-
resented by Laplacian matrix A, can guarantee the synchronization of dynamical
network (8.2) is called the synchronizability of the network.

8.2 Synchronization Analysis

In this section, the globally exponential synchronization will be analyzed for general
dynamical networks. The network topology can be undirected or directed, that is, the
matrix A can be either symmetric [4] or asymmetric. In the first subsection, we will
investigate the globally exponential synchronization of the general dynamical net-
work with irreducible coupling configuration matrix A. An explicit quantity will be
distilled from the irreducible coupling matrixA to characterize the synchronizability
of the corresponding dynamical network. In the second subsection, a dynamical
network with reducible coupling matrix A will be studied.

8.2.1 Irreducible Case

In this subsection, we shall discuss the synchronization condition of the dynamical
network with irreducible coupling matrix A. By combining the Lyapunov functional
method and Kronecker product techniques, some criteria ensuring the globally
exponential synchronization of the dynamical network will be derived.

Suppose that ξ = (ξ1, ξ2, . . . , ξN )
� is the normalized left eigenvector of the

configuration coupling matrix A with respect to eigenvalue 0 satisfying
∑N

i=1 ξi =
1. Since the coupling configuration matrix A is irreducible, according to the
Lemma 1.6, we can conclude that ξi > 0 for i = 1, 2, . . . , N . Let Ξ =
diag{ξ1, ξ2, . . . , ξN } > 0, and W = Ξ − ξξ�.

Theorem 8.8 Suppose that Assumptions 8.2 and 8.3 hold, and that there exist
diagonal positive definite matrix P , positive definite matrixQ, and diagonal matrix
S ≥ 0, such that the following linear matrix inequality (LMI) is satisfied:

Υ =
⎡

⎣
−2PC − cγPΓ + 2L�SL PB1 PB2

B�
1 P Q− 2S 0

B�
2 P 0 −Q

⎤

⎦ < 0, (8.5)
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where γ = −α(A)/λmax(W), and α(A) is defined in Definition 8.6. Then, the
complex dynamical network (8.4) can reach globally exponential synchronization.

Proof It follows from LMI (8.5) that there exists a positive constant ε, which may
be very small, such that

Υ̃ =
⎡

⎣
εP − 2PC − cγPΓ + 2L�SL PB1 PB2

B�
1 P eετQ− 2S 0

B�
2 P 0 −Q

⎤

⎦

< 0. (8.6)

Consider the following functional:

V (x) = eεtx�(t)(W ⊗ P)x(t)

+
∫ t

t−τ
eε(s+τ)F�(x(s))(W ⊗Q)F(x(s))ds. (8.7)

Then, by calculating the derivative of the functional (8.7) along the trajectories of
(8.4), one can obtain that

V̇ (x)|(8.4) = εeεt x�(t)(W ⊗ P)x(t)+ 2eεt x�(t)(W ⊗ P)ẋ(t)+ eε(t+τ)F�(x(t))

×(W ⊗Q)F(x(t))− eεtF�(x(t − τ))(W ⊗Q)F(x(t − τ))

= eεt
[
x�(t)(εW ⊗ P)x(t)− 2x�(t)(W ⊗ P)(IN ⊗ C)x(t)

+2x�(t)(W ⊗ P)((IN ⊗ B1)F (x(t))+ (IN ⊗ B2)F (x(t − τ)))

+2x�(t)(W ⊗ P)I(t)+ 2x�(t)(W ⊗ P)(cA⊗ Γ )x(t)

+eετF�(x(t))(W ⊗Q)F(x(t))

−F�(x(t − τ))(W ⊗Q)F(x(t − τ))

]
.

Since W = Ξ − ξξ�, we have wij = −ξiξj for i �= j , and wii = ξi − ξ2
i . It

follows from
∑N

j=1 ξj = 1 that
∑N

j=1 wij = ξi − ∑N
j=1 ξiξj = 0. Hence, we can

obtain that (W ⊗ P)I(t) =

⎡

⎢⎢⎣

w11P · · · w1NP

.

.

.
. . .

.

.

.

wN1P · · · wNNP

⎤

⎥⎥⎦

⎡

⎢⎢⎣

I (t)

.

.

.

I (t)

⎤

⎥⎥⎦ =

⎡

⎢⎢⎣

∑N
j=1 w1jP I (t)

.

.

.∑N
j=1 wNjP I (t)

⎤

⎥⎥⎦ =

⎡

⎢⎢⎣

0
.
.
.

0

⎤

⎥⎥⎦.

Furthermore, we have WA = (Ξ − ξξ�)A = ΞA − ξ(ξ�A) = ΞA. By referring
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to the structure of matrix W , we can obtain that

2x�(t)(W ⊗ PB1)F (x(t))

=
N∑

i=1

N∑

j=1

[
2wijx

�
i (t)PB1f (xj )

]

=
N∑

i=1

N∑

j=1,j �=i

[ − 2ξiξj x
�
i (t)PB1f (xj )

] +
N∑

i=1

[
2ξi(1 − ξi)x

�
i (t)PB1f (xi)

]

=
N∑

i=1

N∑

j=1,j �=i

[ − 2ξiξj x
�
i (t)PB1f (xj )

]

+
N∑

i=1

2ξi

⎡

⎣

⎛

⎝
N∑

j=1,j �=i
ξj

⎞

⎠ x�
i (t)PB1f (xi)

⎤

⎦

=
N∑

i=1

N∑

j=1
j �=i

ξiξj
[
x�
i (t)PB1f (xi)+ x�

i (t)PB1f (xi)− x�
i (t)PB1f (xj )

−x�
i (t)PB1f (xj )

]
(by exchanging subscripts i and j )

=
N∑

i=1

N∑

j=1
j �=i

ξiξj
[
x�
i (t)PB1f (xi)+ x�

j (t)PB1f (xj )− x�
i (t)PB1f (xj )

−x�
j (t)PB1f (xi)

]

=
N∑

i=1

N∑

j=1
j �=i

ξiξj
[
(xi(t)− xj (t))

�PB1(f (xi)− f (xj ))
]
. (8.8)

Similarly, we can calculate the remaining terms of V̇ (x)|(8.4), and further by adding
a vanishing term −x�(t)(W⊗cγPΓ )x(t)+x�(t)(W⊗cγPΓ )x(t), we can obtain
that

V̇ (x)|(8.4)

= 1

2
eεt

N∑

i=1

N∑

j=1
j �=i

{
ξiξj

[
(xi − xj )

�(εP − 2PC − cγPΓ )

·(xi − xj )+ 2(xi − xj )
�PB1

[
f (xi)− f (xj )

]
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+2(xi − xj )
�PB2

[
f (xi(t − τ))− f (xj (t − τ))

]

+[f (xi)− f (xj )]�eετQ
[
f (xi)− f (xj )

]

−[f (xi(t − τ))− f (xj (t − τ))]�Q[
f (xi(t − τ))− f (xj (t − τ))

]]}

+eεtx�(t)
[
c(ΞA+ A�Ξ)⊗ PΓ +W ⊗ cγPΓ

]
x(t), (8.9)

where wij = −ξiξj for i �= j .
According to the Assumption 8.2, one has

2(xi − xj )
�L�SL(xi − xj )

− 2(f (xi)− f (xj ))
�S(f (xi)− f (xj )) ≥ 0. (8.10)

By using the inequality (8.10), it follows from the equality (8.9) that

V̇ (x)|(8.4) (8.11)

≤ 1

2
eεt

N∑

i=1

N∑

j=1
j �=i

{
ξiξj

[
(xi − xj )

�(εP − 2PC − cγPΓ

+2L�SL)(xi − xj )+ 2(xi − xj )
�PB1

[
f (xi)− f (xj )

]

+2(xi − xj )
�PB2

[
f (xi(t − τ))− f (xj (t − τ))

]

+[f (xi)− f (xj )]�(eετQ− 2S)
[
f (xi)− f (xj )

]

−[f (xi(t − τ))− f (xj (t − τ))]�Q[
f (xi(t − τ))− f (xj (t − τ))

]]}

+eεtx�(t)
[
c(ΞA+ A�Ξ)⊗ PΓ +W ⊗ cγPΓ

]
x(t)

= 1

2
eεt

N∑

i=1

N∑

j=1
j �=i

ξiξj · η�
ij (t)Υ̃ ηij + eεtx�(t)

×[
c(ΞA+ A�Ξ)⊗ PΓ +W ⊗ cγPΓ

]
x(t), (8.12)

where ηij (t) = [(xi − xj )
�, (f (xi)− f (xj ))

�, (f (xi(t − τ))− f (xj (t − τ)))�]�.
Let Ã = ΞA + A�Ξ . Then, one can obtain that the elements of Ã are

ãij = ξiaij + ξj aji . Since ξ = [ξ1, ξ2, . . . , ξN ]� ∈ R
N is the normalized left

eigenvector of matrix A with respect to eigenvalue zero satisfying
∑N

i=1 ξi = 1,
it can be observed that Ã is a zero row sum symmetric matrix with non-negative
off-diagonal elements. The irreducibility of matrix Ã can also be deduced from the
irreducibility of matrix A. Hence, the eigenvalues of matrix Ã can be arranged as
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follows: 0 = λ1(Ã) > λ2(Ã) ≥ λ3(Ã) ≥ · · · ≥ λN(Ã). By Definition 8.6, λ2(Ã) is
selected as α(A).

According to matrix decomposition theory [12], there exists a unitary matrix
U such that Ã = UΛU�, where Λ = diag{0, λ2(Ã), . . . , λN(Ã)}, and U =
[u1, u2, . . . , uN ] with u1 = ( 1√

N
, 1√

N
, . . . , 1√

N
)�.

Let y(t) = (U� ⊗ In)x(t). Then, one has x(t) = (U ⊗ In)y(t). Let yi(t) ∈ R
n

(i = 1, 2, . . . , N ) be such that y(t) = [y�
1 (t), y

�
2 (t), . . . , y

�
N(t)]�. Then we have

cx�(t)
[
(ΞA+ A�Ξ)⊗ PΓ

]
x(t)

= cy�(t)(U� ⊗ In)(Ã⊗ PΓ )(U ⊗ In)y(t)

= cy�(t)(U�ÃU ⊗ PΓ )y(t)

= cy�(t)(Λ⊗ PΓ )y(t)

= c

N∑

i=1

λi(Ã)y
�
i (t)PΓ yi(t)

= c

N∑

i=2

λi(Ã)y
�
i (t)PΓ yi(t)

≤ cλ2(Ã)

N∑

i=2

y�
i (t)PΓ yi(t)

= cα(A)

N∑

i=2

y�
i (t)PΓ yi(t). (8.13)

By referring to the structure of matrix W , one can conclude that W is an
irreducible symmetric matrix with negative off-diagonal elements, and also W

satisfies the diffusive coupling condition (8.3). Hence, one can conclude that
λmax(W) > 0. It follows from the construction of matrix W that W · u1 =
(0, 0, . . . , 0)� := 0n ∈ R

N . Further, we can obtain that U�WU =
[

0 0�
n

0n Ũ�WŨ

]
,

where Ũ = [u2, u3, . . . , uN ] satisfying Ũ�Ũ = IN−1. By utilizing the above
analysis, one has that

x�(t)(W ⊗ cγPΓ )x(t)

= cγy�(t)(U�WU ⊗ PΓ )y(t)

= cγ ỹ�(t)(Ũ�WŨ ⊗ PΓ )ỹ(t)
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≤ cγ λmax(W)ỹ�(t)(Ũ�Ũ ⊗ PΓ )ỹ(t)

= cγ λmax(W)

N∑

i=2

y�
i (t)PΓ yi(t), (8.14)

where ỹ(t) = [y�
2 (t), . . . , y

�
N(t)]�.

By using (8.13), (8.14), and equality γ = −α(A)/λmax(W), it follows from
(8.11) that

V̇ (x)|(8.4) ≤ 1

2
eεt

N∑

i=1

N∑

j=1,j �=i
ξiξj · η�

ij (t)Υ̃ ηij

+eεt (c · α(A)+ cγ λmax(W))

N∑

i=2

y�
i (t)PΓ yi(t)

= 1

2
eεt

N∑

i=1

N∑

j=1,j �=i
ξiξj · η�

ij (t)Υ̃ ηij . (8.15)

Using (8.6), inequality (8.11) gives that V̇ (x)|(8.4) ≤ 0, which yields that
V (x(t)) ≤ V (x(0)). This means that, V (x(t)) is bounded. Therefore, we can obtain
that eεtx�(t)(W ⊗ P)x(t) is also bounded, which implies

1

2
ξiξjλmin(P )‖xi(t)− xj (t)‖2

≤ 1

2

N∑

i=1,j=1

ξiξj (xi(t)− xj (t))
�P(xi(t)− xj (t))

= x�(t)(W ⊗ P)x(t) = O(e−εt ). (8.16)

According to Definition 8.5, we can conclude that globally exponential synchro-
nization of complex dynamical network (8.4) can be achieved under premise (8.5).
The proof is completed.

Remark 8.9 It should be noted that the functional V (x) in (8.7) is not positive
definite. From the equalities x�(t)(W ⊗ P)x(t) = 1

2

∑N
i=1,j=1 ξiξj (xi(t) −

xj (t))
�P(xi(t) − xj (t)) and F�(x(s))(W ⊗ Q)F(x(s)) = 1

2

∑N
i=1,j=1 ξiξj ×

(f (xi(t)) − f (xj (t)))
�Q(f (xi(t)) − f (xj (t))), we can observe that V (x) is

a positive semi-definite functional. In fact, the functional V (x) vanishes in the
synchronization manifold M = {x1(t) = x2(t) = · · · = xN(t)}.
Remark 8.10 The derived result in Theorem 8.8 is delay-independent. When the
time delay is small, such delay-independent result could be conservative. In this
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case, some techniques could be borrowed from [13] and [14] to derive some delay-
dependent synchronization criteria.

By specifying slack variables of Theorem 8.8, we can obtain an algebraic
criterion shown in Corollary 8.11. Comparing with linear matrix inequalities results
in Theorem 8.8, the algebraic result shown in Corollary 8.11 is more conservative
but easier to verify.

Corollary 8.11 Under Assumptions 8.2 and 8.3, directed complex dynamical net-
work (8.4) can reach globally exponential synchronization if the following algebraic
inequality is satisfied:

c >
β

γ
, (8.17)

where β = λmax
(
(−2C+2L�L+B1B

�
1 +B2B

�
2 )Γ

−1
)
and γ = −α(A)/λmax(W)

with α(A) is given in Definition 8.6.

Proof By (8.17), we can obtain the following inequality:

− cα(A)/λmax(W) > λmax

(( − 2C + 2L�L+ B1B
�
1 + B2B

�
2

)
Γ −1

)
, (8.18)

which further implies that

( − cα(A)/λmax(W)
) ∗ In >

( − 2C + 2L�L+ B1B
�
1 + B2B

�
2

)
Γ −1. (8.19)

Hence, we can obtain that

( − cα(A)/λmax(W)
) ∗ Γ > −2C + 2L�L+ B1B

�
1 + B2B

�
2 . (8.20)

By referring to Schur complement [15], one can obtain that

⎡

⎣
−2C − cγΓ + 2L�L B1 B2

B�
1 −In 0

B�
2 0 −In

⎤

⎦ < 0. (8.21)

Hence, LMI (8.5) is satisfied by taking P = Q = S = In. Proof of Corollary 8.11
is completed by using Theorem 8.8.

Remark 8.12 It should be noted that β in (8.17) is determined by the parameters
of the individual node and inner coupling matrix Γ , and γ in (8.17) completely
depends on the structure of the complex network. Given the parameters of an
individual node and the inner coupling matrix Γ , β is fixed, and hence a large value
of γ implies that directed complex dynamical network (8.4) can synchronize with a
small coupling strength c. Therefore, according to Corollary 8.11 and Definition 8.7,
synchronizability of network (8.4) with respect to a specific coupling structure can
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be characterized by γ . The synchronizability of network structure is said to be strong
if corresponding dynamical network (8.4) can synchronize with a small coupling
strength c [1].

If the complex dynamical network is assumed to be undirected, one can
conclude that the Laplacian matrix A is symmetrical. The normalized left
eigenvector ξ of matrix A with respect to eigenvalue 0 can be explicitly
obtained as ξ = 1

N
[1, 1, . . . , 1]� ∈ R

N . Then we have Ξ = 1
N
IN ,

and W = 1
N2

⎡

⎢⎢⎢⎣

N − 1 −1 · · · −1
−1 N − 1 · · · −1
.
.
.

.

.

.
.
.
.

.

.

.

−1 −1 · · · N − 1

⎤

⎥⎥⎥⎦. In fact, W can be regarded as the

Laplacian matrix of the complete graph, and the eigenvalues of matrix W are
λ1(W) = λ2(W) = · · · = λN−1(W) = 1

N
, and λN(W) = 0 [16]. Hence,

λmax(W) = 1
N

. Moreover, since Ξ = 1
N
IN and A is symmetrical, one can obtain

that α(A) = λ2(ΞA + A�Ξ) = 2
N
λ2(A), where λ2(A) is the second largest

eigenvalue of matrix A. Therefore, for undirected network, the quantity γ can be
represented as γ = −2λ2(A). Then we can obtain the following theorem and
corollary for undirected dynamical networks:

Theorem 8.13 Suppose that the coupling matrix A is symmetrical and Assump-
tions 8.2 and 8.3 hold, and there exist diagonal positive definite matrix P , positive
definite matrixQ, and diagonal matrix S ≥ 0, such that the following linear matrix
inequality is satisfied:

⎡

⎣
−2PC − cγPΓ + 2L�SL PB1 PB2

B�
1 P Q− 2S 0

B�
2 P 0 −Q

⎤

⎦ < 0, (8.22)

where γ = −2λ2(A). Then the undirected complex dynamical network (8.4) can
reach globally exponential synchronization.

Corollary 8.14 Under Assumptions 8.2 and 8.3, undirected complex dynamical
network (8.4) can reach globally exponential synchronization if the following
algebraic inequality is satisfied:

c >
β

γ
, (8.23)

where β = λmax
(
(−2C + 2L�L+ B1B

�
1 + B2B

�
2 )Γ

−1
)
and γ = −2λ2(A).

Remark 8.15 According to Corollaries 8.11 and 8.14, quantities −α(A)
λmax(W)N

and
−2λ2(A) have been, respectively, distilled to characterize the synchronizability of
directed and undirected complex dynamical networks. Then, an obvious question
to consider here is: for directed and undirected networks, which possesses better
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synchronizability? In Sect. 8.3, calculation of the quantity γ shows that directed
small-world networks possess better synchronizability than undirected ones.

Remark 8.16 It should be noted that the size of LMI (8.5), which only depends
on the dimension of single system (n), has nothing to do with the size of the
network (N ). The dimension of a single system is usually small (less than 100).
Hence, it takes a short time to solve the corresponding LMI. The quantity γ =
−α(A)/λmax(W), distilled from coupling matrix A, can be used to characterize
the synchronizability of the corresponding dynamical network. In fact, the larger
the γ is, the easier the corresponding network can be synchronized. Therefore, the
calculation of γ is the key factor concerning whether our criteria are applicable
to large-scale networks. Numerical examples will be given to show that it takes a
reasonable amount of time to calculate γ for large-scale networks. Hence, it can be
concluded that our synchronization criterion is useful for large-scale networks.

8.2.2 Reducible Case

In the following, we discuss the case that the configuration coupling matrix A

satisfies Assumption 8.4. Without loss of generality, the reducible matrix A can
be written as

A =

⎡

⎢⎢⎢⎣

A11 A12 · · · A1p

0 A22 · · · A2p
...

...
. . .

...

0 0 · · · App

⎤

⎥⎥⎥⎦ , (8.24)

where App ∈ R
mp×mp is irreducible, and Aqq ∈ R

mq×mq for q = 1, 2, . . . , p − 1.
SinceA satisfies Assumption 8.4, for each q, there must exist k > q such thatAqk �=
0 [2, 17]. In other words, the reverse of the graph generated by the configuration
coupling matrix A must contain a rooted spanning directed tree [2].

Let Nq = ∑q

k=1 mk , and then N = Np. Next, complex dynamical network (8.2)
can be decomposed into p coupled subsystems denoted by Sq = {Nq−1 +1, Nq−1 +
2, . . . , Nq} for q = 1, 2, . . . , p, with N0 = 0:

Sp : ẋi (t) = −Cxi(t)+ B1f (xi(t))+ B2f (xi(t − τ))+ I (t)

+c
∑

j∈Sp
aijΓ xj (t), i ∈ Sp (8.25)
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and

Sq : ẋi (t) = −Cxi(t)+ B1f (xi(t))+ B2f (xi(t − τ))+ I (t)

+c
∑

j∈Sq
aijΓ xj (t)+ c

∑

r∈Sk
k>q

airΓ xr(t), i ∈ Sq,

q = 1, 2, . . . , p − 1. (8.26)

If the subsystems Sk, (k = q + 1, q + 2, . . . , p) are exponentially globally
synchronized with convergence rate ε, then these subsystems are decoupled, and
the final synchronized state x∗(t) satisfies the following differential equation:

ẋ∗(t) = −Cx∗(t)+ B1f (x
∗(t))+ B2f (x

∗(t − τ))+ I (t)+O(e−εt ). (8.27)

Therefore, according to the zero-sum rows, i.e.,
∑

j∈Sq aij +∑
r∈Sk,k>q air = 0 for

i ∈ Sq , the next coupled subsystem Sq can be described by the following equation:

ẋi (t) = −Cxi(t)+ B1f (xi(t))+ B2f (xi(t − τ))+ I (t)

+c
∑

j∈Sq
aijΓ xj (t)+ c

∑

r∈Sk,k>q
airΓ xr(t)+O(e−εt )

= −Cxi(t)+ B1f (xi(t))+ B2f (xi(t − τ))+ I (t)

+c
∑

j∈Sq
aijΓ xj (t)+ c

∑

r∈Sk,k>q
airΓ x

∗(t)+O(e−εt )

= −Cxi(t)+ B1f (xi(t))+ B2f (xi(t − τ))+ I (t)

+c
∑

j∈Sq
aijΓ xj (t)− c

∑

j∈Sq
aijΓ x

∗(t)+O(e−εt )

= −Cxi(t)+ B1f (xi(t))+ B2f (xi(t − τ))+ I (t)

+c
∑

j∈Sq
aijΓ (xj (t)− x∗(t))+O(e−εt ), i ∈ Sq (8.28)

and then

ėi (t) = −Cei(t)+ B1g(ei(t))+ B2g(ei(t − τ))

+c
∑

j∈Sq
aijΓ ej (t)+O(e−εt ), i ∈ Sq, (8.29)

where ei(t) = xi(t) − x∗(t), g(ei(t)) = f (xi(t)) − f (x∗(t)), and g(ei(t − τ)) =
f (xi(t − τ))− f (x∗(t − τ)) for i ∈ Sq .
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Hence, we can study the globally exponential synchronization of general dynam-
ical network (8.2) by firstly investigating the synchronization of the subsystem Sp

with irreducible coupling matrix App, and secondly studying the stability of the
above error subsystems (8.29) step by step. The following theorem will be given to
show a synchronization criterion for complex dynamical networks with reducible
coupling configuration matrix under this process.

By referring to the structure of matrix Aqq (q = 1, 2, . . . , p − 1), matrix Aqq

can be decomposed uniquely as Aqq = Lqq + Dqq , where Lqq is a zero row
sum matrix and Dqq is a diagonal matrix. Let ξq = (ξNq−1+1, ξNq−1+2, . . . , ξNq )

�
be the normalized left eigenvector of matrix Lqq with respect to eigenvalue zero
satisfying

∑
i∈Sq ξi = 1. Denote Ξq = diag{ξNq−1+1, ξNq−1+2, . . . , ξNq }, and

Ãqq = ΞqAqq + A�
qqΞq . Let β(Aqq) = λmax(Ãqq) for q = 1, 2, . . . , p − 1. It

has been proved in [2] and [18] that β(Aqq) < 0. Moreover, suppose that ξp is the
normalized left eigenvector of the configuration coupling matrix App with respect
to eigenvalue 0. Let Ξp = diag{ξp} > 0, and Wpp = Ξp − ξp(ξp)�.

Theorem 8.17 Suppose that Assumptions 8.2 and 8.4 hold. Then, complex dynam-
ical network (8.4) with reducible coupling matrix (8.24) can be globally expo-
nentially synchronized if there exist diagonal positive definite matrix P , positive
definite matrixQ, and diagonal matrix S ≥ 0, such that the following linear matrix
inequality is satisfied:

Ω =
⎡

⎣
−2PC − cγ̄ PΓ + 2L�SL PB1 PB2

B�
1 P Q− 2S 0

B�
2 P 0 −Q

⎤

⎦ < 0, (8.30)

where γ̄ = min{−α(App)/λmax(Wpp),−β(Ap−1,p−1), . . . ,−β(A11)}, function
α(·) is defined in Definition 8.6, and function β(·) is defined above.

Proof By using Theorem 8.8, it can be checked that LMI (8.30) can guarantee the
globally exponential synchronization of the subsystem Sp with irreducible coupling
matrix App. Now, we are in the position to prove that LMI (8.30) can also ensure
the globally exponential stability of the remaining p − 1 error coupled subsystems
(8.29).

It follows from LMI (8.30) that there exists a positive constant η (η < ε), such
that

Ω̃ =
⎡

⎣
ηP − 2PC − cγ̄ PΓ + 2L�SL PB1 PB2

B�
1 P eητQ− 2S 0

B�
2 P 0 −Q

⎤

⎦ < 0. (8.31)
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For subsystem Sp (8.29), consider the following Lyapunov functional:

V (x) = eηt
∑

i∈Sq
ξie

�
i (t)P ei(t)+

∑

i∈Sq

∫ t

t−τ
eη(s+τ)ξig�(ei(s))Qg(ei(s))ds.

(8.32)

Then, calculating the derivative of functional (8.32) along the trajectories of
(8.29) gives that

V̇ (t) = eηt
∑

i∈Sq
ξi

{
e�
i (t)ηP ei(t)− 2e�

i (t)PCei(t)+ 2e�
i (t)PB1g(ei(t))

+2e�
i (t)PB2g(ei(t − τ))+ eητ g�(ei(t))Qg(ei(t))

−g�(ei(t − τ))Qg(ei(t − τ))

}

+eηt
∑

i∈Sq
ξi

⎡

⎣2e�
i (t)P c

∑

j∈Sq
aijΓ ej (t)

⎤

⎦ +O(e−(ε−η)t ). (8.33)

By inequality (8.10), we have

2e�
i (t)L

�SLei(t)− 2g�(ei(t))Sg(ei(t)) ≥ 0. (8.34)

Moreover, since β(Aqq) < 0, 0 < ξi ≤ 1 for i ∈ Sq , and β(Aqq) ≤ −γ̄ , we can
obtain the following inequality by some algebraic calculations:

∑

i∈Sq
ξi
[
2e�

i (t)P c
∑

j∈Sq
aijΓ ej (t)

]

=
∑

i∈Sq

∑

j∈Sq
2cξiaij e

�
i (t)PΓ ej (t)

=
n∑

k=1

cpkγk
(
ek(t)

)�(
ΞqAqq + A�

qqΞq

)
ek(t)

≤ β(Aqq)

n∑

k=1

cpkγk
(
ek(t)

)�
ek(t)

=
∑

i∈Sq
c · β(Aqq)e

�
i (t)PΓ ei(t)

≤ −
∑

i∈Sq
ξi · c · γ̄ e�

i (t)PΓ ei(t), (8.35)

where ek(t) = [ekNq−1+1, e
k
Nq−1+2, . . . , e

k
Nq

]�.
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Substituting inequalities (8.34) and (8.35) into (8.33) implies that

V̇ (t) ≤ eηt
∑

i∈Sq
ξi

{
e�
i (t)

[
ηP − 2PC − cγ̄ PΓ + 2L�SL

]
ei(t)

+2e�
i (t)PB1g(ei(t))

+2e�
i (t)PB2g(ei(t − τ))+ eητ g�(ei(t))Qg(ei(t))

−g�(ei(t − τ))Qg(ei(t − τ))

}

+O(e−(ε−η)t )

= eηt
∑

i∈Sq
ξi · ζ�

i (t)Ω̃ζi +O(e−(ε−η)t ), (8.36)

where ζi(t) = [e�
i (t), g

�(ei(t)), g�(ei(t − τ))]�.
The combination of (8.31) and (8.36) implies that V (t) is bounded by V (0).

Similar to the discussion in Theorem 8.8, one can obtain that the qth error system
(8.28) is globally exponentially stable. In other words, the qth subsystem (8.28) can
be globally exponentially synchronized with the foregoing (q + 1)th, (q + 2)th,. . . ,
pth subsystems at the state x∗(t). Therefore, the whole general complex dynamical
network (8.2) with reducible and asymmetric configuration coupling matrix A in the
form of (8.24) is globally exponentially synchronized. The proof is completed.

Remark 8.18 For the synchronization of the qth (q = 1, 2, . . . , p − 1) subsystem
Sq , we can learn from the deduction of Eq. (8.28) that it has nothing to do with the
concrete value of air (where i ∈ Sq, r ∈ Sk with k > q) if the sum value

∑
r∈Sk
k>q

air

of these terms is fixed. In other words, under the assumptions that the sum
∑

r∈Sk
k>q

air

is fixed and the remaining entries of matrix A are also fixed, the synchronization
condition of subsystem Sq (8.28) will remain no matter how air changes. From
Theorem 8.17, we can also observe that the synchronization criterion of subsystem
Sq is only related to the matrices Akk (k = 1, 2, . . . , p) and the dynamical behavior
of the isolated systems.

Remark 8.19 The complex networks in the real-world could be very large, hence
the LMU obtained in this chapter may also be very big. However, it can be
efficiently solved by using the LMI Toolbox in Matlab, since the LMI solvers used
in the LMI Lab is based on the interior-point optimization techniques, which has
been developed as a powerful tool for solving very large-scale linear programming
problem [15].
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8.3 Numerical Examples

In this section, two numerical examples including small-world and scale-free
networks will be given to illustrate the validity of our theoretical results for large-
scale networks. In the first example, we consider the small-world coupled dynamical
network. A complex dynamical network with scale-free coupling structure will be
simulated as the second example. In both examples, a chaotic neural network is
chosen as the isolated node of the network, which can be described by the following
equation [19]:

ẋ(t) = −Cx(t)+ Af (x(t))+ Bf (x(t − τ))+ I (t), (8.37)

with C =
(

1 0
0 1

)
, A =

(
1 + π

4 20
0.1 1 + π

4

)
, B =

(
− 1.3π

√
2

4 0.1

0.1 − 1.3π
√

2
4

)
, I (t) =

(
0
0

)
, and τ = 0.9, where x(t) = (x1(t), x2(t))

� is the state vector of the isolated

node in the coupled network. Activation functions fi(s) = 1
2 (|s + 1| − |s − 1|) for

i = 1, 2, and hence Assumption 8.2 is satisfied with L = diag{1, 1}. This neural
network model (8.37) is chaotic as shown in Fig. 8.1, with initial values x1(s) =
3, x2(s) = −1, ∀s ∈ [−0.9, 0].

The complex dynamical network model (8.2) is used in the following two
examples. The inner coupling matrix Γ and coupling strength c are, respectively,
chosen as Γ = diag{2, 1} and c = 1. Since the coupling configuration matrix is
assumed to be asymmetric in the numerical examples, the results in [3–6] cannot
be used to judge whether the synchronization of the dynamical network can be
achieved. Throughout the following simulations, a normal PC with Intel Core 2
Quad Q6600 @ 2.40 GHz and 1.96 GB memory is used.

Example 8.20 In this example, we consider small-world networks. When the small-
world networks are generated, the coupling strength aij for each edge is defined as
follows: if there is a connection from node j to node i (i �= j ), then aij = 1;
otherwise, aij = 0.

By Theorems 8.8 and 8.13, the quantity γ obtained from the coupling matrix A

can be used to determine the synchronizability of dynamical networks. The larger
the γ is, the better is the synchrony of the dynamical network. In the upper sub-
figures of Figs. 8.2 and 8.3, we represent the evolution of the quantity γ as a function
of the number of nodesN and adding probability p. Each γ is obtained by averaging
the results of 10 runs. Due to the randomness of small-world networks, the standard
deviation of each 10-run is also plotted in Figs. 8.2 and 8.3 to show that obtained
data are centralized and reasonable. As the average degree is increased, the quantity
γ is observed to increase for both undirected and directed networks, which further
implies enhancement of synchronizability. Moreover, the results shown in Figs. 8.2
and 8.3 imply that the synchronizability of directed small-world networks is better
than that of undirected ones.
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Fig. 8.1 The state of neural network model (8.37): (a) Chaotic attractor; (b) Time series

The calculation time of γ , which determines the availability of our criteria for
large-scale networks, is of great importance. Hence, average running time (seconds)
for each γ is also plotted in the lower sub-figures of Figs. 8.2 and 8.3. Running
time of undirected networks is much smaller than that of directed networks. This is
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because γ of undirected network is only determined by the second largest eigenvalue
and the left eigenvector ξ , hence the undirected network does not need to be
numerically solved. As we can observe, it takes only less than 70ṡ to generate a
3000-node directed small-world network and calculate the corresponding γ . By
substituting the obtained γ to the sufficient synchronization criteria derived in
Sect. 8.2, we can judge whether the dynamical network can be synchronized. It
means that our criteria are available for large-scale networks.

By constructing a directed 500 nodes small-world network with k = 4 and
adding probability 0.02, we obtain that γ = 11.3646. Further, by using Matlab
LMI Toolbox, we can find a feasible solution to the LMI (8.5) as follows: P =
diag{0.1367, 0.8836}, Q =

[
0.8923 −0.2068

−0.2068 1.9342

]
, and S = diag{0.7569, 4.2246}.

Therefore, according to Theorem 8.8, we can conclude that the complex dynam-
ical network with small-world coupling is globally exponentially synchronized.
Figure 8.4 shows synchronization behavior of the directed small-world dynamical
network, initial values of which are pseudo-random numbers uniformly distributed
in [-10, 10].

Example 8.21 BA Scale-free network is taken into account in this example [20].
The coupling matrix A = [aij ] for generated scale-free network is defined as
follows: if there is a connection from node j to node i (i �= j ), then aij will
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Fig. 8.4 Synchronization of 500-node small-world network with rewiring probability 0.02
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be randomly assigned a number which is uniformly distributed between 1 and 2;
otherwise, aij = 0. Of course, the asymmetric matrix A satisfies the diffusive
coupling condition (8.3).

In Figs. 8.5, 8.6, and 8.7, each γ is obtained by averaging the results of 10 runs.
Due to the randomness of scale-free networks, the standard deviation of each 10-
run is also plotted to show that obtained data are centralized and reasonable. In
Fig. 8.5, we represent the quantity γ of the scale-free network and corresponding
running time as a function of size of network N . It can be observed that for BA
scale-free networks, the quantity γ is almost free from the scale of the network
when average degree (m) is fixed. In Fig. 8.6, the quantity γ is plotted against the
number of edges added each time step m (equal to average degree). One can observe
that synchronizability of BA scale-free network is improved as m (i.e., average
degree) increases. Figure 8.7 is given to compare synchronizability of small-world
and scale-free networks under the constraint of identical average degree. The results
shown in Fig. 8.7 lead to the conclusion that synchronization of the dynamical
network is enhanced as the heterogeneity of the degree distribution is decreased.
This argument is consistent with that of Ref. [21].

With the selection of N = 500 and m = m0 = 7, a scale-free network can be
generated. By calculation, we obtain that γ = 10.6640. Then, a feasible solution
to linear matrix inequality (8.5) can be obtained as follows by referring to Matlab

LMI Toolbox: P = diag{3.5971, 27.0464}, Q =
[

23.8274 −5.8084
−5.8084 58.0917

]
, and S =

diag{19.5356, 120.7142}. Hence, it can be concluded from Theorem 8.8 that the
scale-free coupled dynamical network can be globally exponentially synchronized.
By taking uniformly distributed pseudo-random numbers in [−10, 10], Fig. 8.8
displays the synchronization behavior of the directed scale-free dynamical network.

8.4 Summary

In this chapter, we study the exponential synchronization behavior of a complex
dynamical network. One quantity is distilled from the coupling matrix to charac-
terize the synchronizability of corresponding dynamical networks. The calculation
of such a quantity is very convenient even for large-scale networks. The coupling
configuration matrix is not assumed to be symmetric or/and irreducible. Some suffi-
cient conditions are proposed to guarantee the globally exponential synchronization
of the network by introducing the left eigenvector to the construction of Lyapunov
functional. The criteria obtained in this chapter are expressed in terms of LMIs,
which can be checked effectively by resorting to recently developed algorithms. In
addition, two numerical examples including small-world and scale-free networks
are given to demonstrate that our theoretical results are available for large-scale
networks.
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Fig. 8.5 (Up). γ versus Number of nodes; (Down). Program running time (seconds) versus
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Fig. 8.8 Synchronization of 500-node scale-free network with m = m0 = 7
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Chapter 9
Pinning Cluster Synchronization
in an Array of Coupled Neural Networks
Under Event-Based Mechanism

As a special kind of synchronization phenomenon, cluster synchronization means
that the synchronization occurs within one group, but there is no synchronization
among different groups. Recently, cluster synchronization of complex networks has
received increasing attention because of its applications in biological science and
communication engineering [1–4]. In [5], different mechanisms (identical and non-
identical self-dynamics) leading to cluster synchronization in diffusively coupled
networks were discussed in detail. In [6], a pinning control algorithm was proposed
to achieve leader-following consensus in a network of agents with nonlinear
second-order dynamics. In [7], pinning control strategies were proposed to steer
a dynamical network to an expected cluster synchronization pattern. The study of
cluster synchronization phenomena is significant to the theoretical research on brain
science and related practical applications [3, 8, 9]. Hence, in this chapter, cluster
synchronization problem of coupled neural networks will be studied. In the past few
years, some works have been devoted to studying cluster synchronization of coupled
neural networks [3, 8]. In [3], by constructing a special coupling matrix, several
sufficient criteria for cluster synchronization in an array of coupled neural networks
were derived. The main results of [3] were further extended to the stochastic delayed
neural networks in [8]. It should be noted that all previous mentioned works were
based on continuous-time state information transmission.

In networked environment, successful and efficient communication among nodes
is the key factor for dynamical systems to achieve desired collective behaviors.
Due to the limited bandwidth of the communication channel among the nodes, it
is necessary to save energy as much as possible. Recently, a novel communication
protocol, namely event-triggered control (see, e.g., [10–13]), was developed to
provide an effective methodology that satisfies the energy constraints of the
system. Collective behaviors (e.g., synchronization and consensus) of complex

© Springer Nature Singapore Pte Ltd. and Science Press, China 2021
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network under event-triggered communication mechanism have become a hot
research subject [14–17]. Some interesting works on synchronization of complex
networks under event-triggered communication strategy were shown in [14, 18, 19].
Effective event-triggered conditions were designed to achieve the synchronization
of the considered network models. In [15], state estimation of a class of complex
networks was investigated under event-based information transmission. In [16], a
new distributed event-triggered mechanism for pinning control synchronization of
complex networks was presented. Unfortunately, the exclusion of Zeno behavior
was not strictly proved in [16].

Motivated by above statements, we aim to study the pinning cluster synchro-
nization of coupled neural networks by a novel event-triggered mechanism in
this chapter. Under event-triggered mechanism, some controllers will be pinned
to certain selected nodes in coupled neural networks to realize expected cluster
synchronization. The main difficulties of this chapter are how to propose distributed
event-triggered schemes to realize expected cluster synchronization and meanwhile
exclude the Zeno behavior.

9.1 Preliminaries and Problem Formulation

In this subsection, we will first give some basic definitions and lemmas and then
present the coupled neural networks model under event-triggered mechanism.

Definition 9.1 A network with N nodes is said to realize cluster synchronization,
if the N nodes are split into several clusters G1,G2, . . . ,Gk , such as {G1 = (m0 +
1,m0+2, . . . , m1), G2 = (m1+1, m1+2, . . . , m2), . . . , Gk = (mk−1+1, mk−1+
2, . . . , mk), m0 = 0, mk = N, mj−1 < mj , j = 1, 2, . . . , k} such that

• the nodes in the same cluster synchronize with each other, i.e., for the states xi(t)
and xj (t) of arbitrary nodes i and j in the same cluster, lim

t→+∞ ‖xi(t)−xj (t)‖ = 0

holds;
• the nodes in the different clusters do not synchronize, i.e., for the states xi(t) and

xj (t) of arbitrary nodes i and j in different clusters, lim
t→+∞ ‖xi(t) − xj (t)‖ �= 0

holds.

Definition 9.2 ([7]) Consider A = (aij ) ∈ R
N×N . If

• aij ≥ 0, for i �= j , and aii = −∑N
j=1, j �=i aij = −∑N

j=1, j �=i aji , i =
1, 2, . . . , N ;

• A is irreducible.

Then we say A ∈ A1.
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Definition 9.3 ([7]) For a N ×N matrix

A =

⎛

⎜⎜⎜⎝

A11 A12 · · · A1k

A21 A22 · · · A2k
...

...
. . .

...

Ak1 Ak2 · · · Akk

⎞

⎟⎟⎟⎠ , (9.1)

with Aii ∈ R
(mi−mi−1)×(mi−mi−1), Aij ∈ R

(mi−mi−1)×(mj−mj−1), i, j =
1, 2, . . . , k, if each block Aij is a zero row sum matrix, then we say A ∈ M1(k).
Furthermore, if Aii ∈ A1, i = 1, 2, . . . , k, then we say A ∈ M2(k).

Lemma 9.4 ([7]) For a matrix B ∈ R
p×q , denote α(B) = 1

2max{p, q}·
maxi,j {|bij |}, then

x�By ≤ α(B)
(
x�x + y�y

)
(9.2)

holds for all x ∈ R
p, y ∈ R

q .

In this chapter, the following assumptions are imposed.

Assumption 9.5 Function f (·) is Lipschitz continuous, i.e., there exists a positive
constant L, such that

||f (x)− f (y)|| ≤ L||x − y|| ∀x, y ∈ R
n. (9.3)

Assumption 9.6 Coupling matrix A satisfies A ∈ M2(k).

The dynamic of linearly coupled neural networks under pinning control can be
described as:

dxi(t)

dt
= −Cxi(t)+ Bf (xi(t))+ I (t)+

N∑

j=1

aijΓ xj (t)+ ui(t), i ∈ N , (9.4)

where xi(t) = (xi1(t), xi2(t), . . . , xin(t))
� ∈ R

n is the state vector of the ith
network at time t ; C = diag(c1, c2, . . . , cn), with ci > 0 denoting the rate with
which the cell i resets its potential to the resting when being isolated from other cells
and inputs; B = (brj )n×n represents the connection weight matrix; Γ represents the
inner-coupling matrix; for simplicity, we assume that Γ = diag(γ1, γ2, . . . , γn)

in this chapter; f : R
n −→ R

n is the activation function with f (xi(t)) =
(f1(xi1(t)), f2(xi2(t)), . . . , fn(xin(t)))

�; I = (I1(t), I2(t), . . . , In(t))
� ∈ R

n is
an external input vector; ui(t) is the pinning controller which will be given in the
following part; A = (arj )n×n is the matrix representing the coupling structure of
the coupled neural networks. It can be observed that cooperative and competitive
couplings, which can characterize the real world better, are adopted in this chapter
to describe the topology structure of the coupled neural networks.
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In this chapter, the event-triggered information transmission mechanism will
be adopted to investigate the cluster synchronization problem of coupled neural
networks (9.4). Suppose that t ik1

, t ik2
, . . . , t ikd

, . . . , is the sequence of the event
times instants of the agent i which will be defined based on the event-triggering
condition. At time t ikd , d ∈ N, node i and its neighboring nodes measure their own

states, respectively, denoted by xi(t ikd ) and xj (t ikd ), j ∈ Ni .
Suppose we want to control network (9.4) onto certain desired inhomogeneous

state defined by xm0+1(t), . . . , xm1(t) → s1(t), xm1+1(t), . . . , xm2(t) → s2(t),
. . . , xmk−1+1(t), . . . , xmk

(t) → sk(t). That is, M = (s1(t), . . . , s1(t), . . .

, sk(t), . . . sk(t)) ⊂ R
n×N is the desired cluster synchronization pattern under

pinning control. Moreover, sl(t) can be an equilibrium point, a periodic orbit, or
a chaotic attractor in the phase space satisfying

ṡl (t) = −Csl(t)+ Bf (sl(t))+ I (t), l = 1, . . . , k. (9.5)

Without loss of generality, to achieve the goal of cluster synchronization, we apply
the pinning control strategy on the nodes set J = {m1, m2, . . . , mk}. Hence, the
following neural network model with event-triggered diffusive coupling will be
studied in this chapter: for t ∈ [t ikd , t ikd+1

),

⎧
⎪⎨

⎪⎩

ẋi (t) = −Cxi(t)+ Bf (xi(t))+ I (t)+ ∑N
j=1 aijΓ xj

(
t ikd

)

−εlΓ (xi
(
t ikd

) − sl
(
t ikd

)
), i = ml, l = 1, 2, . . . , k,

ẋi (t) = −Cxi(t)+ Bf (xi(t))+ I (t)+ ∑N
j=1 aijΓ xj

(
t ikd

)
, i �= ml,

(9.6)

where εl > 0, and t ikd
is determined by the event-triggered condition which will be

given in the following theorem. Define the error variables as

δxi(t) = xi(t)− sl(t), l = 1, 2, . . . , k; i = ml−1 + 1, . . . , ml.

The coupled neural networks (9.6) are said to realize expected cluster synchro-
nization pattern if and only if

lim
t→+∞

k∑

l=1

ml∑

i=ml−1+1

‖xi(t)− sl(t)‖ = 0.

Remark 9.7 Compared with the previous work on cluster synchronization of
coupled neural networks [3, 8, 20, 21], a new mechanism based on event-triggered
sampling information is proposed in this chapter to realize the expected cluster
synchronization. Moreover, we do not require the coupling matrix to be symmetric,
and it makes our network model more realistic.
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9.2 Pinning Cluster Synchronization Under Event-Triggered
Mechanism

In this subsection, we will investigate the cluster synchronization of the considered
network (9.6) under event-triggered mechanism. For t ∈ [t ikd , t ikd+1

), let

κi(t) =

⎧
⎪⎨

⎪⎩

∑N
j=1 aijΓ

(
xj

(
t ikd

) − xj (t)
) − εlΓ

(
xi

(
t ikd

) − sl
(
t ikd

) − xi(t)+ sl(t)),

if i = ml, l = 1, 2, . . . , k,∑N
j=1 aijΓ

(
xj

(
t ikd

) − xj (t)
)
, if i �= ml, l = 1, 2, . . . , k.

We will use κi(t) to give the event-triggered condition in the following theorem.

Theorem 9.8 Consider network (9.6) under event-triggered mechanism. Suppose
Assumptions 9.5–9.6 are satisfied and there exists diagonal positive definite matrix
P such that

H + A − � < 0, (9.7)

where A = Ã ⊗ (PΓ ) with Ã = 1
2 (A + A�), � = Ξ ⊗ (PΓ ) with

Ξ = diag{0, . . . , ε1, . . . , 0, . . . , εk}, H = IN ⊗ H with H = −PC +
(
β1
2 λmax(PBB

�P) + 1
2β1

L2)In + β1
2 PΓ Γ P , and arbitrary positive constant β1.

Then, under the event-triggered condition

||κi(t)|| > βexp(−γ t), (9.8)

where β > 0 is a constant which can be chosen arbitrarily, and 0 < γ <
λmax(H + A − �)

−2λmax(P )
. The network will achieve the desired cluster synchronization

exponentially. Moreover, the difference of the inter-event time instant for each node
is lower bounded by a positive common instant.

Proof Since A ∈ M1(k), we have

N∑

j=1

aijΓ xj
(
t ikd

) =
k∑

l=1

ml∑

j=ml−1+1

aijΓ
(
xj

(
t ikd

) − sl
(
t ikd

) + sl
(
t ikd

))

=
k∑

l=1

ml∑

j=ml−1+1

aijΓ δxj
(
t ikd

) +
k∑

l=1

ml∑

j=ml−1+1

aijΓ sl
(
t ikd

)

=
N∑

j=1

aijΓ δxj
(
t ikd

)
(9.9)
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Therefore, we can obtain the error system as follows:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

δ̇xi(t)= −C(xi(t)− sl(t))+ B(f (xi(t))− f (sl(t)))+ ∑N
j=1 aijΓ δxj

(
t ikd

)

− εlΓ δxi
(
t ikd

)
, i = ml, l = 1, 2, . . . , k,

δ̇xi(t)= −C(xi(t)− sl(t))+ B(f (xi(t))− f (sl(t)))

+ ∑N
j=1 aijΓ δxj

(
t ikd

)
, i �= ml.

(9.10)

Define the Lyapunov function as

V (t) = 1

2

N∑

i=1

δx�
i (t)P δxi(t), (9.11)

where P is a positive diagonal matrix.
Differentiating the function V (t) along the trajectories of system (9.10), we have

V̇ (t)

=
k∑

l=1

∑

i=ml

δx�
i (t)P [−C(xi(t)− sl(t))+ Bf (xi(t))− Bf (sl(t))

+
N∑

j=1

aijΓ δxj
(
t ikd

) − εlΓ δxi
(
t ikd

)] +
k∑

l=1

ml−1∑

i=ml−1+1

δx�
i (t)P

[ − C(xi(t)

−sl(t))+ Bf (xi(t))− Bf (sl(t))+
N∑

j=1

aijΓ δxj
(
t ikd

)]

=
N∑

i=1

δx�
i (t)P

[ − Cδxi(t)+ B(f (xi(t))− Bf (sl(t)))+
N∑

j=1

aijΓ xj
(
t ikd

)]

−εl
k∑

l=1

∑

i=ml

δx�
i (t)PΓ δxi

(
t ikd

)

= −
N∑

i=1

δx�
i (t)PCδxi(t)+

N∑

i=1

δx�
i (t)PB(f (xi(t))− f (sl(t)))

+
k∑

l=1

ml−1∑

i=ml−1+1

δx�
i (t)PΓ

N∑

j=1

aij (xj
(
t ikd

) − xj (t))+
k∑

l=1

∑

i=ml

δx�
i (t)PΓ
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×
⎡

⎣
N∑

j=1

aij (xj
(
t ikd

) − xj (t))− εl(xi
(
t ikd

) − sl
(
t ikd

) − xi(t)+ sl(t))

⎤

⎦

+
N∑

i=1

δx�
i (t)PΓ

N∑

j=1

aij xj (t)−
k∑

l=1

∑

i=ml

εlδx
�
i (t)PΓ δxi(t). (9.12)

It follows from Assumption 9.5 that

δx�
i (t)PB(f (xi(t))− f (sl(t)))

≤ β1

2
δx�

i (t)PBB
�Pδxi(t)+ 1

2β1
(f (xi(t))

−f (sl(t)))�(f (xi(t))− f (sl(t)))

≤ β1

2
λmax

(
PBB�P

)
δx�

i (t)δxi(t)

+ 1

2β1
L2δx�

i (t)δxi(t), (9.13)

where β1 is a positive constant, which can be chosen arbitrarily. Furthermore, one
can obtain

δx�
i (t)P

⎡

⎣
N∑

j=1

aijΓ
(
xj

(
t ikd

) − xj (t)
) − εlΓ

(
xi

(
t ikd

) − sl
(
t ikd

) − xi(t)+ sl(t)
)
⎤

⎦

≤ β1

2
δx�

i (t)P
�Pδxi(t)+ 1

2β1

⎡

⎣
N∑

j=1

aijΓ
(
xj

(
t ikd

) − xj (t)
) − εlΓ

(
xi

(
t ikd

)

−sl
(
t ikd

) − xi(t)+ sl(t)
)]�

⎡

⎣
N∑

j=1

aijΓ (xj
(
t ikd

) − xj (t))− εlΓ
(
xi

(
t ikd

)

−sl
(
t ikd

) − xi(t)+ sl(t)
)]
, (9.14)
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and

δx�
i (t)P

N∑

j=1

aijΓ
(
xj

(
t ikd

) − xj (t)
)

≤ β1

2
δx�

i (t)P
�Pδxi(t)+ 1

2β1

⎡

⎣
N∑

j=1

aijΓ
(
xj

(
t ikd

) − xj (t)
)
⎤

⎦
�

×
⎡

⎣
N∑

j=1

aijΓ
(
xj

(
t ikd

) − xj (t)
)
⎤

⎦ . (9.15)

Similar to (9.9), we have

N∑

j=1

aijΓ xj (t) =
k∑

l=1

ml∑

j=ml−1+1

aijΓ (xj (t)− sl(t)+ sl(t))

=
k∑

l=1

ml∑

j=ml−1+1

aijΓ δxj (t)+
k∑

l=1

ml∑

j=ml−1+1

aijΓ sl(t)

=
N∑

j=1

aijΓ δxj (t). (9.16)

Substituting (9.13)–(9.16) into (9.12), one has

V̇ (t) ≤ −
N∑

i=1

δx�
i (t)PCδxi(t)+ β1

2
λmax

(
PBB�P

) N∑

i=1

δx�
i (t)δxi(t)

+ 1

2β1
L2

N∑

i=1

δx�
i (t)δxi(t)+ β1

2

k∑

l=1

∑

i=ml

δx�
i (t)P

�Pδxi(t)+ β1

2

k∑

l=1

ml−1∑

i=ml−1+1

δx�
i (t)P

�Pδxi(t)+ 1

2β1

k∑

l=1

ml−1∑

i=ml−1+1

⎡

⎣
N∑

j=1

aijΓ
(
xj

(
t ikd

)

−xj (t)
)]�

⎡

⎣
N∑

j=1

aijΓ
(
xj

(
t ikd

) − xj (t)
)
⎤

⎦

+ 1

2β1

k∑

l=1

∑

i=ml

⎡

⎣
N∑

j=1

aijΓ
((
xj

(
t ikd

)
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−xj (t)
)

− εlΓ
(
xi

(
t ikd

) − sl
(
t ikd

) − xi(t)+ sl(t)
)]�

⎡

⎣
N∑

j=1

aijΓ ((xj
(
t ikd

)

−xj (t))− εlΓ (xi
(
t ikd

) − sl
(
t ikd

) − xi(t)+ sl(t))
]

+
N∑

i=1

δx�
i (t)PΓ

N∑

j=1

aij δxj (t)−
k∑

l=1

∑

i=ml

εlδx
�
i (t)PΓ δxi(t)

=
N∑

i=1

δx�
i (t)

[
−PC + (

β1

2
λmax(PBB

�P)+ 1

2β1
L2)In + β1

2
P�P

]
δxi(t)

−
k∑

l=1

∑

i=ml

εlδx
�
i (t)PΓ δxi(t)+

N∑

i=1

δx�
i (t)PΓ

N∑

j=1

aij δxj (t)+ 1

2β1
·

k∑

l=1

ml−1∑

i=ml−1+1

⎡

⎣
N∑

j=1

aijΓ (xj
(
t ikd

) − xj (t))

⎤

⎦
� ⎡

⎣
N∑

j=1

aijΓ (xj
(
t ikd

) − xj (t))

⎤

⎦

+ 1

2β1

k∑

l=1

∑

i=ml

⎡

⎣
N∑

j=1

aijΓ (xj
(
t ikd

) − xj (t))− εlΓ (xi
(
t ikd

) − sl
(
t ikd

)

−xi(t)+ sl(t))
]�

⎡

⎣
N∑

j=1

aijΓ (xj
(
t ikd

) − xj (t))− εlΓ (xi
(
t ikd

)

−sl
(
t iki

) − xi(t)+ sl(t))
]
. (9.17)

Let δx(t) = (δx�
1 (t), δx

�
2 (t), . . . , δx

�
N(t))

�. Substituting κi(t) into (9.17), it gives
that

V̇ (t) ≤ δx�(t)(H + A − �)δx(t)+ 1

2β1

N∑

i=1

k�
i (t)ki(t). (9.18)

It follows from H + A − � < 0 and event-triggered condition (9.8) that

V̇ (t) ≤ −αV (t)+ β2

2β1
exp(−2γ t), (9.19)

where α = λmax(H + A − �)

−λmax(P )
.
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Let β2 = β2

2β1(α−2γ ) . From (9.19) and the condition 2γ < α, one has

V (t) ≤ β2exp(−αt)
2β1(α − 2γ )

(exp((α − 2γ )t)− 1)

≤ β2

2β1(α − 2γ )
(exp(−2γ t)− exp(−αt))

≤ β2

2β1(α − 2γ )
exp(− min{2γ, α} · t)

= β2exp(−2γ t), (9.20)

which implies that V (t) converges to 0 exponentially.
Therefore,

lim
t→+∞

k∑

l=1

ml∑

i=ml−1+1

‖xi(t)− sl(t)‖ = 0,

i.e., network (9.6) realizes expected cluster synchronization.
Next, we shall show that under the event-triggered condition (9.8), ∀i ∈ N , the

inter-event time t ikd+1
− t ikd

is lower bounded by a positive constant, i.e., the coupled
neural network can avoid the Zeno behavior.

To simplify the proof, let

ε
î
=

⎧
⎨

⎩

εl, if i = ml, l = 1, 2, . . . , k,

0, if i �= ml, l = 1, 2, . . . , k,
(9.21)

and

s
î
=

⎧
⎨

⎩

sl, if i = ml, l = 1, 2, . . . , k,

0, if i �= ml, l = 1, 2, . . . , k.
(9.22)

Then, we have

δ̇xi(t) = −Cδxi(t)+ B(f (xi(t))− f (sl(t)))+ κi(t)+
N∑

j=1

aijΓ δxj (t)

−ε
î
Γ δxi(t). (9.23)



9.2 Pinning Cluster Synchronization Under Event-Triggered Mechanism 229

Hence,

||δ̇xi(t)||

≤ ||C||||δxi(t)|| + L||B||||δxi(t)|| + ||κi(t)|| +
N∑

j=1

|aij |||Γ ||||δxj (t)||

+ε
î
||Γ ||||δxi(t)||

≤
⎛

⎝||C|| + L||B|| +
N∑

j=1

|aij |||Γ || + ε
î
||Γ ||

⎞

⎠
√

β2

λmin(P )
exp

(
−1

2
× 2γ t

)

+βexp(−γ t)

≤ 2max

⎧
⎨

⎩

⎛

⎝||C|| + L||B|| +
N∑

j=1

|aij |||Γ || + ε
î
||Γ ||

⎞

⎠
√

β2

λmin(P )
, β

⎫
⎬

⎭ · exp(−γ t)

= ξiexp(−γ t), (9.24)

where ξi = 2max{(||C|| + L||B|| + ∑N
j=1 |aij |||Γ || + ε

î
||Γ ||)

√
β2

λmin(P )
, β}.

Furthermore, one can obtain that

κi(t)

=
N∑

j=1

aijΓ (xj
(
t ikd

) − xj (t))− ε
î
Γ (xi

(
t ikd

) − s
î

(
t ikd

) − xi(t)+ s
î
(t))

=
N∑

j=1

aijΓ (δxj
(
t ikd

) − δxj (t))− ε
î
Γ (δxi

(
t ikd

) − δxi(t))

=
N∑

j=1,j �=i
aijΓ (δxj

(
t ikd

) − δxj (t))+ (aii − ε
î
)Γ (δxi

(
t ikd

) − δxi(t))

≤
N∑

j=1,j �=i
|aij |||Γ || · ||

∫ t

t ikd

δ̇xj (s)ds|| + |aii − ε
î
| · ||Γ || · ||

∫ t

t ikd

δ̇xi(s)ds||

≤
N∑

j=1,j �=i
|aij |||Γ || ·

∫ t

t ikd

ξjexp(−γ s)ds + |aii − ε
î
| · ||Γ ||
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×
∫ t

t ikd

ξiexp(−γ s)ds

≤
⎛

⎝
N∑

j=1,j �=i
|aij |ξj + |aii − ε

î
|ξi

⎞

⎠ ||Γ ||exp
( − γ tikd

)(
t − t ikd

)
. (9.25)

Due to the continuity of κi(t) between event-triggered time instants t ikd
and

t ikd+1
(> tikd

), the event-triggered time instant t ikd+1
should satisfy κi(t

i−
kd+1

) =
βexp(−γ tikd+1

). Hence, (9.25) implies that in order to ensure event-triggered

condition (9.8) satisfied after instant t ikd , it is necessary to require the time instant

t ikd+1
(> tikd ) satisfying

⎛

⎝
N∑

j=1,j �=i
|aij |ξj + |aii − ε

î
|ξi

⎞

⎠ ||Γ ||exp
( − γ tikd

)(
t ikd+1

− t ikd

) = βexp
( − γ tiki+1

)
,

(9.26)

i.e.,

⎛

⎝
N∑

j=1,j �=i
|aij |ξj + |aii − ε

î
|ξi

⎞

⎠ ||Γ ||(t ikd+1
− t ikd

) = βexp
( − γ

(
t ikd+1

− t ikd

))
.

(9.27)

Therefore, the inter-event time {t ikd+1
− t ikd

} between two trigger time instants of the
node i is lower bounded by

sup

⎧
⎨

⎩τ
i
D ≥ 0 :

⎛

⎝
N∑

j=1,j �=i
|aij |ξj + |aii − ε

î
|ξi

⎞

⎠ ||Γ ||τ iD ≤ βexp
( − γ τ iD

)
⎫
⎬

⎭ .

(9.28)

This completes the proof.

Remark 9.9 In Theorem 9.8, the event-triggered condition (9.8) is verified only
by using the neighboring states, which means that only local information is
used to verify the event-trigger conditions. In [14] and [16], synchronization of
complex networks under event-triggered control was investigated and effective
event-triggered conditions were designed to achieve network synchronization.
Compared with event-based work [14, 16], our event-triggered scheme is strictly
proved that the inter-event time has a positive lower bound, i.e., the Zeno behavior
can be excluded.
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Table 9.1 Coupling matrix construction method

Coupling matrix construction method

Step 1. Select a matrix

G =

⎛

⎜⎜⎜⎜⎝

G11 G12 · · · G1k

G21 G22 · · · G2k
.
.
.

.

.

.
. . .

.

.

.

Gk1 Gk2 · · · Gkk

⎞

⎟⎟⎟⎟⎠
∈ M2(k), (9.29)

with Gii ∈ R
(mi−mi−1)×(mi−mi−1), Gij ∈

R
(mi−mi−1)×(mj−mj−1), i, j = 1, 2, . . . , k ;

Step 2. Let ε0
l > 0 be a constant. Choose εl = ϑlε

0
l , Ξ0

l =
diag{0, . . . , 0, ε0

l } ∈ R
ml×ml , l = 1, 2, . . . , k and cou-

pling matrix

A =

⎛

⎜⎜⎜⎜⎝

ϑ1G11 G12 · · · G1k

G21 ϑ2G22 · · · G2k
.
.
.

.

.

.
. . .

.

.

.

Gk1 Gk2 · · · ϑkGkk

⎞

⎟⎟⎟⎟⎠
; (9.30)

Step 3. Let

ϑl ≥ 2(k − 1)maxu�=v{α(G̃uv ⊗ PΓ )} + λmax(H)

−λmax [(G̃ll −Ξ0
l )⊗ PΓ ] , l = 1, 2, . . . , k,

(9.31)
where G̃uv = 1

2 (Guv +G�
uv), u �= v, u, v = 1, 2, . . . , k.

To make Theorem 9.8 more applicable, we can construct coupling matrix A such
that H + A − � < 0. In Table 9.1, applying the results of [7] to system (9.6), a
coupling matrix construction method is given to realize the cluster synchronization
of the coupled neural networks.

9.3 Pinning Cluster Synchronization Under Self-triggered
Mechanism

To avoid continuous communication among agents, a self-triggered algorithm
based on Theorem 9.8 is proposed. The self-triggered algorithm means that each
node i in the network can predict next triggered time instant t ikd+1

based on the
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current state information and received information at time t ikd
. The advantage of

the self-triggered algorithm lies in that the nodes are not required to verify the
event-triggered condition continuously and hence could save more energy for the
considered coupled neural networks.

Inspired by the work of [22], we develop the following self-triggered strategy.
In the following, we will give some analysis for the main idea of the self-triggered
strategy. Suppose that t ∈ [t ikd , t ikd+1

) and node j is the neighbor of the node i.
Before the next event-triggered time instant of node j , we can obtain that

xj (t) = xj
(
t ikd

) +
∫ t

t ikd

(−Cxj (s)+ Bf (xj (s))+ I (s))ds

+(
t − t ikd

)
[

N∑

l=1

ajlΓ xl
(
t
j

kj (t)

) − ε
ĵ
Γ

(
xj

(
t
j

kj (t)

) − s
ĵ

(
t
j

kj (t)

))
]
, (9.32)

and

δxj (t) = δxj
(
t ikd

) +
∫ t

t ikd

(−Cδxj (s)+ B(f (xj (t))− f (s
ĵ
(t))))ds

+ (
t − t ikd

)
[

N∑

l=1

ajlΓ δxl
(
t
j

kj (t)

) − ε
ĵ
Γ

(
xj

(
t
j

kj (t)

)
− s

ĵ

(
t
j

kj (t)

))]
,

(9.33)

where ε
ĵ

and s
ĵ

are defined in (9.21) and (9.22), respectively, and

kj (t) = arg maxr∈N
{
t
j
r |tjr ≤ t

}
. (9.34)

Hence, it holds that

||δxj (t)− δxj
(
t ikd

)|| ≤ (||C|| + ||B||L)
∫ t

t ikd

||δxj (s)− δxj
(
t ikd

)||ds

+(
t − t ikd

)[
(||C|| + ||B||L)||δxj

(
t ikd

)||

+||
N∑

l=1

ajlΓ δxl
(
t
j

kj (t)

) − ε
ĵ
Γ

(
xj

(
t
j

kj (t)

)

−s
ĵ

(
t
j

kj (t)

))||
]
. (9.35)
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It follows from (9.16) and (9.20) that

N∑

l=1

ajlΓ δxl
(
t ikd

) =
N∑

l=1

ajlΓ xl
(
t ikd

)
, (9.36)

and

||δxj
(
t ikd

)|| ≤
√

β2

λmin(P )
exp

( − γ tikd

)
. (9.37)

Let ω1 = ||C|| + L||B|| and

ω
j

2 = ω1

√
β2

λmin(P )
exp

( − γ tikd

) + ||
N∑

l=1

ajlΓ xl
(
t
j

kj (t)

) − ε
ĵ
Γ

(
xj

(
t
j

kj (t)

)

−s
ĵ

(
t
j

kj (t)

))||.

Then, we have

||δxj (t)− δxj
(
t ikd

)|| ≤ ω1

∫ t

t ikd

||δxj (s)− δxj
(
t ikd

)||ds + ω
j

2

(
t − t ikd

)
. (9.38)

It follows from the Grönwall inequality,

||δxj (t)− δxj
(
t ikd

)|| ≤ ω
j

2

ω1

(
exp

(
ω1

(
t − t ikd

)) − 1
)
. (9.39)

Hence, we have

||κi(t)|| = ||
N∑

j=1

aijΓ
(
δxj

(
t ikd

) − δxj (t)
) − ε

î
Γ

(
δxi

(
t ikd

) − δxi(t)
)||

≤
⎛

⎝
N∑

j=1

|aij |ωj

2 + ε
î
ωi

2

⎞

⎠ ||Γ ||
ω1

(
exp

(
ω1

(
t − t ikd

)) − 1
)
. (9.40)

Combing with event-triggered condition (9.8), we propose the following self-
triggered algorithm:

Theorem 9.10 Consider coupled neural networks (9.6). Suppose that Assump-
tions 9.5–9.6 are satisfied and condition (9.7) of Theorem 9.8 holds. Then, under
the self-triggered Algorithm 9.1, the network can achieve cluster synchronization



234 9 Pinning Cluster Synchronization in an Array of Coupled Neural Networks. . .

Algorithm 9.1 Self-triggered algorithm

Step 1. For all i = 1, 2, · · · , N , set t ik1
= 0.

Step 2. At time t ikd , d > 1, solving the following equation to find t ikd+1
= t ikd

+ ςikd
:

sup{ςikd ≥ 0 : (
∑N

j=1 |aij |ωj

2 + ε
î
ωi

2)||Γ ||
ω1

(exp(ω1ς
i
kd
)− 1)

≤ βexp(−γ (t ikd + ςikd ))}. (9.41)

Step 3. If agent i does not receive the renewed information from any of its neighbors during
(t id , t

i
d + ςikd

), node i is triggered on time instant t ikd+1
= t ikd

+ ςikd
.

Step 4. If agent i receives the renewed information from its neighbor j at time t0 < tikd+1
,

compute the new value of ωj

2 and go to Step 2.

asymptotically. Moreover, the lower bound of the inter-event time τ i
D′ is given as

sup

{
τ iD′ ≥ 0 :

(∑N
j=1 |aij |ζj + ε

î
ζi
)

ω1

(
exp

(
ω1τ

i
D′

) − 1
) ≤ βexp

( − γ τ iD′
)
}
,

(9.42)

where ζi = (ω1 + ∑N
l=1 |ail |||Γ || + ε

î
)

√
β2

λmin(P )
, i = 1, 2, . . . , N.

Proof Clearly, under the self-triggered Algorithm 9.1, one can get

||κi(t)|| ≤ βexp(−γ t).

Hence, from Theorem 9.8, coupled neural networks (9.6) with event-triggered
mechanism can achieve desired cluster synchronization. Next, we shall show that
under the self-triggered Algorithm 9.1, the inter-event interval of node i is strictly
positive and has a lower bound τ i

D′ , which is given as (9.42). Note that

ω
j

2 = ω1

√
β2

λmin(P )
exp

( − γ tikd

) + ||
N∑

l=1

ajlΓ δxl
(
t ikd

) − ε
ĵ

(
xj

(
t
j

kj (t)

) − s
ĵ

(
t
j

kj (t)

))||

≤
(
ω1 +

N∑

l=1

|ajl |||Γ || + ε
ĵ

)√
β2

λmin(P )
exp

( − γ tikd

)
. (9.43)
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Let ζi = (ω1+∑N
l=1 |ail |||Γ ||+ε

î
)

√
β2

λmin(P )
, i = 1, 2, . . . , N.Hence, the sufficient

condition to satisfy the event-triggered condition (9.8) is

(∑N
j=1 |aij |ζj + ε

î
ζi
)
exp

( − γ tikd

)

ω1

(
exp

(
ω1

(
t − t ikd

)) − 1
) ≤ βexp(−γ t). (9.44)

Therefore, for node i, under the self-triggered mechanism, the lower bound of inter-
event time can be found as

sup

{
τ iD′ :

(∑N
j=1 |aij |ζj + ε

î
ζi
)

ω1

(
exp

(
ω1τ

i
D′

) − 1
) ≤ βexp

( − γ τ iD′
)
}
.

(9.45)

This completes the proof.

Remark 9.11 To achieve cluster synchronization, network nodes need to exchange
their state information with their neighbors via couplings. In the self-triggered
algorithm, node j triggered at time tjkl means that node j renews its coupling value at

time tjkl and sends xj (t
j
kl
) and ūj (t

j
kl
) = ∑N

l=1 ajlΓ xl(t
j
kl
)− ε

ĵ
Γ (xj (t

j
kl
)− s

ĵ
(t
j
kl
) to

all its neighbors immediately. It can be found that under the proposed self-triggered
algorithm, each node in the network does not need to verify the event-triggered
condition at every time instant. Hence, the self-triggered algorithm can reduce the
computational load and save more energy of the coupled neural networks. Moreover,
it should be addressed that the self-triggered algorithm is distributed since for each
node in the network, only the neighboring states are used to verify the event-
triggered conditions during the steps of the algorithm.

9.4 Numerical Example

In this section, an example is given to illustrate the effectiveness of the theoretical
results. Coupled neural networks with 10 nodes are selected for illustration since the
coupling matrix and visualization of larger network cannot be well displayed.
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Example 9.12 Consider the following coupled cellular neural networks with event-
triggered mechanism as follows:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ẋi (t) = −Cxi(t)+ Bf (xi(t))+ I (t)+ ∑N
j=1 aij xj

(
t ikd

) − εl
(
xi

(
t ikd

)

− sl
(
t ikd

))
, i = 1, 6.

ẋi (t) = −Cxi(t)+ Bf (xi(t))+ I (t)+ ∑N
j=1 aij xj

(
t ikd

)
,

i = 2, 3, 4, 5, 7, 8, 9, 10,

(9.46)

where xi(t) = (xi1(t), xi2(t), xi3(t))
�, I (t) = 0, Γ = I3, C = I3, f (xi(t)) =

(f (xi1(t)), f (xi2(t)), f (xi3(t)))
� with f (s) = 1

2 (|s + 1| − |s − 1|), and

B =
⎛

⎝
1.25 −3.2 −3.2
−3.2 1.1 −4.4
−3.2 4.4 1

⎞

⎠ .

Assume that the desired cluster synchronization states of system are s1(t) and s2(t),
which satisfy

ṡi (t) = −Csi(t)+ Bf (si(t))+ I (t), i = 1, 2, (9.47)

with initial values s1(0) = [−0.4, 1.3, 4.8]� and s2(0) = [2.3, −1, −2.8]�.
As indicated in [23], system (9.47) has a double-scrolling chaotic attractor (see
Fig. 9.1). By simple computation, we can obtain the Lipschitz constant for system

420-2
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Fig. 9.1 The desired cluster synchronization trajectories s1 and s2



9.4 Numerical Example 237

(9.47) as 1. Using the method proposed in Table 9.1, we can construct the coupling
matrix as follows:

1. Choose ε0
l = 3, Ξ0

l = diag
{
ε0
l , 0, 0, 0, 0

} ∈ R
5×5, l = 1, 2 and

G =
(
G11 G12

G21 G22

)
∈ M2(k), (9.48)

where

G11 = G22 = G12 = G21 = 1

2

⎛

⎜⎜⎜⎜⎜⎝

−4 1 1 1 1
1 −1 0 0 0
1 0 −2 0 1
1 0 0 −2 1
1 0 1 1 −3

⎞

⎟⎟⎟⎟⎟⎠
, i, j = 1, 2. (9.49)

2. Choose εl = ϑlε
0
l and coupling matrix

A =
(
ϑ1G11 G12

G21 ϑ2G22

)
. (9.50)

3. Choose ϑ1 = ϑ2 = 32 to satisfy the inequality (9.31). Then, we can obtain the
coupling matrix (9.50) which satisfies the requirement of Theorem 9.8.

Let β = 50 and γ = 0.1 in event-trigger condition (9.8). The initial state values
of the system (9.46) are set as xi(0) = [1 + 0.2i,−1 + 0.2i,−2 + 0.2i]�, i =
1, 2, . . . , 10. The simulation step size is set as 0.001.

Figure 9.2 shows the state trajectories of system (9.46) under event-triggered
condition (9.8). It can be seen that the expected cluster synchronization can be
achieved under the proposed event-based information transmission. In Fig. 9.3, the
individual event time instants of the nodes in coupled neural networks (9.46) are
given. Figure 9.4 shows the state trajectories of system (9.46) under self-triggered
algorithm. It is demonstrated from Fig. 9.4 that the coupled neural networks (9.46)
can achieve the expected cluster synchronization under the proposed self-triggered
algorithm.

To achieve the desired cluster synchronization of the coupled neural networks,
there is a tradeoff between decreasing the number of event-triggering and verifying
the event-triggering condition at every time instant for using these two proposed
event-based schemes. Table 9.2 illustrates the event-triggering frequency under
these two proposed event-based schemes. One can see from Table 9.2 that the



238 9 Pinning Cluster Synchronization in an Array of Coupled Neural Networks. . .

Fig. 9.2 The state
trajectories of system (9.46)
under event-triggered
condition (9.8)
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Fig. 9.3 Event-triggered time instants in Example 9.12

event-triggered scheme proposed in Theorem 9.8 is more effective on decreasing the
number of event-triggering than that of self-triggered algorithm. Nevertheless, the
self-triggered algorithm can avoid verifying the event-triggered condition at each
time instant, which can be seen from Table 9.3. Notice that we cannot compute
precisely the percentage of event-triggering instants over communication instants in
continuous-time system. For comparison purpose, we compute this percentage by
using its discretization with step size 0.001.

9.5 Summary

In this chapter, we study the cluster synchronization of coupled neural networks
under event-triggered mechanism. Two effective event-triggered schemes are pro-
posed to realize expected cluster synchronization of coupled neural networks.
Firstly, distributed event-triggered condition is designed and sufficient conditions
to realize cluster synchronization are presented. Furthermore, a self-triggered
algorithm, where each node computes its next triggering time independently without
verifying the event-triggered condition at each instant, is designed. In addition, for
both event-triggered schemes, it is shown that the event-triggered time sequences
do not exhibit Zeno behavior. The theoretical results are well demonstrated by
simulation example.
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Fig. 9.4 The state
trajectories of system (9.46)
under self-triggered algorithm
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Table 9.2 The total number of triggering over total number of iterations in simulation under two
different schemes

Node 1 2 3 4 5

Event-triggered scheme 2.75% 0.84% 1.68% 1.64% 2.52%

Self-triggered scheme 14.10% 4.10% 6.56% 6.55% 8.75%

Node 6 7 8 9 10

Event-triggered scheme 2.75% 0.77% 1.66% 1.67% 2.57%

Self-triggered scheme 13.90% 3.88% 6.30% 6.30% 8.54%

Table 9.3 The total number of verifying triggering condition over total number of iterations in
simulation under two different schemes

Node 1 2 3 4 5

Event-triggered scheme 100% 100% 100% 100% 100%

Self-triggered scheme 41.32% 30.15% 38.90% 37.98% 39.94%

Node 6 7 8 9 10

Event-triggered scheme 100% 100% 100% 100% 100%

Self-triggered scheme 42.42% 30.16% 38.98% 38.95% 39.94%
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Chapter 10
Multi-agent Consensus Recovery
Approach Under Node Failure

In the past few years, substantial consensus or synchronization problems have been
studied in much previous literature [1–13]. With the proliferation of distributed
multi-agent systems interacting through networks, the increasing complexity and
higher safety demands of modern engineering systems highlight the significance of
the reliability of the system. However, node (or link) failure is inevitable in real
multi-agent systems due to unexpected external disturbance. Devastating conse-
quence would follow the failure of the nodes in networked systems [14–16]. Some
efforts have been devoted to studying the networked systems with link failures.
In [17], an erasure model was studied: the network links fail independently in
space (independently of each other) and in time (link failure events are temporarily
independent). In [18], synchronization problems were investigated for complex
dynamical networks subject to recoverable link failures.

In order to improve the reliability, a recovery scheme should be designed to
maintain the performance of the system. However, there have been few studies
devoted into this issue. This chapter focuses on studying this problem in the aspect
of consensus. Efficient consensus recovery algorithm will be proposed to deal with
the problems arising from the node failure in multi-agent consensus. Motivated
by the above discussions, we aim to design a consensus recovery approach to
compensate for the undesirable effects of the failure nodes, and the consensus result
is reserved after recovery process.

10.1 Preliminaries

In the following, we give an important lemma, which will be used in the proof of
Theorem 10.4.

© Springer Nature Singapore Pte Ltd. and Science Press, China 2021
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Lemma 10.1 Consider an n-dimensional ordinary differential equation

ẋ(t) = f (x(t)), x(0) = x0, (10.1)

x = (x1, . . . , xn)
�, f = (f1, f2, . . . , fn)

� ∈ C(Rn;Rn). Suppose that initial
value problem (10.1) has a unique solution on [0,+∞). If there exists positive
definite function V (x) ∈ C1(Rn;R≥0) satisfying V (0) = 0 such that

V̇ (x(t)) |(10.1)= −W(x(t))+ a(t), (10.2)

where lim
t→+∞ a(t) = 0, W(x(t)) is a positive function, i.e.,W(x) ≥ 0 andW(x) = 0

if and only if x = 0, then lim
t→+∞ x(t) = 0.

Proof Since W(x(t)) is a positive function, there exist ϕ ∈ K such that

W(x(t)) ≥ ϕ(||x(t)||). (10.3)

Arbitrarily given ε > 0, by the continuity of V (x) and V (0) = 0, there exists ε1
such that

V (x) < ε if ||x|| < ε1. (10.4)

Let δ1 = 1
2ϕ(ε1), there exists T1, such that

|a(t)| < δ1 if t > T1. (10.5)

Consider the value of V (x(T1)), if V (x(T1)) = V0 > ε, definitely, ||x(T1)|| ≥ ε1
holds.

We claim that there exists T2 > T1 such that V (x(T2)) = ε. Let T = T2.
Assume that for any t > T1, V (x(t)) > ε. Then, for t > T1 and δ1 = 1

2ϕ(ε1), we
have

V̇ (x(t)) ≤ −ϕ(ε1)+ δ1 ≤ −δ1. (10.6)

Integrating (10.6) from T1 to t yields that

ε − V (x(T1)) ≤ V (x(t))− V (x(T1))

≤ −δ1(t − T1) −→ −∞ (t −→ ∞), (10.7)

which is a contradiction. Hence, there exists T2 > T1 such that V (x(T2)) = ε.
Now, we claim that V (x(t)) ≤ ε if t > T2.
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To prove this claim, we assume that there exists T3 > T2 such that V (x(T3)) > ε.
Because V (x(t)) is continuous on [T2, T3], V (x(t0)) = maxt∈[T2,T3]
V (x(t)) exists. We can easily conclude that V̇ (x(t0)) ≥ 0, which is contradictory to
(10.6). Hence, V (x(t)) ≤ ε for t > T2.

For V (x(T1)) = V0 ≤ ε, using a similar method, we can prove that V (x(t)) ≤ ε

for t > T1. Then, choose T = T1.
Summing up the above, we know that for any ε > 0, there exists T > 0 such that

V (x(t)) ≤ ε for t > T , i.e., lim
t→+∞V (x(t)) = 0. Hence, lim

t→+∞ x(t) = 0.

Remark 10.2 It should be noted that we do not require the derivative of Lyapunov
function V (x) to be negative, which is a standard requirement for Lyapunov
asymptotic stability theory. Lemma 10.1 can be used to deal with the consensus and
synchronization problem of many dynamical systems and networks, and to ensure
the final states of the whole system converge as t −→ +∞.

10.2 Consensus Analysis of General Multi-agent Networks

In this section, we will study the nonlinear consensus protocol for multi-agent
networks under a general communication structure, which can also be used to
illustrate the correctness and efficiency of the network reduction approach. Consider
the following nonlinear multi-agent networks model:

dxi(t)

dt
=

∑

j∈Ni

aij [f (xj (t))− f (xi(t))], i = 1, . . . , N, (10.8)

where xi(t) ∈ R is the state of the agent i, f (·) is a nonlinear function with the same
dimension of xi satisfying f (0) = 0.

Assumption 10.3 Throughout this chapter, one requires the nonlinear function
f (·) to be continuous and strictly monotonically increasing on R.

For any communication structure, Laplacian matrix can always be written in
the following form after certain permutations [19]. Without loss of generality, we
assume the Laplacian matrix of model (10.8) to be L in the form of

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

L11 · · · 0 0 0 · · · 0
0 · · · 0 0 0 · · · 0
... · · · ...

...
... · · · ...

0 · · · Lkk 0 0 · · · 0
Lk+1,1 · · · Lk+1,k Lk+1,k+1 0 · · · 0

... · · · ...
...

... · · · ...

Lk+m,1 · · · Lk+m,k Lk+m,k+1 Lk+m,k+2 · · · Lk+m,k+m

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,
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where Lii are irreducible square matrices and in each line, there exist at least one
entry satisfying Lk+i,j �= 0 (i = 1, 2, . . . , m, j = 1, 2, . . . , k + i − 1).

In the following, we call the nodes belonging to the strongly connected com-
ponents of the network which are represented by Lii (i = 1, 2, . . . , k), leaders.
The others are called followers. Some detailed explanations will be given in
Remark 10.5. As the main result of this section, the following theorem reveals a
general consensus result for the nonlinear directed multi-agent network.

Theorem 10.4 Consider multi-agents network (10.8) with Laplacian matrix L. The
following conclusions can be obtained:

(i) The leaders in Lii will achieve consensus separately;
(ii) The observed states of the followers will asymptotically converge to the convex

combination of {f (x̄
ξ̂i
), i = 1, 2, . . . , k}, where x̄

ξ̂i
is the consensus value of

the leaders in Lii .

Proof Let x = [x1, . . . , xN ]� ∈ R
N , x1 = [x1, . . . , xr1 ]�, x2 =

[xr1+1, . . . , xr2 ]�,
· · · , xk+m = [xrk+m−1+1, . . . , xN ]�. F(x1) = [f (x1), . . . , f (xr1)]�, F (x2) =
[f (xr1+1), . . . , f (xr2)]�, . . . , F (xk+m) = [f (xrk+m−1+1), . . . , f (xN)]�. The
dynamics of the multi-agents network (10.8) can be written as:

ẋi = −LiiF (xi), i = 1, 2, . . . , k, (10.9)

and

ẋk+j = −Lk+j,1F(x1)− . . . − Lk+j,k+jF (xk+j ), j = 1, 2, . . . , m.(10.10)

Firstly, we know that the solution of system (10.8) always exists on [0,∞) according
to the properties of f in Assumption 10.3. Meanwhile, the uniqueness of the
solutions can be easily proved by using contradiction method. The detailed proof
is omitted here.

Secondly, we will prove that the leaders in the same strongly connected compo-
nent of the network will achieve consensus. Let {ξrl−1+1, . . . , ξrl } be the normalized
left eigenvector of Lll, l = 1, 2, . . . , k, with respect to the zero eigenvalue. Define

x
ξ̂l
(t) =

rl∑

i=rl−1+1

ξixi(t), x
ξ̂l
(t) = 1 ⊗ (x

ξ̂l
(t)),
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then we have

ẋ
ξ̂l
(t) =

rl∑

i=rl−1+1

ξi ẋi (t)

= −
rl∑

i=rl−1+1

ξi

rl∑

j=rl−1+1

aij f (xj (t))

= 0, l = 1, 2, . . . , k. (10.11)

Consider the Lyapunov function as

Vl(t) =
rl∑

i=rl−1+1

ξi

∫ xi (t)

x
ξ̂l

(f (s)− f (x
ξ̂l
))ds, l = 1, 2, . . . , k. (10.12)

Clearly, Vl(t) ≥ 0 and Vl(t) = 0 if and only if xi(t) = x
ξ̂l

. Calculating the time
derivative of Vl(t) along the trajectories of (10.8) gives that

V̇l(t) =
rl∑

i=rl−1+1

ξi(f (xi(t))− f (x
ξ̂l
))

rl∑

j=rl−1+1

aij f (xj (t))

= −F(xl(t))�BlF (xl(t)), (10.13)

where Bl = 1
2 (ΞLll + L�

ll Ξ) and Ξ = diag{ξrl−1+1, . . . , ξrl }. It is easy to prove
that Bl is irreducible, symmetric and with zero-row sum. Hence, Bl is semi-positive
definite and the eigenvalues of Bl are 0 = λ1(Bl) < λ2(Bl) ≤ · · · ≤ λrl−rl−1(Bl).
Hence, V̇l(t) ≤ 0 and V̇l(t) = 0 if and only if

F(xl(t)) ∈ span(1),

i.e.,

f (xrl−1+1(t)) = f (xrl−1+2(t)) = · · · = f (xrl (t)),

which equals to

xrl−1+1(t) = xrl−1+2(t) = · · · = xrl (t) = x
ξ̂l
(t).

LaSalle’s invariant principle gives that

xi(t) → x
ξ̂l
, t → ∞, i = rl−1 + 1, rl−1 + 2, . . . , rl, l = 1, 2, . . . , k.
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Finally, we will prove that the observed states of the followers will converge
asymptotically to the convex combination of {f (x̄

ξ̂i
), i = 1, 2, . . . , k}. Define

x
ξ̂k+h(t) =

[
x
(rk+h−1+1)

ξ̂k+h
(t), . . . , x

(rk+h)
ξ̂k+h

(t)
]�

= F−1

[
−L−1

k+h,k+h
k+h−1∑

i=1

Lk+h,iF (xξ̂i (t))
]
,

h = 1, 2, . . . , m. (10.14)

If h = 1, we have

− L−1
k+1,k+1

k∑

i=1

Lk+1,i = L−1
k+1,k+1[Lk+1,k+1 · 1] = 1. (10.15)

If h = 2,

x
ξ̂k+2

(t)

= F−1

⎡

⎣−L−1
k+2,k+2

k+1∑

i=1

Lk+2,iF (xξ̂i
(t))

⎤

⎦

= F−1

⎡

⎣−L−1
k+2,k+2

k∑

i=1

Lk+2,iF (xξ̂i
(t))− L−1

k+2,k+2Lk+2,k+1

×
⎛

⎝−L−1
k+1,k+1

k∑

i=1

Lk+1,iF (xξ̂i
(t))

⎞

⎠

⎤

⎦

= F−1

⎡

⎣
k∑

i=1

( − L−1
k+2,k+2Lk+2,i + L−1

k+2,k+2Lk+2,k+1L
−1
k+1,k+1Lk+1,i

)
F(x

ξ̂i
(t))

⎤

⎦ ,

(10.16)

and

[
k∑

i=1

( − L−1
k+2,k+2Lk+2,i + L−1

k+2,k+2Lk+2,k+1L
−1
k+1,k+1Lk+1,i

)
]
1

= −L−1
k+2,k+2

(
k∑

i=1

Lk+2,i

)
· 1 −

[
L−1
k+2,k+2Lk+2,k+1L

−1
k+1,k+1

k∑

i=1

(−Lk+2,i )

]
· 1
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=
[
−L−1

k+2,k+2

(
k∑

i=1

Lk+2,i

)
− L−1

k+2,k+2Lk+2,k+1

]
· 1

= L−1
k+2,k+2Lk+2,k+21

= 1. (10.17)

For h=1 and h=2, equalities (10.15)–(10.17) imply that f (x(j)
ξ̂k+h

(t)), j = rk+h−1 +
1, rk+h−1 + 2, . . . , rk+h are the convex combination of f (x

ξ̂1
(t)), . . . , f (x

ξ̂k
(t)).

For h = 3, 4, . . . , m, by similar procedure, we can also obtain this conclusion. The
detailed proof is omitted here.

Next, we will prove that x
ξ̂k+h(t) is the final state of xk+h(t), h = 1, 2, . . . m.

Since there exists at least one entry satisfying Lk+h,j �= 0 (h = 1, 2, . . . , m,
j = 1, 2, . . . , k + i − 1), one can easily verify that Lk+h,k+h is a M-matrix.
By the property of M-matrix, there exists a positive definite diagonal matrix
D =diag(drk+h−1+1, . . . , drk+h) such that the matrix L̂k+h,k+h = 1

2 (DLk+h,k+h
+L�

k+h,k+hD) is positive definite.
Define the Lyapunov functional as

Vk+h(t) =
rk+h∑

i=rk+h−1+1

di

∫ xi (t)

x
(i)

ξ̂k+h

(f (s)− f (x
ξ̂k+h(t)))ds,

h = 1, 2, . . . , m. (10.18)

Obviously, Vk+h(t) ≥ 0 and Vk+h(t) = 0 if and only if xk+h(t) = x
ξ̂k+h .

Choose sufficiently small positive constants c
(h)
1 , c

(h)
2 , . . . , c

(h)
k+h−1, such that

πh = λmin(L̂k+h,k+h)− 1
2

k+h−1∑

i=1

c
(h)
i > 0, then we can obtain

V̇k+h(t)

=
rk+h∑

i=rk+h−1+1

di

(
f (xi(t))− f

(
x
(i)

ξ̂k+h

)) rk+h∑

j=1

aij f (xj (t))

= −
(
F(xk+h(t))− F

(
x
ξ̂k+h

))�
D

(
k+h∑

i=1

Lk+h,iF (xi(t))
)

= −
(
F(xk+h(t))− F

(
x
ξ̂k+h

))�
DLk+h,k+h[F(xk+h(t))

−
(

−L−1
k+h,k+h

k+h−1∑

i=1

Lk+h,iF (xi(t))
)

]
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= −
(
F(xk+h(t))− F

(
x
ξ̂k+h

))�
DLk+h,k+h

(
F(xk+h(t))− F

(
x
ξ̂k+h

))

−
(
F(xk+h(t))− F

(
x
ξ̂k+h

))�
D

[
k+h−1∑

i=1

Lk+h,i(F (xi(t))− F
(
x
ξ̂i
(t))

)]

≤ −Ah(t)+ a(h)(t), h = 1, 2, . . . , m, (10.19)

where

Ah(t) = πh(F (xk+h(t))− F(x
ξ̂k+h))

�(F (xk+h(t))− F(x
ξ̂k+h)),

a(h)(t) =
k+h−1∑

i=1

a
(h)
i (t), and

a
(h)
i (t) = 1

2ci
λmax

(
L�
k+h,iD�DLk+h,i

)
(F (xi(t))

−F
(
x
ξ̂i
(t))

)�(
F(xi(t))− F

(
x
ξ̂i
(t)

))
.

Clearly, Ah(t) is a positive definite function. For h=1, we have

a(1)(t) =
k∑

i=1

a
(1)
i (t). (10.20)

According to the proof of the first part,

lim
t→+∞ a

(1)
i (t) = 0. (10.21)

By Lemma 10.1, one can obtain that

lim
t→+∞ xk+1(t) = x

ξ̂k+1
. (10.22)

Similarly, we can prove one by one that

lim
t→+∞ xk+h(t) = x

ξ̂k+h, h = 2, . . . , m. (10.23)

The proof is thus completed.

Remark 10.5 It can be seen from Theorem 10.4 that the final states of the network
are determined by the nodes in Lii (i = 1, 2, . . . , k). Therefore, we call these
nodes in Lii , the leaders. Since the final states of the other nodes in the network are
determined by the leaders, they are called followers. Moreover, an interesting result
obtained in Theorem 10.4 is that the observed value of the followers converges
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asymptotically to the convex combination of observed consensus value of the
leaders, while different followers may have different combination coefficients.

Related to previous results [20], when k = 1, we can obtain the condition to
guarantee the consensus of the model (10.8). Moreover, the network cannot reach
consensus if k ≥ 2, i.e., the network does not contain a rooted spanning tree. Thus
the following corollary can be obtained, which has been shown in [20].

Corollary 10.6 Under Assumption 10.3, multi-agent network (10.8) can realize
consensus if and only if the directed communication topology of the network
contains a rooted spanning tree.

10.3 Consensus Recovery Approach

A general consensus result for multi-agents network (10.8) has been given in
Sect. 10.2. However, in many realistic network systems, node failure is a common
phenomenon and sometimes the failure nodes are non-repairable. Under this
circumstance, these nodes should be removed from the network, but the most
important property of the system (consensus here) should be reserved. From this
aspect, it is necessary to propose a certain method to deal with such a node failure
problem and compensate for the resultant undesirable behavior of networked multi-
agent systems. In other words, an efficient method should be developed to keep the
consensus property unchanged.

In this section, we will firstly present a novel network reduction method to reduce
the size of the network, such that the consensus property of the large-size network
can be obtained by studying the derived small-size network. This network reduction
method can make the consensus analysis much easier and the computational cost
much cheaper. Based on the network reduction algorithm, we will further discuss a
consensus recovery method for multi-agent systems with node failure.

If node p is removed from the network, one straightforward approach to ensure
the consensus property unchanging is to make sure that the information of node p
is preserved by its neighbouring nodes. For example, consider a network structure
as Fig. 10.1. Clearly, the states of nodes qj (j = 1, 2, 3) are affected by the state of
node p directly and the states of nodes Ii (i = 1, 2) through intermediate node p. If
node p is removed, naturally, the connection strength between node Ii and node qj
should be increased (Fig. 10.1) and the initial value of node qj should be updated to
reserve the consensus property of the network. Now, the remaining question is how
to update the initial value of node qj and the connection strength between the node
Ii and node qj . This problem will be solved based on Theorem 10.4.

Next, we propose a network reduction algorithm to greatly reduce the size of the
network while reserving the consensus property.
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Fig. 10.1 Remove node p in the network

Algorithm 10.1 For multi-agent network A, supposing its original graph is
G(V, E). The following algorithm can be used to greatly reduce the size of the
network and meanwhile keep the consensus property unchanged:

Step 1. (Reducing the size of the network)

(a) For node p in network A, suppose that there exist m connections to the nodes
q1, q2, . . . , qm and k connections from nodes l1, l2, . . . , lk to node p. Suppose
that the connection strength from node p to node qj is aj and the connection
strength from node li to node p is bi . Removing node p and its connected
edges yields a new network Ap. Keep the original initial value and coupling
unchanged but the initial value of node qj is increased by

aj
β
xp(0) and the

coupling strength between node li and node qj is increased by bi
β
aj , where

i = 1, . . . , k, j = 1, . . . , m, and β =
k∑

i=1

bi . For example, in Fig. 10.1,

cij = bi
b1+b2

aj , i = 1, 2, j = 1, 2, 3.
(b) For the node with the self-loop, delete the self-loop.
(c) Repeat Step 1.(a) and (b) until no nodes can be reduced.

Step 2. (Rescaling the initial value of the reduced network)
After Step 1, the nodes in the reduced network can be split into two classes.

The first class is composed of zero in-degree nodes. The nodes in the second class
(may be empty set) are nodes with non-zero in-degree but zero out-degree. For each
node with zero in-degree, suppose that its initial value in the reduced network is
k∑

i=1

ξixi(0), then one can rescale the initial value of the node into
1

γ

k∑

i=1

ξixi(0),

where γ =
k∑

i=1

ξi .

Remark 10.7 Following the above-mentioned reduction process, it should be
emphasized that only local information is used in the process of network size
reduction. When node p is deleted, one only needs to update the initial values of the
out-neighboring nodes li and connection strength between in-neighboring nodes li
and out-neighboring nodes qj (i = 1, . . . , k, j = 1, . . . , m).
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The logical relationship between the reduced small-size network and the original
one is clearly presented in the following remark.

Remark 10.8 For the final reduced network Â, suppose that ri is the zero in-
degree node with initial value x̂ri (0) and node qj is the zero out-degree node with
the connection strength aij from node ri to node qj , where i = 1, . . . , k, j =
1, . . . , m. Then, the following facts about the multi-agent network A can be
obtained from the reduced network Â:

1. The set of nodes Δi = {ri−1 + 1, . . . , ri} (i = 1, . . . , k) are strongly connected
components of graph G(V, E);

2. The nodes in these strongly connected components are the leaders of the network
A and each leader in the network A must belong to one of the nodes set Δi (i =
1, . . . , k);

3. The leaders in the same strongly connected component will reach consensus and
the consensus value x̄

ξ̂i
is equal to x̂ri (0);

4. Nodes qj , j = 1, . . . , m in the reduced network Â are the followers of the

original network A and its final state is f−1[ 1
∑k

i=1 aij

k∑

i=1

aij f (x̄ξ̂i
)];

5. Based on 3 and 4, one can conclude that:

• if k = 1, i.e., there is only one leader in the final reduced network Â, the
multi-agent network can achieve consensus;

• if k �= 1 in the reduced network, the multi-agent network will achieve k

different consensus values which are, respectively, decided by leader sets
Δi, i = 1, . . . , k. Further explanation will be given in Example 2.

Based on the network reduction method discussed above, we will propose a
network recovery approach to solve the node failure problem.

Let {ξrl−1+1, . . . , ξrl } be the normalized left eigenvector of Lll, l = 1, 2, . . . , k,
with respect to the zero eigenvalue. Suppose agent p fails at time t0 due to external
disturbance (see Fig. 10.1). If p is the leader, we want the network to preserve the
information of p in the network after removing p. Hence, we should adjust the local
information of node p as Step 1 of Algorithm 10.1. As for the followers, we only
need to adjust the edge weighting information between the neighboring nodes to
preserve the convex combination coefficients in the reduced network. Suppose that
there exist m connections to nodes q1, q2, . . . , qm and k connections from nodes
l1, l2, . . . , lk to node p. Suppose the connection strength from node p to node qj is
aj and the connection strength from node li to node p is bi .
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Algorithm 10.2 For the multi-agent network A, supposing its original graph is
G(V, E), the following algorithm can be used to remove the failure node of the
network and keep the consensus property as much as possible:

Step 1. (Removing the failure node of the network)
Suppose s nodes fail during the time interval [t0, t1]. For any node p which fails

at time t
′
0, there are two cases we should consider:

Case 1: Node p is the follower. Removing node p and its connected edges yields
a new network Ap. The coupling strength between node li and node qj is increased

by bi
β
aj , where i = 1, . . . , k, j = 1, . . . , m, and β =

k∑

i=1

bi . For example, in

Fig. 10.1, cij = bi
b1+b2

aj , i = 1, 2, j = 1, 2, 3.
Case 2: (a) Node p is the leader. Adjust the local information of p in the

reduced network, i.e., the current state xqj (t
′
0) of node qj is increased by

aj
β
xp(t

′
0)

and the coupling strength between node li and node qj is increased by bi
β
aj ,

where i = 1, . . . , k, j = 1, . . . , m, and β =
k∑

i=1

bi . For example, in Fig. 10.1,

cij = bi
b1+b2

aj , i = 1, 2, j = 1, 2, 3.
(b) For the node with the self-loop, delete the self-loop.
Step 2. (Rescaling the current state of the reduced network)
Let {ξrl−1+1, . . . , ξrl } be the normalized left eigenvector of Lll, l = 1, 2, . . . , k,

with respect to the zero eigenvalue. After Step 1, suppose sl nodes are removed from
the leader group Lll, l = 1, 2, . . . , k. Without loss of generality, these nodes are
assumed to be nodes rl−1 + 1, . . . , rl−1 + sl . For each remaining node in leader
group Lll , suppose that its current state is xc(t1), then one can rescale the initial

value of the node into (1 −
sl∑

j=1

ξrl−1+j )xc(t1).

We will prove the correctness of Algorithm 10.2 in the following theorem.

Theorem 10.9 Consider multi-agents network (10.8) with Laplacian matrix L as
(10.3). Suppose s (s ≤ N − 1) nodes fail during the time interval [t0, t1]. Then,
the consensus property of the network (10.8) is maintained if Algorithm 10.2 is
implemented when the nodes fail.

Proof We firstly consider the failure node p is the leader. Without loss of generality,
we assume the label of node p to be node 1, which belongs to the first leader group
(Laplacian matrix is L11) and will be removed in Algorithm 10.2. Assume also that
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the Laplacian matrix of the reduced network is L′
11. Suppose

L11 =

⎛

⎜⎜⎜⎝

a11 a12 · · · a1r1

a21 a22 · · · a2r1
... · · · · · · ...

ar11 ar12 · · · ar1r1

⎞

⎟⎟⎟⎠ .

According to Step 1 of Algorithm 10.2, we can find that

L′
11 =

⎛

⎜⎜⎜⎜⎝

a22 − a12a21
a11

a23 − a13a21
a11

· · · a2r1 − a1r1a21

a11

a32 − a12a31
a11

a33 − a13a31
a11

· · · a3r1 − a1r1a31

a11
... · · · · · · ...

ar12 − a12ar11

a11
ar13 − a13ar11

a11
· · · ar1r1 − a1r1ar11

a11

⎞

⎟⎟⎟⎟⎠
.

Let {ξ1, . . . , ξr1} be the normalized left eigenvector of L11 and {ξ ′
2, . . . , ξ

′
r1

} is
the normalized left eigenvector of L′

11. Denote Φ = (ξ1, . . . , ξr1) and Φ ′ =
(ξ ′

2, . . . , ξ
′
r1
). Hence, we have

Φ · L11 = 0 and Φ ′ · L′
11 = 0,

which together with
r1∑

i=1

ξi = 1 and
r1∑

i=2

ξ ′
i = 1 imply that

ξ ′
i = 1

1 − ξ1
ξi, i = 2, . . . , r1. (10.24)

It follows from Theorem 10.4 that the final consensus value of the first leader group

is
r1∑

i=1

ξixi(0). The Eq. (10.11) implies that

r1∑

i=1

ξixi(t) =
r1∑

i=1

ξixi(0), ∀t > 0. (10.25)

If node p fails at time t1 and Step 1 of Algorithm 10.2 is implemented, we have

r1∑

i=2

ξ ′
i x

′
i (t) =

r1∑

i=2

ξ ′
i x

′
i (t1), ∀t > t1. (10.26)



256 10 Multi-agent Consensus Recovery Approach Under Node Failure

Then, it can be obtained that

r1∑

i=2

ξ ′
i x

′
i (t1) =

r1∑

i=2

ξ ′
i

(
xi(t1)+ ai1

a11
x1(t1)

)

= 1

1 − ξ1

(
r1∑

i=2

ξixi(t1)+
r1∑

i=2

ξi
ai1

a11
x1(t1)

)

= 1

1 − ξ1

(
r1∑

i=2

ξixi(t1)+ ξ1x1(t1)

)

= 1

1 − ξ1

(
r1∑

i=1

ξixi(t1)

)

= 1

1 − ξ1

(
r1∑

i=1

ξixi(0)

)
. (10.27)

Hence,

r1∑

i=1

ξixi(0) = (1 − ξ1)

r1∑

i=2

ξ ′
i x

′
i (t1) = (1 − ξ1)

r1∑

i=2

ξ ′
i x

′
i (t). (10.28)

If s nodes (assume they are 1, . . . , s) fail in the first leader group and their failure
time is ti , i = 1, . . . , s, satisfying t0 ≤ t1 ≤ t2 ≤ · · · ≤ ts ≤ t

′
0, repeat the above

proof process and we can obtain that

r1∑

i=1

ξixi(0) = (1 − ξ1)

r1∑

i=2

ξ ′
i x

′
i (t1)

= (1 − ξ1)
(
1 − ξ ′

2

) r1∑

i=3

ξ
(2)
i x

(2)
i (t2)

= (1 − ξ1)

(
1 − ξ2

1 − ξ1

) r1∑

i=3

ξ
(2)
i x

(2)
i (t2)

= (1 − ξ1 − ξ2)

r1∑

i=3

ξ
(2)
i x

(2)
i (t2)

= · · · · · ·

=
(

1 −
s∑

i=1

ξi

)
r1∑

i=s+1

ξ
(s)
i x

(s)
i (ts)

r1∑

i=1

ξixi(0)

=
(

1 −
s∑

i=1

ξi

)
r1∑

i=s+1

ξ
(s)
i x

(s)
i (t), ∀t ≥ ts ,



10.3 Consensus Recovery Approach 257

where {ξ (s)i , ξ
(s)
i+1 . . . , ξ

(s)
r1 }, s = 2, . . . ; i = 2, . . . , s + 1, is the normalized left

eigenvector of L(s)
11 . Therefore, after implementing Step 2, the new network will

have the same consensus property as the original one.
Next, we will study the case that the failure node p is the follower. Without loss

of generality, we assume the label of node p to be node rk + 1, which belongs to the
first follower group Lk+1,k+1 and will be removed in Algorithm 10.2.

We have proved in Theorem 10.4 that the observed states of the followers will
asymptotically converge to the convex combination of {f (x̄

ξ̂i
), i = 1, 2, . . . , k},

where x̄
ξ̂i

is the consensus value of the leaders in Lii . Let

Lk+1,k+1 =

⎛

⎜⎜⎜⎝

ark+1,rk+1 ark+1,rk+2 · · · ark+1,rk+1

ark+2,rk+1 ark+2,rk+2 · · · ark+2,rk+1
... · · · · · · ...

ark+1,rk+1 ark+1,rk+2 · · · ark+1,rk+1

⎞

⎟⎟⎟⎠ ,

Q1 =

⎛

⎜⎜⎜⎜⎜⎝

1 0 0 · · · 0 0
− ark+2,rk+1

ark+1,rk+1
1 0 · · · 0 0

...
...
... · · · ... ...

− ark+1,rk+1

ark+1,rk+1
0 0 · · · 0 1

⎞

⎟⎟⎟⎟⎟⎠
,

and

Q2 =

⎛

⎜⎜⎜⎜⎜⎜⎝

1 − ark+1,rk+2

ark+1,rk+1
· · · − ark+1,rk+1−1

ark+1,rk+1
− ark+1,rk+1

ark+1,rk+1

0 1 · · · 0 0
...

... · · · ...
...

0 0 · · · 1 0
0 0 · · · 0 1

⎞

⎟⎟⎟⎟⎟⎟⎠
.

Let Lk+1,k+1 = Q1Lk+1,k+1Q2 and Lk+1,i = Q1Lk+1,iQ2, i = 1, · · · , k + 1. It
can be seen that the matrix L′

k+1,k+1 and L′
k+1,i can be obtained by removing the

first row and column of the matrix Lk+1,k+1 and Lk+1,i , respectively.
In Theorem 10.4, we have proved that the observed state of the follower group

Lk+1,k+1 can be explicitly expressed as

F
(
x
ξ̂k+1

(t)
)

=
[
f (x

(rk+1)
ξ̂k+1

(t)), . . . , f (x
(rk+1)

ξ̂k+1
(t))

]�

=
[
−L−1

k+1,k+1

k∑

i=1

Lk+1,iF (xξ̂i
(t))

]
.
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By some simple computation, we can easily see that after implementing Step 1 of
the recovery algorithm, the final convex coefficient will be the same as the original
ones, i.e., how leaders decide the final states of the follower is preserved.

10.4 Numerical Examples

Now, a simple example will be given to illustrate the consensus recovery process
and also for better understanding of the proposed algorithm.

Example 10.10 Consider a simple sensor network consisting of 8 sensors. Let
xi(0), i = 1, . . . , 8, be the initial states of network. f (x(t)) = [f (x1(t)), . . . ,

f (x8(t))]� with f (xi) = x3
i . Suppose the initial values are set as [−1, 3, 5, 2, 2,

−3, 0, −2]�. The network topology is displayed in Fig. 10.2, and the weight of
each edge is set as 1. We can see that the network is balanced and the final consensus
value is the average state of the network (see Fig. 10.5).

Suppose node p fails at time t0 = 5 (see Fig. 10.3), by using the consensus
recovery approach, removing node p gives the reduced graph (Fig. 10.4). The

Fig. 10.2 Original network structure

Fig. 10.3 Node p has failure due to external attack
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Fig. 10.4 Remove node p in the network

Fig. 10.5 The states of the original network

corresponding state trajectories of system (10.8) are shown in Fig. 10.5. It can be
seen from Fig. 10.6 that the network cannot achieve consensus since the connectivity
of the network is destroyed by the failed node p. Figure 10.7 shows the evolution of
the network when the recovery procedure is implemented for the failure node p.
This simple example illustrates the correctness and efficiency of the proposed
network recovery method very well.

In the following, an example with more nodes is given to illustrate the effec-
tiveness of the theoretical results. In this example, a network with 30 nodes will be
reduced to a smaller network with only 5 nodes. A network with 30 nodes is selected
for illustration since the coupling matrix and visualization of a larger network cannot
be well displayed.
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Fig. 10.6 The states of the network when node p fails at time t0 = 5

Fig. 10.7 The states of the network when the recovery procedure is implemented
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Fig. 10.8 The original graph of network (10.8) with 30 nodes

Fig. 10.9 The reduced graph of network (10.8) with 30 nodes

Example 10.11 Consider the multi-agent system (10.8) with 30 nodes (Fig. 10.8),
and the nonlinear function f is chosen as f (x) = tanh(x).

Firstly, based on Algorithm 10.1, we can reduce the original network into a
smaller one. The reduced network contains only 5 nodes and the corresponding
structure can be seen in Fig. 10.9. Corresponding to Remark 10.8, we can conclude
that:
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1. The nodes sets Δ1 = {1, 4, 6, 8, 10, 16, 21, 23, 25, 29}, Δ2 =
{7, 12, 13, 15, 17, 18, 26, 27}, and Δ3 = {5, 9, 19, 20, 22} are the leaders in
the original network. After reduction, only leader nodes 1 ∈ Δ1, 18 ∈ Δ2, and
19 ∈ Δ3 are still active in the reduced network;

2. The final consensus states of the nodes in the set Δi, i = 1, 2, 3, are,
respectively, x̂1(0), x̂18(0), and x̂19(0), where x̂i (0), i = 1, 18, 19, are the initial
values of node i in the reduced network. For instance, x̂19(0) = 1

6 (x5(0)+x9(0)+
x20(0)+ x22(0))+ 1

3x19(0);
3. The nodes set Δ = {2, 3, 11, 14, 24, 28, 30} are the followers in the original

network;
4. The final observed state x(t) of nodes 24 and 30 are tanh−1( 2

3 tanh(x1′(0)) +
1
3 tanh(x18′(0))) and tanh−1( 1

5 tanh(x19′(0))+ 4
5 tanh(x18′(0))), respectively.

The state responses of the original network and the reduced network are,
respectively, given in Figs. 10.10 and 10.11, which can well illustrate the correctness
of the former conclusion.
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Fig. 10.10 The states of the original network
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Fig. 10.11 The states of the reduced network

To show the correctness and effectiveness of the consensus recovery approach,
we assume that nodes 1, 2, and 10 fail at time t0 = 5 and nodes 5, 22, and 28
fail at time t1 = 10, respectively. If the consensus recovery is not applied, we can
see from Fig. 10.12 that the network will not converge to the same final state as
the original network in Fig. 10.10. Figure 10.13 shows the evolution of the same
network when the proposed consensus recovery algorithm is implemented. It can be
found that after implementing the consensus recovery algorithm, the network has
the same final state as the original network.

10.5 Summary

Node failure problem is very normal in network multi-agent systems. In this chapter,
a novel consensus recovery approach has been introduced to analyze the consensus
of nonlinear coupled multi-agent networks with node failure. The node removing



264 10 Multi-agent Consensus Recovery Approach Under Node Failure

0 10 20 30 40 50 60
−5

−4

−3

−2

−1

0

1

2

3

4

5

t

ne
tw

or
k 

st
at

e

 

 
node failure time t=5
node failure time t=10
final states of leaders group in original network

Fig. 10.12 The states of the network when the recovery procedure is not implemented

process consists of two important operations including the updates of the edge
weighs and initial values. In the process of removing nodes, only local information
is used, and hence our proposed network reduction method is quite practical
and easy to implement. After the consensus recovery operation, the consensus
property is well reserved. Theoretical consensus analyses have also been presented
in this chapter by fully utilizing the network structure. One important benefit of
the analytical results is that it verifies the correctness of the consensus recovery
approach. The theoretical results have been well illustrated by using numerical
examples.
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Fig. 10.13 The states of the network when the recovery procedure is implemented
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Chapter 11
Conclusion and Future Work

In this chapter, some concluding remarks and related future work are given.

11.1 Conclusion

This book is mainly concerned with the complex networked systems under imper-
fect communication constraints. The research problems proposed in Sect. 1.2 have
been respectively discussed in this book.

(a) Chapter 2 is mainly devoted to studying Problem 1.2. Under arbitrary finite
communication delays, the consensus problem in directed static networks is
studied. It has been proved that consensus can be realized whatever the finite
communication delays are.

(b) Two types of imperfect communication, i.e., quantization and communication
delays, are studied in Chaps. 3 and 4. In Chap. 3, Problem 1.2 is investigated
in detail and a unified framework for continuous-time multi-agent consensus
problem with quantization and communication delays is developed. By using
the nonsmooth technique, practical consensus of the multi-agent systems is
obtained. It is interesting to observe that the quantization parameter decides
the size of the practical consensus set and communication delays only affect
the center of the practical consensus set. Chapter 4 is devoted to studying
Problem 1.2. Without considering input quantization, consensus problems with
communication quantization and communication delays simultaneously are
considered. Discrete-time protocol and continuous-time protocol are, respec-
tively, discussed in Sects. 4.1 and 4.2. We have proved that under the connected
network topology, the multi-agent network can achieve consensus.

(c) Chapter 5 is concerned with Problem 1.2. Compared with the traditional
periodic sampled-data control or time-driven control method, the event-driven
control method is more flexible and robust in some real multi-agent systems.
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In Chap. 5, discrete-time and continuous-time multi-agent consensus problems
under event-triggered control are studied, respectively. Discrete-time consensus
protocol with communication delays is discussed in Sect. 5.1. In Sect. 5.2,
continuous-time event-triggered and self-triggered consensus protocols are
proposed, respectively. It is also shown that the Zeno behavior can be excluded
under our proposed event-based protocol with communication delays.

(d) Chapters 6 and 7 are concerned with Problem 1.2 and Problem 1.2, respec-
tively. Continuous-time bipartite consensus and fixed-time/finite-time bipartite
consensus problems in networks of agents with antagonistic interactions and
communication delays are investigated. Effective consensus protocols are
designed to realize expected collective behaviors. By the Lyapunov stability
method and homogeneity of function analysis, the relation between the order of
φ(x) and the speed of convergence is obtained.

(e) Chapters 8 and 9 are devoted to studying Problem 1.2. In Chap. 8, the expo-
nential synchronization behavior of a general complex dynamical network is
investigated. Some sufficient conditions are proposed to guarantee the globally
exponential synchronization of the network. Moreover, one quantity is distilled
from the coupling matrix to characterize the synchronizability of corresponding
dynamical networks. Chapter 9 mainly studies the pinning cluster synchro-
nization of coupled neural networks by a novel event-triggered mechanism.
An effective distributed event-triggered scheme is proposed to realize expected
cluster synchronization and meanwhile exclude the Zeno behavior. Under event-
triggered mechanism, some controllers will be pinned to certain selected nodes
in coupled neural networks to realize expected cluster synchronization.

(f) Chapter 10 is devoted to Problem 1.2. First, consensus analysis of nonlinear
multi-agent network with arbitrary communication topology is given, which
uses the global information of the network. For large scale multi-agent net-
works, to reduce the size of the networks and meanwhile conserve the consensus
property, a new network reduction approach is proposed which only uses the
local information of the network in the reduction process. Furthermore, based
on the network reduction method discussed in this chapter, a novel consensus
recovery approach is provided to improve the reliability of the network system
and preserve the consensus property under node failure.

11.2 Future Work

Some related topics for future research are listed as follows:

(1) In this book, we only study the first-order multi-agent consensus problem
under imperfect communications. In the future, we will extend the results
of this book to the high-order multi-agent consensus problems. In particular,
we will design new consensus protocols for higher-order multi-agent systems
and investigate how quantization and communication delays affect the final
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consensus results. Moreover, we will design event-triggered consensus protocol
for higher-order multi-agent networks and derive distributed event-triggered
conditions for reaching consensus.

(2) In Chaps. 3 and 4, the effect of two kinds of uniform quantization is analyzed
in detail. In future work, we will focus on the effect of other different types
of quantization, such as logarithm quantization, in the distributed complex
networked systems. Moreover, in many real-world complex networks, indi-
viduals in the network are often able to build new links or suppress old ones
among themselves as time goes on. Hence, collective dynamical behavior
problems with quantization and communication delays under time-varying
communication topology will be considered in future research.

(3) In Chaps. 6 and 7, bipartite consensus of multi-agent systems with antagonistic
interactions and communication delays is studied. In the future, we will extend
the results of this book to the bipartite synchronization problems. Furthermore,
we will focus on more imperfect communication on the cooperative-competitive
complex networks, such as quantization, data dropout, noise, etc.

(4) Chapters 8 and 9 mainly concentrate on the synchronization problem of
complex dynamical networks with communication delays. We will further
consider the collective behaviors of stochastic complex networks with com-
munication delays in our future work. Furthermore, the application of network
synchronization problem with communication delays also will be studied, such
as distributed Kalman filtering for sensor networks, distributed fault diagnosis,
etc.

(5) In Chap. 10, network reduction and recovery methods were proposed for multi-
agent consensus with node failure. In the future, we will also consider the
reverse problem of the network reduction process, i.e., what would happen if
some new nodes were added to the multi-agent network? The application of
network reduction and its converse process in some practical problems, such as
optimal allocation of sensors network, distributed fault diagnosis and consensus
maintenance, and so on, shall all be explored in the future work.
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