
Chapter 8
Assessing the Effect of Aging on Soil
Liquefaction Resistance

Ronald D. Andrus and Barnabas Bwambale

8.1 Introduction

The resistance of soil to liquefaction is often expressed by the cyclic resistance ratio
(CRR) estimated from semi-empirical charts based on field tests, such as the cone
penetration test (CPT), standard penetration test (SPT) or shear wave velocity (VS)
measurement (e.g., Youd et al. 2001; Idriss and Boulanger 2008; National
Academies of Sciences 2016). Commonly used CRR charts are derived from pri-
marily field case histories where liquefaction occurred in soil deposits that are less
than a few thousand years old (Youd et al. 2001; Idriss and Boulanger 2008;
National Academies of Sciences 2016; Hayati and Andrus 2009; Seed 1979;
Bwambale and Andrus 2019). If these charts are applied without correction for the
effect of aging, excessively conservative estimates of CRR might be obtained,
leading to unnecessary and costly ground improvements. On the other hand, if older
soil deposits are blindly assumed to be unsusceptible to liquefaction, less conser-
vative assessments of the hazard might be obtained.

Aging (or diagenesis) is the post-depositional physical, chemical and biological
processes that alter the structure of soil. As discussed by Boggs (2006), physical
processes can include rearrangement and interlocking of soil particles, particles
crushing and asperity shearing. Chemical processes can include precipitation of
quartz, feldspar, carbonate cements, kaolinite or chlorite, and formation of pyrite or
iron oxides. Biological processes include the reworking of sediments by living
organisms, bacterial oxidation of organic matter and reduction of inorganic matter,
and bacterial fermentation. The combination of these processes contributes to the
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net effect of diagenesis on liquefaction resistance, which can vary significantly even
between locations in the same deposit.

The main objectives of this paper are: (1) to emphasize the importance of not
blindly assuming older soil deposits to be unsusceptible to liquefaction by
reviewing twelve cases of Holocene (<11.5 k years) liquefaction in Pleistocene
(11.5 k to 2.6 M years) deposits; and (2) to review nine proposed relationships for
estimating the effect of diagenesis on CRR. The 12 cases of Holocene liquefaction
in Pleistocene deposits were compiled as part of the doctoral dissertation work of
Bwambale (2018) and are published here for the first time. A comprehensive review
of the proposed procedures for assessing the aging effect on soil liquefaction
resistance is presented in the paper by Bwambale and Andrus (2019). Nine selected
relationships for correcting commonly used CRR charts for the aging or diagenesis
effect are summarized in this paper.

8.2 Holocene Liquefaction in Pleistocene Deposits

Although most cases of earthquake-induced liquefaction described in the literature
involve soils deposited during the Holocene, several cases involving Pleistocene
deposits have been reported. Summarized in Table 8.1 are 12 such cases. These
cases are from Argentina, China, Israel, Lithuania, Republic of Karelia and the
USA. The cases presented in Table 8.1 involve liquefaction of mainly Pleistocene
alluvial/fluvial, beach and lacustrine sediments that are composed predominantly of
sand, but also include some silt and silty sand. Sand boils (or sand blows) were
observed at nearly all locations.

For the 12 cases summarized in Table 8.1, the liquefying events occurred from a
few years to about 15,000 years ago. The time difference between the inferred
geologic age and any documented liquefying event is, however, greater than
10,000 years, implying old deposits at the time of liquefaction. Some areas (e.g.,
South Carolina) have experienced liquefaction during multiple events, as indicated
in Table 8.1.

Figure 8.1 presents a map of the world showing the geographical locations of the
12 cases of Holocene liquefaction in Pleistocene deposits summarized in Table 8.1.
Half of the cases are from the USA. The other six cases are evenly distributed in the
continents of Asia, Europe and South America.

Figure 8.2a, b show histograms of the case histories grouped according to
deposit type and geologic age (i.e., time since deposition), respectively. As seen in
the figures, 54% of the cases occurred in alluvial/fluvial deposits and 23% in each
of the two other deposit types. About 70% of the cases involved deposits that
are <100,000 years old; and 30% with age between 200,000 to 500,000 years old
at the time of liquefaction. This observation suggests that liquefaction susceptibility
varies significantly within Pleistocene deposits, often decreasing as the time since
deposition increases. The 12 case histories summarized in Table 8.1 support the
need for liquefaction assessments in Pleistocene deposits.
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Fig. 8.1 Locations of Holocene liquefaction in Pleistocene deposits
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Fig. 8.2 Frequency of cases of Holocene liquefaction in Pleistocene deposits grouped by
a deposit type and b deposit geologic age
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8.3 Correcting CRR for Diagenesis

The correction of CRR for aging or diagenesis can be given by (Hayati and Andrus
2009; Seed 1979; Bwambale and Andrus 2019; Hayati et al. 2008; Arango et al.
2000):

CRRcorrected ¼ KDRCRR ð8:1Þ

where CRRcorrected is the diagenesis-corrected CRR; and KDR is the correction
factor. Nine proposed relationships for estimating KDR based on time and a ratio of
measured to estimated shear wave velocity are reviewed below.

8.3.1 Time-KDR Relationships

Because some processes (e.g., liquefaction during strong ground shaking; exca-
vation and backfilling during construction of underground utilities) can cause the
grain-to-grain contacts to be broken after deposition, ‘time’ in this section is defined
as the period since the grain-to-grain contacts last formed. This definition of time is
sometimes called the ‘geotechnical age.’ The geotechnical age can be less than the
geologic age if an event causes the grain-to-grain contacts to be broken.

Figure 8.3 presents three proposed time-KDR relationships that are primarily
based on laboratory cyclic testing of intact and freshly deposited (or reconstituted)
specimens composed of predominately silica-based sands. KDR in Fig. 8.3 is
defined as the CRR of the intact specimen divided by the CRR of the reconstituted
specimen. The relationship by Seed (1979) is based on test results for five sands.
The relationship by Arango et al. (2000) is based on the Seed (1979) relationship
and test results for two sands in California and South Carolina. The relationship by
Hayati and Andrus (2009) is based on test results for 13 sands in Japan, Taiwan,
and the USA. All three relationships suggest a reference age (i.e., time when
KDR = 1.0) of <4 days, which is reasonable given that reconstituted laboratory test
specimens are typically subjected to back-pressure saturation and consolidation
over a period of a few days or less prior to cyclic testing.

Figure 8.4 presents four proposed time-KDR relationships that use a penetration-
based CRR chart as reference. KDR in Fig. 8.4 is defined as the CRR of the intact
material divided by the CRR from the chart for the given corrected field penetration
resistance. The relationship by Hayati and Andrus (2009) is a refinement of the
relationship by Hayati et al. (2008) and is based on 24 data points from sites in
Canada, Japan, Taiwan and the USA. The relationship by Maurer et al. (2014) is
based on the data compiled by Hayati and Andrus (2009) plus data from an area
near Christchurch, New Zealand shaken by earthquakes in 2010 and 2011. The
relationship by Towhata et al. (2017) is based on field data from Japan, as well as
previous studies. The four relationships shown in Fig. 8.4 suggest a reference age
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(i.e., time when KDR = 1.0) of 10 to 100 years, which is reasonable given that many
case histories used to develop the CRR charts are from post-earthquake investiga-
tions conducted 1 to 100 years after the liquefying events.

It is encouraging to observe the relationships shown in Figs. 8.3 and 8.4 which
indicate similar rates of increase in KDR (12–17%) per log cycle of time. The good
agreement is likely because the regression data are from predominately silica-based
sands. On the other hand, it should be noted that the results of tailings material
reported by Troncoso et al. (1988) were omitted from the regression for the Hayati
and Andrus (2009) relationship in Fig. 8.3 because the tailings data exhibit very
high values of KDR. Also, KDR values obtained by Bwambale and Andrus (2017) for
Pleistocene loess-colluvium near Christchurch, New Zealand plot well above the
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four relationships in Fig. 8.4. For these reasons, Bwambale and Andrus (2019) do
not recommend using relationships based on time unless the rate of increase in
resistance in a given deposit is well established.

8.3.2 MEVR-KDR Relationships

The ratio of measured shear wave velocity to estimated shear wave velocity
(MEVR) is a promising predictor variable for KDR. Andrus et al. (2009) recom-
mended using the following relationships for the estimated shear wave velocity
(Andrus et al. 2004b, 2009):

VS1cs;E ¼ 62:6 qc1N;cs
� �0:231 ð8:2Þ

VS1cs;E ¼ 87:6 N1ð Þ60;cs
h i0:253

ð8:3Þ

where VS1cs,E is the estimated shear wave velocity corrected to a reference stress
equal to 100 kPa and a clean-sand equivalent; qc1N,cs is the dimensionless over-
burden stress-corrected clean-sand equivalent cone tip resistance; and (N1)60,cs is
the dimensionless overburden stress-corrected clean-sand equivalent SPT blow
count. Equations 8.2 and 8.3 correspond to deposits with average age of about
6 years (Andrus et al. 2009). In this section, MEVR is defined as the measured shear
wave velocity (VS1cs,M) divided by VS1cs,E.

Figure 8.5 presents two proposed MEVR-KDR relationships. The relationship by
Bwambale and Andrus (2019) is an update to the relationship by Hayati and Andrus
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(2009). The update involved a critical re-evaluation of the 17 data points compiled
by Hayati and Andrus (2009) and the addition of 11 new cases. Nine of the original
17 data points were excluded in the update because of insufficient information, a
deficiency in testing procedures and/or a plasticity index too high to be liquefiable.
The 20 data points used in deriving the Bwambale and Andrus (2019) relationship
are from Canada, Japan, New Zealand, and the USA. MEVR-KDR relationships are
recommended, instead of time-KDR relationships, because they provide higher
coefficients of determination and lower root mean square errors.

8.4 Conclusions

Twelve cases of Holocene liquefaction in Pleistocene deposits were summarized in
this paper. The 12 cases are from Argentina, China, Israel, Lithuania, Republic of
Karelia and the USA. About 70% of the cases involved deposits that are less than
100,000 years old and 30% with geologic age between 200,000 to 500,000 years
old at the time of liquefaction. These cases support the need for liquefaction
assessments in Pleistocene deposits.

Nine proposed relationships for correcting the effect of age or diagenesis on CRR
were reviewed. Although seven time-KDR relationships exhibit similar rates of
increase in KDR (12–17%) per log cycle of time for predominately silica-based
sands, test results for tailings material and loess-colluvium indicate that much
greater rates of increase with time are possible. For this reason, relationships based
on measured shear wave velocity to estimated shear wave velocity were recom-
mended for correcting CRR.
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