Harikesh Bahadur Singh
Anukool Vaishnav
R. Z.Sayyed Editors

Antioxidants in
Plant-Microbe
Interaction

N Springer



Antioxidants in Plant-Microbe Interaction



Harikesh Bahadur Singh -
Anukool Vaishnav - R. Z. Sayyed
Editors

Antioxidants in Plant-
Microbe Interaction

@ Springer



Editors

Harikesh Bahadur Singh
Department of Biotechnology
GLA University

Mathura, India

Anukool Vaishnav
Department of Biotechnology
GLA University

Mathura, India

R. Z. Sayyed

Department of Microbiology
PSGVP Mandal’s ASC College
(KBC-NMU)

Shahada, India

ISBN 978-981-16-1349-4 ISBN 978-981-16-1350-0  (eBook)
https://doi.org/10.1007/978-981-16-1350-0

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapore
Pte Ltd. 2021

This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether
the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and
transmission or information storage and retrieval, electronic adaptation, computer software, or by
similar or dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.

The publisher, the authors, and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, expressed or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Singapore Pte Ltd.
The registered company address is: 152 Beach Road, #21-01/04 Gateway East, Singapore 189721,
Singapore


https://doi.org/10.1007/978-981-16-1350-0

Antioxidants have numerous biological roles in plants due to their contribution to
signaling pathway. These compounds can be defined as secondary metabolites and
are produced besides the primary biosynthetic pathway and metabolic routes of chief
biological compounds associated with growth and development. In plants,
interactions of the antioxidants are mostly associated with defense mechanism and
signaling, especially in oxidative stress produced during abiotic stress or pathogen
attack. In addition, these antioxidants are also part of nutritional content in plant
products, which increase nutraceutical property of any crop plant, i.e., medicinal,
spices, and vegetables. Furthermore, these compounds are also released by plant
exudates that are involved in interaction with other organisms in plant holobiont.
Among the two types of antioxidants in higher plants, enzymatic antioxidants
include catalase (CAT), ascorbate peroxidase (APX), glutathione peroxidase
(GPX), peroxiredoxins (Prx), superoxide dismutase (SOD), dehydroascorbate reduc-
tase (DAR), monodehydroascorbate reductase (MDAR), peroxidases (PODs), gluta-
thione S-transferases (GSTs), glutathione reductase (GR), and thioredoxins (Trx).
These enzymes are directly involved in reactive oxygen species (ROS) scavenging
or ROS by-products. Nonenzymatic antioxidants, such as ascorbic acid (vitamin C,
ASC), glutathione (GSH), tocopherols (vitamin E), and carotene, work in correlation
with antioxidant enzymes to alleviate oxidative stress or directly involve in plant
growth, development, hormone signaling, cell cycle, and defense response.

The microbiome of plant holobiont has the ability to control antioxidant produc-
tion and signaling in plants and vice versa. The plant-associated microbes induce
antioxidant levels in plants to cope with stress conditions. Simultaneously, plants
release some specific types of antioxidants through their exudates that recruit
beneficial microbes in the surroundings. The understanding of the biosynthesis,
signaling, and function of antioxidant compounds in plants during stress conditions
will allow us to harness their activities in plant-microbe interactions and other
rhizospheric signaling as a means to increase or restore plant ecosystem productivity
and to improve plant responses to a wide range of stress conditions. These
antioxidants contribute to a wide range of natural product formulations for agricul-
tural practices. In addition, antioxidants have huge commercial and industrial
applications due to their wide bioactive potential and biological activities. The
main focus of this book is to highlight the role and potential of various antioxidant
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compounds in plant-microbe ecosystem for the management of plant growth under
biotic and abiotic stresses. Accordingly, we have incorporated five comprehensive
parts focusing on the types and biosynthesis of antioxidants and their role in
microbe-mediated plant growth promotion under stress conditions.

Mathura, India Harikesh Bahadur Singh
Mathura, India Anukool Vaishnav
Shahada, India R. Z. Sayyed
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Abstract

Plant’s continuous interaction with varieties of microorganisms through its root
has been an important topic of discussion since decades. The type of interaction,
duration, and changes due to interaction vary according to the type of microor-
ganism and host plant both. Some of the nonpathogenic or harmless
microorganisms form symbiotic association with plant root with the exchange
of plant root exudates containing nutrients for those. In return, this mutual
understanding between symbiont and plant has gifted plant with lots of improved
mechanisms to mitigate negative impacts resulted due to invasion of various
microorganisms. Formation of reactive oxygen species (ROS) is a common and
unavoidable process in all aerobic life forms, be it plant or animal. But the
problem appears when larger amount of ROS formation takes place. The rate of
ROS production in plant gets faster due to occurrence of various microorganisms.
Pathogenic microorganisms effect plant negatively and promote production of
ROS which creates toxicity. Plants, naturally, have answer to neutralize the
ROS-generated toxicity through their inherent defense system but sometimes
plants have to rely on some outer sources to get some extra strength to face the
challenges due to pathogen attack. Symbionts have been reported to boost the
natural defense system in plants through directly helping in more production and
up-regulation of defense-related molecules like phytohormones, genes, etc. Need-
less to say, antioxidants are molecules that are continuously dedicated to mini-
mize oxidative stress due to ROS generation and their toxicity. These
antioxidants, viz. enzymes (catalase, superoxide dismutase, enzyme components
of AsA-GSH cycle, etc.) and nonenzyme (tocopherols, carotenoids, glutathione,
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etc.) compounds help plant stand in stressful situation through thoroughly giving
support to plant in providing defense. Changes due to pathogen attack in plant
and how a plant response to those is still not revealed to its best. But it can be said
that this complex relationship between pathogen and plant could be understood
better with thorough study of plant’s interaction with pathogens and plant’s
acquired as well as induced defensive mechanisms through recruitment of vast
network of antioxidants.

Keywords

Plant pathogens - Symbionts - ROS - Oxidative stress - Enzymatic and
nonenzymatic-natured antioxidants - Defensive mechanisms

1.1 Introduction

Plant root is constantly in contact with numerous kinds of microorganisms. Patho-
genic microorganisms create an ambience unfavorable for plants, thus make plants
adopt some defense mechanisms. Nonpathogenic microorganisms, in the contrary,
do not create negative impacts and some of them develop symbiotic association with
plant through colonization in root. These symbionts have some beneficial roles in
plant. In all aerobic life forms, viz. plants and animals, the formation of cellular
reactive oxygen species (ROS) as a by-product of their intrinsic metabolisms is an
inevitable process (Foyer and Harbinson 1994; Heyno et al. 2011; Bailey-Serres and
Mittler 2006; Sharma et al. 2012). Examples of some major ROS include superoxide
anion (O,""), hydrogen peroxide (H,0,), hydroxyl radical (OH"), singlet oxygen
(102), etc. (Torres 2010; Mendoza 2011). Naturally, ROS at lower concentration do
not possess toxic effects. The production of these ROS gets faster when plants have
to face several stresses caused by biotic and abiotic factors. Biotic stress in plants is
caused by the occurrence of different kind of pathogens such as fungi, viruses,
bacteria, and nematodes (Dangl and Jones 2001). These harmful pathogens develop
adaptive mechanisms with the target of sustaining themselves within plant life. In
plants, these pathogens interfere with the growth and physiology and leave impacts
on plants through promoted production of ROS (Mellersh et al. 2002; Samsatly et al.
2018). Formation of these ROS in plants costs molecular oxygen (O,) to get reduced
upon exposure to high energy input reactions, viz. reaction of electron-transfer
involving plasma membranes, mitochondria, and chloroplast (Del Rio et al. 2006;
Blokhina and Fagerstedt 2010) in a step-worthy manner (Sharma et al. 2012). Now,
these ROS, when formed in ample amounts, create toxicity and thus seem to be
harmful for plant life and processes (Ryter et al. 2007), and cause necrosis and death
of plant (Pitzschke et al. 2006). The ROS, which are generated by the partial
reduction of molecular oxygen, are highly reactive in nature and cause damage to
the macromolecules such as nucleic acids, proteins, and lipids by denaturing those
(Mendoza 2011). Detoxification of these reactive oxygen intermediates requires
cells to recruit a vast network of antioxidants. The function of an antioxidant is to
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either prevent or slow down the ROS-generated oxygenation by donating an electron
to the unstable ROS, thereby oxidizing itself in place of cellular macromolecules
which are highly susceptible to ROS. Therefore, antioxidants serve as very crucial
components in terms of developing defense against damage caused by oxidative
stress resulted due to ROS formation in plant when invaded by microorganisms. The
mechanisms plants implement in order to sense and understand the invasion by
various microorganisms and thereafter carry out transduction process to carry this
received information to the elicitors for developing appropriate defense system are
not broadly revealed. The role of beneficial microorganisms is found here. These
microorganisms strengthen plant defenses through inducing more production of
antioxidants to cope up with any stress. In view of these, this chapter was planned
to describe all possible mechanisms of plant—pathogen interaction and role of
antioxidants in amelioration of ROS-generated effects on plants under biotic
stresses.

1.2  Types of Plant Pathogens and Their Characteristics

There exist a number of plant pathogens which have separate level of host-
interaction and separate functions. These differences in the level of host specificity
of phytopathogens and their degree of interactions they hold with their host plant
could be attributed to their mode of infection, and also surrounding environmental
factors (Ziska and Runion 2007). The term host specificity is actually reserved for
extreme cases when preference to host is restricted narrowly. Pathogens like Xylella
fastidiosa are able to rely on and infect a broad range of host plants from several
genera as well families (Hopkins 1989), whilst some other pathogens are capable of
infecting a narrow range of host plants which are closely related or better known as
host biotypes (Agrios 2005). Functionally, plant pathogens can be classified with
various categories like necrotrophic, biotrophic, and hemibiotrophic. To obtain
nutrients from host plant, necrotrophic pathogens have to kill the host cells first,
so, plants rarely develop interactions with these pathogens to restrain their active cell
metabolisms to be interfered. Examples of necrotrophic pathogens include gray
mold fungus Botrytis cinerea, bacterial pathogen Erwinia carotovora, etc. On the
other hand, biotrophic pathogens depend for nutrients on living cells only, thus
plant—pathogen interaction in this case is long and complicated too (Schumann and
D’ Arcy 2006). Fungus Blumeria graminis, bacterial pathogen Xanthomonas oryzae
are some of the biotrophic pathogens. Obligate (biotrophic) pathogens generally
have more specific host requirements than facultative (necrotrophic) pathogens.
Once plant gets infected by either necrotrophic or biotrophic pathogen, air
temperatures and water potentials of host plant control the rate of colonization of
the host tissues, production of new inoculum, and the expression of disease
symptoms by the host as well (Colhoun 1979; Campbell and Madden 1990). In
case of hemibiotrophic pathogen, the pathogen initially relies on living cells for
nutrient requirement but kills cells at later stages of infection.
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1.3  Changes Occurred in Plants When Interacted
with Pathogens

Plants act as a shelter or host for a number of pathogens that include viruses, bacteria,
fungus, and nematodes. Pathogens which intend to complete their vital processes of
life within a host plant, exhibit negative impacts on plants. Plants at the first
understand that it had been attacked by pathogens and then carry out several changes
to fight back for survival against pathogens. To infect the plant, pathogens aim to
develop diseases for which favorable environmental condition needs to be present.
For survival on the host plant and inducing infection, pathogen carries out produc-
tion of propagules and their germination which in turn are often controlled by air
temperature and air moisture (Colhoun 1973, 1979). Environmental features, i.e.,
slightly warmer temperatures, frequent rainfall can be more favorable for resulting in
more detrimental effects (Campbell and Madden 1990). Thus, a triangle is formed
among plant, pathogen, and environment for occurrence of disease (Singh et al.
2018). Avirulent pathogens have been often observed to induce accumulation of
ROS in a biphasic manner. Firstly, the transient phase witnesses slow ROS accumu-
lation in a small quantity, followed by a larger accumulation in the second or
continuous phase with the target of developing host plant’s disease resistance
(Torres et al. 2006; Heller and Tudzynski 2011). On the other side, virulent
pathogens which cause cell damage in larger extent, lead the transient phase induc-
tion of ROS only (Bolwell et al. 2002), not giving the host plant greater scope to
develop resistance to disease. Biotrophic pathogens respond to the oxidative burst
and as well as able to minimize it, while necrotrophic pathogens intend to exploit the
oxidative burst in plants for their sustaining (Heller and Tudzynski 2011). Therefore,
disease progression in plants by the necrotrophic pathogens is completely up to their
ability to manipulate or surpass ROS-generated plant defenses, and as they have
great sensitivity to ROS, detoxification of ROS is also mandatory for them while
targeting their host (Samsatly et al. 2018). Plants have already acquired an improved
defense system through their antioxidants which plants use when attacked by several
stresses (Ballhorn et al. 2009). This already-existing along with some induced
defense responses of plants imposes stress on the pathogen, and provides needful
signals (Shalaby and Horwitz 2015). A number of changes has been observed in
plants afterwards, i.e., after disease development following the triangle formation.
Various kinds of changes due to different pathogen attack in plants are discussed
below.

1.3.1 Changes Due to Plant-Fungi Association

Proteomic studies have explored the plant—fungi interaction and changes due to this
association. To develop pathogenicity, fungi deploy a number of proteins to be either
up-regulated or and down-regulated (Murad et al. 2007). A group of proteins such as
peroxidase, polygalacturonase, chitinase, and a subtilisin-like protease was found in
pathogen-infected tomato plant by Houterman et al. (2007). Proteomic approaches
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like gel electrophoresis, MALDI-MS/MS have revealed the dynamic roles of these
proteins like responding to stress and build defense, signal transduction, taking part
in electron transport system, photosynthesis, cell wall degradation, and protection,
etc. (Yajima and Kav 2006; Singh et al. 2018).

1.3.2 Changes Due to Plant-Bacteria Association

Bacteria acquired five pathways for creating pathogenicity by participating in trans-
location of the bacteria-secreted proteins into the host plant cell (Lee and
Schneewind 2001). These all pathways are involved in dynamic functions, from
secretion of multiple toxins like hemolysins, rhizobiocin by type-I and export of
these secreted proteins, toxins for building virulence by type-II (Singh et al. 2018) to
counteracting virulence through secretion of Avirulence (Avr) proteins,
Xanthomonas outer protein (Xop), Pseudomonas outer proteins (Pop), etc. by
Type III (Noel et al. 2001). Other pathways are involved in regulation of various
proteins and genes.

1.3.3 Changes Due to Plant-Nematode Association

Pathogenic nematodes like Globodera spp., Heterodera spp., Meloidogyne spp., etc.
bring several changes in plants (Chitwood 2003). Gene products like f-1,4
endoglucanase (cellulase) developed by Globodera spp., pectate lyase, and
polygalacturonase by Meloidogyne spp. have been found as cell wall degraders.
These nematodes also alter nutrient and water balance in plant, thus hamper plant
overall growth (Curtis 2007).

1.3.4 Changes Due to Plant-Virus Association

Viruses themselves are not able to directly infect plants, for which they hire
transmitting factors known as vectors for development of diseases in plants. Viruses
also have both compatible and incompatible interactions with host plant. For initia-
tion of any interaction, viruses at first take shelter in host proteins for completion of
their replication and influence those host proteins act against the pathogen-induced
infection (Mehta et al. 2008).

1.3.5 Steps of Pathogenicity Development

In order to infect plant and develop diseases, pathogens have to go through three
following steps, viz. perception, signaling, and response. Perception which describes
how pathogen and host recognize each other, may take place either directly or
indirectly. For this, plant cells perceive information about the invader pathogen
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and then carry out the second step, i.e., signaling. For signaling the information,
there is a chain of reactions that take place sequentially to ultimately take the
information to the molecules recruited for showing responses. Third step, i.e.,
response occurs here and plant cells get ready to exhibit response mechanisms
with the target of ameliorating the stress impacts. Constitutive defensive responses
include cell wall modification, developing waxy cuticle layer, etc.; while the induced
plant defenses include programmed cell death (PCD), phytoalexins secretion, secre-
tion of pathogenesis-related proteins (PR-proteins), etc.

1.4  Types of ROS, Their Functions and Effects in Plants

Reactive oxygen species are a class of free radicals and ions of reactive nature,
derived from the breakdown of oxygen molecule in presence of various stresses in
plants. An estimated 1.0% of total O, consumed by plants has been reported to be
directed towards formation of ROS (Asada and Takahashi 1987). Role of ROS has
been confined in dynamic areas (Shetty et al. 2008). The effects and severity of
different ROS on plants depend on their accumulation in plant cell. When available
in low concentration, ROS possess some beneficial roles in signal transduction; in
contrast to their ample availability leads to cell damage by various means (Sharma
et al. 2012). As per some previous research works, ROS formed during oxidative
burst (Kannojia et al. 2017) not only act as protectant against pathogen attack, but
also promote signaling activity related to plant defenses (Van Breusegem et al. 2008;
Mendoza 2011). Molecular oxygen (O,) when stable is a harmless molecule. The
presence of two unpaired electrons with parallel spin makes oxygen molecule
inactive. To get activated, oxygen molecule has to either absorb sufficient energy
to cause the spin reversal of one of the unpaired electrons for formation of singlet
oxygen or carry out monovalent reductions step by step for formation of other ROS,
viz. 0,"", H,0,, and OH" (Apel and Hirt 2004; Sharma et al. 2012).

After being formed, ROS take part in various activities in plant. In spite of all
those negative roles described (Table 1.1), ROS molecules have some prominent
roles in plant through inducing growth and development by various ways. Oxidative
burst, resultant of ROS production, could be observed to leave a direct impact on
phytopathogen or their induced defenses (Mendoza 2011; Sharma et al. 2012). These
ROS form an important sensory system to enable host plant perceive chemical
signals from their pathogens and then to translate the sense received into biochemical
responses required for defense development (Hancock et al. 2001). These ROS have
distinct association with hypersensitive response (HR), a localized response at the
place of pathogen conducts programmed cell death with the intent of lowering the
spread of infection by the pathogen and being signal molecules for further establish-
ment of defenses (Mur et al. 2007).
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Table 1.1 Different reactive oxygen species and their specific functions under stress in plants

Reactive
SL oxygen
No. | species Function
1. Singlet It reacts with biological molecules like
oxygen unsaturated fatty acids, protein, DNA, etc.
0,) to oxidize those
Leads light-induced destruction of activities
of PS-II and further promotes cell death
2. Hydrogen Relatively more stable than that of other
peroxide ROS. It can diffuse through membrane
(H,0,) located aquaporins and can also travel
longer distances within the cell
Acts as signal molecule at its low
concentration under pathogen-induced
stress in plants
When at higher concentration, H,O,
conducts oxidization reaction over various
key enzymes such as enzymes of Calvin
cycle, Cu/Zn-SOD, and Fe-SOD;
methionine residues (-SCH3) or cysteine (—
SH)
Creates imbalances by altering the redox
status of intracellular antioxidants like
ascorbate and glutathione, which play
important role in signal transduction
Promotes production of MDA which is
harmful for plant
3. Hydroxyl Interaction of OH" with biological
radical molecules leads to cellular damages, i.e.,
(OH") membrane leakage, lipid peroxidation,
denaturation of protein; and brings death to
cell
4. Superoxide | Oxidizes iron and Sulphur, thus leads to
anion inactivation of various enzymes
0,7)

Reference

Foyer and Harbinson
(1994), Wagner et al.
(2004)
Krieger-Liszkay et al.
(2008)

Bienert et al. (2007),
Mendoza (2011)

Yan et al. (2007)

Leegood and Walker
(1982)

Foyer et al. (1997)

Radwan et al. (2010)

Foyer et al. (1997), Pinto
et al. (2003), (Elesak et al.
(2007)

Gardner and Fridovich
(1991)

1.5 Beneficial Microorganisms and Their Significant Roles

in Plant

Several beneficial bacteria like Azospirillum brasilense, Paenibacillus alvei, Pseu-
domonas fluorescens, etc. colonize plant root and help plant provide protection (Van
Loon 2007). These bacteria have link to more secretion of growth-inducing
phytohormones such as jasmonic acid (JA), salicylic acid (SA), and ethylene
(ET) which also take part in building a network of signal for recognition of the
microbe and stress amelioration. Trichoderma-induced phytohormones indole acetic
acid (IAA) and ET play key roles in plant development and increase in plant
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defenses through up-regulation of some beneficial genes for control of diseases in
plant (Hermosa et al. 2012; Kannojia et al. 2017). These hormones’ presence in plant
apoplast has great importance in control of pathogens for their connection in
development of the first stages of infection (Farvardin et al. 2020).

1.6  Scavenging ROS: Defense System in Plant

Plants are naturally able to produce ROS as well as to detoxify those. Plants
ameliorate the negative impacts of various toxic ROS by directing their antioxidants
already present in them to scavenge the ROS. Wide range of antioxidants serve the
purpose of reduction of toxicity formed due to excess ROS production when plant
gets invaded by microbes.

1.6.1 Antioxidants and Their Characteristics

Various studies reported that reactive oxygen species at their lower level are not
toxic. But when the level of ROS in plant cell exceeds beyond the plants defense
mechanisms present in plant itself, then the cell is said to be in the state of oxidative
stress or oxidative burst (Sharma et al. 2012). The potential of ROS being damaging
agent or signal carrier from cell to cell under stressful condition, completely depends
on the ability of cell to maintain the balance between production of ROS and their
scavenging. Signature of ROS, i.e., their localization, duration of action, and ampli-
tude of signal transduction in response to stress is also depended on this harmony
(Miller et al. 2008). Detoxification of unnecessary ROS becomes successful by
provoking the efficient antioxidative system. Antioxidants are the compounds that
mediate regulatory functions for reactive oxygen species to lead those avoid or
minimize cell damage, and untimely death (Foyer and Noctor 2005; Caverzan
et al. 2016). Antioxidants are broadly classified into two groups- one being enzy-
matic antioxidants including superoxide catalase (CAT), guaiacol peroxidase
(GPX), dismutase (SOD), enzymes of ascorbate glutathione (AsA-GSH) cycle,
viz. glutathione reductase (GR), ascorbate peroxidase (APX), dehydroascorbate
reductase (DHAR), and monodehydroascorbate reductase (MDHAR) (Noctor and
Foyer 1998; Helepciuca et al. 2014); and the other being nonenzymatic compounds
comprising of phenolics, ascorbate (AsA), tocopherols, glutathione (GSH),
carotenoids, proline, and betaine (Mendoza 2011; Sharma et al. 2012). Plants can
tolerate the pathogen-induced stress impacts when these antioxidant properties are at
higher level than the ROS to be scavenged by those (Chen et al. 2010).

1.6.2 Role of Different Antioxidants in Plant Defense

Plants are blessed with presence of a wide range of antioxidants in themselves. These
antioxidants continuously show helping nature to plants when they are under stress
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Table 1.2 Enzymatic antioxidants and their function in plant defense

SL.
No.

L.

Antioxidant

Ascorbate peroxidase

Superoxide dismutase

Catalase

Peroxidase

Glutathione reductase

Dehydroascorbate
reductase
Monodehydroascorbate
reductase

Symbol
APX

SOD

CAT

POX

GR

DHAR

MDHAR

Function

Scavenges peroxidase
(H,0,) by regulating their
signals

Carries out dismutation of
superoxide anion to H,O,
as the name suggests

Plays key role in reducing
the H,O, level present in
peroxisome and detoxifies
those

Acts as a scavenger of
H,0,

Maintenance of high
cellular glutathione/
glutathione disulfide
(GSH/GSSG) ratio by
inducing reduction
reaction of glutathione
disulfide (GSSG) to
glutathione (GSH) which
takes part in detoxification
of HzOz

Apoplastic AsA recycling

1. Regeneration of
ascorbate (AsA) from
MDHA

2. Mediates
photoreduction of
dioxygen to superoxide
anion in absence of the
substrate MDHA
Regulation of oxidative
stress in mitochondria,
cytosol, and chloroplast

1

Reference

Patterson and
Poulos (1995),
Mendoza (2011)
Scandalios
(1993), Mendoza
(2011)

Mallick and
Mohn (2000),
Mendoza (2011),
Sharma et al.
(2012)

Shao et al. (2008),
Minibayeva et al.
(2009)

Sharma et al.
(2012)

Rubio et al.
(2009)
Miyake et al.
(1998)

Das and
Roychoudhury
(2014)

due to biotic factors, i.e., pathogens. The major classification of antioxidants
includes enzymatic and nonenzymatic compounds. All these have some significant
but specific function in detoxification of various ROS formed from oxidative stress.
Their role in plant under stress is described below (Tables 1.2 and 1.3, respectively).
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Table 1.3 Nonenzymatic antioxidants and their function in plant defense

S1.

No. | Antioxidant | Function Reference

1. Tocopherols | Scavenge a range of ROS like 'O, lipid peroxy | Diplock et al. (1989)
radicals, oxygen free radicals, and singlet
oxygen species

2. Ascorbate Prevents macromolecules from getting damaged | Sharma et al. (2012)
due to oxidative burst

Reduces toxicity generated by H,O, and O," Noctor and Foyer
(1998), Pinto et al.
(2003)
3. Glutathione Free radical scavenger Sharma et al. (2012)
Up-regulates stress-responsive genes, Foyer et al. (1997)

synthesizes proteins, takes part in signal
transduction

Regenerates AsA through taking part in Loewus (1988),
AsA-GSH cycle Sharma et al. (2012)
4, Phenolic Protect membrane Arora et al. (2000)
compounds
5. Carotenoids | Detoxify multiple ROS Young (1991),
Sharma et al. (2012)
Act as signal carriers Li et al. (2008)

1.6.2.1 Antioxidant Compounds with Enzymatic Nature in Plant-
Microbe Interaction

Plants possess various enzymatic compounds which have antioxidant properties.

The enzymatic components located in various subcellular compartments enable

plant to counteract the oxidative stress. Major roles of some broad enzymes in

plant defense under biotic stresses are discussed in Table 1.2.

Catalase

Catalase is the single antioxidant that can operate scavenging of hydrogen peroxide
ROS without the availability of any reductant. This heme-containing enzyme
catalyzes dismutation reaction of two molecules of H,O, into H,O and O, (Sharma
et al. 2012). Known to all, catalase has the highest enzymatic activity that is 0.2-2%
of the overall enzymatic activity (Vanacker et al. 1998). An increase of CAT in
essential cell organelles during membrane damage, photorespiratory oxidation,
B-oxidation of fatty acids, and degradation of various proteins has been reported in
previous studies (Corpas et al. 2008).

Superoxide Dismutase

This enzyme is a primary regulator of oxidative damage due to excessive superoxide
anions, as the name suggests. Superoxide dismutase increases resistance to plants
during stress condition by continuously detoxifying the surplus of O,  in various
organelles like cytosol, apoplast, chloroplast, peroxisomes, and mitochondria
(Garcia et al. 2020). In plants, three different isozymes of SOD, viz. manganese
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SOD (Mn-SOD), SOD copper/zinc SOD (Cu/Zn-SOD), and iron SOD (Fe-SOD)
have been reported of all which being nuclear encoded are engaged to protect their
respective cellular organelles by an amino terminal sequence (Bowler et al. 1992).

Guaiacol Peroxidase

Guaiacol peroxidase is also an enzyme that contains heme. The preferable function
of this enzyme is to take part in oxidation of guaiacol and pyrogallol for which it
spends H,O, molecule. GPX brings resistance to biotic stresses in plant through
participating in some crucial biosynthetic processes like modification of cell wall,
biosynthesis of ethylene, healing of wound due to pathogens to name a few
(Kobayashi et al. 1996).

Glutathione Reductase

Glutathione reductase (GR) being a part of ascorbate-glutathione cycle serves as an
important antioxidant in various plants. It leads the reduction of glutathione disulfide
(GSSG) to obtain GSH with the use of reducing agent NADPH and thus plays prime
role in maintenance of GSH/GSSG status in cell. In chloroplast, these two products,
viz. GSH and GR have been engaged in detoxification of the reactive oxygen species
H,O, (Sharma et al. 2012). Besides, mitochondria, cytosol, and peroxisomes also
witness GR’s involvement in ROS scavenging. Studies by Vanacker et al. (1998)
revealed that promoted GR activity was observed in oat and barley apoplast when
infected with Blumeria graminis.

Monodehydroascorbate Reductase
This enzyme is FAD enzyme that is involved in regeneration of AsA from the
MDHA radical at the expense of NAD(P)H that is a well-known electron donor
(Hossain and Asada 1985; Farvardin et al. 2020). This enzyme conducts quenching
of superoxide ions in cellular compartments like cytosol, chloroplast, mitochondria,
and peroxisome (Miyake et al. 1998).

Dehydroascorbate Reductase

It leads to reduction reaction of dehydroascorbate (DHA) to produce ascorbate
(Asc). Reduced GSH serves as the electron donor in the reaction (Eltayeb et al.
2007). DHAR also takes part in plant processes like growth, development, etc. gifts
plant improved defense in tackling stress situation by maintaining plant’s internal
homeostasis (Eltayeb et al. 2011; Ding et al. 2020).

1.6.2.2 Antioxidant Compounds with Nonenzymatic Nature in Plant-
Microbe Interaction

Not only enzymes, but also plants have been naturally offered antioxidant-induced
defense by some nonenzymatic compounds. These compounds strengthen plant’s
immunity by boosting its ability to counteract the negative impacts created due to
excessive ROS generation in cell because of pathogen invasion. It has been observed
that synthesis and production of nonenzymatic antioxidants get promoted when plant
comes in contact with pathogens. The principal functions of some well-known
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nonenzymes with antioxidant properties in plant defense under biotic stresses are
discussed in Table 1.3.

Ascorbate

Ascorbate (AsA) is the most commonly found antioxidant with low molecular
weight. Their key function in amelioration of ROS scavenging has been found in
previous research works. Most important functions that it performs are perception of
stress, maintenance of redox balance, oxidative stress mitigation under biotic stress
(Farvardin et al. 2020), and protection of cell membranes by conducting reaction
with superoxide anions and hydrogen peroxidases with the target of regeneration of
tocopherol and other beneficial enzymes that add more resistance to plant
(Zaefyzadeh et al. 2009). More to be added, this antioxidant also helps plants
carrying out some crucial physiological processes such as growth, differentiation,
and others in presence of stress due to pathogens (Sharma et al. 2012). The
ambiguous functions of this antioxidant towards plant defenses make this a highly
desirable antioxidant in stress condition in plant.

Tocopherols

Tocopherols belong to a group of fat-lover (lipophilic) antioxidants and are of four
typed- a, B, vy, and & (Diplock et al. 1989). Inclusion of these compounds in the
category of antioxidant relies on their ability in scavenging of lipid peroxy radicals,
oxygen free radicals, and singlet oxygen species. Plants direct tocopherols in various
works like protection of membrane structure by ameliorating oxidative stress in
photosynthetic organ chloroplast. Thus, plants become able to keep their PS-II intact
and undisturbed, and function normally under stress (Ivanov and Khorobrykh 2003).

Carotenoids

Carotenoids also possess lipophilic characteristics. Dynamic functions of
carotenoids have been reported in plants under stress condition. When plants get
invaded by various pathogens, carotenoids in the form of antioxidants take over
some responsibilities of preventing harmful changes in plants. Pathogen-induced
oxidative damages by formation of excited chlorophyll molecules to react with
membranes and promoted production of singlet oxygen at excited stages get
prevented by inference of carotenoids and thus photosynthetic apparatus gets
protected.

Glutathione

Glutathiones convey their antioxidant properties to dynamic roles in various
directions they play in plant life. Several bio-molecules such as lipids, proteins,
DNA, etc. are in safe position under biotic stress due to glutathione’s active partici-
pation in scavenging ROS. Glutathione gets successful in ROS scavenging through
either of the two ways- by glutathiolation, i.e., the formation of adducts directly
reacting with highly unstable and excited electrophiles or by donating proton in the
availability of ROS to yield GSSG (Asada 1994).
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Phenolic Compounds

The extraordinary ability of acting as scavenger of ROS by phenolics compounds is
to be credited to their electron donating nature. Phenolics compounds have been
found playing major role in protection of membrane and macromolecules (Arora
et al. 2000). Though no specific and distinct studies have been available regarding
their potential role in biotic stress, but it could be said that electron donating capacity
during oxidative damages would get them function in amelioration of stress in plant
because of pathogen attacks and disease development (Table 1.4).

1.7 Knowledge Gap and Future Perspective

Association of various microorganisms with plant through colonization in its root is
of age-old discussion. Still, the complex nature of this association and the internal
changes that plant has to adopt in order to respond to a number of microorganisms
with similar or different groups has lot more to be revealed. Impact of global climate
change scenario of recent years on the plant—microbe interaction is not clearly
known and how these climatic factors directly or indirectly influence the intensity
or severity of this association. Internal defense mechanisms that plants hire, while
struggling to keep pace the harmony between ROS generation and scavenging, have
not fully been disclosed. So, future studies regarding this area are of utmost
requirement for proper understanding of plant-microbe interaction and amelioration
strategies that plants adopt in response to the interaction.

1.8 Conclusion

Plant shows very specific interaction with pathogen. The complex and dynamic
interaction between plant and microorganism to be initiated needs application of
sensing and carrying that sense to the ultimate receptor cells to identify the type of
microorganism from the plant side. Reactive oxygen species which create oxidative
burst also have signaling properties to an extent. Plants have already evolved
multiple defense mechanisms against various stresses and apply those to get rid of
the challenges due to stress factors. Plants when recognize the invader; implement
their intrinsic defensive mechanisms, i.e., antioxidants to keep balances between
ROS generation and ROS scavenging. The beneficial microbes help in boosting this
defense through continuously supplying antioxidants to detoxify the ROS. To be
noted, individual antioxidant has individual function too. Enzymatic antioxidants are
specific to a specific ROS and thus plants have a wide range of antioxidant
molecules, even nonenzymatic compounds also serve as antioxidant in need of
plants. So, it can be concluded that best understanding of plant—microbe interaction,
the interaction-induced effects in plant and plant’s outrageous response towards
tackling the stress due to invasion by microorganisms could be possible through
revealing compounds with antioxidant properties and future studies regarding this.
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Abstract

Endophytic bacteria reside within plant tissues having mutually symbiotic rela-
tionship. They are ubiquitous in nature and known to acclimatize in extreme
environmental conditions. Plant-endophyte interaction also helps in signaling and
bacterial communication. Apart from the mutual benefits, it imparts to plants it
also produces plethora of bioactive compounds of medicinal potential. Secondary
metabolites like alkaloids, polyketides, terpenoids, peptides, flavonoids, quinines,
and steroids are instances of the array of compounds, the endophytic bacteria
produce. These bioactive compounds are known to be effective as antimicrobial,
anticancerous, antibiotic, antioxidant, antiviral, etc. With the global burden of
increasing drug resistance against diseases and their side effects, natural resources
such as endophytes need to be explored further to discover novel bioactive
compounds. Furthermore, exploration and characterization of bacterial
endophytes from diverse environment conditions producing novel bioactive
compounds, have promising applications in medicine, agriculture, and veterinary
sciences, enabling us to counter health challenges in ecofriendly manner.
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2.1 Introduction

Endophytes are described as microorganisms often bacteria, fungi, archaea, protists
living within the plant tissue harmlessly without damaging the plant (Hardoim et al.
2015). The terminology “endophyte” is taken from the Greek words “endon” which
means inside, and “phyton” which means plant. Endophytic bacteria were initially
observed during 1948 in stem, root, and tuber of potato (Tervet and Hollis 1948;
Sanford 1948; Lutman and Wheeler 1948). Endophytic bacteria could be facultative,
i.e., it could grow within plant host, plant surface as well as in soil and can be
cultured, or it could be obligate which require specific growth condition provided by
plant host only and are unculturable (Christina et al. 2013). The diversity observed in
the bacterial endophytic niche is tremendous. Several factors affect the endophytic
niche presence inside the host which includes plant-microbe, microbe-microbe
interactions, soil, biogeography as well as the favorability of the environment.
Endophytic bacteria could be seen colonizing plants from various environmental
conditions such as tropic, temperate, rainforests, aquatic, xerophytic, etc. showing
coevolution in different niches (Lodewyckx et al. 2002). Endophytes include both
gram-positive as well as gram-negative bacteria which range to diverse genera.
Endophyte characterization from plants which has been surface sterilized shows its
varied distribution within the host be it root, stem, leaves, seeds, tubers, etc. It is
observed that bacterial densities vary drastically and decrease progressively from
roots to stem and leaves owing to the huge microorganism pool present in the
rhizosphere (Lamb et al. 1996; Fisher et al. 1992). Cellulolytic enzymes synthesized
by endophytes facilitate the mobility and spread to aerial parts of the plants
(Elbeltagy et al. 2001).

The relationship between the endophyte and the host plant is symbiotic in nature
and it is beneficial to both the microorganism in terms of nutrients, shelter, protection
from environment, and to the host plant it colonize. Endophytic bacteria promote
biotic and abiotic stress management by supporting the growth and development of
plants in several ways (White et al. 2019). Endophytic bacteria act as plant growth-
promoting microorganisms by enhancing acquisition as well as improved cycling of
nutrients and minerals such as nitrogen fixation, solubilizing inorganic phosphorous
and its uptake by plants, and production of siderophore for iron uptake, etc. (Santoyo
et al. 2016). They modulate plant development by producing several phytohormones
such as auxins (IAA-indole 3 acetic acid), gibberellins, Abscisic acid, and cytokines
which help plant cells during division, differentiation, and elongation.
Phytohormones are responsible for overcoming stresses such as drought, high salt,
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and extreme temperatures. They also reduce ethylene levels in plants by producing
I-Aminocyclopropane-1-Carboxylate Deaminase (ACCD) (Mehabo Maela and
Hope Serepa-Dlamini 2019). Organic acid metal complex is absorbed by utilizing
high affinity metal ion transporters present in endophytes to absorb metal ions such
as zinc, copper, magnesium which help them in nutrient uptake and promote growth
(Warner and Lolkema 2002). There are indirect processes also ongoing simulta-
neously which enhance the growth and survival of plants, which includes microbe
association with other pathogenic microbes. Endophytic bacteria produce several
antimicrobial compounds in riposte the competition for space and nutrients. It is
observed that via host defense gene upregulation, it induces systemic resistance
against pathogens (Hardoim et al. 2015). Bacillus sp. and pseudomonas sp. are few
examples of endophytic bacteria that synthesize antimicrobial and antifungal
compounds which potentially inhibit phytopathogens by targeting membrane
proteins, which induces nutrient leakage by phytopathogens (Ongena and Jacques
2008). Biotic and abiotic stress induces ROS generation by plants which are detri-
mental for plant proteins and nucleic acid, some endophytes can induce stress
tolerance by upregulation of transcript of ROS-degrading genes which help protect
them to reduce the level of ROS generated (Lata et al. 2018). Production of alkaloids
by endophytes in aerial parts of plant reduces insect foraging and deter herbivory
(Panaccione et al. 2014). They are also responsible for the degradation of environ-
mental toxins (Van Aken et al. 2004).

Apart from synthesizing antimicrobial compounds for control of phytopathogens,
endophytic bacteria also produce low-molecular weight compounds which are
biologically active compounds having the potential to obstruct bacterial, fungal,
protozoan, viral growth responsible for causing diseases (Ek-Ramos et al. 2019;
Langner et al. 1816). With the increasing population, emergence of new viruses,
increase in drug resistance, drug efflux, emergence of complex health issues, infec-
tious diseases, and cancer, it has now become more important than ever to look into
this untapped source of bioactive compounds that could act as antimicrobial, anti-
fungal, antiviral, anticancerous agents (Christina et al. 2013; Lodewyckx et al. 2002;
Strobel and Daisy 2003). Natural products such as primary and secondary
metabolites produced by microorganisms, plants, and animals can act as bioactive
compounds (Gunatilaka 2006). Natural products synthesized by plants in association
with microorganisms have been known as traditional sources of drugs. In several
instances, they have served as sources of lead molecules, which yielded many
synthetic drugs (Strobel and Daisy 2003). Bilateral metabolite production is often
observed as well as plant metabolite synthesis attuned by endophytes are more
common than presumed (Brader et al. 2014). Although, the specific circumstances
and molecular dependencies for production of certain metabolites are not precisely
understood. The massive genomic revolution in conjunction with the steady
advancement in analytic techniques such as HPLC, NMR, mass spectrometry allows
as well as escalates the discovery process for such novel compounds. Secondary
metabolites synthesized by endophytic bacteria may act as bioactive compounds
with potential to serve agricultural, pharmaceutical, and industrial needs
(Lodewyckx et al. 2002; Strobel and Daisy 2003; Ryan et al. 2008).
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2.2  Mode of Entry, Establishment, and Transmission
of Bacterial Endophyte

The entry and establishment of endophytes into plant host are an intricate process
involving series of physical, biochemical, and mechanical events. Soil being the
magnificent source of endophytic bacteria, hosts plethora of microorganisms that
could invade plant tissues (Turner et al. 2013). Roots of plants are intended as access
point as endophytes residing in the rhizosphere attach to rhizoplane looking for
access to internal tissue (Paungfoo-Lonhienne et al. 2010; Rosenblueth and
Martinez-Romero 2006).

Host plant secretes exudates in the rhizosphere which are abounding in substrates
ranging from lipids, phenols, amino acid, carbohydrates, flavonoids, etc. (Bertin
et al. 2003). Endophytic bacteria present in the soil, nearby the plant roots sense
these chemotactic affinities and swim towards the root exudates (Badri and Vivanco
2009). Endophytic bacteria use various mechanisms such as chemotaxis and quorum
sensing to colonize specific host plants (Begonia and Kremer 1994; von Bodman
et al. 2003). Subsequently, the endophyte attaches to the root surface allowing
prospective entry close to sites such as lateral root, root tip, root hair, and any
gaps originated by wounds. Flagella, pili, fimbriae, or cell surface polysaccharides
are bacterial structures which are decisive and crucial in bacterial-host plant surface
interaction (Sauer et al. 2002; De Weert et al. 2002). The pili, flagella allow propeller
movement and migration in response to chemical components secreted by roots. The
exopolysaccharides (EPS), lipopolysaccharides produced by endophytes are respon-
sible for initiation of effective host-symbiont specificity, regulating endophytic
colonization in the early phase (Janczarek et al. 2015). Preferential site for entry
includes root hairs, apical root meristem, root cracks in virtue of their thin surfaces
which allows favorable entry (Kandel et al. 2017). To hydrolyze the external
covering, endophytes often secrete lytic enzymes for instance cellulases, lysozyme,
cell wall degrading enzymes, endoglucanases, etc. which facilitate the entry of the
endophyte (Reinhold-Hurek et al. 2006). Endophytic colonization is conditional to
several variables such as microbial strains, plant tissue type, host genotype, nutrient
constrain, biotic and abiotic factors, UV light, adverse temperature, drought, etc.
(Hardoim et al. 2015).

2.3  Transmission of Endophytic Bacteria

Acquisition of endophytic bacteria can be carried out from the rhizosphere (soil root
interface) with each new generation referred as horizontal transmission, could be
vertically transmitted from one generation to another through seeds or by mixed
modes (Bright and Bulgheresi 2010) (Fig. 2.1).

Most plant species harbor endophytic bacteria which could be recovered from
different parts of plants such as roots, stems, leaves, seeds, fruits, flowers, and other
tissues, etc. (Frank et al. 2017). Bacterial endophytes are known to reside within cell
walls, xylem vessels, apoplast, and other intercellular regions since they are rich
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source of amino acids, carbohydrates, and inorganic nutrients (Bacon and Hinton
2006; Koskimaéki et al. 2015). Ecological and evolutionary relationship between host
and endophyte impacts the mode of transmission (Herre et al. 1999). Obligate
endophytes prefer vertical transmission while facultative endophytes can be both
vertically or horizontally transmitted, which allow plants to have greater endophyte
diversity (Moran 2006; Wilkinson and Sherratt 2001).

Horizontal transmission of bacteria can be carried out by seeds, leaves, flowers,
fruits dispersed in the external environment (Frank et al. 2017). Soil is regarded as
a pivotal source of microbes and has plethora of endophytes that could inoculate the
host. Seeds during germination imbibe water and release exudate which attracts
endophytes from the rhizosphere and in the very early stage alter the bacterial
composition of rhizosphere (Schiltz et al. 2015). These early relationships at the
time of establishment potentially selected by the plants seed, are beneficial interms of
nutrient acquisition, adaptation of biotic and abiotic stress (Nelson 2004). Plant roots
attune the microbial selection through changes made in the pH, structure, and
oxygen availability in the soil (Dennis et al. 2010). Chronological colonization
was observed when V. vinifera was inoculated with Burkholderia sp. strain PsJN
tagged with green fluorescent protein (GFP), where colonization initially started on
root surfaces, followed by root internal tissues, subsequently in xylem vessels of
internodes, finally in leaves, and young berries (Compant et al. 2005, 2008). Studies
suggest that root microbiota can colonize all plant parts by utilizing xylem vascular
system (Hurek et al. 1994; Chi et al. 2005). However, it is not necessary that all root
bacteria will colonize the rest of the plant. Studies from Nicotiana tabacum show
that some bacteria are exclusively present in roots, while other specialize in different
part of roots (Saleem et al. 2016). Although not all microbes present in the
phyllosphere are acquired through root, many are acquired via bioaerosols, these
are tiny particles consisting of bacteria, fungi, viruses, or pollen, released in the
atmosphere (Frohlich-Nowoisky et al. 2016). Several bacteria which spread through
bioaerosol are metabolically active and survive for a long time, this enables
the global spread of bacterial species inhabiting several plant hosts (DeLeon-
Rodriguez et al. 2013; Yamaguchi et al. 2012). Insect foraging puncture and expose
the host, allowing bacterial colonization (Lopez-Fernandez et al. 2017). Flower
surfaces such as petals, pistil, nectar, pollen, and fruits can also be bacterially
colonized, originating from the rhizosphere, bacteria carried from air, rain, insects,
birds, etc. (Aleklett et al. 2014).

Vertical transmission allows bacteria to pass on from one generation to another
resulting in a faithful transfer of beneficial traits. They can be transferred via seeds
and pollen grains, but they may not necessarily originate within the plant. Growing
seeds may get colonized from parent plant; as vegetative parts of the plant allow
movement of microbes through vascular connections to the endosperm, and can also
colonize a seed via pollen (Truyens et al. 2015). Shoot apical meristem (SAM) also
serves as a passage for microbes to colonize, as undifferentiated cells divide and
develop into all kinds of postembryonic aerial tissues (Clark 1997). Pollen grains
light in weight, are carried by the wind and are constantly exposed to the environ-
ment, wind, insects, and birds which could be responsible for horizontal colonization



2 Plant-Microbe Symbiosis led synthesis of Bioactive Compounds 27

Detor toraging Disease control

Secondary metal

ncy BB

Release from dormency

Fig. 2.2 Benefits associated with host endophyte symbiosis helping the host plant in growth and
development

of microbes. Although, if the bacteria present inside or on pollen surface originated
from the parent plant, their transfer to seed and seedling would be considered as
vertical transmission (Ambika Manirajan et al. 2016). Studies suggest that seed
endophytes impart several benefits to the host which include seed preservation,
production of cytokinin helping release from dormancy, preparation for germination
by creating favorable environmental conditions such as supplying inorganic
nutrients, fixing atmospheric nitrogen, etc. (Chee-Sanford et al. 2006; Shahzad
et al. 2018). Removal of endophytes from seedlings of grasses shows shrinking of
seedlings, loss of gravitropic response as well as reduced root hair formation (Verma
et al. 2018). Seed endophytes are also known to have certain antifungal properties
(Diaz Herrera et al. 2016). In a study where rice seed endophytes were removed
revealed confined growth in comparison to control seedlings (Verma et al. 2017).
The ubiquitous presence and the obligate symbiotic relationship of endophytes to
their hosts are due to the benefits in plant fitness and growth and its aided ability to
deal with biotic and abiotic stress (Santoyo et al. 2016) (Fig. 2.2).

24  Bioactive Compounds Synthesized by Endophytic Bacteria

Endophytes act as chemical synthesizers and are capable of producing
low-molecular weight secondary metabolites. These secondary metabolites can act
as bioactive compounds (Owen and Hundley 2005). Although these metabolites are
not necessary for enhancing growth of an organism directly, they can act as barrier



28 P. Kumari et al.

against phytopathogens and play a adaptive role as defense compound (Isah 2019).
These compounds are also responsible for bacterial communication, signaling dur-
ing ecological interactions, and environmental stresses. Endophytes fight against
phytopathogens by acquiring resistance to plant invaders by synthesizing extracel-
Iular hydrolases which include cellulases, lipases, proteinases, and esterases (Tan
and Zou 2001). Such compounds of biological interest can act as a source of novel
drugs. Antimicrobial resistance is observed in agriculture, increasing health issues
caused by drug resistant bacteria, cancer, parasitic infection, viral infection, fungal
infection, etc., the requirement to explore untapped sources of bioactive molecules
has increased (Christina et al. 2013; Ryan et al. 2008). The symbiotic association of
plants with endophytes has emerged as a better source of secondary metabolites with
medicinal potential in comparison to plants alone. Secondary metabolite production
by endophytes associated with aromatic and medicinal plants may be widespread
(Palanichamy et al. 2018). Secondary metabolites produced by endophytes include
alkaloids, oligopeptides, terpenoids, polyketones, flavonoids, lipopeptides, phenols,
steroids, and chlorinated compounds. Most of these isolated compounds are
characterized to be bioactive in nature and are known to function as antibiotics,
antimicrobial, immunosuppressants, anti-inflammatory, antioxidants, anticancer
agents, antiviral, etc. (Gunatilaka 2006; Gouda et al. 2016). However, the synthesis
of secondary metabolites suffers from low level of production and heterogeneous
quality. Endophytic fungi and bacteria can be identified most reliably using genomic
DNA isolation, 16S rRNA PCR-based amplification followed by sequencing. Iden-
tification of bioactive compounds and its efficacy require pure fungal or bacterial
culture, but few instances suggest that endophytes when allowed to communicate
with each other stimulate biological activity (Nair and Padmavathy 2014). With
significant improvement and technical advancement in fractionation technique like
High Performance Liquid Chromatography (HPLC), Mass Spectrometry (MS)-
based identification and quantification, Nuclear Magnetic Resonance (NMR)-
based structure determination, isolation, and characterization of biologically active
natural products have become more feasible (Salim et al. 2008).

Among all the bacterial endophytes studies for secondary metabolite production,
Actinobacteria are reported to produce the most number of bioactive compounds.
Actinobacteria are among the most prevalent phyla with high GC content in their
DNA among all bacteria. Strains belonging to the phyla Actinobacteria,
Proteobacteria, Bacteroidetes, and Firmicutes have the largest biosynthetic gene
cluster responsible for synthesis of secondary metabolites that could be bioactive
in nature. Actinobacteria have up to 26% of its genes putatively involved in the
biosynthesis of secondary metabolites when compared to any other investigated
phyla (13-1%) (Hardoim 2019). Endophytes are known to synthesize secondary
metabolites alike their host plants. For instance, anticancer drugs such as taxol,
camptothecin, podophyllotoxin are known to be co-produced by the endophytes as
well as their hosts. It has been proposed that the co-production of natural products is
the result of host-endophyte interaction (Heinig et al. 2013). While there could be
possibility that “genetic recombination” of the endophyte with the host over an
evolutionary time period (Tan and Zou 2001).



2 Plant-Microbe Symbiosis led synthesis of Bioactive Compounds 29

Alkaloids are produced by the decarboxylation of amino acids, such as histidine,
tryptophan, lysine, proline, ornithine, and tyrosine (Tan and Zou 2001).
Bioprotective alkaloids are found to be toxic to insects but not to mammals (Bush
et al. 1997). The biosynthetic pathway responsible for oligopeptide generation is
called nonribosomal peptide synthetases (NRPSs), the NPRS domain subtypes allow
integration of proteinogenic amino acids, D-amino acids, fatty acids as their building
blocks. NRPSs multienzyme complex permits complex chain generation as it
consists of a series of modules, for amino acid recognition, activation, and bond
formation (Fischbach and Walsh 2006). Polyketide synthases (PKS) are responsible
for the synthesis of polyketides by condensation of several acetate units. They are
multimodular enzyme complexes with three subtypes that are responsible for the
large diversity seen in the natural products synthesized by PKS. The natural products
synthesized by the endophytes possessing various biological activities are useful
source for agricultural, veterinary, and pharmaceutical industry (Alvin et al. 2014).

25 Role of Bioactive Compounds

Endophytic bacteria exhibit complex interactions with their host. They adopt various
mechanisms and gradually modulate the surrounding microenvironment that help
them to adapt to that particular living environment (Nair and Padmavathy 2014). In
order to maintain mutual symbiosis, endophytes themselves produce or prompt the
host plant to produce an array of bioactive compounds that promote the growth of
the host plant and enhance its endurance by improving the ability to withstand
different stress conditions (White et al. 2019; Santoyo et al. 2016). Metabolites
produced by these bacterial endophytes not only help in sustenance and growth of
the host but also are of high biotechnological and pharmaceutical importance
(Joseph and Mini Priya 2011; Parthasarathi 2012). However, very few studies
have exploited the novel significance of these symbiotic microorganisms and their
secondary metabolites in the health sector, in drug discovery and other developments
in reference to well-being of the environment and human beings. Available literature
suggests that bioactive compounds produced by bacterial endophytes have a wide
range of pharmaceutical properties, for example, anticancer, cardiovascular, antihy-
pertensive, antiglycemic, antithrombotic, antiatherogenic, and antidiabetic (Chang
et al. 2013; Atanasov et al. 2015; Pastor-Villaescusa et al. 2015). Nowadays,
bioactive compounds produced by bacterial endophytes are utilized as a preferred
therapeutical alternative for the treatment of several diseases (Chang et al. 2013).
To date, various groups have isolated and identified about >300 bacterial
endophytes belonging to genera Streptomyces, Nocardiopsis, Brevibacterium,
Microbacterium, Arthrobacter, Brachybacterium, Rhodococcus, Nocardioides,
and Pseudonocardia from tissues of Dracaena cochinchinensis Lour. Of these,
17 strains showed antimicrobial, antifungal, and cytotoxic activity tested against
MCEF-7 and Hep G2 cancer cell lines (Surjit and Rupa 2014; Salam et al. 2017). This
section aims to highlight the role and importance of bacterial endophytes and their
secondary metabolites, like antioxidant, antimicrobial, and anticancer properties.
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2.5.1 Antioxidant

There is a growing interest to explore the compounds with strong ROS scavenging
properties which can be utilized for the prevention and treatment of various
ROS-associated diseases. Antioxidants have been implicated as potential candidate
to serve the purpose. Bioactive compounds extracted from bacterial endophytes have
been reported to act as a good source of natural antioxidants. Numerous parameters
like reducing power, metal chelating ability, inhibition of lipid peroxidation; scav-
enging superoxide, hydroxyl, and 2,2-diphenyl-1-picrylhydrazyl (DPPH) radicals
in vitro are utilized to evaluate antioxidant activity (Liu et al. 2012; Akinsanya et al.
2015; Zheng et al. 2016). Studies on exopolysaccharides (EPS) extracted from
various plants and associated endophytes have shown promising antioxidant activ-
ity. EPS extracted from bacterial endophyte Paenibacillus polymyxa showed potent
scavenging activity on superoxide and hydroxyl radicals (Valko et al. 2007).
Akinsanya et al. (2015) have isolated at least 29 species of culturable bacterial
endophytes from different tissues of Aloe vera. They have reported that
the metabolites produced by these endophytes act as potent antioxidants with
varying degrees of scavenging property, being highest in those belonging to genera
Pseudomonas, Macrococcus, and Enterobacter (Akinsanya et al. 2015). In a similar
study, Zheng et al. (2016) have demonstrated that EPS isolated from endophyte
Bacillus cereus SZ-1 exhibits remarkable scavenging activity on DPPH, O, free
radical, and OH™ radicals tested on rat pheochromocytoma PC12 cells exposed to
H,0,. Further, EPS was shown to increase the activity of antioxidant enzymes like
glutathione and catalase in H,O, exposed pheochromocytoma PC12 cells
preincubated with EPS in vitro (Zheng et al. 2016). In another study, the antioxidant
potential of exopolysaccharide EPS-1 derived from bacterial endophyte
Paenibacillus polymyxa EJS-3 was demonstrated in D-galactose-induced aging
mice model in vivo. It was reported that EPS-1 administration enhanced the total
antioxidant status by increasing the activities of antioxidant enzymes such as
superoxide dismutase, catalase, and glutathione peroxidase (Liu et al. 2010).

From the available data, it is evident that most of the studies in reference to the
evaluation of the antioxidant potential of EPS have been carried out in vitro
conditions and insufficient focus has been given to in vivo experiments till date.
There are some basic differences in the affecting factors between in vitro and in vivo
systems. In vitro systems are simple and easy to study, nevertheless, it is imperative
to evaluate and validate the antioxidant potential of metabolites from endophytes in
suitable animal models as far as its therapeutical and clinical significance is
concerned.

2.5.2 Antimicrobial Compounds
In recent years, growing number of research has revealed that secondary metabolites

and other compounds synthesized by bacterial endophytes could be considered as
potential antimicrobial agents against broad spectrum of pathogenic microbes (Guo
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et al. 2008; Sette et al. 2006; Selim et al. 2011; Devaraju and Satish 2011).
Alkaloids, flavonoids, lipophilic peptides, phenols, and terpenoids are some of the
well-categorized secondary metabolites synthesized by endophytic bacteria, known
to possess antimicrobial activity (Yu et al. 2010). These naturally occurring antimi-
crobial substances obtained from bacterial endophytes are now emerging as the drug
of choice to overcome the increasing problem of drug resistance (Ferlay et al. 2010;
Taechowisan et al. 2012). Bioactive compounds produced from bacterial endophytes
isolated from Tectonagrandis L. and Samaneasaman Merr., were found effective
against bacterial microbes Escherichia coli, Bacillus subtilis, and Staphylococcus
aureus. Additionally, these metabolites were also found to effectively curb the
growth of fungus Candida albicans in vitro (Chareprasert et al. 2006). Extracts
from the TQR12-4 strain of endophytic bacteria Streptomyces sp. have been found to
exhibit antimicrobial activity against pathogenic fungus and Gram-positive bacteria
(Hong-Thao et al. 2016). Further, various strains of endophytic bacteria belonging to
Bacillus sp. commonly found in the roots of wheat and rice, and in the leaves of
capsicum plant, are known to produce thermostable exopolysaccharides EPS A,
EPS B, and proteins E2 having antifungal property (Yu et al. 2010; Li et al. 2007).
Interestingly, some bacterial endophytes have been reported to synthesize silver
nanoparticles (AgNPs) and gold nanoparticles which are gaining significant atten-
tion in pharmaceutical research (Sunkar and Nachiyar 2012; Pissuwan et al. 2006).
Strains of endophytic Bacillus sp. from Adhatoda beddomei and Garcinia
xanthochymus are known to produce AgNPs (Sunkar and Nachiyar 2012; Pissuwan
et al. 2006; Kitov et al. 2008). An increasing number of literature suggests that
nanoparticles of endophytic origin have prominent antibacterial properties. Antiviral
activity of these nanoparticles has also been shown to be effective against HSV-1,
HIV-1, and hepatitis B virus (Baram-Pinto et al. 2009; Lu et al. 2008; Sun et al.
2005). Other than bioactive compounds discussed above, bacterial endophytes are
the rich source of some novel antibiotics like ecomycin, kakadumycins, and
pseudomycins (Christina et al. 2013). One such grass endophyte Pseudomonas
viridiflavais known to synthesize ecomycins as a secondary metabolite, which are
lipopeptide in nature, and have been implicated in the cure of infectious diseases of
eye, skin, gut, and respiratory and urinary tract. Further, these lipopeptides are also
effective against infectious fungal species such as Cryptococcus neoformans and
C. albicans (Christina et al. 2013). Species of the endophytic pseudomonads syn-
thesize another class of antifungal substances, the pseudomycins (Harrison et al.
1991; Miller et al. 1998). Kakadumycin, extracted from culturable Strepromyces sp.
NRRL30566 strain endophytic on Grevillea pteridifolia shows significant antibiotic
activity against a broad range of Gram-positive bacteria (Castillo et al. 2003).
Streptomyces sp. contribute to the production of almost 80% of the total antibiotics.
Novobiocin analogs and cedarmycins are the two novel antibiotics produced by
endophytic Streptomyces sp. Furthermore, alnumycin and munumbicin are the two
newly identified antibiotics produced by endophytic Streptomyces sp. effective
against various bacterial and fungal pathogens (Sathiyaseelan and Stella 2011;
Thenmozhi and Kannabiran 2012). Strains of endophytic Bacillus sp. are one of
the most extensively studied group for their antimicrobial activity. Endophytic



32 P. Kumari et al.

B. subtilis cenB has been reported to exhibit strong antifungal activity causing
distortion in fungal morphology (Nongkhlaw and Joshi 2016). Recently, the intra-
cellular and extracellular concentrates of the NCIB 3610 strain of endophytic
B. subtilis demonstrated cytotoxic and antimicrobial properties. Moreover, 2,6-di-
t-butyl-4-methyl phenol and; pentacosane, hexacosane, and 14-methylhexadecanoic
methyl ester, respectively, are the major bioactive components of intracellular and
extracellular fractions, respectively as determined by GC/MS analysis (Matloub
et al. 2020). Crude or ethyl acetate extracts of bacterial endophytes B. fequilensis
ALR-2, B. aerophilus ALR-8, Chrysobacterium indologenes ALR-13, and Pseudo-
monas entomophila ALR-12 isolated from Aloe vera have been shown to act as a
potential antimicrobial agent against pathogens like B. cereus and C. albicans
(Akinsanya et al. 2015).

2.5.3 Anticancerous

Currently, the most prevalent approaches in the treatment of cancer are radiation,
surgery, biotherapy, and chemotherapy. Out of these, radiotherapy and chemother-
apy are most common. These treatment strategies have several drawbacks like
toxicity. Thus, the search for alternative approaches to treat cancer with least or no
cytotoxic effects remains a critical objective for researchers to explore natural
anticancer compounds. Bioactive compounds synthesized by endophytic bacteria
as secondary metabolites could be implicated in cancer research as an alternative to
hazardous chemotherapy in the treatment of cancer.

A number of metabolites obtained from endophytic bacteria have been analyzed
for their anticancer activity both in vitro and in vivo (Firdkova et al. 2007). For
example, lipophilic peptides produced by EML-CAP3 strain of endophytic bacteria
isolated from Capsicum annuum L. were shown to regress angiogenesis and inhibit
tumor progression in endothelial cells of human umbilical vein (Jung et al. 2015).
Metabolites extracted from endophytic bacterium Paenibacillus polymyxa isolated
from Ginseng leaves have shown potent anticancerous property (Gao et al. 2015).
Several studies indicate the significance of EPS derived from endophytic bacteria as
a potent antitumoral agent of high therapeutic value. EPS extracted from various
strains of endophytic Bacillus sp. are reported to possess antitumoral property (Chen
et al. 2013). The proliferation of MC-4 and SGC-7901 cells is reported to be
inhibited by EPS obtained from endophytic B. amyloliquefaciens (Chen et al.
2013). Antitumor activity of EPS produced from the culturable monocotyledon
endophyte was analyzed both in vivo in H22 liver cancer in mice and in vitro on
S-180 solid tumor. It showed its antitumor activity by interrupting the cell cycle and
inhibition of cell division (Zhang et al. 2007). Endophytic B. licheniformis,
B. pseudomycoides, and Paenibacillus denitriformis have been reported to synthe-
size L-asparaginase (Joshi and Kulkarni 2016), an enzyme that catalyzes the break-
down of L-asparagine (important for some neoplastic cells to function), owing to its
anticancerous activity. The use of L-asparaginase has been implicated in the treat-
ment of acute lymphoblastic leukemia as a part of multidrug chemotherapy and
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showed promising improvement in the majority of the patients (Piatkowska-Jakubas
et al. 2008). Anticancerous activity of bioactive compounds extracted from various
strains of endophytic Streptomyces sp. has been extensively worked out by various
groups (Li et al. 2010; Qin et al. 2011; Yuan et al. 2015). 24-demethylbafilomycin
C1 produced by endophytic Streptomyces sp. is reported to suppress B-cell acute
lymphoblastic leukemia by promoting autophagy and apoptosis (Qin et al. 2011).
Further, salaceyin produced by MS53 strain of endophytic S. laceyi isolated from
Ricicnus communis has cytotoxic effects on human breast cancer cell line SKBR3
(Kim et al. 2006). Similarly, other metabolites from different strains of endophytic
Streptomyces sp. are found to be cytotoxic against cancer cell lines (Taechowisan
et al. 2017; Igarashi et al. 2006; Vu et al. 2018). Pterocidin from S. hygroscopicus
TP-A0451 inhibits cancerous growth tested against cell lines NCI-H522, OVCAR-3,
and SF539 (Qin et al. 2011; Igarashi et al. 2006) and S. cavourensis YBQ59
effectively inhibited the growth of human lung adenocarcinoma in vitro (Vu et al.
2018). Furthermore, 4-arylcoumarins from endophytic S. aureofaciens CMUAc130
is reported to be cytotoxic on Lewis lung carcinoma in the murine model in vivo
(Taechowisan et al. 2007).

2.6 Conclusion

Endophytic bacteria are ubiquitous in nature and most plants examined are found to
be harboring one or more species. Endophytic bacteria support plant growth by
enhancing nutrient uptake and cycling, modulating the level of phytohormones,
absorbing metal ions, increasing systemic resistance to pathogens, inducing stress
tolerance, degrading environmental toxin, inhibiting the growth of pathogenic
microbes, reduce insect foraging and deter herbivory, and managing biotic and
abiotic stress. These potentially beneficial traits allow co-evolution of endophytes
in different niches, be it obligatory or facultative. Endophytes act as chemical
synthesizers and produce secondary metabolites known to inhibit phytopathogen
as well as responsible for bacterial communication. Bilateral production of
metabolites by host endophyte interaction produces biochemically active
compounds which serve as a source for novel drugs, having potential in disease
control. The advancement in techniques such as Next Generation Sequencing and
omics approaches for mining biosynthetic gene cluster and metabolite identification
in conjunction with analytical techniques such as HPLC and NMR for fractionation
and structure elucidation have strengthened our capacity to isolate and characterize
these metabolites. Molecular basis behind the biosynthesis of secondary metabolites
allows us to comprehend the complexity as well as modulate the reaction for
synthetic production of these compounds. Our increasing understanding and rigor-
ous exploration of the untapped source of endophytes for these compounds will
provide new avenues for drug discovery and design, ultimately benefitting agricul-
ture, biotechnology, and pharmaceutical industry.
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Abstract

Plants are provided by wide-ranging antioxidant systems that can elude the
detrimental negative effect of oxidative stress and plant growth-promoting
rhizobacteria (PGPR) have been claimed to improve the antioxidant defense
systems in plants. The Plant-Rhizobacteria signaling is established in a highly
sophisticated manner and is controlled by extensive specialized secretory
metabolites and ends up in altered gene expression in one or both of the
interacting partners. PGPRs affect the nitrogen fixation, solubilization of insolu-
ble potassium, production of siderophores, auxin, zeatin, gibberellin, antibiotics,
abscisic acid, volatile organic compounds, lytic enzymes, the system acquired
resistance, and moreover. Among the various strategies used to enhance agricul-
ture productivity, use of PGPR has been advocated as one of the most suitable
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strategies for sustaining the health of the soil, crop, and agro-ecosystem and
research aimed at a better understanding of plant-rhizobacteria communications is
of crucial importance.

Keywords

Antioxidant system - Plant-rhizobacteria signaling - Plant Growth

3.1 Introduction
3.1.1 Brief Overview of Plant Antioxidant System

Aerobic metabolism provides significant energy benefits to living organisms but
contains by-products, such as reactive oxygen species (ROS), including singlet
oxygen, superoxide radical, hydrogen peroxide, and hydroxyl radical. Oxidative
stress is a natural physiological process, but if ROS overlaps detoxification system,
an imbalance in cellular homeostasis can be caused (Lobo et al. 2010).

Plants are exposed to various environmental stressors. These environmental
stressors can generate reactive oxygen species (ROS) and reactive nitrogen species
(RNS) (Hossain et al. 2015; Ramegowda and Senthil-Kumar 2015; Singh et al.
2017; Singh et al. 20164, b; Kapoor et al. 2019; Laxa et al. 2019).

ROS can cause photo-oxidative damage of proteins, deterioration of lipids and
nucleic acids, and ultimately death of a plant (Jha and Subramanian 2016;
Demidchik 2015; Gill et al. 2015). However, ROS has been also considered as
second messengers in several cellular processes that also involve tolerance to
environmental stress, control cellular activity and regulation by modulating signal-
ing pathways. Evidence suggests that ROS function as effector molecules in vital
biological processes such as cell growth, proliferation, differentiation responses to a
wide spectrum of external stimuli (Nath et al. 2016, 2017, 2018; Janka et al. 2019;
Bobrovskikh et al. 2020). Thus, ROS in low concentrations act as signaling
molecules and measure plant cell responses under stress conditions, while in high
concentrations they are dangerous to cellular components.

All organisms have intrinsic cellular defenses to combat ROS, called
antioxidants. Antioxidants work by keeping low levels of ROS in the cell, thereby
preventing damage to the cell. In plant, the antioxidant system is composed of seven
main classes of antioxidant enzymes, low-molecular antioxidants (e.g., ascorbate,
glutathione, and their oxidized forms), and thioredoxin/glutaredoxin systems which
can serve as reducing agents for antioxidant enzymes (Bobrovskikh et al. 2020).

A group of enzymes are composed of superoxide dismutase (SOD), catalase
(CAT), glutathione peroxidase (GPX), ascorbate peroxidase (APX) that catalyze
ROS decomposition. Other groups include monodehydroascorbate reductase
(MDHAR), dehydroascorbate reductase (DHAR), and glutathione reductase (GR),
which maintain the level of reduced forms of antioxidants (Fig. 3.1). Superoxides are
neutralized in a dismutation reaction catalyzed by SOD, which produces hydrogen
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Detoxification Regeneration

Fig. 3.1 General pathway showing reactive oxygen species (ROS) and antioxidative defense
system of plants, including superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase
(APX), dehydroascorbate reductase (DHAR), monodehydroascorbate reductase (MDHAR), gluta-
thione reductase (GR), ascorbate (AsA), monodehydroascorbate (MDHA), dehydroascorbate
(DHA), free glutathione (GSH), glutathione disulfide (GSSG). (Adapted from Kapoor et al. 2019)

peroxide (H,O,). Hydrogen peroxide can be neutralized in three ways: by CAT, by
GPX with oxidation of reduced thioredoxins, and APX with AsA oxidation in
monodehydroascorbate (MDHA). MDHA can nonenzymatically transform into
ascorbate and dehydroascorbate (DHA) and can be restored by MDHAR, which
can turn again into ascorbate under the reaction of DHAR with free glutathione
(GSH) oxidation to oxidized glutathione-GSSG (Kapoor et al. 2019; Bobrovskikh
et al. 2020).

Low-molecular antioxidants, such as thioredoxin and glutaredoxin protein clas-
ses, play an essential role in reducing oxidized forms of antioxidants in the cytosol,
nucleus, peroxisomes, mitochondria, and chloroplasts (Noctor et al. 2018).
Thioredoxins can act as electron donors for reducing (Bobrovskikh et al. 2020).

Nonenzymatic components of the antioxidant defense system include the main
cellular redox buffers: ascorbate (AsA), glutathione (y-glutamyl-cysteinyl-glycine,
GSH), as well as tocopherol, carotenoids, and phenolic compounds. They interact
with various cellular components and play a crucial role in the defense system and
are enzymatic cofactors, influence plant growth and development, modulating pro-
cesses of mitosis and cell elongation to senescence and cell death (Sharma et al.
2012). AsA is considered a powerful antioxidant due to its ability to donate electrons
in a series of enzymatic and nonenzymatic reactions. AsA plays a key role in
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removing H,0O, by ascorbate-glutathione (AsA-GSH) cycle (Fig. 3.1) (Sharma et al.
2012). GSH works as an antioxidant in several ways. In addition to AsA-GSH cycle,
it can react chemically with O2°~, *OH, H,O, by scavenging these free radicals. It
can also protect macromolecules (proteins, lipids, DNA), either by glutathionylation
or acting as a proton donor in the presence of ROS or physical free radicals, yielding
GSSG (Sharma et al. 2012). Carotenoids, cause thermal deactivation of 102 by
energy transfer reactions, besides, scavenging superoxide (O, ) and hydrogen
peroxide (H,O,) (Jin et al. 2015; Kang et al. 2017; Maoka 2019).

Tocopherol is effective in the elimination and extinction of several ROS in
cooperation with ascorbate and glutathione. They protect biological membranes
from lipid peroxidation. Tocopherols physically and chemically deactivate singlet
oxygen in chloroplasts. Moreover, tocopherols can directly repair oxidative radicals
by reacting with the alkyl radical (Le), alkoxy radicals (LOe), and lipid peroxyl
radicals (LOOe) derived from the oxidation of polyunsaturated fatty acids. In these
reactions, the tocopherols donate a hydrogen ion to the lipid radicals, followed by the
formation of the tocopherol radicals, which can be reduced to tocopherols by the
AsA-GSH cycle (Czarnocka and Karpinski 2018; Ma et al. 2020).

3.2 Brief Overview of Plant Growth-Promoting Rhizobacteria
(PGPRs)

The close contact zone between soil particles and roots is called the rhizosphere
(Vives-Peris et al. 2020), a region of the soil that is influenced by plant roots through
the release of chemical substances and, consequently, abundant in microorganisms.
It is one environment that can be used to enhance the growth of plants (Duarte et al.
2020) and assist in improving the soil quality (Pervaiz et al. 2020; Tian et al. 2020).

In the rhizosphere, the interaction between plant and microorganisms is more
active, as plants release exudates that promote the growth of these species of
microorganisms (Vieira et al. 2020). The rhizospheric region has stability regarding
the physical, chemical, and biological aspects of soils; besides, microorganisms are
influenced by the presence of growth factors, presence of nutrients in the soil, or
inorganic substrates that favor the activation of microbial metabolism.

The most desired effect of the plant-microorganism interaction in the rhizosphere
is the promotion of plant growth and the protection of plants against attack by
pathogens. This is only possible because the microorganisms present in the rhizo-
sphere not only take advantage of the created environment and the substances
released by the roots but also produce several signaling molecules that help plants
to tolerate biotic and abiotic stresses (Goswami and Deka 2020).

The rhizosphere is also the place where the weathering of rocks occurs and the
dissolution of less soluble minerals (Finlay et al. 2020; Ribeiro 2018).

Research shows that plants and microorganisms (Vives-Peris et al. 2020) can
change quantitatively and qualitatively, the composition of the rhizosphere as a
function of stimuli. This information shows the possibility of modifying the compo-
sition of the microbiota and increases specific microorganisms such as plant growth
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promoters. Through management practices that favor the colonization of roots by
such groups of microorganisms, one can increase crop yields, make agriculture more
sustainable.

Bacteria that colonize the root system or other part of plants, multiply and
compete with native microflora (Gosal et al. 2017) and as consequence have benefi-
cial effects on plant growth are called plant growth-promoting rhizobacteria (PGPR)
(Moncada et al. 2021).

Studies show that PGPR can have useful benefits for agriculture. The beneficial
effects mainly involve the increase in physiological processes, such as water absorp-
tion (Enebe and Babalola 2018) and nutrients (Elhaissoufi et al. 2020), photosynthe-
sis, stimulating plant growth and development (Ilangumaran and Smith 2017)
through hormonal production (Goswami and Deka 2020), protection of plants
against pathogens and pests (Ali et al. 2020), and in environmental mitigation
(Zafar-ul-Hye et al. 2020).

The PGPR are present in the soil, especially in the rhizospheric region of plants
and can engage various maintenance processes of the biological equilibrium of the
soil microenvironments, as in cycling and availability of nutrients (Ju et al. 2020),
the aggregation and weathering soil, as well as in the solubilization of minerals
(Wang et al. 2017), assisting in environmental decontamination practices (Raklami
et al. 2021).

The metabolic compounds consumed by microorganisms in the rhizosphere are
organic compounds produced by photosynthesis in the leaves, translocated in a
downward movement by the phloem and exuded by the roots of the plants (Williams
and Vries 2020), so there is the formation of an environment rich in nutrients and
growth factors very attractive to soil microorganisms, giving the rhizosphere soil
unique chemical, physical, and biological characteristics, quite different from roots
(Pervaiz et al. 2020).

The species of PGPR widely studied currently are Pseudomonas fluorescens,
Pseudomonas putida, Azospirillum brasiliense, Serratia marcescens, Bacillus
subtilis, Bacillus megaterium, Rhizobium, Bradyrhizobium, Arthrobacter,
Enterobacter, Azobacter, among others. These microorganisms have been
highlighted as fundamental to the plant ecosystem concerning the supply and
availability of nutrients for growth such as nitrogen (Matse et al. 2019), phosphorus
(Billah et al. 2020), potassium (Ashfaq et al. 2020), silicates (Adhikari et al. 2020),
among others.

Among the cited species of PGPR, the genus Pseudomonas spp. is one of the
main ones for its ability to suppress soil pathogens (Liu et al. 2018), for its
occurrence naturally and in high populations, for being nutritionally versatile and
having the ability to grow in a wide range of environmental conditions, in addition to
producing a wide variety of antibiotics, siderophores (Abbaszadeh-Dahaji et al.
2020), and plant growth hormones.

The rhizobacteria have been tested in various cultures. The species Bacillus
xiamenensis showed potential for use in the field as a biofertilizer and biopesticide
to alleviate stress conditions and promote the growth of sugarcane (Amna et al.
2020). Besides, it showed the potential for suppression of several phytopathogens
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such as Colletotrichum falcatum, Fusarium oxysporum, Fusarium moniliforme,
Rhizoctonia solani, Macrophomina phaseolina, and Pythium splendens (Amna
et al. 2020) by stimulating the production of extracellular compounds with fungi-
cidal action (Haidar et al. 2016).

Strains of Pseudomonas spp. and Bacillus spp. also were effective in controlling
diseases caused by Fusarium oxysporum, Fusarium moniliforme, Rhizoctonia
solani, Colletotrichum gloeosporioides, Colletotrichum falcatum, Aspergillus
niger, and Aspergillus flavus, in addition to promoting a stimulus for plant growth
compared to uninoculated and control treatments (Ali et al. 2020).

Bacillus velezensis and Bacillus mojavensis have the potential to manage
Heterodera glycines on soybean (Xiang et al. 2017). Similar to that observed in
rice culture after the use of Glutamicibacter sp. which favored overcoming plants to
salt stress (Ji et al. 2020).

Pseudomonas simiae increased salt tolerance in soy (Vaishnav et al. 2016).
Stenotrophomonas maltophilia promotes growth and changes the biochemical
parameters of wheat plants, providing tolerance to salt stress (Singh and Jha
2017). In corn, an increase in grain yield was observed when using inoculation
with Azospirillum brasilense or Pseudomonas fluorescens individually or in a
combination of both (Salvoa et al. 2018).

The study of these rhizobacteria has also been applied in the recovery of soils
contaminated with heavy metals, such as Pseudomonas putida in areas with nickel
(Kamran et al. 2016), Enterobacter aerogenes in areas contaminated by cadmium
(Pramanik et al. 2018), Azotobacter sp. in areas with high levels of chromium and
cadmium (Sobariua et al. 2017), and Brevundimonas diminuta for arsenic (Singh
et al. 20164, b).

The effects caused by PGPR on plants rely on the exudates liberated by the roots
and the quality of the soil (Gosal et al. 2017), and can occur through direct and
indirect mechanisms (Tariq et al. 2017).

The direct mechanisms are those affecting plant growth (Jeyanthi and Kanimozhi
2018), by providing nutrients (Paliwal et al. 2020), phytohormones (Kumari et al.
2019) such the gibberellins, auxins, cytokinin, and abscisic acid, biological nitrogen
and phosphate solubilization (Kumar et al. 2019), and the indirect mechanisms such
as inhibition of phytopathogens (Paliwal et al. 2020) through volatile hydrogen
cyanide (HCN), siderophores, antibiotics, volatile metabolites, and ammonia
(Kumar et al. 2019).

PGPRs can interact with plants via symbiotic, free-living saprophyte (Kumar
et al. 2020), endophytic or associative form (Gosal et al. 2017). In symbiotic form,
bacteria live within plants and exchange of metabolites occurs, and in free form, they
live outside plant cells (Singh 2018; Nazir et al. 2018).
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3.3 Plant-Rhizobacteria Signaling Mechanisms

The rhizosphere is an ecosystem inhabited by numerous organisms such as fungi,
bacteria, arthropod, herbivores, and nematodes that live in association with healthy
plants and form structured communities above and below ground plant organs
(Bukhat et al. 2020; Backer et al. 2018; Rosier et al. 2018). Rhizosphere communi-
cation is an extremely specialized process and is controlled by different metabolites
and exudates and ends up in altered gene expression in one or both of the interacting
partners. This mutual communication results in an alteration in plant growth,
inhibition of soil pathogens, nutrient availability, biofilm development, and accu-
mulation of soil microbes (Bukhat et al. 2020; Rosier et al. 2018). Such alterations
can probably be active simultaneously or sequentially at different stages of plant
growth (Figueiredo et al. 2016). Figure 3.2 shows a summary of the direct and
indirect effects of PGPRs on host plants.

The rhizosphere microbiota extends the capability of plants to adapt to the
environment. It is believed that chemical exudates participate as signaling molecules
(Venturi and Keel 2020).

Plant Growth-Promoting Rhizobacteria (PGPR) signaling mechanism happens
primarily through quorum sensing (QS) signaling molecules that regulate
phenotypes in microbes, production of hydrolytic enzymes and secondary
metabolites, and through volatile organic compounds (VOCs), such as terpenoids,
alkanes, alkenes, ketones, sulfur-containing compounds that provide the chemical
interface and long-distance communication of microbial communities. These groups
of molecules are involved in gene expression, hormonal signaling, and defense
pathways (Bukhat et al. 2020; Backer et al. 2018; Rosier et al. 2018).

Production of
antibiotics;
antifugals;
VOCs;

Solubilization of
insoluble
potassium

Production of ISS:RS
siderophoros, tiaen
Production of ® ’“‘h
auxin,

zeatin, celulase, etc)
Giberellin

ABA

Fig. 3.2 Direct and indirect mechanisms mediated by plant growth-promoting rhizobacteria
(PGPR) with helpful effects on host plants
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Rhizospheric region can be inhabited by parasitic, mutualistic, and commensal
microorganisms. The root exudates and their chemical composition define the
rhizosphere communities, as plants utilize these chemical combinations to select
the soil microbial communities (Bukhat et al. 2020; Rosier et al. 2018). Root
exudates can be composed of several low carbon molecules that act as precursors
for the synthesis of phytohormones of PGPR, e.g., tryptophan is present in high
concentration in root tips and acts as a precursor of indole-3-acetic acid (IAA).
Furthermore, PGPR metabolize plant-ethylene using aminocyclopropane-1-carbox-
ylic acid (ACC)-deaminase enzyme and regulate ethylene production in the plant
under stress. PGPR produce also substances such as cytokinins (CK), auxins,
gibberellins, jasmonic acid (JA), salicylic acid (SA), and abscisic acid that act
similarly as those compounds produced by plants and significantly affect organ
development, growth, hormonal signaling, and immune responses in plants (Bukhat
et al. 2020; Backer et al. 2018; Rosier et al. 2018).

Flavonoids are the first communication signals that are exchanged during the
development of symbiosis. These compounds are recognized by the rhizobial sym-
biont. For example, fungus improves the roots ability to access soil nutrients,
particularly immobile phosphates, while the plant provides carbohydrates to fungus.
Strigolactones and cutin monomers are also secreted from roots of plants and act as
primary signaling molecules for the symbiosis of arbuscular mycorrhizal fungi
(AMF). Many bacterial QS signaling molecules such as dipeptides,
diketopiperazines affect auxin, ABA, and SA responsive expression of genes in
plants (Bukhat et al. 2020; Rosier et al. 2018). Antimicrobials and VOCs such as
pyocyanin and diacetylphloroglucinol produced by microbes stimulate systemic
responses in plants through modulation of hormonal pathways. Other signaling
mechanisms include the systemic acquired resistance (SAR) which involves the
activation of pattern recognition genes and proteins and increased SA accumulation.
Induced systemic resistance (ISR) is also activated by PGPRs and helps the plants in
enhancing resistance against different pathogens and abiotic stress (Bukhat et al.
2020; Backer et al. 2018). According to Desbrosses et al. (2009), PGPRs induce the
root hair elongation and auxin-dependent mechanism. Induced resistance by PGPRs
has been also reported by Ryu et al. (2003)) in Arabidopsis and included
brassinosteroid, IAA, salicylic acid, and gibberellins. Venturi and Keel (2020)
point out that some beneficial compounds produced by plants include
caryophyllenes, QS mimic compounds, and strigolactones. Figure 3.3 summarizes
some of the PGPR-mediated signaling mechanisms.

3.4 Regulation of Antioxidant Defense System by PGPRs

PGPRs have been reported to reduce the toxicity of heavy metals in plants under
polluted environments. According to Fatnassi et al. (2020), Vicia faba plants
inoculated with Rhizobium, Enterobacter clocae and Pseudomonas sp. alleviated
copper stress under hydroponic conditions. Similarly, plants inoculated with
Serratia sp. and Rhizobium sp., under saline soils showed better performance by
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Fig. 3.3 A summary of PGPR-mediated signaling mechanisms in plants

activation of ascorbate peroxidase (APX) and glutathione reductase (GR), and an
improvement of photosynthesis, mineral content, and growth in lettuce plants (Han
and Lee 2005). In research by Jha and Subramanian (2014), reported that PGPR
regulate caspase-like activity, programmed cell death, and antioxidant enzyme
activity in paddy under salinity. According to Azarmi et al. (2015), Inoculation
with PGPR efficiently enhanced the concentrations of proline and the soluble sugars,
whereas, reduced the hydrogen peroxide levels in the leaves and roots. The com-
bined application of PGPR and Zn significantly increased the antioxidant enzyme
activities and protein concentration in the pistachio seedling leaves and roots,
especially at the higher salinity levels. As reported by Kang et al. (2014), Plant
growth-promoting rhizobacteria reduce adverse effects of salinity and osmotic stress
by regulating phytohormones and antioxidants in Cucumis sativus. The PGPR-
applied plants had reduced sodium ion concentration, while the potassium and
phosphorus were abundantly present as compared to control under stress. Oxidative
stress was mitigated by PGPR through reduced activities of catalase, peroxidase,
polyphenol oxidase, and total polyphenol as compared to control. The control plants
showed up-regulation of stress-responsive abscisic acid as compared to PGPR
application, while salicylic acid and gibberellin were significantly higher in PGPR.
Finally, Upadhyay et al. (2011a, b) reported that wheat coinoculated with PGPR
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strains, and under different salinity regimes, showed an increase in dry biomass, total
soluble sugars, and proline content. Wheat sodium content was reduced under
coinoculated conditions but not after single inoculation with either strain or in the
control. The activity of antioxidant enzymes in wheat leaves decreased under salinity
stress after PGPR coinoculation, suggesting that these PGPR species could be used
to improve the stress in wheat plants. The activity of three antioxidant enzymes in
wheat grown with both PGPR strains was also reduced, most notably that of catalase
activity under salinity, when compared with the control treatments. The results
reported in that research indicate that coinoculation with B. subtilis and Arthrobacter
sp. could alleviate the adverse effects of soil salinity on wheat growth.

3.5 Main Defense Systems Involved in Plant-Rhizobacteria
Communications

3.5.1 Benzoxazinoids (BXs)

Benzoxazinoids (BXs) are secondary metabolites (Fig. 3.4), found in Poaceae, and
derived from indole-3-glycerol-phosphate. BXs have been studied extensively as
important herbivore and pathogen resistance factors. BXs are reported to inhibit host
recognition and virulence of the pathogenic Agrobacterium tumefaciens (Maresh
et al. 2006). Hu et al. (2018) report that in maize plants, soil conditioning by
exudation of BXs promoted an increase in the expression of defenses responsive
to jasmonic acid (JA) and the suppression of the growth of herbivores (Spodoptera
frugiperda). According to the authors, the suppression of herbivore growth in corn
plants is associated with an increase in leaf concentrations of defensive
phytohormones salicylic acid (SA) and jasmonic acid (JA), with a stronger expres-
sion of JA. Therefore, it is likely that BX-dependent changes in the soil microbiota
will increase SA and JA signaling in the leaves and, thus, trigger JA-dependent
defenses that subsequently induce greater resistance to herbivores. Induced systemic
resistance (ISR) promotes JA signaling in several plant species (Pieterse 2001; De
Vleesschauwer et al. 2008; Planchamp et al. 2015). Although ISR has traditionally
been associated with a single rhizobacterium interacting with a plant, the authors
believe that complex microbial communities accommodate the same characteristics
and can elicit ISR.
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3.5.2 Microbe-Associated Molecular Patterns (MAMPs)

The rhizosphere is rich in molecular patterns associated with conserved microbes
(MAMPs). In the past two decades, several MAMPs, such as flagellin,
Tu-elongation factor (EF-Tu), cold shock protein (CSP), lipopolysaccharide (LPS),
chitin, elicitin, and Nepl-like protein, have been characterized in several plant
pathosystems along with its cognate pattern recognition receptors (PRRs) (Boutrot
and Zipfel 2017). Plant roots can mount strong immune responses in the recognition
of PRM-mediated MAMP, including callose deposition, camalexin biosynthesis,
and activation of defense-related genes (Beck et al. 2014; Millet et al. 2010; Stringlis
et al. 2018; Wyrsch et al. 2015).

Beneficial microbes have immunogenic MAMPs very similar to those of
pathogens (Jacobs et al. 2011; Lopez-Gomez et al. 2012; Millet et al. 2010; Pel
and Pieterse 2013; Stringlis et al. 2018). During initial contact with the roots,
beneficial microbes are recognized by the plant’s PRRs, activating immune
signaling.

Immune activation of the root by beneficial microbes has been observed in many
root-microbe associations. A study carried out by Libault et al. (2010), with
Bradyrhizobium japonicum, in soybeans, reported the expression of defense-related
genes in the early stage of infection in hair cells from soybean root. Liu et al. (2003)
report that the arbuscular mycorrhizal fungus Glomus versiforme induces a substan-
tial set of genes related to defense and stress during initial contact with Medicago
truncatula. However, this induction appears to be restricted mainly to the early stages
of these beneficial associations, suggesting an active interference of root immunity
by beneficial microbes.

Several mechanisms by which beneficial microbes prevent activation of the
plant’s immune system have been described. According to Yu et al. (2019), some
of them are Evasion of apoplastic recognition (Evolution of divergent MAMPs;
Hiding excessive MAMPs), a Suppression of cytoplasmic immune signaling
(Eliminating ROS burst; Targeting MAPK cascades; Modulation of hormonal sig-
naling), and Interplay between immunity and symbiosis signaling.

3.5.3 Damage-Associated Molecular Patterns (DAMPs)

Are molecules arising from dead, damaged or stressed cells, e.g., cutin monomers,
small peptides, and cell wall fragments? Plants similarly recognize these molecules
as MAMPs and respond by activating defense signaling cascades. These plant
defense responses are strictly regulated to minimize resource expenditure and fine-
tune the signaling cascades. This crucial role is fulfilled by phytohormones like
salicylic acid, jasmonic acid, and ethylene as essential signaling molecules for both
local and systemic responses (Mhlongo et al. 2018).
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3.5.4 N-Acyl-Homoserine Lactones (AHLs)

The exchange of signals between plants and rhizobacteria contributes to the activa-
tion of ISR. Small signaling molecules, for example, N-acyl-homoserine lactones
(AHLs) from many Gram-negative bacteria, are used for their intrapopulation
communication called quorum sensing (QS). Remarkably, plants can detect and
respond to bacterial QS molecules. The detection of AHLs and systemic response is
an essential aspect of the establishment of mutualistic relationships. Studies of plant
responses to AHLs were first done in the model plant Medicago truncatula, where
these molecules were found to affect extensive functions including cytoskeletal
elements, transcriptional regulation, and responses to defense, stress, and hormones.
Another study on the interaction between Serratia liquefaciens and tomato (Solanum
Lycopersicum) provided also indications that QS molecules of rhizosphere bacteria
influence plant defense responses. These results provided indications that AHLs play
a role in the modulation of the plant immune system (Reyes et al. 2014).

3.5.5 Antibiotic-Producing Rhizobacteria

The production of antibiotics is considered one of the most powerful and studied
biocontrol mechanisms for combating phytopathogens. Antibiotics constitute a wide
and heterogeneous group of low-molecular weight chemical organic compounds that
are produced by a wide variety of microorganisms. Antibiotics produced by PGPR
include 2,4 Diacetyl phloroglucinol, phenazine-1-carboxylic acid, phenazine-1-
carboxamide, pyoluteorin, pyrrolnitrin, oomycin A, viscosinamide, butyrolactones,
kanosamine, zwittermycin-A, Perugini, thamnolipids, cepaciamide A, ecomycins,
pseudomonic acid, azomycin, antitumor antibiotics, cepafungins, and antiviral anti-
biotic karalicin. These antibiotics are known to possess antiviral, antimicrobial,
insect and mammalian antifeedant, antihelminthic, phytotoxic, antioxidant, cyto-
toxic, antitumor, and plant growth-promoting activities (Martinez-Viveros et al.
2010).

3.5.6 Brassinosteroids

Brassinosteroids (BRs) are one group of phytohormone that regulates many common
developmental processes throughout the plant life cycle are a unique class of
polyhydroxylated steroidal phytohormones with important roles in regulating myr-
iad physiological and developmental processes. BRs are also increasingly implicated
in plant responses to pathogen attack. Exciting new developments connect BRs to a
wide variety of defense-related pathways involved in innate immunity triggered by
conserved microbial signatures, microbial-induced cell death, hormone signaling,
oxidative metabolism, and secondary metabolite production (Bruyne et al. 2014).
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3.6 Conclusion

Extensive research provided prompts us to state that PGPRs can affect plant growth
by various direct and indirect mechanisms. These mechanisms can probably be
active simultaneously or sequentially at different stages of plant growth. Plant-
PGPR signaling mechanism occurs primarily through quorum sensing signaling
molecules that regulate phenotypes in microbes, production of hydrolytic enzymes,
and secondary metabolites. Another signaling mechanism includes volatile organic
compounds. These molecules provide the chemical interface and long-distance
communication of microbial communities. If achieving sustainability and
maintaining long-term productivity without the use of agrochemicals are priorities
in the soon future, sustainable food production must pay attention to prospect the use
of PGPRs.
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Abstract

In plants, oxidative stress is caused by different factors such as salinity, pathogen
colonization, herbicide activity, oxygen insufficiency, and other stress situation
which are a part of abiotic and biotic factors. These factors directly affect
biochemical and physiological pathways within individual plants and plant
communities. Under oxidative stress condition, plants synthesize a verity of
nonenzymatic antioxidant as defense mechanisms to protect themselves from
the spectrum of harmful stress conditions. Aside enzymatic antioxidant, reactive
oxygen species (ROS) is also prevented by a nonenzymatic antioxidant system
including the low-molecular mass compounds which are produced by the host
cell. It includes glutathione, ascorbic acid, a-tocopherol, carotenoids, flavonoids,
and phenolic compounds. Endogenous and exogenous nonenzymatic
antioxidants play an important role in plant health. Antioxidant is small organic
molecules which has enzymatic activity. Antioxidants are complex system of
overlapping activities and work synergistically to increase cellular defense. There
is several reactive oxygen species (ROS) worked in unnecessary oxidation
mechanism. Different reactive oxygen and nitrogen species (ROS and RNS)
have activity to combat oxidative stress. Similarly, different reactive oxygen
species are the targets of each antioxidant enzymes and provide defense in
different environmental stress conditions. Antioxidants are reacting with reactive
oxygen and nitrogen species which take part in oxidation reactions. An oxidation
reaction increases the production of free radicals and induces the damage to
various cell components such as lipid, DNA, proteins, and carbohydrates. It is
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wellknown, that antioxidants mediate assured some cellular functions such as
defense mechanism against pathogens, redox signaling, and gene expression.
Thus, the role of antioxidant enzymes is not only to remove oxidants completely,
but also maintain them at an optimum level. The aim of this review will be limited
to nonenzymatic antioxidant (exogenous and endogenous) induced by plant
holobionts.

Keywords

Nonenzymatic antioxidants - Plant growth-promoting rhizobacteria (PGPR) -
Reactive nitrogen and oxygen species (RNS and ROS)

4.1 Introduction

The term holobiont means interaction between two or more different species. It is a
group of macroorganisms and eukaryotes as a host and related microorganisms
which show functional interactions. It is also referred as single dynamic entity.
The holobiome is another term to explain symbiotic interaction between host cell
genome and associated genome of microorganisms (microbiome) (Guerrero et al.
2013).

Interaction between microorganisms (bacterial species) and plant cells is a com-
mon example of holobionts. Association of plant tissues with diverse group of
microbial species is known as phytomicrobiome. Plant tissues help in composition
and regulation of metabolic activity of associated microbial community. The con-
nection between microbes and plants activities gives a broad range of profit to each
other (Backer et al. 2018). Holobiont gives an original knowledge, adaptation, and
selection processes (Zilber-Rosenberg and Rosenberg 2008).

Communication of rhizobacteria (PGPR) with tissues of host plant is a complex
and mutually supporting relationship. It is connecting two species as well as
comprises with abiotic and biotic factors of the rhizosphere region. In
phytomicrobiomes, interaction takes place between microorganisms (bacterial and
fungal) and main structure of plant including fruits, flowers, stems, roots, and leaves.
Plant communities in the rhizospheric region increase the plant strength and soil
fertility (Dutta and Podile 2010; Berg et al. 2016). The plant shows significant
control over interactions of the rhizomicrobiome (Spallek et al. 2017).

PGPR is a kind of free-living soil bacteria. It is directly and indirectly involved to
maintain the rooting and growth of plant (Mayak et al. 1999; Glick 1995). PGPR is a
competitive microbial species over the other rhizosphere bacterial communities and
it has positive results during inoculation of plant tissues.

PGPR commonly used two mechanisms, i.e., direct and indirect. In direct mech-
anism, PGPR directly affects plant growth through fixing of atmospheric nitrogen,
conversion of insoluble phosphate into solubilizing form; affects the hormone
secretion such as Indole acetic acid (IAA), Gibberellic acid (GAs), and Kinetins,
which helps in regulation of ethylene. In indirect mechanisms, PGPR indirectly
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supports plant growth like antibiosis, induced systemic resistance (ISR), nutrient
competition, parasitism, metabolite (hydrogen cyanide, siderophores) production
suppressive to deleterious rhizobacteria (Glick 1995).

PGPR community is the effective tool for future agriculture and sustainable
development of agriculture. PGPR bacterial communities belong to different genera
like Acetobacter, Acinetobacter, Alcaligenes, Arthrobacter, Azoarcus, Azospirillum,
Azotobacter, Bacillus, Beijerinckia, Burkholderia, Derxia, Enterobacter,
Gluconacetobacter, Herbaspirillum, Klebsiella, Ochrobactrum, Pantoea, Pseudo-
monas, Rhodococcus, Serratia, Stenotrophomonas, and Zoogloea (Babalola 2010).

4.2  Oxidative Stress and Nonenzymatic Antioxidant

PGPR is absorbed into the soil particles by simple ion exchange mechanism. The soil
microorganism produces inorganic nutrients from organic resources which provide
sufficient support to plant life and known as biologically fertile soil (Babalola 2010).

A number of researches have mentioned that synthesis of reactive oxygen species
(ROS) like hydrogen peroxide (H,O,), superoxide radical (O’), and hydroxyl radical
(OR) alter the activity of antioxidant enzymes. Antioxidants are activated in plant
tissues under stress condition such as salinity (Shalata and Tal 1998; Bor et al. 2003).
Imbalance between levels of antioxidant enzymes and free radical activity is used as
oxidative stress and works as an indicator in plants (Mittler 2002). Reactive Oxygen
Species (ROS) are involved in oxidative damage to large biomolecules such as
protein and lipids. Some time oxidative stress condition leads to cell death. To
protect against oxidative stress, plant cells produce both nonenzymatic and enzy-
matic antioxidants. Enzymatic antioxidant includes superoxide dismutase (SOD),
catalase (CAT), and peroxidase (POX) enzymes where as nonenzymatic
antioxidants are ascorbate, tocopherol, and glutathione (Rio Del et al. 2003). Ascor-
bate peroxidase (APX) is a component of the scavenging reaction and catalyzes the
reaction of ascorbic acid with H,O, and restoration of ascorbic acid is catalyzed by
glutathione reductase (GR). (Smirnoff 1993).

The activity and quantity of soil microorganisms are affected by a range of
environmental factors, species, and age of plant. Plant growth-promoting
rhizobacteria (PGPR) have been identified to play a necessary role in the plant
development and metabolism and also promote growth of plants under some stress-
ful conditions. In last two decades or so, various PGPR strains have been known to
take part an important role in improving growth of plants and enhance plant biomass
(Burd et al. 2000; Chaiharn et al. 2008; Adesemoye et al. 2009; Yang et al. 2009;
Lugtenberg and Kamilova 2009; Bharti et al. 2013).

The nonenzymatic antioxidants such as amino acid, glutathione, a-tocopherol,
carotenoids, phenolics, flavonoids are the other types of antioxidants. These not only
protect different plant cell apparatus from damage but also play an essential role in
plant growth and development also. It regulates the plant cellular process like cell
elongation, mitosis, senescence, and apoptosis (De Pinto and De Gara 2004).
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4.3 Types and Features of Plant Holobiont Community

The plant holobiont is comparatively well-studied, with focus on agricultural species
such as legumes and grains. Plant holobiont includes bacteria, fungi, archaea,
protists, and virus (Bulgarelli et al. 2013).

According to Vessey (2003), there are a variety of species of soil bacteria that
increase diversity of microbial community associated with plant rhizosphere. They
can grow in, on, or around the plant tissues. Gray and Smith (2005) have exposed
that association of PGPR due to level of bacterial closeness to the root tissues.
Rhizobacteria are frequently referred to as plant growth-promoting rhizobacteria, or
PGPRs. The term PGPRs was first used by Joseph W. Kloepper in the late 1970s and
has become frequently used since then in scientific literature.

PGPRs have different relationships with different species of host plants (Vessey
2003). The majority of rhizobacteria belong to gram-negative and gram-positive
rods with cocci or pleomorphic (Bhattacharyya and Jha 2012). PGPR is divided into
two types: Intracellular PGPR and extraellular PGPR (Gray and Smith 2005).

In present scenario, still not as much of attention has been given to the plant
fungal microbiota, culture-independent community profiling exposed a diversity of
fungi colony above on and underground tissues of plant. It primarily belonged to
Ascomycota and Basidiomycota which are two major phyla. (Toju et al. 2013;
Hardoim et al. 2015; Coince et al. 2014).

Alike to bacteria, communities of plant-associated fungi structure are not random
and vary. It depends on type of soil, plant sub cellular structure, species of plant, or
seasons. (Bulgarelli et al. 2013; Toju et al. 2014; L& Van et al. 2017) (Table 4.1).

4.4  Role of Plant Growth-Promoting Rhizobacteria
as Biocontrol Agent

PGPR works as a biocontrol agent. Microorganisms (bacteria and fungi) are respon-
sible for a number of plant diseases but PGPR is able to manage plant diseases. Plant
disease is suppressed due to synthesis of antifungal metabolites and systematic
resistance provided by PGPR. For example: Biocontrol strain of PGPR such as
Pseudomonads has been genetically modified to increase disease resistance in plant
cells and promote growth of plant in different agricultural crops. Before sowing,
seeds are coated with genetically modified inoculants of bacteria. After treatment
bacterial inoculants coated seeds have enough rhizobacterial populations within the
rhizosphere and produce beneficial effects on the agriculture crop (Vessey 2003).

Table 4.2 explains about a variety of rhizosphere microorganisms’ species which
are commonly established in the rhizospheric region of leguminous and nonlegumi-
nous crops. Plant growth was drastically improved when more than two PGPR
species were applied together for treatment (Jha and Saraf 2012).

PGPRs increase growth of plants by two mechanisms: direct and indirect. The
mechanisms are still not very well defined. When the plant pathogen or other
rhizosphere microorganisms are absent, plant growth promotion is done by direct
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Table 4.1 Types of microholobionts: Following table explains about types, occurrence of

microholobionts with examples

Types of

S. No. | microholobionts Occurrence Example References

1 Extracellular Colonize on surface Azotobacter, Vessey
PGPR (ePGPR) or | of the root, in the Azospirillum, (2003), Gray
Rhizospheric rhizosphere regions, Agrobacterium, and Smith
PGPR on the region of Arthrobacter, (2005),

rhizoplane, or in the Azospirillum, Figueiredo
extra cellular spaces Bacillus, et al. (2011)
between root cortex Caulobacter,

Chromobacterium,

Erwinia,

Flavobacterium,

Serratia

Micrococcous, and

Pseudomonas, etc.

2 Intracellular PGPR | Located in complex Allorhizobium, Vessey
(iPGPR) or nodular structures Bradyrhizobium, (2003), Gray
endophytic PGPR within the root cells Azorhizobium, and Smith

or grow inside the Mesorhizobium, and (2005),
host plant apoplastic Rhizobium Figueiredo
space et al. (2011)
3 Glomeromycota Colonize within the Arbuscular Begum et al.
plant tissues mycorrhizal fungi (2019)
4 Ascomycota Located on root Epichloé species Guerre
surface of plant (2015)

5. Trypanosomatidae | Located on root Phytomonas Schwelm

(protist) surface of plant et al. (2018)

mechanisms. While in indirect mechanisms, PGPR involves to decrease the destruc-
tive effects of plant pathogens on crop yield. It is reported that PGPRs directly boost
the plant growth by different mechanisms:

1. Free atmospheric nitrogen fixation and transport to the plant.

2. Involve in construction of siderophores that chelate iron. Due to siderophores iron
is available to the plant root.

3. Help in solubilization of minerals such as phosphorus. This also directly
augmentates mineral.

4. Some PGPR are also reported which help in the synthesis of phytohormones such
as auxins and cytokinins. PGPR also affects plant ethylene synthesis (Glick 1995;
Gilck et al. 1999; Zakry et al. 2012; Bloemberg and Lugtenberg 2001).



64

Table 4.2 Rhizosphere microorganism

S. No.
1.

4.5

4.5.1

Name of rhizosphere
microorganism

Bacillus,
Pseudomonas,
Acinetobacter,
Azospirillum, and
Enterobacter

Burkholderia,
Alcaligenes,
Arthrobacter,
Azotobacter,
Beijerinckia,
Erwinia,
Flavobacterium,
Rhizobium, and
Serratia

Genetically
modified species
B. brevis,

B. licheniformis,
A. calcoaceticus

N. Sharma and R. S. Tomar

Applications

The three
genetically modified
isolates have the
capability to make
IAA, solubilize
inorganic
phosphate, and
produce ACC
deaminase. They
involve in formation
of siderophores
They are used to
improve the
productivity of crop

References

Jha and Saraf
(2012)

Burd et al.
(2000), Chaiharn
et al. (2008),
Yang et al.
(2009), Bharti

et al. (2013)

Types of NonEnzymatic Exogenous and Endogenous

Antioxidants

Glutathione

Glutathione is made up of three amino acids, i.e., y-glutamyl-cysteinyl-glycine. It is
alow-molecular weight thiol tripeptide, found in large quantities in approximately of
all cellular components like cytosol, mitochondria, endoplasmic reticulum,
chloroplasts, peroxisomes, vacuoles, and also found in the apoplast. Glutathione is
involved in an ample range of cellular processes like:

¢ Growth, division, and differentiation of cell.

* Cell death or senescence.
» Detoxification of xenobiotics.

* Sulfate transportation regulation.
* Metabolites conjugation.
* Synthesis of nucleotides.
* Phytochelatins and proteins.

* Regulation of enzymatic activity.
* Work on genes involved in stress.
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All above mechanisms of GSH are due to its high reducing potential (Mullineaux
and Rausch 2005). Cysteine residue is sulphur-containing amino acid which has
nucleophilic character. Central cysteine residue is a source of reducing power of
glutathione. GSH also formed phytochelatins via phytochelatin synthase. GSH
works as scavenges on different types of free radicals (H,O,, O,, OH', and O"5)
and neutralizes their effects on biomolecules. It forms glutathiolated adducts and
involves in protection of different biomolecules from reactive oxygen species. GSH
also acts as powerful role in regenerating GSSG (Glutathione disulfide). GSSG is
converted back to GSH, either by de novo synthesis or enzymatically. Therefore, the
maintenance between GSSH and GSG is essential for redox state of the cell (Roy
Choudhury et al. 2012a, b).

4.5.2 Ascorbic Acid

Ascorbic acid (AA) is a powerful and widely studied antioxidant compound.
Ascorbic acid is able to donate electrons to different range of nonenzymatic and
enzymatic reactions. In plant cells, ascorbic acid follows two pathways. Smirnoff-
Wheeler pathway is major pathway in plant cells and catalyzed in the mitochondria
by L-galactano-y-lactone dehydrogenase enzyme, whereas other source of ascorbic
acid is D-galacturonic acid. Ascorbic acid is not only single present in cell cytosol
but also found in apoplast, where it worked in defense mechanism against reactive
oxygen species (Barnes et al. 2002). Ascorbic acid also acts on metal-binding
enzymes. AA is also protect and preserves the activities of metal-binding enzymes.
At reducing state, ascorbic acid acts as cofactor for violaxanthin de-epoxidase and
balances the excess excitation energy (Smirnoff 2000). It is also reported that
ascorbic acid is also involved in preventing photooxidation of photo system II by
pH-dependent modulation activity.

4.5.3 «-Tocopherol

a-tocopherol is lipophilic antioxidant. Tocopherols are known for their ability to
work as potent scavengers of reactive oxygen species and free radicals. Scavenging
activity is one of the essential components of biological membranes and central
protectors. It protects membrane lipid of the chloroplasts by acting on superoxide ion
and quenching its excess energy. It protects the structure and function of photo
system II (PSII). Tocopherol also works as an effective free radical trap by
interfering with the chain propagation in lipid peroxidation (Igamberdiev et al.
2004; Kiffin et al. 2006). Tocopherols have four isomeric forms (alpha, beta,
gamma, and delta), among which a-isoform has shown the highest antioxidant
potential. The tocopherols are synthesized only by photosynthetic organisms and
thus only present in green tissues of plants. a-tocopherol is synthesized from
y-tocopherol by the enzyme y- tocopherol-methyl-transferase (y-TMT encoded by
VTE4) (Igamberdiev et al. 2004; Hollander-Czytko et al. 2005).
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4.5.4 Carotenoids

Carotenoid is a member of lipophilic antioxidants and belongs to molecules of
antennae group. It absorbs light (450-570 nm) energy and transfers to the chloro-
phyll molecule. Chlorophyll molecule is present in the photosynthetic and
nonphotosynthetic plant tissues. It is mainly located in plastids. Carotenoids are
not only reported in plants tissues, but also found in some microorganisms.
Carotenoids work on photosynthetic mechanism and show antioxidative activity
by protecting in following four ways: (Agati et al. 2012).

A. Tt reacts with products of membrane lipid and involves in the end the chain
reactions.

B. Helps in scavenging superoxide ion and releases by-product as heat.

C. Stop the development of superoxide ion with the help of chlorophyll molecule.

D. Removal of the surplus excitation energy through the xanthophylls molecule.

4,55 Phenolic Compounds

Phenolic compounds get considerable interests of the scientific society due to their
antioxidant properties. They are present in plant parts and necessary for human diet.
Phenolic compounds are made up of an aromatic ring which has one or more
hydroxyl groups. These are found in a variety of range, simpler to complex high-
molecular weight polymers. Phenolic compounds antioxidant activity is dependent
on position and number of hydroxyl group and the nature of other substitution which
is present on aromatic ring. The overall antioxidant activity is depended on the
structure of phenolic compounds. Different agricultural products and food
processing industries generate substantial quantities of phenolic-rich by-products,
which could be valuable natural sources of antioxidants (Balasundrama et al. 20006).

4.5.6 Flavonoids

It is mainly present in different plant parts like leaves, pollen grain, and floral organs.
It worked as secondary scavenger for reactive oxygen species. Due to excess
excitation energy of reactive oxygen species, it is involved in the damage of
photosynthetic apparatus. On the basis of structure, flavonoids can be characterized
into four classes: flavones, flavonols, anthocyanins, and isoflavones. All flavonoids
have variety of role like:

* Responsible for pigmentation in flowers and fruits.

* Provide color to seeds which are involved in plant fertility.
* Responsible for germination of pollens grains.

* Proving defense against pathogens associated to plants.
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Flavonoids are also involved in scavenging of super oxide free radicals and
lighten the damages occur on outer envelope of the chloroplast (Fini et al. 2011;
Agati et al. 2012).

4.5.7 Proline

Proline is a good example of nonenzymatic antioxidant, which protects cells from
damaging effect of reactive oxygen species. Proline is an osmolyte, hence it is also
measured as a powerful antioxidant. Glutamic acid is a substrate for synthesis of
proline via an intermediate pyrroline-5-carboxylate (P5C). The pathway of glutamic
synthesis is catalyzed by pyrroline-5-carboxylate reductase (PSCR) and &'-
pyrroline-5-carboxylate synthetase (PSCS). It is a good scavenger of hydroxyl
(OH") and superoxide (O,) ion and protects the damages of cell due to lipid
peroxidation (LPO). For the duration of stress condition, proline concentration is
increased in plant cell. This is due to either excess synthesis of proline or due to
reduced proline degradation (Verbruggen and Hermans 2008).

4.6 Applications of PGPR
4.6.1 Role in Auxins Biosynthesis

Many PGPRs can induce production of auxins and show strong effects on growth as
well as architecture of root. (Gupta et al. 2015; Jha and Saraf 2015; Ruzzi and Aroca
2015; Vacheron et al. 2013). Indole acetic acid (IAA) is the main example of auxin
synthesized by PGPR. Auxins boost the interaction between plant and microbe
(Ahemad and Kibret 2014; Afzal et al. 2015). Exogenous indole acetic acid activity
is directly depended on the endogenous indole acetic acid levels in tissues of plants.
Application of bacterial JAA may have positive, negative, or neutral effects on plant
growth when an endogenous IAA concentration is optimum in plants (Spaepen and
Vanderleyden 2011). Auxin-producing PGPR has shown changes at transcriptional
level, mainly in defense, hormone, and genes related to cell wall (Spaepen et al.
2014). It increases biomass of root and decreases the density and size of stomata
(Llorente et al. 2016).

4.6.2 Role in Cytokinin Biosynthesis

Phytohormones or plant hormones are naturally found organic molecules and influ-
ence many ways of growth and differentiation in plants. It also influences different
stress mechanisms like biotic and abiotic (Davies 2010). Phytohormones are
categorized into nine classes including cytokinins (CK), auxins, gibberellins (GA),
ethylene (ET), abscisic acid (ABA), brassinosteroids (BR), jasmonates (JA),
salicylates (SA), and strigolactones (SL) (Su et al. 2017).
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Cytokinins (CKs) are isoprenoid-substituted adenine molecules. Isopentenyl
transferases (IPTs) catalyze isoprenoid and synthesized various types of CKs includ-
ing N6-(A2-isopentenyl)-adenine (iP), cis-zeatin (cZ), trans-zeatin (tZ), and
dihydrozeatin (DZ). Plant physiology, growth, and development such as leaf senes-
cence, flower and fruit development, seed germination, apical dominance, and plant-
pathogen-interactions, etc. are directly affected by cytokinins (CKs). Trans-zeatin is
one of the cytokinin which is found commonly in plants. CKs are metabolized and
inactivated by two mechanisms. It is either through sugar molecule addition or
degradation by cytokinin oxidases (CKXs). The activity and type of different CK
molecules are depend on plant species, tissues, stages of development, and different
environmental conditions. Cytokines are not only produced by plants tissues but are
also produced by plant-associated microorganisms, microalgae, fungi, nematodes,
phytoplasma, parasitic plants, and insects (Akhtar et al. 2020; Spallek et al. 2017;
Dowd et al. 2017; Chanclud et al. 2016; Shanks et al. 2016; Ruzzi and Aroca 2015;
Siddique et al. 2015). The CKs produced from above plant-associated micro
organisms have balancing effect on growth of plant. It may attack on plant defense
mechanism and increases virulence against disease (Spallek et al. 2018).

Direct role of cytokinin in stimulation and defense of plant cell have been
documented in the early century 2010 but synthesis of cytokine phytohormone by
plant- associated microbes is a new concept. It is recognized during signaling
between different kingdoms. It is also reported during the defense mechanism
between plants and associated pathogens. The CKs produced by microbes are
interacting with plant hormone and related signaling pathways. It is a similar way
mechanism as plant-derived CKs. It is integrated in plant signaling pathways and
also induces the direct synthesis of phytoalexins. Thus, the bacterial and microalgal
CKs provide a defense against pathogens as done by exogenous CKs (Akhtar et al.
2020). Production of cytokinin by PGPR is a new alternative pathway to increase the
growth of plants and could be a good alternative to enhance the quality and yield
crops of agricultural (De Garcia Salamone et al. 2005).

4.6.3 PGPR as Biofertilizer

Use of bacterial consortia in agriculture has many effects on yield of crops (Wu et al.
2009). For example, mixture of a bacteria (B. amyloliquefaciens) and fungus
(Trichoderma virens) increases yields of tomato and corn (Akladious and Abbas
2012; Molla et al. 2012). It is reported that inoculation of plants with N,-fixing
bacteria (Azospirillum and Azobacter) allowed increase yield and quality of oil in
sesame seeds (Shakeri et al. 2016) and improved growth of biofuel crops in
switchgrass (Smith et al. 2015). PGPR have natural power to manage the soil
contamination and it can be used for phytoremediation. Contaminated land space
may be used to cultivate biofuel and energy crops (Weyens et al. 2009; Evangelou
and Deram 2014).

Biological approach is an optional method for fighting against plant-associated
pathogens (Harman 2000). Valuable rhizobacteria are able to produce antibiotics and
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other defense-related compounds which worked against pathogens associated with
plant tissues. Antibiotic production is one of the alternative approaches for biocon-
trol mechanisms (Doumbou et al. 2001; Compant et al. 2005). But pathogens with
time again develop resistance to the antibiotics, so that pathogens cannot be fully
restricted in the long-term. Thus, there is always requirement of multiple controlling
methods rather than unnecessary dependency on a single approach. PGPR is also
able to generate antibiotics like polyketides, lipopeptides as well as produces some
antifungal metabolites which are involved in suppression of the growth of plant
pathogens (Prashar et al. 2013).

4.7 Future Outlook

The concept of plant holobiont provides a new viewpoint to understand the interac-
tion between plants and microorgsanisms. In present scenario, the microholobionts
may be seen as a supporting system or component which provides some supplemen-
tary genes to the host plant cell, which helps plants to adjust in the local environ-
mental conditions. It is suggested by many studies in above content that host adapted
microbes formed an environment around the plant cell which fight against
pathogens. It also improves the nutritional and growth quality of agriculture crops.
This chapter will open new doors to plan strategies for improving the effectiveness
of biocontrol agents in natural way. Thus, PGPR community may prove to be an
effective tool for sustainable development of agriculture in future.

4.8 Conclusion

PGPR or plant growth-promoting rhizobacteria, have numerous actions on plant
growth promotion and control of other plant pathogens. It exhibits bioremediating
properties by detoxifying pollutants present in soil like chemicals or pesticides,
heavy metals, and controlling infection of phytopathogens as biopesticides. The
effectiveness of a PGPR as holobionts is reported due to different nonenzymatic
antioxidants present in it. In future, it is expected that PGPR is used to replace the
chemical pesticides and fertilizers. It also overcomes the problem associated with
synthetic growth regulators which have so many negative effects for agriculture
crops. This review will be helpful in future research and help to understand the
mechanisms of nonenzymatic antioxidant related to PGPR as well as mechanism of
biocontrol agent.
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5.1 Introduction

Plants as sessile organisms are constantly being affected by changes in their envi-
ronmental conditions. The unfavorable or stress conditions have forced plants to
change the functional aspect of powerful signaling sensors that guide them towards
attaining optimal growth via manipulating their biophysical, biochemical, and
molecular events (Ingle and Padole 2019; Taibi et al. 2016; Enebe and Babalola
2018). Unpredictable and unavoidable climatic changes enforce abiotic stresses as
the prime limiting factors among diverse stresses threatening agriculture and leading
to decline in productivity both qualitatively and quantitatively (Grayson 2013;
Nabavi et al. 2020). Majorly, diverse environmental constraints affect crop lands
worldwide and only 3.5% of the global land area remains unaffected. The abiotic
stresses, viz., salinity, floods, nutrient starvation, drought, heat, light intensity, cold/
chilling, anaerobiosis, and acidic conditions are known to decline agricultural
productivity worldwide (Meena et al. 2017). In this regard, the enormous chemical
compounds have been produced in the plants which can be used as taxonomic
markers and known as secondary metabolites (Bennett and Wallsgrove 1994;
Tabatabaei and Ehsanzadeh 2016; Kaab et al. 2020). Secondary metabolites are
attracting interest of the scientific communities owing to their indirect biological role
in the growth and development of organisms. Secondary metabolites are versatile
compounds often demonstrating in plant physiological processes as protectants
against abiotic and biotic stresses in plants. These play a central role in various
associations of plant-rhizobia, plant-microbe, soil microbes, and arbuscular mycor-
rhizal symbiosis and boost plant growth via the production of important biological
agents (Del Valle et al. 2020).

In the last decades, the secondary metabolites are proving their immense potential
in the plant stress physiology. The immobile nature of plants diverted the sieve of
selection to utilize the secondary metabolites to overcome the stress constrains and
help them to survive in the changing environments (Ingle and Padole 2019).
Rhizospheric microbes form an interacting association with crop plants which
ultimately regulates the nutrient supply to plants through varied direct mechanisms
(Rob et al. 2020; Kaab et al. 2020). Studies on plant-based microbial associations at
physiological, biochemical, and molecular levels recognized that microbial
interactions directly affect plant responses under various stress conditions (Farrar
et al. 2014). For deciphering the mysterious interaction among connections and
mechanisms regarding the functional role at molecular levels with the resistance
responses against abiotic stresses. The priming stimulates on antioxidant function
have been found to compare with enhanced transcript levels of glutathione and
ascorbate biosynthesis, enzymatic antioxidants that representing complex transcrip-
tional alteration of the antioxidant components (Savvides et al. 2016). Different
technological advancements also accelerated understanding of mutant technology,
RNAi-mediated gene silencing, metabolite profiling gene editing systems, and
proteomic analysis to identify capacious molecular communication that helped in
enlightening our awareness of microbial-based mitigation approaches toward abiotic
stresses tolerance in plants. New advances in Multiomics have appeared as
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integrated, holistic, and other analytical approaches for the analysis of one of the
major dynamic and complex system of plants-microbial interactions that regulating
the consequences progressed in the different plants to improve them to tolerate stress
conditions (Luan et al. 2015).

5.2  Classical Example of Secondary Metabolites in Plant
Resistance

Pigmentation is hallmark of microbial colonies rich in flavonoids and carotenoids
content. These compounds protect microbes from various adverse conditions includ-
ing drought, heat, cold, salinity, UV protection, and other damages (Rob et al. 2020).
Carotenoids represent an important group of natural occurring pigments that are
chiefly abundant in both photosynthetic (algae and plants, cyanobacteria) and
nonphotosynthetic organisms (bacteria and fungi). These are synthesized within
the chloroplasts of algae and plants naturally and the lycopene cyclization is major
branch point in their biosynthesis. Lycopene, the product is converted by the activity
of lycopene P-cyclase into p-carotene-like derivatives that plays significant roles
against oxidative burst, photoprotection, salinity, drought, and salinity damages in
higher plants (Paliwal et al. 2017). Quercetin is the aglycone form of ubiquitous
flavonoid glycosides such as quercetin and rutin, rich in the citrus fruits, buckwheat
tea, celery, broccoli, lettuce, tomatoes, Ginkgo bioloba, and onions (Table 5.1). They
have high antioxidant potential hence fall under the category of effective
antioxidants under the UV radiation, drought, salinity, cold, nitrogen deficiency,
and heavy metal stress (di Ferdinando et al. 2012; Zhan et al. 2019). The apigenin is
naturally occurring metabolite available in 4/, 5, 7-trihydroxyflavone form, and is
found to be present in large quantities in celery, chamomile, vine spinach, oregano,
and artichoke in the dried form (Table 5.1). They also have high antioxidant
potential induced under the drought and UV radiation (Shukla and Gupta 2010).
Fisetins are the ubiquitously present glycosylated compounds having powerful
antioxidative potential (Gongalves et al. 2018). Kaempferols are known to regulate
several proteins and their functional activities such as cell growth and differentiation
(Peer and Murphy 2006; Pei et al. 2020). Naringenin is widely distributed in the
bergamot, tomatoes, citrus, and other fruits, which functions to interfere with the
activity of the phenylpropanoid pathway enzyme, 4-coumarate: CoA ligase. It
causes allelopathic impact on the growth and lessens the lignin deposition in plants
(Echinochloa oryzicola, Zea mays, and Oryza sativa) (Deng et al. 2004). Chrysin is
involved in the presymbiotic growth, i.e., spore germination, hyphal growth,
branching patterns, and the formation of secondary spores, of the various arbuscular
mycorrhizal fungi (G. margarita, Gigaspora rosea, Glomus mosseae, and
G. intraradices) (Scervino et al. 2005). Apigeninidin is the anthocyanidin produced
in the sorghum under the pathogen attack (Mizuno et al. 2014). Rutin is the
ubiquitously present flavone enhancing the defense responses against the number
of abiotic stresses in plants (Samanta et al. 2011). Catechins are the anthocyanins
produced against the pathogen attack in the variety of plants (Barry et al. 2002).
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Gallic acid is the simple phenolic acid observed in the rice under salt and osmotic
stress promoting the antioxidant responses (de Klerk et al. 2011).

Similarly, Syringic acid was observed in the Vicia faba under the osmotic stress
involved in the stomatal closure to maintain the turgidity of plants (Purohit et al.
1991). Vanillic acid is a phenolic acid which was observed to enhance rooting in the
Malus plant (de Klerk et al. 2011). Hydroxycinnamic acid derivatives such as ferulic
acid and caffeic acid are involved in the defense responses. Caffeic acid was
observed in the legume plants under the saline and abiotic stresses enhancing the
cell wall thickening, lignifications, and inducing plant defense mechanisms (Enebe
and Babalola 2018). Similarly, ferulic acid increases the IAA oxidase activity in
seedlings, gene overexpression in the ethylene and jasmonic acid biosynthesis, and
inhibition of lateral roots and root hair formation (Chi et al. 2013). The resistance
provided to organisms mediated by secondary metabolites, viz., carotenoids may
have ecological significance allowing organisms to colonize certain environments,
for example, invasion of wounds and colonization of leaf surfaces by pigmented
heterobasidiomycetous yeasts. In microbes, the knowledge of the mechanisms
underlying the control of singlet oxygen species is based on few model organisms,
viz., Chlamydomonas, Rhodococcus sphaeroides, E. coli, Agrobacterium
tumefaciens, and C. Crescentus. The response to any kind of stress appears to be
tightly controlled at the transcriptional and post-transcriptional levels. It appears that
the response of the microbes to stress involves a complex network of regulatory
factors, which will make it difficult to unravel their individual functions. Recent
research on chemical priming has provided further knowledge of the complex mode
of action of specific signaling molecules in plant stress tolerance.

5.3 Flavonoids and Carotenoids: New Contenders of Plant
Resistance in Twenty-First Century

Flavonoids and carotenoids both of plant and microbe origin are well-known
contenders providing tolerance response to higher plants in abiotic stresses (Fig. 5.1).
Additionally, long-reported responses as protectors of damaging solar radiation both
have been known for key roles as antioxidants by reducing the production of reactive
oxygen species (ROS) after formation at primary response in stressed plant.
Flavonoids are abundantly distributed in various cell organelles including chloro-
plast, nucleus, small vesicles endoplasmic reticulum, vacuole, cytosol, and extracel-
lular space. Flavonoids such as flavones, flavonols, anthocyanins, and
proanthocyanidins have been identified as antioxidants and function to protect plants
from cellular damage under stress conditions (Clayton et al. 2018). The chloroplast-
associated metabolites scavenge free radicals to maintain cellular redox. Kaempferol
and Quercetin glycosides were reported abundant in chloroplasts during fungal
attack, ultraviolet (UV) irradiation, salinity, drought, and function as protective
antioxidants systems under stress conditions (Rob et al. 2020). According to Agati
et al. (2009) flavonoids have long been accounted to be present in the cell vacuoles,
epidermal cells wall, glandular, and nonsecretary trichome structures and hence have
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Fig. 5.1 Carotenoids and flavonoids as defense agents

been expected mainly to have the role of mitigating short ranges of solar
wavelengths. Although anthocyanins have been well known to store in the vacuoles
(mesophyll cells) in most of the plant species, and strongly supported by in vitro
studies (Agati and Tattini 2010). However, studies confined that flavonoids may help
in ROS scavenging within or towards the production sites. Microalgae species
belonging to genus Chlorella, Dunaliella, Scenedesmus, and Haematococcus are
considered as the key producers of commercially vital carotenoids. Many
microorganisms have been reported to produce secondary metabolites such as
astaxanthin, lutein, and b-carotene, etc. (Table 5.2).
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Table 5.2 Diverse microbial strains as active producers of flavonoids and carotenoids

Secondary

metabolite Producer strains References

Quercetin Chryseobacterium balustinum, Lattanzio et al. (2006)
Arbuscular mycorrhiza

Genistein Gibberella fujikuroi, Bradyrhizobium Dashti et al. (2014), Cesari
Jjaponicum et al. (2019)

Naringenin Bradyrhizobium sp., Azospirillum Boué et al. (2000)
brasilense

Diadzein Gibberella fujikuroi Hamayun et al. (2017)

Syringic Arthrobacter sp. Cesari et al. (2019)

Vanillic Nitrinicola lacisaponesis Dashti et al. (2014)

Ferulic Halomonas sp. Passari et al. (2017)

Rutin Bacillus endophyticus, Pseudomonas Kousar et al. (2020)
aeruginosa

Catechin AMF (Glomus mosseae) and PGPR Bhutia et al. (2012), Dashti
(Bacillus pumilus) et al. (2014)

Gallic Pseudomonas mendocina Passari et al. (2017)

Caffeic Bacillus pumilus Kousar et al. (2020)

Rutin accumulation was significantly lowered in salt susceptible species. High
antioxidant (Of2 and H,0,) contents were detected in both types of rutin-reduced
transgenic plants under high salt stress. Moreover, exogenous application of rutin
effectively enhances the ROS scavenging and ultimately gains the salinity tolerance.
The environmental stresses have multiple and complicated effect on plant growth
and development. The environmental stresses altered either incrementally or rapidly.
Essentially plants recognize and respond differentially to biological signals appro-
priately with the required pace of survival (Takahashi and Shinozaki 2019). The
sophisticated networks of physiological processes in plants arise due to involvement
of diverse molecular and cellular level of regulatory mechanisms required for both
short- and long-term responses varying from cellular to whole plant level (Rob et al.
2020). It has been accepted that flavonoids also control movements of
phytohormones like auxin, and a nuclear allocation of chalcone isomerase (CHI)
and chalcone synthase (CHS) is consistent with regulation employed by flavonoid
compounds on the genes transcription mediated for development changes, facilitated
via the auxin-transporting facilitator proteins (ATFP) (Agati and Tattini 2010).

5.4  Stress Tolerance Responses by Flavonoids
and Carotenoids

5.4.1 Drought Tolerance
Under the drought conditions, the osmotic and ROS balance are disturbed which

stressed the cellular metabolism and structure (Rao et al. 2020). Plants develop array
of mechanisms such as compatible solute production, antioxidant production, and
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other entities to withstand the unavoidable stressed conditions. The concentration of
ascorbic acid and a-tocopherol and epigallocatechin gallate (flavonoids) were higher
in the Cistus clusii grown under the drought condition (Hernandez et al. 2004). In the
A. thaliana seedlings, the total flavonoids and the quercetin, and kaemferol
(flavanols) were higher in roots (Shojaie et al. 2016). Similarly, the Jatropha
seedlings showed higher concentration of flavonoids under the drought conditions
(Lama et al. 2016). Carotenoids have ability to neutralize various forms of ROS and
can quench the triplet form of chlorophyll in the leaves (Ramel et al. 2012). Under
the drought conditions, the carotenoid levels increased in the olive trees, beans, and
alpine plants which were considered to be associated with the xanthophyll cycle
activation (Doupis et al. 2013; Buchner et al. 2017; Schweiggert et al. 2017). The
increase in the zeaxanthin content was also suggested to play important role in the
different abiotic stress tolerance (Wu et al. 2015). However, it has been also reported
that under moderate drought conditions, carotenoid content tends to decrease
(Sudrajat et al. 2015). Applications of Rhizobium cultures enhance N-supply and
fixation process in cowpea, soybean, red-clover, pea, and alfalfa crops. The symbio-
sis between Bradyrhizobium and Rhizobium sp. effectively supports the nutritional
strategies, ensuring an efficient N-supply in legumes, pastures, and grasses (Nagpal
et al. 2020; Kumawat et al. 2019). The N-fixation, nodulation number, and growth in
Medicago sativa improved with R. meliloti strain along with increased yield under
water- deficient environment. In another study, Rhizobium strains effectively
enhanced the nodulation rate in M. sativa, V. faba, P. sativum, and P. vulgaris,
whereas reports support the effectiveness of plant—-microbe interactions to improve
drought stress in legumes via degrading phosphorus (Rob et al. 2020).

5.4.2 Heat or UV Tolerance

UV radiations are naturally imparted on the plants along with the sunlight. To which
plants have to sense and respond on the basis of damage caused which depends upon
the repair and acclimation response. Flavonoids provide themselves as absorbing
cushion for UV radiation nullifying the ROS- induced cellular damages. The
activation of photoreceptors induces the transcription factors to trigger the transcrip-
tion of flavanoid biosynthetic genes. It has been observed that UV-B photoreceptor
mutants (uvr8-1) and Arabidopsis wild plant under continuous 4 h of low-dose UV
radiation depict the activation of chalcone synthase stimulation (enzyme involved in
flavanoid biosynthesis) (Jenkins 2013). In several plant species, the ratio of luteolin
to apigenin and quercetin to kaempferol has been enhanced under the UV light
(di Ferdinando et al. 2012). The quercetin and luteolin glycosides aid in reducing the
ROS production by effectively chelating with Cu and Fe ions (Brown et al. 1998;
Berli et al. 2010). In the pepper plant, the compounds for UV-B absorption and
antioxidants such as carotenoids have been induced under the UV-B radiation
exposure (Le6n-Chan et al. 2017). Similarly, in the tobacco plant, the carotenoid
content and antioxidant capacity have been intensified after the low and high UV-B
exposure (Shen et al. 2017). Moreover, the antioxidants accumulated in apical
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epidermal layer of leaves and stems to protect from the injuries from internal tissues
against UV-B radiation. In A. thaliana, the kaempferol synthesis is deficient in
flavone (chalcone) isomerase mutant shows much sensitivity to UV radiation. The
worthy role of flavonoids is not exceptional functional of UV-protection via induc-
ing antioxidant molecules, signal molecules, secretion of defensive compounds, and
allelochemicals during exposure of UV radiation in plant. Moreover, flavonoids that
accumulate in upper epidermis layer specially absorb a large amount of light ranging
from 280 to 340 nm wavelengths.

Xanthophyll cycle was activated during intensive light conditions and helps in
biosynthesis of zeaxanthin and proteins. According to Couso et al. (2012), the
cytochrome-dependent hydroxylases and carotenes enzymes were evaluated to be
up-regulated that control the xanthophyll cycle during light stress. Accumulation of
zeaxanthin and antheraxanthin, and corresponding decrease in violaxanthin amounts
were correlated with high light intensity resistance. This interconversion of zeaxan-
thin and violaxanthin is associated to a promising photoprotective role in the
photosynthetic machineries indulging in dissipation of excessive light energy
when exposed to intensive light stress.

In algal species, carotenoid accumulation was reported to enhance with tempera-
ture that activates cellular response or antioxidant mechanism related to enhanced
activity of biosynthetic enzyme, free oxygen radical formation, and damaging effects
observed at elevated temperatures. The enhanced threshold levels and carotenoid
content by two-folds were reported by Juneja et al. (2013) in Haematococcus
pluvialis and Chlorococcum sp., with temperature rise from 20 to 30 °C. Dunaliella
salina (Halophytic green alga) has been noted to accumulate huge concentration of
[-carotene when exposed to excessive water salt, light, and nutrient amounts in
extreme conditions (Llorente et al. 2017).

The effect of ultraviolet-B radiation affected the chlorophyll content by degrading
them and induced the accumulation carotenoids in Capsicum annuum (Leén-Chan
et al. 2017). Enhanced level of UV-B rapidly elevates carotenoid content compared
with control plants and the production of those compounds. The increased
carotenoids and ROS at high UV-B radiation were reported in Nicotiana tabacum
L. leaves play important role in tolerating the oxidative damage in plant caused by
high UV-B conditions (Shen et al. 2017).

5.4.3 Salinity Tolerance

Excessive accumulation of ROS is primary cause of salinity stress usually resulting
in deleterious effects on plants (Kang et al. 2018). Flavonoids and carotenoids play
an important protective role against oxidative burst and injuries caused by salt stress.
In Lupinus albus seedling, the Chryseobacterium balustinum Aur9 elevated total
nitrogen content, root surface, germination rate, aerial growth, N-absorption, and
biological N-fixation. It also promoted the systematic induced responses and helped
to overcome the salt stress in soybean and Arabidopsis species. Under high salinity
condition, strains of Sinorhizobium fredii were used to enhance the nitrogen fixation
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rate via eliciting the nodule number in significant manner (Rodriguez-Navarro et al.
2002). In Rhizobium tropici, salt-tolerant wild-strain, the increased antioxidant
enzymes activities including dehydroascorbate reductase and superoxide dismutase
resulted in salinity tolerance and were correlated to enhanced antioxidant enzymes in
nodules (Tejera et al. 2004). The various nitrogen-fixing bacteria tolerant to high
concentration of NaCl are Rhizobium meliloti, R. leguminosarum, and rhizobia from
Vigna unguiculata whereas Rhizobium fredii, R. meliloti, and Sinorhizobium fredii
show regulatory mechanism for K* strictly but control Mg?* flux under salt stress
condition. The R. meliloti derived from xerophytic tree species formed a symbiotic
association with M. sativa and confirmed effective salt tolerance (Zahran 1999).

Several metabolic and physiological changes are affected by the salinity stress.
On the basis of duration and intensity, the salinity stress can negatively affect the
growth and development of plants. According to Zhao and Dixon (2009), a positive
correlation was observed between the flavanoid biosynthesis level and the Glutathi-
one-S-transferase content (role in flavonoids transportation to vacuole). Similarly,
the biosynthesis of luteolin 7-O-glycosides was significantly enhanced under the
salinity conditions (Agati et al. 2011). The seedling of Solanum nigrum, having
lower dry biomass of leaves and roots along with the higher flavanoid contents
(Abdallah et al. 2016). The accumulation of carotenoids such as f-carotene and
lutein in the sweet potatoes were observed under the salinity stress. The IbZDS gene
encoding fB-Carotene desaturase is related with the carotenoid accumulation for
tolerance whose expression induced for carotenoid biosynthesis under salinity
condition (Li et al. 2017). In the Solanum nigrum, the expression of phytoene
desaturases, zeta carotene desaturases, phytoene synthase, capsanthin/capsorubin
synthase, and lycopene b-cyclase was down-regulated under the higher salt concen-
tration in the salt sensitive Capsicum plants (Maurya et al. 2015).

According to Li et al. (2017), the expression of carotenoids can be up-regulated or
down-regulated by overexpression or suppression of genes inducing activity of
f-Carotene desaturases like enzymes and their biosynthetic pathways. The
overexpression of IbZDS (Ipommea batata) gene is associated with ZDS, resulted
in significant increases in P-carotene and lutein-related accumulation improved
salinity tolerance sweet potatoes. The suppression of lycopene-cyclase (a-LCY)
and lycopene p-cyclase (B-LCY) genes by RNA interference resulted in enhanced
concentrations of total carotenoids, f-carotene, and ultimately stress tolerance cells
of sweet potatoes (Kim et al. 2015). The findings were also supported by Kang et al.
(2017) in sweet potatoes, where CHY-b suppression up-regulates the carotenoid
level and enhances tolerance to stress. According to Jin et al. (2015), salinity stress
tolerance observed to be associated with LCY-p and o-LCY genes in Nicotiana
tabacum in which suppression of a-LCY and overexpression of LCY-f play role for
enhanced salinity tolerance. The variations reported in species level depend upon the
complexity in regulation of carotenoids. However, the transcriptional control
regulating genes interaction that is all involved in regulating level of carotenes
compounds during stress tolerance. The expression of phytoene synthase 2 and
LCYB genes was associated with the enhanced level of lutein and carotene observed
in Solanum nigrum. The expression of lycopene f-cyclase, zeta carotene desaturases,
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phytoene desaturases, phytoene synthase, and capsorubin/capsanthin synthase in
capsicum sp. was down-regulated with increase in salinity level (Maurya et al.
2015; Ben Abdallah et al. 2016).

Elevated levels of copper induce the production of ROS and carotenoids forma-
tion; in Vicia faba, subjected to elevating the amount of copper were reported to be
concentration-dependent. The increased carotenoid levels could be result of
enhanced activity of nonenzymatic antioxidant system related to secondary meta-
bolic compounds (Abdel-Latef and Abu-Alhmad 2013). In Cicer arietinum, cad-
mium (Cd) stress caused significant enhancement in level of carotenoids. The
carotenoid synthesis lowered ROS damage induced by cadmium toxicity (Ahmad
et al. 2016) whereas, phosphorus (P) or nitrogen (N) repletion was observed to
elevate the carotenoid levels in algae and increased levels of thiobarbituric acid
(TBA) and H,0, reactive species along with decreased SOD activity (Moussa et al.
2017). In microalgae, Zhang et al. (2017) studied enhanced carotenoid accumulation
in unfavorable conditions. The findings showed that nitrogen depletion facilitated
the synthesis of carotenoids, compared to chlorophylls and demonstrated that
carotenoids were highly sensitive to N stress. Comparatively declined chlorophyll
content was observed with progressed nitrogen stress. These findings showed that
the carotenoid content in Chlorella vulgaris varied over time with different salinity
environmental conditions (Zhang et al. 2017).

5.4.4 Chilling Stress

The low temperature can affect the plant growth cycle with each stage from its
germination to the maturity. Plants respond differentially based on their genetic
potential to tolerate chilling stress. Many plant species either tropical or subtropical
(rice, maize, and tobacco) fail to survive under chilling temperature; however, some
overwintering cereals and Arabidopsis can continue to survive and grow (Liu et al.
2018). The increase in flavonoid content was noticed with the lowering in tempera-
ture reported in the epidermal cells of many plant species (Bilger et al. 2007). In the
A. thaliana accessions, the positive correlation was recorded between the cold
tolerance and the level of flavonoid content (Korn et al. 2008). Many biosynthetic
genes such as chalcone synthase, dihydroflavonol 4-reductase, flavonol synthase,
and chalcone isomerase for flavonoids were expressed higher in the cold tolerant
plants (having higher anthocynin and quercetin derivative content) than the sensitive
ones (Hannah et al. 2006). The higher flavonoids in the fruits of Phoenix dactylifera
L. were reported at the 0 °C temperature condition along with the no any kind of
chilling injury symptoms observed (El-Rayes 2009). The low temperature resulted in
decline in chlorophyll content and signaled to accumulation of carotenoids in the
Capsicum annuum (Le6n-Chan et al. 2017).
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5.5 Biotic Stress Tolerance: A Feasible and Efficient Biological
Application

The microbial inoculants and their secondary metabolites are proved to be efficient
agents and act as biofungicide, bioherbicides, and biopesticides. Microbial
inoculants play important role as biocontrol approach could be driven by elevating
phosphorus solubilization, improve biological nitrogen fixation, nutrient absorption
at rhizospheric region, systemic acquired resistance, and production of synergetic
secondary metabolites in low concentration provides toxicity to pathogens. More-
over, the toxic effect could be overcome by production of regenerative hormones
(ethylene and auxin) at damage site. Several fungi and microbe inoculation of
Aspergillus niger, Penicillium citrinum, Aspergillus fumigatus, Penicillium
funiculosum, Penicillium aurantiogriseum, Trichoderma koningii, Phytophthora
infestans,  Sporolactobacillus  inulinus, Amphibacillus  xylanus, Bacillus
amyloliquefaciens, Microbacterium oleovorans release inhibitory compounds
against fungal pathogens (Nesci et al. 2005; Pereira et al. 2007; Etcheverry et al.
2009). Strains of Bacillus spp. secrete inhibitory compounds and used as biological
controlling agent in wide range of fungal infections in plants. Bacillus subtilis was
used to be control production of aflatoxin and Aspergillus flavus in field condition,
whereas Pseudomonads and rhizobia are effectively known to suppress the growth
of Fusarium and Pythium sp. (Antoun and Prévost 2005; Cepeda 2012; Alori and
Babalola 2018). Moreover, both microbes and plants employed alternative mecha-
nism in form of antibiotics or phytoalexins containing flavonols, carotenoids,
alkaloids substance to control the plant pathogens. The compounds show antagonis-
tic effect at rhizosphere and exhibit biocidal properties on soil-borne pathogens. The
properties can be altered by formulation, cultivation, and application methods of
PGPR under stress responses (Glick 2012, 2015; Raaijmakers and Mazzola 2012;
Grobelak et al. 2015; Bhattacharyya et al. 2016; Olanrewaju et al. 2017). Certain
classical examples for PGPR producing bactericidal effects are Pseudomonas spp.
and Bacillus that have been identified to liberate aerugine, azomycin, bacilysin,
butyrolactones, bacillaene, cepaciamide A, cepafungins, chlorotetain, 2,4-diacetyl
phloroglucinol, fengycin, tas A, karalicin, phenazine-1-carboxylic acid,
rhamnolipids, iturin, pseudomonic subtilin, subtilosin, sublancin, oomycin A,
zwittermycin A, kanosamine, and pyrrolnitrin (Alori and Babalola 2018). The total
phenols, carotenoids, and anthocyanin content observed to be enhanced in lettuce via
exogenous application of inoculation containing Glomus fasciculatum and Azoto-
bacter chroococcum (Baslam et al. 2011). Similarly, flavonoid content was reported
to be increased with inoculation of Glomus mosseae and G. fasciculatum in lettuce
(Baslam et al. 2011). Arbuscular mycorrhizal fungi (AMF) speed up antioxidant
biosynthesis upto 75% significantly through rhizobacterial inoculation in soybean
seedlings. The above findings are well supported by the inoculation studies of
Bacillus megaterium and Pseudomonas fluorescens in catharanthus under stress
conditions (Alori and Babalola 2018).
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5.5.1 Fungal Tolerance

Different bacterial strains of PGPR including Bacillus subtilis, Bacillus
licheniformis, Chryseobacterium, Balustinum, and Pseudomonas sp. when com-
bined enhance significant level of resistance against soil-borne diseases in tomato
and pepper under in vitro conditions. The genes isolated from Lycium chinensis such
as carotene isomerase (LcCRTISO), phytoene desaturase (LcPDS), and p-carotene
desaturase (LcZDS) via carotenoid biosynthesis are significantly enhanced making
the tobacco plant salinity resistant (Lattanzio et al. 2006; Domenech et al. 2006).
Pseudomonas mendocina, Nitrinicola lacisaponensis, Bacillus pumilus, Halomonas
sp., and Arthrobacter sp., isolated from salinity conditions showed siderophore,
indole acetic acid (IAA), ammonia production, P-solubilization, and other plant
growth-effecting traits. Studies on bacterial inoculation of above isolates enhanced
presence of flavonoid quercetin and phenolics compounds cinnamic, ferulic, gallic,
vanillic, syringic, and caffeic, acids in the rhizosphere soil. The high concentration of
phenolics, quercetin, and IAA in rhizosphere soil zone exhibited a cumulative
synergistic function that supported elevated salinity stress tolerance in wheat
(Venkidasamy et al. 2018; Pathan et al. 2020; Tiwari et al. 2011; Mahmoudi
et al. 2019).

5.5.2 Bacterial Tolerance

Bacillus cereus (strain BS107) against Xanthomonas axonopodis pv. vesicatoria in
pepper leaves shows induction of induced systematic response where, ISR-elicited
responses of Bacillus spp. was also reported against root-knot nematodes, viral,
bacterial, and fungal pathogens. Yang and Yen (2000) reported molecular evidences
in favor of priming effect of Rhizobacterium strains on the up-regulation of ISR and
defense genes in pepper plant.

5.5.3 Insect and Nematode Tolerance

The flavonoids and isoflavonoids are lethal to the insect pests by altering the
behavior, growth, and development of target insects (War et al. 2013; Melo et al.
2017). The flavones 5-hydroxyisoderricin, 5-methoxyisoronchocarpin, and
7-methoxy-8- (3- methylbutadienyl)-flavanone are present in Tephrosia villosa
(L.), T. vogelii, and T. purpurea (L.), respectively, which can be used to repell
Spodoptera exempta and S. littoralis (Simmonds et al. 1990). The overexpression of
transcriptional factors required for flavonoid production confers the resistance in
Arabidopsis against the Spodoptera frugiperda (Johnson and Dowd 2004). The
chickpea plant was showing antifeedent activity against the Helicoverpa armigera
by mean of maackiain, judaicin, 2-methoxyjudaicin, and judaicin-7-O-glucoside
isoflavonoid productions (Simmonds and Stevenson 2001). The alliarinoside,
cyanopropenyl glycoside, and isovitexin-600-D-p-glucopyranoside interfere with
the feeding activity of Pieris napi oleracea (native American butterfly) (Renwick
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et al. 2001). The overexpression of CCDI1 leads to the B-ionone (carotenoid) in
Arabidopsis plant increases the emission of f-ionone to prevent the damage induced
by the insect attack (Wei et al. 2010).

5.6 Recent Advancement in Functional Aspect of Flavonoids
and Carotenoids in Crop Improvement

Recently, many reports published on the functional aspect of flavonoids and
carotenoids in term of stress tolerance in crop plants (Liu et al. 2015; Kudoyarova
et al. 2019). The sulfoquinovosyl transferase enzyme induces glycosylation of
flavonoid that elevates tolerance to osmotic stress in rice (Zhan et al. 2019).
Application of soil — organic matter enhances the efficacy of secondary metabolites
including flavonoids and microbes- based communication (Del Valle et al. 2020).
Identification of allelochemicals and phytotoxic activity induce tolerance from
Schumannianthus dichotomus observed by Rob et al. (2020). The overexpression
of the cytochrome CYP82A3 gene derived from Glycine max improves drought and
salinity tolerance and also proves a strong resistance against Botrytis cinerea and
Phytophthora parasitica in transgenic tobacco (Nicotiana benthamiana) species
(Yan et al. 2016; Tian et al. 2017). Rhizosphere acts as hotspot for allelochemicals,
PGPR, and secondary metabolites production based on soil-plant —microbe interac-
tion inducing cycling of nitrogen and carbon in soil (Del Valle et al. 2020).
Enhanced level of Arbuscular mycorrhiza (AMF) induces production of root
flavonoids, shows colonization in invasive tree species reported by Pei et al.
(2020). Screening of tunisian plant extract formulation shows bioherbicide
properties and in Cynara cardunculus (Kaab et al. 2020). In sweet potato, enhanced
lutein and B-carotene level through suppression or down-regulation of the B-carotene
hydroxylase gene and increase abiotic stress tolerance in transgenic stress tolerance
(Li et al. 2017). Similarly, findings reported by Kea et al., showed enhanced
[-carotene amount, lycopene fB-cyclase gene (IbLCYB2), and suppression of lyco-
pene e-cyclase expression in sweet potatoes (Li et al. 2017; Kang et al. 2018).
Multiple stress conditions impose more beneficial impacts on plants compared to
that posed in presence of individual stress alone (Liu et al. 2015). Combination of
stresses ultimately reduces the detrimental effect of each other thereby, increasing
the probability of better survival of plants. The cumulative impact of drought and
accumulation of ozone (Os) in plants resulted in better tolerance. The combined
affect was attributed to decreased values of stomatal conductance. Elevated concen-
tration of reduced glutathione and ascorbic acid effectively scavenge ROS, thereby
causing a considerable drop in the total ROS content. Several mechanisms
highlighting the role of microbes in abiotic stress alleviation have been
proposed (Kumar et al. 2019; Ke et al. 2019; Khan et al. 2020). Soil-inhabiting
microbes belonging to genera Achromobacter, Azospirillum, Variovorax, Bacillus,
Enterobacter, Azotobacter, Aeromonas, Klebsiella, and Pseudomonas have been
shown to enhance plant growth even under unfavorable environmental conditions
(Kaushal and Wani 2016; Sorty et al. 2016) (Fig. 5.2).
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5.7 Conclusion and Future Remarks

Presently, greatest interest is towards new prospective of microbial and their sec-
ondary products including carotenoids and flavonoids that can be used in plant stress
tolerance and crop improvement under climate change scenario. Looking into
application of crop production without compromising yield loss due to severity of
biotic and abiotic using microbial-based inoculants become more efficient and
effective. Moreover, the PGPR, microbial and plants-based metabolites having
both biological as well as ecofriendly approaches in term of sustainable crop
improvement, stress management, and promoting soil health are common. Enhanced
flavonoids and carotenoids level in plants are significantly relayed to the elevated
light-dependant oxidative damages and promoting antioxidant systems in plants.
Morphological structures including specialized glandular trichomes and stomatal
guard cells may be conveniently noted to investigate the functional-localization
interaction of flavonoids in photoprotection systems. It is evident that high concen-
tration of carotenoids and flavonoids in rhizosphere increases bacterial-mediated
growth-promoting responses in root exudates and leaves confirmed growth and
resistance in plants. These play a central role in various associations of plant—
rhizobia, plant-microbe, soil microbes, and arbuscular mycorrhizal symbiosis and
boost plant growth via the production of important biological agents. These
microbial-based inoculations may lead to the identification of new signaling
molecules and decipher the pathways responsible for triggering stress resistance in
challenging environment.
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Abstract

Most of the world population relies on rice for their nutritional demand. But
unfavorable environmental conditions, population explosion, anthropogenic
activities like industrialization, and usage of chemical fertilizers adversely affect
the soil structure, plant growth, and yield, which imposed a serious threat to food
security worldwide. Abiotic stresses may cause detrimental effect on almost all
features of plants like germination, growth, metabolism, gene regulation, and
reproduction. Plant growth-promoting rhizobacteria (PGPR) can support as a
redeemer of rice from various abiotic stresses promoting its growth and produc-
tivity. Diverse group of PGPR can offer multiple abiotic stress tolerance in rice,
via direct and indirect mechanisms. Hence, understanding the challenges imposed
by each abiotic stress and the mechanism of PGPR-mediated stress adaptation in
rice plants becomes an essential one. Advent of multi-omics approach, genetic
engineering, plant tissue culture, and seed priming techniques plays a key role in
developing a potent PGPR as a sustainable remedy for mitigating abiotic stresses.
However, certain pitfalls like establishment of PGPR under field conditions and
economical production of PGPR in industrial scale have to be addressed before
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commercialization. On achieving this, PGPR strains may facilitate rice plants to
adapt and grow efficiently under continued environmental changes.

Keywords

PGPR - Rice - Abiotic stress - Antioxidants - Phytohormones - Stress tolerance -
Omics approach - Seed priming - Genetic engineering - Tissue culture

6.1 Introduction

Rice is one of the most vital food crops, which contributes to 20% of global calorific
demand. But rice productivity could not compete with the increasing demand, due to
environmental degradation, climatic conditions, and ever-growing population. Abi-
otic stress is the chief constraint for rice productivity and food quality, reducing
average yields of the plants by 20-50% (Shrivastava and Kumar 2015). Abiotic
stresses like salinity, temperature, drought, and heavy metals can adversely affect the
growth and productivity of rice. Moreover, it can also favor the biotic stress and
affects the plant growth (Chodak et al. 2015). Usually, farmers depend on
agrochemicals to overcome the abiotic and biotic stresses. However, indiscriminate
usage of chemical pesticides and fertilizers for agriculture purposes leads to decline
in soil fertility and environmental pollution (Sharma and Chetani 2017). Hence, it
becomes mandatory to discover a safer and efficient tool for addressing sustainable
agriculture.

Application of plant growth-promoting rhizobacteria (PGPR) offers an
ecologically safe and economically feasible alternate to minimize the harmful effects
of agrochemicals. Several reports are available on the plant growth-promoting
effects of microbes such as Bacillus, Pseudomonas, Enterobacter, Variovorax,
Klebsiella, Burkholderia, Azospirillum, Azotobacter, and Serratia in mitigation of
plants from various abiotic stresses (Arshad et al. 2008). In addition, several PGPR
contribute to multiple abiotic stress tolerance in plants. This book chapter mainly
focuses on the PGPR which demonstrate their potential to combat various abiotic
stresses with special reference to rice plants. Challenges imposed by each abiotic
stress in rice plants, mechanism of PGPR-mediated stress adaptation, role of omics,
tissue culture, and genetic engineering techniques in mitigation of adverse
conditions will be explained along with the pros and cons in field application and
commercialization of PGPR.

6.2 Importance of Rice in Global Nutrition

Rice is used as a basic and major food grain throughout Asia, and its importance as a
nutritive food has been increasing worldwide during several past decades. Other than
Asia, rice farming is majorly concentrated by millions of people in Africa and Latin
America to increase their economy as well as to meet their dietary requirements. Out
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of total calorific consumption, the rice uptake in Asia has reached the mean value of
40% in which most of the countries showed greater than 60% in their total calorific
consumption. More than 60% of the protein was obtained through intake of rice-
based diet in Myanmar and Bangladesh whereas in Philippines, Thailand, and
Indonesia, this was recorded as 40%. Moreover, the GDP (Gross domestic product)
of Bangladesh and Vietnam was dependent on rice production to the maximum of
25%. To manage the increasing need of rice, the net yield has to upturn 1% /year till
2020 (Rosegrant et al. 1995).

Besides this rice is a good source of several other growth factors including
vitamins such as niacin, thiamine, and riboflavin. There are several research studies
are focusing on the biofortification of rice with increased provitamin A and folate
content to overcome the severe effects of malnutrition (Bhullar and Gruissem 2013).
The vitamin content of three different varieties (Njavara, IR 64 Njavara and Jyothi)
of rice was compared by Deepa et al. (2008), and their study revealed that IR
64 Njavara had higher thiamine (27-32%) content than other two varieties. This
variety can be recommended to manage impaired neural function such as neuritis
and general muscle weakness that are the results of thiamine deficiency. Other than
vitamins, rice is also enriched with minerals like Zn and Fe to overcome the negative
effects of malnutrition (Sperottoa et al. 2012). Comparatively the parboiling tech-
nique showed higher phosphorous and potassium content than the milled rice. The
higher ash content (18%) was observed in parboiled rice than the milled rice. The
other mineral elements such as calcium, zinc, and manganese were found lesser in
parboiled rice than milled rice. All other minerals were present in the same range
among the products of two different rice processing methods (Heinemann
et al. 2005).

Aspartic acid and glutamic acid are the most predominant amino acids present in
the rice, and trace amount of lysine was also observed (FAO 2004). Two different
varieties of rice such brown rice and white rice were compared for their protein
content. Among them, the former variety has higher protein content (14.6 g/100 g)
than the later (7.3 g/100 g). Seki et al. (2005) reported that the fat level was also
higher in brown rice (24.8 g/100 g) than the white rice (1.5 g/100 g). Even though
nutritive value of rice exhibits a wide profile, it will not serve as a sole source of diet
for growing population. It has to be supplemented with all other dietary food
materials such as pulses, vegetables, meat, egg, etc., to meet the daily energy need
of an individual.

Though rice has higher glycemic index and projected as one of the cause for
Diabetes, there are varieties with different levels of GI. Based on the Glycemic
index, the rice varieties were grouped into three major categories those have less than
55% of GI, the moderate GI of 55-69%, and the last with more than 70% GI. The
glycemic load concept was introduced to include the quantity of rice consumed in a
diet that gives clear picture of postprandial sugar. The diet with low GL is having
<10, the medium GL diet ranged between 11 and 19, whereas the high GL diet has
the recorded value of >20 (Wolever et al. 1991). Furthermore, this was also
supported by the studies of International Rice Research Institute that specifies the
GI was dependent on the variety of rice and the variation is mainly due to the
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composition of starch with wide range of amylose and amylopectin concentration.
The rice varieties with greater amylose concentration had comparatively less GI
(FAO 2001). However, another study reported that the detection of glycemic range
of amylose content was not readily applied to find out the digestion rate of starch
(Panlasigui et al. 1991).

The increased rice production is much useful to overcome hidden hunger and
poverty crisis through affordable economically feasible rate for the poor people in
Asia. This scenario leads to the farmers and researchers to produce diversified
indigenous varieties of rice with improved traits and high nutritive value to increase
the economic value of rice in the global market (Dawe 2000).

6.3 Effect of Climatic Change on Rice Cultivation and Yield

The growing industrialization and automobile usage resulted in global warming due
to the continuous liberation of greenhouse gases like nitrous oxide, methane, and
CO, that absorbs higher heat energy. Especially the increase in CO, concentration
and its effect on global warming is studied widely for the past few years due to its
role in considerable increase in earth’s temperature. The natural way of sequestering
CO; is happening through photosynthesis where the excess of carbon dioxide is
fixed as carbohydrate. The increasing CO, concentration increases the rate of
photosynthesis and ultimately results in increased leaf lamina, high dry weight,
and increased yield (Kimball 1983).

The climatic adaptation of rice cultivars includes cool regions located in higher
altitudes such as Nepal to hottest areas such as Egypt. At the same time, the higher
yield with essential parameters was observed in temperate regions such as Asia and
North Africa. The total production of rice throughout the entire world was 0.55
billion tonnes in 2007. The rice cultivation in Asia was highly affected by drastic
changes in climatic factors including temperature, air, water availability, precipita-
tion. Furthermore, the increasing CO, concentration is leading to the enhanced
photosynthesis in the growing countries (Watanabe and Kume 2009). The higher
CO, concentration increased the yield of rice up to 30% through enhanced photo-
synthetic rate (40%) than under normal CO, level whereas the high temperature
reduced the yield by shortening the growing period (Erda et al. 2005).

The higher concentration of greenhouse gases other than CO, which are not
utilized in photosynthesis will continue to increase the global temperature up to
0.5 °C within 20-24 years interval (Hansen et al. 1999). Photosynthesis is highly
sensitive to temperature stress due to its impact on physiology of the plant that
ultimately affects the growth, development of the plant, and flowering that result in
poor yield. Though the greenhouse gas such as CO, is accelerating the growth of
crop varieties, the global warming leads to increase in temperature and directly
related to drought and poor precipitation. So, global warming leads to the poor yield
and a crisis for food for the growing population (Santra et al. 2014). The increase in
temperature more than 36 °C reduces the yield due to the temperature mediated
poorly developed sterile inflorescence. The higher CO, concentration more than the
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Fig. 6.1 Impact of global warming induced climate change on the emerging human population and
its impact on crop productivity, eco and socio-economic factors

optimum level also makes the plants sensitive to sterility caused by extreme temper-
ature (Kim et al. 2001). Comparatively, the rice plants grown under high night
temperature decrease the total yield of the rice plant up to 90% than the plants grown
in a normal temperature exposure. This drastic decrease in the yield is caused by
spikelet sterility and poor pollen development (Mohammed and Tarpley 2009).
(Fig. 6.1)

The Intergovernmental Panel on Climate Change of United Nations (IPCC 2019)
reported that the rise in sea level will become far higher than the predicted levels that
may reach more than a meter (3.61 ft) before entering into the next century. Melting
of glaciers may result in the sea level rise and thereby affects the water availability
for irrigation. This will enhance the salinity of available fresh water bodies through
flooding of coastal lines and agricultural fields (Richardson et al. 2009).

6.4 Population Explosion and Rice Productivity

The explosion of human population is a result of modern concepts such as profound
medical treatments, industrialization, and automation which increased the survival
capacity of humans and reduced the death rates (Gage and DeWitte 2009). The end
of nineteenth century was marked by several revolutions in the human community
that led to the increasing population and growing need for food crops. Green
revolution emerged in the middle of twentieth century throughout the world for
satisfying the global nutritional demand. Sudden decrease in the fertility rate was
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observed among human population of various countries due to the change in lifestyle
and excessive usage of hazardous chemicals for industrial applications and agricul-
tural practices. Nevertheless, the need for high-quality food was growing simulta-
neously due to high standard of living. The increase in per-capita consumption and
population explosion are the major reasons for deforestation. The high input is
needed in the fields of agriculture and plant biotechnology to increase the yield of
major crop varieties such as rice, wheat, maize, millets, and pulses (Southgate 2009).
Hence, the transition in developed and developing countries from higher to lower
birth rate as well as higher to lower death rate led to a constancy of human
population. This demographic transformation has a great impact in food production
(Thompson 1929; Caldwell et al. 2000).

The chief source of energy was obtained through rice consumption by the
growing population of Asia; more than 90% of rice production and consumption is
carried over by the people of this biggest continent. Among the total agricultural area
of Asia, more than 25% is utilized for rice cultivation and rice occupies more than
40% of total food grain production. Moreover, the agricultural production was
increased up to 16% based on the gross value. The major amount of calories
(31%) and protein (22%) were obtained by rice intake in Asia. The rice market has
a considerable effect on the economy and poverty level of the people (IRRI 2008).
The rice cultivation is a major source of employment and income in rural area that
meets the entire food security of most of the nations such as India, China, Indonesia,
Bangladesh, and African countries. The drastic change in human population through
demographic transformation has a direct impact on rice production and consumption
by controlling the availability of farmlands, farmers, and other workers. On the other
hand, the high input needed for rice cultivation also affects the production cost,
demand, and market value. The continuous research on the effects of demographic
transformation on rice cultivation will be useful to produce the self-sufficient amount
of rice grains for the growing population with reasonable cost. Furthermore, the
export of rice to other countries will become easier when these primarily producing
countries reach self-sufficiency (Bhandari and Mishra 2018).

6.5 Effect of Various Abiotic Stresses on Plants

Undergoing abiotic stress, the plant stress markers were regulated by PGPR.
Surrounding stress conditions like salinity, infectious agent, drought, UV, high
temperature, cold, and alkalinity were broadly scaled and revealed by plants. Beyond
30% crops have been deprivation due to initial source of abiotic stress. Important
processes such as respiration, protein amalgam, and photosynthesis were turned
down, and capitulated crops are restricted by vital abiotic stress called salinity
(Ahmad and Prasad 2011). Increase in the salinity influences the nutrient availability
and thereby reducing the plant growth and yield (Zahedi et al. 2012).

In acute instances, salinity stress shows oxidative stress in plants and hypersonic
occurrences in foremost stages (Parvaiz et al. 2012). The peer group of reactive
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oxygen species (ROS) is managed by oxidative stress which is harmful to plants
(Azooz et al. 2011). The ROS groups like hydroxyl radical and superoxide ions are
affected by toxic substances targets the metabolism of plants. Nucleic acids, lipids,
and protein biomolecules are destructed by highly precepting ROS (Apel and Hirt
2004). Well-organized antioxidant network has evolved to shield it from the calam-
ity, which decreases the consequences of oxidative stress (Azooz et al. 2011).

Glutathione reductase (GR), superoxide dismutase (SOD), ascorbate peroxidase
(APX), catalase (CAT), and peroxidase (POX) are ROS forage enzymes (Apel and
Hirt 2004), and isoenzymes in chloroplast and mitochondria have present in diverging
cellular chambers. Solicitation of PGPR strain B.cereus AR156 on tomato appeared
increased activity of CAT, POX, and SOD of abiotic stress in plant likely shows the
intensify activation combined with PGPR (ChunJuan et al. 2012). PGPR increases the
cell well strength by restoring the biochemical and physiological response of the host
through induced systemic resistance mechanism. Rhizobacteria also enhances the
production of safe guarding chemicals like peroxidases, pathogenesis interconnected
proteins and chitinases to overcome the abiotic stress (Silva et al. 2004).

In order to salinity, another main abiotic stress marker enzyme gathered in plant
tissue is L-proline amino acid. During salinity, another main abiotic stress marker
gathered in plant tissue is L-proline. This assemblage improves the ability of
hydroxyl radical scavenger, secures folded protein formation, maintains the cell
membrane integrity in collaborative with phospholipids and mediates the distribu-
tion of nitrogen as well as energy supplements. Altogether the main play, i.e.,
osmotic balancing, was done by L-proline in plant. Foliaceous entreaty of
diazotrophic Klebsiella sp improves crop relent and enhances yield on wet rice
land against drought stress, high nutrient intake, and increased L-proline content.
PGPR regulate the measure of plant stress markers below abiotic stresses were
apparent (Razi and Sen 1996).

6.6 Physiological and Biomolecular Response of Rice Plants
to Abiotic Stress

Various environmental components influence the microbial communities in the
rhizosphere soil. The ecosystem includes biotic and abiotic components, firm to
categorize them as different segments. Certain abiotic factors affect the rhizosphere
microbial community; hereby complex investigations of particular effects of single
factor were observed (Liu et al. 2000). To elucidate the structure of microbial group,
soil pH is considered as major component (Lauber et al. 2009). By managing the
chemical configurations of the soil groups, the soil pH is interconnected to accessible
usage of nutrients for plants (Zhalnina et al. 2014). Nutrients like phosphorus,
nitrogen, and carbon in countryside soil show major limitations to manufacture in
a barren soil (Reich and Oleksyn 2004). The considerable effects on constituents of
bacterial colony and plant production in soil were mainly raised by nitrogen
enhancement (Turner et al. 1997).

Geographical elements such as altitude, latitude and longitude influences the
disribution of vegetation and the variety. The advancement in development of
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plant and decreasing the humiliation capacity of microbes was achieved by reduced
amount of N resulted by elevated level of CO, (Van Ginkel et al. 2000 and Hu et al.
2001), changes the soil structure. C inherence related to atmospheric CO; in soil is
same as microbiome effects of abiotic factor of soil nutrients. The microbes in soil
space scatter, hold on live, population of microbiome are restricted and minimize the
moisture content by Global warming (Carson et al. 2010). When the soil temperature
increases, it results in structure modification of the microbiome rhizosphere that is
constructed by the plant in the soil. This effect was analyzed in vitro microbiological
community by Zogg et al. 1997.

The detailed study used phospholipid profiles present in soils by subjecting the
soil to a temperature range between 5 and 25 °C to monitor any residual prolonged
changes. The study gave out a valid inside about the changes observed in the
microbial community. The results turned out that the increase in the soil temperature
was more associated with the climate change that occurred globally. This climate
change altered the organic matter decomposition process which has a direct impact
on the bio availability of carbon content in the soil. In further to investigate the effect
of high temperature, Mosier et al. (2015) experimented with expression of protein on
a microbial colony present in an acidic mine drainage using tandem mass tag
technology-based proteomics. From the above observations, it is very clear that
the application of PGPR helps the plants to ameliorate extreme drought stress. This
could be achieved by proper studies of root parameters and perform functional
structural modeling. The effect of high temperature creates heat stress effects on
various visible and hidden growth parameters such as delayed seed germination,
inhibition growth, leaf agedness, and apoptosis (Wahid et al. 2007). This drought
stress is the product of a variety of reactive oxygen (ROS). Some prominent ROS are
hydrogen peroxide, super oxide radical. These ROS affect the plant growth through
the damaging lipids and other macromolecules (Mittler 2002).

When considering the biochemical characterization, the antibiotic sensitivity
profile of the selected strains was analyzed to identify the optimal root characteriza-
tion that would aid in making the plants counter drought stress. These identified root
traits could be used to counter inhibiting of shoot growth by incorporating in
breeding programs. This allows the plants to perform osmotic adjustment. The
Relative water content (RWC) that could be observed in plant leaves acts as a critical
indicator to qualify and quantify the metabolic activities in plant tissues by
evaluating the plant water status. This RWC helps on osmotic adjustment which is
a cellular level adaptation to make plants drought tolerant via active accumulation of
organic and also inorganic compatible solutes. Using these observations and molec-
ular characterization, the desired bacterial genomic DNA was identified and isolated.
It was further amplified using polymerase chain reaction with various universal
primers to be purified and sequenced using GenBank accession numbers. This
165rDNA gene sequence was evaluated with globally available sequences such as
EMBL and DJB database through NCBI servers (Han and Lee 2005).
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6.7 PGPR as a Tool for Sustainable Agriculture

Plants exist in a symbiotic relationship with microorganisms in soil. The free-living
microorganisms in soil inhabit the rhizosphere region and have diverse effects on the
host plant (Raza et al. 2016), and hence they are known as Plant Growth-Promoting
Rhizobacteria (PGPR). Akhtar et al. (2012) reported that PGPR tend to defend the
plant health in an eco-friendly approach. PGPR and its relationship with host plant
are commercially applied, as it has scientific applications in agriculture (Gonzalez
et al. 2015). Gray and Smith (2005) reported that extensive studies on PGPR have
been done in oat, canola, soy, potato, maize, peas, tomato, lentil, barley, wheat,
radicchio, and cucumber.

PGPR inhabit plant roots and improve the growth of plants by special
mechanisms (Fig. 6.2), such as phosphate solubilization (Ahemad and Khan
2012), nitrogen fixing ability (Glick 2012), indole-3-acetic acid (IAA) production,
siderophore synthesis (Jahanian et al. 2012), 1-amino-cyclopropane-1-carboxylate
(ACC) deaminase, hydrogen cyanide production (Liu et al. 2016), degradation of
environmental pollutants, production of phytohormones, and antibiotics or lytic
enzymes (Xie et al. 2016).

Drought stress

Production of Cytokinines
Antioxidants

ACC deaminase

Osmotic stress
Production of ABA
Exo polysaccharide

Biotic stress
Production of Siderophore
Antibiotics
Hydrogen Cyanide

Fig. 6.2 Mechanism of PGPR in mitigation of abiotic and biotic stresses



110 K. Parameswaran et al.

6.8 Diverse Forms of PGPR

PGPR can be classified into two types, namely extracellular plant growth-promoting
rhizobacteria (ePGPR) and intracellular plant growth-promoting rhizobacteria
(iPGPR) (Viveros et al. 2010). ePGPR colonize the rhizospheric region or in the
spaces between the cells of the root cortex, whereas iPGPR reside inside the
specialized root nodular structures. The endophytic microbes included as ePGPR
are Azotobacter, Serratia, Azospirillum, Bacillus, Caulobacter, Chromobacterium,
Agrobacterium, Erwinia, Flavobacterium, Arthrobacter, Micrococcus, Pseudomo-
nas, and Burkholderia. The bacterial genera belonging to iPGPR include
Allorhizobium, Bradyrhizobium, Mesorhizobium, and Rhizobium which can fix
atmospheric nitrogen in plants (Bhattacharyya and Jha 2012).

6.9 Role of PGPR as a Plant Growth Enhancer

PGPR improve the growth of the plant by direct and indirect mechanisms. These
mechanisms comprise nitrogen fixation, neutralizing biotic and abiotic stress, pro-
duction of volatile organic compounds (VOCs), and enzymes to avoid disease.
However, the approach of different types of PGPR varies based on the host plant
(Garcia et al. 2015). They are also inclined by various biotic factors (genotype of the
plant, developmental stages of the plant, defensive mechanism of the plant and
microbial community) and abiotic factors (composition and management of the
soil, climatic conditions) (Vacheron et al. 2013).

PGPR act as plant growth enhancers, as they have the affinity to augment the ease
of use and absorption of nutrients (Kumar 2016). Plants absorb nitrogen from soil in
the form of nitrate and ammonium, which are vital for plant growth. Nitrate is the
main form of available nitrogen in aerobic soils where nitrification occurs and is
absorbed by the plant (Xu et al. 2012). Some PGPR have the capability for
phosphate solubilization, resulting in an improved amount of phosphate ions avail-
able in the soil (Paredes and Lebeis 2016).

Biological nitrogen fixation is an astonishing process that accounts for nearly
two-thirds of the nitrogen fixed globally. This biological process is performed either
by symbiotic or by non-symbiotic exchanges between plants and microbes (Shridhar
2012). Inoculating an amalgamation of rhizobacterial species into soil enhances root
nodule formation. Nitrogen fixation is performed by nif gene. Nitrogen fixing gene
along with other structural genes is concerned in activating the iron protein, donating
electrons, biosynthesizing the iron molybdenum cofactor, and regulatory genes
necessary for the synthesis and activity of the enzyme (Reed et al. 2011).

Plant growth regulators at low concentrations (<1 mM) promote the growth of
plants (Damam et al. 2016). Common groups of Plant growth regulators include
gibberellins, cytokinins, abscisic acid, ethylene, and auxins. Plant growth regulators
promote the plant growth, aids in proliferation of lateral roots, root hairs with a
successive augment in nutrient and water uptake (Sureshbabu et al. 2016).
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Siderophores are small organic molecules produced by microorganisms under
iron-limiting conditions. Siderophores enhance iron uptake capacity (Saha et al.
2016). Pseudomonas sp., as PGPR, utilizes the siderophores produced by other
microbes present in the rhizosphere for satisfying their ions requirement. A potent
siderophore, such as the ferric-siderophore complex, plays an imperative role in iron
uptake by plants in the existence of metals, such as nickel and cadmium (Beneduzi
et al. 2012). As PGPR can generate siderophores, they are the most vital asset
providing the plant with the requisite quantity of iron. Research concerning the
capability of siderophores to enhance iron uptake capacity of plants is very limited,
and significant research is further required in this perspective.

Indirect mechanisms engage the process through which PGPR avert or neutralize
the deleterious effects of pathogens on plants by producing substances that increase
natural resistance of the host (Singh and Jha 2015). This mechanism can also be
defined as a process that helps plants grow dynamically under abiotic stress or
protect plants from pathogens (Akhgar et al. 2014). The involvement of PGPR in
this system includes production of hydrolytic enzymes such as chitinases, cellulases,
and proteases. Further, PGPR also involve in production of various antibiotics in
reaction to phytopathogen, induction of systematic resistance against pests, produc-
tion of siderophores, VOCs, EPSs, etc. (Gupta et al. 2014).

6.10 PGPR-Mediated Mitigation of Abiotic Stresses

A wide variety of abiotic and biotic factors affect the growth and rice productivity
worldwide (Fig. 6.3). The most important abiotic stresses include drought, salinity,
heavy metals, and temperature. These abiotic stresses may lead to reduced crop yield
and act as an obstacle for cultivation of crop in certain regions and make them
unfavorable. The magnitude of biotic stress is greatly influenced by the abiotic

Effect of abiotic stress Effect of biotic stress
“*Enhance ROS free radicals “*Reduced plant biomass, shoot
formation development and inhibit root
“*Promote transpiration growth
“*Decrease carbon dioxide “*Decrease photosynthesis
fixation and nitrogen fixation
<*Reduced Nodulation
“*Hormonal imbalance

Fig. 6.3 Influence of different biotic and abiotic stresses on plant growth
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stress. Altogether these stress conditions make a wide impact on plant growth,
physiology, biochemical contents, and gene expression (Chodak et al. 2015). More-
over, abiotic stress can also lead to the loss of soil microbiota. Replenishing the plant
growth-promoting rhizobacteria (PGPR) in the abiotic stressed environment could
serve as an eco-friendly, effective strategy to overcome the environmental instability
and to achieve the agricultural sustainability.

6.10.1 Impact of Drought on Rice Productivity

Water stress is a vital part in agricultural sector as a notable share of farmland. Of the
roughly 40 million hectares of harvested rice area in India, only about 60% is
irrigated (AIREA 2015). Rest is precariously dependent upon rainfall and hence
susceptible to drought. Droughts have noticeable consequences in terms of yield
reductions, particularly if droughts happen during key stages in the rice growth cycle
in which plant growth is predominantly susceptible to water requirements.

Drought is a major limiting factor for rice production as it causes crop failure
(Mahajan and Tuteja 2005) leading to a decline of food availability across the world.
A deficient in water content may cause morphological, biochemical, and physiologi-
cal injuries on plants affecting various significant cellular processes (Farooq et al.
2009). Among the most lethal effects of drought are damages on the photosynthetic
apparatus in chloroplast (Chaves et al. 2009) and oxidative injuries on proteins,
membrane lipids, and other cellular components (Zlatev and Lidon 2012). In addi-
tion, water deficit can reduce the size of crops, delay flowering, and decline grain
yield and quality (Farooq et al. 2009). These negative effects are often coupled with
decrease in the microbial activity of the soil (Rousk et al. 2013) and in the amount of
macro and micronutrients offered to plants (Hu et al. 2007).

Drought resistance is an intricate attribute comprised of several mechanisms such
as drought avoidance, drought tolerance, and drought recovery (Fang and Xiong
2015). Interactions with environment considerably affect resistance to drought as
well (Hu and Xiong 2014). Therefore, the molecular mechanism of rice drought
resistance and its evolutionary process in rice remain unexplored.

It is assumed that a balance exists between drought resistance and productivity
(Fletcher et al. 2015). At the physiological scale, a plant always inhibits its photo-
synthetic ability and many other activities during drought to ensure enhanced
survival. However, these acclimation responses may delay growth and decrease
the productivity of a plant (Pandey and Shukla 2015).

At the individual scale, elite irrigated rice varieties bred for elevated productivity
and high-quality are very sensitive to drought (Luo 2010). These annotations specify
a potential trade-off between drought resistance and productivity. If the trade-off
exists, it will considerably shape the adaptive evolution of drought resistance in rice
and must be overcome in breeding for drought-resistant cultivars (Vikram et al.
2015). However, knowledge is still restricted about this genomic trade-off and its
influences on the evolution of drought resistance in rice.
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There are two rice ecotypes observed in agroecosystems with contrasting soil—
water conditions, which allows them to be differentiated in drought resistance.
Upland rice is cultivated in rain-fed uncontrolled fields and accumulated genetic
variance during its adaptation to drought-prone mountainous areas resulting in
enhanced drought resistance (Bernier et al. 2008). However, upland rice generally
exhibits poor yield (IRRI 1975; Xia et al. 2014). In contrast, lowland rice is
commonly grown in fields with water maintenance and irrigation facilities. Lowland
rice encounters relatively lower drought risk during its domestication compared to
upland rice (Bernier et al. 2008).

Based on the field performance evaluated under drought conditions, upland rice
recognized considerably higher drought resistance than lowland rice based on
drought resistance traits. For example, it possessed a higher ratio of deep rooting,
lower rate of water loss in excised leaves, higher relative water content under
drought, higher relative fecundity, and higher relative grain weight. In contrast,
lowland rice exhibited better performance in growth, development, and productivity
under well-watered and drip-irrigated conditions, which was represented through
more panicles, better biomass, and higher grain yield.

6.10.1.1 Mechanism of PGPR-Mediated Drought Resistance

Rhizosphere microbes having inherent potential to adapt and survive under drought
situation can promote the plant growth under water-limiting conditions. These PGPR
strains promote the drought resistance in plants by various mechanisms viz. induced
systemic resistance, phytohormone synthesis, production of exopolysaccharides,
and biosynthesis of ACC deaminase (Goswami et al. 2013). The phytohormones
secreted by PGPR like ABA and IAA enhance the shoot and root development in
rice under water-deficit conditions. ABA regulates the amelioration of drought-
related stress by stimulating hydraulic conductivity and activating genes involved
in drought tolerance. Saleena et al. (2002) documented the growth-promoting
activity of Azospirillum sp. on rice plants cultivated under drought and saline
environment. Belimov et al. (2001) reported that PGPR producing ACC deaminase
enzyme can stimulate plant growth by converting ACC (ethylene precursor) into
ammonia and F-ketobutyrate thereby preventing excessive production of ethylene
when subjected to adverse climatic conditions. Naseem and Bano (2014) observed
that the inoculation of PGPR elevated the production of sugar, amino acids, water
content, and proline which increases the water potential and biomass of the plant.
Treatment involving Psueudomonas putida ameliorates stress caused by drought
condition in plants by increasing the chlorophyll and biomass content (Kang et al.
2014). PGPR could be applied in combination with mycorrhizae for ameliorating the
deleterious effect of drought.

6.10.2 Challenges Imposed by Salinity Stress

Salinity stress is the important abiotic stress that suppresses plant development and
productivity worldwide. About 7% of land area in the world is affected by the soil
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salinity (Szabolcs 1994). Inappropriate irrigation of cultivable land may result in the
increase of secondary salinity up to 20% (Al-Maskri et al. 2010). Accumulation of
charged ions such as sodium, potassium, calcium, nitrate, and chloride ions in soil as
a result of weathering of rocks and very low rainfall may contribute for soil salinity
(Shrivastava and Kumar 2015). Almost all features in the plant viz. seed germina-
tion, plant growth, nutrient and water uptake, photosynthetic efficiency, reproductive
development, productivity, ecological balance, etc., have been influenced by the soil
salinity (Netondo et al. 2004). Major impact of saline soil in plants includes oxida-
tive stress, osmotic stress, nutrient deficiency, and ion toxicity (Shrivastava and
Kumar 2015). Ions such as chlorine, boron, and sodium have detrimental effect on
plants. Increased level of sodium ion in the plant cell wall may induce osmotic stress
which results in death of the cell (Munns 2002). Saline nature of the soil can affect
microsporogenesis, elongation of stamen, ovule development, and embryo forma-
tion in crops and enhances programmed cell death (Ashraf 2004). Moreover, it also
inhibits nodulation and thereby reducing the nitrogen fixation process.

6.10.2.1 Mechanism of PGPR-Assisted Osmotolerance

Plant growth-promoting rhizobacteria (PGPR) can serve as an efficient strategy to
mitigate the salinity stress on plants. It alleviates the stress and enhances plant
development by indirect and direct mechanisms. Among which, direct mechanism
involves nitrogen fixation, siderophore formation, phytohormones production, and
mobilization of nutrients (Hayat et al. 2010). Whereas, indirect mechanism includes
inhibition of infection by various plant pathogens. PGPR produce ACC deaminase
enzyme, facilitate the conversion of ACC into alphaketobutyrate and ammonia, and
also suppress ethylene production by the plants. It also enhances root nodule
formation in the plants by regulating the synthesis of rhizobitoxine enzyme under
saline stressed condition (Vijayan et al. 2013). Exopolysaccharide produced by the
PGPR acts as a barrier which binds with the cations and helps the plant to alleviate
salinity stress (Kasim et al. 2016).

A wide variety of rhizobacteria have exhibited PGPR traits that help to overcome
the salinity stress. Bano and Fatima (2009) reported the efficiency of Pseudomonas
and Rhizobium in promoting plant growth under saline condition. During salt stress
conditions, superoxide dismutase and lipid peroxidation activity in the rice plant was
found to be reduced by the inoculation of Pseudomonas pseudoalcaligenes and
Bacillus pumilus (Jha and Subramanian 2014). They also enhanced the production of
glycine betaine in the rice plant and make them salinity tolerant (Jha et al. 2011).
Bacillus subtilis and Bacillus pumilus facilitate the plant growth in saline soil by
solubilizing the phosphate and by producing HCN, IAA, ammonia (Damodaran
et al. 2013). Bacillus amyloliquefaciens produces phytohormones like auxins, ABA,
and induces salinity resistance in rice (Shahzad et al. 2017). Mitigation of saline
stress in rice plants mediated by Bacillus amyloliquefaciens involves regulation and
suppression of 14 different genes in the rice plant (Nautiyal et al. 2013).
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6.10.3 Implications of Heavy Metals on Growth of Rice Plants

Urbanization, industrialization, and other anthropogenic activities resulted in the
accumulation of heavy metals in soil. Heavy metals like Al, Cr, As, Cu, Hg, Pb, Se,
Hg, Zn, and Mn are non-degradable and toxigenic in nature that can affect plant as
well as human health. By the consumption of rice and other grains cultivated in
heavy metal contaminated soil, they got into the humans and may lead to various
health risks. Heavy metal also imposes a harmful effect on plant growth, assimilation
of water and other nutrients, physiology, metabolism, and senescence. It affects the
plant growth by damaging cell membrane integrity and by inhibiting the production
of plant growth hormones (Chibuike and Obiora 2014). As a result of this, plants
cultivated in heavy metal contaminated region exhibit stunted growth, low biomass,
chlorosis, browning of root, and ultimately death. Assimilation of heavy metals by
the plants enhances the production of reactive oxygen species which results in cell
death. Therefore, for enhancing crop productivity, conserving the ecosystem and to
ensure the environmental sustainability, removal of heavy metals via an eco-friendly
approach, becomes mandatory.

6.10.3.1 Mechanism of Heavy Metal Sequestration by PGPR

Plant growth-promoting rhizobacteria have the potency to enhance the plant growth
amidst of stress imposed by various heavy metals. The mitigation of heavy metal
toxicity by PGPR involves various mechanisms like sequestration by
exopolysaccharide, detoxification, volatilization, efflux of heavy metals, blocking
the metal entry into the cells, and complex formation. Moreover, PGPR enhance the
production of various plant growth regulators like ACC deaminase and IAA and
suppress the ethylene production (Glick 2010). PGPR promote the plant growth by
solubilizing phosphorous, fixing atmospheric nitrogen, mobilizing the essential
nutrients, and by producing siderophores (Verma et al. 2013)

Zhang et al. (2015) suggested that the Actinobacteria and proteobacteria could be
used for bioremoval of As, Mn, and Pb from contaminated soil. Reduction in the Cu
phytotoxicity was noticed when the crop plants were treated with PGPR (Fatnassi
et al. 2015). Klebsiella sp. and Micrococcus sp. were found to mobilize cadmium
found in the contaminated soil and promote shoot and root elongation of the plants
cultivated in that soil (Prapagdee et al. 2013). Bacteria such as Azospirillum
brasilense and Bradyrhizobium japonicum incorporate arsenic in the biomass and
enhance the plant development under metal stressed condition (Armendariz et al.
2015).

Phytoremediation is an upcoming strategy which involves usage of plants for
removing heavy metals present in the soil. Microorganisms are being employed for
improving the efficacy of phytoremediation. In addition, microbes can also be used
an indicator of heavy metal contamination (Chen et al. 2014). Some of the microbes
possess the ability to degrade the metal pollutant, while some microbes transform the
highly toxic form of metal ion into a less toxic form (Babu et al. 2013). For instance,
Pseudomonas sp. detoxifies the heavy metals by biotransformation of cadmium-
citrate and Fe (II)-Zinc complex (Qian et al. 2012). Siderophores produced by the
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bacteria chelate other metals along with ferric ion and help in phytoremediation
(Saha et al. 2016). Hence, PGPR assist the plants to ameliorate heavy metal stress
and promote their growth.

6.10.4 Role of Temperature Stress in Phytoretardation of Rice Plants

Both high-temperature and low-temperature are considered as one of the major
abiotic stress factors which affects the plant growth and yield. It affects almost all
the physiological processes in the plant like photosynthesis, cell division, transpira-
tion, membrane potential, and overall growth of the plant. Extreme heat makes the
cell membrane more fluidic, while extremely low temperature makes them highly
rigid. Elevated temperature enhanced the ROS production which may result in
oxidative damage of the cell (Zinn et al. 2010). In case of low temperature, visible
impairment like necrosis, chlorosis, and wilting will be observed in plants (Ruelland
and Zachowski 2010). Fluctuation in temperature may alter the calcium concentra-
tion within the plant cell (Knight et al. 1998). It may also change the structure of
plastids and thylakoid membrane and phosphorylate the mitochondrial as well as
thylakoid proteins (Ruelland and Zachowski 2010).

6.10.4.1 Mechanism of Thermic Stress Adaptation Influenced by PGPR
Plant growth-promoting microbes can be applied to alleviate adverse effect of
thermic stress in plant. Ubiquitous nature of microbes allows them to act as a
potential tool for promoting plant growth under varying thermal conditions. Psy-
chrophilic bacteria such as Arthrobacter nicotianae, Brevundimonas terrae, and
Pseudomonas cedrina exhibited plant growth enhancing activity under extreme
cold condition (Lavakusha et al. 2014). Several reports are available on plant
growth-promoting efficiency and antimicrobial activity of psychrophilic bacteria
(Meena et al. 2015; Javani et al. 2015). Similarly, thermotolerant bacteria capable
of producing organic acids for converting phosphate from insoluble to soluble form
have been well documented (Chang and Yang 2009).

To cope up the temperature fluctuation and oxidative damage of plant cell
membrane at high temperature, plants produce their own osmolytes, polyphenols,
and other secondary metabolites which make them tolerant to varying temperature
(Cheruiyot et al. 2007). Plants are also capable of producing antioxidants such as
glutathione to prevent the cells from deleterious effect of ROS. Bacteria
Paecilomyces formosus enhance the growth of plants and exhibited plant growth-
promoting traits under elevated temperature conditions. Similar to the bacteria,
endophytic fungi and other symbiotic fungi like Curvularia protuberate increased
the heat tolerating capability of plants and influence its growth (Hubbard et al. 2014;
Redman et al. 2002).
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6.10.5 Impact of Other Abiotic Stresses on Rice Plants
and PGPR-Mediated Adaptation

Soil fertility is the prime factor which influences the crop productivity. Salinity and
drought may cause unavailability of nutrients reducing crop yield. Mobility of
elements like phosphorous, iron, copper, zinc, and potassium is very limited in
soil. Inoculation of Bacillus polymyxa and Pseudomonas alcaligenes in nutrient-
depleted soil enhanced the mobility of nutrients such as nitrogen, phosphorous, and
potassium, and enhanced the plant growth (Egamberdiyeva 2007). Under iron-
limiting conditions, siderophores produced by PGPR sequester ferric ions from the
soil and facilitate its uptake by the plants (Compant et al. 2005). Nitrogen-fixing
bacteria serve as a major source of inorganic nitrate for amino acid biosynthesis.
Phosphate solubilizers like Pseudomonas, Bacillus, and Rhizobium are efficient in
mobilizing the phosphate and are widely applied as phosphate fertilizer (Rivas et al.
2006). Exopolysaccharide produced by certain PGPR strains serves as a cementing
material that binds soil particles together which is essential for enhancing soil
structure and water holding potential.

6.10.6 Cross-Protection Against Abiotic and Biotic Stresses

Plants produce a wide variety of organic compounds to mitigate from abiotic stress.
These compounds may also provide resistance against other types of stresses which
are non-specific and so called cross-protection. For instance, glycine betaine
synthesized by the plants during drought conditions may also contribute to tolerate
other abiotic stresses like salinity and frost. Similarly, inoculation of PGPR to
combat resistance against one abiotic stress can have significant influence in
overcoming other types of stresses. Induced systemic resistance in the plants can
be achieved by inoculating a non-pathogenic rhizobacteria to create resistance
against a potent phytopathogen (Walters and Fountaine 2009). Barriuso et al.
(2008) documented that Bacillus sp. elicit induced systemic resistance to the plants
and this primed physiological condition helps them to ameliorate various abiotic
stresses. Gene expression profile of Arabidopsis thaliana inoculated with a
non-pathogen, pathogenic strain, and exposure to drought stress revealed that the
genes involved in the regulation of plant resistance against various biotic and abiotic
stresses are co-regulated (Timmusk and Wagner 1999). Comparable results were
noticed by Vannini et al. (2004), where transcription factor for mitigation of cold
provides resistance to salinity, UV radiation, drought, ozone, and other phytopatho-
genic microbes. In contrast to this, Xiong and Yang (2003) reported that the
suppression of mitogen-activated protein kinase gene increased tolerance to bacterial
and fungal pathogens while significantly reduced tolerance against abiotic stresses.



118 K. Parameswaran et al.

6.11 Influence of PGPR on Plant Antioxidative Mechanism

Higher activity of ROS-Scavenging enzymes is induced by PGPR inoculation in
plant. Usually, PGPR colonize in the root system of the inoculated plants grown
under various stress condition which was identified with the help of the soil attached
to the roots and tubers of the plant collected after the process of harvesting. The
abiotic stress treatments like drought, salt, and heavy metal were given to PGPR
inoculated plants and control plants. As a result, abiotic stress influences the antioxi-
dant capacity in PGPR-inoculated plants and produced less amount of hydrogen
peroxide when compared with the control plants (Gururani et al. 2013).

6.11.1 ROS in Abiotic Stress Amelioration

Plants undergo various environmental stresses throughout their life cycle. Normal
plant growth and environmental stress were maintained by Reactive oxygen species
(ROS). Environmental factors such as heat, cold, toxicity, organic pollutants (OPs),
and pathogens could influence the generation of ROS in plant cell which acts as a
signaling molecules and trigger signal transduction pathways in response to those
stresses. But, ROS causes irreversible cellular damage due to their strong oxidative
properties, which promote alterations in plant morphological structures that enhance
resistance. Due to the presence of interconvertible ROS, it is very difficult to
differentiate the events of cytotoxic and signaling events that are influenced by a
specific ROS production. Altogether, stress-induced ROS have to appear rapidly
when the plant influenced by abiotic stress and it should be cautious that when the
stress response disappears, ROS production should also get stopped which protects
the plant from alterations in their morphological structure in future (Honglin et al.
2019).

6.11.2 Source of ROS During Abiotic Stress

All form of life exists in oxidizing environment where oxygen supports aerobic life
with great energy output. The molecule which sustains in aerobic environment can
act as a lethal contaminant in mildly reduced cellular environment through endless
formation of ROS. The term Reactive Oxygen Species (ROS) comprise of ions or
small molecules consisting of oxygen ions or free radicals of inorganic or organic
forms. Abiotic stress conditions like drought, heat, or effect of salinity in plant
growth result in the reduction of agricultural production worldwide. These
reductions may occur due to climate change and shortage of fresh water supply as
well as the concurrent occurrence of different abiotic stresses (Mittler and Blumwald
2010). In order to deal with the abiotic stress, plants have evolved a specific
mechanism by the activation of a stress-responsive genes so as to increase the
tolerance level to the environmental stresses by the production of Reactive oxygen
species (ROS), including hydrogen peroxide (H,O,), superoxide radical (O,""),
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hydroxyl radical (OHe), and singlet oxygen ('O,), etc., resulting from excitation or
incomplete reduction of molecular oxygen which are considered to be signaling
molecules that regulate plant development, biotic and abiotic stress responses (Jun
and Chan 2015).

6.11.3 Protein Modification Induced by ROS

ROS productions were helpful in tolerating the abiotic stress but if it is produced in
enormous amount, then it may lead to protein denaturation, modification in protein
which initiates the process of apoptosis that eventually leads to the cell death.
Soumen (2012) reported about the ability of ROS in oxidizing the redox-sensitive
proteins through redox-sensitive molecules like glutathione or thioredoxins which
control the cellular redox state. Redox-sensitive proteins function through down-
stream signaling components like kinases, phosphatases, and transcription factors. In
certain cases, ROS directly oxidize the target proteins, like peroxyredoxins and
thioredoxins. Indeed, most of the redox regulation of gene expression is facilitated
by a family of protein disulphide oxidoreductases like thioredoxins, peroxyredoxins,
glutaredoxins, and protein disulphide isomerases. Thioredoxins are small (approxi-
mately 12 kDa) protein with S=S reducing activity. They have been oxidized
directly by ROS or indirectly by peroxyredoxins (thioredoxin peroxidase). Soumen
(2012) through his study concluded that thioredoxins and other similar proteins act
as enzymatic mediators of the regulatory effects of ROS at transcriptional levels.

6.11.4 Interaction of ROS with Stress Hormones

Reactive oxygen species (ROS) are produced within several plant organelles, partic-
ularly in the organelles like chloroplasts, mitochondria, and peroxisomes that act as
cellular messengers and redox regulators of several plant biological processes.
Signaling pathways regulate plant responses to developmental clues toward abiotic
and biotic stress factors. They have highlighted the role of phytohormones and redox
signaling, where multiple signaling cascades converge. The integration of multiple
signals allows the plant to fine-tune its response to particular conditions. In this
regard, growing evidence shows that the generation of ROS is one of the most
common plant responses to different stresses, representing a point at which various
signaling pathways come together to modulate the plant response to environmental
cues. Integral pathway protein’s redox regulation process provides a rapid and
simple mechanism for the regulating the plant development and defense pathways.
MAPK pathways are common and versatile signaling components which are present
downstream to secondary messengers and hormones which play an important role in
plant responses to react to various stress hormones (Soumen 2012).
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6.11.5 Role of ROS in Systemic Signaling

Raja et al. (2017) stated that the reactive oxygen species (ROS) are astonishingly
versatile in sophisticated network of signaling pathways in plants and act as core
regulator of cell physiology and cellular responses to the environment. ROS are
continuously produced endogenously in plants as an unavoidable consequence of
redox cascades of aerobic metabolism. The molecular language associated with
ROS-mediated signal transduction, is found to be one of the early stress response
in the acclamatory performance of the plant. They may even act as “second messen-
ger” modulating the activities of specific proteins or expression of genes by changing
redox balance of the cell. The network of redox signals orchestrates metabolism for
regulating energy production to utilization, interfering with primary signaling agents
(hormones) to respond to changing environmental cues at every stage of plant
development. The oxidative lipid peroxidation products and the resulting generated
products thereof (associated with stress and senescence) also represent “biological
signals,” which do not require preceding activation of genes. Unlike ROS-induced
expression of genes, these lipid peroxidation products produce nonspecific response
to a large variety of environmental stresses. The present review explores the specific
and nonspecific signaling language of reactive oxygen species in plant acclamatory
defense processes, controlled cell death, and development. Special emphasis is given
to ROS and redox-regulated gene expression and the role of redox-sensitive proteins
in signal transduction event. It also describes the emerging complexity of apparently
contradictory roles that ROS play in cellular physiology to ascertain their position in
the life of the plant.

ROS communicate with other signaling molecules and being part of the signaling
network may control responses both downstream and upstream of ROS. The facts
discussed in the review indicate that we are now going through the initial steps in
understanding how oxidants/ROS modulate signal transduction pathway with or
without activating genes. So, in spite of tremendous development in our understand-
ing of ROS biology, the exact nature of ROS-signaling network largely remains
obscured. Molecular Genetic studies in addition to unique physiological approaches
will be required to ascertain the position of ROS in the signal transduction pathways
and also to understand how these short-lived endogenous signaling compounds are
perceived and transduced to specific and nonspecific responses necessary for sur-
vival of plants. This will ultimately help us to screen better performing plants under
environmental stress for breeding program.

6.12 Addressing Abiotic Stress Using “Omic” Approach

Understanding the plant—microbe interaction and their molecular signals involved in
various physiological and biochemical pathways is essential for crop improvement
techniques (Schenk et al. 2012). Application of multi-omic approach is highly useful
to decode the changes in plant physiology, metabolism, and genetics. Advancement
in bioinformatics accelerates the research outcomes based on omics approach.



6 PGPR: The Redeemer of Rice from Abiotic Stress 121

Metagenomics and metaproteomics widened the knowledge about various microbial
communities found in a specific habitat like rhizosphere (DeCastro et al. 2013).

Plant breeding programs for ameliorating stress require large amount of genomic
data. Genomic profile is also mandatory for crop improvement programs (Tomar
et al. 2014). With an intention to understand the mechanism of abiotic stress
resistance, genes and their regulatory elements associated with microbial
communities should be unraveled. Ma et al. (2004) applied PCR-based molecular
markers for expressed sequence tag and microsatellite to determine the accumulation
of silicon in rice plant and to screen its ability to mitigate abiotic stresses. Gene
silencing strategy involving RNAi helps to engineer abiotic and biotic stress tolerant
varieties in plants (Kubicek et al. 2011; Viterbo et al. 2010). Estimation of microbial
diversity in the rhizosphere region using high throughput metagenomics approach
does not involve isolation, culturing of microorganisms (Chen and Pachter 2005).
Gene contributing for salt tolerance in E. coli, crotonyl-CoA hydratase, was
identified based on metagenomics data and is used to develop salt-resistant trans-
genic plants (Kapardar et al. 2010). Genes contribute for cold tolerance such as cold-
shock proteins, pH homeostasis, and anti-freeze proteins were recognized from the
metagenome of acid mine drainage and are used to alleviate cold stress in plants
(Liljeqvist et al. 2015). Metagenomic approach also reveals the stress ameliorating
ability of each bacterium found in the rhizosphere soil. Whereas, metaproteomics
analysis in combination with metatranscriptomics reveals gene expression pattern
and abundance of stress-related proteins (Turner et al. 2013). Transcriptomic profile
generated by microarray technology and mRNA sequencing has been applied to
study the plant-microbe interactions (Wang et al. 2016). Transcriptome profile of
rapeseed and the symbiotic microorganism Stenotrophomonas rhizophila revealed
the synthesis of a plant growth regulator protein, spermidine during abiotic stresses
(Alavi et al. 2013). miRNAs in rice as well as in other plants regulate various
physiological functions under abiotic stress conditions (Trindade et al. 2010). For
instance, miR169 regulates the synthesis of nuclear transcription factor YA to
mitigate drought and salinity stress in rice plants Zhao et al. (2009). miRNAs also
provide information about various signaling pathways which are involved in stress
response (Curaba et al. 2014). Expression of miRNA in rice under aluminum stress
exhibited a complex response involving 16 different stress responses (Blokhina and
Fagerstedt 2010).

Proteomics plays a crucial role in understanding the regulation of signal proteins
which are involved in physiology, metabolism, and plant-microbe interactions
during stress situations (Silva-Sanchez et al. 2015). Ability for producing
siderophore, biocontrol potential, synthesis of plant growth-promoting substances,
and versatile nature makes Pseudomonas sp., a well-characterized strain (Sorty et al.
2016). With the aim to study the mechanism behind the stress tolerance, it is
mandatory to reveal the molecular insights of PGPR by using proteomics as well
as metabolomics approach. Metabolomics reflects the molecular pathway activated
under a particular environmental condition (Bundy et al. 2005). Metabolomics
approach paves a way for identifying the signals molecules that are produced by
the plants to attract various microbiota (Micallef et al. 2009). Metabolic products
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from microorganisms influence plant growth either by direct or by indirect mecha-
nism. For instance, synthesis of auxins, IAA, gibberellins, siderophores, and
cytokinins by the microbes has a significant impact on plant growth (Robin et al.
2006). These cellular processes can also be quantified with high degree of accuracy
by an emerging approach called quantitative metabolomics (Noack and Wiechert
2014). Plants and rhizosphere microbes communicate with each other by
synthesizing certain root exudates and other signaling molecules (Peiffer et al.
2013). Hence, metabolic profiling of microbes and the plants will provide a clear
insight on the influence of microbe to mitigate various abiotic stresses. To conclude,
integration of data generated from multi-omic approach will resolve the mechanisms
behind stress resistance in various crop plants.

6.13 Role of Plant Tissue Culture and Genetic Engineering
to Combat Abiotic Stress in Rice

The physiological and chemical nature of crop has been affected by biotic and
abiotic stresses resulting in hindrance of plant growth, development, and crop
yield (Kazan 2015). Abiotic stresses that affect the yield in rice crops are heavy
metal, drought, cold, heat, and salinity. The impact of abiotic stresses can be noticed
in the rice during the stage of development (Feller and Vaseva 2014; Paul and
Roychoudhury 2019). Globally, drought is considered as a severe abiotic stress in
rice that affects the growth and yield every year (Nasim et al. 2018). Salinity is the
second most abiotic stress affecting the crop competence (Roychoudhury and
Chakraborty 2013; Mariani and Ferrante 2017). The decrease in plant productivity
due to these abiotic and biotic stresses is likely to be around 50% that results in a
significant economic loss (Ishaq and Memon 2017). In India, high temperature is
considered to be the chief abiotic stress which affects rice crops (Tian et al. 2012). In
order to overcome this issue, tissue culture and genetic engineering is one of the
excellent techniques to produce crops that are resistant and tolerant to various abiotic
stresses.

Plant tissue culture technique helps in production of desirable agronomic charac-
ter with biotic and abiotic stress tolerance. Stroud et al. (2013) succeeded in
developing desirable agronomic traits in rice plants by tissue culture technique and
reported that the regenerated rice plants exhibited consistent epigenomic traits with
unique pattern of DNA methylation.

Transformation experiments in rice plants are usually carried out by gene gun
method, Agrobacterium-mediated approach, and protoplast fusion technique. Rice
plants expressing desirable characters can be produced by genetic engineering
technique. For instance, genetically modified heat-tolerant rice varieties can be
produced by changing the expression of heat shock protein (HSPs) genes, enhancing
osmolytes production, altering membrane permeability, and by promoting the syn-
thesis of enzymes which are involved in detoxification of cells (Wahid et al. 2007).
Scafaro et al. (2018) developed thermic-resistant rice variety by transforming genes
involved in synthesis of Rubisco activase enzyme and reported the enhanced growth,
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yield of recombinant plants under heat stressed conditions. Kumar et al. (2018)
emphasized the importance of genetic engineering and antisense technology for
getting a clear insight on the biological role and regulation of HSPs.

Ma et al. (2017) applied RNA interference technology to prove the role of
OVATE family proteins (OsOFP6) in influencing growth and development of rice
plants under cold and drought stresses. Similarly, Zhang et al. (2016) reported
another gene called CTB4a, which is involved in development of cold resistance
in rice plants. Role of other genes such as qCTB1 and qCTB7, which confer for cold
resistance, has been well documented by Saito et al. (2010) and Zhou et al. (2009),
respectively. Xu et al. (2011) reported the enhanced cold resistance in GM rice plants
expressing C-repeat binding factor (CBF) gene, ZmCBF3. Major QTL gene namely
gLTG3-1, which is involved in seed germination of rice, was identified by Fujino
et al. (2008).

Recombinant rice plants expressing dehydration responsive element binding
protein (DREB) like AtDREB1/OsDREBI1 genes revealed tolerance to multiple
stress factors such as salinity, drought, and low temperature. Zhang et al. (2009)
identified another cold-tolerance provoking DREB gene, OsDREB 1D. Similar to the
above-mentioned gene transformations, various other genes involved in mitigation
of various abiotic stresses have been successfully cloned and expressed in GM rice
plants like OsCOIN (Liu et al. 2007), AISAP (Ben-Saad et al. 2012), OsMYB2
(Yang et al. 2014), TERF2/LeERF2 (Zhang et al. 2010), OsPRP3 (Gothandam et al.
2009), and DaCBF4 (Byun et al. 2018) to ameliorate abiotic stresses like cold,
salinity, and drought, etc. Advancement in molecular techniques like RNA sequenc-
ing, microarrays, protein—protein interaction, and proteomics approach leads to the
recognition of several stress-related genes in rice plants (Chandran and Jung 2014)
for further genetic engineering experiments.

6.14 Application of Seed Priming Technique to Overcome
Adverse Stress Conditions

Seed priming is a cost-effective and indispensable tool for generation of stress-
resistant plants. In this technique, the plants are trained physiologically to respond
various abiotic stresses rapidly. It helps to enhance the growth and productivity of
plants under adverse environmental conditions (Paparella et al. 2015). Primed seeds
usually exhibit high seedling vigor and germination rate. Priming of seeds can be
done by various processes viz. chemical priming, hormonal priming, osmopriming,
redox priming, hydropriming, and nutrient priming in order to overcome the unfa-
vorable climatic conditions (Paparella et al. 2015).

Hydropriming is the technique widely used to mitigate drought stress in rice
plants by enhancing its growth and crop productivity (Mahajan et al. 2011). Primed
seeds revealed the presence of high soluble protein and proline content under
drought stressed conditions (Yuan-Yuan et al. 2010). Kalhori et al. (2018) reported
that the primed rice seeds alter the catalase and ascorbate peroxidase activity and
thereby helps the plant to withstand under water-deficit environment.



124 K. Parameswaran et al.

Polyethylene glycol-mediated chemical priming revealed only a limited effi-
ciency in overcoming drought stress (Goswami et al. 2013). Seed priming activity
mediated by salicylic acid (100 ppm) resulted in increase of seed dry weight,
reduction in germination time and enhanced shoot, root development in rice plants
during drought (Shatpathy et al. 2018) and cold stress situations (Hussain et al.
2016). Similarly, seed priming activity of ascorbic acid (200 ppm) under extreme
heat stressed condition on paddy was well documented by Kata et al. (2014).

Osmopriming using CaCl, influences the growth, establishment, quality, and
yield of rice by increasing flavonoids, antioxidants, and polyphenols under water-
deficit (Hussain et al. 2017) and saline conditions (Rehman et al. 2012). In saline
environment, Seed germination rate, dry weight, and length of the seedling can be
enhanced by priming the seeds using CaCl, and KCI as chemical mediators (Afzal
et al. 2012). Similarly, vinegar, KNO;, and mannitol can also contribute rice plants
to overcome salt stress (Theerakulpisut et al. 2017). Such type of osmopriming
involving mixed salts elevated the activity of root dehydrogenase, p-amylase, shoot
catalase, and a-amylase in high-salt environment. Hydrogen peroxide-mediated seed
priming contributes tolerance to a wide variety of stresses like drought, salt, chilling,
and thermic stresses (Uchida et al. 2002).

Mitigation of abiotic stresses by seed priming involves various mechanisms like
DNA repair, activation of related genes, enzymes involved in various biochemical
mechanisms and metabolism, mobilization of nutrients, etc. Usage of appropriate
priming agents for different crops and corresponding stress conditions has a great
impact in sustainable mitigation of abiotic stresses.

6.15 Opportunities and Challenges in Commercialization
of PGPR

Abiotic stresses and nutritional requirements of ever-increasing population have
now become a major threat to crop production globally. It necessitates strengthening
of agriculture by using a sustainable approach in order to supply nutrients, provoke
various plant pathogens, develop stress resistance as well as to promote growth and
yield of the crop plants (Salme et al. 2017). Although PGPR have been proven to be
a suitable alternate to conventional chemical fertilizers and pesticides, successful
application and commercialization of PGPR depend on

¢ thorough understanding of growth-promoting mechanism of PGPR using inter-
disciplinary research,

* commercial scale production of PGPR using low cost raw materials,

* optimizing the formulation and mode of application of PGPR,

* marketing and legalization of product,

¢ educating farmers reading handling of PGPR as biofertilizer (Bushra et al. 2017).

One of the major limitations in commercialization of PGPR is its sensitivity to
prevailing environmental conditions and poor shelf life which ultimately results in
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inconsistent performance of PGPR under field trials. A clear insight on the PGPR-
mediated plant protection mechanism may help to overcome this inconsistency
issue. Based on its long-term viability in soil, spore forming Bacillus sp. is consid-
ered to be a highly suitable strain for commercial production of PGPR rather than
Pseudomonas sp. But knowledge on the interaction of PGPR with indigenous field
microflora is mandatory for determining its sustainability. Adaptability and viability
of PGPR can also be enhanced by genetic engineering techniques.

Framing international regulatory guidance for assessment of potential risk and
efficacy of PGPR is also needed before marketing. Moreover, it is often difficult for
the companies to patent the process involved in industrial production of PGPR as
biostimulant. Also, challenges in the harmonization of legislation regarding com-
mercialization of PGPR have to be addressed. Upon overcoming all these technical,
scientific, and legislative issues, commercial production and application of PGPR are
really a boon for mitigating abiotic stresses on plants.

6.16 Future Prospects

Application of PGPR well exhibited their potential to mitigate environmental stress,
improving soil health, enhancing plant growth, productivity, and to overcome food
security issues. Further research is essential to formulate and commercialize efficient
microbial consortia for mitigating the adverse effect of abiotic stress on plant growth
and yield. It is foremost important to screen and identify potent bacterial strain that
provides cross-resistance to multiple stress factors. Knowledge on mechanism of
stress resistance, signaling molecules, and induced system resistance has to be
widened by the applying multi-omics approach. During field application, a wide
range of factors including soil properties, plant variety, agricultural practices, indig-
enous microbial community, mode of application, and prevailing environmental
conditions may influence the survival of PGRP. Hence, field testing is mandatory
for scrutinizing the capability of PGPR strain to adapt and establish itself in natural
environment. Production of PGRP in industrial scale should be made economical by
utilizing low-cost carrier molecules, cheap growth substrates, and by formulating a
simple manufacturing procedure. Other pitfalls in the commercial production and
practical application of PGPR have to be addressed.

References

Afzal I, Butt A, Rehman HU, Basra SMA, Afzal A (2012) Alleviation of salt stress in fine aromatic
rice by seed priming. Aust J Crop Sci 6:1401

Ahemad M, Khan MS (2012) Evaluation of plant-growth promoting activities of rhizobacterium
Pseudomonas putida under herbicide stress. Ann Microbiol 62:1531-1540

Ahmad P, Prasad MNV (2011) Environmental adaptations and stress tolerance of plants in the era of
climate change. Springer, Berlin



126 K. Parameswaran et al.

Akhgar R, Arzanlou M, Bakker PAHM, Hamidpour M (2014) Characterization of
1-aminocyclopropane-1-carboxylate (ACC) deaminase-containing Pseudomonas sp. in the
rhizosphere of salt-stressed canola. Pedosphere 24:161-468

Akhtar N, Qureshi MA, Igbal A, Ahmad MJ, Khan KH (2012) Influence of Azotobacter and IAA on
symbiotic performance of Rhizobium and yield parameters of lentil. J Agric Res 50:361-372

Alavi P, Starcher MR, Zachow C, Miiller H, Berg G (2013) Root microbe systems: the effect and
mode of interaction of stress protecting agent (SPA) Stenotrophomonas rhizophila
DSM14405T. Front Plant Sci 4:141

All India Rice Exporters Association (AIREA) (2015) All-India area, production and yield of rice.
http://www.airea/page/62/statistical-data/all-india-area-production-and-yield-of-rice. Accessed
25 Mar 2015

Al-Maskri AHMED, Al-Kharusi L, Al-Migbali H, Khan MM (2010) Effects of salinity stress on
growth of lettuce (Lactuca sativa) under closed-recycle nutrient film technique. Int J Agric Biol
12(3):377-380

Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduc-
tion. Annu Rev Plant Biol 55:373-399

Armendariz AL, Talano MA, Oller AL, Medina MI, Agostini E (2015) Effect of arsenic on
tolerance mechanisms of two plant growth-promoting bacteria used as biological inoculants. J
Environ Sci 33:203-210

Arshad M, Shaharoona B, Mahmood T (2008) Inoculation with Pseudomonas spp. containing
ACC-deaminase partially eliminates the effects of drought stress on growth, yield and ripening
of pea (Pisum sativum L.). Pedosphere 18:611-620

Ashraf M (2004) Some important physiological selection criteria for salt tolerance in plants. Flora—
Morphol Distrib Funct Ecol. Plan Theory 199(5):361-376

Azooz MM, Youssef AM, Ahmad P (2011) Evaluation of salicylic acid (SA) application on growth,
osmotic solutes and antioxidant enzyme activities on broad bean seedlings grown under diluted
seawater. Int J Plant Physiol Biochem 3:253-264

Babu AG, Kim JD, Oh BT (2013) Enhancement of heavy metal phytoremediation by Alnus firma
with endophytic Bacillus thuringiensis GDB-1. ] Hazard Mater 250:477—483

Bano A, Fatima M (2009) Salt tolerance in Zea mays (L). following inoculation with Rhizobium and
Pseudomonas. Biol Fertil Soils 45(4):405-413

Barriuso J, Solano BR, Fray RG, Camara M, Hartmann A, Manero FJG (2008) Transgenic tomato
plants alter quorum sensing in plant growth-promoting rhizobacteria. Plant Biotechnol J
6:442-452

Belimov AA, Safronova VI, Sergeyeva TA, Egorova TN, Matveyeva VA, Tsyganov VE, Borisov
AY, Tikhonovich IA, Kluge C, Preisfeld A, Dietz K, Stepanok VV (2001) Characterization of
plant growth promoting rhizobacteria isolated from polluted soils and containing
1-aminocyclopropane-1-carboxylate deaminase. Can J Microbiol 47(7):642-652

Beneduzi A, Ambrosini A, Passaglia LMP (2012) Plant growth-promoting rhizobacteria: their
potential as antagonists and biocontrol agents. Genet Mol Biol 35(4):1044-1051

Ben-Saad R, Ben-Ramdhan W, Zouari N, Azaza J, Mieulet D, Guiderdoni E, Hassairi A (2012)
Marker-free transgenic durum wheat cv. Karim expressing the AISAP gene exhibits a high level
of tolerance to salinity and dehydration stresses. Mol Breed 30:521-533

Bernier J, Atlin GN, Serraj R, Kumar A, Spaner D (2008) Breeding upland rice for drought
resistance. J Sci Food Agr 88:927-939

Bhandari H, Mishra A (2018) Impact of demographic transformation on future rice farming in Asia.
Outl Agric 47(2):125-132

Bhattacharyya PN, Jha DK (2012) Plant growth-promoting rhizobacteria (PGPR): emergence in
agriculture. World J Microbial Biotechnol 28:1327-1350

Bhullar NK, Gruissem W (2013) Nutritional enhancement of rice for human health. Contribut
Biotechnol 31:50-57

Blokhina O, Fagerstedt KV (2010) Reactive oxygen species and nitric oxide in plant mitochondria:
origin and redundant regulatory systems. Physiol Plant 138:447—462


http://www.airea/page/62/statistical-data/all-india-area-production-and-yield-of-rice

6 PGPR: The Redeemer of Rice from Abiotic Stress 127

Bundy JG, Willey TL, Castell RS, Ellar DJ, Brindle KM (2005) Discrimination of pathogenic
clinical isolates and laboratory strains of Bacillus cereus by NMR-based metabolomic profiling.
FEMS Microbiol Lett 242:127-136

Bushra T, Anwar K, Muhammad T, Memoona R, Muhammad SIK, Naila S, Khadija A (2017)
Bottlenecks in commercialization and future prospects of PGPR. Appl Soil Ecol 121:102-117

Byun MY, Cui LH, Lee J, Park H, Lee A, Kim WT, Lee H (2018) Identification of rice genes
associated with enhanced cold tolerance by comparative transcriptome analysis with two
transgenic rice plants overexpressing DaCBF4 or DaCBF7, isolated from Antarctic flowering
plant Deschampsia antarctica. Front Plant Sci 9:601

Caldwell JC, Caldwell BK, Caldwell P et al (2006) Demographic transition theory. Springer,
Dordrecht

Carson JK, Gonzalez-Quinones V, Murphy DV et al (2010) Low pore connectivity increases
bacterial diversity in soil. Appl Environ Microbiol 76:3936-3942

Chandran AKN, Jung KH (2014) Resources for systems biology in rice. J Plant Biol 57:80-92

Chang CH, Yang SS (2009) Thermo-tolerant phosphate-solubilizing microbes for multifunctional
biofertilizer preparation. Bioresour Technol 100:1648-1658

Chaves MM, Flexas J, Pinheiro C (2009) Photosynthesis under drought and salt stress: regulation
mechanisms from whole plant to cell. Ann Bot 103:551-560

Chen K, Pachter L (2005) Bioinformatics for whole genome shotgun sequencing of microbial
communities. PLoS Comput Biol 1:106-112

Chen L, Luo S, Li X, Wan Y, Chen J, Liu C (2014) Interaction of Cd-hyperaccumulator Solanum
nigrum L. and functional endophyte Pseudomonas sp. Lk9 on soil heavy metals uptake. Soil
Biol Biochem 68:300-308

Cheruiyot EK, Mumera LM, Ng’etich WK, Hassanali A, Wachira F (2007) Polyphenols as potential
indicators for drought tolerance in tea (Camellia sinensis L.). Biosci Biotechnol Biochem 71
(9):2190-2197

Chibuike GU, Obiora SC (2014) Heavy metal polluted soils: effect on plants and bioremediation
methods. Appl Environ Soil Sci 2014:1-12

Chodak K, Gotgbiewski M, Morawska-Ptoskonka J, Kuduk K, Niklinska M (2015) Soil chemical
properties affect the reaction of forest soil bacteria to drought and rewetting stress. Ann
Microbiol 65:1627-1637

ChunJuan W, YaHui G, Chao W (2012) Enhancement of tomato (Lycopersicon esculentum)
tolerance to drought stress by plant-growth-promoting rhizobacterium (PGPR) Bacillus cereus
AR156. J Agric Biotechnol 20:1097-1105

Compant S, Duffy B, Nowak J, Clément C, Barka EA (2005) Use of plant growth promoting
bacteria for biocontrol of plant diseases: principles, mechanisms of action, and future prospects.
Appl Environ Microbiol 71(9):4951-4959

Curaba J, Singh MB, Bhalla PL (2014) miRNAs in the crosstalk between phytohormone signalling
pathways. J Exp Bot 65:1425-1438

Damam M, Kaloori K, Gaddam B, Kausar R (2016) Plant growth promoting substances
(phytohormones) produced by rhizobacterial strains isolated from the rhizosphere of medicinal
plants. Int J Pharm Sci Rev 37(1):130-136

Damodaran T, Sah V, Rai RB, Sharma DK, Mishra VK, Jha SK, Kannan R (2013) Isolation of salt
tolerant endophytic and rhizospheric bacteria by natural selection and screening for promising
plant growth-promoting rhizobacteria (PGPR) and growth vigour in tomato under sodic envi-
ronment. Afr J Microbiol Res 7:5082-5089

Dawe D (2000) The contribution of rice research to poverty alleviation. Stud Plant Sci 7:3-12

deCastro AP, Sartori A, Silva MR, Quirino BF, Kruger RH (2013) Combining “omics” strategies to
analyze the biotechnological potential of complex microbial environments. Curr Protein Pept
Sci 14:447-458

Deepa G, Singh V, Naidu KA (2008) Nutrient composition and physicochemical properties of
Indian medicinal rice — Njavara. Food Chem 106:165-171



128 K. Parameswaran et al.

Egamberdiyeva D (2007) The effect of plant growth promoting bacteria on growth and nutrient
uptake of maize in two different soils. Appl Soil Ecol 36(23):184-189

Erda L, Wei X, Hui J, Yinlong X et al (2005) Climate change impacts on yield formation of CO,-
enriched inter-subspecific hybrid rice cultivar Liangyoupeijiu under fully open-air field condi-
tion in a warm sub-tropical climate crop yield and quality with CO, fertilization in China. Philos
Trans R Soc B 360:2149-2154

Fang Y, Xiong L (2015) General mechanisms of drought response and their application in drought
resistance improvement in plants. Cell Mol Life Sci 72:673-689

FAO (2001) Nutritional contribution of rice and impact of biotechnology and biodiversity in rice-
consuming countries. http://www.fao.org/docrep/006/Y4751E/y4751e05.htm

FAO (2004) Rice is life. http://www.fao.org/rice2004/en/f-sheet/factsheet3.pdf

Farooq M, Wahid A, Lee DJ, Ito O, Siddique KHM (2009) Advances in drought resistance of rice.
Crit Rev Plant Sci 28:199-217

Fatnassi IC, Chiboub M, Saadani O, Jebara M, Jebara SH (2015) Impact of dual inoculation with
Rhizobium and PGPR on growth and antioxidant status of Vicia faba L. under copper stress. CR
Biol 338(4):241-254

Feller U, Vaseva II (2014) Extreme climatic events: impacts of drought and high temperature on
physiological processes in agronomically important plants. Front Environ Sci 2:39

Fletcher RS, Mullen JL, Heiliger A, Mckay JK (2015) QTL analysis of root morphology, flowering
time, and yield reveals tradeoffs in response to drought in Brassica napus. J Exp Bot
66:245-256

Fujino K, Sekiguchi H, Matsuda Y, Sugimoto K, Ono K, Yano M (2008) Molecular identification
of a major quantitative trait locus, qLTG3-1, controlling low-temperature germinability in rice.
Proc Natl Acad Sci U S A 105:12623-12628

Gage TB, DeWitte S (2009) What do we know about the agricultural demographic transition? Curr
Anthropol 50(5):649-655

Garcia FP, Menendez E, Rivas R (2015) Role of bacterial bio fertilizers in agriculture and forestry.
AIMS Bioeng 2:183-205

Glick BR (2010) Using soil bacteria to facilitate phytoremediation. Biotechnol Adv 28:367-374

Glick BR (2012) Plant growth-promoting bacteria: mechanisms and applications. Scientifica
2012:963401

Gonzalez AJ, Larraburu EE, Llorente BE (2015) Azospirillum brasilense increased salt tolerance of
Jojoba during in vitro rooting. Ind Crops Product 76:41-48

Goswami A, Banerjee R, Raha S (2013) Drought resistance in rice seedlings conferred by seed
priming. Protoplasma 250:1115-1129

Gothandam KM, Easwaran N, Sivashanmugam K, Shin JS (2009) OsPRP3, a flower specific
Proline-rich protein of rice, determines extracellular matrix structure of floral organs and its
overexpression confers cold-tolerance. Plant Mol Biol 72:125-135

Gray EJ, Smith DL (2005) Intracellular and extracellular PGPR: commonalities and distinctions in
the plant-bacterium signaling processes. Soil Biol Biochem 37:395-412

Gupta S, Meena MK, Datta S (2014) Isolation, characterization of plant growth promoting bacteria
from the plant Chlorophytum borivilianum and in-vitro screening for activity of nitrogen
fixation, phosphate solubilization and IAA production. Int J Curr Microbial Appl Sci
3:1082-1090

Gururani MA, Upadhyaya CP, Baskar V, Venkatesh J, Nookaraju A, Park SW (2013) Plant growth-
promoting rhizobacteria enhance abiotic stress tolerance in Solanum tuberosum through induc-
ing changes in the expression of ROS-scavenging enzymes and improved photosynthetic
performance. J Plant Growth Regul 32:245-258

Han HS, Lee KD (2005) Plant growth promoting rhizobacteria. Effect on antioxidant status,
photosynthesis, mineral uptake and growth of lettuce under soil salinity. Res J Agric Biol Sci
1:210-215

Hansen J, Ruedy R, Glascoe J, Sato M (1999) GISS analysis of surface temperature change. J
Geophys Res 104:30997-31022


http://www.fao.org/docrep/006/Y4751E/y4751e05.htm
http://www.fao.org/rice2004/en/f-sheet/factsheet3.pdf

6 PGPR: The Redeemer of Rice from Abiotic Stress 129

Hayat R, Ali S, Amara U, Khalid R, Ahmed I (2010) Soil beneficial bacteria and their role in plant
growth promotion: a review. Ann Microbiol 60(4):579-598

Heinemann RJB, Fagundes PL, Pinto EA, Penteado MVC, Lanfer-Marquez UM (2005) Compara-
tive study of nutrient composition of commercial brown, parboiled and milled rice from Brazil. J
Food Comp Anal 18:287-296

Honglin H, Ullah F, Zhou DX, Yi M, Zhao Y (2019) Mechanisms of ROS regulation of plant
development and stress responses. Front Plant Sci 10(800):1-10

Hu H, Xiong L (2014) Genetic engineering and breeding of drought-resistant crops. Annu Rev Plant
Biol 65:715-741

Hu S, Chapin FS, Firestone MK et al (2001) Nitrogen limitation of microbial decomposition in a
grassland under elevated CO,. Nature 409:188-191

Hu Y, Burucs Z, Schmidhalter U (2007) Short-term effect of drought and salinity on growth and
mineral elements in wheat seedlings. J Plant Nutr 29:2227-2243

Hubbard M, Germida JJ, Vujanovic V (2014) Fungal endophytes enhance wheat heat and drought
tolerance in terms of grain yield and second-generation seed viability. J Appl Microbiol 116
(1):109-122

Hussain S, Khan F, Hussain HA, Nie L (2016) Physiological and biochemical mechanisms of seed
priming-induced chilling tolerance in rice cultivars. Front Plant Sci 7:116

Hussain M, Farooq M, Lee DJ (2017) Evaluating the role of seed priming in improving drought
tolerance of pigmented and non-pigmented rice. J Agron Crop Sci 203(4):269-276

International Rice Research Institute (2008) The rice crisis: what needs to be done? IRRI, Los
Banos. https://www.irri.org/

International Rice Research Institute (IRRI) (1975) Major research in upland rice. International Rice
Research Institute, Los Banos

IPCC (2019) Report: sea level rise is a present and future danger. https://www.nrdc.org/

Ishaq W, Memon SQ (2017) Roles of women in agriculture: a case study of rural Lahore, Pakistan. J
Rural Dev Agric 1:1-11

Jahanian A, Chaichi MR, Rezaei K, Rezayazdi K, Khavazi K (2012) The effect of plant growth
promoting rhizobacteria (PGPR) on germination and primary growth of artichoke (Cynaras
colymus). Int J Agric Crop Sci 4:923-929

Javani S, Marin I, Amils R, Abad JP (2015) Four psychrophilic bacteria from Antarctica extracel-
lularly biosynthesize at low temperature highly stable silver nanoparticles with outstanding
antimicrobial activity. Colloids Surf A Physicochem Eng Asp 483:60-69

Jha Y, Subramanian RB (2014) PGPR regulate caspase-like activity, programmed cell death, and
antioxidant enzyme activity in paddy under salinity. Physiol Mol Biol Plant 20:201-207

Jha Y, Subramanian RB, Patel S (2011) The combination of endophytic and rhizospheric plant
growth promoting rhizobacteria in Oryza sativa shows higher accumulation of osmoprotectant
against saline stress. Acta Physiol Plant 33:797-802

Jun YY, Chan Z (2015) ROS regulation during abiotic stress responses in crop plants. Front Plant
Sci 6(1092):1-15

Kalhori N, Nulit R, Azizi P, Abiri R, Atabki N (2018) Hydro priming stimulates seedling growth
and establishment of Malaysian Indica rice (MR219) under drought stress. Acta Scientific Agric
2(11):09-16

Kang SM, Radhakrishnan R, Khan AL, Kim MJ, Park JM, Kim BR, Shin DH, Lee 1J (2014)
Gibberellin secreting rhizobacterium, Pseudomonas putida H-2-3 modulates the hormonal and
stress physiology of soybean to improve the plant growth under saline and drought conditions.
Plant Physiol Biochem 84:115-124

Kapardar RK, Ranjan R, Grover A, Puri M, Sharma R (2010) Identification and characterization of
genes conferring salt tolerance to Escherichia coli from pond water metagenome. Bioresour
Technol 101:3917-3924

Kasim WA, Gaafar RM, Abou-Ali RM, Omar MN, Hewait HM (2016) Effect of biofilm forming
plant growth promoting rhizobacteria on salinity tolerance in barley. Ann Agric Sci 61
(2):217-227


http://www.irri.org
https://www.nrdc.org/

130 K. Parameswaran et al.

Kata LP, Bhaskaran M, Umarani R (2014) Influence of priming treatments on stress tolerance
during seed germination of rice. Inter J Agric Environ Biotechnol 7:225-232

Kazan K (2015) Diverse roles of jasmonates and ethylene in abiotic stress tolerance. Trends Plant
Sci 20:1360-1385

Kim HY, Lieffering M, Miura S et al (2001) Growth and nitrogen uptake of CO,- enriched rice
under field conditions. New Phytol 150:223-229

Kimball BA (1983) Carbon dioxide and agricultural yield: an assemblage and analysis of 430 prior
observations. Agron J 75:779-788

Knight H, Brandt S, Knight MR (1998) A history of stress alters drought calcium signalling
pathways in Arabidopsis. Plant J 16(6):681-687

Kubicek CP, Herrera-Estrella A, Seidl-Seiboth V, Martinez DA, Druzhinina IS, Thon M et al
(2011) Comparative genome sequence analysis underscores mycoparasitism as the ancestral life
style of Trichoderma. Genome Biol 12:R40

Kumar A (2016) Phosphate solubilizing bacteria in agriculture biotechnology: diversity, mecha-
nism and their role in plant growth and crop yield. Int J Adv Res 4(4):116-124

Kumar A, Sandhu N, Dixit S, Yadav S, Swamy BPM, Shamsudin NAA (2018) Marker-assisted
selection strategy to pyramid two or more QTLs for quantitative trait-grain yield under drought.
Rice 11(35):1-16

Lauber CL, Hamady M, Knight R (2009) Pyrosequencing-based assessment of soil pH as a
predictor of soil bacterial community structure at the continental scale. Appl Environ Microbiol
75:5111-5120

Lavakusha, Yadav J, Verma JP, Jaiswal DK, Kumar A (2014) Evaluation of PGPR and different
concentration of phosphorus level on plant growth, yield and nutrient content of rice (Oryza
sativa). Ecol Eng 62:123-128

Liljeqvist M, Ossandon FJ, Gonzalez C, Rajan S, Stell A, Valdes J et al (2015) Metagenomic
analysis reveals adaptations to a cold-adapted lifestyle in a low-temperature acid mine drainage
stream. FEMS Microbiol Ecol 91:fiv011

Liu X, Lindemann WC, Whitford WG (2000) Microbial diversity anti activity of disturbed soil in
the northern Chihuahuan desert. Biol Fert Soils 32:243-249

Liu K, Wang L, Xu Y et al (2007) Overexpression of OsCOIN, a putative cold inducible zinc finger
protein, increased tolerance to chilling, salt and drought, and enhanced proline level in rice.
Planta 226(4):1007-1016

Liu W, Wang Q, Hou J, Tu C, Luo Y, Christie P (2016) Whole genome analysis of halotolerant and
alkalotolerant plant growth-promoting rhizobacterium Klebsiella sp. DSA. Sci Rep 6:26710

Luo LJ (2010) Breeding for water-saving and drought-resistance rice (WDR) in China. J Exp Bot
61:3509-3517

Ma JF, Mitani N, Nagao S, Konishi S, Tamai K, Iwashita T et al (2004) Characterization of the
Silicon uptake system and molecular mapping of the Silicon transporter gene in rice. Plant
Physiol 136:3284-3289

Ma Y, Yang C, He Y, Tian Z, Li J (2017) Rice OVATE family protein 6 regulates plant
development and confers resistance to drought and cold stresses. J Exp Bot 68:4885-4898

Mabhajan S, Tuteja N (2005) Cold, salinity and drought stresses: an overview. Arch Biochem
Biophys 444:139-158

Mahajan G, Sarlach RS, Japinder S, Gill MS (2011) Seed priming effects on germination, growth
and yield of dry direct-seeded rice. J Crop Improv 25:409—417

Mariani L, Ferrante A (2017) Agronomic management for enhancing plant tolerance to abiotic
stresses—drought, salinity, hypoxia, and lodging. Horticulturae 3(52):1-18

Meena RK, Ramesh KS, Norang PS, Sunita KM, Vijay SM (2015) Isolation of low temperature
surviving plant growth—promoting rhizobacteria (PGPR) from pea (Pisum sativum L.) and
documentation of their plant growth promoting traits. Biocatal Agric Biotechnol 4:806-811

Micallef SA, Channer S, Shiaris MP, Colén-Carmona A (2009) Plant age and genotype impact the
progression of bacterial community succession in the Arabidopsis rhizosphere. Plant Signal
Behav 4:777-780



6 PGPR: The Redeemer of Rice from Abiotic Stress 131

Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405-410

Mittler R, Blumwald E (2010) Genetic engineering for modern agriculture: challenges and
perspectives. Annu Rev Plant Biol 61:443—462

Mohammed A, Tarpley L (2009) High nighttime temperatures affect rice productivity through
altered pollen germination and spikelet fertility. Agric For Meteorol 149:999-1008

Mosier AC, Li Z, Thomas BC et al (2015) Elevated temperature alters proteomic responses of
individual organisms within a biofilm community. ISME J 9:180-194

Munns R (2002) Comparative physiology of salt and water stress. Plant Cell Environ 25
(2):239-250

Naseem H, Bano A (2014) Role of plant growth-promoting rhizobacteria and their
exopolysaccharide in drought tolerance of maize. J Plant Interact 9:689-701

Nasim W, Amin A, Fahad S, Awais M, Khan N, Mubeen M, Wahid A, Rehman MH, Ihsan MZ,
Ahmad S, Hussain S (2018) Future risk assessment by estimating historical heat wave trends
with projected heat accumulation using SimCLIM climate model in Pakistan. Atmos Res
205:118-133

Nautiyal CS, Srivastava S, Chauhan PS, Seem K, Mishra A, Sopory SK (2013) Plant growth
promoting bacteria Bacillus amyloliquefaciens NBRISN 13 modulates gene expression profile of
leaf and rhizosphere community in rice during salt stress. Plant Physiol Biochem 66:1-9

Netondo GW, Onyango JC, Beck E (2004) Sorghum and salinity. Crop Sci 44(3):797-805

Noack S, Wiechert W (2014) Quantitative metabolomics: a phantom? Trends Biotechnol
5:238-244

Pandey V, Shukla A (2015) Acclimation and tolerance strategies of rice under drought stress. Rice
Sci 22:147-161

Panlasigui LN, Thompson LU, Juliano BO, Greenberg GR et al (1991) Rice varieties with similar
amylose content differ in starch digestibility and glycemic response in humans. Am J Clin Nutr
54:871-877

Paparella S, Aratjo SS, Rossi G, Wijayasinghe M, Carbonera D, Balestrazzi A (2015) Seed
priming: state of the art and new perspectives. Plant Cell Rep 34:1281-1293

Paredes SH, Lebeis SL (2016) Giving back to the community: microbial mechanisms of plant—soil
interactions. Funct Ecol 30(7):1-10

Parvaiz A, Khalid UR, Ashwani HK (2012) Salt-induced changes in photosynthetic activity and
oxidative defense system of three cultivars of mustard (Brassica juncea L.). Afr J Biotechnol
11:2694-2703

Paul S, Roychoudhury A (2019) Comparative analysis of the expression of candidate genes
governing salt tolerance and yield attributes in two contrasting Rice genotypes, encountering
salt stress during grain development. J Plant Growth Regul 38:539-556

Peiffer JA, Spor A, Koren O, Jin Z, Tringe SG, Dangl JL et al (2013) Diversity and heritability of
the maize rhizosphere microbiome under field conditions. Proc Natl Acad Sci U S A
110:6548-6553

Prapagdee B, Chanprasert M, Mongkolsuk S (2013) Bioaugmentation with cadmium resistant plant
growth-promoting rhizobacteria to assist cadmium phytoextraction by Helianthus annuus.
Chemosphere 92:659-666

Qian J, Li D, Zhan G, Zhang L, Su W, Gao P (2012) Simultaneous biodegradation of Ni—citrate
complexes and removal of nickel from solutions by Pseudomonas alcaliphila. Bioresour
Technol 116:66-73

Raja V, Umer M, Hunseung K, Khursheed IA, Riffat J (2017) Abiotic stress: interplay between
ROS, hormones and MAPKs. Environ Exp Bot 137:142—157

Raza W, Yousaf S, Rajer FU (2016) Plant growth promoting activity of volatile organic compounds
produced by Bio-control strains. Sci Lett 4(1):40-43

Razi SS, Sen SP (1996) Amelioration of water stress effects on wetland rice by urea-N, plant growth
regulators, and foliar spray of a diazotrophic bacterium Klebsiella sp. Biol Fertil Soils
23:454-458



132 K. Parameswaran et al.

Redman RS, Sheehan KB, Stout RG, Rodriguez RJ, Henson JM (2002) Thermotolerance generated
by plant/fungal symbiosis. Science 298(5598):1581-1581

Reed SC, Cleveland CC, Townsend AR (2011) Functional ecology of free-living nitrogen fixation:
a contemporary perspective. Annu Rev Ecol Environ Syst 42:489-512

Rehman A, Farooq M, Wahid A, Cheema ZA (2012) Seed priming with boron improves growth and
yield of fine grain aromatic rice. Plant Growth Regul 68:189-201

Reich PB, Oleksyn J (2004) Global patterns of plant leaf N and P in relation to temperature and
latitude. Proc Nat Acad Sci USA 101:11001-11006

Richardson K, Steffen W, Schellnhuber HJ et al (2009) Climate change. Global risks, challenges
and decisions. Synthesis report. www.climatecongress.ku.dk/pdf/synthesisreport/

Rivas R, Peix A, Mateos PF, Trujillo ME, Martinez-Molina E, Velazquez E et al (2006) Biodiver-
sity of populations of phosphate solubilizing rhizobia that nodulates chickpea in different
Spanish soils. Plant Soil 287(12):23-33

Robin A, Mougel C, Siblot S, Vansuyt G, Mazurier S, Lemanceau P (2006) Effect of ferritin over
expression in tobacco on the structure of bacterial and pseudomonad communities associated
with the roots. FEMS Microbiol Ecol 58:492-502

Rosegrant MW, Mercedita AS, Perez D (1995) Global food projections in 2020: implications for
investment. Food, Agriculture and Environment. Discussion series papers 5. IFPRI,
Washington, DC, p 54

Rousk J, Smith AR, Jones DL (2013) Investigating the long-term legacy of drought and warming on
the soil microbial community across five European shrubland ecosystems. Glob Chang Biol
19:3872-3884

Roychoudhury A, Chakraborty M (2013) Biochemical and molecular basis of varietal difference in
plant salt tolerance. Annu Rev Res Biol 3:422-454

Ruelland E, Zachowski A (2010) How plants sense temperature. Environ Exp Bot 69(3):225-232

Saha M, Sarkar S, Sarkar B, Sharma BK, Bhattacharjee S, Tribedi P (2016) Microbial siderophores
and their potential applications: a review. Environ Sci Pollut Res 23(5):3984-3999

Saito K, Hayano-Saito Y, Kuroki M, Sato Y (2010) Map-based cloning of the rice cold tolerance
gene Ctb1. Plant Sci 179:97-102

Saleena LM, Rangarajan S, Nair S (2002) Diversity of Azospirillum strains isolated from rice plants
grown in saline and non saline coastal agricultural ecosystems. Microb Ecol 44(3):271-277

Salme T, Lawrence B, Julia M, Anthony M, Anne-Charlotte A (2017) Perspectives and challenges
of microbial application for crop improvement. Front Plant Sci 8:49

Santra S, Mallick A, Samal A (2014) Global warming impact on crop productivity. https://doi.org/
10.1201/b17684-16

Scafaro AP, Atwell BJ, Steven M, Van RB, Alguacil RG, Van RJ, Alexander G (2018) A
thermotolerant variant of Rubisco activase from a wild relative improves growth and seed
yield in rice under heat stress. Front Plant Sci 9(1663):1-11

Schenk PM, Carvalhais LC, Kazan K (2012) Unraveling plant-microbe interactions: can multi-
species transcriptomics help? Trends Biotechnol 30:177-184

Seki T, Nagase R, Torimitsu M, Yanagi M et al (2005) Insoluble fiber is a major constituent
responsible for lowering the post-prandial blood glucose concentration in the pre-germinated
brown rice. Biol Pharm Bull 28(8):1539-1541

Shahzad R, Khan AL, Bilal S, Waqas M, Kang S-M, Lee I-J (2017) Inoculation of abscisic acid-
producing endophytic bacteria enhances salinity stress tolerance in Oryza sativa. Environ Exp
Bot 136:68-77

Sharma A, Chetani R (2017) A review on the effect of organic and chemical fertilizers on plants. Int
J Res Appl Sci Eng Technol:677

Shatpathy P, Kar M, Dwibedi SK, Dash A (2018) Seed priming with salicylic acid improves
germination and seedling growth of rice (Oryza sativa L.) under PEG-6000 induced water stress.
Int J Curr Microbiol App Sci 7(10):907-924

Shridhar BS (2012) Review: nitrogen fixing microorganisms. Int J Microbial Res 3(1):46-52


http://www.climatecongress.ku.dk/pdf/synthesisreport/
https://doi.org/10.1201/b17684-16
https://doi.org/10.1201/b17684-16

6 PGPR: The Redeemer of Rice from Abiotic Stress 133

Shrivastava P, Kumar R (2015) Soil salinity: a serious environmental issue and plant growth
promoting bacteria as one of the tools for its alleviation. Saudi J Biol Sci 22(2):123-131

Silva HSA, Romeiro RDS, Macagnan D (2004) Rhizobacterial induction of systemic resistance in
tomato plants: non-specific protection and increase in enzyme activities. Biol Control
29:288-295

Silva-Sanchez C, Li H, Chen S (2015) Recent advances and challenges in plant phosphoproteomics.
Proteomics 15:1127-1141

Singh RP, Jha PN (2015) Molecular identification and characterization of rhizospheric bacteria for
plant growth promoting ability. Int J Curr Biotechnol 3:12—-18

Sorty AM, Meena KK, Choudhary K, Bitla UM, Minhas PS, Krishnani KK (2016) Effect of plant
growth promoting bacteria associated with halophytic weed (Psoralea corylifolia L.) on germi-
nation and seedling growth of wheat under saline conditions. Appl Biochem Biotechnol
180:872-882

Soumen B (2012) The language of reactive oxygen species signaling in plants. J Bot 2012:1-22

Southgate D (2009) Population growth, increases in agricultural production and trends in food
prices. Elect J Sust Devel 1(3) http://www.ejsd.org/public/journal_article/13

Sperottoa RA, Ricachenevsky FK, de Abreu Waldow V et al (2012) Iron biofortification in rice: it’s
a long way to the top. Plant Sci 190:24-39

Stroud H, Ding B, Simon SA, Feng S, Bellizzi M, Pellegrini M, Jacobsen SE (2013) Plants
regenerated from tissue culture contain stable epigenome changes in rice. E Life 2:1-14

Sureshbabu K, Amaresan N, Kumar K (2016) Amazing multiple function properties of plant growth
promoting rhizobacteria in the rhizosphere soil. Int J Curr Microbiol Appl Sci 5(2):661-683

Szabolcs I (1994) Salt affected soils as the ecosystem for halophytes. Halophytes as a Resource for
Livestock and for Rehabilitation of Degraded Lands. Springer, Dordrecht, pp 19-24

Theerakulpisut P, Kanawapee N, Panwong B (2017) Seed priming alleviated salt stress effects on
rice seedlings by improving Na+/K+ and maintaining membrane integrity. Int J Plant Biol 10
(4081):2016-6402

Thompson W (1929) Population. Am J Sociol 34:959-975

Tian J, Wang C, Zhang Q, He X, Whelan J, Shou H (2012) Overexpression of OsPAP10a, a root
associated acid phosphatase, increased extracellular organic phosphorous utilization in rice. J
Integr Plant Biol 54:631-639

Timmusk S, Wagner EGH (1999) The plant-growth-promoting rhizobacterium Paenibacillus
polymyxa induces changes in Arabidopsis thaliana gene expression: a possible connection
between biotic and abiotic stress responses. Mol Plant-Microbe Interact 12:951-959

Tomar RSS, Deshmukh RK, Naik K, Tomar SMS (2014) Development of chloroplast specific
microsatellite markers for molecular characterization of alloplasmic lines and phylogenetic
analysis in wheat. Plant Breed 133:12-18

Trindade I, Capitao C, Dalmay T, Fevereiro MP, Santos DM (2010) miR398 and miR408 are up
regulated in response to water deficit in Medicago truncatula. Planta 231:705-716

Turner CL, Blair JM, Schartz RJ et al (1997) Soil N and plant responses to fire, topography, and
supplemental N in tallgrass prairie. Ecology 78:1832-1843

Turner TR, Ramakrishnan K, Walshaw J, Heavens D, Alston M, Swarbreck D et al (2013)
Comparative meta transcriptomics reveals kingdom level changes in the rhizosphere
microbiome of plants. ISME J 7:2248-2258

Uchida A, Jagendorf AT, Hibino T, Takabe T, Takabe T (2002) Effect of hydrogen peroxide and
nitric oxide on both salt and heat stress tolerance in rice. Plant Sci 163:515-523

Vacheron J, Desbrosses G, Bouffaud ML, Touraine B, Moénne-Loccoz Y, Muller D, Legendre L,
Wisniewski-Dyé F, Combaret CP (2013) Plant growth promoting rhizobacteria and root system
functioning. Front Plant Sci 4(356):1-19

Van Ginkel JH, Gorissen A, Polci D (2000) Elevated atmospheric carbon dioxide concentration:
effects of increased carbon input in a Lolium perenne soil on microorganisms and decomposi-
tion. Soil Biol Biochem 32:449-456


http://www.ejsd.org/public/journal_article/13

134 K. Parameswaran et al.

Vannini C, Locatelli F, Bracale M, Magnani E, Marsoni M, Osnato M, Mattana M, Baldoni E,
Coraggio I (2004) Overexpression of the rice Osmyb4 gene increases chilling and freezing
tolerance of Arabidopsis thaliana plants. Plant J 37:115-127

Verma JP, Yadav J, Tiwari K, Kumar A (2013) Effect of indigenous Mesorhizobium spp. and plant
growth promoting rhizobacteria on yields and nutrients uptake of chickpea (Cicer arietinum L.)
under sustainable agriculture. Ecol Eng 51:282-286

Vijayan R, Palaniappan P, Tongmin SA, Elavarasi P, Manoharan N (2013) Rhizobitoxine enhances
nodulation by inhibiting ethylene synthesis of Bradyrhizobium elkanii from Lespedeza species:
validation by homology modeling and molecular docking study. World J Pharm Pharm Sci
2:4079-4094

Vikram P, Swamy BPM, Dixit S, Singh R, Singh BP, Miro B, Kohli A, Henry A, Singh NK, Kumar
A (2015) Drought susceptibility of modern rice varieties: an effect of linkage of drought
tolerance with undesirable traits. Sci Rep 5:1-18

Viterbo A, Landau U, Kim S, Chernin L, Chet I (2010) Characterization of ACC deaminase from
the biocontrol and plant growth-promoting agent Trichoderma asperellum T203. FEMS
Microbiol Lett 305:42-48

Viveros OM, Jorquera MA, Crowley DE, Gajardo G, Mora ML (2010) Mechanisms and practical
considerations involved in plant growth promotion by rhizobacteria. J Soil Sci Plant Nutr
10:293-319

Wahid A, Gelani S, Ashraf M et al (2007) Heat tolerance in plants: an overview. Environ Exp Bot
61:199-223

Walters DR, Fountaine JM (2009) Practical application of induced resistance to plant diseases: an
appraisal of effectiveness under field conditions. J Agric Sci 147:523-535

Wang Y, Hu B, Du S, Gao S, Chen X, Chen D (2016) Proteomic analyses reveal the mechanism of
Dunaliella salina Ds-26-16 gene enhancing salt tolerance in Escherichia coli. PLoS One 11:
e0153640

Watanabe T, Kume T (2009) A general adaptation strategy for climate change impacts on paddy
cultivation: special reference to the Japanese context. Paddy Water Environ 7:313-320

Wolever TMS, Jenkins DJA, Jenkins AL et al (1991) The glycemic index: methodology and clinical
implications. Am J Clin Nutr 54:846-854

Xia H, Zheng X, Chen L, Gao H, Yang H, Long P, Rong J, Lu B, Li J, Luo L (2014) Genetic
differentiation revealed by selective loci of drought-responding EST-SSRs between upland and
lowland rice in China. PLoS One 9:¢106352

Xie J, Shi H, Du Z, Wang T, Liu X, Chen S (2016) Comparative genomic and functional analysis
reveals conservation of plant growth promoting traits in Paenibacillus polymyxa and its closely
related species. Sci Rep 6:21329

Xiong LZ, Yang YN (2003) Disease resistance and abiotic stress tolerance in rice are inversely
modulated by an abscisic acid-inducible mitogen-activated protein kinase. Plant Cell
15:745-759

XuM, LiL, Fan Y, Wan J, Wang L (2011) ZmCBF3 overexpression improves tolerance to abiotic
stress in transgenic rice (Oryza sativa) without yield penalty. Plant Cell Rep 30(10):1949-1957

Xu G, Fan X, Miller AJ (2012) Plant nitrogen assimilation and use efficiency. Ann Rev Plant Biol
63:153-182

Yang PM, Huang QC, Qin GY, Zhao SP, Zhou JG (2014) Different drought-stress responses in
photosynthesis and reactive oxygen metabolism between auto tetraploid and diploid rice.
Photosynthetica 52(2):193-202

Yuan-Yuan S, Yong-Jian S, Ming-Tian W, Xu-Yi LI, Guo X, Rong HU et al (2010) Effects of seed
priming on germination and seedling growth under water stress in rice. Acta Agron Sin
36:1931-1940

Zahedi AM, Fazeli I, Zavareh M (2012) Evaluation of the sensitive components in seedling growth
of common bean (Phaseolus vulgaris L.) affected by salinity. Asian J Crop Sci 4:159-164

Zhalnina K, Dias R, de Quadros PD et al (2014) Soil pH determines microbial diversity and
composition in the park grass experiment. Microb Ecol 69:395-406



6 PGPR: The Redeemer of Rice from Abiotic Stress 135

Zhang Y, Chen C, Jin X-F, Xiong A-S, Peng R-h, Hong Y-H, Yao Q-H, Chen J (2009) Expression
of a rice DREB1 gene, OsDREB1D, enhances cold and high-salt tolerance in transgenic
Arabidopsis. BMB Rep 42:486-492

Zhang Z, Li F, Li D, Zhang H, Huang R (2010) Expression of ethylene response factor JERF1 in
rice improves tolerance to drought. Planta 232:765-774

Zhang J, Wang LH, Yang JC, Liu H, Dai JL (2015) Health risk to residents and stimulation to
inherent bacteria of various heavy metals in soil. Sci Total Environ 508:29-36

Zhang C, Liu J, Zhao T, Gomez A, Li C, Yu C, Li H, Lin J, Yang Y, Liu B et al (2016) A drought-
inducible transcription factor delays reproductive timing in rice. Plant Physiol 171:334-343

Zhao MG, Chen L, Zhang LL, Zhang WH (2009) Nitric reductase dependent nitric oxide produc-
tion is involved in cold acclimation and freezing tolerance in Arabidopsis. Plant Physiol
151:755-767

Zhou LJ, Chen LM, Jiang L, Zhang WM, Liu LL, Liu X, Zhao ZG, Liu SJ, Zhang LJ, Wang JK,
Wan JM (2009) Fine mapping of the grain chalkiness QTL qPGWC-7 in rice (Oryza sativa L.).
Theor Appl Genet 118:581-590

Zinn KE, Tunc-Ozdemir M, Harper JF (2010) Temperature stress and plant sexual reproduction:
uncovering the weakest links. J Exp Bot 61(7):1959-1968

Zlatev Z, Lidon FC (2012) An overview on drought induced changes in plant growth, water
relations and photosynthesis. Emir J Food Agric 24:57-72

Zogg GP, Zak DR, Ringelberg DB et al (1997) Compositional and functional shifts in microbial
communities due to soil warming. Soil Sci Soc Am J 61:475-481



®

Check for
updates

Anam Choudhary, Shabbir Ashraf, Nasreen Musheer, Sabiha Saeed,

and Manish Kumar

Abstract

Climatic changes lead to various abiotic stresses around the world, causing global
food insecurity. Among all the abiotic stresses, water stress is one of the chief
constraints for plant health. Water stress causes oxidative stress by producing
excessive reactive oxygen species (ROS), thereby affecting the physiological
process which leads to the death of plant cells. So there is a need to improve
the water stress ability of the plant in stressed conditions. Modern conventional
method such as drought-tolerant crops could be adopted in drought prone
areas but their implementation is time-consuming and prudent. Therefore,
microbiological communities such as plant growth-promoting rhizobacteria
(PGPR) have numerous eco-friendly bacteria associated with roots are gaining
awareness by enhancing the stress tolerance ability of plants in abiotic stresses.
PGPR act as biofertilizer and mitigate water deficiency by influencing the
antioxidative enzyme activity and removing the ROS. Their role as
bio-inoculants improves the water holding capacity and decreases the effect of
water stress in arid areas with low water accessibility. This chapter deals with the
usage of PGPR to boost plant water stress tolerance and agricultural
sustainability.

Keywords

PGPR - Biofertilizer - Water stress - Plant health - ROS - Antioxidative enzymes

A. Choudhary (<)) - S. Ashraf - N. Musheer - S. Saeed - M. Kumar
Department of Plant Protection, Faculty of Agricultural Sciences, Aligarh Muslim University,
Aligarh, Uttar Pradesh, India

© The Author(s), under exclusive license to Springer Nature Singapore Pte
Ltd. 2021

H. B. Singh et al. (eds.), Antioxidants in Plant-Microbe Interaction,
https://doi.org/10.1007/978-981-16-1350-0_7

137


http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-16-1350-0_7&domain=pdf
https://doi.org/10.1007/978-981-16-1350-0_7#DOI

138 A. Choudhary et al.

7.1 Introduction

The population of the world will surpass 9.1 billion by 2050 (Carvalho 2006),
increasing the demand for food by more than twofolds (Green et al. 2005). However,
green revolution has dramatically increased food production in 50 years, but the
stress is predicted to cause severe growth problems in plants for above 50% of arable
land (Vinocur and Altman 2005; Kasim et al. 2013). Water stress is an increasing
threat to food production in arid and semi-arid areas (Neupane and Guo 2019).
Additionally, water stress also increases the requirement for irrigation, which
consumes 70% of global water. This will raise the water consumption by 10% due
to the change in climate by 2050 (Shiklomanov and Rodda 2003). Hence, water-
conserving strategies are used to increase the productivity of water in water-limited
areas (Pereira et al. 2002). The term stress refers to any unfavorable condition which
affects the growth, development and metabolism of the plant caused by various
natural factors (Lichtenthaler 1998).

Various stresses associated with plants are heat, cold, salt, alkalinity, and acidity
(Shao et al. 2005; Glombitza et al. 2004), but the water stress has been regarded as
most important in plant research. It is highly destructive abiotic stress and has
affected global food security as its intensity has been amplified over the past
decades. The duration of water stress ranges from average to short, to exceedingly
harsh and extended, restricting the yield (Bottner et al. 1995).

The soil is occupied by numerous species of microbes containing prokaryotes and
a small number of eukaryotes per gram of soil (Lesueur et al. 2016). These microbes
provide nutrients to plants by recycling minerals and carbon and protecting the
quality of soil (Morgan et al. 2005; Leake et al. 2006). The greater part of soil
microbes consists of bacteria, which form an association with roots that may be
beneficial, harmful, or neutral to the plants (Bhattacharyya and Jha 2012). The
beneficial microbes such as PGPR (free-living bacteria), also known as Plant
Growth-Promoting Rhizobacteria, are a miscellaneous set of bacteria that generate
arange of metabolites and hormones influencing the acquisition of nutrients, altering
the level of hormones, and improving the harmful effect of biotic and abiotic stresses
(Ahemad and Kibret 2014; Ngumbi and Kloepper 2016). PGPR word was foremost
used in the late 1970s for the fluorescent Pseudomonas strains for enhancing the
yield by 500% through the production of iron-chelating siderophores
and withdrawing iron from native bacterial pathogens (Kloepper et al. 1980). Plant
growth-promoting bacteria have received global attention for increasing productivity
and tolerating biotic and abiotic stresses (Mayak et al. 2004; Marulanda et al. 2009;
Yang et al. 2009). The use of PGPR in managing abiotic stress, for example drought,
is recently gaining importance (Yang et al. 2009; Dimpka et al. 2009; Grover et al.
2010). Thus, in these years, efforts have been made to harness these root-colonizing
beneficial microbes to withstand climate change (Yang et al. 2009; Nadeem et al.
2014). The mechanism involved in the response of the plant to various abiotic and
biotic factors has been extensively studied (Quartacci et al. 2000; Sgherri et al. 2000)
which comprises of numerous physiological, biochemical, and molecular pathways
and metabolic processes such as nutrient and water relation, protein metabolism,
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carbohydrate metabolism, hormones metabolism, and antioxidant defense (Huang
et al. 2014). Thus these rhizobacteria are exploited as bio inoculants to increase the
production of the crop under stressful conditions.

Its application is used for over 100 years. Still, from the last three decades, its
application has gained importance as its commercial products are available in the
market (Babalola and Glick 2012), but it has to be fully exploited. This chapter
discussed the employment of PGPR bioinoculant in combating the oxidative stress
in crops and their use in water deficit region for sustainable agricultural production.

7.2 Effect of Water Stress on Plants

Water stress as multifaceted stress affects the plant, cell organs, and subcellular
compartment level (Choluj et al. 2004; Rahdari et al. 2012). Water stress is one of the
most significant environmental aspects and the main reason for limiting the quality
production in crops (Chandler and Bartels 2003). The water stress affects the plant
growth at every stage leading to changes at the morphological and molecular level
(Farooq et al. 2009). The first effect seen is reduced germination (Kaya et al. 2006).
Water stress also reduces the seedling germination and development in wheat and
sunflower (Kaya et al. 2006; Nezhadahmadi et al. 2013). Water stress interferes with
the normal functioning of the plant by affecting the plant water potential (Hsiao
2000), which changes the morphological and physiological behavior of the plant
(Rahdari and Hoseini 2012). It is a complex chemical-physical phenomenon that
also interferes with the structure of small and large biomolecules viz. proteins,
carbohydrates, fatty acids, hormones, nutrients, and ions (Dhanda et al. 2004;
Chaves et al. 2003). The soil water accessibility to plants helps in the plant growth
(Song et al. 2009). Growth of several crops such as wheat (Rampino et al. 2006), rice
(Lafitte et al. 2007), maize (Kamara et al. 2003), and barley (Samarah 2005) is
reduced due to water stress. Common growth parameters like fresh weight and water
content are also affected by the drought condition (Jaleel et al. 2009). Moreover, it
also affects the transport and availability of nutrients as water is responsible for
carrying nutrients to the soil. Hence it declines the diffusion of nutrients and water-
soluble nutrients mass flow like Ca, Mg, Si, NO3*, and SO42*(Barber 1995;
Selvakumar et al. 2012). Free radicals are produced that affect the antioxidative
defense and Reactive Oxygen Species (ROS) like hydrogen peroxide, hydroxyl
radical, and superoxide radical creating oxidative stress. The higher concentration
of ROS causes injury at various levels (Smirnoff 1993), such as initiation of lipid
peroxidation, deterioration of lipids, protein, and nucleic acid (Sgherri et al. 2000;
Hendry 2005; Nair et al. 2008). The reduction in the chlorophyll content in bean
(Beinsan et al. 2003), Paulownia imperialis (Astorga and Melendez 2010), and
Carthamus tinctorius (Siddiqi et al. 2009) is due to photooxidation under water
stress (Anjum et al. 2011; Rahdari et al. 2012). Water stress also lowers the uptake of
nitrate in the soil, affecting biochemical activities such nitrogen reductase (Caravaca
et al. 2005). Plant growth is also inhibited through various mechanisms by ethylene
biosynthesis (Ali et al. 2014). Plants exposed to water stress form a range of reactive
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oxygen species (ROS) through reaction during the process of photosynthesis, tran-
spiration, and dark respiration, which damages the cells (Taylor et al. 2003). These
are toxic to cells when combined with vital molecules like proteins, fats, and nucleic
acid leading to denaturation of protein, peroxidation of lipid, and mutation of DNA
(Quiles and Lopez 2004). Water stress also causes a negative impact on the cell
membrane and cellular organelles such as chloroplasts and mitochondria (Candan
and Tarhan 2003), which leads to the leakage of cellular content (Karabal et al.
2003). Deficiency of water at the plant or cellular level occurs when transpiration
surpasses the uptake of water, causing a decrease in the cell volume, relative water
content, and cell turgor (Lawlor and Cornic 2002). Deficiency in cellular water is
caused by drought and other stresses, i.e., salinity, high and low temperature (Bray
1997; Song et al. 2009). Water stress also influences the various physiological
activities, including leaf temperature, water potential, relative water content, transpi-
ration rate, and stomatal conductance (Machado and Paulsen 2001). It also affects
the efficiency of photosynthesis occurred by the leaf senescence of premature leaves,
damaged photosynthetic machinery, and reduction in leaf expansion (Wahid and
Rasul 2005). The reduction of photosynthesis in the water stress conditions is due
to the fall in Rubisco activity (Bota et al. 2004). Hence, water stress negatively
affects the quality and quantity of plant growth. To alleviate the water stress, plants
have developed several mechanisms such as morphological adaptations, water
resources development, osmotic adjustment, antioxidant systems that reduce the
detrimental effect of reactive oxygen species (ROS) associated with drought by
inducing a range of stress-responsive genes and proteins (Farooq et al. 2009).

In plants’ various physiological processes, such as photosynthesis and respira-
tion, ROS releases as by product in small quantities (Apel and Hirt 2004). But stress
conditions alter the normal homeostasis of cells releasing free radicals, and the
higher concentration of ROS are toxic. Water stress in plant generates the reactive
oxygen species (ROS) with hydrogen peroxide (H,O,), hydroxyl radicals (OH),
alkoxy radicals (RO), superoxide anion radicals (O, ), and singlet oxygen (102)
(Munné-Bosch and Pefiuelas 2003; Helena and Carvalho 2008). These ROS are very
active reacting with protein, lipids, and deoxyribonucleic acid, creating oxidative
damage slowing the plant metabolism and normal functioning of a cell, ultimately
causing death (Foyer and Fletcher 2001; Mittler 2002; Farooq et al. 2009;
Hasanuzzaman et al. 2014) (Fig. 7.1).

7.3 Oxidative Stress in Crop Plants Under Water Stress

Several studies observed the overproduction of ROS by the drought, creating
oxidative stress in various species of plants. The degree of drought severity relies
on the capacity of the genotype to deal with oxidative stress. Abideen et al. (2020)
observed a 22% enhancement in the (malondialdehyde) MDA content when Phrag-
mites karka is grown under drought conditions in a plastic tube for 35 days retaining
40% water holding capacity. Similarly, higher MDA content was also observed by
Campos et al. (2019) after 20 days in Coffea arabica. Saha et al. (2018) found an
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Fig. 7.1 Effect of water stress on the physiology of plant

increase in O,, H,H,, and MDA content in rice plants when not watered for 8 days
creating drought stress as compared to control. Finger millets (Eleusine coracana
L. Gaertn.) grown in 75% water stress for 3 weeks lead to an increase in the EL
(electrolytic leakage) and H,O, content (Satish et al. 2018). Malhotra et al. (2017)
showed the augmentation of MDA content and 39% EL due to the withdrawal of
irrigation in tomato plants for 6 days. Solanum Ilypopersicum L. cv. Login
935 exposed to water stress of 60% field capacity for 20 days leads to an increase
in O, (75%), H>0, (37%), and MDA content (83%) (Rady et al. 2020) Filippou et al.
(2011) also recorded enhancement in the MDA and H,O, content under water stress
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conditions in M. truncatula which were reversed by rewatering. Two genotypes of
Phaseolus vulgaris viz. Bn-16 and Bn-150 were compared under water stress for
14 days with 50% FC showing that Bn-16 contained two times grated production of
MDA as compared to Bn-150 (Kusvuran and Dasgan 2017). It also contained a
higher amount of O,, H,O,, and OH content. Wheat grown in a water-deficient
condition of 70% FC showed a higher amount of H,O,, EL, and TBARS content
(Abbas et al. 2018). Khan et al. (2017) evaluated the consequence of water defi-
ciency at 30% FC in B. napus cv. Bulbul-98 found a considerable enhancement in
the EL and H,O, content. Nxele et al. (2017) recorded a 113% boost in the H,O, and
MDA (94 and 98%) in leaves and roots in S. bicolor cv. Sugargraze grown in water
scarcity for 16 days.

7.4 The Antioxidant Defense Under Water Stress

Production of ROS species due to drought stress promotes oxidative stress in the
biological systems (Reddy et al. 2004; Samarah et al. 2006). Excessive production of
ROS leads to enhanced peroxidation of lipid and thereby damaging the lipids,
protein, and DNA (Pompelli et al. 2010). Still, ROS also activates the stress reaction
and defense pathway (Pitzschke et al. 2006). Hence, it is important to control the
level of ROS by coordinating the production and scavenging system of ROS to
control the oxidative injury and at the same time altering the events of signals
(Stajner et al. 1997). The degree and quantity of increase of antioxidant system are
extremely variable under drought stress. It mainly depends on the species, cultivar
(Manivannan et al. 2007a, b), metabolic or developmental state of the plant, inten-
sity, and stress duration. In stress situations, enhancement in the activity of foliar
antioxidants is also observed (Pastori et al. 2000; Sharp and LeNoble 2002). The
plant usually defends against the production of ROS by enhancing the components
of defense systems (Ahmad et al. 2010a, b). Research has been done on the
detoxifying enzyme activity of plants when exposed to drought stress (Djibril
et al. 2005; Manivannan et al. 2008). Cellular damage to the cell by ROS is
overcome by developing a complex non-enzymatic and enzymatic antioxidant
defense system providing deleterious effect and accumulation of ROS during
water stress (Miller et al. 2010; Helena and Carvalho 2008; Simova-Stoilova et al.
2008). Enzymatic components comprise catalase (CAT), superoxide dismutase
(SOD), peroxidase (POX), ascorbate peroxidase (APX), and glutathione reductase
(GR). Non-enzymatic component comprises reduced glutathione, cysteine, and
ascorbic acid (Gong et al. 2005; Kaushal and Wani 2015). Thus, drought-tolerant
plants develop an effective system for scavenging of ROS (Apel and Hirt 2004;
Huang et al. 2014). These scavenging enzymes and ROS have been widely studied
(Helena and Carvalho 2008; Farooq et al. 2009; Gill and Tuteja 2010;
Hasanuzzaman et al. 2014).
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7.4.1 Peroxidase

Peroxidase (POX) helps in mediating the signaling of ROS in the chloroplast as well
its accumulation in the nucleus, chloroplasts, mitochondria, and peroxisomes
(Vaahtera et al. 2014; Mignolet-Spruyt et al. 2016). They are generally chloroplastic
enzymes and help in scavenging H,O, produced through the action of superoxide
dismutase (Chaitanya et al. 2002). It also helps in promoting the ROS-scavenging
system such as POD, APX, CAT, and SOD (Suzuki et al. 2011). It plays an essential
part in scavenging by coordinating with SOD (Farooq et al. 2009).

7.4.2 Superoxide Dismutase

Superoxide Dismutase (SOD) is the frontline defense system located in all the
aerobic individuals and the main antioxidative enzyme in the subcellular section
affected by ROS-assisted oxidative stress. It enhances the plants’ tolerance t the
stress by catalyzing 0227 to H,O, and O, (Mittler 2002). It protects from oxygen
toxicity by regulating the concentration of anionic radical of superoxide (Nordberg
and Arner 2001). Its overproduction enhances stress tolerance (Pastori and Foyer
2002) and is important in cellular defense against reactive oxygen species and
reduces the OH radical causing membrane, protein, and DNA damage (Kage et al.
2004).

7.4.3 Catalase

Catalase (CAT) helps eliminate H,O, produced during the metabolic process
harming the cell function (Gaspar et al. 2002), converting them into H,O and O,.
The H,O, present in the cytosol is scavenged by the peroxisomes proliferation
during the stress (Lopez-Huertas et al. 2000; Kusaka et al. 2005) formed through
oxidase and involved in the catabolism of purines, p-fatty acids’ f-oxidation, and
photorespiration (Polidoros and Scandalios 1999).

7.4.4 Ascorbate Peroxidase

Ascorbate Peroxidase (APX) is a vital antioxidant enzyme for detoxification of H,O,
and reduction of ascorbate. It reduces H,O, to H,O in the ascorbate-glutathione
cycle using ascorbate as an electron donor (Lawlor and Cornic 2002) and the water-
water cycle.
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7.4.5 Glutathione Reductase, Glutathione Peroxidase,
and Glutathione S-Transferase

Glutathione reductase (GR) is a vital enzyme in the cycle of ascorbic acid —
glutathione, which toxifies ROS’s harmful effect. It is present in the chloroplast
and a little quantity in the cytosol (Edwards et al. 1990; Creissen et al. 1994).

Glutathione Peroxidase (GPX) protects the cells from oxidative damage by using
glutathione for reducing the H,O, and also lipid and organic hydroperoxide (Noctor
et al. 2002).

Glutathione S-Transferase (GST) class is big and multifaceted, having various
functions. One of the functions is to help in the plant response to biotic and abiotic
factors (Dixon et al. 2010).

The antioxidant mechanism of defense extensively studied uses ascorbate-
glutathione pathway (also called as Halliwell-Asada cycle) catalyzed by four sets
of enzymes, namely Superoxide dismutase (SOD), catalase (CAT), peroxidase
(POD), and ascorbate peroxidase (APX) (Fazeli et al. 2007) used in the detoxifica-
tion of ROS. The activity of all these enzymes is increased in drought stress (Jaleel
et al. 2007a, b). Ascorbate peroxidase oxidizes ascorbate to scavenge Hydrogen
peroxide (H,0,). It also oxidizes ascorbate to mono-dehydroascorbate, which is later
transformed back to ascorbate (ASA) by mono-dehydroascorbate reductase
(MDHAR). The escaped mono-dehydrogenase from this cycling is rapidly changed
to dehydroascorbate (DHA). Afterward, this is changed back to ascorbate through
dehydroascorbate reductase (DHAR). It uses reduced glutathione (GSSG), which is
restored to its oxidized form, i.e., glutathione disulfide (GSSG) by glutathione
reductase (GR) (Murshed et al. 2008). These enzymes form a main antioxidant
system where SOD catalyzes the dismutation of O, to H,O, and O, and CAT and
POD scavenge H,O, (Egert and Tevini 2002) (Fig. 7.2).

7.5 PGPR-Mediated Water Stress Tolerance

Some influential members of bacteria present in the rhizobacteriome are Pseudomo-
nas, Bacillus, Azospirillum, Serratia, Acinetobacter, Arthrobacter, Bradyrhizobium,
Rhizobium,  Agrobacterium, Enterobacter, —Achromobacter, Azotobacter,
Phyllobacterium, etc. (Naylor and Coleman-Derr 2018). PGPR have received atten-
tion due to their ability to withstand abiotic and biotic stress conditions
(Saravanakumar et al. 2007). Water stress affects the growth and productivity of
the crops, mainly in arid and semi-arid areas. The various mechanism by which
PGPR induce water stress tolerance in plants includes change in root morphology,
phytohormonal activity, EPS production, ACC deaminase activity, volatile
compounds, Accumulation of osmolytes, and antioxidant defense. Inoculation with
PGPR can lead to an improvement in tolerance to water stress (Figueiredo et al.
2008) through the production of cytokinins, IAA, ACC deaminase, and antioxidants.
There occurs a considerable relationship between drought stress and antioxidant
enzymes, but PGPR inoculation lessens the harmful effect of water stress on the
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Fig. 7.2 Antioxidant mechanism of antioxidant defense system (-SH: thiolate, -SOH: sulfenic
acid, NADPH: nicotinamide adenine dinucleotide phosphate, ROOH: hydroperoxidase, TRX:
thioredoxin; X, sulfate, nitrate or halide gp, 0227: superoxide anion)

antioxidant enzymes activity (Han and Lee 2005). Many authors have recommended
the role of PGPR in reducing the oxidative damage caused by abiotic stresses by
manipulating the antioxidant enzymes in various crops (Sandhya et al. 2010;
Saravanakumar et al. 2011). Activities of enzymes lead to the alleviation of oxidative
damage, but at an elevated level of ROS, it causes harmful effects. So, it is essential
to retain a balance between the production of ROS and the removal of the production
of free radicals. It can be achieved by inoculating PGPR in the plants, and the
inoculated plants were seen to have a higher survival rate as compared to
non-inoculated plants.

The enzymatic activity reduces the oxidative damage but at a high level of ROS,
its deleterious effect was observed (Halliwell 2006). Therefore, it is necessary to
retain the balance between the production of ROS and eradication of the formation of
free radicals (Miller et al. 2010). Inoculation of PGPR to the plants helps in
increasing the survival rate by checking the oxidative damage as compared to the
plants that were not inoculated with PGPR.

7.6  Role of PGPR in Enhancing the Oxidative Enzymes

Experiments are done to study the activity of antioxidant enzymes and their role in
the scavenging system in drought stress mediated by plant growth-promoting bacte-
ria (PGPR) (Table 7.1). The study illustrated an increment in the level of antioxidant
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enzymes by their application. They lead to the accumulation of antioxidant enzymes
such as CAT and POX resulting in a decrease in oxidative injury. Selected PGPR
strains result in the overproduction of these ROS-scavenging enzymes, which
reduces the overproduction of ROS, giving drought tolerance. Induction of oxidative
enzymes is directly correlated to the extent of drought of drought tolerance (Contour-
Ansel et al. 2006; Guo et al. 2006).

The ROS-scavenging enzymes play an important in the PGPR-mediated water
stress tolerance. In water-deficient conditions, the application of PGPR increases
water stress tolerance by altering the antioxidative enzymes (Gusain et al. 2015). Itis
also helpful for the growth of tomato and pepper and providing resistance to water
stress (Aroca and Ruiz-Lozano 2009). Modulating antioxidative and glyoxalase
enzymes in mustard can induce resistance to the oxidative stress caused by drought
(Mohammad et al. 2013). Dong et al. (2013) observed the ultrastructure of cucumber
cells under drought stress suggesting that damage can be avoided by stabilizing the
cell structure and reducing the peroxidation of lipid by improved activity of antioxi-
dant enzymes and metabolites.

Water stress-tolerant PGP Pseudomonas spp.. such as P. putida, P. syringae,
P. montelli, P. stutzeri, and P. entomophila when inoculated in maize plants
demonstrated lesser activity of antioxidant enzymes in contrast to uninoculated
plants (Sandhya et al. 2010). In a similar way, Bacillus spp. inoculation provides
tolerance to water stress in the maize plant by reducing antioxidative enzyme
activity, namely APX and Glutathione peroxidase (GPX) (Vardharajula et al.
2011). Pseudomonas spp. applied under water stress considerably improved the
activity CAT enzyme under the field in basil plants. Similarly, when consortia of
microbes like Pseudomonas spp., A. brasilense, and Bacillus lentus were applied,
the activity of APX and GPX was highest (Heidari and Golpayegani 2011). Maize
plants inoculated with EPS-producing bacteria decreased APX, CAT, and GPX
enzyme activity providing stress tolerance in plants (Naseem and Bano 2014).
Under water stress conditions, indigenous PGPR Bacillus thuringiensis promote
growth and drought tolerance in the plants Layandula dentata and Salvia officinalis,
decreasing the stomatal conductance and activity of glutathione reductase (GR) and
ascorbate peroxidase (APX) (Armada et al. 2014). Using consortia of PGPR
(P. synxantha R81, P. jessenii R62, and A. nitrogua-jacolicus strain YB3 and
YBS) in rice cultivars (Oryza sativa L.) (Oryza sativa L.) such as IR-64 (drought-
sensitive) and Sahbhagi (drought tolerant) increased the growth of the plant and
induce the stress-related enzymes like CAT, SOD, APX, peroxidase (POD),
malondialdehyde (MDA), and lower levels of H,O, under water stress in compari-
son with control (Gusain et al. 2015). Potato plants treated with PGPR strains such as
Bacillus  firmus str. 40 and Bacillus pumilus str. DHI1 increased the
ROS-scavenging enzymes such as catalase, peroxidase, and ascorbate. Significant
increases in the scavenging enzymes, as well as CAT, SOD, and APX, were also
reported by Gururani et al. (2013). In PGPR-treated plants, the activity of CAT was
found 1.8 times higher under drought stress as compared to non-inoculated plants.
The main reason advocated for the water stress tolerance in potato plants treated with
PGPR causes the elevation of ROS-scavenging enzymes. An enhancement in the
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Table 7.1 Effect of certain PGPR on the antioxidant activity of various crops

Plant species
Rice

Wheat

Wheat

Maize
Maize

Green gram

Green gram
Chickpea
Cucumber

Ocimum
basilicum L.

Lavandula
dentate and
Salvia
officinalis

PGPR strains
Pseudomonas jessenii,
P. synxantha,
Azospirillum
nitroguajacolicus
Pseudomonas spp.

Bacillus
amyloliquefaciens 5113,
A. brasilense NO40

EPS-producing bacteria
Bacillus spp.

B. subtilis EPB2 2, EPB5
and EPB

31, P. fluorescens strain
Pfl1

Pseudomonas spp.
GGRJ21

P. putida MTCC5279
RA)

B. cereus, B. subtilis and
Serratia spp.

Bacillus lentus,

A. brasilense and
Pseudomonas spp.

B. thuringiensis

Effect on antioxidant
activity

Increased the CAT, SOD,
POD, and APX, reduced
MDA and H,0, level

Controls the oxidative
damage

Increases the antioxidant
enzymes

CAT, APX, and GPX
activity is reduced

Increase CAT activity

Improved stress-related
enzymes

CAT, SOD, and POX
activity is enhanced

Increased CAT, GST, and
APX

Enhanced CAT

Increased CAT, GPA, and
APX

Increased GR and APX
activity

Reference

Gusain et al.
(2015)

Chandra et al.
(2018)

Kasim et al.
(2013)

Naseem and
Bano (2014)
Vardharajula

et al. (2011)
Saravanakumar
et al. (2011)

Sarma and
Saikia (2014)
Tiwari et al.
(2016)

Wang et al.
(2012)
Heidari and
Golpayegani
(2011)
Armada et al.
(2014)

CAT activity with the treatment with Bacillus subtilis EPB and Pseudomonas
fluorescens Pfl was observed in the green gram plants (Saravanakumar et al.
2011). Tolerance to drought and CAT production are found associated in wheat
(Kasim et al. 2013), maize (Sandhya et al. 2010; Sarma and Saikia 2014;
Vardharajula et al. 2011), and cucumber plants (Wang et al. 2012). Inoculation
with Pseudomonas mendocina along with Glomus intraradices or G. mossae
increases the CAT level and reduces the oxidative stress induced by drought in
lettuce (Lactuca sativa L.) (Kohler et al. 2010)
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7.7 Challenges and Future Prospects of Using PGPR
for Bioinoculation

The benefits of PGPR as bioinoculant include the plant growth promotion by
mobilization and synthesis of nutrients as well as growth-promoting substances,
including induced systemic resistance (ISR). Besides enhancing plant nutrients, they
also help in restoring the fertility of the soil in an environment-friendly way. In
addition, they alleviate environmental stress like drought in plants (Olanrewaju et al.
2017; Maxton et al. 2018).

Even though there are many benefits of these microbes, but some shortcoming is
there which prevent their effective exploitation and commercialization. PGPR per-
formance is effective under in vitro conditions. Still, they are not found sustainable
under the field due to their exposure to the natural environment as they are giving
inconsistent results. Microbe efficacy is affected by the fluctuation in soil structure,
texture, pH, and composition of minerals, creating a disadvantage for their use on a
large scale.

Hence, PGPR should be tested under pot conditions using unsterilized and
sterilized soil to establish their real efficacy before ultimate testing in the field
under water-stressed conditions with natural microbes. This will help to determine
the effectiveness of PGPR to colonize the roots effectively and compete with the
well-established indigenous microbes.

The extreme heat also affects the efficacy of the PGPR, excluding those forming
endospores and producing biofilms. High temperature reduces the bacterial popula-
tion as inoculums of bacteria do not have shielding support. To formulate the
effective bioinoculant, a required quantity of bacteria with a physical shield should
be applied to decrease the introduced PGPR (Zambrano-Moreno et al. 2016).

The strains of PGPR need to be tested for two or more plant growth-promoting
factors in stressed conditions. The strains are effective when used alone but using
one or more strains in a consortium is more effective. However, some strains showed
incompatibility when used in the consortium and gave excellent results in single
strains. Thus, greenhouse experiments should be conducted before bacterization in
the field.

There is a need for an appropriate carrier that would be cheap, rich in organic
matter, non-toxic, 50% water holding capacity, and easily accessible used for the
bioformulation of PGPR. Different carriers such as farmyard manure, charcoal, peat,
press mud, vermiculite, lignite, and soil mixture are suggested as a suitable carrier
(Anubrata 2014).

The quality of the biofertilizer should be assured before officially registering for
commercial use.

The farmers should be made aware of this technology to harness the benefit from
the PGPR.

PGPR is exploited as a bioinoculant for the healthy growth of the plant under
unfavorable environmental conditions. But they are occasionally incapable to endure
in harsh environmental surroundings, and the activity and development of PGPR are
hampered by extreme pH, salinity, temperature, drought, and heavy metal pollution.
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Under field conditions, the efficacy was also reduced due to the short shelf life
applied in the field. Therefore, PGPR strains with longer-shelf lives should be
developed for the sustainable production of crops in drylands.

PGPR provide stress tolerance to many host crops, including monocotyledonous,
dicotyledonous, and vegetable crops (Mayak et al. 2004; Sandhya et al. 2009; Kasim
et al. 2013) for more than one abiotic and biotic stress tolerance (Mayak et al. 2004;
Coleman-Derr and Tringe 2014).

To boost plants’ performance under water stress, there is a need to develop a
genetically engineered transgenic plant that is drought tolerant and reduces the
negative effect of drought on crop and productivity (Barrow et al. 2008; Eisenstein
2013). But it is time-consuming, labor intensive, and there can be loss of required
traits from the gene pool of the host, and it is easier to modify a bacterium as
compared to the complex higher organism. Breeding provides resistance to a single
crop and cannot be transferred to other crop systems (Ashraf 2010; Eisenstein 2013;
Phillippot et al. 2013). Additionally, the response of consumers to genetically
modified crop products differs in various countries; therefore, success is not
guaranteed (Fedoroff et al. 2010). Hence as an alternative to individual genetically
engineered crops, a single, non-specific genus such as Azospirillum can be used as
genetically engineered inoculants for several crops under water stress. PGPR strain
effective at low-inoculum dose, and different environmental conditions can be
developed by genetic engineering. Drought-tolerant novel genes can be identified
by using the recent advances done in fields of biotechnology, microbiology, molec-
ular biology, and bioinformatics. Indigenous species of PGPR should be isolated
from the water-stressed soils through micro biotechnology, and rapidly selected
effective strains based on their stress could be used for dryland crops. Carrier-
based inocula of microbes are a new avenue developed through the application of
bionanotechnology. Using nanoformulations of PGPR enhances their stability to
heat, desiccation, and UV inactivation.

7.8 Conclusion

Water stress is a major menace and severe environmental constraints for sustainable
agriculture. It causes ROS buildup in plants, which leads to oxidative damage
affecting the plant’s health. This results in a decrease in growth of plant and crop
production caused by damaged physiological and biochemical affecting the farmers’
income. Thus an effective, inexpensive, and eco-friendly strategy of using beneficial
PGPR not only promotes the plant health but also provides protection from the
environmental stress mitigating the effect of drought. They tend to elicit the RIDER
mechanism which plays a significant role to counteract osmotic and oxidative
damage. PGPR increase the osmolytes production and antioxidant defense system,
reducing the harmful effect of ROS on plants. To alleviate the drought stress,
introduction of drought-tolerant varieties is crucial but it is an overlong process
. Hence the use of PGPR draws the attention of farmer to use microbes in the areas
which are drought prone. The identification, cloning, and functional characterization
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of stress-tolerant genes in PGPR strains could be further harnessed for their use in
dryland agriculture.
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Abstract

Rhizomicrobiome consists of plant growth-promoting rhizobacteria, arbuscular
mycorrhizal fungi, soil protozoa and other microorganisms associated with plant
roots for several benefits. The rhizosphere biology has been focused mainly on
exploring plant-microbial interactions which stimulate growth and stress
response in plants, especially in polluted lands. Several microcosm-based studies
suggested that rhizospheric microorganisms are able to bioremediate heavy
metals or organic pollutants and improve plant resistance in pollutant-impacted
agrofields. Antioxidants and several phytohormones released due to plant—
microbe interactions in polluted rhizosphere can trigger the defence system of
plants. The present chapter describes the role of rhizomicrobiome and plant—
microbe associations involved in antioxidants and phytostimulation mechanism
in polluted environments. Integrated multi-omics and bioinformatics approaches
to understand plant—microbe associations have been discussed here, which is an
emerging research interest in developing next-generation agricultural process
aided with rhizosphere bioengineering.
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8.1 Introduction

Frequent soil pollution with chemical fertilizers, heavy metals, pesticides,
herbicides, petroleum hydrocarbons and other organic pollutants created enormous
threats to crop health in several agroecosystems by altering soil pH, salinity and
water activity (Sengupta et al. 2015). According to the Food and Agricultural
Organization (FAO) report, more than 96% of global agricultural land has been
affected by environmental constraints (Meena et al. 2017). Due to these agroecolog-
ical disturbances, crop production has been affected in terms of quality and quantity
loss (Cramer et al. 2011). Plants possess intrinsic metabolic pathways to produce
antioxidants or phytohormones to combat with rapid adversity and fluctuations in
environmental conditions (Simontacchi et al. 2015). More importantly, plant-
associated microbiome supports the plant by releasing phytostimulants and
degrading pollutants which enable the plants to survive under environmental stresses
(Ahemad and Kibret 2014; Gkorezis et al. 2016; Kotoky et al. 2018). Rhizosphere
microorganisms are found to be promising in biofertilizer application which not only
improves plant health but also helps in detoxifying the soil contaminants (Kotoky
et al. 2018; Oberai and Khanna 2018). The major research on rhizosphere biology
relies on the interesting associations between plant and rhizospheric microbes for
plants and microbes’ mutual benefits and balancing of soil nutrients (Ahemad and
Kibret 2014). However, triggering of several antioxidants and phytostimulating
compounds in plant—microbe interactions is governed by multiple biotic and abiotic
factors (Oberai and Khanna 2018). Interestingly, plant roots secrete necessary
phytochemicals and stimulants which cause a selective enrichment of
rhizomicrobiome (Lu et al. 2011). However, it is not well understood whether
these microbes are interacting with specific plants either in positive or in a negative
relation as there is significant diversity in microbial population which differs from
plant to plant. The rhizomicrobiome, a mixed microbial population of plant growth-
promoting rhizobacteria (PGPR), arbuscular mycorrhizal (AM) fungi and soil
protists, all together plays roles in secreting phytohormones, antioxidants and
pathogen-controlling agents (Fig. 8.1).

It has been evident from several studies that these microbes of rhizosphere have
been evolved to degrade or tolerate heavy metals or organic pollutants and thus also
create a detoxified environment for plants (Guo et al. 2019). The utmost critical
aspect in defending stress in plants is to study molecular machinery and its networks
functioning within stress conditions. The elucidation of metabolic pathways and
their regulatory genes overexpressed during plant—microbe interactions have been
important in understanding the molecular machinery of stress response. Documen-
tation of multigenic characters related to stress responses and investigation of
relevant marker genes are in current focuses of stress extenuation strategies. Other
approaches that have been implemented for the mitigation of abiotic stresses in
plants include the use of several biomolecules from plant and microbial sources
(Meena et al. 2017). The ability of a microorganism to build an interaction with a
plant is influenced by several elements including the environment, microbial genes
expression and regulatory proteins and its interactome partners. Currently, a huge
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Fig. 8.1 Representation of rhizoremediation in polluted soil aided with several plant-microbe
interactions involves in plant stress resistance; process includes sequential release of rhizodeposits,
chemotactic movements of PGPR, migration of pollutant degraders to roots rhizodeposits, coloni-
zation of roots with AM fungi and grazing of pathogens by soil protozoa

amount of genome sequence data is available and researchers are now motivated to
explore plant—microbe relationship based on genome information (Martinez-Garcia
et al. 2016). In recent years, multi-omics methods have established itself as a
complete and integrated strategy for investigation of microbial interactions with
plants (Meena et al. 2017; Kotoky et al. 2018). To address the present scenario of
research on rhizomicrobiome and their association with plants specially in polluted
lands, this chapter focuses on the diversity of rhizomicrobiome in polluted soil,
several plant-microbe associations and microbe-facilitated plant antioxidants mech-
anism in stress conditions. This chapter also summarizes the previous experiments of
microcosm studies and trending multi-omics approaches which require more
attentions to understand plant-microbe associations in pollutant-impacted lands.
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8.2  Rhizomicrobiome of Polluted Ecosystems

Rhizosphere is a microenvironment that harbours complex microbial community
structure where plant root symbiotic rhizobacteria, mycorrhizal fungi, predatory
protozoa and other free-living microorganisms play crucial roles to maintain the
biogeochemical balance of soil. Unfortunately, several anthropogenic activities and
rapid industrialization have introduced pollutants into agricultural lands such as
petroleum hydrocarbons, pesticides and heavy metals. Such soil pollutions have
changed the dynamics of plant-microbe interactions which is unusual in
non-polluted or less toxified soil (Guo et al. 2019). It has been previously reported
that plant growth promotion has been improved under contaminated conditions
when rhizosphere was inoculated with PGPR with biodegradation abilities
(Sengupta et al. 2015; Correa-Garcia et al. 2018; Kotoky et al. 2018; Roy et al.
2020). Several PGPRs identified in contaminated soil with multiple activities related
to heavy metal tolerance and pollutant detoxification are enlisted in Table 8.1.
Rhizosphere manipulation and engineering require the understanding of diversity
of cultivable microorganism and their metabolic functions in toxic environment
(Haichar et al. 2008). Several rhizobacterial species are root symbionts such as
Bradyrhizobium, Frankia, Mesorhizobium, Rhizobium and Sinorhizobium while
others are free-living nitrogen fixers such as Acetobacter, Azotobacter, Azospirillum,
Azoarcus and Herbaspirillum (Benidire et al. 2017; Kumar and Dubey 2020).
Siderophore-producing certain PGPR groups, phosphate solubilizers and fungi
increase the accessibility of minerals and microelements (Fe, P, Cu, Zn) to plants
(Hashem et al. 2017). These rhizobacteria such as Actinomyces, Bacillus, Pseudo-
monas and Streptomyces produce antibiotic compounds like bacteriocins, phenazine,
hydrogen cyanide, oligomycin and are also documented as potential biocontrol
agents (Calvo et al. 2014; Zope et al. 2019). Most importantly, application of
PGPR strain as phytostimulants, biopesticides and in rhizoremediation is the popular
methods for secure crop management. In this context, Bacillus licheniformis, Bacil-
lus pumilus and Bacillus subtilis, known as “Bacillus-based products,” were
commercialized earlier (Ongena and Jacques 2008). The soil bacterium Klebsiella
sp. with 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase, inoculated to a
bunch grass species (Festuca arundinacea), showed rhizoremediation of petroleum
hydrocarbons and phytostimulating activities (Liu et al. 2014). Another study of
co-inoculating PGPR strain of Acinetobacter sp. with common oat (Avena sativa)
performed by Xun et al. (2015) showed dry mass gain, increased stem height and
high rate of hydrocarbon degradation in polluted soil. Several metagenomic studies
revealed that the rhizoremediation of petroleum-impacted soil microbiome is rich in
hydrocarbon-degrading bacteria which belonged to major families like
Actinomycetaceae,  Alcaligenaceae,  Alteromonadaceae,  Burkholderiaceae,
Bradyrhizobiaceae, Caulobacteraceae, Rhizobiaceae, Rhodospirillaceae and
Solirubrobacteraceae (Pagé et al. 2015). Another important microbe that dominates
in the rhizosphere is AM fungi which are responsible in altering the microbial
communities of contaminated rhizosphere (Xun et al. 2015). The role of AM fungi
in plant health promotion and positive interactions with PGPR (special emphasis on
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Table 8.1 List of plant-associated PGPR, their plant growth-promoting activities and tolerance to
xenobiotic pollutants and heavy metals

PGPR strains
Azotobacter
chroococcum, Bacillus
megaterium, Bacillus
mucilaginosus
Azomonas, Bacillus,
Xanthomonas,
Pseudomonas
Bacillus

Bacillus
weihenstephanensis

Bacillus edaphicus

Bradyrhizobium

Psychrobacter

Rhizobium,
Pseudomonas,
Stenotrophomonas
Pseudomonas
aeruginosa

Pseudomonas

Pseudomonas, Pantoea,
Burkholderia

Pseudomonas

Pseudomonas
aeruginosa,
Pseudomonas
fluorescens, Ralstonia
metallidurans

Phytostimulants/
antioxidants

N, fixation

IAA production

IAA, siderophore and
phosphate
solubilization

TAA production and
phosphate
solubilization

ACC deaminase, IAA
and siderophore

ACC deaminase, IAA
production, Nyfixation
and phosphate
solubilization

CAT, peroxidase and
siderophore
production
Siderophore, IAA,
phosphate
solubilization

TAA and siderophore
production

ACC deaminase

ACC deaminase

Phosphate
solubilization, IAA
and siderophore
production
Siderophore
production

Xenobiotic
tolerance

NR

NR

4-Nitrophenol

NR

NR

Herbicides-
quizalofop-p-
ethyl and
clodinafop)

NR

n-hexadecane,

diesel oil

PAHs,
naphthalene,
pyrene
Benzene,
Toluene,
Ethylbenzene,
Xylene
Alkane
degradation

NR

NR

Heavy
metal
tolerance

Cd

Cd

Zn, Pb,
Ni and
Cr

Ni, Cu,
Zn
Pb

NR

NR

NR

As, Cu

NR

Ni

Cr and
Pb

References

Wau et al.
(2006)

Sheng and
Xia (2006)

Sengupta
et al.
(2015)
Rajkumar
et al.
(2008)
Sheng

et al.
(2008)
Ahemad
and Khan
(2011)

Ma et al.
(2011)

Pawlik
et al.
(2017)
Wu et al.
(2018)

Imperato
etal. 2019

Pawlik

et al.
(2017)
Tank and
Saraf
(2009)

Braud
et al.

(2009)

(continued)
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Heavy
Phytostimulants/ Xenobiotic metal
PGPR strains antioxidants tolerance tolerance | References
Brevibacillus TAA production NR Cd, Zn Vivas et al.
(2005)
Pseudomonas, APX, SOD and CAT NR Cd Chiboub
Rhizobium sullae activities et al.
(2018)
Rhizobium SOD, CAT and APX NR Cu Fatnassi
et al.
(2015)
Spartina maritima COX and AOX NR Cu, Pb Mesa-
pathways and Zn Marin
et al.
(2018)
Variovorax paradoxus ACC deaminase, IAA NR Cd Jiang et al.
and Siderophore (2012)
production

ACC l-aminocyclopropane-1-carboxylate; AOX alternative oxidase, APX ascorbate peroxidase,
IAA indole acetic acid, CAT catalase, COX cytochrome oxidase, SOD superoxide dismutase, NR
not reported, PAHs polycyclic aromatic hydrocarbons

tripartite plant-bacteria-fungi associations) has been discussed in detail in Sect. 8.7 in
this chapter. The AM fungi, Glomus mosseae, was experimented to improve
rhizoremediation of petroleum hydrocarbons and showed higher anthracene removal
in pot with contaminated soil as compared to non-polluted control pot (Joner et al.
2001). Other fungi of the genera Penicillium, Aspergillus and Rhizopus have been
studied broadly for the detoxification of heavy metals from polluted agroecosystems
(Deshmukh et al. 2016).

Interestingly, several organic compounds released from plant roots like terpenes,
lignin-derived components and flavonoids found in the rhizosphere are analogous to
many contaminants (Singer et al. 2003; Hartmann et al. 2009). Gao et al. (2011) and
Ling et al. (2013) showed reduced polyhydrochlorinated compounds (PHCs) con-
centration in presence of maximum concentration of root exudates which indicated
and established a negative correlation between concentration of root exudate and
petroleum hydrocarbons. This result was supported by the nature of root exudate
which was generally phenolic such as caffeic acid and protocatechuate which is
connected with bacterial degradation pathway intermediates of polycyclic aromatic
hydrocarbons (PAHs) and PHCs (Ely and Smets 2017). Actually, the plant
rhizospheres are commonly enriched in actively expressed microbial genes respon-
sible for degradation of organic pollutants, irrespective of contaminants presence or
absence (Yergeau et al. 2014). Guo et al. (2017) demonstrated that supplementation
of maize and soya bean root exudate into petroleum-contaminated soil increased
PAH degradation initially but did not worked for longer period in absence of the
plants. They have also shown that interaction of Mycobacterium sp. with root
exudate enhanced PAH removal by shifting the structure and diversity of soil



8 Rhizospheric Plant-Microbe Interactions Releasing Antioxidants and. .. 163

bacterial community. The PGPR co-inoculation and microcosm studies to reduce the
contamination in pollutant-impacted soil have been discussed in Sect. 8.9 in this
chapter.

8.3  Antioxidants and Phytostimulating Compounds

Soil pollution due to toxic heavy metals, pesticides or herbicides often increases the
soil salinity and decreases the water availability which creates stress conditions for
plants (Ahemad and Kibret 2014). Under such stress, deregulated metabolism of
plants induces the generation of reactive nitrogen species (RNS) and reactive oxygen
species (ROS) which also other way round triggers the stress response pathways to
prevent cellular damages in plants (Laxa et al. 2019). RNS-mediated stress response
leads to production of several enzymes as antioxidants such as nitrate reductase,
xanthine oxidoreductase and nitrosoglutathione reductase (GSNO), whereas the
ROS detoxification system of plants is mediated by ferredoxin, glutathione, redox
thioredoxin, NADPH-thioredoxin reductase and glutaredoxins and peroxiredoxins
(Finkel 2001; Liebthal et al. 2018). Among antioxidant enzymes, ascorbate peroxi-
dase, catalase, dehydroascorbate reductase, glutathione peroxidase, glutathione-S-
transferase, monodehydroascorbate reductase, protein disulphide isomerase and
superoxide dismutase have been reported to be upregulated as drought stress
response in wheat, rice, maize, cotton, stiff brome, date palm and pea plants (Laxa
et al. 2019). Helepciuc et al. (2014) showed that plant-bacteria association increased
the number of isoforms of superoxide dismutase and catalase enzymes which
indicated that bacteria activate plant enzymatic antioxidant systems. Several other
studies related to enhanced peroxidase activity in plant-microbe interactions
suggested that microbial associations increase the defence capacity of plants (Mittler
2002; Gkorezis et al. 2016; Kumar and Dubey 2020). Additionally, pollutant-
resistant plants and their associated microorganisms are reported to produce reduced
glutathione (GSH) which play an important role in chelating heavy metals, detoxifi-
cation of pollutants and protecting plants from oxidative damage in contaminated
soils (Seth et al. 2012). Previous studies suggested that several microbial enzyme
systems have been successfully engineered in plant tissue which enable
phytoremediation of xenobiotic compounds (Katerova and Miteva 2010; Kotoky
et al. 2018). Those transgenic plants were observed to tolerate and biodegrade
organophosphate pesticides and chlorinated phenols by exhibiting increased activity
of glutathione-S-transferase (GST) and P450-dependent monooxygenase.
Plant—-microbe association not only triggers the antioxidant enzyme defence
system but also responsible for the exudating several phytohormones (auxins) or
phytostimulating chemicals (siderophore). Numerous PGPR release auxins (IAA) as
their major metabolites like ethylene, cytokinin, indole-3-butyric acid (IBA), indole-
3-acetic acid (IAA) and methylthiozeatin. Inoculation of plant roots or seeds with
auxin-producing bacteria leads to the development of profuse root system (Martinez-
Morales et al. 2003; Spaepen et al. 2007). Several bacterial genera such as
Arthrobacter, Azotobacter, Bacillus, Flavobacter, Pseudomonas and Rhizobium



164 K. Sengupta and S. Pal

are involved in producing significant amount of phytohormones when associated
with plant roots (Calvo et al. 2014; Sengupta et al. 2015). Among several
phytostimulants, siderophores are the most important compounds which are of low
molecular weight, mainly chelate iron and transfer it into the cell. Iron is an essential
microelement used by bacteria as well as plants and it is an obligatory requirement
for their metabolism. However, iron is unavailable in the soil for direct assimilation
by plant or microbes (Dhungana and Crumbliss 2001). Microbial siderophores are
broadly classified into two groups, one is hydroxamate and other catechol types.
Both types of siderophores bind with ferric ion (Fe’*) in the rhizosphere and
competently control the invasion of fungal pathogens. Suppressions of the pathogens
are possible due to iron scarcity and subsequent growth inhibition with reduced
DNA synthesis, changes in cell morphology and retarded sporulation. Other than
these, several exudates of PGPR help to promote plant growth by releasing
phytostimulants (e.g. phytohormones, organic acids, siderophores), fixing atmo-
spheric nitrogen and solubilizing inorganic phosphate (Ahemad and Kibret 2014).
Additionally, they carry out bioremediation by detoxifying pollutants like petro-
leum, heavy metals and pesticides. The association of plant-PGPR could be further
amended for biofertilizer use with the optimization of soil conditions like pH,
salinity and water activity.

8.4 Plant-Microbe Interactions in Pesticide Pollution

Past few decades of extensive applications of chemical fertilizers, pesticides,
nematicides, fungicides and herbicides into agricultural lands not only affected the
soil salinity but also had a negative impact on beneficial rhizospheric microbial
community (Oberai and Khanna 2018). The ecological stability of the soil
microorganisms has been compromised which mostly affected the rhizospheric
competence for beneficial plant interacting bacteria. It has been observed by
researchers that microorganism isolated from pesticide-contaminated soil showed
pesticide-degrading or tolerance properties (Roy et al. 2020). Such strains are able to
acclimatize in the micro-niches of pesticide-impacted soil and exhibit their plant
growth-promoting activities and antagonistic effect to plant pathogens. On the other
hand, application of exogenic PGPR into the pesticide polluted soil has been failed
due to lack of pesticide degradation or tolerance abilities of such PGPR as a
consequence of their reduced survivability in toxic microenvironment (Sengupta
et al. 2015). As per the survey of literature, many rhizospheric bacteria were
experimented either as ex-situ in small pots or in-situ in agrofields. This suggested
the ability of bacteria with dual ability of pesticide degradation and plant growth
promotion useful for pesticide-resistant plants. Major bacterial genera in such
applications were recognized as Azotobacter, Bacillus, Bradyrhizobium, Rhizobium,
Pseudomonas and Xanthomonas (Wu et al. 2006; Sheng and Xia 2006; Ahemad and
Khan 2011). Application of such PGPRs into a pesticide polluted site increases the
potential of plants that grow there to hold heavy metals and to recycle nutrients,
sustain soil fertility, detoxify pesticidal chemicals and control plant pathogens.
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PGPR also reduces the toxicity of heavy metals by altering their bioavailability to
plants (Ahemad and Khan 2011). In exchange, plants supply the microorganisms
with free amino acids, vitamins, polysaccharides, proteins and hormones which are
vital sources of their nutrition. Thus, the rhizosphere acts as reservoir of such
nutrients secreted from plant roots and attract beneficial bacteria (Babalola 2010).
A special prominence of several species of endospore-forming Bacillus genus which
subsist in stress environments (Sengupta et al. 2015), thus PGP properties of Bacillus
strains isolated from pesticide-contaminated soil is of additional advantage in using
it in contaminated agricultural soil for its bioremediation. Reports available in last
10 years indicated free-living PGP bacteria playing pivotal role in plant morphogen-
esis processes such as root elongation and lateral root formation that is directly
linked with increased plant growth (Ranjitha 2015). Auxins synthesized by free-
living rhizosphere bacteria regulate stimulation of root system development and
plant growth promotion. Phosphate solubilization, siderophore activity and ammo-
nia production are important activity to promote the plant growth in various ways
(Ahemad and Kibret 2014). Biodegradation active rhizobacterial population are also
highly capable of colonizing the rhizosphere like other PGPR community (Oberai
and Khanna 2018). These microorganisms sometimes show specific migration or
positive chemotactic movements towards the root and they consecutively spread
during emergence and proliferative growth of plant roots. Since pesticide pollution
generally alters soil pH, salinity, moisture contents, metal precipitations and nutrient
bioavailability which not only determine the composition of rhizobacterial commu-
nity but also their longer survival in toxic niches. Moreover, composition of
rhizobacterial community and their ecological interactions with the stressful micro-
environment actually governs their successful colonization on plant roots.

8.5 Plant Root-Associated Microbes in Heavy Metal
Polluted Soil

Several agroecosystems have been reported to be highly contaminated with heavy
metals along with toxic pesticides (or hydrolytic intermediates of pesticides,
herbicides, fungicides, etc.) which prevent the beneficial plant-bacteria interactions
(Kotoky et al. 2018; Roy et al. 2020). As discussed in previous section, due to
continuous practice of agrochemicals usages, the salinity and infertility of the soils
have increased. All these have a long-term negative impact on the functional
community structure of PGPR and constantly affecting crop yield (Ahemad and
Khan 2011). The haphazard discharge of heavy metals into the soil and waters has
long-term effects on the plant health as they cannot be broken down to non-toxic
forms except some cases of microbial detoxification. However, some metals are vital
for plant growth while on the other hand some exhibit toxicity even at very low
concentrations such as As, Cd, Cr, Cu, Pb, Hg, Ni and Zn. It has been observed that
plants have assorted ability in taking and accumulating metals in various parts (Guo
et al. 2019). Plants absorb heavy metals from the subsurface of the soil with their
roots. Therefore, there is a necessity to look for novel consortium of PGPR which not
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only promotes the plant growth but also withstands stresses imposed by heavy metal
remains in the soil for longer period. Remarkably, most bacteria augmented in the
metal-impacted rhizosphere belonged to the Acidobacteria, Actinobacteria,
Bacteroidetes and Proteobacteria. Investigators have repetitively verified that
Proteobacteria may be the greatest metal-tolerant microorganisms present in
metal-contaminated soils (Sheik et al. 2012). Their metabolic and ecological
functions have been described as tolerable to the extreme toxic environment and to
detoxify heavy metals (Li et al. 2015). For example, Acidobacteria and
Bacteroidetes are degraders of organic compounds in nutrient-deficient
environments (Rawat et al. 2012). Sengupta et al. (2015) explained that a Bacillus
strain isolated from pesticide-contaminated soil was halotolerant and showed toler-
ance to four typical heavy metals (As, Cd, Cr and Pb) that has been reported to be
incorporated into the soil as co-contaminant along with pesticides and herbicides.
Several root-associated Rhizobiales group of bacteria which symbiotically associate
with plant root to fix nitrogen are able to detoxify arsenic and help in reducing its
toxicity within the rhizosphere (Watson et al. 2017). Some of the root symbiont
PGPR such as Bradyrhizobium and Rhizobium were studied extensively for their
application in heavy metal-polluted fields due to their ability to produce ACC
deaminase and TAA, nitrogen fixation along with heavy metal tolerant property.
However, many free-living PGPRs such as Azomonas, Azotobacter, Bacillus,
Brevibacillus, Pseudomonas, Ralstonia, Variovorax and Xanthomonas were able
to show up ACC deaminase, IAA, siderophore, phosphate solubilization, nitrogen
fixation along with Cd, Cr, Ni, Pb and Zn tolerance (Table 8.2).

Certain bioengineered plant root associative rhizobacteria were used to remediate
the heavy metal contamination of rhizosphere (Wu et al. 2006; Dixit et al. 2015). Wu
et al. (2006) have cloned and successfully expressed a resistant plasmid in Pseudo-
monas putida strain and demonstrated the capability of the strain to improve plant
root health in high level of cadmium polluted soils. These microorganisms of
rhizomicrobiome are able to detoxify heavy metals in soil and show adaptability in
the toxic environment and plant health promotion.

8.6 Rhizospheric Interactions in Resistant Plants
of Petroleum-Impacted Soil

Soil polluted with petroleum, diesel and its derived products is seen to be less fertile
in comparison with garden soil or other vegetative soil. Generally, toxicity of
petroleum-derived products towards vegetations includes inhibition of seed germi-
nation, photosynthesis and other plant growth factors (Gkorezis et al. 2016). Mostly,
vegetated soil contains high concentration of organic compounds like flavonoids,
terpenes and lignin-derived compounds which are structurally similar to petroleum-
derived PAH or PHC. Such kinds of “rhizodeposits” often induce and attract
PAH-degrading microorganisms followed by their colonization on plant roots.
Once plant-microbe association is established, it helps to improve plant tolerance
towards PAHs or PHCs (Lu et al. 2011). For example, Toyama et al. (2011) have
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shown the direct relationship of increased phenolic compounds present in
rhizodeposits with high rate of benzopyrene degradation in rhizosphere of common
reed species (Phragmites australis). This result was further strengthened by the PHC
degradation pattern among rhizospheric bacteria, observed by Phillips et al. (2012).
The study described that acetate or alanine helps the plant-microbe association and
thus enhanced the degradation process while saccharides like glucose, sucrose,
trehalose, xylose, mannose reduced the degradation capacity of rhizospheric bacte-
ria. This result suggested that simple sugars do not facilitate the growth of PAH or
PHC-mineralizing microorganism by omitting the selective pressure. On the other
hand, phenolic compounds suppress the growth of other bacteria which thrive only
on simple sugars and create a selective environment for the growth of degrading
microorganisms. Another example of such enhanced biodegradation study by suit-
able plant—microbe interactions was performed by Lu et al. (2011). It has been
reported that the associations of bacterial strains of genera Flavobacterium, Pseudo-
monas and Rhodococcus with two common plants, Alfalfa and Indian mustard,
effectively carried out the removal of diesel oil from polluted soil. The maximum
oil reduction was observed nearly up to 70% by specific plant-bacteria association.
Major enzymatic activities such as catalase and polyphenol oxidase activities were
increased in soil and consecutively enhanced microbial populations in the rhizo-
sphere which ultimately also stimulated the important bacteria-plant association.
Several bacterial genera have been stated to be involved in petroleum degradation
metabolic pathways such as Acinetobacter, Haemophilus, Pseudomonas,
Paenibacillus, Mycobacterium, Rhodococcus, Ralstonia and Stenotrophomonas
(Tyagi et al. 2011). Although the presence of catabolic genes in such bacteria is
responsible for degradation process, the role of plant is also significant in the
process. It has been reported already that microbial activity in rhizospheric soil is
ten to thousand times better in comparison with bulk soil. Also, efficient microbial
reduction of hydrocarbon is lower in absence of plants (Gaskin and Bentham 2010).
The role of plant can also be defined by the morphology and physiochemical
properties of root zone. For example, plant with shallow root system may not
encounter the polluted microenvironment. The primary functional retort of plants
to PAH or PHC in soil depends on concentration and chemical nature of pollutants
such as its solubility, volatility and polarity.

8.7  Tripartite Interaction of Plant-Bacteria-Fungi

A three-partner relationship of plant, bacteria and fungi has been proven as the most
effective in removing toxic pollutants from rhizosphere (Jambon et al. 2018). One
such primary study by Nie et al. (2011) has shown that overall soil nutrients and
microbial activity were enhanced by addition of AM fungi into petroleum-polluted
soils. The colonization of AM fungi helped in increased absorption of nutrients and
dissolved organic nitrogen by root system of plants. It has also been observed that
AM association change the ecophysiology of pollutant consuming bacteria with
increased potentiality of biodegradation. Additionally, greater abundance of
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bacterial catabolic genes of petroleum degradation pathways such as alkane
monooxygenase, xylene monooxygenase and naphthalene dioxygenase has been
found in tripartite association of plant root, bacteria and AM (Nie et al. 2011).
Moreover, rhizospheric fungi have a tendency to spread easily through their
penetrating hyphae into soil matrix and facilitate the grasp of degrading bacteria
towards pollutants. Also, non-motile PGPR can enter into root tissue of the symbi-
otic plant by adhering to the fungal hyphae (Minerdi et al. 2002; Jambon et al. 2018).

Among all plant-associated fungi, mycorrhizae are able to colonize root with their
profound mycelial structure. Mainly, they are classified as two groups, one is
ectomycorrhizae and other is endomycorrhizae. One of the special characters of
ectomycorrhizae is to develop a Hartig net which is composed of intercellular
hyphae on the surface of roots. Some of the major genera of ectomycorrhizae are
Ascomycota, Basidiomycota and Zygomycota which are found to be associated with
3% of vascular plants (Barman et al. 2016). Another group, Endomycorrhizae, can
penetrate and cause invasive intracellular association with higher plants. They are
subgrouped into arbuscular or ericoid, among which arbuscular mycorrhizae
associations are well known. For example, Glomeromycota, the most abundant
phylum of arbuscular mycorrhizae associates with 80% of total vascular plant
species (Barman et al. 2016). One of the advantages of AM fungi implication in
phytoremediation is that they are having finely branched hyphal system (arbuscules)
which also improve the plant nutrient absorbing capacity in pollutant-impacted soils.
In the association of endosymbiont Glomeromycota, bacterial population is more
inside the spores (Minerdi et al. 2002). Such bacterial associations have been
reported with AM fungi such as Glomeribacter (obligatory endosymbionts) and
Burkholderia (non-obligatory endosymbiotic) of AM fungus Gigaspora (Minerdi
et al. 2002). Some strains of genus Pseudomonas have been co-inoculated with
mycorrhiza and found to associate with stimulated mycelial growth of fungi in the
rhizosphere along with increased level of auxin production by bacteria (Navarro-
Rédenas et al. 2016). These rhizospheric bacteria are known as “mycorrhiza helper
bacteria” which encourage the colonization of mycorrhiza to root system. Another
association of AM fungi and leguminous rhizobacteria has been involved in
enhanced bacterial N, fixation and phosphate solubilization into the rhizosphere
(Nadeem et al. 2014). Application of plant-fungi-bacteria associations in
phytoremediation of petroleum products has been observed by introducing consor-
tium of bacterial species of Rhodococcus and fungus Aspergillus/Penicillium which
helped in removing anthracene, pyrene and phenanthrene in toxified soil (Kim and
Lee 2007). Bioremediation of petroleum hydrocarbons has been performed by
co-inoculating Vibrio sp. (Proteobacteria) and Cunninghamella (Mucor) into pol-
luted mangrove soil sediments (Li and Li 2011). Diesel removal has also been
implemented with introducing mixed microbial cultures of Trametes
(Basidiomycota) and bacterial genera such as Acinetobacter, Alcaligenes,
Chryseobacterium, Gordonia, Pseudomonas, Serratia and Stenotrophomonas
(Zanaroli et al. 2010). This mixed consortium reduced 90% of diesel within
10 days of incubation period which was not achieved by either fungi or bacteria
alone. Besides this, AM fungi are reported as good partners with plant and bacteria
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for positive interactions and thus this tripartite relationship should be more explored
specially in polluted agroecosystems.

8.8 Beneficial Soil Protozoa

Other than plant-associated bacteria and fungi, soil protozoa have a great influence
on plant health, inhibiting root pathogens and decomposing cycle of soil. Soil
protozoa also determine the functioning of other plant-microbe interactions
(Weidner et al. 2017). For instance, Weidner et al. (2017) showed a plant growth
promotion of a wheat variety by co-inoculation of amoeba Acanthamoeba with
beneficial Pseudomonas into the rhizosphere and found to inhibit the growth of a
plant pathogen (Pythium ultimum). Protozoa play an important role in maintaining
the ecophysiology of soil by grazing upon microfauna and thus also regulate the
growth of other rhizobacteria. Since, plant exudate supports the growth of huge
rhizobacterial population, resulting in increase of biomass in the soil. Hence,
protozoa have been assigned as grazers which consume such large biomass and
release nutrients from the consumed microfauna which is termed as “microbial loop”
(Bonkowski 2004). Some protists acting as biological controlling agent show antag-
onistic effect against plant pathogenic bacteria. Protozoan ingestion of bacterial
genera mainly Escherichia, Enterobacter, Bacillus and Micrococcus helps in
maintaining soil equilibrium. However, predation of bacteria by protozoa affects
the biodegradation of soil pollutants by reducing the microbial population which
mineralize the pollutant and decrease the rate of its removal from the soil. So,
complete dynamics of protozoan relationships with other rhizospheric
microorganisms are complicated and are not fully understood yet. Several factors
such as initial cell density of degrading microorganism, prey-predator relationship,
size and shape of the cell and soil properties of the microenvironment would be
important for studying the effect of protozoan predation on biodegradation rates.

8.9 Microcosm Studies

Microcosm studies were performed to check the effectiveness of co-inoculation of
PGPR strains and AM fungi along with plant seeds, based on whether the plant
growth promotion and decontamination of pollutants occur simultaneously or not.
Previously, Gurska et al. (2009) carried out a three-year field study where PGPR
inoculation had provided dual effects, reduction of petroleum hydrocarbon as well as
enhanced plant growth. Another important study by Asghar et al. (2017) showed the
application of ACC deaminase-producing Bacillus subtilis strain to increase the root-
shoot length and reduction of petroleum hydrocarbon up to 43% within 60 days of
inoculation with Zea mays growing in crude oil-contaminated soil. Taghavi et al.
(2005) showed that inoculation of two Burkholderia sp. strains with plasmid-
harbouring toluene-degrading genes improved plant health and enhanced toluene
biodegradation simultaneously. Some successful inoculation of PGPR strains of
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Pseudomonas with a plasmid encoding hydrocarbon catabolic genes was monitored
for increased degradation process. Several pot experiments showed higher abun-
dance of PAH-degrading genes in phenanthrene-contaminated soil with plantation of
ryegrass (genus Lolium) as compared to control (non-planted soil). The plants
stimulated the bacterial degradation with high expression of PAH ring cleavage
dioxygenase genes (Guo et al. 2017). This plant stimulated the biodegradation
activities of Actinobacteria and members of Caulobacterales, Pseudomonadales
and Xhantomonadales. Lumactud et al. (2016) observed that root-associated
Actinobacteria with hydrocarbon-degrading genes were responsible for plant resis-
tance of hop clover (Trifolium), yarrow (Achillea millefolium), orchard grass
(Dactylis) and Canadian goldenrod (Solidago) in heavily polluted soil. Other root-
associated alkane degraders such as Rhodococcus, Rhizobium and
Stenotrophomonas were capable of utilizing n-hexadecane when inoculated with
bird’s-foot trefoil (Lotus corniculatus) and evening primrose (Oenothera biennis) in
petroleum-impacted soil (Pawlik et al. 2017). Pot experiments with AM fungi were
also performed where mycorrhiza Glomus mosseae was detected as degrader of PAH
in polluted soil (Joner et al. 2001). Therefore, plant-fungus association has been
proven as the most efficient interaction to protect plants from various stress-induced
damages in polluted habitats.

8.10 Multi-Omics Approaches in Rhizomicrobiome Interaction
Studies

The microbiome of rhizosphere was greatly understudied till several multi-omics
methods have been implemented to explore the majority of microbial community
(Kotoky et al. 2018). Study of complex microbiome of rhizosphere is challenging
due to multiple molecular responses at genes, proteins or metabolites level which
could be easier with implication of meta-omics techniques. Applications of high-
throughput sequencing data integrated with advanced bioinformatical analyses have
been implemented to understand the inter-connected responses among different
microbial population and plants in polluted rhizosphere. For these applications,
different meta-omics approaches such as metagenomics, metatranscriptomics,
metaproteomics and metabolomics have been proven promising to decipher the
functional microbial diversity and their possible molecular response mechanisms
(Castro et al. 2013). Functional metagenomics analyses have described novel meta-
bolic pathways for biodegradation of PAH or aromatic compounds by recognizing
different groups of catabolic genes such as dioxygenases from different bacterial
genera. In this way, study of rhizospheric soil microbial diversity represents the
occurrence of functional genes and allows to integrate microbial phylogeny with the
functional diversity of microorganisms. Also, huge data set of metagenomes
provides the insights into important plant-microbe interactions involved in
rhizoremediation of PAH or other pollutants (Kotoky et al. 2018). Thus,
metagenomics not only provides the information regarding unculturable microbial
diversity of rhizosphere but also offers direct access to the genetic content of
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rhizomicrobiome and functional potential of entire community of a particular habitat
(Martin et al. 2006). It has been evident from several metagenome sequencing that
uncultivable microorganisms are commonly responsible for pollutant removal in any
polluted site. Another meta-omics technique, metatranscriptomics, is useful to track
the genetic expression level of contaminated rhizomicrobiome and helps to investi-
gate the change in microbiome functional gene expression profile in presence of
contaminants. Some of the studies related to transcript profiling have been helpful to
decipher the metabolic responses such as Kantar et al. (2011) showed the regulatory
microRNA (miRNA) involved in superoxide dismutase activity and its role in
abiotic stress response while Lima et al. (2011) found miRNA responsible for
aluminium stress response in plants. Yergeau et al. (2014) investigated the transcript
profiles of petroleum-contaminated rhizosphere of Salix sp. (willow) which was
enriched with PAH-degrading genes. Another powerful tool is metaproteomics
which has been used to check the response related to protein expression profile
and protein-protein interactions in plant-microbe relations (Meena et al. 2017).
Metaproteome analysis deals with the total protein profiling present in given envi-
ronmental sample and thus directly reflects the phenotypic traits and physiological
metabolic network of microorganisms dwelling in that microenvironment.
Proteomic analyses to understand stress responses in crops have been executed in
several common plant species such as Hordeum (barley), Lycopersicon (tomato),
Oryza (rice), Phaseolus (bean), Pisum (Pea), Solanum (potato), Triticum (wheat) and
Zea (maize) (Liu et al. 2015). In recent years, several databases and bioinformatics
tools are available for analysis of meta-omics data to decipher plant—microbe
interactions. Such multi-omics investigations are helpful in providing a deep insight
into the regulatory systems of plant—microbe associations by recognizing numerous
signal proteins responsible for stress response mechanisms (Meena et al. 2017;
Kotoky et al. 2018). Therefore, a comparative metatranscriptomics or
metaproteomics analyses of plant-associated microbe in stressed versus
non-stressed condition could be helpful to identify protein targets and metabolic
networks.

8.11 Conclusions

This chapter has been focused mainly on the rhizomicrobiome potential to improve
pollutant resistance capacity and growth of plants. Several plant-microbe
associations involved in antioxidant defence system and release of phytostimulating
compounds in contaminated rhizosphere have been discussed here with examples of
relevant experiments. Summarization of all relevant findings would provide an
insight into rhizoremediation mechanism and better understanding for further rhizo-
sphere genetic engineering. A very few reports are available which directly relate the
synergistic biodegradation or detoxification system of plant-microbe relation in
polluted soil with heavy metals, petroleum and pesticides. The plant-bacteria-
fungi, a tripartite association, has a key role in rhizoremediation which has been
studied through several microcosm studies but yet to be explored at molecular and
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gene expression level. This chapter also highlights updated information regarding
current multi-omics techniques and bioinformatics tools which have been recently
implemented to find novel metabolic pathways in rhizospheres.

8.12 Future Aspects

Future research in rhizosphere biology would be based on the progress of biotech-
nological methods to intensify our knowledge of rhizosphere ecology. The combi-
nation of rhizospheric microorganisms having potential of plant growth promotion
with capacity to withstand stresses imposed by heavy metals and toxic xenobiotics
could be useful to build smart biofertilizers. This futuristic biofertilizer would be in
great demand for sustainable agriculture of next generations. It has been proved now
that plant—microbe associations are beneficial for thizoremediation of pollutants and
should be considered for application in contaminated soil to enhance plant resistance
capability. A deeper understanding of such complicated plant—microbe ecology
requires microcosm studies entwined with meta-omics (metagenomics,
metatranscriptomics and metaproteomics) approaches. Other multi-omics
techniques such as metabolomics (cellular metabolites), phenomics (phenotypic
changes) and interactomics (protein-protein interactions) could be considered in
such application-based studies. However, the success of such bioremediation strat-
egy would be based on the understanding of inter-related multiple biotic and abiotic
factors.
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Abstract

Heavy metals (HMs) are toxic, non-biodegradable elements, which causes oxida-
tive stress in plant and microbes. Oxidative stress generates reactive oxygen
species (ROS) that damage the cells of plants and microbes. Plant and microbes
evolved a biological mechanism to protect themselves from reactive oxygen
species. Antioxidants are the molecules that neutralize the effect of reactive
oxygen species (ROS). Antioxidant defense system contains enzymatic
antioxidants and non-enzymatic antioxidants. Enzymatic antioxidants include
superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), glutathione
peroxidase (GPx), glutathione reductase (GRx), ascorbate peroxidase (APx),
etc. Glutathione (GSH), ascorbic acid (AsA), phenolic acid, thiols, proline, etc.,
are non-enzymatic antioxidants. Bioremediation of heavy metals through
phytoremediation and/or microbial remediation is eco-friendly approaches.
Phytoremediation refers to the technique in which the use of the plant to remedi-
ate the contaminant from the contaminated sites. Microbial remediation involves
the microorganisms to remediates the pollutants from the environment.
Antioxidants play an important role in tolerance against heavy metal stress and
provide the potential to plant and microbe to bio-remediates heavy metals. It this
chapter, we explain the role of antioxidants in the remediation of heavy metals
through phytoremediation or microbial remediation.
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9.1 Introduction

The natural and anthropogenic activities contribute to non-biodegradable pollution
such as heavy metals pollution that are a major concern for environmental health and
safety. Heavy metals (HMs) are those elements characterized by relatively high
densities (>5 g cm ) and are toxic to living beings at low concentrations (Alaraidh
et al. 2018). Anthropological activities or natural processes such as mining,
pesticides, metal industries, mineral fertilizers, and others caused heavy metal
pollution in the environment in the present time (Bhadur and Fulekar 2012). HMs
are non-biodegradable pollutants, accumulated in tissues cause deleterious effects on
living beings through a different mechanism. Due to heavy metal toxicity, oxidative
stress generates ROS like H,0,, OH™, singlet oxygen (‘O,), superoxide radical
(O*7), in plant cells (Rajkumar et al. 2012). HMs induce oxidative damage in plants,
develop ROS which alters enzymatic activity, DNA damage, membrane permeabil-
ity, respiratory and photosynthesis processes induce plant senescence, and leakage
of ions (Quartacci et al. 2001; Monferran et al. 2009). Various bioremediation
technologies such as phytoremediation, mycoremediation, and microbial remedia-
tion are applied to deal with heavy metals pollution. In a biological system, antioxi-
dant defense systems are present to neutralize the effect of reactive oxygen species
caused by oxidative stress. Antioxidant provides defense against the toxic effect of
heavy metals and other pollutants that cause oxidative stress in a living being.
Antioxidant defense systems present in cells can be enzymatic and non-enzymatic,
develop against oxidative damage, and are those that prevent ROS occurrence and
capture, block, free radicals that are formed in cells (Cheeseman and Slater 1993).
The biological antioxidant (present at a lower concentration) refers to any compound
that can either prevent or delay the oxidation of the substrate (Halliwell and
Gutteridge 2015). The main feature of antioxidants is reversing the effect of free
radicals (Prakash et al. 2012). In the environment, physical, chemical, and biological
methods are used for the remediation of heavy metals. Bioremediation is involved in
the biological mechanism of plant and microorganism to improve environments
contaminated with heavy metals, which is a profit-making and eco-friendly method
(Ojuederie and Babalola 2017).

Phytoremediation and microbial remediation is an efficient strategy for the
removal of environmental pollution as well as sustainable to the environment.
Phytoremediation is an alternative method as an environment friendly, profit-making
to cope with the kind of pollutants from soil, water, and plant tolerant to pollutants
require for this process (Wang et al. 2012). Phytoremediation includes several
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processes, namely phytostabilization, phytoextraction, and rhizofiltration, and accu-
mulation of toxic compounds by plants (Jasrotia et al. 2017; Sarwar et al. 2017; da
Silva et al. 2018). Due to the toxic effect of heavy metals, ROS accumulated in the
cell cause disruption of cellular activity. To alleviate their deleterious effects
and scavenge reactive oxygen species, plants have developed an enzymatic and
non-enzymatic mechanism that protects from oxidative damage (Goswami and Das
2016). Hence, studying the antioxidant defense system in the phyto-accumulator
plant may reveal the phytoremediation potential of such a plant. Antioxidants can be
categorized into enzymatic antioxidants such as peroxidase (POD), superoxide
dismutase (SOD), and catalase (CAT) and non-enzymatic antioxidants including
ascorbic acid (AsA) and glutathione (GSH) which prevent cells against 0% and
H,O, (Halliwell and Gutteringe 2006). In plants, the ascorbate-glutathione pathway
consists of the enzymes monodehydroascorbate reductase, ascorbate peroxidase,
dehydroascorbate reductase, and glutathione reductase, and glutathione and ascor-
bate is a very efficient system to remove lipid peroxides and hydrogen peroxide
(H,0,) (Foyer and Shigeoka 2011). Microorganisms induced different enzymatic
and non-enzymatic antioxidants to alleviate the oxidative stress caused through HMs
and lessen the radicals’ formations in plant cells under metal stress (Khanna et al.
2018). In wheat plants under Zn stress, Pseudomonas aeruginosa modulates the
activity of enzymatic antioxidants such as CAT, POD, and SOD which scavenge
ROS to prevent from H,O, and malondialdehyde (MDA) level (Islam et al.
2014a, b). Pseudomonas aeruginosa up-regulated SOD, APX, CAT, and POD
levels, whereas Solanum nigrum alleviated oxidative stress generated under stress
(Shi et al. 2016). The remediation of HMs has been carried out using
phytoremediation, mycoremediation, or microbial remediation or a combination of
these techniques. Recent findings have reported the use of Genetically modified
bacteria for Arsenic remediation (Mateos et al. 2017).

This chapter focuses on the importance of antioxidants in the plants and microbial
defense system in the phytoremediation and bioremediation of heavy metals.
Antioxidants play a crucial role in scavenging ROS generating during the oxidative
stress of toxic compounds. Plant and microorganisms used different biological
mechanisms for bioremediation purposes and able to tolerate with the help of an
anti-oxidative defense system and accumulate and detoxification of heavy metals.

9.2 Classification of Antioxidant and Its Applications

An antioxidant is an enzyme or molecule capable of inhibiting or preventing the
oxidation of other molecules (Fig. 9.1). Antioxidants may be able to donate or
accepting electron (s) to neutralize free radicals (Lii et al. 2010). Antioxidants can
protect the cells against oxidative stress through different mechanisms (Aziz et al.
2019). Antioxidants can be classified into enzymatic peroxidase (POD), catalase
(CAT), superoxide dismutase (SOD), glutathione peroxidase (GPx), etc., and
non-enzymatic antioxidants ascorbic acid (AsA), thiols, glutathione (GSH), proline,
and carotenoids on the bases of their activity. The production of POD, SOD, CAT,
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Fig. 9.1 Schematics diagram show enzymatic antioxidants and non-enzymatic antioxidants and
their role in scavenging ROS, generating due to oxidative stress under Heavy metals and other
pollutants

AsA, GSH, and carotenoids protects against oxidative stress (Hall 2002; Caregnato
et al. 2008). The enzyme antioxidant glutathione peroxidase (GPx), superoxide
dismutase (SOD), and catalase (CAT) are an essential unit of the antioxidant defense
system, and they are responsible for scavenging free radical (Butnariu and Grozea
2012). Antioxidant enzymes are the crucial substances of the protection
mechanisms, preventing ROS via transferring ROS into relatively stable compounds
(Pandey and Rizvi 2010). Among non-enzymatic antioxidants tocopherol, glutathi-
one and ascorbate play a major role in the defense mechanism of a plant to prevent
oxidative stress (Mittler et al. 2004; Scandalios 2005; Halliwell 2006).

9.2.1 Antioxidant Enzymes and Its Applications

The application of antioxidant enzyme is to detoxify the deleterious effect of HM
pollution in plants and microbes. Antioxidant provides potential to plant to tolerance
against heavy metals toxicity. Antioxidant enzymes play a crucial role to alleviate
metal stress during the bioremediation of heavy metals. The tolerance mechanisms
of plant for heavy metal toxicity such as to alleviate the ROS effect through
antioxidant enzyme can be assessed for phytoremedial potential of the plant (Bhadur
and Fulekar 2012). The Plant possesses a complex system of enzymatic antioxidants;
antioxidant enzymes are important substances that provide defense against oxidative
stress and alleviate the toxic effect of oxidative stress (Bano and Ashfaq 2013). CAT,
SOD, POD, APx, and GRx get activated in ROS detoxification (Gratao et al. 2008;
Roychoudhury et al. 2012). SOD catalyzes the dismutation of superoxide ion (O>)
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into either hydrogen peroxide (H,O,) or molecular oxygen (O,) (Rusin et al. 2020).
Catalase enzyme involved in the reduction of H,O, to H>,O_ Glutathione peroxidase
(GPx), using glutathione as an essential cofactor to catalyze the reduction of lipid
hydroperoxide, organic hydroperoxides, and H,O, to H,O or corresponding
alcohols (Kieliszek and Btazejak 2013; Pisoschi and Pop 2015). SOD-specific
activity increases in leaves of Medicago sativa plants grown in the presence of
sludge (Marti et al. 2009). Five different SOD isoenzymes, such as Mn-SOD,
Fe-SOD, and three Cu-, Zn-SODs, were detected in leave extracts of the alfalfa
plant (McKersie et al. 1993). The first line of defense toward metal stress is generally
SOD enzyme. The breakdown of H,O, into H;O and O, in plant cell becomes
oxidative stress which is protected by catalase enzyme (Chelikani et al. 2004). The
POD, CAT, and APX encoding gene showed a significant increase in mRNA
expression levels were observed in response to Pb, Cd, and Cr (Alaraidh et al.
2018). Goswami and Das (2016) observed that under Cu stress, SOD activity in
root tissues was higher than that of leaves tissues in C. officinalis.

9.2.2 Non-Enzymatic Antioxidant and Its Applications

Various non-enzymatic antioxidants are involved in ROS-scavenging pathways, and
HMs detoxification, produced in plants upon heavy metal exposure, antioxidants
like phenolics, and non-protein thiol have a role in Cd detoxification (Mishra et al.
2014). Plant uses non-enzymatic antioxidants like glutathione (reduced form) to
scavenge ROS generating during oxidative stress (Noctor and Foyer 1998; Chou
et al. 2011). A small amount of glutathione presents in the fully oxidized form
(GSSG), and glutathione is normally found in reduced form (GSH) (Pocsi et al.
2004). Reduced GSH (contain cysteine residue) is one of the important thiol
compounds that alleviate HMs stress and protect plants (Deng et al. 2010; Sun
et al. 2014; Mahawar et al. 2018). Glutathione functions as a non-enzymatic antioxi-
dant by ROS scavenging in cells, as well as a cofactor for various enzymes, such as
glutathione reductase, glutathione transferase, and glutathione peroxidase (Sun
2010; Skowyra 2014). Glutathione is a key antioxidant in HMs tolerance. Glutathi-
one is also important for the synthesis of phytochelatins that are important in HMs
detoxification (Jozefczak et al. 2012). An increase in proline level can play a crucial
role against metal stress, most likely reduced loss due to oxidation and the effect of
rise in metabolism (Dash and Panda 2001). Potamogeton pectinatus L. and
Potamogeton crispus L. grown under Pb, Cr, Cu, and Zn stress showed increased
non-enzymatic activity of proline and cysteine under Pb and Cr stress (Upadhyay
et al. 2014). N-acetylcysteine can alleviate HMs stress and improved the growth of
the wheat by coordinated induction of antioxidant defense system (Colak et al.
2019).
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9.3  Effect of Metal Stress on Living Being

The contamination of heavy metal in soil, water, and air through anthropogenic
activities causes harmful effect on a living being. Heavy metals such as cadmium,
arsenic, chromium, lead, and mercury cause toxic effects (various disease) in human
as well as plants and animals. The non-biodegradable nature of heavy metals is
responsible for their poor elimination from tissues (Ayangbenro and Babalola 2017).
The best-known indirect effects of heavy metals include elevated levels of ROS such
as hydrogen peroxide (H,O,), superoxide anion (O,¢"), alkoxyl (ROe), hydroxyl
radical (*OH), and development of oxidative stress (Colak et al. 2019). The ROS
detoxification process in plants through the antioxidant defense system is important
for protection against oxidative stress (Apel and Hirt 2004). The degree of toxicity of
heavy metal is determined by absorbed dosage as well as the duration of exposure by
the organism (Ojuederie and Babalola 2017). In humans, heavy metals like Pb, Hg,
and As drastically affect the nervous system and kidney leading to mental disorders
along with abdominal cramps, anemia, diarrhea, and headache (Sharma et al. 2014).
The excessive exposure to Pb causes lead poisoning/intoxication. The exposure of
human beings to the mercury may lead to nervous and renal disorder (Azimi and
Moghaddam 2013). Various microbial processes such as enzymatic activity, respi-
ration, and denitrification and hence retard bioremediation processes due to heavy
metal toxicity (Zhuang et al. 2007; Sobolev and Begonia 2008). Heavy metals
reduce the microbial populations that cause a shift in the structure of microbial
communities (Saxena et al. 2019). It affects disrupting the cell membranes, mor-
phology, and microbial growth by altering the nucleic acid (DNA and RNA)
structure, metabolism, causing lipid peroxidation and inhibiting enzyme activity,
protein denaturation, and cause functional disturbance (Fashola et al. 2016). The
HMs toxicity varies in plants, depending on metal concentration, plant species,
specific metal involved, the oxidation state of metal, and pH and composition of
soil (Nagajyoti et al. 2010). To study the effects of stress on plants, cell membrane
stability has been determined. The effect of accumulation of HMs in plant tissue is
on growth inhibition and development, which is related to cell division (Kumar and
Rai 2007). An accumulation of HMs in soil and aquatic environments can induce
adverse toxic effects on plants, such as biomass decrease, growth inhibition, defi-
ciency of nutrient uptake, and photosynthesis disturbance (Gavrilescu 2004; Pavel
et al. 2013). In Brassica napus decline in seedling growth and seed germination due
to the toxic effect of Cadmium (Cd) (Irfan et al. 2014) and enzyme activity inhibit in
Brassica juncea (Bashir et al. 2015). Lead stress caused disturbed in metabolic
function and inhibited plant growth in Brassica oleracea (Ashraf et al. 2011;
Theriappan et al. 2011).
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94 Role of Antioxidant Under Metal Stress

Heavy metals tolerant plant and microbes which possess antioxidant defense system
(ADS) can be used for remediation of heavy metals through phytoremediation and
microbial remediation techniques. Non-enzymatic activity of proline and cysteine
and antioxidant enzymes (guaiacol peroxidase, superoxide dismutase, and ascorbate
peroxidase) increased particularly under lead and chromium stress (Upadhyay et al.
2014). Due to the metal stress, the effect of increased proline level, an increase in
plant metabolism and prevent to oxidative damage (Dash and Panda 2001). The
antioxidant defenses of Arabidopsis thaliana to the Heavy metals altered by subtle
change in glutathione (Sobrino-Plata et al. 2014). Plant produced sufficient amount
of antioxidants such as phenolics, flavonoids, and polyphenolics, to prevent the
oxidative damage (Garhwal 2010). The toxicity of heavy metals causes the forma-
tion of ROS thereby decreasing the antioxidant defense systems which protect cells
(Ojuederie and Babalola 2017). To remove the oxidative stress produced by ROS, an
active antioxidant defense system is found naturally in plants (Skérzyriska-Polit et al.
2010). Uraguchi et al. (2006) observed the increased activity of CAT, SOD, and
GRx in Avena strigose under Cadmium stress. Enzyme participated in ascorbate-
glutathione, and SOD, POD, and parallel to total homoglutathione showed increased
activity allowing the plant to tolerate HMs and hydrocarbons stress (Martf et al.
2009). The non-enzymatic antioxidants, such as AsA, GSH, phenolic compounds,
carotenoids, and tocopherol, are best known for their important role to chelate/bind
HMs and/or scavenge the ROS in plant cells (Maleki et al. 2017). Th antioxidant
defense system (ADS) includes enzymatic and non-enzymatic antioxidants prevent
the cell from the toxic effect of ROS which caused by oxidative stress.

9.5 Role of Antioxidant System in Phytoremediation

The process of phytoremediation involves the use of plant to remediate hazardous
materials from environment and applied to remediate contaminants present in water,
soil, and air (Yanqun et al. 2005). The detoxification/decontamination processes
through plants are commonly known as phytoremediation (Fig. 9.2).
Phytoremediation includes several processes, namely phytostabilization,
phytoextraction, and rhizofiltration, and accumulation of toxic compounds by plants
(Jasrotia et al. 2017; Sarwar et al. 2017). Phytoremediation includes phytoextraction
that involves the use of hyperaccumulators plants to detoxification of HMs from
contaminated soil by concentrating them in plant tissue (Rajkumar et al. 2012).
Phyto-stabilization is a process in which plant should have low mobility of HMs
from root to shoots and broad plant root system (Islam et al. 2013). The success of
phytoremediation as a means of HMs eradication from the polluted site using plants,
depending upon the bioavailability of the metal impurity, the level of contaminated
soil, as well as the accumulation of HMs as plant biomass (Tak et al. 2013).
Arabidopsis thaliana and Pteris vittata have been widely utilized in the remediation
of Arsenic polluted soil (Huang et al. 2016). The use of microorganisms can
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Phytoextraction Biasorption

Phytostabilization Bioacclumation E

Plants : ; Microorganism
Phytostimulation Biotransformation ) «

Phytoremediation
Microbial remediation

e : Biomineralization
Rhizofiltration

Bioremediation

Fig. 9.2 Bioremediation techniques remove pollutant from environments includes
phytoremediation and microbial remediation, phytoremediation involves, phytoextraction,
phytostabilization, phytostimulation, and rhizofiltration while microbial remediation through
biosorption, bioaccumulation, biotransformation, and biomineralization

stimulate the phytoremediation process to provide tolerance against HMs stress, by
altering the level of phytohormone, upregulation of antioxidant enzymes, modula-
tion of protein related to defense, and modulation of metal transporters (Gallego
et al. 2012). The application of plants alone or in combination with PGPB is an
efficient method for the phytoremediation, prevention, and control of heavy metals
(Saxena et al. 2019) (Table 9.1). Microorganism enhances plant survival and HMs
stress, and stimulating the activity of reactive oxygen species-scavenging pathways
and maintains homeostasis of ROS (Khanna et al. 2018). The tolerance mechanism
in plant against oxidative stress induced by antioxidant enzymes that help in reduce
the oxidation of molecules and inhibit the process of ROS formation and oxidative
chain reaction (Bhadur and Fulekar 2012). Plants have developed an efficient
antioxidant defense system by which ROS is scavenged by antioxidant enzymes
such as GRx, POD, SOD, and CAT (Joseph and Jini 2010). Lead toxicity caused
oxidative damage in plants, and the antioxidant enzymes include GRx, SOD, and
POD play an important role in alleviating oxidative stress in plants (Verma and
Dubey 2003). The mechanism of the ascorbate-glutathione cycle involved in
controlling the cellular oxidation-reduction status especially due to HMs stress
(Cuypers et al. 2000; Smeets et al. 2005). Akinyemi et al. (2017) suggested that
non-enzymatic antioxidants like phenolic compounds and GSH have a crucial role in
the cadmium detoxification process. Glutathione reductase, SOD, CAT, GSH, AsA,
tocopherols, alkaloids, etc., have prevented the effect of oxidative damage of ROS
(Rastgoo et al. 2011; Singh et al. 2016). To study the role of the antioxidant defense
system provides a better understating of optimizing the efficient process of
phytoremediation and selection of most appropriate plants.
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9.6 Role of Antioxidant System in Microbial Remediation

The microbial remediation of heavy metals depends on microbial interaction with
heavy metals and different factor such as microbial community, concentration, and
toxicity of heavy metals. Microbes perform the oxidation, reduction, precipitation,
and absorption of HMs in the soil (Su 2014). Microbial remediation includes
bioaccumulation, biotransformation, biosorption, and biomineralization mechanism
employed by microbes involved in the remediation of contaminated sites, and
biosorption is the key process of microbes involved in metal sequestration
(Ayangbenro and Babalola 2017). In modern technology, microorganisms are used
to perform the function of bioremediation to remediate heavy metals. Multi-metal
resistance Paenibacillus sp. isolated from Trida xprocumbens can be utilized as an
appropriate candidate for the bioremediation from heavy metals (Govarthanan et al.
2016). Mechanism of tolerance in bacteria, by which they uptake and transform,
mobilize and immobilize heavy metals. Bacteria employed the mechanisms are
exclusion, physical sequestration, detoxification, and complexation to alleviate the
toxicity of HMs (ul Hassan et al. 2017). Microorganism interacts with HMs through
extracellular polymeric reactions with transformation, intracellular accumulation,
cell wall-associated metals, production of siderophore, immobilization, or mobiliza-
tion (Ahluwalia and Goyal 2007). The toxic character of hazardous waste influences
the survival of microbes in incompatible environments resulting in the reduction of
specific microbes in the environment and has led to evolved mechanisms by
microbes that prevent to them by HMs contamination (Forstner and Wittmann
2012). Antioxidants enzymes neutralize the ROS and repair damage biomolecules
(Poljsak et al. 2010). Superoxide dismutase mainly catalyzes the reaction of super-
oxide anion to hydrogen peroxide and oxygen. Catalase is responsible for the
conversion of hydrogen peroxide to HO and O,, thereby alleviate H,O,-induced
oxidative stress (Medvedeva et al. 2017). Bacillus sp. improved antioxidant defense
system in Triticum aestivum under Copper stress through increased activities of
APX, POD, dehydroascorbate reductase (DHAR), and SOD by reduction of super-
oxide radicals and hydrogen peroxide in plants (Wang et al. 2013). The robust
antioxidant defense system, based on the redox couples MSH/Mrx-1 and Trx/TrxR,
suggests the potential of Corynebacterium glutamicum for bioremediation purposes
(Mateos et al. 2017). Antioxidant defense system enhanced the tolerance capability
of microorganisms against oxidative stress, hence increase in the potential of
bioremediation of contaminants such as heavy metals.

9.7 Conclusion and Future Prospective

This chapter summarized the role of antioxidant defense system which are scaveng-
ing of ROS and reduce the oxidative stress under heavy metal. It also focused on the
detoxification or decontamination of heavy metals through phytoremediation and
microbial remediation. Heavy metal contamination in the environment and its related
toxicity in living beings is a major concern for environment. The toxicity of heavy
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metal causes oxidative damage of organisms. Organism evolved the antioxidant
defense system to protect against oxidative damage. Antioxidant enzyme plays a
crucial role during the stress induced by HMs or uptake of HMS in the
phytoremediation and microbial remediation process. Antioxidant provides potential
to Plant and microorganism to remediate HMs in the environments. Antioxidant
plays a crucial role in bioremediation process to alleviate the toxic effect of HMs.
Plants possess a best-known antioxidant defense mechanism to reduce and neutralize
the free radicals. The defensive biological mechanisms of Plants and
microorganisms help to survive under HMs stress and remediate the metals from
the environment.

However, future research is based on role of antioxidant and mechanism found in
plant and microbes involved in remediation of pollutant in contaminated site. In
bioremediation approaches, Detailed study is required at cellular and molecular level
for comprehension the role of antioxidant. Characterization of antioxidants incrimi-
nate in oxidative stress management will involve in upcoming work.
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Abstract

The world is witnessing a major decline in crop productivity with a simultaneous
rise in population and food demands. The global climatic change, irrational use of
pesticides, fertilizer, biotic and abiotic stress are equally responsible for the
decline of yield. The quest for novel, sustainable, and eco-friendly approaches
has been the primary concern. Abiotic stress like drought results in the overpro-
duction of reactive oxygen species (ROS). That, in turn, results in oxidative stress
through its toxic and reactive nature towards DNA, lipids, proteins, and
carbohydrates. Mitochondria and chloroplast are the sources of ROS generation
that could be free radical or non-radical. Over a period of time plant has evolved
its own effective antioxidant pathways producing isoenzyme like peroxidase,
superoxide dismutase, catalase with scavenging potential for various radical
ions. But there are scenarios where a plant’s inherent capabilities to combat
oxidative stress are just not enough. In the last few decades, microbial interactions
with plants have emerged as a tool of great significance. Implementation of plant
growth-promoting rhizobacteria (PGPR) showed significant alleviation in crop
productivity. Recently, PGPR has also been shown to trigger phytohormone
production along with enzymatic and nonenzymatic antioxidant pathways to
mitigate ROS and oxidative stress. This review aimed to present recent advances
in making the most of PGPR-mediated antioxidant production and its potential in
abiotic stress-mediated drought management.
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10.1 Introduction

Exposure to different environmental stress is a major cause behind the declining
productivity of crops. Every year, a huge fortune of crops is either being lost due to
drought, degrading soil quality, salinity, extreme temperature, or pathogenic
infections. The pressure generated on agricultural lands by these biotic and abiotic
stress is being further added on by the ever-increasing population. In the upcoming
three decades, it is expected to reach the mark of nine billion, an approximate 60%
increase in food demands (Van Kernebeek et al. 2016; Muller et al. 2017). Increasing
demands, loss of land, soil quality degradation, climatic change, and cultivation shift
have made farmers depending more and more on chemical fertilizers and pesticides.
On the other hand, unrestrained use of pesticides and fertilizers in nonbiological
stress situations possesses a huge disadvantage in a long run (Jewell et al. 2010).
These include but not, in any case, limited to fouling of ecosystem, the addition of
contaminant, toxic pollutants, reduction in yield, and expedition of environmental
deterioration. In order to meet the increasing food demands along with the intent to
conserve the environmental demands some novel and innovative agriculture
practices are required (Majeed et al. 2017).

Recent climatic change is anticipated to increase the severity and frequency of
drought, making it major abiotic stress which crops might face in the near future.
Depending upon various characteristics like dehydration, soil water content, field
capacity, moisture content, holding capacity, water potential, and length of applied
stress one can classify drought into the severe, moderate, and mild stage. Though
these factors tend to differ with species, and drought being the result of crosstalk
between these multiple players that have their own limits, it is hard to find an
absolute value of dehydration defining transitions. Recently, relative water content
is used to have a broader image of drought severity (Laxa et al. 2019).

Agriculture crops grown in the arid and semiarid regions are expected to see a
decline in productivity and growth. Almost half of the arable land could also face
critical growth issues by 2050 (Vinocur and Altman 2005). The anticipated
mechanisms that undergo in plants include changes in nutrient homeostasis, distur-
bance of water potential, photosynthetic assimilation, and shift in metabolic pro-
cesses like nitrate reductase by reducing nitrate uptake (Caravaca et al. 2005;
Heffernan 2013). Drought causes a decrease in chlorophyll content in bean (Beinsan
et al. 2003), Carthamus tinctorius (Siddigi et al. 2009), Paulownia imperialis
(Astorga and Melendez 2010). Accentuated levels of phytohormone like ethylene
could be seen in some cases while other work also reported a negative effect on
subcellular components of cells (Ali et al. 2014; Rahdari et al. 2012).

Drought has been reported to affect the growth through a decrease in fresh weight
along with water content in wheat (Rampino et al. 2006), maize (Kamara et al.
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2003), barley (Samarah 2005), and rice (Lafitte et al. 2007). Inhibited growth
reduces the root length resulting in dampened absorption of water-soluble nutrients
like Mg, Si, Ca, and sulfate (Selvakumar et al. 2012). Hence, in order to meet the
current demand, effective mitigation of stress aftermath and tolerating the drastic
outcomes of drought became a major issue. Different strategies have been adopted
for abatement of stresses with the likes of genetic modifications, resources manage-
ment, shifting of cropping patterns, etc. Though most of them are cost-intensive,
they come at huge additional prices in terms of labor, initial setup, and management.
At the same time, adaptation of plants to stressful conditions requiring microbial
association and advanced technologies promises a cost-effective way to improve
crop yield, reach eco-friendly and sustainable agriculture practices (Etesami and
Maheswari 2018).

10.2 PGPR at a Glance

Rhizosphere harbors millions of microbes forming a complex and rich ecological
community around the roots of plants. These kinds of microbe—plant interfaces have
been reported to heavily favor plant growth by metabolite-induced activation of
different pathways (Qiao et al. 2017). Depending upon mechanism, metabolite, and
induced response, the interaction could result in being neutral, deleterious, or
favorable in nature (Singh 2018). This symbiotic relationship of microbes and
plant is possible because of root secretion system. It provides a source of energy
in terms of secretion rich in amino acids, carbohydrates, vitamins, sterols, phenolics,
fatty acids, etc. (Uren 2007). From the consortia of microorganisms present in the
rhizosphere, rhizobacteria are the ones holding the key position. These rhizobacteria
are also referred to as plant growth-promoting rhizobacteria (PGPR). PGPR-
mediated benefits come from a wide number of mechanisms that include but not,
in any case, limited to the production of phytohormones, siderophores, inhibitory
compounds, lytic enzymes, nutrient improvement, nitrogen fixation, resistance to
pathogens (Singh et al. 2015; Shameer and Prasad 2018; Gouda et al. 2018; Pérez-
de-Luque et al. 2017). PGPR can enhance plant growth by phosphate solubilization
(Otieno et al. 2015), mobilization and increase in nutrient uptake (Jacoby et al.
2017), nitrogen fixation (Stokstad 2016), heavy metal remediation (Ma et al. 2016),
addition of several growth-promoting substances (Glick 2014), increase resistance to
disease with enhancement in immunity (Rahman et al. 2018).

10.3 Complex Signaling Network

Recent technological development has made it easier to understand phenomena
happening at the molecular level, from the recognition of stimulus to translation
into expression and even further down to structural and metabolite change (Sewelam
et al. 2016). This understanding lately helped us to know numerous components with
the potential to initiate signaling, interconnectivity, and overlap among different



202 I. Singh and S. Kaushik

CO2z :

-

Light/Dark

metabolic
adjustment

photosynthesis

Growth adjustment and
stress adaptation

Fig. 10.1 Illustration of physiological and biochemical adaptations of plant to adjust and adapt to
water stress (Adapted from open access mini review on Response of plants to water stress by
Osakabe et al. 2014)

signaling pathways, posttranslational and transcriptional modification, changes at
the spatiotemporal level, the role of metabolite, and compartmentalization
(Krasensky and Jonak 2012). A recent finding has made it evident that the signaling
pathway is not linear, rather a complicated set of events with significant overlap as
depicted in Fig. 10.1 which indicates that in case of water stress condition the
photosynthetic machinery is also affected and generation of reactive oxygen
scavengers signals the cells to undergo metabolic adjustments in order to show
adaptive response for survival. There are numerous sensors that can perceive
primary signal like stress and result in activation of numerous secondary signals
like calcium or phytohormone that can interact between themselves to give adequate
expression and protection (Knight and Knight 2001; Xiong et al. 2002).

10.4 ROS Chemistry

Environmental perturbations result in the activation of different protective
mechanisms in plants through appropriate gene expression and activation of the
suitable signaling pathway. Generally, the biotic and abiotic stress involves the rapid
generation of RNS (reactive nitrogen species) and ROS (reactive oxygen species),
abrogating the critical balance between the production and scavenging maintained
during normal development and growth. These changes fuel the plant’s stress
response along with the activation of the enzymatic and nonenzymatic antioxidant
systems to counteract the abrupt increase in oxidative species (Gill and Tuteja 2010).
During evolution, frequent and persistent interaction with stress resulted in
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acclimation through alteration in metabolism (Zhang et al. 2014), cell wall (Lii et al.
2013), antioxidant system (He et al. 2017), change in the ratio of shoot-root (Silva
et al. 2012), and osmotic adjustment (An et al. 2013). Lately, drought resistance is
seen as the function of the plant’s antioxidant capacity and is held centrally in the
abatement of dehydration and acute drought stress (Laxa et al. 2019).

ROS are produced as a consequence of several metabolic pathways and are kept
in check through the antioxidant system. Cellular compartments like mitochondria,
chloroplast, and peroxisomes are reported as the localization center for these reactive
species. The check and balance system is generally found to be abrogated in
response to biotic and abiotic stress. Accumulation of ROS results in oxidative
stress with the potential to damage DNA, protein, lipids, carbohydrates besides
being lethal to plants. Depending upon localization, equilibrium status, ROS can
act as a signaling, protective, or damaging factor. ROS can influence the transcrip-
tion program through anterograde and retrograde signaling pathways (Gill and
Tuteja 2010; Choudhury et al. 2013; Hossain et al. 2015; Kleine and Leister 2016).

Oxygen produced in chloroplast can accept electron while passing through
photosystem and result in the generation of reactive species that are capable of
independent existence and have an unpaired electron in the outer orbit. These
chloroplasts are storehouse of polyunsaturated fatty acids, and photosensitizer favors
bioenergetic lifestyle of the photosynthesizing organism. This lifestyle keeps later at
a higher probability of having high oxidative damage. Although atmospheric oxygen
is comparably nonreactive, it is used in the production of energy and respiratory
metabolism, along with the demands of O as a final electron receptor makes it more
vulnerable for generation and accumulation of ROS. Besides, free radical
productions are exaggerated post abiotic and biotic stress that causes excitation of
O, resulting in the generation of singlet oxygen or by transfer of 1, 2, or 3 electrons
to O, to form O, , H,O,, OH . Mittler (2002) has stated that besides the electron
transport chain and photosynthetic process, amine oxidase, photorespiration, perox-
idase, NADPH oxidase can also result in the generation of ROS. Detailed
descriptions of the above have been already covered in previous reviews (Mgller
et al. 2007; Baxter et al. 2014; Mittler 2002; Wrzaczek et al. 2013).

10.5 ROS Damaging Effect

Plants introduction to abiotic stress like drought, extreme temperature, salinity,
nutrient deficiency results in the productions of various ROS. In response to it,
plants induce the defense system to counter the deleterious effect of these ROS
accumulation through scavenging. However, the defense system can quench only a
certain amount of produced ROS, beyond that lies O, toxicity, the formation of
H,0,, singlet oxygen, O, ", and OH. (Akter et al. 2015; Miller et al. 2009). These
products in turn target the crucial and important players of the cells like mitochon-
drial DNA, membrane lipids, nucleus DNA, and other high molecular molecules
(Tuteja et al. 2001).
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Though the genome is considerably stable, the accumulation of different stress
has the potential to cause damage resulting in genotoxic stress. Lack of repair
mechanism and chromatin organization in the mitochondrial DNA further makes it
more susceptible to oxidative damage when compared to the nuclear DNA. The
spontaneous or directed nature of this DNA damage is still a matter of debate and
needs further evidence to establish its mode of action. Though some literature argued
about the hotspot region in the genome for the caused mutation, no considerable data
has been reported on particular gene susceptibility or corelation to the
ROS-mediated damage, to the best of our knowledge. ROS has been reported to
modify the DNA through various ways that include but not, in any case, is limited to
direct oxidation of DNA, cytosine methylation resulting in the alteration of gene
expression, 'O, mediated attack on guanine, OH' mediated damage to pyrimidine
and purine along with the backbone of DNA. These damages could further be
classified into base modification, for example, alkylation, oxidation, base deletion,
single and double-strand break, cross-linking, or dimerization. The further down-
stream effect includes an error in replication, genomic instability, loss or gain of
function, destruction of the cell membrane, reduction in protein synthesis, and
dysregulation of photosynthesis pathway leading to arrest of growth are few
amongst many (Halliwell and Gutteridge 1999; Wiseman and Halliwell 1996;
Tuteja et al. 2001; Britt 1999; Cooke et al. 2003).

Protein oxidation is another very common effect that is observed in the case of
ROS accumulation. It is generally seen as the covalent modification in side chains of
amino acids either due to ROS accumulation or through other indirect byproducts
produced in the process of oxidative stress. Though this protein carbonylation was
generally considered to be irreversible with exception of few amino acids containing
sulfur. The oxidation of amino acid results in the release of the carbonyl group that in
turn makes them susceptible to proteolytic attacks. Carbonylation has been
suggested to be the result of many stresses. This modification could see the extrac-
tion of H atom from cysteine, hence forming a thiyl radical that in turn dimerizes
with another thiyl radical through disulfide bridges; additionally, methionine sulfide
production is also seen as the addition of oxygen on methionine residue, or side-
chain modification in lysine and threonine resulting into aminoadipic semialdehyde
or aminoketobutyrate (Ghezzi and Bonetto 2003; Job et al. 2005; Shringarpure and
Davies 2002; Hancock et al. 2006; Sadanandom et al. 2000).

Polyunsaturated fatty acids (PUFAs), a major constituent of fatty acids that are
present in the plant membrane, are also vulnerable to the accumulation of ROS.
PUFAs generally undergo peroxidation in the presence of ROS leading to the
formation of lipid hydroperoxides. As a result, membrane damage could be seen
along with the damage to protein, leakiness, and reduction in the fluidity of the
membrane (Mueller 2004). This does not only affect the normal cellular process but
it in turn exaggerates the ROS accumulation through the production of lipid-derived
radicals (Montillet et al. 2005; Mgller et al. 2007).
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10.6 ROS and RNS in Drought

Drought stress response generally begins with closure of stomata to regulate loss of
water. But the continual photosynthesis depletes the intracellular stock of CO,,
which in turn stimulates RuBP (ribulose-1,5-biphosphate) mediated oxygenation
resulting in H,O, production. CO, depletion also reduces the level of NADP*
through a reduction in the rate of oxidation of NADPH from the Calvin—Benson
cycle, which ultimately results in a reduction of electron transport, accumulation of
electron, and increase in oxygen reduction forming hydrogen peroxide (H,O,) and
superoxide anion (O, ).The depleted pool of NADPH in chloroplast activates
malate dehydrogenase and opens the valve for the transportation of accumulated
electron to the mitochondrion electron transport chain and cytosol. To counteract the
increased inflow of electrons to ETC, various aox genes and alternative oxidase are
reported to be upregulated in order to maintain the balance. Besides this, it is also
reported to see upregulation of ATP-sensitive potassium gateway, inhibition of
respiratory functions, and stimulation of PUCPs (plant uncoupling proteins) as a
response to ROS and drought-mediated changes (Noctor et al. 2002; Pastore et al.
2001; Bartoli et al. 2005; Selinski et al. 2018; Cruz de Carvalho 2008; Barreto et al.
2017).

Besides ROS, RNS are also produced as the repercussion of the drought stress.
Nitric oxide has been already proven to be an essential signaling molecule involved
in germination, stress management, hormone regulation, and development. While
the mechanism of production through NO synthase is not conserved from animal to
plant, there have been many other reported mechanisms like nitrite and nitrate NO
reductase, production as a byproduct of electron transport chain, xanthine oxidore-
ductase, through associated enzymatic proteins of NO (Corpas et al. 2008, 2009;
Gupta et al. 2011). NO bioactive concentration has been found to be a function of
three major factors: (a) concentration of nitroso glutathione (GSNO), (b) GSNO
reductase activity, and (c) interactions with hemoglobin (Diaz et al. 2003;
Igamberdiev et al. 2010; Chamizo-Ampudia et al. 2017).

A threefold increase in NO uptake has been reported post 24 h. of osmotic stress
of 20 mmol/L mannitol (Cai et al. 2015). Similar enhancement of NO uptake was
seen in rice post concealment of irrigation for 9 days (Xiong et al. 2012). While in
trees like Ailanthus altissima it took around 14 days post concealment of irrigation to
significant enhancement of NO uptake (Filippou et al. 2014). The difference in time
span seen in different studies could be the potential result of many detrimental
factors like (a) time taken to accumulate similar stress level, (b) sensitivity towards
drought, (c) developmental stages, (d) ratio of mature and developing cell present in
the leaf lamina, (e) the extent of antioxidant response and APX activity, (f) activation
of regulatory photoprotective mechanism, (g) SOD (superoxide dismutase) activity,
and others like (h) carotenoid metabolism, redox process, photosynthesis, etc.
(Tholakalabavi et al. 1994; Moustaka et al. 2015; Polle et al. 2001; Li et al. 2018).
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10.7 Antioxidant Defense Machinery

During environmental perturbations, the production of reactive oxygen species and
free radicals are generally upregulated and so is their accumulation. ROS being
capable of causing oxidative damage, impairing normal functioning, are often
counteracted with activation of the antioxidant systems. Antioxidant defense
machinery consists of both enzymatic and nonenzymatic approaches that help in
the reduction of ROS accumulation and lessen the damage caused by oxidative stress
(Miller et al. 2010). Enzymatic antioxidants include superoxide dismutase, catalase,
ascorbate  peroxidase, guaiacol  peroxidase, glutathione  reductase,
monodehydroascorbate reductase, dehydroascorbate reductase, glutathione s trans-
ferase, and glutathione peroxidase, while nonenzymatic includes water-soluble like
glutathione (GSH), ascorbic acid (AA), and lipid-soluble like tocopherols and
carotenoids. (For an extensive review on plant antioxidant defense system see
Ahmad et al. 2010; Gill and Tuteja 2010.)

Superoxide dismutase (SOD) is a metalloenzyme arguably considered as the first
responder to ROS accumulation. It is associated with all the major cellular compart-
ment sensitive to ROS and to the aerobic organism. SOD works on the principle of
converting O,—* to H,O,. SOD can be categorized into various subgroups on the
basis of the metal ion they possess in their active centers like iron (FeSOD),
manganese (MnSOD), and copper and zinc (Cu/Zn SOD) (Kim et al. 1996). Over
the years there has been numerous literature showing the critical role and
upregulation of SOD post abiotic stress and SOD-mediated activation of other
enzymes of the antioxidant defense machinery (McKersie et al. 1999; Shalata
et al. 2001; Ahmad et al. 2012; Tuna et al. 2008).

Ascorbate peroxidase (APX): APX that consists of five different isoforms and has
an important function as the scavenger of H,O, and also in the ascorbate—glutathione
cycles where it employs ASH as the electron donor (Kangasjirvi et al. 2008). APX
has been widely covered by earlier literature for its important role in the defense
system of plants. Noctor and Foyer (1998) in their work have described different
isoforms of APX based on their attributes that consist of either the membrane-bound
microsomal or thylakoid or soluble form in cytosolic, stromal, and apoplastic
enzymes. Prior literature has established APX crucial role in the defense system
and higher affinity toward H,O, when compared to the POD and CAT.
Overexpression of tylAPX resulted in an increase in resistance to stress while
suppression made plants more prone to oxidative stress (Zhang et al. 2008;
Davletova et al. 2005; Giacomelli et al. 2007).

Catalases (CAT): Another important antioxidant enzyme from the plant’s defense
machinery that facilitates the scavenging of H,O, by converting them to O, and H,O
(Ben Amor et al. 2005). It is a tetrameric heme-containing enzyme that is generally
localized in peroxisomes. Different isoforms of catalase have been reported in the
literature, some directly dismutate H,O, while others choose to regulate its concen-
tration by oxidizing substrates like ethanol, formic acid, methanol, and ethanol.
Willekens et al. (1994) in their work classified catalase into the three subtypes,
based on their function and localization. Class 1 catalase was found in
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photosynthetic tissue, class 2 in vascular tissue, and class 3 in young plants and
seeds. Catalases are indispensable in their role of H,O, removal that is generated as
the result of ongoing processes like purine catabolism, photorespiration, and fatty
acid degradation (Vital et al. 2008). An increase of catalase in cotton, tea, tobacco,
and alfalfa nodule is accepted as the possible trait adaptation that helps towards the
efficient management of the oxidative stress either through reducing the extent of
damage or through the reduction of damage like photorespiratory loss (Hediye
Sekmen et al. 2007; Vital et al. 2008; Upadhyaya et al. 2008; Zhang et al. 2008).

Glutathione peroxidase (GPX): Family of GPX isoenzyme is known to provide
protection to the plant from oxidative stress through reduction of the level of H,O, or
through the detoxification of the toxic hydroperoxides or by-products of lipid
peroxidation (Dixon et al. 1998). Post introduction of oxidative stress, Leisinger
et al. (2001) found upregulation of the Gpxh gene. And it was highly correlated with
the conferring of resistance to singlet oxygen and abiotic stress in different trans-
genic plants.

10.8 PGPR-Mediated Alteration in Antioxidant Defense System

Chiappero et al. (2019) demonstrated that the Mentha piperita under severe to
moderate drought stress showed amplification of PX and SOD activity when
inoculated with Bacillus amyloliquefaciens and Pseudomonas fluorescens. Wang
et al. (2012a, b) showed that systemic tolerance to drought could be achieved by
SOD amplification in Cucumis sativus L. through the application of Serratia sp.,
Bacillus  subtilis, and Bacillus cereus consortia. B. safensis and
O. pseudogregnonense were further shown by Chakraborty et al. (2013) to be crucial
in maintaining the high level of SOD and CAT in different varieties of Triticum
aestivum. Addition of PGPR was crucial in the maintenance of the elevated level of
antioxidants while the decline is seen in case of one not being treated with PGPR.
They also observe the accumulation of additional small antioxidants like ascorbate
and the carotenoids. Gusain et al. (2015) found that inoculation of PGPR consortia
like Pseudomonas jessenii and Pseudomonas synxantha can enhance various anti-
oxidant enzymes like CAT, SOD, APX, and POD, hence conferring characteristic
trait-like drought resistance to Oryza sativa L.

Khan et al. (2019) reported yet another addition of combinational treatment with
PGPR and PGR (plant growth regulator) on Cicer arietinum L. They used the
Bacillus thuringiensis, Bacillus subtilis, and Bacillus megaterium consortia along
with salicylic acid and putrescine showed a significant increase in their response to
drought stress. They have also observed an upregulation of antioxidant enzymes like
CAT, SOD, POD, and APOX along with other potential contributors like an increase
in proline content and lipid peroxidation (Table 10.1).
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Table 10.1 Plant species and their associated PGPR with their antioxidant enzymes

Plant species

Lactuca sativa
L.cv

Beta vulgaris
Hyoscyamus niger

Solanum
tuberosum

Vigna radiata

Zea mays L.

Triticum aestivum
L.

Vigna radiata

Zea mays L.

Zea mays

Mentha pulegium
L.

Triticum aestivum
L.

Helianthus annus

Cupressus
arizonica G.

Lycopersicon
esculatum;
Capsicum annuum

Mentha piperita

Pelargonium
graveolens (L.)
Herit.

Linum
usitatissimum L.

PGPR

Pseudomonas mendocina
Glomus mosseae
Glomus intraradices

Azotobacter chroococcum

Pseudomonas putida;
Pseudomonas fluorescens
Bacillus pumilus; Bacillus
Sfirmus

Pseudomonas fluorescens;
Bacillus subtilis

Bacillus licheniformis,
Bacillus thuringiensis,
Paenibacillus favisporus,
Bacillus subtilis

Bacillus amyloliquefaciens;
Azospirillum brasilense

Pseudomonas aeruginosa

Pseudomonas spp.

(P. entomophila; P. stutzeri;
P. putida; P. syringae; and
P. monteilli)

Ochrobactrum sp.

Azotobacter chroococcum
Azospirillum brasilense

Bacillus subtilis

Planomicrobium chinense;
Bacillus cereus + salicylic
acid

Pseudomonas fluorescens;
Rhizophagus irregularis;
Funneliformis mosseae
Rhizophagus intraradices,
Rhizophagus fasciculatum,
Burkholderia seminalis
Pseudomonas fluorescens;
Bacillus amyloliquefaciens
Glomus mosseae, Glomus
intraradices

Funneliformis mosseae or
Rhizophagus intraradices;
Pseudomonas putida

Antioxidant

POX, SOD, and CAT
(their activity varies in
moderate and severe
stress)

SOD

SOD and POX

SOD, DHAR, GR,
APX, and AT

CAT, POX

APX, CAT, and GPX

APX, MDHAR,
DHAR, and GR
SOD, POX, and CAT

GPX, CAT, and APX

APX, GPX, PPO
GPX, SOD, and CAT
POX, SOD, and CAT

APOX, CAT, and
SOD

APX, GPX, SOD, and
CAT

CAT and GPX

PX; SOD

GPX, APX, and CAT

GPX, SOD, APX, and
CAT

Reference

Kohler et al.
(2008)

Stajner et al.
(1997)

Ghorbanpour
et al. (2013)
Gururani et al.
(2013)
Saravanakumar
et al. (2011)

Vardharajula
et al. (2011)

Kasim et al.
(2013)

Sarma and
Saikia (2014)
Sandhya et al.
(2010)

Mishra et al.
(2020)

Asghari et al.
(2020)

Sood et al.
(2020)

Khan et al.
(2018)

Aalipour et al.
(2020)

Tallapragada
et al. (2016)

Chiappero et al.
(2019)

Amiri et al.
(2015)

Rahimzadeh
and Pirzad
(2017)

(continued)
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Table 10.1 (continued)

Plant species PGPR Antioxidant Reference
Oryza sativa L. Pseudomonas strains PX, CAT Sen and
Chandrasekhar
(2015)
Solanum Bacillus subtilis CAT, POD, and SOD | Batool et al.
tuberosum L. (2020)
Triticum aestivum Bacillus lentus, Bacillus SOD, CAT, and GR Annapurna

L.

subtilis and Bacillus cereus

et al. (2019)

Oryza sativa L.

Pseudomonas fluorescence,

APX, SOD, CAT,

Gusain et al.

Pseudomonas jessenii, POD (2015)

Pseudomonas synxantha,

Bacillus cereus,

Arthrobacter

nitroguajacolicus
Triticum aestivum Stenotrophomonas SOD, CAT, POX Singh and Jha
L. maltophilia (2017)
Lavandula dentata | Enterobacter sp., Bacillus GR and APX Armada et al.

and Salvia thuringiensis, and Bacillus (2014)

officinalis sp.

Abelmoschus Pseudomonas fluorescens SOD, CAT, APX, and | Pravisya et al.

esculentus (L.) GPX (2019)

Calotropis Rhizophagus irregularis, SOD, CAT, APX Bahmani et al.

procera Pseudomonas putida (2018)

Oryza sativa L. Bacillus haynesii; Bacillus SOD, CAT, and Joshi et al.
licheniformis; Bacillus GPOX (2020)
paralicheniformis; Bacillus
licheniformis

Ziziphus jujuba Pseudomonas lini; Serratia SOD and POD Zhang et al.
plymuthica (2020)

Cucumis sativus Bacillus methylotrophicus SOD, CAT, GPX,and | Hou et al.

APX (2018)

Ocimum basilicum | Azotobacter chrocoocum, PX, PPO, and CAT Agami et al.

L. Pseudomonas fluorescens, (2016))
Pseudomonas mendocina
Palleroni and Azospirillum
lipoferum

Cicer arietinum L. | Pseudomonas putida CAT, APX, and GST Tiwari et al.

(2016)
Zea mays L. Bacillus licheniformis CAT Akhtar et al.
(2020)
Lavandula dentata | Bacillus thuringiensis SOD, CAT, and APX | Armada et al.
(2016)

Triticum aestivum | Burkholderia phytofirmans CAT and GR Naveed et al.

L. PsIN (2014)

Cucumis sativus Burkholdera cepacia, PPO, PX, and CAT Kang et al.
Promicro monospora sp., (2014)

Acinetobacter calcoaceticus

(continued)
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Table 10.1 (continued)

Plant species PGPR Antioxidant Reference
Ocimumbasilicum Pseudomonades sp., CAT, GPX, and APX | Heidari and
L. Bacillus lentus, Azospirillum Golpayegani
brasilens (2012)
Lycopersicon Bacillus cereus SOD, PX, and CAT Wang et al.
esculentum (2012a, b)
Triticum aestivum | Azotobacter chrocoocum, CAT, PPO, POD Khalilzadeh
L. Pseudomonas putida et al. (2016)
Zea mays L. Bacillus megaterium SOD, POD, CAT, and |Lietal. (2019)
APX
Capsicum annum Pseudomonas aeruginosa SOD, POD, and CAT | Gupta et al.
L.; Solanaceae and Bacillus (2019)

amyloliquefaciens

APX ascorbate peroxidase, CAT catalase, GPX glutathione peroxidase, SOD superoxide dismutase,
APX ascorbate peroxidase, GPX guaiacol peroxidase, PPO polyphenol oxidase, PX peroxidase,
GPOX guaiacol peroxidase

10.9 Conclusion

Use of PGPR is nowadays gaining popularity as it proves to be very effective
biofertilizer and biocontrol agent (Babalola 2010). The soil is rich in beneficial
microbes; the need of the hour is to make use of this hidden wealth for sustainable
agriculture through organic farming which pays much focus on food security,
preservation of nutrients, and environmental protection. The field crops are in
constant threat from a number of factors including biotic as well abiotic stress.
The present scenario in which climate change is unpredictable, plants frequently
suffer from high degree of abiotic stress which not only hampers the growth of crops
and but also causes a huge setback in yield. To mitigate the harmful effects of these
stressful conditions, plants have developed various complex mechanisms involving
plant associated bacteria. The studies involving use of PGPR in ameliorating drought
stress in time-sensitive and cost-effective manner support the large-scale production
and commercialization of these inoculants. The signaling network of extracellular
compounds released in response to environmental stress stimuli and the regulatory
pathways modulated to tolerate the stress need to be explored in the whole process of
plant-microbe interaction. The potential application of PGPR to help plants deal
with stress in agricultural fields seems vastly large and effective and a lot has to be
utilized yet.
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Abstract

Rhizosphere is the main sink of plant growth-promoting microbes (PGPMs),
where they colonize profusely; promote plant growth, biomass production, and
yield; and activate the defense system of host by direct and indirect mechanisms.
They are capable to multiply at different ecological niches of roots and modify
root functioning by improving the mineral and water acquisition. The
rhizospheric mircobiome may have neutral, detrimental, or positive effect on
plant health. Currently, plant growth-promoting rhizobacteria (PGPR) and plant
growth-promoting fungi (PGPF) are commonly used as biopesticides against
many pathogenic diseases of agricultural crops including medicinal and spice
crops. The influence of PGPM interaction with medicinal and spices herbs
enhances the antioxidant defense associated with non-enzymatic and enzymatic
reactions that protect the plant against herbivory and pathogen attack. Therefore,
impact of pathogenic stress on medicinal and spice crops can minimize by
utilizing the antagonistic potential of PGPMs instead of chemical fertilizers,
owing to their features such as environmentally safe, rapid multiplication rate,
broad spectrum of mechanism, and high compatibility over other rhizobacteria.

This chapter discusses the novelty of PGPMs in rhizosphere and their antago-
nistic potential in the reduction of pathogens stress of many medicinal and spice
crops by various modes of action particularly antioxidant defense mechanisms.
The chapter also highlights the progress of morphological as well as physiologi-
cal characteristics of plants on PGPM inoculation.
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11.1 Introduction

Plant-derived medicines are the richest source of various bioactive compounds,
which have been used intensively in traditional healthcare system across the world
for centuries (Toussaint et al. 2007; Kandari et al. 2012). With the increase of
population pressure, preferences of herbal medicine have become popularized due
to the increased awareness of toxic effects, cost, and resistance development to
synthetic chemical and indiscriminate usage of antibiotics in the treatments of
many diseases (Saganuwan 2010; Nema et al. 2013). Medicinal plants play vital
role to maintain the economy of the country or support the local farmers in earning
money through export and import services. World population around 70-80% of
developing countries primarily depend on health conservations by endorsing the
herbal medicines because of relatively minor side effects, lesser expensive, and
globally competitive (Kamboj 2000). Therefore, medicinal plant cultivation is
being focused by using both modern and traditional practices world widely. How-
ever, the pest and pathogen attack is the major hampering problem in the quality of
growth and development of medicines-spice herbs. Additionally, excessive use of
pesticides may degrade the quality of medicines-spice products and its residue
causes environment pollution. Thus, development of new or modified traditional
technologies for cultivation of medicines-spice plants is necessary. Herbal medicine-
spice is the premise bowl of natural substances which are using intensively to
maintain the physiological functioning of living cells, alleviate illness, and can
promote health. Hence, they are believed to be better for patient acceptability and
compatibility (Table 11.1).

Antioxidant is one of the vital plant metabolites that are capable to encounter the
oxygen free radical and have antiproliferative properties to protect plant against
herbivory, pathogen, and abiotic stress (Wink and Schimmer 2010; Briskin 2000;
Wau et al. 2007). Considering potential role of antioxidants in food, pharmaceutical
industry, and human health, thus herbal medicines-spice plants of broad range of
naturally occurring antioxidants properties are classified on the basis of composition
its physical, chemical nature, and site of action (Table 11.2). Antioxidants act as
scavenger of oxygen free radical (RFR) by donating electrons during oxidation or
reduction (redox) reaction. It produced non-toxic oxidized products of metal ions or
other compounds to repair cells by iron-transporting protein system (Brewer 2011).
Herbaceous medicines-spices (HMS) have been identified as source of various
biochemical compounds, among them many of which are potent to have antioxidant
potential (Dragland et al. 2003). Moreover, antioxidant and redox signaling of HMS
plants are capable to activate essential defense at cellular level against abiotic and
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Table 11.1 PGPM association with Medicinal-spices plants enhances phytochemicals

S. No.

1

11

Medicine-
spices herbs
Anethum
graveolens
L. (dill)
Ocimum
basilicum
(common
basil)
Origanum
majorana
L. (marjoram)

Salvia
miltiorrhiza
Bunge (red
sage)

Stevia
rebaudiana
Bert. (sweet
leaf)
Tagetes minuta
(Mexican
marigold)
Withania
somnifera
(Indian
ginseng)

Curcuma
longa

L. (turmeric)
Trigonella
Sfoenum-
graecum

L. (Fenugreek)

Cinnamomum
verum L.
(Cinnamon)

Zingiber
officinale L.
(Ginger)

PGPMs

Pseudomonas putida

Bacillus subtilis

Pseudomonas
fluorescens
Bradyrhizobium sp.

Bacillus cereus

Burkholderia gladioli,
Enterobacter
aerogenes, Serratia
marcescens
Pseudomonas
fluorescens,
Azospirillum brasilense
Azospirillum,
Azotobacter
chroococcum,
Pseudomonas
fluorescens, Bacillus
megaterium

AMF of Glomus,
Gigaspora and
Acaulospora sp.
Sinorhizobium meliloti
and P. fluorescens

Trichoderma
asperellum,

T. harzianum,

T. hamatum,

T. koningiopsis
Aspergillus terreus

Phytochemicals

Carvone, limonene

Terpineol, eugenol

Terpinen-4-ol,
cissabinene hydrate,
transsabinene hydrate,
a-terpineol
Diterpenoid,
tanshinones

Stevioside,
rebaudioside-A
contents

Essential, phenolic
contents

Withaferin A

Curcumin, phenolic
content, 145.23%
higher flavonoids
Nicotinic acid and
trigonelline
Rhaponticin
antioxidant lymphatic
cleansing

Isovitexin
(antioxidant potential)
Procyanidin, cinnamic
acid, and
cinnamaldehyde
(antioxidants)

Gingerol, Shogaol
Zerumbone
(antioxidant and anti-
inflammatory)

References

Tajpoor et al.
(2013)

Banchio et al.
(2009)

Banchio et al.
(2008)

Wau et al.
(2007)

Gupta et al.
(2011)

Cappellari
et al. (2013)

Rajasekar and
Elango (2011)

Dutta and
Neog (2016)

Sharghi et al.
(2018), Wani
and Kumar
(2016)

Tanaka et al.
(2008), Hoyos
et al. (2020)

Uzma and
Chowdappa
(2018)
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Table 11.1 (continued)

Medicine-

S. No. | spices herbs PGPMs Phytochemicals References

12 Allium sativum | Saccharomyces Phenols, flavonoid, Cavalcanti
L. (Garlic) cerevisiae, Bacillus terpenoid, steroid et al. (2020)

pumilus glucoside, volatile oil,
tannins, allicin

13 Origanum Bacillis megaterium, Thymol, carvacrol, Gutiérrez-
vulgare Bacillus subtilis, flavonoids Grijalva et al.
L. Oregano Paenibacillus (2017); Kutlu

polymyxa, et al. (2019)
Pseudomonas putida

and Pseudomonas

fluorescens

14 Rosmarinus P. fluorescens Rosmarinic acid, Kasmaei et al.
Officinalis derivatives, phenolic (2019)

L. (Rosemary) diterpenes, and
falvones

15 Thymus Azotobacter Phenols, thymol, Zaghloul et al.
vulgaris chrococcum MLI, flavonoids, p-cymene | (2016)

L. (thyme) Bacillus circulans
ML2, and Bacillus
megaterium ML3

16 Mpyristica Bacillus strains Lignans, Marthin et al.
fragrans phenylpropenoid, (2020)

L. (nutmeg) terpenoid acids,
diphenylalkanes,
phenolic acid,
sabinene

17 Catharanthus Pseudomonas Enhance antioxidant Jaleel et al.
roseus L. fluorescens enzymes like APX, (2010)
(periwinkle) SOD, CAT, POX, and

PPO

18 Anethum Glomus macrocarpum, Limonene, Kapoor et al.
graveolens Glomus fasciculatum a-phellandrene (2002)

L. (Dill)

19 Lavandula Glomus lamellosum Essential oil Karagiannidis
angustifolia L. et al. (2012)
(Lavender)

20 Ocimum Glomus mosseae Essential oil Copetta et al.
basilicum (2006)
(common
basil)

21 Salvia Glomus intraradices Essential oil, bornyl Geneva et al.
officinalis acetate, 1,8-cineole, (2010)
(common sage) «-p-thujones

22 Arabidopsis Erwinia carotovora Camalexin, indole Namdeo
thaliana L. glucosinolates (2007)
(Thale cress)

(continued)
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Table 11.1 (continued)

Medicine-
S. No. | spices herbs PGPMs Phytochemicals References
23 Catharanthus Trichoderma viride Ajmalicine Namdeo
roseus (2007)

L. (Periwinkle)

biotic constrains. HMS represents a valuable source in strengthening human cells by
reducing the oxidative tension.

A rhizosphere, rhizoplane, and phylloplane are specialized ecological niches
where diversity of microbes colonized intensively. Simultaneously, these microbes
may also interact with the plant independently, synergistically, or antagonistically.
Consequence leads to beneficial, harmful, or neutral response in plants (Hiltner
1904). Rhizosphere is a narrow zone associated with plants roots and surrounding
soil, mainly influenced by secretion of root exudates which serve as wide sources of
organic nutrients (mainly protein and sugars) to enhance the microbial colonization
in that zone in comparison with rhizoplane (Smith and Read 1997; Morgan et al.
2005). There are ample reports on plant’s root exudates that play an active role to
regulate the symbiotic and protective relationship between the beneficial rhizosphere
microbes and plants (Jones et al. 2003; Barriuso et al. 2008; Lugtenberg and
Kamilova 2009; Dilfuza 2015).

11.2 Plant Growth-Promoting Microbes (PGPMs)

Rhizosphere of plant is a repository of plant growth-promoting microbes (PGPMs)
or biocontrol agents particularly fungi and bacteria which are effective to promote
the plant growth by enhancing the innate immunity of plants against invading
pathogens (Hyakumachi 1994; Whipps 2001; Thakore 2006; Weller 2007; Murali
and Amruthesh 2015). Rhizobacteria can also promote seed germination and
enhance plant vigor, yield, procurement of nutrients, and resistance against abiotic
and biotic stresses (Egamberdieva et al. 2013; Parmar et al. 2017). PGPMs providing
protection in medicine and spice plants against bacterial, fungal, nematodes, and
viral soil-borne diseases by owing different mechanisms: antibiotics,
phytohormones, siderophores synthesis, competition for nutrients and space, pro-
duction of lytic enzymes are well documented by researches of Raaijmakers et al.
(2009), Mishra et al. (2010), Egamberdieva and Lugtenberg (2014). The rhizosphere
microbes especially a varied variety of fungi and bacteria are found to improve
medicinal, spice, and aromatic plants’ values and quality by modifying the plant
physiological as well as biochemical processes such as increase in the nitrogen
fixation, nutrient uptake, and production of secondary metabolites (Shaikh and
Mokat 2018). Root-associated bacteria which belong to several genera including
Arthrobacter, Azospirillum, Azotobacter, Bacillus, Bradyrhizobium, Burkholderia,
Cellulomonas, Clostridium, Enterobacter, Flavobacterium, Micrococcus,
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paenibacillus, Pseudomonas, Rhizobium, Sinorhizobium, and Serratia are enhancer
of plant growth and productivity (Rajasekar and Elango 2011; Egamberdieva et al.
2013). The interaction between beneficial microorganisms and rhizosphere of
medicinal-spices plants is very crucial due to their complex mechanisms such as
promoting plant growth and yield; improving metabolites secretion of
phytohormones, production of siderophore and antibiotics; increasing the availabil-
ity of phosphate for medicinal-spice plants; and providing protection to plants
against pests and pathogen (Raja et al. 2006; Bafana and Lohiya 2013). Presence
of PGPR species in the rhizosphere makes the entire plant resistant to pest and
pathogen attack and strengthens the plants by lignifiying cell wall or triggering the
induce systemic (ISR) and systemic acquired resistance (SAR) (Figueiredo et al.
2010). Thus, there needs a commercialization of several PGPMs inoculant for
agricultural crops including medicinal and spice crops for yield improvement.
PGPR associated with medicinal plants can either be used as biofertilizers and
biological control agents in diminishing the disease density and improving growth
and yield traits of plants (Tenuta 2003; Vasudha et al. 2013).

Rhizosphere fungi colonize around the root system and offer plant growth-
promoting (PGP) traits called PGP fungi (Hyakumachi 1994). Plant growth-promot-
ing fungi (PGPF) naturally survive as saprophytes which constitute non-pathogenic
diverse genera belonging to class Ascomycetes, Basidiomycetes, and Oomycetes
(Hossain et al. 2017a, b). PGPF employs a variety of mechanisms including mineral
acquisition, phytohormones production, secretion of volatile organic compounds,
and cell wall lytic enzymes. PGPF enzymes increase nutrient uptake that strengthens
plant against abiotic and abiotic stresses and increases the standing stability of plant.
PGPF also improves seed germination rate, plant vigor, flowering, and photosynthe-
sis in host plants, apart from inducing defense system in plants against diseases
(Murali et al. 2013; Hossain et al. 2017a, b; Muslim et al. 2019). On pathogen
infection, PGPF triggered induced systemic resistance (ISR) primarily by modifying
cell wall deposition of defense metabolites, such as lignin, callose, and phenol
(Muslim et al. 2019; Nawrocka et al. 2018; Lee et al. 2013; Zhu et al. 2019). It
has been reported that PGPF is also known as activator and enhancer of antioxidant
bioaccumulation of defense-related enzymes in plants (e.g., phenylalanine
ammonia-lyase (PAL), peroxidases (POX), and chitinase, $-1,3 glucanase) which
are directly signaling to immune-defense response and alter the metabolic pathway
to protect the plant against invading phytopathogens (Hossain et al. 2017a, b; Sindhu
etal. 2018; Zhou et al. 2018; Liu et al. 2019). Defense-related enzymes such as PAL,
LOX, POX, PPO, and chitinase play a vital role to strengthen plant defense via lignin
deposition in cell wall and synthesis of phenolic compounds which combat against
invading pathogens (Hu et al. 2017; Basavaraj et al. 2019). According to studies of
Hassan et al. (2014), Murali and Amruthesh (2015), Zhou et al. (2018), PGPF
treatment causes higher activities of PAL and POX enzymes in pathogen-inoculated
seedlings of cucumber, chili, pearl millet, and Salvia sp. compared to control plants,
as acting directly to defense the host plants against pathogen attack. Thus, the
beneficial effects of both PGPF and PGPR on agricultural and non-agricultural
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crops have increased the attention of researchers to focus more on the application
and commercialization of plant growth-promoting microbes (PGRMs).

The aim of this chapter was to describe the novelty of PGPMs to propose the
various mechanisms in medicinal-spices plants against diseases as well as in the
improvement of plant health and productivity. This chapter discusses (1) the brief
introduction related to potential role of PGPMs in enhancing medicinal and spices
plant growth and productivity by offering various mechanism; (2) next, the interac-
tion between beneficial microbes and medicine-spice plants modulates physical and
chemical characteristics of the plant against biotic and abiotic constrains; (3) PGPM
inoculant boosts the herbaceous medicines-spice plant health by induce systemic
resistance (ISR) or triggering the antioxidant-defense immune machinery in plants
against biotic and abiotic stresses; and (4) final sections of the chapter describe future
prospect, mainly emphasizing the application and exploration of commercialized
PGPMs (especially fungi and bacteria) based on technology of twenty-first-century
agricultural programs for the improvement of medicinal spices crop quality and
yield.

11.3 Interaction of PGPMs with Medicinal-Spice Plant’s
Rhizosphere

11.3.1 PGPM Diversity Promotes Plant Health

The plant rhizosphere is defined as a region where an extensive variety of organic
compounds available. Plant root secretion attracted microbial community (Hiltner
1904; Brimecombe et al. 2001; Compant et al. 2010). Each plant root exudate may
specific to group of microbes present in soil. Root exudates are the composition of
water soluble sucrose, organic and amino acids, hormones, vitamins, phenols, and
other mineral nutrients (Nicholas 2007). A specific content of root exudates may
harbor specific reservoir niche of microbes in rhizosphere of plants. Thus, root
exudate plays key role in modification or differentiation phytomicrobiomes
(Marschner et al. 2004; Doornbos et al. 2012). Plant rhizospheric interactions with
microorganisms are highly predisposed by EDAPHIC factors (McCully 1999). The
rhizosphere-inhabiting microorganisms developed the competition with existing
microbes for water, nutrients, and space and lead to the evolution of micro-
environments in natural ecosystems (Schloter et al. 2003). Karthikeyan et al.
(2008) evidenced that medicinal plants Ocimum sanctum L., Coleus forskohlii
Briq., Catharanthus roseus, (L.) G. Don and Aloe vera increase microbial popula-
tion in zone of rhizosphere than non-rhizosphere. Vessey (2003) stated that rhizo-
sphere of plants has flourished the distinct group of PGPR species, mainly prefers to
grow in, on, or around plant tissues to promote plant growth and development. Since
few decades, PGPF has been studied including genera of Trichoderma, Penicillium,
Phoma, and Fusarium (Hyakumachi 1994). Furthermore, plant mycorrhizosphere
stimulated the mycorrhizal colonization by modifying the plant root morphology and
metabolic functions (Johansson et al. 2004). The arbuscular mycorrhizal (AM) fungi
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form mutual symbiosis with >80% of all plant species which especially increases the
availability of phosphorous ions to plants from soil through fungal hyphae (Jasper
et al. 1989; Smith and Read 2008). Many researchers have been reported that
mycorrhizal colonization around medicinal plants play a vital role to modify the
soil texture and to increasing soil fertility, thereby plant growth and productivity
improved in varied range of agroecosystems of medicine-spice plants (Smith and
Read 2008). Among all types of mycorrhizas such as Arbuscular mycorrhizal,
ectomycorrhiza, ectendomycorrhiza, ericoid, orchid, arbutoid, and monotropoid
mycorrhizal and Arbuscular mycorrhizal fungi (AMF) are known widely to show
beneficial symbiotic relationship with diversity of medicinal plants (Kumar et al.
2010; Zeng et al. 2013). Agathosma betulina (Berg.) Pillans a medicinal sclerophyll
has increased in growth by colonizing with microsymbiont of Cryptococcus laurentii
a soil yeast which enhance plant nutrient-availability (Cloete et al. 2010). Mycorrhi-
zal colonization of Poncirus trifoliata, Piper longum, Salvia officinalis, and
Plectranthus amboinicus (medicinal plants) enhances phytochemical accumulation,
shoot height, and root biomass (Wang et al. 2006; Rajeshkumar et al. 2008; Geneva
et al. 2010; Gogoi and Singh 2011). Rani Beula et al. (2016) validated and identified
the rhizosphere microbial diversity of medicinal plant Alpinia galangal on the basis
of its cultural, morphological, and biochemical studies. Among these Bacillus sp.,
Aspergillus sp., and Streptomyces sp. were recorded in higher percentage of distri-
bution. The plant-endophytic microbial associations are also found to improve health
as well as protect plant by different mechanisms against microbial pathogenesis
(Malhadas et al. 2017). Hassan (2017) isolated and identified the plant growth-
promoting (PGP) bacterial and fungal endophytes, e.g., Bacillus cereus, Bacillus
subtilis, Penicillium chrysogenum, and Penicillium crustosum of medicinal plants
Teucrium polium to produce indole acetic acid (IAA) and ammonia, enzymes,
antimicrobial metabolites and mobilized insoluble phosphate to plants.

Apart from the rhizosphere and rhizoplane colonization of PGPMs, some prefer
to colonize the internal tissues of plants called endophytes and some colonize plant
superficially known to epiphytes. Endophytic bacteria and fungi are living in plant
tissues and are capable to induce ISR and SAR of plants. PGPR and PGPF colonized
the medicinal plant’s roots and protect plant from various soil-borne pathogens by
employing various mechanisms, some commonly observed are (1) increased nutrient
availability to host plants; (2) nitrogen fixation; (3) competition for nutrients acqui-
sition and space sharing with pathogenic microbes; (4) activation of host plant’s
defense system that altered anatomical structure and root morphology; (5) producing
antibiotics, siderophores, hydrogen cyanide against from pests and pathogenic
diseases of plant; (6) balance phytohormone production (Medeiros et al. 2005;
Van Loon 2007; Keel and Maurhofer 2009; Yang et al. 2012; Egamberdieva et al.
2013; Egamberdieva and Lugtenberg 2014; Hameed et al. 2014; Hossain et al.
2017a, b). These mechanisms allow plant to adopt well under varied stresses of
biotic and abiotic environment. Martinez-Viveros et al. (2010) PGPR degree of
association with plant roots are classified as extracellular-PGPR survives in rhizo-
sphere, rhizoplane, or spaces between the cells of root cortex and intracellular-PGPR
generally found inside the cells root nodules (Fig. 11.1). El-Deeb et al. (2013)
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isolated the endophytic bacteria, viz., Bacillus species, Bacillus megaterium, Bacil-
lus pumilus, Bacillus licheniformis, Micrococcus luteus, Paenibacillus sp., Pseudo-
monas sp., and Acinetobacter calcoaceticus from Plectranthus tenuiflorus medicinal
plant. Li et al. (2013) isolated the endophytic bacterial diversity from three different
medicinal plants of Codonopsis pilosula, Ephedra sinica, and Lamiophlomis rotata
which have shown great variations. Kharwar et al. (2010) also identified endophytes
and epiphytes out of 33 fungal species from healthy leaf segments of Eucalyptus
citriodora (have medicinal value). Among them, nine fungi were confirmed as
Alternaria  alternata, Aspergillus  fumigatus, A. terreus, Cladosporium
cladosporioides, Drechslera rostrata, Humicola grisea, Nigrospora oryzae, Peni-
cillium cristata, and Pestalotia sp. Rana et al. (2020) also reported that out of
478 fungal isolates, 279 were epiphytic (reside on host plant surface) while only
199 were endophytic (living inside the roots) of medicinal plants. Endophytic fungi
identified, namely  Acremonium,  Alternaria,  Apiospora,  Aspergillus,
Aureobasidium,  Bartalinia,  Cephalosporium,  Chaetomium,  Chloridium,
Choanephora, Colletotrichum, Cryptosporiopsis, Emericella, Eupenicillium,
Eutypella, Hypoxylon, Penicillium, Fusarium, Paecilomyces, Pestalotiopsis,
Pseudomassari, Quercina, Talaromyces, and Trichoderma. Similarly, Caruso et al.
(2020) isolated endophytes such as Acremonium, Ampelomyces, Bipolaris,
Botryosphaeria, Calonectria, Cercospora, Coniochaeta, cylindrocarpon,
Epicoccum, Exserohilum, Memnoniella, Paecilomyces, Periconia, Podospora,
Pezicula, Pyrenophora, Scopulariopsis, Seiridium, and Xylaria were found to be
associated with plants of family Asteraceae which include food crop, oil crop, and
medicinal and aromatic host plants. Fungal species diversity of endophytes is higher
than epiphytes. Both epiphytic and endophytic microorganisms offer good plant
health and provide protection to plants (Andrews and Harris 2000). Provision of
plant-beneficial microbial interactions in terms of plant biomass improvement can be
distinguished into two categories. (1) direct association of microorganisms and
plants is able to increase the mineral nutrient solubilization and acquisition to
plant, (2) indirect interaction between microorganisms and plant reduces the soil
biotic factors (growth or activity of soil-borne phytopathogens) and abiotic factors
(include environment stress such as intense light, UV, temperature low and high,
saline soils, drought, and herbicides) that indirectly affects the plant growth and yield
(Huber and Watson 1974; Evelin et al. 2009) as displayed in Fig. 11.1. Mineral
nutrients are the main components of plants which regulate metabolic activity and
increases resistance in plant against virulence pathogens (Huber and Haneklaus
2007). So, adequate quantity of nutrition intake induces greater tolerance in plants
or resist against several diseases (Khaliel et al. 2011; Sullivan 2019). More than
24 genera which belong to non-pathogenic group of the rhizobacteria have been
identified till now. Kloepper and Schroth (1978) first demonstrated the plant growth-
promoting rhizobacteria control plant diseases and enhance the plant growth and
yield by offering broad spectrum of mechanisms. Arun et al. (2012) proved that
isolates of medicinal plant Cassia occidentalis can be used as biofertilizers and
biocontrol agents in agroecosystems (Smith and Read 2008). Oregano (Origanum
vulgare L..) root was colonized by bacterial strains of Stenotrophomonas maltophilia
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PGPMs

Extracelluar Plant growth Intracelluar plant
promoting rhizobacteria growth-promoting
(ePGPR) 5 rhizobacteria (iPGPR)

Epiphytes resides on th
plant surface and remain
contact to outer
environment. Eg., Xylaria,
Tirisporella, Sordaria,
Venturia, Pyricularia,
Pleospora, Phyllospora,
‘Monilinia, Melanospora,
Hypocrea,
Helminthosphaeria,
Elsinoe, Alternaria
Erwinia, Flavobacterium, alternate, Cladosporium,
Micrococcus and Serratia. g

Endophytes colon
inside the host plant
parts to exchange
metabolites. Eg.,
Aspergillus, Fusarium,
Penicillium, Phoma
and Trichoderma,
Botrytis, Drechslera
ete.

|

Direct mechanism Indirect mechanism

1. Nitrogen fixation . Elicit host plants defense
2. Mineralization and acquisition of nutrients in ions forms mechanisms in response of PR
such as P, Ca, Mg, K, S, Zn ion etc. . s .-
3. Plant growth regulators such as Auxins, gibberellins, and protein, phytoalexin et ERei
cytokinins.
4. volatile compounds e.g., ethylene and 2, 3-butanediol
stimulates growth
5. Secondary metabolites:
a. Antibiotics e.g., 2,4-diacetylphioroglucinol, phenazine,
cyclic lipopeptides.
b. Siderophore
c. Hydrolytic enzyme e.g., chitinase, glucanase, protease.
d. Unregulated waste products e.g.,
Hydrogen cyanide (HCN), ammonia secretion , Carbon

dioxide etc. j

Fig. 11.1 Potential of PGPMs on plant growth and yield elevation

Competition for nutrient and
space.

Hyperparasitism

and Rhodococcus sp. (Bafana and Lohiya 2013). Koberl et al. (2011) reported that
medicinal plants cultivated in Egypt, e.g., Matricaria chamomilla L., Calendula
officinalis L., and Solanum distichum Ochrobactrum and Rhodococcus were found
to be associated with Ochrobactrum and Rhodococcus. Zhao et al. (2013) identified
the microbial diversity association with some medicinal plants and distinguished in
total 7 genera named as Myxococcus, Corallococcus, cystobacter, Archangium,
Stigmatella, Chondromyces, and pyxidicoccus. Gupta et al. (2011) examined poten-
tial of Burkholderia gladioli, Enterobacter aerogenes, and Serratia marcescens
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bacteria in phosphate solubilization and can be used as biofertilizer. Lopez-Fuentes
et al. (2012) identified 103 bacteria belonging to genera Acinetobacter,
Agrobacterium, Enterobacter, Pseudomonas, Sphingobium, Stenotrophomonas,
Pantoea, and Serratia from Hypericum silenoides Juss rhizosphere. Kumar et al.
(2012) determined the plant growth-promoting effect and biotechnological potential
of 123 bacterial strains associated with medicinal plant Ajuga bracteosa rthizosphere.
Raichand et al. (2011) described diversity in gram-negative bacteria which were
isolated from medicinal plants Nerium indicum (Chuvanna arali). They also
observed that the rhizosphere of Fritillaria thunbergii medicinal plant harbors a
distinct group of bacterial population like Proteobacteria, Acidobacteria,
Actinobacteria, and Bacteroidetes (Shi et al. 2011). Nimnoi et al. (2011) stated
that bacterial diversity varied among medicinal plants. Suryadevara and
Ponmurugan (2012) studied that the diazotrophic bacterial inoculant of Pseudomo-
nas and Bacillus sp., (in 1:1 ratio) was significant in increasing the soil microbial
diversity as well as enhancing the rhizome yield by 21%, plant height by 5%, and
rhizome weight by 60% over control. Boominathan and Sivakumaar (2012) deter-
mined the efficiency of Pseudomonas fluorescens and Bacillus megaterium strains in
improving the curcumin pigmentation in thizome and curcumin have strong antiox-
idant potential (Funk et al. 2006). Kumar et al. (2014) reported that turmeric rhizome
inoculation with Azotobacter chroococcum enhances plant biomass, productivity,
and biochemical constituents of rhizome. Kumar et al. (2016) also indicated that
Pseudomonas flourescens inoculation in plants increases yields and curcumin con-
tent in turmeric rhizome. Qi et al. (2013) isolated a unique group of bacteria from the
rhizosphere of Rumex patientia a wild medicinal plants, i.e., classified as
Proteobacterium (43.37%), Bacteroidetes (13.25%), Acidobacteria (10.84%),
unclassified bacteria (9.64%), Gemmatimonadetes (7.23%), Verrucomicrobia
(4.82%), Planctomycetes (4.82%), Actinobacteria (3.61%), Firmicutes (1.20%),
and Chloroflexi (1.20%). Zhang et al. (2011) identified a novel actinobacterial strain
named CPCC 201356(T) belong to family Geodermatophilaceae, from medicinal
plant Astragalus membranaceus rhizosphere soil. Muley et al. (2009) stated that
Calendula officinalis (marigold) have good antioxidant, anti-inflammatory, and
anticancer properties.

Mycorrhizal fungi colonization has also been identified as growth and yield
promoter in many crops because it is strong to proliferate and to access nutrients
in or around plant root system. Arbuscular mycorrhizal (AM) inoculants improved
diversity index and functionality of microbes in rhizosphere of Atractylodes lancea
medicinal plant (Guo et al. 2006). Rhizosphere of Abutilon indicum, Argemone
mexicana, Aloe vera, Amaranthus polygamus, and Achyranthes aspera (medicinal
and aromatic plants) is associated with a variety of fungal diversity (Srivastava and
Kumar 2013). Yang et al. (2011) identified and isolated five genera of AM fungi
from the rhizospheric soil of medicinal plants, namely Withania coagulans,
Mitragyna parvifolia, and Leptadenia reticulata. Thombre et al. (2016) also
identified and isolated 11 species of fungi from rhizosphere of Santalum album.
Out of these ten species found to belong class hyphomycetes, viz. Aspergillus
fumigatus, A. niger, A. funiculosus, A. flavus, A. restrictus, A. terricola,
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A. flavipes, A. terreus, Fusarium oxysporum, Penicillium spp. and one species is
Mpycelia sterilia that belongs to Basidiomycetes. Fungal variety of 104 was found to
be in association with the rhizosphere zone of three different medicinal plants
namely basil (Ocimum basilicum), peppermint (Mentha piperita), and (Aloe vera)
(Ahmed et al. 2018). PGPR strains, e.g., Azotobacter, Azospirillum, Pseudomonas,
and AM fungi stimulate shoot and root growth; increases availability of nitrogen,
phosphorus, potassium, and photosynthetic pigment in C. officinalis (Hosseinzadah
et al. 2011). Over few decades, utilization and reliability on biological control have
been increased extensively for the management of various plant pathogens and also
increase sustainability in agriculture crop management practices (Weller 2007).
Therefore, current research enlightens to use biological fertilizers with innovative
and improved biotechnologies in the cultivation of medicines-spice plants, which is
found efficient in increasing bioactive compounds accumulation in medicinal plants
(Rajasekar and Elango 2011; Bharti et al. 2013; Teixeira da Silva and Egamberdieva
2013). Therefore, many countries have engaged to cultivate medicines-spice plants
on large scale commercially across the globe (Fabricant and Farnsworth 2001).

11.3.2 PGPMs Suppress the Abiotic Stress and Biotic Stress
in Medicine-Spice Plants

Successful cultivation of medicine-spice plants is affected by biotic and abiotic
factors, (Juliani et al. 2006). The interaction between plants and beneficial microbes
promotes yield improvement and disease protection (Raja et al. 2006). There are
ample of literatures available to describe the potential role of plant-microbes associ-
ation in increasing soil nutrient availability to plants (Welbaum et al. 2004). The
inoculation of Streptomyces pactum (Actl2) in ginseng plant causes high yield
(Zhang et al. 2013). Mansoor et al. (2007) reported that P. aeruginosa in soil
rhizosphere of medicinal plant (Launaea nudicaulis) reduced the maximum disease
severity of Macrophomina phaseolina in mung bean roots. Ushamalini et al. (2006)
reported that Trichoderma viride was effective to show early expression and quanti-
tative enhancement of defense enzymes such as peroxidase, polyphenol oxidase, and
phenylalanine ammonia lyase in turmeric plant against Pythium aphanidermatum.
Murugappan et al. (2013) determined the endophytic strain of Bacillus pumilus in
medicinal plant Ocimum sanctum that can be used as a biocontrol control agents in
plant growth promotion. Fusarium chlamydosporum (Frag. & Cif.) and Ralstonia
solanacearum (Smith) causing complex root diseases (rot and wilt) in Coleus
forskohlii a medicinal plant by producing toxic forskolin compound. Thus, bacterial
pathogen restricted by using PPGR especially in Ocimum sanctum (Singh et al.
2013). The rhizosphere microbes of three medicinal plants (Matricaria chamomilla
L., Calendula officinalis L., and Solanum distichum Schumach. & Thonn.) had
shown high colonization rate of Gram-positive bacteria to suppress pathogens
(Koeberl et al. 2013).
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11.4 Mechanism of PGPM-Mediated Disease Reduction
in Medicine-Spices Plants by Enhancing the Enzymatic
and Non-Enzymatic Activity of Antioxidants

11.4.1 Antioxidant Defense Activity of Medicinal-Spices Plants

The medicine-spice herbs are vast repository of natural antioxidants compounds, can
neutralize the oxygen free radicals species (OFRS), or reduce the other molecules by
gaining electron from oxygen free radicals. So, simultaneous reduction and oxida-
tion of molecules takes place at same site called redox reaction or also called as
oxidation inhibitor (Pokorny and Korczak 2001). Thus, antioxidant defense is
activated by oxygen free radical (OFR) because its molecular state is relatively
non-reactive. In living cells, O, generates excited states of oxygen free radicals
during metabolism. Reactive oxygen species (ROS) disturbs normal cellular activity
such as DNA replication, protein denaturation, lipid peroxidation in membrane and
its severity can cause cell death. During day time, ROS is produced by chloroplasts
and peroxisomes. While in dark, mitochondria serve as main producers of ROS.
Generally, regeneration of ROS is seen virtually in all intracellular organelles,
plasma membrane, and in cytoplasm.

Accordingly, Halliwell and Gutteridge (2007) describe the antioxidant mode of
action as comprise: (1) ROS production is suppressed by inhibiting enzymes or
chelating elements, (2) antioxidant defense scavenges ROS. Natural antioxidant has
protected the primary biochemical functions of the plant cells. Major antioxidant
nutrients are classified on the basis of biochemical and molecular features into
(i) enzymatic (endogenous origin) peptide defense mechanisms include catalases,
peroxidases, superoxide dismutases, glutathione, and other proteins;
(i) non-enzymatic (exogenous origin) phenolic defense compounds include
vitamin E, flavonoids, phenolic acids, nitrogen compounds (e.g., alkaloids, amino
acids, amines, carotenoids, and chlorophyll) as presented in Fig. 11.2 (Sujogya
2012; Apel and Hirt 2004). Both types of antioxidants not only provide protection
to plant cells from oxidative stress, but also induce defense response against the
abiotic and biotic constrains (Racchi 2013). Moreover, consumption of antioxidant-
rich foods offers great protection and increase immunity in human body against
oxidative stress, diabetes, cardiovascular, and cancerous diseases. Therefore, medic-
inal and spices plant-derived antioxidants, represent a valuable source and gain
enormous popularity in the improvement of human health. These antioxidants are
abundant in polyphenol compounds (e.g., phenolic acids, flavonoids, anthocyanins,
lignans, and stilbenes), carotenoids (xanthophylls and carotenes), and vitamins
(vitamin E and C) (Baiano and del Nobile 2015; Manach et al. 2004). Generally,
antioxidant-rich nutrient shows anti-inflammatory, anti-bacterial, anti-viral, anti-
aging, and anti-cancerous effects (Peng et al. 2014; Manach et al. 2004; Zheng
et al. 2016). Accordingly, several techniques are used for the extraction of
bio-antioxidants from medicinal and spice plants, e.g., Trolox equivalence antioxi-
dant capacity (TEAC) assay, ferric ion-reducing antioxidant power (FRAP) assay,
oxygen radical absorbance capacity (ORAC) assay, inhibiting the oxidation of
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Non-enzymatic defense compounds Enzymatic defense compounds
1) Water soluble antioxidants: Example, variety of scavenger
ascorbate (vitamin C), superoxide dismutase (SOD),
glutathione, phenolic catalase (CAT),
compound, flavonoids, | ascorbate peroxidase (APX)
anthocyanins , stilbene, lignin Plant and glutathione peroxidase,

etc. (GPX).

2) Lipid-soluble antioxidants: /

carotenoids, alpha carotene,
beta- carotene, lycopene, lutein,
Zeaxanthin and alpha-
tocopherols (vitamin E) etc.

Fig. 11.2 Antioxidant defense response in plants

low-density lipoprotein (LDL) assay, and cellular antioxidant activity assay,
(Xu et al. 2017). PGPF induced both enzymatic antioxidants (e.g., peroxidase,
catalase, superoxide dismutase, ascorbate peroxidase, monodehydroascorbate reduc-
tase, dehydroascorbate reductase, glutathione reductase, glutathione S-transferase,
and guaiacol peroxidase) and non-enzymatic antioxidants (e.g., ascorbic acid,
reduced glutathione, oxidized glutathione) to enhance the innate the immunity in
plants (Ahmad et al. 2015). Jaleel et al. (2010) studied the phytohormones play vital
role in increasing the antioxidant enzymatic activity of Ascorbate peroxidase (APX,
EC: 1.11.1.11), Superoxide dismutase (SOD, EC: 1.15.1.1), Catalase (CAT, EC:
1.11.1.6), Peroxidase (POX, EC 1.11.1.7), and polyphenol oxidase (PPO, Ec
1.10.3.1) in Catharanthus roseus plants. In addition, Glomus intraradices either
alone or in combination with G. mosseae increased the total phenolic content in
Cynara cardunculus (Ceccarelli et al. 2010). Bupleurum chinense, Ginkgo biloba,
and Astragalus membranaceus produce high antioxidant phenolic compound (Meng
and He 2011). In sweet basil shoots, rosmarinic acid proved antioxidant activity
(Toussaint et al. 2007). Origanum vulgare a perennial medicinal aromatic plant is
rich in phenolic antioxidants. Frankel (2012) and Brewer (2011) determined the
antioxidant activity of bioactive compounds such as phenolic compounds (gallic,
protocatechuic, caffeic, and rosmarinic acids), phenolic diterpenes (carnosol,
carnosic acid, rosmanol, and rosmadial), flavonoids (quercetin, catechin, naringenin,
kaempferol, epicatechin, gallate, epigallocatechin gallate, and rutin), volatile oils
(eugenol, carvacrol, thymol, menthol, safrole, 1,8-cineole, a-terpineol, p-cymene,
cinnamaldehyde, myristicin, and piperine), and phenylpropanoids (thymol, eugenol,
carvacrol, p-cymene) in herbs and spices. Seleem and Mohamed (2014) identified
the natural antioxidant properties of aromatic and medicinal plants, e.g., garlic,
coriander, sumac, fennel, marjoram, thyme, and cardamom. Darughe et al. (2012)
and Patel et al. (2013) examined the essential oil in coriander a medicine-spice herb
that has antioxidant property. AM fungi were found to enhance the morphological,
physiological, and biochemical parameters of Sesbania sesban under salt stress. AM
fungi inoculation in plants improves the activity of enzymatic antioxidant, e.g.,
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superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), and
glutathione reductase (GR) as well as non-enzymatic antioxidants, e.g., ascorbic
acid and glutathione up to great extent against salinity (Abduallah et al. 2015).

11.4.2 Induce Systemic Resistance and Systemic Acquired
Resistance of Medicines-Spices Plants

Disease in plants is the result of association of susceptible host plant and virulent
pathogen. The plant metabolic machinery is able to sense the secretion of
bio-molecules by invading pathogen termed as pathogen-associated molecular
patterns (PAMPs). Once PAMPs onset, plant defense response triggered the plant
immunity (PTI) and effector-triggered immunity (ETI) to inactivate penetrating
pathogens. Thus, this triggered immunity strengthens the plant and hampers further
infection proliferation (Chisholm et al. 2006). Bacteria-III type protein secretion
system (TTSS) directly carried the effector protein into the plant cell.

Chemical, physical agents, or non-pathogenic rhizobacteria involved to activate
induce defense system in host plants. So, plant can resist damage caused by various
pest and pathogens. An inducer defines as flagella, lipopolysaccharides,
siderophores, VOCs, and other components of non-pathogenic rhizobacteria mediate
signaling to trigger defense response (Van Loon et al. 1998; Lugtenberg and
Kamilova 2009). The ISR is known by inoculants of non-pathogenic rhizobacteria,
whereas SAR is activated by other agents (Van Loon et al. 1998). Monteiro et al.
(2005) reported that Bacillus strains produced lipopeptides against Xcc. Ongena
et al. (2007) believed that lipopeptides are stimulant of ISR in plants and are able to
increase the defense activity in plants. SAR or ISR does not show complete
resistance in pathogens, such as viruses, bacteria, and fungi, but provides significant
protection to plants against broad range of pathogens for a long interval (Bakker
et al. 2007). The advantage of PGPR in rhizosphere induces resistance in plants
against the diseases by leading biochemical and physiological changes. ISR also
observe in response of pathogenesis-related (PR) proteins (Mpiga et al. 1997; Zdor
and Anderson 1992). Plants are also capable to produce wide variety of enzymes in
inducing defense. Peroxidase and PPO act as catalysts in the formation of lignin,
while PAL, chitinases, lipoxygenases, and glucanases involved in the formation of
phytoalexins (Belinky et al. 2003; Figueiredo et al. 2010). Thus, there is need to
select PGPR indigenously to promote plant growth and develop resistance against
pests and pathogens. The interaction between microbes and plants regulates mutual
beneficial activity in plant-growth enhancement. Rhizomicrobiome benefits the plant
growth by increasing nutrient acquisition (Backer et al. 2018). Vinayarani et al.
(2019) confirmed that 30 isolates of fungi produce defense-related enzymes such as
peroxidase (PO), phenylalanine ammonia-lyase (PAL), polyphenol oxidase (PPO),
and PR-protein B-1,3 glucanase as well as higher accumulation of phenolic
compounds in PGPF pre-treated turmeric plants against Pythium aphanidermatum
(Edson) Fitzp of turmeric. Thus, PGPR and PGPF play dual roles to induce defense
mechanisms (ISR and SAR) and promote growth of plants against the various
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exposed pathogens such as fungi, bacteria, virus, and insect. ISR is mediated in
response of Jasmonic acid (JA) and Ethylene (ET) while SAR expresses defense in
relation to pathogenesis-related proteins (PR-proteins) against phytopathogen
(Mandal 2019).

11.5 Future Prospects of PGPR in Disease Reduction by PGPR

Medicinal and spices plants serve as the main source of antioxidants nutrients; some
are commonly known which have antioxidant properties like Ascorbic acid,
flavonoids, carotenoids, and tocopherols. These antioxidants are responsible to
induce plant growth and development against the environmental constrains and to
promote human health. Therefore, these medicinal and spices plants are natural
origin of antioxidants that attracts researcher to cultivate medicinal and spices plants
on large scale at commercial level, but prevailing biotic and abiotic stress affects
crop quality and quantity. As we have discussed, the PGPMs play crucial role in
plant health improvement and suppression of pathogenic constrains by employing
multiple mechanisms in plants to defense them against the environmental stress. So,
there is need to isolate the diversity of PGPMs from rhizosphere or rhizoplane of
plants belonging to medicinal and spices family. Then, morphological and molecular
characteristic defines characteristics of bacterial genera, which will further use to test
their impacts on plants health. Further, PGPMs formulation was commercialization
as biocontrol agents and biofertilizers on large scale in sustainable agricultural crop
health improvement. Generally, organic carriers include peat, talc, lignite, kaolinite,
pyrophyllite, zeolite, montmorillonite, alginate, press mud; sawdust and vermiculite
are effective in preparing PGPM formulations. Potential of PGPMs formulation
product at commercially level should be viable in long shelf life, packaging,
transport, non-cost-effective, storage at varied environment conditions. The
formulations should not pose any toxicity biodiversity and safe to environment.
The formulated products can be delivered through different methods of applications
such as seed treatment, seed priming, soil application, foliar application, root dip,
sett treatment in sugarcane, sucker treatment in banana. Vidhyasekaran and
Muthamilan (1995) reported that talc-based and peat-based formulations of PGPR
can be stable up to 240 days and highly effective to induce the systemic resistance in
crop plants against diseases. Bora et al. (2004) confirmed that talc-based
formulations of P. putida strain remain active for 6 months. Nakkeeran et al.
(2005) reported the shelf life of P. chlororaphis (PA23) and B. subtilis (CBE4) in
peat carriers was retained for more than 6 months. In future, major focus would be
emphasized on novelty of PGPMs in the enhancement of plant antioxidants because
its ability to maintain life of plants and animals. Thus, major concerns would be
related to cultivate the medicinal and spices plant which is valuable for antioxidant
compounds as well as determine the association of PGPM diversity with these plant
rhizosphere niches.
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11.6 Conclusion

As the economic importance of the herbaceous medicinal and spices plants through-
out the world, these plants are affected greatly by various abiotic and biotic factors.
On the other hand, the medicinal and spice plant’s rhizosphere is associated with
wide variety of microbes. Beneficial microbes are found to improve the plant health
and suppress the phytopathogenic diseases in medicinal and spices plants. Beneficial
potential of PGPMs on crop plants is found in many ways. This will open up the
opportunities to manage the medicine-spice plant diseases as well as improve the
quality and quantity of plants in progress of sustainable agriculture system. PGPMs
benefit the plants by conveying various mechanisms, most commonly used in
increasing the nutrient uptake, disease resistance, and flourish the quality of second-
ary metabolite compounds particularly antioxidant compounds of plant. Therefore,
the positive impact of phyto-microbiome association with medicine-spice plants
grasps the interest in research field to understand and identify the genetic and
functional diversity between the microbial communities. Hence, multifunctional
PGPM-based commercial formulations used as biocontrol agents and biofertilizers
in agricultural crop management practices, which would give more focus to mini-
mize synthetic fertilizers and agrochemical residual impact on the environment and
biodiversity. Although several researches have been proved the efficiency of PGPF
and PGPR on plants for few decades, broad spectrum use of these products is in
continue till now. Farmers are still lacking knowledge of awareness or benefits of
good quality of biofertilizers and biopesticides as well as its mode of application in
crop field area. The availability of bio-products to end users especially farmers
should be ensured that it is of good quality with providing proper knowledge of
PGPMs application on particular crops. A successful commercialization of any good
biological agents’ formulation depends on longer shelf life, easy to use, and
increases its demand in market as well as to finale handlers. Currently, global interest
would need to focus on identification and isolation of medicinal and spices plants
derived antioxidant compounds which have may utilize in pharmacological industry
also. Thus, this chapter explores the knowledge of PGPMs to enhance the essential
constituents of natural antioxidant in herbaceous medicine-spice plants as well as its
consumption by human as organic nutrients would reduce the negative impact of
oxygen free radicals on both human and plant health.
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Abstract

Across several civilisations of the world, spices have played a very important
role. They are used not only for their culinary benefits but also for their medicinal
values. In Africa as well, spices are special part of the cuisine and also a huge part
of the traditional medicine system of the continent. Oxidative stress has been
implicated in the pathophysiology of several diseases such as hypertension,
diabetes and ageing. Spices have been touted as rich sources of dietary natural
antioxidants after vegetables and fruits. Some notable spices which are indige-
nous to Africa include Tamarindus indica, Trachyspermum ammi and Piper
guineense. These spices possess important bioactive components responsible
for their biological activities. Some of these compounds are Capsaicin (Capsicum
annuum), Piperine (Piper guineense) and Carvacrol (Origanum syriacum). These
compounds have been reported to possess biological activities ranging from
anticancer, cardioprotective, anti-inflammatory and antineurodegenerative. They
have also been reported to be instrumental in plant—microbe interactions. These
review attempts to look into some indigenous African spices, their bioactive
antioxidant components and biological activities and their role in plant—microbe
interactions.
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12.1 Introduction

Spices have been used for centuries as they play significant roles in ancient
civilisations (Erhenhi et al. 2016). In fact, as far back as 2000 BC, spices have
been an important part of local South Asia and Middle Eastern dishes (Tapsell et al.
2006). They have been cultivated as far back as 3000 BC and used for their health
benefits as far back as 5000 BC (Singletary 2016). Apart from the culinary appeal of
spices, they have also been used since ancient times for their food preservation
qualities and also for their health-promoting benefits (Sachan et al. 2018). Several of
the common spices used have their origin in Asia (Green et al. 2012); however, with
the advent of international travel and trade, most of these spices have become
globally available and are used across several cultures and regions of the world.

Spices are often called adjuncts or food accessories as they confer taste and aroma
on food and also stimulate appetite, give visual appeal to food and also enable the
flow of gastric juice and are used in minute quantities in food without being the main
food ingredients (FAO 2010). Concisely, spices are defined as dried seeds, roots,
flowers, fruits or bark of plants which are utilised in minute quantities in order to
give flavour, colour and taste to food or to serve as preservatives (Sachan et al.
2018).

Although the words “herbs” and “spices” are used interchangeably, herbs refer
exclusively to green leafy parts of plants. These are different from vegetables as they
do not make a complete food but are rather added in minute amount to confer taste
and aroma on food. Spices, however, are obtained from every other parts of plants
apart from leaves such as flower bud (cloves), bark (cassia, cardamom), fruit
(Capsicum spp.), dried berry (allspice), root (horseradish), rhizome (turmeric, gin-
ger) and seed (Piper spp., anise) (Green et al. 2012).

Apart from their property as food adjuncts due to ability to confer taste and aroma
on food, spices are favoured due to their ability to act as carminative, antioxidants
and also their ability to improve gastrointestinal movement, thus aiding digestion
(Takeda et al. 2008). Spices are also functional foods as they have been
demonstrated to play beneficial role in well-being and longevity beyond the basic
nutritional requirement (Lobo et al. 2010).

Antioxidants are molecules which prevent, delay or reverse oxidative damage to
target molecules (Yadav et al. 2016). They inhibit oxidative process even in minute
amount. Since several metabolic activities in the body produce free radicals which an
imbalance in the body’s production and elimination of these free radicals could
prove harmful to the body’s homeostasis, antioxidants as a result are the body’s first
line of defence against free radical damages (Santos-Sanchez et al. 2019). This
imbalance has been implicated in several pathological diseased conditions ranging
from cancer to cardiovascular diseases to neurodegenerative diseases (Santos-
Sanchez et al. 2019). Some antioxidants are endogenous to the body, for example,
catalase, superoxide dismutase and glutathione peroxidase; however, several impor-
tant antioxidants are obtained from dietary sources such as fruits, vegetables, tea and
spices (Yadav et al. 2016). While these endogenous antioxidant systems help to
maintain homeostasis by maintaining balance in production and elimination of free
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radicals/reactive oxygen species/reactive nitrogen species, also dietary antioxidants
have been associated with improving free radical/antioxidant homeostasis thus
implicated in reduced risk of cancer, cardiovascular diseases and ageing (Salehi
et al. 2018b).

Apart from fruits and vegetables, spices are another very important dietary source
of exogenous antioxidants. They are rich source of antioxidant vitamins, minerals
and polyphenols.

12.2 African Spices

Spices are important components of several African dishes. In fact, it is said that the
cultivation and use of spices originated from Egypt and then moved through the
Middle East before spreading through the Mediterranean and then to Europe. It later
spread to India, China, Indonesia and then to America in the seventeenth century
(Fasoyiro 2015). Spices contribute to national security in sub-Saharan Africa and
have become a source of foreign exchange in the continent (Fasoyiro 2015). Several
countries in Africa are known for their spice trade. For example, Ethiopia is the ninth
spice producing nation in the world (FAO 2011), Zanzibar, an island in Tanzania;
East Africa is referred to as the spice island (Akyoo and Lazaro 2007), while Nigeria
is the second ginger-producing nation in the world after India (Mazza et al. 2019).

Some herbs and spices which are indigenous to Africa and are important compo-
nent of several cooking traditions across the continent include Trachyspermum ammi
(ajwain), Piper guineense (West Africa Black Pepper), Aframomum melegueta
(Grains of Paradise), Parkia biglobosa (African Locust Beans) and Tamarindus
indica (tamarind). Apart from the spices which are indigenous to Africa, the advent
of globalization and international trade have ensured that other exotic spices which
originally are not native to the region have been domesticated and have become
popular in the region, example of such is Syzygium aromaticum (cloves) which
originated from Indonesia and Capsicum annum (red chilli pepper) which originated
from Mexico (Van Wyk 2013).

Several African countries also have some specialised spice blends which are used
traditionally in their cooking. For example, “Berbere” is an Ethiopian spice blend of
several spices which include onions, garlic, ginger, fenugreek, black cardamom,
cumin, nutmeg and cinnamon. Another East African spice blend is “Mitmita” which
contains chilli pepper, cardamom seeds, cloves and salt (Peethambaran et al. 2016).
In North Africa, “Harissa” paste is a commonly used spice blend made from red
chilli pepper, garlic, red bell pepper, coriander seed, caraway seed, lemon, tomatoes,
olive oil and salt (R’him et al. 2010). The Moroccan “Ras El Hanout” is a blend of
green cardamom pods, cloves, bay leaves, cinnamon, nutmeg, coriander seed,
allspice berries, cumin seed, black peppercorns, fenugreek seeds, anise seeds,
ginger, paprika, turmeric and red chilli pepper (Van Wyk 2013). In West Africa,
the very popular “Suya” spice blend is a blend of roasted peanuts, garlic powder,
onion powder, paprika, red chilli pepper, ginger powder and salt (Egharevba and
Gamaniel 2017).
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Apart from their use as flavourants and colourants in food, spices have been used
traditionally in Africa for various therapeutic, biological and industrial purposes. In
ancient times, the Egyptians embalm their dead with spices. The oils extracted from
some of these spices are used in perfumery and as insect repellents (Fasoyiro 2015).
Several of these spices (Aframomum melegueta (Grains of Paradise), Piper
guineense (West African Black Pepper), Zingiber officinale (Ginger), Allium
ascalonicum (Shallot), Ocimum basilicum (Sweet basil), Allium sativum (Garlic)
and Eugenia caryophyllata (Clove)) are used traditionally across several African
cultures to prepare soup for post-partum women as an aid to uterine contraction
(Adepoju and Oluremi 2013). Also, Piper guineense has been used as antiemetic,
antihelminthic and also as treatment for rheumatism and stomach ache (Erhenbhi et al.
2016). Another African spice which has been utilised traditionally for its therapeutic
purpose is tamarind. It has been used as an anti-inflammatory, antidiuretic, laxative
and carminative. Spices also act in synergy with other food ingredients to enhance
the health-promoting properties of other foods (Mann 2011). African spices like all
other spices are also rich source of antioxidant vitamins, minerals, polyphenols and
other antioxidant compounds. They can also enhance the antioxidant potential of
other food ingredients.

12.3 North Africa

It has been reported that the use of spices originated from the Mediterranean region,
specifically Egypt, and these spices still remain a major part of the cooking traditions
in this region of Africa. These spices have also been used for their therapeutic
properties as well. Some indigenous North African spices are Origanum syriacum
(Syrian oregano), Cuminum cyminum (cumin) and Pimpinella anisum (Anise).

Origanum syriacum: This spice originates from the East Mediterranean region of
Egypt, Sinai Peninsula, Lebanon, Jordan and Syria. It is the plant which bible
scholars believe is the biblical hyssop, and thus, it is commonly referred to as
bible hyssop or Syrian oregano. It is also called Za’atar in the Arab world. It is a
perennial herbaceous plant of the family Lamiaceae (Farhat et al. 2012). It has been
used since ancient times in Arab folk medicine as an analgesic, antihelmintic,
carminative, antiparasitic, expectorant, remedy for tooth and joint aches and also
as a relieve for bronchitis and gastrointestinal problems. It has also been used to
relieve dysmenorrhoea, colic or cough (Chishti et al. 2013).

Although most research work done on the plant has been on its essential oil, its
crude extract has been reported to contain several phenolic compounds which are
very strong natural antioxidants. These compounds include rosmarinic acid (which is
peculiar to plants of the lamiaceae family), catechol, rutin, quercetin, apigenin,
luteolin and caffeic acid. These compounds have been demonstrated to possess
antioxidant activity which is responsible for their anticancer, antineurodegenerative,
cardioprotective, antidiabetic and antimicrobial effects (Afify et al. 2014). Ayesh
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et al. (2014) reported the cytotoxic effect of the ethanolic extract of Origanum
syriacum on human leukaemia THP-1 cells. The methanolic extract has also been
reported to inhibit the proliferation of breast adenocarcinoma and human cervical
adenocarcinoma cell lines (Al-Kalaldeh et al. 2010; El-Desouky et al. 2009). Phyto-
chemical analysis of these extract revealed the majority of the constituents to be
flavonoids (El-Desouky et al. 2009).

The essential oil of Origanum syriacum has been acclaimed to possess numerous
biological activities. It is considered to be one of the top essential oils in the world.
This essential oil is a combination of several triterpenoids; however, the major
components of the essential oil of Origanum syriacum are carvacrol (78.4%)
(a phenolic oil which is responsible for its pungent flavour), thymol (17.9%),
thymoquinone (2.5%) and p-caryophyllene (0.8%) (Farhat et al. 2012). These
components have been reported to possess antioxidant activities. Carvacrol inhibits
the synthesis of inflammatory cytokines and prostanoids, thereby useful in the
treatment of gastric ulcer (Silver et al. 2012). The antioxidant property of this
compound also makes it a very effective antiageing agent. Thymoquinone is another
bioactive compound in the essential oil of Origanum syriacum which has been
reported to possess anticancer, anticonvulsant, analgesic and antioxidant properties.
It also inhibits angiogenesis, thus protecting the liver, heart and kidney against
damage (Torres et al. 2010; Zein et al. 2012). Studies have also shown the strong
antioxidant effect of essential oil of Origanum syriacum in inhibiting lipid peroxi-
dation and protein oxidation in processed chicken meat patties and cooked chicken
meat, thereby maintaining the quality and stability of the products (Al-Hijazeen
2018, 2019). Thymol and Carvacrol have also been reported to possess antimicrobial
activity against gram-negative bacteria such as Escherichia coli, Pseudomonas
aeruginosa, Klebsiella pneumoniae and fungi such as Aspergillus niger and Asper-
gillus flavus with thymol being more effective than carvacrol as an antimicrobial
agent (Al-Mariri et al. 2019).

The use of essential oil of Origanum syriacum has been found to be safe with no
adverse effect; however, consumption above 200 mg/kg body weight could result in
food not being palatable as a study in Wistar rat has demonstrated (Rychen et al.
2017). Also, according to FAO/WHO (2008), the LDs, of the essential oil of
Origanum syriacum is 2790 mg, LDs, of thymol is 980 mg and LDs of carvacrol
is 810 mg.

Cuminum cyminum (Cumin): Cumin is an herbaceous, annual, flowering plant of
the family Apiaceae. It is native to the region of East Mediterranean to East India. It
thrives in hot and arid lands; however, it has found its way to warm regions of
Europe such as Spain, Greece and Turkey. It is used traditionally in several Middle
Eastern, Indian Mexican and Cuban cuisines. It is used to flavour dishes such like
tacos, curries and enchilada. It is very rich in antioxidant vitamins and minerals
(Nadeem and Riaz 2012). Cumin was used traditionally in ancient Egyptian
civilisation to preserve their dead in a process called mummification. The seed
extract is been used therapeutically in several ancient medical systems. For example,
it has been used in Indian Ayurveda medicine to treat dyspepsia and chronic
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diarrhoea (Tabasun et al. 2018). It has also been used in traditional Chinese medicine
to treat hypertension, blood hyperviscosity, arteriosclerosis and high cholesterol
(Fang et al. 2018). The characteristic flavour and aroma of cumin are due to the
presence of cuminaldehyde in the essential oil of cumin (Khan et al. 2017). It has
also been used traditionally as anticonvulsant, anti-inflammatory, carminative, anti-
spasmodic, diuretic and remedy for toothaches, jaundice, flatulence and indigestion.
The essential oil is used as flavourant for condiments, desserts and alcoholic
beverages. It is also used as a fragrance in cosmetics industries in the production
of creams, lotions and perfumes (Singh et al. 2017).

The cumin seeds consist majorly of aldehyde (60%) with fats, amino acids,
flavonoids and glycosides making up 22% and volatile oil making up 2-5%. The
major component of its yellow-coloured essential oil is cuminaldehyde (Singh et al.
2017). Cumin seeds contain phenolic acids (gallic acid, cinnamic acid, salicylic
acid), flavonoids (rutin, coumarin, quercetin) and several diterpenes which are strong
antioxidants inhibiting lipid peroxidation and protein oxidation (Gallo et al. 2010).
The essential oil of cumin contains f-pinene, y-terpinene, cuminaldehyde and
p-cymene with cuminaldehyde and p-cymene being the major component. The
antioxidant activities of these compounds have been documented (Singh et al.
2017). Cuminaldehyde has been demonstrated to be effective in treating the
symptoms of Parkinson’s disease as it inhibits the fibrillation of alpha-synuclein
(a-SN) (Morshedi et al. 2015) and also inhibits tyrosinase which in turn prevents the
oxidation of L-3,4-hydroxyphenylalanine (L-DOPA) (Singh et al. 2017).
Cuminaldehyde has also been demonstrated to possess antidiabetic effect as it is
able to inhibit a-glucosidase almost as well as the therapeutic drug acarbose. It has
also been demonstrated to inhibit lipid peroxidation in the liver of rats by scavenging
hydroxyl and peroxyl radicals (Nadeem and Riaz 2012). Also, the chemopreventive,
antibacterial, antiplatelet and antifungal activities of cuminaldehyde have been
reported.

Cuminaldehyde and another constituent of the essential oil of cumin and thymol
have been reportedly used to treat skin disorders as they help to detoxify the skin via
the excretion of toxic substances from the body (Singh et al. 2017). Also, the
anticholesterolemic and antiobesity effects of cumin have been associated with its
phytosterols which include f-sitosterol, 85-avenasterol and &7-avenasterol. These
phytosterols have also been demonstrated to possess radical scavenging activities
(Zare et al. 2014).

However, cumin should be taken with caution as toxicity could lead to dermatitis,
respiratory reaction and hypoglycaemia. Also, people taking drugs like antidiabetic,
painkillers, antibiotics, anticancer and oestrogens should use cumin with caution.
The LDsq of the essential oil of cumin is 0.59 ml/kg body weight, while the seed
powder can be used at a single dose of 300-500 mg (Al-Snafi 2016).

Pimpinella anisum (Anise): Pimpinella anisum is an annual herbaceous plant of
the family Apiaceae or umbelliferae indigenous to the East Mediterranean region of
Egypt, Sinai Peninsula and Iran. It has, however, been domesticated and is
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commercially produced in regions of South Asia, Europe, Russia and North Africa.
It is commonly called anise or aniseed and is one of the most commonly used spices
in the world (Kucukkurt et al. 2009).

It has been used traditionally in Asian and Mediterranean folk medicine as
remedy for cough, bronchitis, asthma, kidney stones and other inflammatory
diseases. It has also been used as an anaesthetic, carminative, antispasmodic and
for stimulating lactation in nursing mothers (Zheljazkov 2013). The fruit of anise is
also used traditionally in Bulgarian culture in baking and liquor production, while
the essential oil is used as a flavouring agent in pharmaceutical, cosmetics, candy and
perfume-making industries (Tonutti and Liddle 2010). Several recent studies have
demonstrated the hepatoprotective, gastroprotective, antiepileptic, anticancer and
analgesic agent (Acimovic et al. 2015). The seeds have also been used as diuretic,
disinfectant and antidepressant (Shojaii and Fard 2012).

Essential oil makes up about 1.5-5.0% of anise seed, and studies have reported
that the essential oil of anise seed contains the compounds frans-anethole which is
the major bioactive component and makes up about 85% of the oil. It is responsible
for the distinctive aroma and taste of anise seed. It also contains eugenol, methyl
chavicol, anisaldehyde, estragole (Gulcin et al. 2003; Tabanca et al. 2005) and
y-himachalene (Acimovic et al. 2015). Other compounds which are present in the
essential oil of anise in concentration above 0.06% are a-cuparene, cis-anethole and
B-bisabolene (Ozcan and Chalchat 2006).

A study by Kucukkurt et al. (2009) reported that the supplementation of aniseed
in the diet of laying quails help to improve antioxidant activity by increasing the
production of glutathione while also reducing lipid peroxidation. In another report,
consumption of anise was found to aid digestion, prevent fatty acid oxidation, act as
antioxidant and also increase the utilisation of nutrients (Al-Shammari et al. 2017).

Studies on the extract of anise seeds have reported the presence of polyphenols
such as quercetin, rutin, luteolin, isoorientin, isovitexin, catechin syrinic acid,
chlorogenic acid, p-coumaric acid, coumarin, cinnamic acid, chrisin, kaempferol
and naringenin all of which have been reported to possess strong antioxidant
activities which are responsible for their cardioprotective, neuroprotective,
hepatoprotective, antidiabetic and chemopreventive effects (Shojaii and Fard 2012;
Rebey et al. 2019).

Reports have demonstrated the cerebroprotective, neuroprotective and anticon-
vulsant effect of the compound trans-anethole. It is a substrate used for the synthesis
of several anticonvulsant drugs such as chloral and pentobarbital (Karimzadeh et al.
2012). Anethole has also been proven to possess anti-inflammatory, anticancer and
antimicrobial effect. It has been reported to inhibit the growth of the bacteria
Salmonella enterica, Pseudomonas aeruginosa and Bacillus subtilis and the fungi
Candida spp., Trichophytum spp., Microsporum spp. and Geotrichum spp. The
aqueous, ethanol and methanol extracts of the seed have also been demonstrated to
possess antimicrobial effect as well; however, the essential oil is a more powerful
antimicrobial agent than the extracts due to the higher concentration of anethole in
the oil (Kosalec et al. 2005; Azadeh et al. 2016). Asadollahpoor et al. (2017) also
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reported the ability of frans-anethole to protect against hepatic liver damage in
nonalcoholic fatty liver disease. Anethole and eugenol (another component in the
essential oil of anise) have been demonstrated to possess immunomodulatory effect
by stimulating cell-mediated immune response. Eugenol also inhibits leucocyte
chemotaxis in vitro (Al-Omari et al. 2018). Anise oil has also been demonstrated
to possess antidiabetic, hypolipidemic and antioxidant effect in male albino rats
(Helal et al. 2019). It has also been reported to help in the relief of dysmenorrhoea
and menopause symptoms (Anwar 2017).

However, when consuming anethole, its effect on hormonal balance should be
taken into consideration as it could lead to low sperm count in males. It should also
be taken with caution in young children, pregnant and breast-feeding women. In fact,
it is not recommended for children under the age of 12. It also has blood-thinning
effect and thus should be taken with caution when on anticoagulants. The LDs, of
anise oil is 2.7 g/kg body weight, while anethole can be taken at an acceptable dose
of 0.2 mg/kg body weight (EMA 2013) (Fig. 12.1).

12.4 East Africa

East African cuisines have been influenced by Omani, Yemeni and Indian Settlers
who brought with them their spices. These spices have now been domesticated in
this region alongside the spices which are indigenous to this region of Africa such
that East Africa is the biggest Spice exporting region in Africa with Ethiopia and
Tanzania being major players in the world spice trade industry (McCann 2009; Van
Wyk 2013). Some of the spices for which East Africa is famous include
Trachyspermum ammi (Ajwain), Elettaria cardamomum (Cardamom) and
Tamarindus indica (Tamarind).

Trachyspermum ammi (Ajwain): Trachyspermum ammi is an annual herbaceous
plant of the family Apiaceae. It is commonly called “ajwain” or “ajowan”, bishop’s
weed, carom or Ethiopian cumin (Nisar et al. 2019). It is commonly grown in the arid
and semi-arid region of the world. It is indigenous to Ethiopia, Egypt, while it is also
wildly cultivated in Iran, India, Pakistan, Afghanistan and some parts of Europe
(Zarshenas et al. 2014).

Traditionally, the seed of “ajwain” was useful for treatment of neuronal and
cerebral disorders such palsy, paralysis and tremor. It was also used to treat eye
and ear infections. It has also been used as an antitussive and also to treat respiratory
infections. Fruits were also administered for treatment of gastrointestinal disorders
such as nausea, reflux, vomiting, loss of appetite and abdominal cramps. It was also
used widely as a carminative, diuretic, antihelmintic, galactagogue and also as
aphrodisiac (Zarshenas et al. 2014). It is also used in Ayurveda medicine to relieve
colic pains, asthma, piles dyspepsia, flatulence, acute pharyngitis, sore throat and
common cold (Chauhan et al. 2012). It has also been used as a flavourant in food,
pharmaceutical and cosmetic industries.
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impinella anisum

Origanum syriacum

Cuminum cynimum

Fig. 12.1 Some North African Spices (Source: Gardenia.net 2015; Singh et al. 2017)

“Ajwain” is very rich in vitamins and minerals, containing appreciable amounts
of riboflavin, nicotinic acid, thiamine, ascorbic acid, carotene, calcium, manganese,
phosphorus, zinc, iron, chromium, cobalt, copper and iodine (Dwivedi et al. 2017). It
also contains abundance of secondary metabolites such as flavonoids, phenolic
compounds, coumarins, steroids, alkaloids, tannins and terpenoids (Mostafavi and



260 O. B. Oluwole and O. Ademuyiwa

Pezhhanfar 2015). Essential oil makes up 2.5-5% of the seeds; this essential oil is
majorly responsible for the pungent aroma and taste of ajwain. The major component
of the essential oil of ajwain is thymol which makes up about 40-50% of the brown-
coloured oil. Other components of the essential oil of ajwain which are the
nonthymol part are generally called thymene, and it consists of carvacrol,
y-terpinene, p-cymene, a-pinene, f-pinene, a-terpinene, styrene, limonene, fenchyl
alcohol, ethylene methacrylate, heptadecane, diethyl phthalate, terpinene-4-ol, 5-3-
carene and P-phyllanderene (Nisar et al. 2019).

It has been demonstrated that the alcoholic extract of ajwain seeds has analgesic
and antinociceptic effect, so does the essential oil. This could be due majorly to the
presence of thymol which has also been reported to possess analgesic and
antinociceptic effects (Zarshenas et al. 2014). The essential oil of ajwain is a strong
antioxidant with better peroxide scavenging activity than ascorbic acid with increas-
ing concentration. It also possesses better ferric reducing antioxidant power than
ascorbic acid with increasing concentration (Chatterjee et al. 2013).

Thymol and carvacrol have also been reported to possess antibacterial activity
against Helicobacter pylori, Staphylococcus aureus, Escherichia coli, Bacillus
pumilus and Bordetella bronchiseptica (Zarshenas et al. 2014). Thymol has also
been reported to possess antifungal activity against Candida spp., Aspergillus niger
and Curvularia ovoidea (Khan and Jameel 2018). Also, thymol and y-terpinene have
been demonstrated to possess antiulcerogenic activity due to their antioxidant, anti-
inflammatory and vasorelaxant activities (Eftekhari et al. 2019). Thymol has also
been reported to prevent oxidative damage to DNA due to its free radical scavenging
activity, thus responsible for its chemopreventive activity (Goswami and Chatterjee
2014). Thymol has also been demonstrated to possess antiplatelet and immunomod-
ulatory activities via several antioxidative activities (nitric oxide scavenging activity,
inhibition of nuclear factor kappa B (NF-kB)) which prevent oxidative damage to
biological membranes (Ranjbaran et al. 2019). The antioxidant and antiaflatoxigenic
activities of thymol and carvacrol have also been implicated in the food preservation
potential of the essential oil of ajwain (Kedia et al. 2015).

p-Cymene, another important component of the essential oil of ajwain, has been
demonstrated to possess antioxidant, anticancer, anti-inflammatory, antinociceptic
and antimicrobial activities (Marchese et al. 2017). Although ajwain is relatively safe
for consumption, it has been reported that over consumption could lead to teratoge-
nicity which could explain its traditional use as an abortificant. The LD50 of the
essential oil of ajwain is 2294 mg, thymol is 980 mg and carvacrol is 810 mg, and
p-cymene is 1695 mg (Vazirian et al. 2018).

Tamarindus indica (Tamarind): Tamarindus indica L. is a fruit tree belonging to
the family Fabaceae. It is native to tropical Africa but also widely cultivated in other
tropical continents/regions of the world (Menezes et al. 2016). It is widely cultivated
in Ethiopia, Cameroon, Uganda, Central African Republic and Guinea, and it also
grows in the wild in Nigeria (Naeem et al. 2017). It has been used traditionally to
treat inflammation, sore throat, stomach disorders and rheumatism. Furthermore, the
plant has been used as treatment for several other disease conditions such as



12 Antioxidants in Spices: A Review of the Antioxidant Components and. . . 261

dysentery, diarrhoea, respiratory diseases, constipation, worm infestation, malaria,
gonorrhoea, diseases of the eye and aphrodisiac (Komakech et al. 2019). The fruit
pulp of tamarind has a characteristic sweet acidic taste due to the presence of tartaric
acid and reducing sugars. The pulp is used as spice in Indian and African dishes for
seasoning foods, confectionaries, sauces, juices and other beverages, while the
leaves and flowers can be eaten as vegetables and are prepared in a variety of dishes
(Abubakar et al. 2010). It is also added to the traditional Northern Nigerian breakfast
called pap or “kunun tsamiya” (Rao and Mathew 2012).

The tamarind pulp which is the part used as spice contains tartaric acid (8—18%),
reducing sugars (25-40% of which 70% is glucose and 30% is fructose). It is also
rich in vitamins and minerals like niacin, riboflavin, thiamine, potassium, iron, zinc,
calcium, phosphorus and copper with little amount of vitamins C and A. The pulp
also contains other organic acids like citric acid, malic acid, succinic acid and formic
acid. This high amount of organic acids makes it one of the most acidic fruits known.
It is also rich in amino acids, invert sugars, pectin, fats, pyrazines and thiazoles
(Naeem et al. 2017). The pulp is also rich in phytosterols (p-sitosterol and stigmas-
terol) and the bitter principle tamaridine (Ferreira 2019). The pulp has been reported
to be an antihypertensive agent, as a remedy for sore throat, cure for malaria fever, to
relieve the effect of sunstroke and as an aid for gastrointestinal disorders
(Zohrameena et al. 2017). The bitter principle tamaridine has been demonstrated
to possess antibacterial activity against Escherichia coli, Staphylococcus aureus,
Pseudomonas savastanoi and antifungal activity against Candida albicans and
Aspergillus niger. Tartaric acid which is responsible for the acidic taste of the pulp
has been reported to be a good laxative and also responsible for its antimalarial effect
(Ferreira 2019). The hypolipidemic effect of the pulp has been associated with the
presence of p-sitosterol and stigmasterol. These compounds have also been
implicated in the ability of the pulp to inhibit atherosclerosis and also reduce
blood pressure, although the presence of significant amount of potassium in the
pulp is also a factor in its blood pressure-lowering effect. The pulp has also been
reported to possess strong antioxidant activity which is associated with the presence
of these earlier discussed phytonutrients as well as other phenolic compounds like
procyanidins and catechins (Ferreira 2019). The phytosterols have also been
reported to possess analgesic and anti-inflammatory activities. The hepatoprotective
activity of the pulp has also been reported (Zohrameena et al. 2017). The presence of
phytosterols has also been implicated in the antiobesity activity of the aqueous
extract of the pulp (Iskandar et al. 2017).

Tamarind pulp is practically nontoxic and considered safe for consumption with
an LDs, above 5000 mg/kg body weight (Iskandar et al. 2017).

Elettaria cardamomum (Cardamom): Elettaria cardamomum is a perennial her-
baceous plant of the family Zingiberaceae. It is native to Tanzania in East Africa and
widely cultivated in Guatemala, Mexico, Sri Lanka, India, Indonesia and Nepal
(Ashokkumar et al. 2019). It is well known as “queen of spices”, and it is commonly
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called small cardamom, true cardamom or green cardamom. It the third most
expensive spice in the world after saffron and vanilla (Sharma et al. 2011).

Cardamom has been used traditionally for centuries in the management of
asthma. It has also been used to treat cataracts, diarrhoea, nausea, teeth and gum
infections and also to manage kidney, digestive and cardiac disorders (Ashokkumar
et al. 2019). It has also been used for centuries as spice in traditional dishes like
curry, coffee, cakes and bread. It is also used in the food industries as flavouring
agent for alcoholic and nonalcoholic beverages, candies, meat and meat products
and frozen desserts (Singh et al. 2018). Cardamom is very rich in vitamins and
minerals with appreciable amounts of ascorbic acid, tocopherols, thiamine, ribofla-
vin, niacin, manganese, magnesium, potassium, sodium, zinc, copper, calcium
and iron.

Cardamom contains about 6—14% essential oil and has been used in pharmaceu-
tical and nutraceutical industries (Hamzaa and Osman 2012). The components of the
essential oil of cardamom include 1,8-cineole, a-terpineol, linalyl acetate, sabinene,
nerolidol, linalool, a-pinene and a-terpinyl acetate (Yashin et al. 2017). The charac-
teristic aroma of cardamom is due to the combination of 1,8-cineole (eucalyptol) and
a-terpinyl acetate which are its most abundant components. The difference in aroma
across species and varieties is due to the differences in the percentage composition of
1,8-cineole and a-terpinyl acetate. These essential oil components have been
reported to possess antioxidant, antidiabetic, antiviral, antifungal, anti-inflammatory
and gastroprotective abilities (Ashokkumar et al. 2019). Also, extracts of cardamom
seeds and pods have been reported to contain other components such as
anthocyanins, flavonoids (catechins, myricetin, quercetin and kaempferol),
carotenoids (lutein and f-carotene) and little alkaloids. These components have
also been reported to have potential benefit in the management of cardiovascular,
lungs, kidney and pulmonary disorders (Vaidya and Rathod 2014).

The flavonoids, phenolic compounds and components of the essential oil of
cardamom make the extract and the essential oil very good antioxidants and thus
are useful in food preservation. The use of either the seed extract or the essential oil
of cardamom in food preservation has been reported to exhibit antibacterial, antifun-
gal and antioxidant activity, thereby preventing food spoilage (Singh et al. 2018).
The presence of flavonoids and phenols has been implicated in the antimutagenic
activity of cardamom due to their ability to scavenge free radicals and thus prevents
oxidative damage to biomolecules like DNA, proteins and fatty acids (Saeed et al.
2014).

1,8-Cineole (eucalyptol) and o-terpinyl acetate have reported to be majorly
responsible for the antimicrobial activity of cardamom essential oil. The essential
oil has been reported to inhibit the growth of Staphylococcus aureus, Salmonella
typhi. Candida albicans, Streptococcus mutans and Aspergillus terreus (Abdullah
et al. 2017). The antiulcerogenic activity of the essential oil and petroleum ether
extract of cardamom in ethanol and aspirin-induced gastric ulcer has also been
reported (Farah et al. 2005). Eucalyptol has also been reported to possess anti-
inflammatory and immunomodulatory activities. Another study also reported the
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antiscabies activity of essential oil of cardamom. This activity has been associated to
the activities of 1,8-cineole, a-terpineol and y-terpinene. 1,8-Cineole stimulates the
activity of antioxidant enzymes superoxide dismutase and glutathione-S-transferase
which helps protect against Sarcoptes scabiei mites. It also has insecticidal activity.
o-Terpineol and y-terpinene also possess insecticidal activity which could be respon-
sible for their antiscabies potential (Sharma et al. 2020).

The essential oil of cardamom has also been reported to increase the level of
glutathione in the body. Furthermore, the extract has been reported to possess anti-
inflammatory, analgesic, antilipid peroxidation, antiplatelet aggregation and anti-
spasmodic activities. It also possesses anticonvulsant and antidepressant activities
(Sharma et al. 2011). Cardamom essential oil is quite safe with an LDs, 5000 mg/kg
body weight (Iskandar et al. 2017) (Fig. 12.2).

Trachyspermum ammi

Sl Tamaridus indica

Elettaria cardamomum

Fig. 12.2 Some East African Spices (Source: Shameem 2016; Tramil.net 2017; Chauhan 2019)



264 O. B. Oluwole and O. Ademuyiwa

12.5 West Africa

Spices have been part of West African cuisines for centuries. Apart from their
culinary uses, they also have acclaimed importance in the traditional medicinal
practices of the region. Some spices are native to the region; however, with the
advent of globalization and influence of colonialism, several exotic spices have been
domesticated and are now widely cultivated in the region as well. Some native West
African spices are Aframomum melegueta (Grains of Paradise), Piper guineense
(West African black pepper) and Parkia biglobosa (African Locust Beans).

Aframomum melegueta (Grains of Paradise): Aframomum melegueta is a peren-
nial herbaceous plant of the family Zingiberaceae (ginger family). It is widely
cultivated in West Africa especially in Nigeria, Ghana, Cote d’ivoire, Togo and
Liberia. It is commonly called grains of paradise or guinea pepper with the local
names “ataare” in Yoruba, “ose-0ji” in Igbo, “chitta” in Hausa and “fam wisa “in
Ghana (Onoja et al. 2014). It is one of the most important plant in African ethno-
medicine. It is used in divination and has been traditionally used to treat rheumatism,
fever, constipation, snake bite, worm infestation and diarrhoea and gastrointestinal
disorder (Onoja et al. 2014). The leaf has been reported to be used in the treatment of
measles. The seed extract has also been reported to possess antiviral activity
particularly against HIV. It has also been demonstrated to possess hepatoprotective,
antimicrobial, anti-inflammatory, antioxidant and antiviral activities (Lawal et al.
2017).

The seed extract has reported to contain 6-paradol as the major constituent which
is responsible for its pungent, peppery aroma. Other constituents include 6-gingerol,
8-gingerol, 6-gingeredione, zingiberone, methyl-6-gingerol, cis-isoelemicin,
B-bisabolene, aromadendrene, geraniol, a-guaiene and trans-B-farnesene (Lawal
et al. 2017; Osuntokun 2020). The entire plant is made of essential oil with the
leaf oil containing myrtenyl acetate and isolimonene as its major constituents; the
stem oil is made up majorly of caryophyllene oxide, myrtenyl acetate, f-eudesmene
and p-caryophyllene. Also, the oil from the root contains myrtenyl acetate and
pinocarvyl acetate as its major constituents, while the seed oil is largely made up
of humulene, p-caryophyllene and their epoxides (Owokotomo et al. 2014).

6-Paradol and 6-shagoal have been reported to be responsible for the antimicro-
bial activity of A. melegueta. Reports have shown that 6-paradol and 6-shagoal were
able to inhibit the growth of Pseudomonas aeruginosa, Klebsiella pneumonia and
Serratia marcescens (Lawal et al. 2017). Also, gingerol and 6-paradol possess
anti-inflammatory activity as they inhibit prostaglandins and leukotrienes synthesis.
(Kokou et al. 2013). Also, 6-paradol has been reported to possess anticancer activity.
It was able to induce apoptosis in human pro-myelocytic leukaemia (HL-60) cells. It
has also been demonstrated to inhibit growth of tumour on the skin (Osuntokun
2020). The ability of A. melegueta to protect against neurodegenerative diseases has
also been reported as it inhibits the enzyme acetylcholine esterase (Adefegha and
Oboh 2012a). Also, it was able to protect against neurotoxicity induced by
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monosodium glutamate in rat brain by scavenging nitric oxide, increasing glutathi-
one levels, increasing the activities of antioxidant enzymes catalase and superoxide
dismutase while also inhibiting the activities of acetylcholine esterase and mono-
amine oxidase (Fasakin et al. 2017). This neuroprotective activity could be due to
gingerols that have been found to inhibit or prevent the progression of Alzheimer’s
disease in rat model by inhibiting neuroinflammation while also decreasing
B-amyloid deposits (El-Halawy et al. 2017). Its ability to inhibit the activities of
the enzymes a-amylase and a-glucosidase has been reported, thereby reducing blood
glucose and consequently producing an antidiabetic effect (Adefegha and Oboh
2012b). Mohammed et al. (2017) traced the antidiabetic activity of A. melegueta
to the presence of 6-gingerols and oleanolic acid in the extract. Another report also
demonstrated the hepatoprotective activity of A. melegueta as it was able to protect
against hepatic damage by carbon tetrachloride (CCly) by scavenging
trichloromethyl, a metabolite of CCl, which induces liver damage. It also inhibits
inflammation which occurs as a result of liver injury by inhibiting the synthesis of
C-reactive protein, cyclooxygenase-2 enzyme and prostaglandins formation (Kokou
et al. 2013). A recent study has also demonstrated the efficacy of methanolic seed
and leaf extract of A. melegueta in treating anaemia as it is able to increase
haemoglobin levels and platelet count in anaemic rats (Omoboyowa et al. 2017).
Also, the ability of the plant to increase body’s energy metabolism via activation of
brown adipose tissues has been employed in the management of obesity (Sugita et al.
2013).

Although according to Food and Drug Administration (FDA), A. melegueta is
considered relatively safe for consumption with minimal or no side effect with the
seed oil having an LDsq of 273.86 mg/kg body weight (Akpanabiatu et al. 2013), a
study showed that it causes loss of pregnancy especially during the first trimester in
Sprague Dawley rats and therefore should be used with caution during pregnancy
(Inegbenebor et al. 2009).

Piper guineense (West African Black Pepper): Piper guineense is a tropical West
Africa spice plant of the family Piperaceae. 1t is a species of piper which is native to
West Africa. It is commonly referred to as West African Black Pepper and locally
called Ashanti pepper in Ghana, “Uziza” in Igbo and “Iyere” in Yoruba. It is also
referred to as Benin pepper and false cubeb (Balogun et al. 2016). The fruits and
leaves of P. guineense have been used in traditional medicinal practices across West
Africa. It has been used in the Nigerian traditional medicine landscape as a relieve
for stomach discomfort due to excess gas. It has also been used to treat rheumatism,
syphilis and respiratory infections (Uhegbu et al. 2015). It has also been reportedly
used in Southern Nigeria to treat infertility and pain and also as an aphrodisiac
(Oyemitan et al. 2014). In the Yoruba herbal medicinal practice, it is used in
conjunction with other herbs to make a potherb for the treatment and management
of neurological and neurodegenerative diseases (Elufioye et al. 2012).

It is a spice of note in West African cuisine, especially Nigeria and Ghana and use
to flavour soups, stew and meat. In South Eastern Nigeria, it is one of the ingredients
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used to prepare soup for post-partum women to help aid uterine contraction. It is also
used as a preservative in food and food products. Its essential oil has also been
employed for soap and perfume making (Uhegbu et al. 2015).

The plant is rich in nutrients and is a rich source of vitamins and minerals like
ascorbic acid, tocopherols, thiamine, riboflavin, niacin, manganese, calcium, mag-
nesium, potassium, sodium, zinc, iron, copper and chromium (Imo et al. 2018).
Phytochemical analysis of extracts of the plants has also identified the presence of
alkaloids, saponins, tannins, cardiac glycosides and flavonoids (Balogun et al. 2016).
The seed of the plant is also rich source of essential oil containing about 2.5-7%
essential oil and vary in component from one region to the other. However, some of
the components of the essential oil which have been identified are 1,8-cineole,
myristicin, safrole, elemicin, a-pinene, p-pinene, D-limonene and caryophyllene
(Oyemitan et al. 2014). P. guineense like all other plants from the genus piper
contain the alkaloid piperine which is responsible for their distinctive peppery
aroma and taste.

The extracts of the plant be it leaves of seeds have been reported to possess
several biological activities. For example, the aqueous extract of the seed has been
reported to protect against oxidative damage to liver by increasing the activity of
antioxidant enzymes such as catalase, glutathione peroxidase and superoxide
dismutase (Uhegbu et al. 2015). The methanolic extract of the seed also was able
to reverse or prevent hepatic injury caused by CCl, by scavenging free radicals,
increasing the activity of antioxidant enzymes, preventing the accumulation of lipids
and overall maintaining the integrity of the cell membrane of hepatocytes (Oyinloye
et al. 2017). The leaf extract has also been reported to possess antimicrobial activity
against Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, Bacil-
lus subtilis, Candida albicans and Saccharomyces cerevisiae (Anyanwu and Nwosu
2013). Other biological activities of the extracts include hypolipidemic, antitumour,
immunomodulatory, antiparasitic, antianaemic, anxiolytic and antiatherosclerotic
effects (Balogun et al. 2016).

The essential oil of the plant has also been reported to possess several biological
activities. The antioxidant activity of the essential oil has been attributed partly to the
presence of a-pinene and 1,8-cineole which have strong ferric reducing antioxidant
power. The essential oil has also exhibited the ability to inhibit starch metabolising
enzymes o-amylase and a-glucosidase. It also inhibited angiotensin converting
enzyme 1 and therefore could be a possible therapeutic approach for the manage-
ment of diabetes mellitus and hypertension (Oboh et al. 2013). The anti-
inflammatory and analgesic effects of the essential oil have also been reported
(Oyemitan et al. 2014). In another study, the effect of the essential oil of
P. guineense on the central nervous system was elucidated. It was reported to act
as sedative, anticonvulsant, anaesthetic, acetylcholine esterase inhibitor, antidepres-
sant and monoamine oxidase inhibitor. All these activities have been reported to be
due to the synergistic and additive effects of the various components of the oil such
as p-limonene, linalool and B-sesquiphellandrene (Oyemitan et al. 2015).

Piperine which is a major distinctive bioactive component of P. guineense has
been isolated and studied extensively. A study elucidated the activity of piperine in
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preventing hepatic and neurotoxicity caused by microcystic-LR in mice via its
antioxidant and anti-inflammatory activities. However, when combined with
thymoquinone, it produced better therapeutic effect (Abdel-Daim et al. 2019).
Other studies have also reported the antidiabetic, immunomodulatory,
antiinflammatory, antihypertensive, chemopreventive and neuroprotective effect of
piperine (Stojanovic-Radic et al. 2019).

Another component of P. guineense piperamide has also been reported to possess
antimicrobial activity against Sarcina sp., Staphylococcus aureus and Bacillus
subtilis (Mgbeahuruike et al. 2018).

P .guineense is quite safe for consumption with the essential oil having an LDs
of 1265 mg/kg body weight oral and 693 mg/kg body weight when administered
intraperitoneally (Oyemitan et al. 2014), while the seed extract has an LDsq of
2000 mg/kg body weight (Kabiru et al. 2016).

Parkia biglobosa (African Locust Beans): Parkia biglobosa is a perennial, decid-
uous tree plant of the family Mimosaceae. It is native to Nigeria, Ghana and some
other West African countries. It can also be found in Southern and East Africa
(Sackey and Kwaw 2013). It is commonly called African Locust Beans. It is locally
called “Iru” in Yoruba and “Dawadawa” in Ghana and Hausa. Different parts of the
plants have been used in folk medicine to treat ailments like hypertension, dermato-
sis and haemorrhages. In Northern Nigerian folk medicine, the stem back is com-
monly used to treat diabetes mellitus (Dluya et al. 2015). The plant is used across
West Africa in their folk medicine practices. It is used in Benin to treat cardiovascu-
lar diseases, infectious diseases and rheumatism. In Burkina Faso, it is used to treat
oral infections and sores. In Ghana and Cote d’ivoire, it is used to treat malaria and
stomach ache. In Mali, it is used to treat urinary tract infections and malaria. In Togo,
it is used to treat haemorrhoids, diarrthoea and cardiovascular diseases. In Nigeria, it
is used to treat diarrhoea and inflammation in the North, hypertension, infertility,
stroke, skin lesions and eye infection in the South-West and also used to treat
hypertension in the South-East (Alinde et al. 2014). Several recent reports have
also demonstrated the antidiarrheal, antibacterial, anti-inflammatory, analgesic anti-
cancer and antihypertensive effect of the plants (Alinde et al. 2014).

The seeds are usually fermented (as fermentation reportedly enhanced the
nutritional status of the seeds) and used as seasoning/flavouring agent in soups and
stews in West African cuisine (Sackey and Kwaw 2013). The plant is a rich source of
nutrients such as reducing sugars, free amino acids, tocopherols, fatty acids like,
arachidic acid, linoleic acid, palmitic acid and stearic acid. It is also rich in thiamine,
riboflavin, magnesium, sodium, potassium, zinc, calcium, copper and iron
(Daramola 2014). Phytochemical analysis has reported the presence of alkaloids,
saponins, cardiac glycosides, sterols, tannins, terpenes and resins (Alinde et al.
2014).

The fermented seeds which are commonly used as spice in West African cuisines
were found to produce better growth and feed utilisation when supplemented in the
diet of Clarias gariepinus due to its rich protein and amino acids content (Michael
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and Matthias 2020). It has also been suggested the antioxidant activity of
P. biglobosa could be due to the presence of free amino acids, peptides, oxidised
lipid-amino acid reaction products, phenolic compounds and tocopherols (Daramola
2014). The cardioprotective and hypolipidemic effects of the fermented seeds have
also been reported. It increases HDL-cholesterol concentration while reducing
LDL-cholesterol and triglyceride concentration in included in the diet. The high
calcium and potassium content and the presence of flavonoids and cardiac
glycosides of the seeds have been implicated in its antihypertensive and
cardioprotective activities (Ognatan et al. 2011). It also antioxidant and
hypolipidemic activities when supplemented in the diet of rats induced with hyper-
lipidemia using tyloxapol (Ayo-Lawal et al. 2014). The fermented seeds have also
been reported to produce antidiabetic effect in alloxan-induced diabetic rats
(Builders 2014).

Although it is the seeds of the plant which is used as spice, various studies have
associated a lot of biological and therapeutic activities to its stem bark, roots and
leaves. For example, the stem bark has been reported to possess antimicrobial
activity (Abioye et al. 2013). The leaves have also been reported to possess
neuroprotective, antioxidant, cardioprotective and antihypertensive effects
(Komolafe et al. 2014; Komolafe et al. 2017a, b). Fermented Parkia biglobosa
seed is safe for consumption, and no toxicity has yet been identified (Fig. 12.3).

12.6 Southern Africa

Very little evidence is available for the use of spices in Southern African dishes in
ancient times as spices are quite rare to the southern African landscape. However, the
settling of other groups of people (Khoi, Bantu, Indian, Dutch, Malay) in the region
has greatly influenced the cooking traditions of the region. For example, the famous
Cape cuisine is influenced by the Dutch and Malay settlers of the region (Asowata-
Ayodele et al. 2016; Van Wyk 2013). However, some plants which were later
recognised as spices have been used for centuries for their medicinal benefits.
Also, global travel and immigration have meant that some exotic species have also
been introduced into the region. Some of the spices used in Southern Africa are
Anethum graveolens (Dill), Capsicum annum (Chilli pepper) and Carissa edulis
(Natal-plum).

Carissa edulis (Natal-Plum): Carissa edulis is a perennial shrub belonging to the
family Apocynaceae. It is native to tropical and subtropical regions of the world. In
Southern Africa, it is found in countries like South Africa, Lesotho, Zimbabwe,
Eswatini, Namibia and Zimbabwe. It is commonly called natal-plum or num-num,
while locally it is called “noem-noem” in Afrikaans and “cizaki” in Hausa (Bester
2014). Apart from being used as a flavourant and preservative, the fruit is eaten as
snack as it has a delicious flavour. It is also used to make jellies, jams and soups. It
has been used traditionally to treat chest pain and as an antiviral agent
(Asowata-Ayodele et al. 2016). It has also been reported to be used to treat
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Aframomum melegueta

Piper guineense

Fig. 12.3 Some West African Spices (Source: Wikiwand 2021; Patil 2017; Senckenberg.de 2021)

rheumatism, epilepsy, hernia, sickle cell anaemia, gonorrhoea, syphilis, toothache
and worm infestation (Yadang et al. 2019). It was also used as part of an ancient
Swazi ceremony to increase courage and ferocity of black bull, when Swazi warriors
are tested by killing the bull with bare hands (Bester 2014). Scientific reports have
reported the use of C. edulis as antiplasmodial, anticonvulsant, diuretic, antiviral,
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analgesic, anti-inflammatory, cardioprotective, hepatoprotective, antitumour and
antidiabetic agent (Nantango et al. 2018).

Phytochemical analysis has confirmed the presence of flavonoids (anthocyanins
which are characteristic of the fruits red and purple colour, lupeol), sterols, phenolic
compounds (ursolic acid, oleanolic acid), sesquiterpenes, lignans and triterpenes
(B-amyrin, carandinol) (Kaunda and Zhang 2017).

The fruit extract has been reported to possess antimicrobial activity against
Pseudomonas aeruginosa, Klebsiella pneumonia, Escherichia coli, Staphylococcus
aureus, Enterococcus faecalis, Bacillus subtilis and Schleichera oleosa (Ibrahim
et al. 2010; Toobpeng et al. 2017).

The fruit extract also displayed cytotoxic activity in breast adenocarcinoma, lung
cancer, cervical carcinoma and hepatocellular carcinoma cell lines (Souilem et al.
2019). Its considerable flavonoid content has also been implicated in its
antinociceptic activity in rats (Gitahi et al. 2015). A molecular docking study done
using some compounds isolated from Carissa carandas showed that the compounds
carandinol, carissone, lupeol and ursolic acid which are also present in C. edulis
were able to inhibit the HIV-1 reverse transcriptase and HIV-1 protease enzymes and
thus can be exploited as possible therapeutic alternative for HIV treatment and
management (Singh et al. 2019). The sesquiterpenes (6p-carissanol, 2a-carissanol,
dehydrocarissone, cryptomeridiol, carissone and B-eudesmol) present in C. edulis
have been reported to possess antimicrobial, antimalarial, anticancer and anti-
inflammatory effects. Also, the lignans (secoisolariciresinol, carinol, (—)olivil and
nortrachelogenin) which have been isolated from C. edulis have been reported to
possess antitumour, antiallergic, antiviral and antimitotic effects (Al-Youssef and
Hassan 2014).

C. edulis is safe for consumption as the fruit can be eaten as snack and used to
make jams and jellies (Asowata-Ayodele et al. 2016).

Capsicum annuum (Chilli Pepper): Capsicum annuum has been in use as far back
as when civilisation began. It is a perennial shrub of the family Solanaceae. Its use in
human diet has been traced to as far back as 7500 BC. Its origin has been traced to
the Americas as Native Americans have been cultivating Capsicum annuum since
between 5200 and 3400 BC. It was distributed to other continents of the world by the
Spanish and Portuguese traders (Nadeem et al. 2011). It has been used traditionally
in folk medicine as relieve for gastric ulcer, toothache, diabetes and rheumatism.
Recent reports have also elucidated the antioxidant, antiobesity, hypolipidemic, anti-
inflammatory and blood glucose-lowering effect of C. annuum (Badia et al. 2017).
Capsicum annuum is a rich source of vitamins and minerals like selenium, iron,
calcium, phosphorus, sodium, potassium, copper, niacin, thiamine and ascorbic acid
(Salehi et al. 2018a).

The strong pungent taste of C. annuum is due to the group of alkaloids called
Capsaicinoids. These capsaicinoids possess chemical structure similar to Piperine
(in Piper sp.) and Zingerone (in ginger). The most abundant of the capsaicinoids is
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capsaicin; others are dihydrocapsaicin, nordihydrocapsaicin, homocapsaicin and
homodihydrocapsaicin (Badia et al. 2017). Apart from the pungent principle capsai-
cin, other components of C. annuum include flavonoids (3-O-ramnosilquercetin,
7-O-glucosilluteolin), phenolic compounds of the cinnamic derivative group and
carotenoids (Badia et al. 2017). Other compounds which have been identified in
C. annuum are gallic acid and the stilbene, resveratrol (Medina-Juarez et al. 2012).

While the pungent taste and burning sensation on mucous membrane are due to
capsaicinoids, the colours of Capsicum annum are due to the carotenoids present in
the fruits. The carotenoids capsanthin and capsorubin are responsible for the red
colour, while the yellow colour is due to zeaxanthin, luteolin and p-cryptoxanthin
(Salehi et al. 2018a).

Extracts obtained from the plant were found to possess strong antioxidant activity
as the capsaicinoids, carotenoids, flavonoids and resveratrol which are components
of the extract are reported to be strong antioxidants; thus, additive and synergistic
effects of these components are expected (Medina-Juarez et al. 2012).

The plant has been reported to be used for food preservation due to its antimicro-
bial activity. Earlier report attributes the antimicrobial activity of C. annuum majorly
to capsaicin and dihydrocapsaicin; however, a recent report linked its antimicrobial
effect to the synergistic activity of these two capsaicinoids and chrysoeriol, with
chrysoeriol showing a better antimicrobial activity than capsaicin and
dihydrocapsaicin when they were all tested singly (Salehi et al. 2018a).

Capsaicin has also been demonstrated to possess antioxidant activity comparable
to butylhydroxyanisole (BHA). Also, sinapoyl and feruloyl glycosides in C. annuum
have been reported to possess stronger antioxidant effect than capsaicin (Materska
and Perucka 2005). Capsaicin has also been reported to possess anticancer,
antitheumatoid and antiosteoarthritic activities (Saleh et al. 2018). Capsaicin was
reportedly able to inhibit the proliferation of cancer cells in colon cancer by
inhibiting the synthesis of pro-inflammatory cytokines such as tumour necrosis
factor alpha (TNF-a), interleukin 1 beta (IL-1p), interleukin 10 (IL-10) and inter-
feron gamma (IFN-y) (Imran et al. 2018). Capsaicin is also able to initiate apoptosis
in prostatic benign hyperplasia, thus exhibiting antitumour activity (Badia et al.
2017). Capsaicin has also been implicated in the hepatoprotective activity of
C. annuum. It has been reported to stimulate the activities of antioxidant enzymes,
scavenge free radicals and inhibit active caspase-3 (Hassan et al. 2012). The
antiulcerogenic activity of capsaicin has also been reported which is partly due to
its ability to inhibit the growth of Helicobacter pylori, a bacterium responsible for
peptic ulcer in man (Badia et al. 2017). Capsaicin has also been reported to protect
against neurotoxicity caused by glutamate. It decreases the synthesis of reactive
oxygen species (ROS) in the brain while also inhibiting neuronal death caused by
apoptosis. It also inhibits the synthesis of inflammatory cytokines (TNF-a and IL-1p)
in the brain. It also inhibits lipid peroxidation in brain cells (Imran et al. 2018).
Another report also showed that capsaicin when combined with soyflavones induced
hair growth in guinea pigs (Imran et al. 2018). Other biological activities associated
with capsaicin include hypoglycaemic, hypolipidemic, antiplatelet aggregation and
cardioprotective activities (Saleh et al. 2018).
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Dihydrocapsaicin, another capsaicinoid, has also been reported to possess anti-
microbial activity against Bacillus cereus, Bacillus subtilis, Clostridium sporogenes,
Streptococcus pyogenes and Clostridium tetani Al-Snafi 2015. Dihydrocapsaicin
and capsaicin also inhibit lipid peroxidation in erythrocyte membranes. They also
protect against radiation from X-rays (Hassan et al. 2012).

Although so many biological activities have been associated with the
capsaicinoids, the huge biological benefits associated with C. annuum are not only
due to them. Some reports showed that some species of capsicum with more
flavonoids than capsaicinoids had better antioxidative potential than species with
more capsaicinoids (Chavez-Mendoza et al. 2015). The carotenoids capsanthin,
capsorubin and cryptocapsin possess very strong free radical scavenging activity,
so also does the flavonoids luteolin and quercetin it contains (Nadeem et al. 2011).

Despite all these wonderful biological functions, C. annuum should be consumed
cautiously as some reports have shown that overconsumption of could lead to
impairment in learning and memory in rats due to the neurotoxic effect of capsaicin
when consumed in large quantities over a long period of time (Nmaju et al. 2017).
Also, some other studies have reported that overconsumption could lead to cancer
even though pure capsaicin in itself is not carcinogenic. This could be due to
Aflatoxin as the plant is easily infected by this carcinogenic agent, so this has been
suggested to be the reason for the carcinogenicity observed in overconsumption.
Another reason could be overconsumption above normal human consumption level
as it has been observed that capsaicin is a weak mutagenic agent (Saleh et al. 2018).
It should also be consumed cautiously in children below the age of 2 and pregnant
women as capsaicin causes burning sensation in the stomach (Olatunji and Afolayan
2018). The LDsq of C. annuum extract is 932.44 mg/kg body weight while that of
capsaicin is 34.07 mg/kg in mice (Nmaju et al. 2017).

Anethum graveolens (Dill): Anethum graveolens commonly called Dill is an
aromatic herb of the family Umbelliferaceae/Apiaceae. 1t is native to the Mediterra-
nean region and West Asia. However, it is now widely cultivated in India, Pakistan,
Africa, China, USA, Canada, Turkey and Uzbekistan (Chahal et al. 2017). It is
locally called “Dille” in South Africa. It is used by some indigenous community in
South Africa to treat erectile dysfunction and ulcer while also being a good
seasoning agent and preservative in their culinary preparations (Asowata-Ayodele
et al. 2016). The seeds are used as flavouring agent due to their strong spicy aroma
and used to flavour soups, salads, pickles, sauces and tea (Babri et al. 2012). In
Ayurvedic medicine, the seeds are used to treat bladder inflammation, sleep disorder
and hepatic diseases (Chahal et al. 2017). In the seventeenth century, it was used as a
brain tonic in Europe. It is also used to stimulate lactation in nursing mothers while
also been used as an antiemetic. The essential oil has also been reported to possess
cardioprotective and hypolipidemic effects (Chahal et al. 2017). It was also used in
Mediterranean culture to treat indigestion and flatulence (Haidari et al. 2020). The
seed has also been reported to possess anticonvulsant, antispasmodic and wound-
healing activities (Naseri et al. 2012).
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The essential oil of A. graveolens contains carvone, b-limonene, a-phellandrene,
dillapiole, dihydrocarvone and linalool as its major constituents (Singh 2012). The
seed is a rich source of flavonoids, phenolic compounds and terpenoids.

Aqueous extract of the seed was reported to possess strong antioxidant activity
which is comparable to Trolox. The antioxidant activity has been linked to the
presence of anethole, p-limonene, carvone, apiole and polyphenols which are pres-
ent in the extract (El-Mansouri et al. 2016). Another report demonstrated the
antidiabetic and hypolipidemic effects of A. graveolens. Supplementation of the
seed powder into the diet in patients with type 2 diabetes mellitus caused reduction in
LDL and total cholesterol levels in the serum while increasing HDL level. Supple-
mentation of 1.5 g/day for 6 weeks was able to reduce fasting blood glucose
significantly. It was suggested that the ability of flavonoids, ascorbic acid and
carotenoids which are some of the bioactive components identified in the seed
powder to repair B-cells of the pancreas which in turn increases insulin secretion is
one possible mechanism for the antidiabetic activity of A. graveolens (Haidari et al.
2020). A. graveolens also reduced the formation of advance glycation end products.
It has also been reported to activate peroxisome proliferation-activated receptor
alpha (PPAR-a), thereby normalising lipid profile in obese mice with diabetes
mellitus. It could also upregulate the expression of genes involved in fatty acid
oxidation. Quercetin, another flavonoid component of A. graveolens, suppresses the
activity of HMG-CoA reductase, the rate-limiting enzyme in cholesterol synthesis.
All these various activities of the different components of A. graveolens are possible
mechanisms in which A. graveolens produces its antidiabetic and hypolipidemic
effects (Goodarzi et al. 2016).

D-Limone and carvone inhibit the synthesis of inflammatory cytokines and have
been implicated in the analgesic and antinociceptive activities of alcoholic extract of
A. graveolens (Rezaee-Asl et al. 2013). The antimicrobial activity of the seed extract
against Staphylococcus aureus, Bacillus cereus, Listeria monocytogenes,
Escherichia coli, Yersinia enterocolitis and Salmonella typhi has been reported.
The essential oil also showed antifungal activity against Penicillium islandicans
and Aspergillus flavus. The antimicrobial effect of p-limonene and carvone against
Aspergillus niger, Saccharomyces cerevisiae and Candida albicans has been
reported (Dhiman et al. 2017). The gastroprotective effect of the essential oil and
seed extract of A. graveolens has also been documented. The essential oil had an
antispasmodic effect on the intestine of rabbits, the seed extract protects the gastric
mucosa from mucosa lesions caused by oral administration of hydrochloric acid in
mice, and it also moderately inhibited the growth of Helicobacter pylori, thus
protecting against peptic ulcer (Dhiman et al. 2017).

In a recent report, the boiled seed of A. graveolens when consumed was able to
reduce anxiety during labour and reduce duration of labour while also increasing
dilatation and effacement. This is as a result of the ability A. graveolens to inhibit
biochemical changes which occur as result of stress which is indirectly linked with
its antioxidant activity (Hetmatzadeh et al. 2020). The seed extract also had
hepatoprotective effect in paracetamol-induced hepatotoxicity in rats. It increases



274 O. B. Oluwole and O. Ademuyiwa

the level of antioxidant enzymes while also acting as a free radical scavenger
(Ramadan et al. 2013).

Carvone and bp-limonene have been linked to the anticancer effect of
A. graveolens due to their proven cytotoxic activity. The essential oil had
antiproliferative and cytotoxic effect in human hepatocarcinoma cell lines. The
methanolic seed extract has also been reported to inhibit the proliferation of cancer
cells in mouse leukaemia, mouse skin melanoma and human cervical cancer cell
lines (Al-Sheddi et al. 2019).

A. graveolens extract when used in combination with Oryza sativa (rice) extract
caused a reduction in brain infarction and decreases levels of pro-inflammatory
cytokines (interleukin 6 (IL-6) and nuclear factor kappa B (NF-kB)) in the brain
while increasing the activity of antioxidant enzymes and the expression of endothe-
lial nitric oxide synthase (eNOS) in the brain, thereby causing the improvement in
neurological deficit in animal model of cerebral ischemia (Jintanaporn et al. 2019).

Anethum graveolens is quite safe for consumption but in rare cases could lead to
allergic reaction such as throat swelling, urticarial, vomiting and diarrhoea. It is not
recommended for use during pregnancy. The average daily dose for the seed is 3 g,
while the essential oil is 0.1-0.3 g (Al-Snafi 2014) (Fig. 12.4).

12.7 The Role of Antioxidants in Plant-Microbe Interactions

Microorganisms impact so much on plant growth, productivity and quality. As a
result, the study of the interactions between plants and microbes is very important as
these interactions have implications on ecology and food security; some interactions
between plants and microbes are beneficial, while some are detrimental (George
et al. 2016). Although these interactions are not visible to the naked eyes, almost all
parts or organs of a plant are involved either directly or indirectly in these
interactions. These interactions could also be symbiotic in nature where the plants
serve as habitat for the microbes, while the microbes in turn secrete compounds that
could help plant growth or make it more resistant to stress be it biotic or abiotic or
even act as a means of defence against microorganisms that are parasitic to the plants
(Schirawski and Perlin 2018). Some beneficial plant—microbe interactions involve
interactions between plants and nitrogen-fixing bacteria or mycorrhizal fungi, while
interaction of plants with pathogenic bacteria or fungi is considered detrimental
(George et al. 2016).

Plants interact with microbes mostly via their roots, and since plants are largely
immobile, their roots continuously synthesise, accumulate and secretes several
compounds into the soil. These compounds are referred to as root exudates
(Ho et al. 2017). It has been reported that these root exudates are usually responsible
for the types of the bacterial community in the soil surrounding the plant (Lareen
et al. 2016); thus, different plant species has its own specific bacterial community in
its rhizosphere. Also, any change in the composition of these microbes can impact on
the performance of the plant (Bever 2003). Some of the compounds which form the
root exudates are antioxidants such as flavonoids and phenolic acids such as
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Fig. 12.4 Some Southern African Spices (Source: Exercise.com 2020; Comboni Missionaries
Ireland 2021; Goodarzi et al. 2016)

hydroxybenzoic acid and p-coumaric acid. Some reports have associated the resis-
tance of some species or cultivars of plants to pathogens to the levels of these
exudates; that is, the higher the level of exudates, the more resistant the species or
cultivar is to the pathogens. This therefore implies that these exudates regulate the
resistant mechanism observed (Li et al. 2013).
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* Flavonoids and its roles in plant-microbe interactions: Flavonoids are plants’
secondary metabolites which are distributed universally throughout all plants.
They carry out several functions in plants which are very necessary for plants
survival such as giving flowers their colours, transport of the plant hormone,
auxin, inhibition of some plant processes and protection of plants against ultravi-
olet radiation (Khalid et al. 2019). Due to the diversity in their structures,
flavonoids have been found to perform several diverse activities in plants. One
of such key roles is that they help plants to develop a beneficial Rhizobium
symbiotic relationship between plants and microbes in legumes and also help to
improve the biomass of plants (Buer et al. 2010). They also protect plants against
abiotic stress such as salt, heat, drought and ultraviolet radiation and biotic stress
such as attack by pathogens or herbivores. Their ability to scavenge reactive
oxygen species helps to maintain the balance between oxidative and reductive
status inside the plant cells (Khalid et al. 2019). Flavonoids via root exudations
have been found to acts as signalling molecule in response to several environ-
mental stresses in plants be it biotic (beneficial symbiotic organisms or harmful
pathogens) or abiotic (drought, temperature or nitrogen). Infection of plants by
microorganisms can generate reactive oxygen species which could be harmful to
plants as they could cause oxidative damage to plant biomolecules such as nucleic
acids, proteins and lipids; however, flavonoids help to quench these reactive
oxygen species (Kanazawa et al. 2012). The ability of flavonoids to protect plants
from pathogenic organisms has been linked to their antioxidant properties (Raks
et al. 2017). Some flavonoids work to protect against pathogens via transport of
flavonoids to site of infection, thereby generating a hypersensitivity reaction.
Some could also act by inhibiting enzymes of the pathogens especially the ones
that digest the plant cell wall via activity of metal chelators either directly or
indirectly (Khalid et al. 2019). For example, quercetin, a flavonoid which is
common to so many plants including spices such as oregano and Capsicum
spp., helps to resist the activity of plant pathogens through the suppression of
ATPase activity of DNA gyrase (Babii et al. 2016). Kaempferol is another
flavonoids which provides protection against fungi toxicity to plants (Monazzah
et al. 2016).

Apart from protection against harmful microorganisms, flavonoids also partici-
pate in plant-microbes symbiotic relationship. In the rhizosphere region of plant
roots, flavonoids help to stimulate spore germination and enhance the expression
of nod genes from symbiont and rhizobia chemoattraction. Some flavonoids have
been found to play a role in nodule meristem formation. These root nodules serve
as home to some beneficial bacteria like Azorhizobium, Mesorhizobium,
Bradyrhizobium and Sinorhizobium. These bacteria then help in nitrogen fixation
where atmospheric oxygen is converted to ammonia to be acted upon by other
organisms to subsequently form nitrates which are source of nutrients to plants
(Singla and Garg 2017). Also, the metabolic activities of these symbiotic
microbes can alter the structure and composition of some plant flavonoids
(Weston and Mathesius 2014). For example, the activity of the fungus hyphal
in the plant Medicago truncatula has been implicated in the enhanced production
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of the flavonoid coumestrol in the plant which has been reported to be beneficial
to the plant’s defence system and also as a medicinal component to humans
(Truong et al. 2015).

Some flavonoids exudates have also been reported to modulate some genes in
Rhizobium which are responsible for the synthesis of some biomolecules such as
exopolysaccharides and proteins, thereby assisting in the metabolic processes of
these microbes. Also, the activity of flavonoid root exudates can act in signal
transduction which in turn causes a cascade of reactions in these beneficial
microbes such as rhizobium. These reactions in turn lead to different beneficial
activities which include nitrogen fixation and growth modulation via regulation of
the synthesis of the hormone auxin. The activity of flavonoid root exudates also
helps to attract the beneficial microbe mycorrhizal fungi which help to protect
host plants from pathogens (Hassan and Mathesius 2012).

* Phenolics and their roles in plant-microbe interactions: Phenolic root
exudates have also been reported to help attract beneficial soil-borne
microorganisms which will positively affect the microbial community of the
soil around the plant. These phenolic exudates also possess the ability to protect
plants from microbial attack (Badri et al. 2013). An example of such phenolic root
exudate is canavanine. Canavanine helps to attract the beneficial fungi commu-
nity arbuscular mycorrhizal which help to protect plants from adverse effect
resulting from drastic change in soil pH and drought while also helping to
maintain the nutrient content of the soil (Ho et al. 2017). Mycorrhizal fungi
also aid plants in absorption of nutrients such as iron from the soil (Pii et al.
2015). Interaction between plants and microbes especially those of Rhizobia spp.
and Frankia spp. have been found to help promote plant growth directly or
indirectly by producing and aiding in the absorption of compounds necessary
for plant growth from the soil. They also modulate the levels of plant hormones
and also help to control pathogenic organisms and pests (Glick 2012). Also,
phenolic compounds of the cinnamic acid derivatives have been reported to help
plant to resist fungal attack (Lanoue et al. 2010).

¢ Capsaicinoids and Ethylene in Capsicum spp. and their roles in plant—
microbe interactions: Capsaicinoids present in Capsicum spp. have been
reported to act as mediators in plant-microbe interactions. Apart from their
activity in protecting plant against mammalian predators, they also act as antifun-
gal agents, thus protecting plants from infestation by fungi (Barchenger and
Bosland 2016). Capsaicinoids are allelochemicals which have been reported to
influence the root, shoot and germination of Capsicum spp. or when applied
exogenously to other seeds could affect these parameters as well (Barchenger and
Bosland 2016). Capsaicin protects plants from bacterial and fungal infestation by
inhibiting energy production via inhibition of oxidative phosphorylation in these
pathogenic organisms (Adams et al. 2020).

Another important compound in Capsicum spp. is ethylene which has been
reported to help in upregulation of the expression of some transcription factors
XLOC_021142 and XLOC_02182 which when adequately expressed help to
provide resistance against infection by Phytophthora capsici, a fungus which is
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responsible for root and collar rot disease in Capsicum annuum (Bagheri et al.
2020).

¢ Piperine and its role in plant-microbe interactions: Tetrahydropyridine

alkaloids of which piperine is one have been reported to interact with beneficial
microbes in the plant rhizosphere such as Pseudomonas koreensis and Pseudo-
monas fluorescens such that these microbes help to secrete plant hormones such
as indole acetic acid and gibberellic acid which stimulate plant growth. They also
produce antimicrobial compounds such as pyoluteorin, pyrrolnitrin, lipopeptide
and hydrogen cyanide which protect plants from microbial attack. The activity of
these microbes could also help to suppress disease. For instance, Pseudomonas
fluorescens produces phenazine-1-carboxylic acid which helps to suppress the
activity of the fungi Gaeumannomyces graminis (Lozano et al. 2019).
Piperine has also been reported to inhibit aflatoxin production in the fungus
Aspergillus flavus. This fungus has been reported to infest several plants includ-
ing Piper spp. Piperine acts by downregulating the expression of the entire AFB1
gene clusters which is responsible for the expression of the mycotoxin aflatoxin
B1 (Caceres et al. 2017)

* Terpenoids and their roles in plant-microbe interaction: Some root exudates

are terpenoids, and they have been reported to protect plants from fungal and
bacterial attack. Volatile terpenoids such as limonene, carvone, carvacrol, linal-
ool, thymol, terpineol, myrcene and pinene which are commonly found in volatile
oils of spices such as Pimpinella anisum, Elettaria cardamomum and Origanum
syriacus have been reported to possess antifungal activity against aflatoxin-
producing Aspergillus flavus, thus protecting the plant against activity of the
fungus (Loi et al. 2020). Also, cinnamaldehyde from cinnamon has been reported
to possess antifungal activity, thus protecting the plant against infestation by
Aspergillus spp. via inhibition of the synthesis of ergosterol, an important com-
ponent of the fungal cell membrane, thereby causing damaging morphological
alteration on the fungal cell membrane (Khorasani et al. 2017).
Carvacrol, a major component of the essential oil of oregano, has been reported to
act against plant pathogens be it soil-borne pathogens, foliar pathogens, plant-
parasitic nematodes and post-harvest pathogens. It has been reported to protect
plants against pathogens such as Phytophthora capsici, Xanthomonas perforans
and Rhizoctonia solani. It has also been reported to possess antifungal effect
against Aspergillus niger (Liu et al. 2019).

Thymol, another antioxidant component which is common to the essential oil
of some spices such as Thymus vulgaris and Origanum syriacus when applies
exogenously to some plants have been found to act as protection against bacterial
activity while also helping to promote growth (Kumari et al. 2018).
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12.8 Conclusion

Spices are rich source of antioxidant components, and Africa is home to numerous
spices which have been discovered to possess several biological activities. The
antioxidant components present in these African spices range from the alkaloid
groups, flavonoids, phenolic compounds and terpenoids. All the spices examined
possess numerous bioactive constituents and possess proven antioxidant and other
biological activities. They have been demonstrated to possess anticancer,
antitumour, cardioprotective, antiageing and neurodegenerative effects. Also, some
of these antioxidant components are very important in plant—microbe interactions
which are of utmost importance in plant ecology and food security.

Consumption within acceptable limit is safe with numerous beneficial qualities
accruable from the use in local dishes and cuisines. These bioactive compounds can
be further employed for new therapeutic approach in the management of several
pathological conditions. They can also be processed into functional food products
which will confer health benefit on the consumers.
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Abstract

Among different biological factors, plant disease is one of the most effective
problems for considerable loss of crop production in current time. The sustainable
way for crop production and plant disease management is the use of beneficial
microbes. Beneficial soil microbes surrounding the rhizosphere of the host plant
can protect them from plant pathogen and also stimulate further development of
plants. Different species of plant growth-promoting microbes (PGPM) are being
well-reported by scientists to manage different diseases of plants and improve-
ment in crop productivity. PGPM helps host plant to induce their growth as well
as suppress the disease incidence. Interaction of PGPM with plant pathogens in
the rhizosphere regions modulates innate immune responses in the host plant
which efficiently suppresses the pathogenic infections. It has been well studied
that PGPM helps host plant to protect them from disease by producing different
enzymes, metabolites, plant antioxidants and inducing plants immunity. In addi-
tion to antioxidants of enzymatic origin, the non-enzymatic antioxidants, viz.
glutathione (GSSG/GSH), ascorbic acid, tocopherol, phenolic constituents, ribo-
flavin, carotenoids, and thiamine, play outstanding role against oxidative stress as
well as a number of plant disease occurrences. Hence, this article has been
discussed critically to provide an updated account describing the active participa-
tion of PGPM in improvement of plant defense as well as disease management
through the production of different non-enzymatic antioxidant and develop a
green horizon to maximize their practical application in sustainable agriculture.
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13.1 Introduction

Different environmental stresses such as drought, heat, high salinity, metal toxicity,
ozone levels, UV radiation, and infection of different pathogens have modulatory
effects on growth and development of plants (Ratkevicius et al. 2003; Peltier et al.
2006). Among the biotic and abiotic stress, biotic stresses have played prime role in
reduction of the productivity of plants and influence morphological, physiological,
biochemical, and molecular patterns. In addition to biotic stress, the abiotic stress
such as water deficiency, increasing salinity, highly variable temperatures, and the
stress by oxidation of toxic free radicals further compromises the plant cellular
components leading to declining plant survivability (Waskiewicz et al. 2014).

Oxidative stress has been recognized as a matter of great concern during biotic as
well as abiotic stress culminating in production of reactive oxygen species like
superoxide ion, hydrogen peroxides, and hydroxyl radicals which have detrimental
effects on plant survivability. During the stress condition, plants exhibit an array of
defense mechanisms with special effects on some enzymatic antioxidants
(peroxidases, catalase, a-tocopherol, B-carotene, polyphenol, carotenoids, and gluta-
thione) involving the absorption of superoxide radicals. The accumulation of these
important biomolecular compounds has played a critical role in the osmotic adjust-
ment and helps to adjust the water loss and maintain the ion toxicity (Ehsanpour and
Amini 2003). Most importantly, after pathogenic infection, some important antioxi-
dant molecules of non-enzymatic origin such as phenolic contents, glutathione,
ascorbic acid, and lipophilic antioxidants (a-tocopherol and p-carotene) are activated
in plants to mitigate the oxidative stress.

Plant growth-promoting microbes (PGPM) and other beneficial symbiotic
microorganisms, especially bacteria and fungi, have important role to develop an
emerging strategy by inducing plant growth in stress conditions. The strategy may
include root and rhizosphere colonization, altering the metabolites and production of
enzymatic and non-enzymatic plant beneficial compounds (Vessey 2003; Mukherjee
et al. 2019, 2020a).

Till now, a lot of mechanisms are available to overcome the plant disease by
PGPM and fungi-mediated production of lytic enzyme, siderophore, HCN, induction
of defense-related protein, and the production of enzymatic antioxidant in the plant
to alleviate the disease occurrence (Mukherjee et al. 2020b; Waskiewicz et al. 2014;
Das et al. 2020). However, the impact of PGPM on non-enzymatic antioxidant to
manage the disease occurrence and proliferation has not been properly
demonstrated. Hence, in the present article, an effort has been made to describe
updated account of PGPM-induced cellular antioxidant molecules which are of
non-enzymatic origin, especially tocopherols, carotenoids, ascorbic acid,
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glutathione, phenolic compounds, riboflavin, and thiamine with special emphasis to
their disease management potentiality.

13.2 Why Non-enzymatic Antioxidants?

In addition to antioxidants of enzymatic origin, the non-enzymatic biomolecules of
antioxidants, viz. ascorbic acid, tocopherol, carotenoids, glutathione, and phenolic
compounds, are major scavenger of free radicals and maintain the oxidative level in
plant cell (Panda 2012). The antioxidants of non-enzymatic origins have been
engaged in donating the electrons for many enzymatic reactions reducing the level
of hydrogen peroxide and play prominent role in disease management (Jaleel et al.
2009). They act as major driver for rationale plant resistance and subjected to
oxidation—reduction efforts. These non-enzymatic antioxidant components are able
to inhibit cellular lipid peroxidation and regulate membrane stability. Infection of
plant growth-promoting rhizobacteria improves the content of non-enzymatic
antioxidants leading to enhancement in ascorbate peroxidase and superoxide
dismutase activity. Therefore, the association of plant growth-promoting microbes
provides a new horizon to maximize the improvement of crop species and act as a
coordinator for tolerance mechanisms. Brief descriptions of different non-enzymatic
antioxidants are presented in the section below.

13.2.1 Ascorbic Acid

Ascorbic acid is prime regulatory molecule in the eukaryotes potentially involved in
free radical scavenging reactions. Ascorbate can found in either reduced (ascorbic
acid) or oxidized forms (mono- and dehydroascorbic acid). Modulatory effects on
ratio of oxidized and reduced form of ascorbic acid further influence plant resistance
to the oxidative stress conditions (Zechmann 2011). Ascorbate also helps in different
biological processes like photosynthesis, photoprotection, cell wall development,
and plant growth (Wolucka and Van Montagu 2003). Ascorbate has also played
important role in the biosynthesis of some of the key factors in plants like
anthocyanins, ethylene, gibberellins, and hydroxyproline (Mellidou et al. 2012). In
addition to its major function as potent biomolecule, ascorbic acid (AsA) is
recognized as first sequence marker to defense a number of toxic free radicals and
protection of healthy plant from different environmental factors as well as pathogen
attack. Ascorbic acid interacts with the glutathione (GSH), and the AsA-GSH
complex is able to mitigate the stress by enhancement in activity of the nonexpressor
proteins suppressing the pathogenic infection, regulation in transcription, cell wall
rigidity, and some of defense—hormonal signaling pathway. Ascorbic acid helps in
induction of resistance component to protect the plant from pathogens by elicitor-
mediated interactions of some important defense-related components such as
B-aminobutyric acid, methyl ester, jasmonic acid, and extracellular polysaccharides
(Boubakri 2017). Reports on several plant growth-promoting bacteria such as
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Acetobacter, Pseudomonas, Gluconobacter, Rhizobium spp., and B. megaterium are
for conversion of different components such as p-sorbitol, 2-keto-L-gulonic acid, b-
glucose, and L-sorbose to L-ascorbic acid in some of important metabolic cycle
(Bremus et al. 2006) which is directly linked with the plant growth and help in
protection from various stress. Ascorbic acid is the major scavenger of singlet
oxygen, hydroxyl, and oxide ions and helps in regeneration of tocopherol from
tocopheroxyl radical which plays active role in membrane protection. Ascorbic acid
also works as cofactor of violaxanthin de-epoxidase and reduces the excess excita-
tion energy, minimizing the damage occurred by the oxidative process (Smirnoff and
Wheeler 2000). Recent report suggested the incorporation of ascorbic acid in
photosynthetic reactions for reduction of H,O, through major electron carrier and
a great modulator for plant defenses. In AsA-deficient Arabidopsis plants, different
defense genes are activated which specially encode the pathogenesis-related
proteins. Moreover, the infection of plant growth-promoting bacteria has specific
role in the synthesis of salicylic acid exerting systemic acquired resistance in plants
(Pastori et al. 2003; Barth et al. 2004). Higher level of AsA in combination with
glutathione may contribute to alleviation of RNA virus infection in Arabidopsis spp.
(Wang et al. 2011). Recent investigation of Khanna et al. (2019) suggested the
elevation of cellular AsA by infection of plant growth-promoting bacteria with
resultant enhancement of defense in Lycopersicum esculentum against Meloidogyne
incognita infection.

13.2.2 Tocopherols

Tocopherols are lipid-soluble non-enzymatic antioxidants that are only produced by
some photosynthetic organisms including higher plants, algae, and cyanobacteria
(Quadrana et al. 2013). Tocopherol has different group like alpha-, beta-, gamma-,
and delta-tocopherol. Tocopherol - and & are not very much abundant in the plant
species. Among all the tocopherol, a-tocopherol is abundant in different plant and
shows superior biological activity due to three methyl groups in the molecular
stoichiometric structure (Szarka et al. 2012). Tocopherol acts as an antioxidant and
is associated with the diminution of lipid peroxidation in membrane and helps in the
scavenging of ROS (reactive oxygen species) (Munné-Bosch 2005; Kruk and Trebst
2008). Synthesis of tocopherol is regulated by different stress of plant hormones
such as jasmonic acid (JA), salicylic acid (SA), and abscisic acid (AbA) (Szarka et al.
2012). Several reports suggested the synthesis of tocopherol during the unfavorable
environmental stress conditions such as drought, heavy metals, salinity, and high
light intensity (Ledford and Niyogi 2005; Tounekti et al. 2011). Tocopherols have
modulatory effects in quenching of ROS and eliminate the toxic radical species of
polyunsaturated fatty acids (PUFA) leading to termination of lipid peroxidation
(Caretto et al. 2009). Recent study of Caretto et al. (2009) displayed the participation
of tocopherol in the intracellular signaling mechanisms in plants. Wu and Tang
(2004) reported that one molecule of a-tocopherol molecule can neutralize 120 sin-
glet oxygen molecules. It also works in premature termination of recycling of PUFA
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radicals during lipid peroxidation (Hare et al. 1998). Moreover, a-Tocopherols can
able to quench and scavenge different ROS generated through lipid oxidation and
stabilize membranes and increase the signal transduction process in plant (Kruk et al.
2005; Noctor 2006). Fritsche et al. (2017) described the activation of tocopherol
biosynthesis genes in higher plants upon activation of stress. Infection of plant
growth-promoting bacteria has played potent role in increment of cellular tocoph-
erol, and the greater content of tocopherol could be correlated with ascorbate
synthesis and accumulations (Canellas et al. 2019).

13.2.3 Glutathione

Glutathione is an abundantly found nonprotein low-molecular-weight thiol compo-
nent and acts as non-enzymatic antioxidant and crucial metabolites in all living
aerobic organisms (Ramirez et al. 2013; Gullner et al. 2017). Glutathione is mainly
localized in the plant cytosol, mitochondria, endoplasmic reticulum (ER), vacuoles,
chloroplasts, peroxisomes, and the apoplast (Noctor and Foyer 1998). Reports on
antioxidant activity of glutathione by affecting several key mechanisms including
direct scavenging of cytotoxic free radicals such as hydroxyl, singlet oxygen,
hydrogen peroxides, and superoxides have been demonstrated. The prime antioxi-
dant potency of glutathione is completely dependent on modulation of glutathione—
ascorbic acid cycle (Millar et al. 2003). Glutathione mainly occurs in two forms, viz.
oxidized (GSSG) and reduced (GSH). Variation in two forms of glutathione
maintains the redox state and signaling pathway (Foyer and Noctor 2005). Ding
et al. (2009) reported the role of glutathione in oxidative stress management in
tobacco via transgenic line. Hence, both the oxidized and reduced glutathione play
vital role in reactive oxygen species-mediated plant disease management. Mukherjee
et al. (2020c) recently reported the Saccharomyces cerevisiae (yeast)-based plant
growth-promoting microbe with prominent inhibiting potentiality of pathogen
interactions and postharvest disease management. Investigation of Cartieaux et al.
(2003) demonstrated the glutathione S-transferase-mediated changes in RNA tran-
script level of Arabidopsis plants after infection with Pseudomonas thivervalensis
(strain nMLG45) which developed resistant against the virulent pathogen of Pseu-
domonas syringae pv. in Tomato.

13.2.4 Carotenoids

Carotenoids are the pigment compounds which are of common occurrence in both
plants and microorganisms. Plant carotenoids belong to the isoprenoid-derived
compounds, and their synthesis belongs to plastid-mediated 2-C-methyl-p-erythritol
4-phosphate and cytosol-dependent mevalonic acid pathways. More than 600 differ-
ent types of carotenoids are found in nature. Most important functions of the plant
carotenoids are in the photosynthesis, photomorphogenesis and plant growth and
development, plastid biogenesis, flowering, and fruit growth (Wurbs et al. 2007,
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Giuliano et al. 2008). Carotenoids are important for the primary and secondary
metabolisms of plants; it required for photosynthesis and helps in pigment determi-
nation in different crop plants (Botella-Pavia and Rodriguez-Concepcién 2006).
Carotenoid and chlorophyll ratio suggested and indicted the seed tolerance to
different stress factors (Smolikova et al. 2011). The antioxidant property of the
carotenoids arises due to conjugation of double bonds in structure (Mortensen
et al. 2001) to delocalize unpaired electrons and quench the effect of hydroxyl,
peroxyl, singlet oxygen, and superoxide radicals.

13.2.5 Phenolic Components

Among different antioxidants, phenols are one of the important non-enzymatic
antioxidant which help in elimination of radical species and act as metal chelator.
Phenolics, viz. hydroxycinnamate, lignin, ester, tannins, and flavonoids, are the
products of secondary metabolites with well-known antioxidant properties. Signifi-
cant H,O, scavenging activity of peroxidase has also been correlated with reduced
ascorbic acid and phenolics (Schroeter et al. 2002). Alvarez (2000) reported the role
of salicylic acid to induce the phenolic constituents and stress tolerance. The high
antioxidant activity may also due to higher phenolic components and anthocyanin
content. The stable nature of phenoxy radical intermediate can easily terminate the
chain reaction catalyzed by lipid peroxidation and rapid donation of free hydrogen
atom to radicals. Table 13.1 presents different non-enzymatic components having
prominent role in plant defense during various pathogenic infections.

13.2.6 Riboflavin and Thiamine

Riboflavin participates in plant defense mechanisms by neutralizing several toxic
free radicals and maintains the pathogenic infections. Involvement of riboflavin as
antioxidant and antiperoxidation helps in disease management by modulation of
hypersensitive reactions culminating into death of pathogen. Jianling et al. (2002)
demonstrated that the exogenous application of riboflavin helps in plant growth
promotion. Zhang et al. (2009) demonstrated the riboflavin-mediated priming of
NPR-1 (regulator for systemic acquired resistance) and critical maintenance of
cellular burst of H,O, in Arabidopsis. Taheri and Tarighi (2010) reported rice
resistant against the infection of Rhizoctonia solani via riboflavin-dependent modu-
lation in jasmonate and phenylpropanoid pathway. Induction of resistance in soy-
bean plant against charcoal rot disease (causal organism: Macrophomina
phaseolina) by riboflavin and thiamine has been reported by Abdel-Monaim
(2011). Hamada and Jonsson (2013) reported thiamine-mediated alleviation of
aphid (Rhopalosiphum padi) infestation in Hordeum vulgare and Pisum sativum.
Boubakri et al. (2013) illustrated the role of riboflavin to develop resistant in
grapevine (Vitis vinifera) against the infection of Plasmopara viticola by modulation
in defense responses. Mahmoud et al. (2020) reported the induction of riboflavin
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Table 13.1 Some important non-enzymatic components important for plant defense during
pathogenic infections

Non-
enzymatic
components | Test plant Pathogen infection References
Riboflavin Arabidopsis Peronospora parasitica Dong and Beer
thaliana (2000)
Pseudomonas syringae Zhang et al.
(2009)
Alternaria alternata Zhang et al.
(2009)
Nicotiana Tobacco mosaic virus (TMV) Liu et al. (2010)
tabacum
cv. NC89
Oryza sativa Rhizoctonia solani Taheri and
Tarighi (2010)
Chikpea Fusarium oxysporum Saikia et al.
(2006)
Phaseolus mungo | Botrytis cinerea Azami-Sardooei
Solanum et al. (2010)
lycopersicum
Glycine max Macrophomina phaseolina Abdel-Monaim
(2011)
Vitis vinifera Plasmopara viticola Boubakri et al.
(2013)
Thiamine Oryza sativa Xanthomonas oryzae Ahn et al. (2005),
Sheath blight Bahuguna et al.
Lagenaria spp. Colletotrichum lagenarium (2012)
Sphaerotheca fuliginea
Arabidopsis Pseudomonas syringae
thaliana
Nicotiana Pepper mild mottle virus
tabacum
Glycine max Macrophomina phaseolina Abdel-Monaim
(2011)
Barley Aphids Hamada and
Pea Jonsson (2013)
Vitis vinifera Plasmopara viticola Boubakri et al.
(2013)
Ascorbic Arabidopsis Pseudomonas syringae Pastori et al.
acid thaliana pv. maculicola ES4326 and (2003)
(Experimental Peronospora parasitica pv. Noco
plant)
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which has greatly influenced the disease occurrence in tomato plant by Tobacco
mosaic virus (TMV).

13.3 Signaling Mechanism of Non-enzymatic Antioxidants
for Disease Management

Plants are exposed to variety of pathogens which create harsh environment for cell
growth and proliferation. The non-enzymatic antioxidant components easily provide
hydrogen and electrons to scavenge free radicals, thereby reducing the risk of disease
proliferation. Two different pathways of interaction, viz. compatible and incompati-
ble signaling, confer resistance against viral and bacterial infections. The physiolog-
ical responses of stressed plants after pathogen infection significantly changed the
cellular photosynthetic pigments, proteins, carbohydrate, and energy metabolism
pathways leading to alteration in signal transduction (Radwan et al. 2010). Recently,
Sofy et al. (2019) reported the improvement in disease management of cucumber
plants after infection with cucumber mosaic cucumo virus by modulation of
non-enzymatic antioxidants such as AsA, phenols, and glutathione. Different species
of plant growth-promoting rhizobacteria help in promotion of nitrogen fixation,
phosphate solubilization, and production of auxin and cytokinin in infected plants,
a potential prerequisite for effective management of disease (Ryu et al. 2003). It was
reported that systemic acquired resistance (SAR) induced by plant growth-
promoting microbes follows the special pathway of endogenous salicylic acid
production with resultant upregulation of complex sets of genes. Hoffland et al.
(1996) demonstrated the enhancement in non-enzymatic antioxidant status by Pseu-
domonas fluorescence infection having inhibitory effects against fusarium wilt
disease. Ethylene, salicylic acid, and jasmonic acid played a key role in modulation
of cellular phenolic, carotenoids, ascorbic acid, and glutathione level. The applica-
tion of mixture of plant growth-promoting microbes can develop systemic resistance
against anthracnose disease in cucumber (Wei et al. 1996). Mixed consortia of
Pseudomonas aeruginosa and Trichoderma harzianum effectively controlled the
Sclerotinia rot of cauliflower by inducing the total phenolic constituents and antiox-
idant activity (Ram et al. 2019). Ali et al. (2006) reported methyl jasmonate and
salicylic acid-mediated induction of cellular ascorbate and glutathione in Panax
ginseng, which has displayed active participation for a number of stress-related
disease management. In agreement with the earlier study, both the methyl ascorbate
and glutathione have a prominent role in sequestration of H,O, toxicity and lipid
hydroperoxides such as malondialdehyde (MDA). Phenolic components have
regulatory role as intraspecific signaling for induction of PGPM-mediated pathogen-
esis-related protein formation in plants with concomitant decrement of disease
proliferation (Compant et al. 2005). Figure 13.1 represents signaling pathway for
modulation of non-enzymatic antioxidants by plant growth-promoting microbe
(PGPM).
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Fig. 13.1 Possible signaling pathway for modulation of non-enzymatic antioxidants by plant
growth-promoting microbe (PGPM)

13.4 Conclusion

Biotic factors especially the pathogenic infection and occurrence of plant disease are
a burning issue for declining in food crops around the world. Exposure of variable
stress during pathogenic infection leads to the production of superoxide radicals
(0,"7), hydroxyl ("OH), reactive oxygen species (ROS), and peroxyl (ROO") in
plants. To prevent the negative effect of toxic free radical components and to ensure
plant survivability, non-enzymatic antioxidants in plant cell possess a prominent role
with immense significance. Among all the non-enzymatic molecules, tocopherols,
carotenoids, glutathione, ascorbic acid, and phenolic constituents are described as
the most important and well-studied components. Beside the genomic, proteomic,
and transcriptomic approaches, the application of plant growth-promoting microbe
(PGPM) has added a new dimension in disease management with concurrent role in
modulation of non-enzymatic antioxidants in cell. A very little information is
available in the aspect of non-enzymatic antioxidant production to cope the patho-
genic infection, but the production of crops through application of PGPM is well
established.
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Abstract

Antioxidants are the compounds which have the ability to appease active oxygen
species (AOS) and protect the plant tissues from destruction without converting
their own forms. The antioxidant enzymes catalyse the process of the deformation
of the toxic ions. Antioxidant enzymes like catalase (CAT), superoxide dismutase
(SOD), ascorbate peroxidase (APX), glutathione (GSH), glutathione reductase
(GR) and glutathione S-transferase are produced in several stress conditions and
act as defence molecules to combat the stress. SOD converts superoxide
molecules into hydrogen peroxide which directly inhibits penetration of the
pathogen invasion at the epidermis. These antioxidants are known to induce the
systemic acquired resistance (SAR) to resist the invasion of the pathogen. They
are also involved in signal transduction and in turn limit the pathogen infection.
Antioxidants are produced during both biotic and abiotic stresses which may
trigger the hypersensitive response (HR) in the host tissue as defence against the
adverse condition. The increase in the antioxidant level in response to the
pathogen invasion subsequently may result in increased tolerance to the develop-
ment of necrosis.
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14.1 Introduction

The term antioxidant can be referred to as a compound which is capable of
quenching Active Oxygen Species (AOS) without converting itself to a destructive
radical and the antioxidant enzymes either catalyse the reactions or are directly
involved in processing of AOS (Nishikimi and Yagi 1996). Phenolics are the
phytochemicals, which are produced in plants in response to several biotic or abiotic
stresses (Briskin 2000). The extent of accumulation of the phenolics depends on the
host and disease reaction. Phenolics are accumulated extensively in case of resistant
varieties after pathogen’s attack which proves itself as an yardstick for resistance
(Chérif et al. 1992).

Various microbial interactions in the soil are the deciding factors for suppression
of soilborne diseases. Interactions like antibiosis and mycoparasitism have direct
deleterious effect on the pathogens, and some have indirect effect on microbial
populations including pathogens, when quite active nonpathogenic microorganisms
intensively exploit trophic or spatial resources. Soilborne pathogens can adversely
affect the plant system either by directly penetrating the plant and causing diseases
like rot, wilt and damping-off or by infecting the aerial parts through air or water
splashes.

14.2 Antioxidants in Resistance and Signalling

Antioxidants are the compounds which have the ability to appease active oxygen
species (AOS) and protect the plant tissues from destruction without converting their
own forms. Certain antioxidant enzymes are Superoxide dismutase (SOD), Ascor-
bate  peroxidase  (APX),  Monodehydroascorbate  reductase = (MBR),
Dehydroascorbate reductase, Glutathione reductase, Catalase, Glutathione peroxi-
dase, Guaiacol-type peroxidases and Glutathione S-transferases. According to
Bowler et al. (1992), SOD rapidly converts the superoxide produced in the different
compartments of the plant cells into Hydrogen peroxide, whereas Catalase (CAT)
are involved in conversion H,O, to water and molecular oxygen (Willekens et al.
1995). APX uses two molecules of ascorbate to reduce hydrogen peroxide to water
along with the generation of two molecules of monodehydroascorbate. It is also
reported that transgenic tobacco plants with elevated levels of manganese superoxide
dismutase in their chloroplasts exhibited enhanced tolerance to parquet (Tsang et al.
1991). Tseng and Tsai (2007) showed that SOD and CAT inoculated plants
expressing both SOD and APX or GR are able to rapidly scavenge O, and H,0O,
at the site of generation, as well as prevent the formation of hydroxyl radicals, the
most toxic ROS, prior to their interaction with target molecules in transgenic
Chinese cabbage plants expressing both Cu/Zn SOD and/or CAT in chloroplasts
under the control of the rbcS promoter indicating enhanced tolerance to oxidative
stress induced by SO, and high salt levels. Mellersh et al. (2002) suggested the role
for H,0, in directly inhibiting pathogen penetration at the epidermis during symp-
tomless (type I) nonhost resistance to powdery mildews in cowpea and cucurbits
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Table 14.1 List of antioxidants and their site of cellular localization

S1. Cellular Nonenzymatic | Cellular
no. | Enzymatic antioxidant localization antioxidant localization
1. Superoxide dismutase Chloroplasts, Vitamin E Membranes
(SOD) cytosol, (a-tocopherols)
mitochondria,
peroxisomes,
apoplasts
2. Dehydroascorbate Glutathione Chloroplasts,
reductase (DHAR) (GSH) cytosol,
mitochondria,
peroxisomes,
apoplast
3. Glutathione peroxidase Cytosol Carotenoids
(GPX) (Car)
4. Catalase (CAT) Peroxisomes Flavonoids
5. Glutathione S- Nonprotein
transferase (GST) amino acids
6. Ascorbate peroxidase Chloroplasts, Ascorbic acid Chloroplasts,
(APX) cytosol, (AsA) cytosol,
mitochondria, mitochondria,
peroxisomes, peroxisomes,
apoplasts apoplast
7. Guaiacol peroxidase Cell wall, vacuole,
(GOPX) cytosol, and
extracellular space
8. Glutathione reductase Mitochondria,
(GR) cytoplasm

9. Monodehydroascorbate | Cytosol,
reductase (MDHAR) chloroplast

against Vigna unguiculata and Erysiphe cichoracearum, respectively. Sharma et al.
(2018), found a strong negative correlation between defence components such as
ROS, MDA, SOD, SA and the progression of spot blotch, which implies that these
signalling pathways are important regulators in plant resistance against fungal
infection (Table 14.1).

SOD gives the first line of defence for plants and plays a crucial role in plant
survival under stress, making them stress-tolerant (Ahmad et al. 2010), and is
involved in dismutation of O, to H,O, which is required to activate cell death.

Catalase dismutates hydrogen peroxide produced by peroxisomes. It has been
seen that the gene responsible for encoding CAT makes the plant resistant to various
stresses. Ascorbate peroxidase (APX) plays a great role in foraging ROS and
defending cells. It scavenges hydrogen peroxide in ascorbate glutathione
(ASH/GSH) cycle.

GR (flavoprotein), GST and GPX are involved in defence against ROS in plants
and involved in conjugation reaction between the substrates of xenobiotics and
GSH. GST in the plant body is to detoxify those compounds which are involved
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in damaging DNA, RNA or proteins. GSH acts as a reducing agent and involved in
reduction of dehydroascorbate (DHA) into ascorbate (AsA) which is catalysed by
the enzyme dehydroascorbate reductase (Foyer and Mullineaux 1998).

14.3 Plant-Microbe Interaction
14.3.1 Soilborne Fungi Impact and Severity

Soilborne pathogens cause significant economic losses in agricultural production all
over the world. These species can survive for many years in the absence of a host
plant by forming persistent structures such as microsclerotia, sclerotia,
chlamydospores or oospores. Consequently, soilborne diseases are particularly
difficult to predict, detect, diagnose and successfully control. Plant diseases caused
by Rhizoctonia spp., Fusarium spp., Verticillium spp., Sclerotinia spp., Pythium spp.
and Phytophthora spp. affect a number of important crops, including wheat, cotton,
vegetables and temperate fruits. The symptoms of soilborne disease, caused by
different pathogens, are very similar. They include root rot, root blackening, wilt,
yellowing, stunting or seedling damping-off, bark cracking and twig or branch
dieback. Consequently, these pathogens are particularly difficult to predict, detect,
diagnose and control (i\strém and Gerhardson 1988).

Soilborne pathogens can penetrate the host plant directly from the soil, which
may result into characteristic diseases like seed rot, damping-off, root rot or wilt
diseases, although some can also infect aerial plant parts by means of airborne or
waterborne spores. The soilborne fungi survive in soil by producing resistant
propagative structures that allow them to survive in the soil. These structures can
persist in soil and are protected by thick walls against the influence of various
adverse elements like saturation and desiccation, freezing and thawing, microbial
predation and other destructive elements. The rigid structures can be both sexual and
asexual in nature. Most of the pathogens produce resistant structures which are
asexual in nature like chlamydospores, hyphal aggregates, rigid conidia, sclerotia
and rhizomorph. Pathogens like Pythium produce sexual structures like thick-walled
sexual oospores. A persistent structure with the hyphal characteristics of radial
growth and physiological continuity, such as a rhizomorph, will extend through
the soil, increasing the territory of one genotype for potentially many years. These
structures which are small, individually separate propagules like the chlamydospores
and sclerotia, occupy small, differentiated territories and can be rearranged spatially
when soil is cultivated or irrigated, but may remain stationary in uncultivated native
soils. Excess moisture and soil pH act as drive force for the growth of the soilborne
pathogens like Phytophthora, Rhizoctonia, Fusarium, Verticillium and Armillaria.
Phytophthora causes late blight, whereas Armillaria and Rhizoctonia cause root;
Verticillium and Fusarium are known to cause wilt. These pathogens are prevalent in
the Northwest pacific. The life cycles of various soilborne pathogens may vary
significantly at different stages of their growth. So, it is necessary to mark the
conducive environmental factors required for their growth and development. This
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Soil borne Fungi (survive as microsclerotia,
sclerotia, chlamydospores, oospores)

Direct penetration into host
plant from soil

Host Plant Infection of aerial parts
through air and water

REACTIVE OXYGEN SPECIES
ANTIOXIDANTS
HYPERSENSITIVE RESPONSE
SYSTEMIC ACQUIRED RESISTANCE

Fig. 14.1 Response of host plant against soilborne fungi

helps us in arranging for various management measures to overcome the
deteriorating effect of the pathogens on the soil as well as the plants. Hence, the
weather and soil conditions can be manipulated as preventive measures and destroy
the rigid pathogenic structures.

Legume crops are more specifically susceptible to invasion by different fungal
pathogens like Fusarium oxysporum f. sp. ciceri, Ascochyta rabiei, Botrytis cinerea,
Rhizoctonia solani and Sclerotinia sclerotiorum (Mazur et al. 2004). Among these
diseases, losses due to Fusarium wilt alone range around 10-15% each year which
makes it alarming. In the years of severe epidemics, crop losses have even gone as
high as 60-70% (Chand and Khirbat 2009) (Fig. 14.1).

14.3.2 Production of Antioxidant as a Result of Pathogenesis by
Soilborne Fungi

Fountain et al. (2016), observed that different isolates of Aspergillus flavus showed
differences in oxidative stress tolerance which could be correlated with their afla-
toxin production capabilities. They also found coexpression of Aflatoxin biosyn-
thetic genes and antioxidant enzyme genes with fungal biomass under stress. This
led to the conclusion that secondary metabolites might be produced as part of
coordinated oxidative stress responses in A. flavus along with antioxidant enzyme
gene expression and developmental regulation.

Several studies have also been performed stretching on the importance the role of
antioxidants on the growth of Aspergillus and the production of aflatoxin. Phenolic
compounds like caffeic acid and tannic acid which are derived from tree nuts have
been found to inhibit aflatoxin production in A. flavus (Mahoney et al. 2010). Other
synthetic phenolic compounds such as butylated hydroxyanisole (BHA) and
propylparaben (PP) have also been proved to have a similar effect on the pathogen



310 S. S. Mahapatra

growth and pathogenicity in a definite medium pH and water activity (Nesci et al.
2003; Passone et al. 2005). Treatment with BHA has also been seen to inhibit
sclerotial differentiation in A. flavus. Antioxidant enzyme activity and capacity in
host plant tissue usually correlates with reduced A. flavus growth and aflatoxin
production in buckwheat (Chitarrini et al. 2014).

Recent studies have shown that reactive oxygen species (ROS) and their reactive
products like peroxidized lipids such as oxylipins are a requisite for the production of
aflatoxin which can lead to stimulation aflatoxin production when applied in vitro
(Jayashree and Subramanyam 2000).

According to Palomares-Rius et al. (2011), several proteins were identified in
chickpea genotypes as oxidoreductase which were produced in response to the
invading pathogen causing Ascochyta blight. These enzymes basically are involved
in the reaction to stressful conditions. They either act as catalysts in hydroxylation
steps in the biosynthesis of antimicrobial and antioxidant secondary metabolites
such as isoflavonoid phytoalexins in chickpeas (as is the case for cytochromes P450,
acting as antioxidant enzymes (as for QOR and NDH, or assist in the folding of
defence proteins. Production of these enzymes is basically modulated by the host
signalling system which imparts resistance against the pathogen invasion.

According to Saad et al. (2014), antioxidants like salicylic acid, citric acid,
benzoic acid and ascorbic acid when treated on Alternaria solani and Fusarium
solani in combination with a group of bio fungicides in vitro condition showed
inhibitory effect of the growth of the fungi (Table 14.2).

14.4 Homeostasis of Production of Antioxidants
and Regulation of ROS Levels

Various injuries on plant activate the antioxidant system of the host plant as a
response to the adverse situation. This includes production of reactive oxygen
species which are associated with the oxidative damage at the cellular level. Plants
produce ROIs as signalling molecules in order to control adverse processes like
programmed cell death, abiotic stress responses, pathogen defence and systemic
signalling. These signalling systems are in turn the warriors produced in the plant
system against the damage caused by the invasion foreign elements precisely the
pathogens to protect itself at both cellular and subcellular levels. These ROS can lead
to lip peroxidation which further can cause localized damage to the membrane,
inactivate the enzyme system and cause membrane lipid peroxidation and disruption
of DNA strands. This nature of the antioxidant system may sometime lead to adverse
effect on the cellular components and, however, have significant role in imparting
resistance against the pathogens. The plant system has advantageously ROS scav-
enging system to neutralize the adverse implications caused on the cellular
components of the plant. The active oxygen species have a great role to play in the
plant defence system.
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Table 14.2 List of soilborne fungi and their hosts causing changes in the antioxidant-level
imparting defence

Pathogen Crop Antioxidant(s) Response Reference
Fusarium sp. Flax Enhanced level of Protection through Czuj et al.
glutathione due to resistance (2009)

increase in methionine
and cysteine

biosynthesis
Botrytis Tomato Decrease in GSH Facilitation of Kuzniak and
cinerea content penetration of Sktodowska
necrotrophic (1999)
phytopathogens and
spread of necrotic
lesions
Phytophthora | Betelvine | Enhanced activities of Increased resistance Diallo et al.
nicotianae POX, phenylalanine against the pathogen (2011)
ammonia-lyase (PAL),
polyphenol oxidase
(PPO), and
lipoxygenase (LOX)
(in response to
Rhizobacterial strain)
Sclerotinia Pea PAL, POX, PPO and Increased tolerance Jain et al.
sclerotiorum SOD against the fungus in (2012)

response to the

microbial consortium
Sclerotium Chickpea | Increased activity of Increased tolerance Singh et al.
rolfsii SOD and POX against the disease- (2013)

causing microbes

when treated with

consortium of

beneficial microbes

ROS act as toxic component against the soilborne pathogens directly penetrating
into the host system. They lead to localized cell death and result into hypersensitive
response (HR) which protects the host tissue from further spread of the infection or
activate salicylic acid components for systemic acquired resistance (SAR). These
elements try to activate the cell wall components to suppress the pathogen invasion
by cross-linking the bonds of lignin and protein. Active oxygen species indirectly
induce the plant defence by activation and modulation of plant resistance genes by
acting as secondary messengers in signalling system.

ROS, like superoxide and H,0,, are produced by plant cells as secondary
messengers in many processes associated with plant growth and development
(Foreman et al. 2003). Plant cells produce ROS as second messengers in many
processes associated with plant growth and development (Foreman et al. 2003).
Doke et al. (1983), stated that bursts of superoxide at the plasma membrane are one
of the major ways in which plants transmit information concerning changes in the
environment.
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Although ROS deeply induce plant defence against various stress conditions, but
excessive production, these elements may have deleterious effect on the plant
system. Excessive enhancement in the ROS level can be damaging by inducing
oxidative stress which leads to cell death, so the concentration needs to be
neutralized to keep it under control. This can be maintained by appropriate antioxi-
dant production to make the balance optimal. They majorly act as effective ROS
scavengers. Chloroplasts, mitochondria and peroxisomes play key marked role in
imparting defence to plants against ROS by the producing of several antioxidants
both enzymatic and nonenzymatic to scavenge the excess ROS (Gill and
Tuteja 2010).

14.5 Elicitation of Antioxidants by Rhizobium

Rhizobium is known to play a great role in the control of soilborne plant pathogenic
fungi such as Fusarium, Rhizoctonia, Sclerotium and Macrophomina. Rhizobia have
antagonistic effect on the fungal growth and thus inhibit and limit the pathogenesis
process. Inoculation of Rhizobia tends to produce several pathogen inhibiting
elements like hydrocyanic acid (HCN), antibiotics, phenolics, antioxidants, antioxi-
dant producing enzymes and siderophores. These factors cumulatively lead to the
activation of defence-related genes and in turn induce systemic resistance and impart
resistance against the invading pathogens. Rhizobial strains are inoculated in plants
through seed bacterization or seed priming which results in elicitation and accumu-
lation of phenolic compounds, isoflavonoid phytoalexins and activation of enzymes
like L-phenylalanine ammonia-lyase, chalcone synthase, peroxidase and polyphenol
oxidase which are involved in phenylpropanoid and isoflavonoid pathways and
enhance the defence mechanism of the plant against pathogenic attack (Dutta et al.
2008). Rhizobia treatment basically restricts soilborne pathogenic infection through
activation of antioxidant-dependent signalling pathways. According to Arfaoui et al.
(2007), treatment of chickpea seeds with Rhizobium isolate (PchDMS) before
sowing with resulted in significant increase in the levels of peroxidases, total
phenolics, polyphenol oxidases, isoflavonoids in general and formononetin and
biochanin in specific before the infection of Fusarium oxysporum and reported
induction of resistance against the fungus.

14.6 Conclusion

Soilborne pathogens being a major group of loss causing pathogens need to be
managed adequately to diminish the loss. The host uses its own metabolism by
producing antioxidants in order to fight against the invading pathogen. So, identifi-
cation of resistant cultivar is necessary for safeguard the crop against the economic
loss. The cultivars can be categorized on the basis of the activity of the antioxidants.
Plant defence can also be manipulated by using organic fertilizers which enhance the
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level of antioxidants in the host system that in turn make the plant resistant to the
disease.
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Abstract

Rapid increase in the global population is directly responsible for the increase in
the overall food requirement worldwide. As it stands a report by the Food and
Agriculture Organization (of the UN) states that in view of the remarkable
development that the Food industry has undergone, the rate of food production
will continue to exceed the rate of increase in population. However, the rate of
increase in food production is expected to decline from 2.2% per annum to 1.5%.
The report also highlights the role of livestock and nonagricultural sources of
food in its estimates. Inevitably, such a growth will affect the environment and
cause severe damage to it. To ensure that the rate of production of food keeps
abreast of the increase in population, the agricultural sector will have to rely on
insecticides, pesticides, herbicides, fertilizers, and other manmade substances
which have distressing effects on the environment.

Keeping the facts mentioned above in mind, researchers have turned their
attention to nature and any alternatives it may provide. Plant Growth-Promoting
Microbes (PGPMs) are an interesting class of organisms that could prove useful
in enhancing rate of production of crops. PGPMs include a variety of fungi,
bacteria, and other microbes. These organisms are able to enhance plant growth
by inducing stress tolerance, improving nutrient amassing properties, enhancing
the antioxidant systems, inducing resistance to a variety of diseases, and much
more. Interestingly, there are several strains of microbes that naturally form
symbiotic associations with several plants and aid in their growth and develop-
ment. The current challenge is to find a way to augment the natural system and
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commercialize it for global use. The review article will cover a range of topics
focusing on the importance of antioxidants in such Plant—-Microbe interactions.

Keywords

Agricultural sources - Disease resistance - Fertilizers - Plant-microbe
interactions - Stress tolerance

15.1 Introduction

Food plays a pivotal role in the development of the human race. It is the fuel for our
bodies and is an absolute necessity for progress. One would think that the rapid
increase in the populations worldwide would put tremendous pressure on the Food
Industry. While it is true that we may be struggling to meet food requirements,
reports show that the current rate of increase in food production actually exceeds the
rate of increase in population. However, expecting the current scenario to continue is
folly. Although synthetic additives and supplements help meet production demands,
they do so at enormous risk to the environment.

Agrochemicals contaminate groundwater sources, are blown away from fields
onto other plants causing damage, bioaccumulated within nontarget organisms
causing health issues, remain in the biosphere to produce harmful derivatives and
by-products, and are generally very resistant to degradation. Repeated and
unchecked usages of fertilizers and other agrochemicals impact the soil quality
and are directly responsible for Soil Pollution. Subsequently, the leftover chemicals
leach into the soil and find their way to groundwater sources which contaminate
them and are responsible for Water Pollution. Runoff from farm lands may reach the
atmosphere where certain compounds interact with water vapor to form Acid Rains
which severely damage life and property.

The presence of various chemical compounds in the air, water, soil, and food we
consume is particularly troubling. They may cause diseases, deformations, or other
medical conditions due to their accumulation and biomagnification. Chemical
runoffs not just affect human life. Beneficial microbes present in the soil, nontarget
plants, animals, and insects are all affected and impaired by it. These and other
equally disturbing reasons make Agrochemicals and Commercial farming
techniques an unsustainable method of meeting our requirements (Naik et al. 2019).

On the other hand, leaving crops to grow on their own without any external aid is
unwise as well. Most crop plants are susceptible to a variety of pathogens and insects
that hamper production. Additionally, stress caused by salinity, presence of heavy
metals, water deficiency, and lack of appropriate nutrients highlights the need
external intervention. Plant Growth-Promoting Microbes are a suitable solution to
this problem. Not only will these organisms aid the growth of crops in different
ways, but also they do so in a natural and sustainable manner. PGPMs are capable of
enhancing plant stress tolerance, increasing nutrient acquisition and uptake rates,
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activating additional defense systems against pathogens and diseases, and inducing
photosynthesis.

15.2 Plant Growth-Promoting Microbes

PGPMs are classically defined as a group of organism, fungi, bacteria, and
actinomycetes that induce or promote the growth and development of plants. They
do so by performing one or more activities which have been briefly mentioned in the
following section.

Microbes which are capable of solubilizing phosphorus and making it available to
crop plants are quite important as Indian Soils show a marked lack of Phosphorus.
Phosphate Solubilizing Microbes (PSMs) are predominantly part of the Pseudomo-
nas and Bacillus species in the case of bacteria and Aspergillus and Penicillium in
the case of fungi. Additionally, several other bacteria, fungi, actinomycetes, and
algae have exhibited potential Phosphate Solubilizing activity. Interestingly enough,
Actinomycetes that exhibit Phosphate solubilization are observed to have the ability
to survive radical environments making them better suited for crops on arid and
frigid agriculture (Sharma et al. 2013).

Just as stress factors affect us, drought, salinity, excessive heat or cold, water
logging, and other external factors all affect plant growth development, usually in an
adverse manner. Drought conditions create an imbalance in the rate of water uptake
and evaporation in plants. This leads to decreased water availability for the plants
which causes increased competition among them, thereby decreasing overall yield.
Plants require optimal amounts of light, water, and temperature for profitable
growth. When these factors fluctuate beyond a certain range plant metabolism,
photosynthesis, flowering, and fruit development are all hampered. Excessive soil
salinity also has similar adverse effects on plant growth. Other than a small percent
of the total plant population, most plants cannot grow well in the excessive presence
of salt and usually wilt and die under such conditions (Fig. 15.1).

15.3 Benefits of Plant Growth-Promoting Microbes (PGPMs)

On a basic level, the role of PGPMs in plant growth and development can be divided
into direct and indirect effects. Direct effects comprise mechanisms that physically
support plant growth such as atmospheric Nitrogen fixation into the soil, solubiliza-
tion of Phosphorus minerals, inducing the increased production of plant growth
hormones, secondary metabolites and enzymes required for optimal growth, and
increasing tolerance to biotic and abiotic stress factors, thereby making the crops
more tolerant, on the other hand indirect mechanisms by which PGPMs benefit
plants are mainly through prevention of pathogenic diseases by eliminating the
harmful microbes and activating plant defense systems to help ward of diseases
(Kumari et al. 2019).
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Fig. 15.1 Plant-microbe interaction

The different Direct and Indirect Mechanisms via which PGPM promotes plant
growth and productivity are discussed below.

15.3.1 Abiotic Stress Tolerance

Although it is possible to control and regulate most physical parameters to ensure
optimal crop productivity, variations could increase the vulnerability of crops to
pathogenic attacks. This is where PGPMs could step in as they are more than capable
of preventing pathogenic attacks, while bolstering plant growth in adverse
conditions.

15.3.1.1 Drought
A study conducted by Marulanda et al. (2009) showed that Pseudomonas putida,
Pseudomonas sp., and Bacillus megaterium were all able to enhance plant growth
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under conditions of drought. They do so by increasing the production of Indole-3-
Acetic Acid (IAA) and accumulating Proline. The paper theorizes that the increased
production of IAA could be responsible for the enhancement in root growth which
helps in increasing the water absorption and retention capacity, thereby reducing the
severity of drought conditions. PGPM can also step in during pathogenic attacks and
provide protection against them. According to a study conducted by Shoebtiz et al.
(2009), certain microbes isolated from the rhizosphere of Lolium perenne were
shown to possess noticeable biocontrol properties. Additionally, the isolate was
shown to bolster growth as the fresh root weight of samples inoculated with the
isolate was shown to have increased by 50%. The isolate also promoted the solubili-
zation of the phosphorus present in the mineral form.

15.3.1.2 Salinity

Among the different abiotic stress factors which hamper crop production, salinity of
the soil caused by the presence of excessive ions of Sodium, Calcium, Chloride, etc.,
is one of the most concerning. A large percent of the agricultural lands worldwide,
20%, are excessively saline. Additionally, these saline lands are increasing on a
global scale at a rate of 10% per year. Such patches of land repress plant growth
resulting in suboptimal yields (Shrivastava and Kumar 2015). Soil salinity causes
ion toxicity in the plants, reduces the availability of essential nutrients and minerals,
induces osmotic and oxidative stress on the crops, reduces water absorption and
photosynthetic ability, etc. Excessive accumulation of the different ions may even
lead to cellular dysfunction and death. Different strategies already exist to combat
the problem known as soil salinity in crops. One can reduce the salt content of the
soil by leaching it out, using better irrigation practices which do not contribute to soil
salinity, using salt-tolerant plants, etc. However, these solutions are restricted in their
availability and are not very economical in financial terms. PGPMs are a cost-
effective and efficient solution to this problem. They have various beneficial effects
which have been mentioned above and can also help in controlling the problems
caused by salinity (Dodd and Perez-Alfocea 2012). While the term ISR is used to
denote the activation of plant defense systems against pathogens by beneficial
microbes, IST or Induced Systemic Tolerance was the term coined to refer to the
tolerance induced by PGPM. PGPMs induce a range of interlinked effects that
collectively reduce the impact of salinity. They may assist in plant-water uptake
and retention by accumulating osmolytes in the roots of the plant, alter ion trans-
porter expression to reduce the uptake of ions like Na* and Cl, increase nutrient
uptake by upregulating the root transporters, prevent water loss, alter phytohormone
production, etc.

15.3.1.3 Heavy Metals

The rapid industrial expansion worldwide has also caused a rapid increase in the
amount of pollutants being dumped into our environment. Among these, heavy
metals pose a significant risk to all living beings. Although these substances are
present in the earth’s crust naturally, accumulation of these compounds via human
activities may have serious implications. Certain heavy metals are required by plants
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in very low doses. An increase in the concentration of these substances is extremely
damaging living organisms as they break down internal systems and cause poison-
ing. Oxidative stress in plants, caused by excessive levels of the same, can cause
cellular destruction and ultimately death (Singh et al. 2011; Tchounwou et al. 2012).
Several types of PGPMs are capable of enabling plant growth in soils with high
heavy metal concentrations. Various mechanisms exist for the same, such as pro-
duction of enzymes that degrade and breakdown the heavy metals, effluxing the
compounds, promoting the production of plant growth promoters, phytoremediation
using suitable microbes, and metal complexation. Phytoremediation refers to the
process of removing or degrading contaminants from the environment by using
living organisms like plants and microbes. Reducing heavy metal concentration in
the soil falls neatly into this category, and several studies have been carried out to
identify potential Bioremediation agents. The phytoremediation effects of a few
different bacterial strains were explored in a study conducted by Vigliotta et al.
(2016). The report confirmed that bacterial strains belonging to Bacillus,
Lysinibacillus, and Pseudomonas were obtained in the rhizosphere of maize plants
grown on heavy metal contaminated soil, thereby confirming their tolerance toward
them. The study also reaffirmed the claim that PGPMs are capable of mitigating the
stress caused by heavy metal pollution. Accumulation of the compounds within the
microbes is another commonly observed approach in PGPM to reduce heavy metal
stress. Thiobacillus thiooxidans, Pseudomonas putida, Glomus fasciculatum, and
Pseudomonas putida are few microbes capable of this (Mani et al. 2016).

A more comprehensive study by Zhang et al. (2015) highlights the various types
of microbes involved the remediation process. Siderophore production is another
key process by which heavy metal induces stress can be mitigated. These are small
organic compounds that are capable of binding to and transporting iron which are
secreted by various microorganisms. Bacteria that are capable of producing
Siderophores are sometimes termed as Siderophore-producing Bacteria (SPB).
Their ability to chelate to metallic compounds does not stop at Iron. Siderophores
have been observed to chelate to heavy metals such as AI**, Zn?*, and Cd**. Zloch
et al. (2016) showed in their report that bacterial strains belonging to Streptomyces
showed efficient Siderophore synthesis. The study also suggests that these
organisms are capable of increasing the production of required Siderophores under
the influence of heavy metals. Increased Cd** levels were shown to be responsible
for the enhance Siderophore production by the different Streptomyces strains used
for the study.

15.3.1.4 Temperature

Fluctuations in the temperature are a common weather phenomenon. Over the past
few decades, we have observed an increase in the global temperature. It does not end
there; many researchers speculate that human activities will continue to cause such
noticeable temperature changes. The effects of these changes can be seen all around
us, in the melting of the Polar glaciers, and the record high temperatures experienced
worldwide. Living organisms, especially plants, are also impacted by such changes.
As the temperature fluctuates, different plant functions like transpiration and
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photosynthesis are affected. Different plant components like enzymes and organelles
are also influenced by such changes resulting in stunted growth and development.
The impact of high-temperature conditions is directly observed on the final yields of
the crops. This is due to the reduction in the reproductive efficiency of the crop plants
(Alam et al. 2017). The same is true for lower temperature conditions. Most living
organisms, crop plants included, are only able to survive in a narrow optimal
temperature range. One can reduce the impact of extreme weather on crop plants
by inoculating them with resistant PGPM. Adding thermotolerant microbes with
plant growth-promoting properties is a cheap and effective means to combat the
same. In a study conducted by Meena et al. (2015), four PGPR strains were
successfully isolated from the root nodules of pea plants. All the four strains were
shown to tolerate low-temperature conditions while also promoting plant growth by
solubilizing phosphate and producing TAA.

15.3.2 Biotic Stress Tolerance

Plant growth and development is not affected just by abiotic factors. Biotic factors,
namely the different microbes, plants, insects, and animals that interact with crops,
also play a deciding role in their growth. Even in nature, complex webs of interaction
exist among various plants, insects, microbes, and animals. These ‘webs’ are mostly
beneficial and are responsible for promoting overall growth and are essential for
survival in many cases. Such symbiotic relationships can be utilized in agriculture to
enhance crop production and yields. Although some plants are able to resist infection
against certain pathogenic microbes, not all crops can display such defense
mechanisms and may need outside assistance (Table 15.1).

15.3.3 Promotion of Growth

It is also possible to create a consortium of different microbes that enhance plant
growth and development. Studies conducted by Sivasakthi et al. (2014) and Hayat
et al. (2010) outline the basic benefits that PGPMs provide to agricultural crops in
lieu of synthetic additives. Not only do the microbes enhance plant growth by
stimulating production of various substances and increasing the availability of
nutrients, but also they avert pathogenic infections either by eliminating the
microbes themselves or by activating plant systems that eradicate them. Naik et al.
(2019) use the term EM (effective microbes) to refer to microbes that can increase
yields and be beneficial for agricultural use. These effective microbes can be
conveniently classified into Phototrophic Bacteria, Lactic Acid Bacteria, Fermenta-
tive Fungi, and Actinomycetes. A mixture of microbes falling into these categories
may be applied to fields to bolster plant growth and development. The various
microbes falling into the different categories mentioned above all exhibit some
advantageous trait like suppressing pathogen growth, mineral solubilization,
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Table 15.1 Stress tolerance mediated by PGPM

S. no.
1

11

Microorganism

Pseudomonas
putida MTCC5279

Azospirillum
brasilense sp. 245

Thermomyces
lanuginosus

Hartmannibacter
diazotrophicus E19

Piriformospora
indica

Trichoderma spp.
582PDA4

Acinetobacter spp.
and Pseudomonas

sp-

Azospirillum

Thiobacillus
thiooxidans and
Pseudomonas
putida
Claroideoglomus
claroideum and
Funneliformis
mosseae
Pseudomonas
brassicacearum
and Rhizobium
leguminosarum

Crop
Cicer
arietinum L.

Arabidopsis

Cucumber
plant

Barley

Barley

Wheat

Barley and
Oats

Lettuce
seeds
Gladiolus
grandiflorus

L.

Marigold

Brassica
Jjuncea
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Function

Inducing the activation of
stress-response genes, ROS
defense systems, etc.

Decreased stomatal activity
which helps in preserving
water levels and accumulation
of proline and other osmolytes

Maintains photosystem II
activity under heat stress and
reduced rate of transpiration,
and accumulation of various
metabolites that alleviate heat
stress

Mediates salinity stress via
ACC deaminase activity,
enhanced root and shoot
production, etc.

Increased tolerance to root
diseases and salt stress and
enhanced biomass production
under saline conditions as
compared to untreated plants
and greater antioxidants
activity

Increased plant growth under
heavy metal and saline
conditions, expressed ACC
deaminase activity, etc.

ACC deaminase activity
lowered ethylene levels and
production of hormones to
enhance plant growth
Enhanced biomass production
and greater antioxidant activity
under saline conditions
Enhance heavy metal tolerance
by accumulating Cd and Pb
and promote overall plant
growth

Heavy metal tolerance by
enhancing antioxidant activity
and accumulation of
metabolites for stability
Heavy metal tolerance by
phytoremediation, heavy metal
chelation, etc.

Reference

Tiwari et al.
(2016)

Cohen et al.
(2015)

Ali et al.
(2018)

Suarez et al.
(2015)

Waller et al.
(2005)

Ripa et al.
(2019)

Chang et al.
(2014)

Fasciglione
et al. (2015)

Mani et al.
(2016)

Hristozkova
et al. (2016)

Adedrian
et al. (2015)
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enhancing nutrient uptake, activating plant defense systems, and promoting phyto-
hormone production.

15.3.4 Nitrogen Fixation

Ready availability of Nitrogen is an important consideration for achieving maximum
crop productivity. Nitrogen naturally present in the soil does not fulfill the crop
requirements, and plants are unable to fix atmospheric Nitrogen directly for use.
Hence, additional sources, Nitrogenous fertilizers, need to be made available. It is
possible to reduce the dependence on Nitrogenous fertilizers by incorporating
symbiotic bacteria that exhibit the biological Nitrogen fixation process. Although
legumes are the crops that pop into mind when thinking of symbiotic, Nitrogen-
fixing bacteria, there are various PGPRs that are able to bond with other crops as
well. The plant may associate with the symbiotic bacteria either through endosym-
biosis and endophytic association or interact with free-living nitrogen-fixing bacte-
ria. The first is the most intimate form of relation, while the third is the simplest (Mus
et al. 2016). The plants return the favor by providing sugars, essential amino acids,
vitamins, and other organic substances to the symbiotic bacteria in the form of
exudates. Typically, root exudates are the primary source of energy for the PGPR,
and it also helps in attracting the desirable microbes to the rhizosphere through
chemotaxis.

When the symbiotic bonds are formed among the bacteria and the crop, major
changes are observed in the metabolic pathways of both organisms. The host plant
ensures that a steady supply of carbon is made available to the PGPR, while changes
are made (either internally or forced by the host plant) in bacterial nitrogen metabo-
lism pathways such that the fixed nitrogen is excreted and not just fixed internally. In
addition to carbon, in endosymbiotic relations, the host plant ensures that the
bacteria have access to phosphorus, iron, sulfur, and other necessary metallic and
nonmetallic compounds.

The process of Nitrogen fixation is governed by the highly conserved enzyme
known as nitrogenase. The complex process involves the catalytic conversion of
atmospheric nitrogen to ammonia. Nodule formation is a key process for the
establishing a symbiotic relation between the two and involves host—bacteria com-
munication and is facilitated by the Nodulation genes (Franche et al. 2009). The
genes and the Nod factors are important in creating and maintaining the bond as it is
necessary for the formation of root nodules as well as bacterial occupation of the
nodule (Gage 2004).

15.3.5 Phosphate Solubilization

Phosphorus is another essential macronutrient required for optimal plant growth
which has limited availability naturally. The geochemical cycling of the element
reduces its availability to plants, and as such, external sources of phosphorus need to
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be provided to compensate. A greener approach to the process can be considered by
using bacteria, fungi, and other soil microbes which are capable of solubilizing it
from the soil into usable forms. Bacteria belonging to Pseudomonas and Bacillus
and Fungi belonging to Aspergillus and Penicillium are shown to have notable
phosphate solubilizing properties (Mehta et al. 2019).

Phosphate Solubilizing Bacteria (PSB) can be of the free-living type that exist in
the root—rhizosphere region or may form endophytic connections with the host.
Microbes with phosphate solubilizing properties play an important role in the
biogeochemical cycle of the element. They solubilize the inorganic and organic,
bound forms of phosphorus, and make it available for plant use. The process is
carried out by several different ways by the microbes. Secreting extracellular
enzymes, mineral dissolving compounds, etc., are some of the means by which
phosphate is made available (Walia et al. 2017). Microbial compounds like
siderophores and exopolysaccharides are suspected to play key roles in the process.

15.3.6 Phytohormone Production
Another way by which PGPM is able to enhance plant growth is by synthesizing and
making available certain Plant Hormones or Phytohormones (Table 15.2). These

microbe synthesized hormones that help in a wide range of plant physiological and

Table 15.2 Plant growth-promoting activities mediated by PGPM

Microorganism | Crop Function Reference
1 | Aspergillus Diverse Efficient phosphate solubilizing property Elias et al.
sp. and plant (2016)
Penicillium sp. | species
2 | Paenibacillus Zea mays | Phosphate solubilization under abiotic Din et al.
polymyxa stress conditions, biocontrol activity (2020)
against several fungal species, etc.
3 | Enterobacter Habanero | Phosphate solubilization, siderophore Mendoza-
sp. ITCB-09 pepper production, synthesis of phosphate Arroy et al.
solubilizing enzymes, etc. (2020)
4 | Pseudomonas Sugarcane | Biological nitrogen fixation, exhibited Xing et al.
maltophilia siderophore production, and some amount | (2016)
of ACC deaminase activity
5 | Pseudomonas Rice Enhanced phytohormone production, Mirza et al.
sp. K1 nitrogen fixation, and increased yield (2006)
6 | Rhizophagus In vitro Production of phytohormones (cytokinin, Pons et al.
irregularis study auxin, gibberellin) (2020)
7 | Azospirillum Diverse Production of phytohormones (cytokinin, Cassan et al.
plant auxin, gibberellin, ethylene, abscisic acid) | (2014)
species and other plant growth regulators like

(nitric oxide, polyamines)
8 | Nocardiopsis Mandarin | Production of phytohormones (auxins) and | Shutsrirung
potential phosphate solubilizing activity et al. (2013)
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metabolic activities. Auxins, Gibberellins, and Cytokinins are common
phytohormones produced by several PGPMs. Studies have observed that overall
plant growth is bolstered to an extent by the presence of microbial phytohormones or
due to the induction of hormone production by microbes (Cassan et al. 2014).
Studies have also demonstrated that fungal strains too have this property and are
capable of producing plant phytohormones (Pons et al. 2020; Tiwari et al. 2020).

15.3.7 Biocontrol Agents

Different microbes exhibit different modes of action to prevent pathogenic
infestations and infections. While some prevent the growth of pathogenic microbes,
others degrade or break down the harmful components produced by them. Bacteria
like P. fluorescens produce certain compounds like 2,4-diacetyl phloroglucinol
which inhibits fungal growth and development. Others like Pseudomonas stutzer
produce compounds that lyse the pathogenic cells directly. Yet others induce
systemic resistance in the host plants and activate innate defense systems of the
plant to protect them from pathogens. Such activations of the plants defense systems
are referred to as Induced Systemic Resistance (IRS). Microbes that naturally exist in
the fields already help in the biocontrol process. However, PGPM can be
incorporated into agricultural practices to inhibit bacterial, viral, fungal, and nema-
tode diseases. Assimilating PGPMs into integrated pest management programs is a
step in the sustainable direction for agriculture.

Of the different microbes used as potential PGPR, bacteria belonging to the
Pseudomonas genus is one of the most widely known for their range of beneficial
effects and actions. They have shown effective pathogenic repression in cereals,
pulses, different fruits and vegetables, cottons, and mushrooms (David et al. 2018).
Pseudomonas has a variety of factors that make them one of the most dominant
PGPM. They are capable of rapidly growing and attaining critical mass and
colonizing the rhizosphere and interior of the plant roots and are able to adjust
themselves to the external conditions with relative ease. They are also able to
compete and survive in the presence of other microbial colonies and also produce
a large amount and variety of active compounds that assist in the plant growth and
development process.

Certain species like P. putida strain B2017 were shown not to produce any toxic
compounds or metabolites. Instead, they expressed their biocontrol activity by
producing other compounds like surfactants, siderophores, and pyoverdine. As
these strains lack any harmful or antagonistic agents, they are able to express
biocontrol activity without negatively affecting the crop plants in any way (Pich
et al. 2020). Additionally, the harmful impact they may have on the surrounding
environment, nontarget organisms, and humans (the ultimate consumers of the
crops) is negligible.

Several studies have been conducted into the potential biocontrol activity that the
different strains of Pseudomonas exhibit. Pseudomonas chlororaphis ToZa7 was
studied for their antipathogenic activity, particularly as an antifungal agent in tomato
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plants. The study identified that ToZa7 was able to upregulate three genes involved
in the defense system. ToZa7 was made available to the tomato plant along with
Clonostachys rosea IK726. The combination of the two microbial strains induced a
significant positive effect on the defense systems of the tomato plant (Kamou et al.
2020). Another study highlights the possible biocontrol activity of a Pseudomonas
fulva strain. The Pseudomonas strain, known as HARBPS9.1 in the study, was
found to consistently exhibit antifungal activity in maize crops. The microbe was
isolated from the rhizosphere of the maize crops in study and exhibited significant
activity against the fungal pathogens. HARBPS9.1 exhibited noticeable
bioprotection of the maize plants that were grown in the presence of
F. graminearum and F. culmorum pathogens. Not only did the Pseudomonas stain
inhibit fungal growth, but also they enhanced the growth of the infected seeds
(Adeniji et al. 2020).

In another study, microbes isolated from the rhizosphere of the medical plant
Valeriana wallichii were subjected to biocontrol tests to identify suitable PGPMs.
The study concluded that out of the twelve isolated strains, P. aeruginosa showed
the greatest resistance toward the fungi F. oxysporum, Alternaria alternata, and
Aspergillus flavus. Using P. aeruginosa as a biocontrol agent in agricultural contexts
has a dual role. Not only can they help in preventing fungal pathogens from harming
the crops, but also they produce metabolites, compounds, and hormones that actively
assist in plant growth and development. Such a dual role is particularly useful for
farmers that cannot invest large sums of money into farming. Using PGPMs serves
as a sustainable and reliable way to reduce pathogenic infestations while also
bolstering crop yield. P. aeruginosa can be used as a nontoxic, eco-friendly, and
budget alternative to conventional farming techniques (Chandra et al. 2020).

On average, using PGPM in place of chemical supplements to protect crops from
pathogens is not only cost-effective in the longer run but also protects the environ-
ment to a greater extent. The amount of resources (labor, fossil fuels, machinery,
transportation) required to create chemical agents are much higher when compared
to creating a microbial consortia that do the same task in an eco-friendly manner.
Using PGPM for biocontrol, and other crop-related activities, has the added benefit
of only affecting the target organism. Nontarget organisms and the surrounding
environment are relatively unaffected by the presence of microbes in the soil. PGPM
does this by the production of various metabolites, compounds, and hormones, like
antibiotics, hydrogen cyanide, phenazines, siderophores, and volatile compounds
directly. Indirectly, they compete with the pathogenic microbes for nutrients and
induce the activation of plant defense systems (Naamala and Smith 2020).

15.3.8 Seed Biopriming

Seed priming is an agricultural technique that is used to allow metabolic activity to
occur within the seeds without the emergence of the radicle. By control