
A Proposed System for Electric Charging
Vehicle Infrastructure

Moreshwar Salpekar

Abstract Electric vehicle development has started in India. The Government of
India has announced policies to promote electric vehicles. Electric vehicles are no
different from other vehicles except they require charging. The charging is mostly
controlled using microcontroller based systems in both vehicle and charging station.
The paper proceeds to briefly describe how the design of software and firmware.
It also gives the challenges that are perceived in design and briefly describes some
reasons for the challenges and issues. It then proposes a design for the system that uses
machine learning system to improvise the charging and generate billing accurately.
The proposed system will give a generic software stack and how machine learning
system will interact with this stack. This is expected to help companies build an
efficient software for both charging and billing.

Keywords Electric vehicle · Battery management system · Firmware · Security

1 Introduction

The Government of India announced the FAME policy in 2018 to promote electric
vehicles. Thiswas followedbypolicies by states last one beingDelhiwhichwill set up
electric vehicle charging stations every 3 km. Electric Vehicle charging infrastructure
is already coming up in states all over India. Organisations are developing both
vehicles and charging infrastructure both of which are controlled and monitored by
firmware with respect to charging and on road operation.

The firmware residing in either charging station infrastructure or electric vehicle
is usually modular and is in form of stack. Quite a few parts of the firmware modules
or firmware modules like State of Charge Estimation have been patented even but
still stack is generic. The stack even includes capability to send data over network
for further processing and analysis like billing and data analytics.

M. Salpekar (B)
Boson Motors Pvt. Ltd., Pune, India

© Springer Nature Singapore Pte Ltd. 2022
R. K. Pillai et al. (eds.), ISUW 2019, Lecture Notes in Electrical Engineering 764,
https://doi.org/10.1007/978-981-16-1299-2_12

119

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-16-1299-2_12&domain=pdf
https://doi.org/10.1007/978-981-16-1299-2_12


120 M. Salpekar

Communication networks have evolved to allow huge amount of data to be sent
over network. Clouding computing also has evolved now to allow this data to be
processed.

Machine Learning residing in the cloud allows data analytics to be carried
out on data allowing automation of some operations that earlier required manual
involvement.

A generic stack can be developed which incorporates, the necessary functionality
while adding data communication with cloud and data analytics so to allow better
monitoring and control of the system (vehicle and charging station).

2 The Electric Vehicle Charging Environment

The electric vehicle charging infrastructure firmware can be divided into two parts.

a. Software that resides in electric vehicles and controls andmonitors the operation
of battery including charging. It consists of BatteryManagement System,Motor
Drive, Electronic Vehicle Charger Controller (EVCC) and Electronic Control
Unit (ECU which is the master).

b. Software that resides in charging station and controls monitoring of the charging
operation.

The data analytics system residing in the cloud has a software running on a server
and caters to the analysis and processing of data.

2.1 The Electric Vehicle Firmware

The block diagram of this is shown in Fig. 1. It resides in the electric vehicle and
is responsible for electric vehicle charging and operation. Three subsystems are
identified in this firmware

1. Battery Management System
2. Motor Control System
3. Electronic Control Unit (Main Controller).

Each of the above are structured according to the generic software stack is given
in Fig. 2 (based on Autosar Classic platform 4.4) [5]

Following vertical software modules relevant to this paper are identified for each
of the above. It should be noted that firmware in each of the hardwaremodule confirms
to the below vertical module sub-divisions.

1. Control Module
2. Communication Module.



A Proposed System for Electric Charging Vehicle Infrastructure 121

Fig. 1 The electric vehicle subsystems (derived from [1–4])

Fig. 2 Software stack (derived from [5])

Each of them is controlled by a thread, with appropriate interrupts to handle
incoming and outgoing data. The threads communicate with each other using
messages and shared memory.

Each of this is given in sections below.

2.1.1 Control Module

This module is responsible for controlling the hardware it is responsible for.
It includes hardware initialization and getting measurements of parameters from



122 M. Salpekar

system. Each subsystem has its own control module. The following control modules
are identified

1. BMS Control Module: Battery Management System (BMS) has responsibility
to control and monitor battery. The battery is comprised of cells connected in
series. Therefore, it collects data from various cells in form of cell voltages
and temperatures. It then computes total voltages total current that can be given
out by battery. Optionally, it may compute State of Charge (SoC) and State of
Health (SoH) of battery. It may also perform cell balancing and report balancing
status. Thus the BMSfirmware reports BatteryVoltage, Battery Current, Battery
Temperature, and Optionally SoC, SoH and Cell Balancing status (see [6] for
more information).

2. Display Control Module: It is responsible for controlling LCD display and get
user inputs from LCD

3. Motor Control Module: It controls operation of Motor that provides torque and
controls rotation (measured by RPM)

4. Charge Control Module: It is used to control electric vehicle charger. It has
its own communication module to communicate with charging station control
module

5. Master Control Module: it controls and coordinates activities including config-
uration of other modules. It also collects data and passes to network for
transmission to cloud.

2.1.2 Communication Module

It is responsible for communicating parameters to other subsystems. This module
also sends data to the cloud for data analytics and get its response (only from main
controller).

It may be divided into following

1. Bus Communication Module: it is used to transmit data over the bus e.g. CAN
bus to send data or serial bus.

2. Network Communication Module: it is used to send data to cloud for analytics.
It may use LPWAN or any other network stack. It is present only in the master
control module.

2.2 The Charging Station Firmware

The Charging station firmware can also be vertically divided into.

1. Control Module
2. Communication Module.



A Proposed System for Electric Charging Vehicle Infrastructure 123

2.2.1 Charging Station Control Module

It is responsible for getting data related to charging station. For charging station
firmware, parameters are charging current, charging voltage, charging indicator, time
of charging and charger temperature. It may optionally report maximum voltage and
maximum current. If more than one vehicle can be charged, each charging point has
different firmware.

Charging Station Communication Module

It is responsible for communicating parameters to other subsystems. This module
also sends data to the cloud for data analytics and get its response (only from main
controller). It also communicates with charger control module in electric vehicle if
required.

The communication uses

1. Serial Peripheral Interface and/or UART to get data from charging station
subsystems

2. Use a LPWAN to send data to cloud for analytics.

3 Addressing the Security Concern

Security needs to be addressed in design phase and not as afterthought. The security
is proposed to be compliant with [7]. The security is added in the following manner

1. Boot up software security
2. Run time software security
3. Security in software download
4. Key Management.

3.1 Boot Up Software Security

A Crypto core is added to system for boot up along with secure RAM. The software
and keys (non-fused) are stored in secure EEPROM in encrypted form. The crypto
core boots starts and verifies the software (using SHA-4 hash, see [8]). Alternately
Authentication Encryption (see [9, 10]) may be used. After successful verification,
control is passed to two stage bootloader which finally boots up the kernel and
application. The security for run time security is given below.



124 M. Salpekar

3.2 Run Time Software Security

This is ensured by the following

1. A Secure RAM is provided. This RAM is accessible only in specified operating
mode. No debugger access is available to this RAMunless specified instructions
are given.

2. Debugging through debugger is disabled in field. Debug can be done only by
using prints and that too through kernel log or on console.

3. Software does not access secure EEPROM for anything than keys, if required,
during runtime.

4. Even the new software is in this RAM before being flashed to secure EEPROM.
5. The downloaded software is always checked against the Secure HASH trans-

mitted signed by the sender. The signature match and hash) are checked using
crypto core (or authenticated encryption check). This is discussed in next
section.

3.3 Software Download

The software needs to be updated in field for maintenance which includes feature
change and bug fixes. The generic protocol is

1. The software to be downloaded is encrypted with AES 128 bit key (see [11]).
Authenticated encryption is proposed to be used (see [9, 10]). Secure Hash
Standard (SHS) [8] can also be used but two different algorithms may need
further consideration in terms of crypto core processing and memory.

2. The upgrader sends the software and its hash signed with key.
3. The software is downloaded into RAM and also the key.
4. The crypto core is then requested to verify the software.
5. Upon verification, software is written to secure EEPROM.
6. The new software runs on next boot.

3.4 Key Management

Key Management is proposed to be conformant to [12]. The keys required and
processing is given below.

3.4.1 The Keys

The following keys are proposed to be present and used



A Proposed System for Electric Charging Vehicle Infrastructure 125

1. Signature key which is used to compute secure hash of software (it is used for
software verification).

2. Software OTA decryption key: used to decrypt software sent over the air.
3. Software encryption/decryption (SE/D) key: The software is stored encrypted in

secureROMusing this. This is a symmetric key i.e. same key used for encryption
and decryption.

4. Encrypter Key: used to encrypt above keys. This is symmetric key.

3.4.2 Key Update

The basic process for update is always same and is as follows:

1. The sender sends request to update key and request is encrypted using previous
key and signed by sender.

2. The request is validated using crypto core.
3. The recipient, on successful verification, sends the acknowledgment.
4. The sender sends new key encrypted and signed.
5. The keys is decrypted and verified.
6. The key is stored in secure EEPROM upon successful verification and

acknowledgement sent to sender.

Each of key requires more steps after basic process

1. For Signature key: the new hash of software must be sent and hash verified with
new key before key is stored.

2. For SE/D key: It must be possible to decrypt the existing software in secure
EEPROM using this key else following steps must be done.

a. The full software is copied from secure EEPROM and copied to RAM
b. The software is encrypted using new key and stored in secure EEPROM.

3. For Encrypter key: the other two keys must be stored afresh in RAM after
encrypting with new key.

4 Conclusion and Further Work

A full software system architecture and high level design is given for electric vehicle
charging infrastructure is given. This is an initial architecture. More refinements
and partitioning will be present in the architecture. Further, the software also has to
comply with ISO 26262 [13], Autosar [14], Coding guidelines such as MISRA [15]
also need to be followed to implement a full working system. The communication
modules also need a full design thought like choosingwhich communication protocol
to be followed. Usually, Controller Area Network (CAN) [16] is used for communi-
cating for automotive parts so it is expected to be used in communication between



126 M. Salpekar

motor, BMS and master controller. However, there is a flexibility that other proto-
cols may be used. It is left to implementer to work with actual protocols, hardware
components, etc.

References

1. Xing Y, Ma EWM, Tsui KL, Pecht M (2011) Battery management systems in electric and
hybrid vehicles. Energies 4:1840–1857. https://doi.org/10.3390/en4111840

2. Renesas (2018) Battery management system tutorial. Retrieved from www.renesas.com/doc/
whitepapers/battery-management/battery-management-system-tutorial.pdf on 25th Dec 2018

3. Hu R (2011) Battery management system for electric vehicle applications. Electronic Theses
and Dissertations. Paper 5007. Retrieved through https://scholar.uwindsor.ca/etd

4. Kettles D (2015) Electric vehicle charging technology analysis and standards. FSEC Report
Number: FSEC-CR-1996-15, U.S. Department of Transportation’s University Transportation
Centers Program

5. Autosar (2018) General specification of basic software modules AUTOSAR CP Release 4.4.0,
31st Oct 2018. Retrieved from www.autosar.org

6. Meissner E, Richter G (2003) Battery monitoring and electrical energy management precon-
dition for future vehicle electric power systems. J Power Sources 116:79–98

7. Information Technology Laboratory National Institute of Standards and Technology, FIPS
PUB 140-2 Security requirements for cryptographic modules, federal information processing
standards publication, 25 May 2001

8. Information TechnologyLaboratoryNational Institute of Standards andTechnology, FIPS PUB
180-4, Secure hash standard (SHS), federal information processing standards publication, Aug
2015. https://doi.org/10.6028/NIST.FIPS.180-4

9. Dworkin M (2007) NIST Special Publication 800-38D, recommendation for block cipher
modes of operation: galois/counter mode (GCM) and GMAC

10. Dworkin M (2001) NIST Special Publication 800-38A, recommendation for block cipher
modes of operation methods and techniques

11. Daemen J, Rijmen V (2001) Federal information processing standards publication 197.
Announcing the Advanced Encryption Standard (AES), 26 Nov 2001

12. Barker E, Roginsky A NIST special publication 800-133 recommendation for cryptographic
key generation. https://doi.org/10.6028/NIST.SP.800-133

13. International Standards Organisation, ISO 26262 Road vehicles—functional safety—all parts,
latest versions. www.iso.org

14. Autosar. www.autosar.org
15. The Motor Industry Software Reliability Association (2012) MISRA-C: 2012 guidelines for

the use of the C language in critical systems
16. International Standards Organisation, ISO 11898-Road vehicles—controller area network

(CAN)—all parts, latest versions, www.iso.org

https://doi.org/10.3390/en4111840
http://www.renesas.com/doc/whitepapers/battery-management/battery-management-system-tutorial.pdf
https://scholar.uwindsor.ca/etd
http://www.autosar.org
https://doi.org/10.6028/NIST.FIPS.180-4
https://doi.org/10.6028/NIST.SP.800-133
http://www.iso.org
http://www.autosar.org
http://www.iso.org

	 A Proposed System for Electric Charging Vehicle Infrastructure
	1 Introduction
	2 The Electric Vehicle Charging Environment
	2.1 The Electric Vehicle Firmware
	2.2 The Charging Station Firmware

	3 Addressing the Security Concern
	3.1 Boot Up Software Security
	3.2 Run Time Software Security
	3.3 Software Download
	3.4 Key Management

	4 Conclusion and Further Work
	References




