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Abstract. Dimensionality reduction plays an important role in neu-
ral signal analysis. Most dimensionality reduction methods can effec-
tively describe the majority of the variance of the data, such as principal
component analysis (PCA) and locally linear embedding (LLE). How-
ever, they may not be able to capture useful information given a spe-
cific task, since these approaches are unsupervised. This study proposes
an autoencoder-based approach that incorporates task-related informa-
tion as strong guidance to the dimensionality reduction process, such
that the low dimensional representations can better reflect information
directly related to the task. Experimental results show that the proposed
method is capable of finding task-related features of the neural popula-
tion effectively.

Keywords: Neural population activity · Supervised dimensionality
reduction · Long short-term memory network · Autoencoder

1 Introduction

In recent years, neural activities recorded from the primate cortex by implanted
arrays of microelectrodes have gradually become a common tool for neural mech-
anism analysis [18,39]. Based on the extracted neural signals, several brain-
machine interface (BMI) applications have been successfully applied. For exam-
ple, algorithms that convert neural activity of a human with tetraplegia into the
desired prosthetic actuator movements [14,15]. However, it remains a question
about what insights can we gain from the recordings of a population of neurons
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[32,33]. It is reported that population analyses are necessary for situations in
which the neural mechanisms involve coordination of responses across neurons,
where some mechanisms exist only at the level of the population and not at
the level of single neurons [8]. Many studies of neural systems are shifting from
single-neuron to population-level analyses.

The dimensionality reduction methods are traditionally defined as methods
that map the high-dimensional data to low-dimensional data, which discover
and extract features of interest into the shared latent variables [41]. Nowadays,
dimensionality reduction plays an important role in the shifting process of neural
signal analysis [8,10,31]. On the one hand, the recorded neural signal of a chan-
nel corresponds to an underlying neuron ensemble, the response of a particular
neuron may obscure the information of other neurons within the ensemble. On
the other hand, activities of nearby neurons tend to be dependent on each other,
and they may be recorded by nearby channels [29]. Therefore, fewer channels are
needed for the explanation of the recorded neural signals, and it is a common
practice to select channels before subsequent analysis. Rather than inspecting
each neuron separately, dimensionality reduction methods can analyze neural
population recordings as a whole [8].

Several classical dimensionality reduction methods including linear and non-
linear dimensionality reduction methods have been adopted to analyze neural
signals. Principle component analysis (PCA) [19] is a linear dimensionality reduc-
tion method that projects the high-dimensional neural data into a new coordi-
nate system, where the input data can be expressed with fewer variables and
most of the variance of the data set can be captured. Non-linear dimensionality
reduction methods have also been applied, such as the locally linear embedding
method (LLE) [36] and Isomap [40]. LLE exploits local symmetries of linear
reconstructions of the original dataset, it learns manifolds close to the dataset
and project input data onto them. Isomap first determines the adjacency of
the points on the manifold, and then the geodesic distances between all pairs
of points are calculated on the manifold. Finally, the multidimensional scaling
method is applied to obtain the embedding of data. The dimensionality reduc-
tion methods were employed using the population response signals alone in most
existing studies [1,7,9,38]. In a real-world scenario, each data point in the high-
dimensional firing rate space has a corresponding label comprised of one or more
dependent variables, such as the subject’s behavior, the subject’s mental state,
and so on. Neglecting the task-related information may cause the dimensionality
reduction methods to fail to capture representative information of a specific task
[24,30]. However, classical dimensionality reduction methods are unsupervised
methods without effective ways to incorporate supervised task-related informa-
tion.

Recent advances in deep artificial neural networks provide new techniques for
nonlinear dimensionality reduction. The nonlinearity in neural networks enables
non-linear multivariate data compression and visualization [5,13]. The autoen-
coder (AE) is firstly introduced in the 1980s, which plays an important role in
unsupervised learning [37]. It is a simple yet effective unsupervised method to
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compress information of the input data. By reconstructing outputs from inputs
using the criterion of the minimum possible amount of Euclidean distance, it
learns a transformation that transforms inputs into a latent representation space
[5]. Improvements of autoencoder including the denoising autoencoder (DAE)
[42] and the variational autoencoder (VAE) [21] enhance the ability to learn effec-
tive representations from data. DAE aims to reconstruct clean data from noisy
inputs. It can learn representations that are robust to the noise by adding Gaus-
sian noises to samples or masking variables of samples randomly. The stacked
denoising autoencoder explores a greedy strategy for building deep neural net-
works consist of several layers of denoising autoencoder [43]. The stacked layers
are trained sequentially and a fine-tuning process is adopted to calibrate the
whole neural network. VAE is proposed to learn better feature representation
which can generate samples from the decoder. Instead of learning the encodings
directly, it uses a variational Bayesian approach to optimize an approximation
to the intractable posterior, which produces more stable and robust results. The
strong feature extraction ability of the AEs can be employed for the dimension-
ality reduction of the neural population signals.

With the introduction of the task-related information, the objective of dimen-
sionality reduction for the neural population can now be defined as to project
the data while differences in the dependent variables are preserved as many
as possible. In the extreme, we can seek to ‘demix’ the effects of the different
dependent variables, such that each latent variable captures the characteristic of
a single dependent variable [8]. The AEs are powerful non-linear unsupervised
models that can learn effective low-dimensional representation for neural popula-
tion signals. They are also flexible models that can easily incorporate supervised
task-related information into the learning process. Further, given that the neural
population activities are time-series data that are recorded sequentially. We can
learn even better low-dimensional representation by treating it as another type of
task-related information, which is incorporated through the architecture design
of our model. Specifically, the long short-term memory (LSTM) model [16] which
is a type of recurrent neural network (RNN) [27] is adopted to incorporate the
information.

In this paper, we investigate supervised dimensionality reduction techniques
for the neural population. The learned low-dimensional representation can better
capture features of interest directly related to the task. The contributions of this
paper are two-fold. Firstly, we propose a supervised dimensionality reduction
architecture which is suitable for different kinds of autoencoders. The archi-
tecture incorporates task-related information into the learning process of low-
dimensional representation through an artificial neural network module, which
is termed as ‘regressor’. The autoencoder takes multi-channel neural record-
ings from the primary motor cortex as input and reconstructs them. In the
meantime, the regressor predicts the task-related information from the learned
low-dimensional latent representations. Secondly, we propose a supervised archi-
tecture that considers the time-series nature of neural population activities. A
sequential encoder and a sequential decoder based on LSTM are employed to
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transform the input data into the latent space and reconstruct the input data
from the latent space, respectively. The task-related information is also employed
through a regressor in this architecture. Experiments are carried out with dif-
ferent kinds of autoencoders under different settings. The results show that our
proposed method learns a more effective task-related low-dimensional represen-
tation of the neural population.

2 Method

In this section, we first introduce the dataset we used in this paper. Then we give
the background knowledge of various autoencoders and the LSTM. Finally, we
introduce our proposed supervised autoencoder-based dimensionality reduction
method for the neural population.

2.1 Dataset

A dataset that contains multi-channel spike firing signals with synchronous kine-
matic information is adopted to evaluate the performances of the supervised and
unsupervised dimensionality reduction methods [44]. The dataset is recorded
from a male macaque monkey that performs a radial-4 center-out task in a 2-D
horizontal plane. For each trial, a target ball appears on the screen in front of
the monkey, and the monkey is requested to move a cursor to the target with the
joystick. Once the monkey hits the target ball within 2 s and holds for 300 ms,
rewards will be given. The neural signal is recorded by a 96-microelectrode Utah
array which is implanted in the monkey’s arm area of the primary motor cor-
tex contralateral to the arm used in the experiments. A total of 96 channels of
neural signals are recorded with Cerebus multichannel system at a sample rate
of 30 kHz. The raw signals are filtered by a high-pass Butterworth filter and the
detected spikes are sorted with Offline Sorter software to produce binned spike
rates. The trajectory of the joystick is recorded synchronously with neural sig-
nals by a micro-controller system at a sample rate of 1 kHz. We downsample the
trajectory to correspond to the bins of spike rates. A channel selection method
and a data selection method are further employed such that 8 subsets of spike
data are obtained. The details of the dataset are shown in Table 1.

2.2 Prerequisites

Autoencoder and Its Variations. Consider a data set of samples {xn} where
n = 1, · · · , N , and xn is a Euclidean variable with dimensionality D. A fully
connected layer of the neural network can be defined as

y = φ(Wx + b), (1)

where W and b denote trainable weights and bias, and φ denotes a non-linearity
function. A basic autoencoder consists of an encoder and a decoder. The encoder
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Table 1. The details of the dataset.

Subset #Neuron #Trials #Up #Down #Left #Right

1 61 74 17 19 17 21

2 63 81 19 21 18 23

3 61 70 17 14 19 20

4 56 64 20 11 19 14

5 49 83 25 19 22 17

6 56 75 21 14 21 19

7 61 85 17 23 20 25

8 61 79 14 23 17 25

The #Neuron denotes the number of neurons and the #Trials
denotes the number of total trials. The #Up, #Down, #Left,
#Right denote the number of trials with up, down, left, and
right directions, respectively.

is comprised of several fully connected layers and the layers are usually stacked
one by one with reducing dimensionality. We can denote the encoded latent
feature as z, which is a Euclidean variable with dimensionality M . Then the
encoder E(x) can be defined as

E(x) = z = φL(WLφL−1(WL−1φL−1(· · · W 1φ1(x) + b1 · · · ) + bL−1) + bL), (2)

where L denotes the number of stacked fully connected layers. Similarly, the
decoder D(z) can be defined as

D(z) = x̃ = φL(WLφL−1(WL−1φL−1(· · · W 1φ1(z) + b1 · · · ) + bL−1) + bL), (3)

where x̃ denotes the reconstruction of x. The loss function of the autoencoder is
usually defined as the mean squared error between the input x and the recon-
struction x̃, which can be defined as

Lreconstruction =
1
N

N∑

i=1

(xn − x̃n)2, (4)

where xn and x̃n denote the nth sample and its reconstruction, respectively. In
[5], the stacked fully connected layers of the encoder and decoder are trained
layer-wise using a greedy strategy. However, as the proposed of more advanced
techniques such as the Relu non-linearity function [28], the second-order opti-
mizer Adam [20], and the batch normalization layer [17], the layer-wise training
strategy is no longer needed. In this paper, we directly optimize the entire neural
network for all autoencoder-based models.

The denoising autoencoder is proposed to make the learned representations
robust to partial corruption of the input pattern [43]. It first corrupts the initial
input x to get a partially destroyed version x̂ through a stochastic mapping.
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The stochastic mapping process is usually defined as a randomly masking pro-
cess, where a fixed number of features are chosen at random and their values are
forced to 0. Another common corruption choice is to add Gaussian noise to each
feature separately. In this paper, the stochastic mapping process that randomly
masks features is selected as the default corruption choice.

The variational autoencoder introduces a stochastic variational inference that
can deal with intractable posterior distributions [21]. Let us define the proba-
bilistic encoder as qϕ(z|x) and the posterior of the generative model as pθ (x, z).
The prior over the latent variables can be defined to be a centered isotropic
multivariate Gaussian pθ (z) = N (z;0, I). We can then define pθ (x|z) to be a
multivariate Gaussian whose distribution parameters are estimated from z with
an artificial neural network with multiple fully connected layers. Assume that
the true posterior follows to an approximate Gaussian with diagonal covariance,
which is defined as

logqϕ(z|xi) = logN (z;μi,σ2(i)I), (5)

where the mean and standard deviation are outputs of the encoding artificial
neural network. Using the reparameterization trick, the estimator for the model
and data point xi is defined as

L(θ,ϕ;xi) � 1
2

J∑

j=1

(1+log((σ(i)
j )2)−(μ(i)

j )2−(σ(i)
j )2)+

1
L

L∑

l=1

logpθ (xi|zi,l), (6)

where zi,l = μi + σi � εl and εl ∼ N (0, I), and � denotes element-wise product.
The entire network can then be optimized with a standard back-propagation
method [23].

Long Short-Term Memory. The LSTM is an improvement of vanilla RNN
that aims to mitigate the gradient vanishing problem [6]. The input sequence
is denoted as x = (x1, · · · , xT ), the hidden vector sequence is denoted as h =
(h1, · · · , hT ), and the output vector sequence is denoted as y = (y1, · · · , yT ). The
update rule of the hidden vector sequence of the vanilla RNN can be defined as

ht = tanh(Wxhxt + Whhht−1 + bh), (7)

where tanh denotes the hyperbolic tangent function, Wxh and Whh are learnable
weights and bh is learnable bias. The output at timestamp t can be defined as

yt = Whyht + by, (8)

where Why is the learnable weights and by is the learnable bias.
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The LSTM architecture used in this paper is defined as

it = tanh(Wxixt + Whiht−1 + bi),
jt = sigm(Wxjxt + Whjht−1 + bj),
ft = sigm(Wxfxt + Whfht−1 + bf ),
ot = tanh(Wxoxt + Whoht−1 + bo),
ct = ct−1 � ft + it � jt,

ht = tanh(ct) � ot,

(9)

where sigm denotes the sigmoid function, the W∗ variables are learnable weights
and the b∗ variables are learnable biases.

2.3 Supervised Autoencoders-Based Dimensionality Reduction for
Neural Population

The architecture of our proposed supervised autoencoders for neural signal
dimensionality reduction is shown in Fig. 1. Binned and smoothed neural fir-
ings are served as raw inputs. The supervised autoencoder module is divided into
three parts including the encoder, the latent representation, and the decoder. The
encoder first transforms the raw inputs into their latent representations through
the encoder. Two separate forks stem from the latent representation. The first
one is the unsupervised decoder which reconstructs the inputs from the latent
representations. The second one is a supervised regressor which incorporates the
task-specific information (kinematic information). The supervised regressor is
implemented as an artificial neural network that takes the latent representation
as input and predicts corresponding task-related information. The artificial neu-
ral network can be built by stacking several fully connected layers. The distance
between the predicted movements and the kinematic information is measured
by the mean squared error function.

The architecture of our proposed supervised autoencoder based on LSTM
that considers the time sequence characteristic of the neural population is shown
in Fig. 2. In Fig. 1, the encoder and the decoder are built as artificial neural
networks that consist of fully connected layers. Now the encoder and the decoder
are built as multi-layer LSTM networks. At each timestamp, the LSTM encoder
takes current spikes and the previous hidden state as input and generates current
hidden state and output. The output is considered as the latent representation,
and two forks stem from the latent representation including the unsupervised
LSTM decoder and the supervised regressor. The unsupervised LSTM decoder
takes the latent representation as input and reconstructs the input spikes. The
supervised regressor is the same as the one shown in Fig. 1, which takes the
latent representation as input and predicts task-related information. Note that,
we reconstruct the input spikes and predict task-related information at each
timestamp.

The loss of our proposed model consists of two parts including the unsuper-
vised reconstruction loss and the supervised regression loss. The unsupervised
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Fig. 1. The architecture of our supervised Autoencoders for dimensionality reduction.
Binned and smoothed neural firings are served as raw inputs. The supervised autoen-
coder module can be divided into three parts including the encoder, the latent repre-
sentations, and the decoder. The supervised encoder first transforms the raw inputs
into their latent representations. Then two separate forks stem from the latent repre-
sentation including the unsupervised decoder and the supervised regressor.

Fig. 2. The architecture of our proposed supervised autoencoder based on LSTM. This
model considers the time sequence characteristic of the neural population. At each
timestamp, the LSTM encoder takes current spikes and the previous hidden state as
input and generates current hidden state and output. The LSTM decoder reconstructs
the input spikes and the regressor predicts the task-relation information.

reconstruction loss computes the mean square error between the input spikes
and the reconstructed spikes, which is denoted as Lreconstruction. The super-
vised regression loss computes the mean square error between the predicted
task-related information and the ground truth recorded simultaneously with
the spikes, which can be denoted as Lregression. We have also added an L2-
regularization to the network to prevent overfitting, and its loss can be denoted
as Lregularization. Thus, the overall loss of our model can be defined as

L = Lreconstruction + λ1 ∗ Lregression + λ2 ∗ Lregularization, (10)

where λ1 and λ2 are coefficients that trade off different losses. The entire network
can be optimized using the standard back-propagation method.
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3 Experimental Results

In this section, we first introduce the default settings we used for autoencoder-
based models. Then we introduce the criteria we employed for performance
evaluation. After that, we compare our proposed method with other unsuper-
vised methods. Finally, we evaluate our proposed method under different settings
including different types of autoencoders, different kinds of incorporated task-
related information, and different levels of added noises to inputs.

3.1 Settings

The kinematic information is considered as the task-related information by
default, which is the position of the joystick. Firstly, the recorded neural sig-
nals and kinematic information are smoothed with a window size set to 5. Then
we standardize and scale the smoothed spikes to the range [0, 1]. The parameters
λ1 and λ2 are set to 1 and 1e−4, respectively. The encoder we used in this paper
is an artificial neural network consists of two fully connected layers with 64 and
32 units. The decoder we used in this paper is an artificial neural network con-
sists of two fully connected layers with 32 and 64 units. The same encoder and
decoder settings are used for all autoencoder models. The regressor we used to
incorporate the supervised information is an artificial neural network consists of
one fully connected layer with 32 units and a linear layer. The autoencoder and
the denoising autoencoder use the Relu nonlinearity function, and the variational
autoencoder uses the tanh nonlinearity function. No nonlinearity functions are
applied after the last layer of the encoder, decoder, and the regressor for all
models. We run ten trials for all models, and the final performance is obtained
by averaging over ten trials for each of them. For all models, the weights are ini-
tialized with the He initialization method [12]. For autoencoder models without
LSTM, the batch size is set to 64, the learning rate is set to 1e−3, and we run
200 epochs for each trial. The Adam optimizer is adopted for optimization.

For the autoencoder model based on LSTM, we mean-center the recorded
neural signals and the kinematic information. The batch size is set to the number
of trials of the subset, which means we optimize the network using the whole
data of a subset at each step. We train the whole network for 5000 steps. The
LSTM encoder is a two-layer LSTM network with 64 and 32 units. The LSTM
decoder is a two-layer LSTM network with 32 and 64 units. The regressor is
an artificial neural network consists of one fully connected layer with 32 units
and a linear layer. The learning rate is set to 5e−3, and we decay the learning
rate with a ratio set to 0.95 for every 500 steps. The Rmsprop is adopted for
optimization [4]. The layer normalization is applied in our LSTM encoder and
LSTM decoder [3]. Hereafter, the supervised versions of AE, DAE, and VAE
are denoted as SAE, SDAE, and SVAE. Without loss of generality and to avoid
introducing assumptions upon the dataset, the supervised autoencoder based on
LSTM uses vanilla AE as building blocks and we denote it as LSTM-SAE.
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3.2 Criterion

Two criteria are employed for performance comparison. The first one is the intra-
class distance, the inter-class distance, and their ratio. The intra-class distance
is defined as

d(Ωi)2 =
1

NiNi

Ni∑

k=1

Ni∑

l=1

||xi
k − xi

l||22, (11)

where Ωi denotes the ith class, xi
k denotes the kth samples of the ith class, and

Ni denotes the number of samples of the ith class. The inter-class distance is
defined as

d(Ωi, Ωj) =
1

NiNj

Ni∑

k=1

Nj∑

l=1

||xi
k − xj

l ||22, (12)

and the ratio is defined as

R =
1

2(C − 1)

∑
d(Ωi, Ωj)∑
d(Ωi)2

, (13)

where C denotes the number of classes. The second criterion is the silhouette
score [34], which is a measure of how similar an object is to its own cluster
compared to other clusters. Its value ranges from −1 to 1, where a high value
indicates that the object is well matched to its own cluster and poorly matched
to neighboring clusters.

Table 2. Performance comparison with existing methods.

Method d(Ωi)
2 d(Ωi, Ωj) R Silhouette score

PCA 4.1199 8.8835 0.3700 0.1362

LLE 2.5551 8.5650 0.7292 0.3231

Isomap 3.2198 11.0912 0.6513 0.3129

LDA 3.2950 11.3075 0.5748 0.3799

NCA 3.2897 10.5672 0.5380 0.3879

KDA 1.4771 9.3935 1.0720 0.5128

AE 3.6004± 0.1268 9.5917± 0.2535 0.4626± 0.0149 0.2323± 0.0122

DAE 3.5703± 0.0757 8.8452± 0.1283 0.4277± 0.0104 0.1964± 0.0142

VAE 3.9912± 0.0528 9.0624± 0.0989 0.3873± 0.0088 0.1492± 0.0089

SAE 2.5356± 0.1340 11.3700± 0.3324 0.7983± 0.0683 0.5197± 0.0403

SDAE 2.5473± 0.0872 9.9521± 0.3430 0.6767± 0.0286 0.4653± 0.0218

SVAE 2.7154± 0.0558 11.6781± 0.1991 0.7281± 0.0049 0.5486± 0.0047

LSTM-SAE 2.3423± 0.1148 13.7175±0.3547 1.0279± 0.0313 0.6458±0.0115

AE, DAE, and VAE denote autoencoder, denoising autoencoder, and variational autoen-

coder, respectively. SAE, SDAE, SVAE denote supervised autoencoder, supervised

denoising autoencoder, and supervised variational autoencoder, respectively. LSTM-

SAE denotes the supervised autoencoder based on LSTM.
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3.3 Comparison with Existing Methods

Several classical unsupervised and supervised methods are employed for com-
parison with our proposed supervised autoencoder methods. The unsupervised
methods include PCA [19], LLE [36], and Isomap [40]. The number of neigh-
bors is setting to 5 for LLE and Isomap. The supervised methods include LDA
[26], NCA [35], and KDA [11]. The employed KDA uses the ‘RBF’ kernel and
the corresponding parameter gamma is setting to 5. Note that, the discrete
direction information is adopted as the task-related information for the classical
supervised methods. The targeted dimensionality reduction methods for neu-
ronal population data including dPCA [22], TDR [25] mTDR [2] are not consid-
ered in this paper because of the limited number of experimental task variables
of the adopted dataset. We have also included the unsupervised autoencoder
and its variations for comparison. The corruption ratios of the DAE and SDAE
are set to 0.1. The dimensionality of the latent representation is set to 2. The
learned features are scaled to the range [0, 1] before we compute the distances,
ratio, and silhouette of the trials.

The results are shown in Table 2. As we can see, our proposed LSTM-SAE
obtains the best performance of the inter-class distance and the Silhouette score.
The KDA obtains the best performance of the intra-class distance and the best
ratio. Our LSTM-SAE obtains an intra-class distance of 2.3423 and an inter-
class distance of 13.7175, which leads to a ratio of 1.0279 that is comparable to
the best ratio of 1.0720 obtained by KDA. Our LSTM-SAE also obtains the best
Silhouette score of 0.6458. The better intra-class distance and ratio obtained by
KDA is mainly due to the fact that KDA only considers the direction infor-
mation and neglects the trace information. The consequences are two-fold, on
the one hand, KDA can maps samples into a more compact region of the low-
dimensional space, which results in better intra-class distance and ratio. On the
other hand, KDA may fail to separate points from different directions in the low-
dimensional space, given limited direction information and powerful kernel. The
statement is confirmed by the visualization we will discuss later. KDA obtains
the best performance among the baseline methods and outperforms unsupervised
autoencoders. The supervised autoencoders (SAE, SDAE, and SVAE) obtain
comparable performances with KDA. The supervised autoencoders beat their
corresponding unsupervised versions by big margins. The results show that the
incorporation of supervised information is crucial for the learning of discrimina-
tive low-dimensional representations.

The visualizations of the learned representations of different methods are
shown in Fig. 3. The eighth subset of the dataset is selected for visualization.
We use different colors for different classes, which represent different directions.
The red lines plot trials with direction ‘up’, the green lines plot trials with direc-
tion ‘down’, the blue lines plot trials with direction ‘left’, and the yellow lines
plot trials with direction ‘right’. The numbers of trials with different directions
are shown in Table 1, each trial is visualized as a single line. As we can see in
Fig. 3, compares with other existing methods, KDA obtains better latent repre-
sentations with better cohesion within each class and separation between classes.
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Autoencoders without supervised information including AE, DAE, and VAE fail
to learn discriminative latent representations. However, autoencoders that take
advantage of supervised information including SAE, SDAE, and SVAE learn
better latent representations, as we can see from the improved performances in
Table 2 and the discriminative latent representations in Fig. 3. As shown by our
proposed LSTM-SAE, considering the time-series nature of the neural popula-
tion and incorporating it into the architecture design can further improve the
performance. As we have mentioned earlier, KDA maps samples into a more
compact region with disordered lines of different directions, and some directions
can be indistinguishable.

Fig. 3. The visualizations of the latent representations of different methods. We visu-
alize classical unsupervised methods including PCA, LLE, and Isomap, and supervised
methods including LDA, NCA, and KDA. Unsupervised autoencoders including AE,
DAE, and VAE are also visualized. Our proposed methods including SAE, SDAE,
SVAE, and LSTM-SAE are visualized in the second and the third row. The red lines
plot trials with direction ‘up’, the green lines plot trials with direction ‘down’, the
blue lines plot trials with direction ‘left’, and the yellow lines plot trials with direction
‘right’. (Color figure online)

3.4 Model Evaluation Under Different Settings

In this section, we evaluate our proposed supervised autoencoder-based methods
under different settings. Firstly, we evaluate our proposed methods with different
types of autoencoders. Then we evaluate our proposed methods with different
kinds of task-related information. After that, we evaluate the performances with
different levels of noise adding to the inputs.
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We first evaluate the performances of our proposed methods with different
types of autoencoders. The results are shown in Table 2, and their correspond-
ing visualizations are shown in Fig. 3. Compared with AE, SAE improves the
ratio from 0.4626 to 0.7983 and the silhouette score from 0.2323 to 0.5197. Com-
pared with DAE, SDAE improves the ratio from 0.4277 to 0.6767 and the sil-
houette score from 0.1964 to 0.4653. Compared with VAE, SVAE improves the
ratio from 0.3873 to 0.7281 and the silhouette score from 0.1492 to 0.5486. As
shown in Fig. 3, unsupervised autoencoders fail to learn discriminative latent
representations of different directions. On the opposite, our proposed supervised
autoencoders successfully learn discriminative latent representations for most of
the trials. LSTM-SAE learns near-optimal latent representations, given that the
start points of all trials should be the same and thus will overlap with each other.
The results show that, compared with unsupervised autoencoders, our proposed
supervised autoencoders can effectively improve the learned latent representa-
tions.

Table 3. The Silhouette scores of different supervised autoencoders with various com-
binations of task-related information.

Method Information

P V A PV PVA

SAE 0.5197± 0.0403 0.3972± 0.0163 0.3090± 0.0233 0.5302± 0.0239 0.4675± 0.0195

SDAE 0.4653± 0.0218 0.3237± 0.0151 0.2576± 0.0165 0.4082± 0.0227 0.3695± 0.0194

SVAE 0.5486± 0.0047 0.4457± 0.0055 0.3851±0.0098 0.6125± 0.0116 0.5795± 0.0089

LSTM-SAE 0.6458±0.0115 0.4703±0.0165 0.3361± 0.0127 0.6701±0.0192 0.6500±0.0059

P denotes the position information, V denotes the velocity information, and A denotes acceleration infor-

mation. PV denotes the combination of the position and velocity information. PVA denotes the combination

of the position, velocity, and acceleration information.

Next, we evaluate the performances of our proposed methods with different
kinds of task-related information. Three kinds of task-related information are
considered in this paper including the position, velocity, and acceleration. Five
sets of experiments are carried out with different combinations of them. The
Silhouette scores are shown in Table 3. As we can see, the most informative task-
related information is the position, since all supervised models obtain their best
performance given solely the position information. Comparison with position
information available solely, the addition of velocity information on the basis
of position information improves the performances of SAE, SVAE and LSTM-
SAE, and hurts the performance of SDAE. Comparison with position information
available solely, the addition of velocity and acceleration information hurts the
performances of SAE and SDAE, but slightly improves the performance of SVAE
and LSTM-SAE. As the results showed, LSTM-SAE obtains best performances
in most cases, and SVAE utilizes the additional information most effectively.
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Table 4. The Silhouette scores of different supervised autoencoders with various noise
levels.

Method Noise level

0.00 0.05 0.1 0.15 0.2

SAE 0.5197± 0.0403 0.4691± 0.0178 0.3939± 0.0230 0.3378± 0.0245 0.3039± 0.0156

SDAE 0.5176± 0.0234 0.5102± 0.0292 0.4663± 0.0187 0.4265± 0.0198 0.3933± 0.0240

SVAE 0.5486± 0.0047 0.4759± 0.0072 0.4032± 0.0080 0.3394± 0.0053 0.2836± 0.0052

LSTM-SAE 0.6458±0.0115 0.6358±0.0207 0.6374±0.0206 0.6158±0.0181 0.5748±0.0135

Finally, we evaluate the performances of our proposed supervised autoen-
coders with different levels of added noises. The noises we added to the samples
are identical to the corruption process we applied for the denoising autoencoder.
Different corruption ratios are considered including 0.05, 0.1, 0.15 and 0.2. The
noises are added in the testing stage after training completed. The performances
are shown in Table 4. As we can see, as the level of noise increases, the perfor-
mances of all models decrease. Compared with SAE and SVAE, SDAE is more
robust to noise, which is a reasonable result because the training process of
DAE has already considered robustness to noises. It is a surprise that our pro-
posed LSTM-SAE also represents robustness to noises. We conjecture that the
robustness may come from the time-series nature of the neural population, which
implies that LSTM-SAE has successfully learned the dynamical time structure
of the neural population.

4 Conclusions

In this paper, we address the problem of information loss using unsupervised
dimensionality reduction methods on neural population signals. We design a
supervised architecture base on autoencoder which incorporates task-related
information as strong guidance to the dimensionality reduction process, thus the
low dimensional representations can better capture information that is directly
related to the task. We also consider the time-series nature of the neural popu-
lation and incorporate it using an LSTM based autoencoder. Our experimental
results show that the proposed architecture captures information related to the
task effectively.
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