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Preface

The quest for brain research is to uncover the nature of brain cognition, consciousness,
and intelligence. Artificial Intelligence (AI) is committed to the realization of
machine-borne intelligence. The development of these two fields is undergoing a
continuous trend of crossvergence and convergence. To promote the cross-exploration
and deep integration between these two important areas, thus possibly leading to
ground-breaking discoveries at the frontiers of neuroscience, AI, and brain-machine
interface, the International Workshop on Human Brain and Artificial Intelligence
(HBAI 2020) in conjunction with IJCAI-PRICAI 2020 was organized and held online
on January 7, 2021.

The key objective of HBAI is to contribute to answering the following three
questions: 1) How can AI techniques help human brain research (brain computing)? 2)
How can human brain research inspire the study of AI (brain-inspired computing)? 3)
How can AI and brain intelligence be combined to build a more powerful one
(brain-machine integration)? Thus, we encourage papers with the topics of
brain-inspired computing, brain-machine interfaces, computational neuroscience,
brain-related health, neuroimaging, cognition and behavior, learning and memory,
neuron modulation, and closed-loop brain stimulation.

We received more than 20 papers, from which a few were withdrawn due to the
undetermined program of IJCAI-PRICAI 2020 caused by COVID-19. Each paper was
single-blindly reviewed by at least 3 reviewers. Finally 11 papers were accepted.
Daiheng et al. proposed a spiking neural network to deal with sequential tasks. Baihan
et al. presented a more general and flexible parametric framework for sequential
decision making. Juyang partly answered the question by an APFGP model: can a
machine be conscious? Qi et al. incorporated task-related information in dimensionality
reduction for neural signals. Kai et al. explored visual encoding by an end-to-end CNN.
Jintang et al. delved into graph adversarial learning from an empirical perspective.
Dong et al. proposed a brain-controlled robotic arm. Chao et al. studied an automatic
detection method of sleep spindles. Guoxin et al. applied multimodal physiological
signals to the diagnosis of Parkinson’s disease. Hongyan et al. used a multi-core tensor
model for emotion recognition. Finally, Jin et al. reviewed recent studies on transfer
learning.

Overall, the workshop was successfully held. During the meeting, researchers
presented and discussed their research, shared their knowledge and experiences, and
discussed the current state of the art and future improvements to advance the inter-
disciplinary field of AI and brain.

February 2021 Yueming Wang



Organization

Program Chair

Yueming Wang Zhejiang University, China

Program Committee

Benjamin Becker University of Electronic Science and Technology
of China, China

Xiaowei Chen Third Military Medical University, China
Boqing Gong Google Inc., USA
Yaoyao Hao Baylor College of Medicine, USA
Yong He Beijing Normal University, China
Fei He Rice University, USA
Yong Hu The University of Hongkong, Hong Kong, China
Wanzeng Kong Hangzhou Dianzhi University, China
Yue Leng University of California, San Francisco, USA
Shurong Liu Global Biotech Inc., USA
Dan Pan Guangzhou Dazhi Networks Technology Co. Ltd.,

China
Gang Pan Zhejiang University, China
Yu Qi Zhejiang University, China
Yiyu Shi University of Notre Dame, USA
Aniruddha Sinha Tata Consultancy Services, India
Xiaowei Song Simon Fraser University, Canada
Dong Song University of Southern California, USA
Tao Tang Nanyang Technological University, Singapore
Yiwen Wang Hong Kong University of Science and Technology,

Hong Kong, China
Yalin Wang Arizona State University, USA
Jimin Wang Google Inc., USA
Juyang Weng Michigan State University, USA
Amy Wenxuan Ding Emlyon Business School, France
Xiaowei Xu Guangdong Provincial People’s Hospital, China
Jian Xu Zhejiang University, China
Lin Yao Zhejiang University, China
An Zeng Guangdong University of Technology, China
Yang Zhan Shenzhen Institutes of Advanced Technology

of the Chinese Academy of Science, China
Qiaosheng Zhang NYU School of Medicine, USA
Deli Zhao Alibaba Inc., China



Contents

ARLIF: A Flexible and Efficient Recurrent Neuronal Model
for Sequential Tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Daiheng Gao, Zhenzhi Wu, Yujie Wu, Guoqi Li, and Jing Pei

Models of Human Behavioral Agents in Bandits, Contextual Bandits
and RL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

Baihan Lin, Guillermo Cecchi, Djallel Bouneffouf, Jenna Reinen,
and Irina Rish

Machines Develop Consciousness Through Autonomous Programming
for General Purposes (APFGP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

Juyang Weng

Incorporating Task-Related Information in Dimensionality Reduction
of Neural Population Using Autoencoders . . . . . . . . . . . . . . . . . . . . . . . . . 56

Qi Lian, Yunzhu Liu, Yu Zhao, and Yu Qi

Effective and Efficient ROI-wise Visual Encoding Using an End-to-End
CNN Regression Model and Selective Optimization . . . . . . . . . . . . . . . . . . 72

Kai Qiao, Chi Zhang, Jian Chen, Linyuan Wang, Li Tong, and Bin Yan

Deep Insights into Graph Adversarial Learning: An Empirical
Study Perspective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

Jintang Li, Zishan Gu, Qibiao Peng, Kun Xu, Liang Chen,
and Zibin Zheng

Brain-Controlled Robotic Arm Based on Adaptive FBCCA . . . . . . . . . . . . . 102
Dong Zhang, Banghua Yang, Shouwei Gao, and Xuelin Gu

Automatic Sleep Spindle Detection and Analysis in Patients
with Sleep Disorders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

Chao Chen, Xuequan Zhu, Abdelkader Nasreddine Belkacem, Lin Lu,
Long Hao, Jia You, Duk Shin, Wenjun Tan, Zhaoyang Huang,
and Dong Ming

Diagnosing Parkinson’s Disease Using Multimodal Physiological Signals. . . . 125
Guoxin Guo, Shujie Wang, Shuaibin Wang, Zhiyu Zhou, Guangying Pei,
and Tianyi Yan

Emotion Recognition Using Multi-core Tensor Learning and Multimodal
Physiological Signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

Hongyan Xu, Jiajia Tang, Jianhai Zhang, and Li Zhu



A Review of Transfer Learning for EEG-Based Driving Fatigue Detection . . . 149
Jin Cui, Yong Peng, Kenji Ozawa, and Wanzeng Kong

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

viii Contents



ARLIF: A Flexible and Efficient Recurrent
Neuronal Model for Sequential Tasks

Daiheng Gao1 , Zhenzhi Wu1,2(B) , Yujie Wu2 , Guoqi Li2 , and Jing Pei2

1 Lynxi Technology Incorporation, Beijing, China
{daiheng.gao,zhenzhi.wu}@lynxi.com

2 Center for Brain Inspired Computing Research, Tsinghua University, Beijing, China
wu-yj16@mails.tsinghua.edu.cn,

{liguoqi,peij}@mail.tsinghua.edu.cn

Abstract. Spiking neural networks (SNNs), stem from neuroscience, are
promising for energy-efficient information processing due to the “event-driven”
characteristic, whereas, they are inferior to artificial neural networks (ANNs) in
real complicated tasks. However, ANNs usually suffer from expensive process-
ing costs and a large number of parameters. Likewise, constrained to conver-
gence speed, stability, complicated training mechanism and preprocessing set-
ting, which is an obstacle for the SNN practitioners to expand its application
scope. Inspired by the operation mechanism of human brain neurons, a brain-
inspired Adaptive firing threshold Recurrent Leaky Integrate-and-Fire (ARLIF)
model proposed. ARLIF and his variant ConvARLIF2D, which fuses the calcu-
lation logic of ANNs and bio-dynamic behaviors of SNNs, has a low-power dis-
sipation since its number of weights is far less than SimpleRNN, GRU or LSTM.
In this work, we present a Keras-based implementation of the layer of ARLIF and
ConvARLIF2D that seamlessly fits in the contemporary deep learning framework
without writing complex boilerplate code. The experiments result indicating that
our ARLIF performs favorably against the state-of-the-art architectures.

Keywords: Spiking neural network · Recurrent neural network · Hybrid ·
Self-adjust firing threshold mechanism

1 Introduction

Spiking Neural Networks (SNNs) is viewed as the 3rd generation of neural net-
works [16], as it more closely mimics the mechanism of brain neurons. Since the
Integrate-and-Fire model is the first neuron model was proposed by Louis Lapicque,
who leads the start of the exploration in detailed behavior of neurons. With fur-
ther studies and developments, a range of neuron models were proposed: Hodgkin-
Huxley model [10] was the first neuron model that capable of demonstrating how
the action potentials are initiated and propagated through neurons; FitzHugh–Nagumo
model [7,18] produced a prototype system that simulates the excitatory/inhibitory
behaviors of neurons effectively; Izhikevich [11] proposed a neuron model with both
low implementation costs and biological plausibility.

c© Springer Nature Singapore Pte Ltd. 2021
Y. Wang (Ed.): HBAI 2020, CCIS 1369, pp. 1–13, 2021.
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However, SNN models are more based on continual neuronal dynamics and dis-
crete binary spike representations, which is challenging to incorporate SNNs into high-
performance deep learning frameworks and exploiting the advantages of the backprop-
agation learning algorithm. As many state-of-the-art works fail to deepen the network
structure (only with few feature extraction layers), but in the meanwhile restrict by the
speed of convergence, SNNs have merely been introduced into the category of neu-
romorphic computation chips. They are limited in handwritten digital recognition and
other simple tasks since then.

Through the trait of brain neurons (like sparse coding, redundant noise, etc.) and the
fact that RNNs could be used to imitate first-order neuro-dynamic equations, we pro-
pose the adaptive firing threshold recurrent Leaky-Integrate-and-Fire (ARLIF) model.
Furthermore, we turn the fixed firing threshold in SNNs into a self-adjust manner
through a novel and iterative self-learning method for fthres, which independent from
the training method (backpropagation through time (BPTT)), to reduce the number
of parameters in ARLIF meanwhile keep a decent precision. With this fancy adap-
tive distribution-based fthres technique, instead of suffering accuracy degradation, the
test network with ARLIF could even achieve a higher accuracy under the fact that we
replace 2-dim recurrent weight in SimpleRNN (SRN) with 1-dim α in ARLIF.

To verify the effectiveness of ARLIF, we conduct experiments on action recognition
and object recognition. Experiments result shows that ConvARLIF2D, which performs
well in the task of action recognition, is applicable to merge the feature of each timestep
and maintain at a satisfactory level of accuracy compared with ConvLSTM2D, which
has far more numbers of weight. Besides, as we implement ARLIF and ConvARLIF2D
on Keras [5], then we encapsulated the pluggability of contemporary deep learning
framework and the bio-dynamic properties into a layer (not only are the concepts same
with SimpleRNN, Conv2D and other common layers but with no difference in the way
of the function call). People hence no need to write boilerplate code nor puzzled with
too much cryptic hyper-parameters which is common in many SNN state-of-the-art.

In summary, the major contributions of this paper are listed as follows:

1. We propose a new structure: ARLIF and ConvARLIF2D, which is the combination
of the biological plausibility of SNNs and the numerical characteristics of ANNs.

2. We propose a fancy self-adjust algorithm, which is beyond the autograd mechanism
of deep learning framework, design to adjust the firing threshold of ARLIF accord-
ing to the data distribution of current training mini-batch.

3. The apply of ConvARLIF2D in two-stream action recognition and object recogni-
tion both show that our model of vast potential in complex real-world tasks. Fur-
thermore, we introduce a Spatio-Temporal residual network architecture that proves
our ARLIF could also work in the deep network (generally more than ten feature
extractor layer).

2 Background

In this section, we do a deeper-going analysis in Leaky Integrate-and-Fire (LIF) model.
Here we aim to highlight the most relevant parts to our ARLIF, which will be analyzed
in more detail in the next section.



ARLIF: A Flexible and Efficient Recurrent Neuronal Model for Sequential Tasks 3

2.1 Neuron Models: Leaky Integrate-and-Fire

Neuron models are the new generation of the neural network, denote it as a subclass of
Spiking Neural Networks (SNNs). Compared with Artificial Neural Networks (ANNs),
SNNs incorporate the concept of time and firing mechanism into their operating model,
which makes more biologically rationality.

Since Hodgkin-Huxley Neuron Model (HH model) is hard to realize large networks
even for an SNN simulation due to its substantial computational overhead and complex-
ity. For both biological rationality and computational simplicity, Gerstner [8] renews
the classical Integrate-and-Fire (IF) model proposed by french neurophysiologist Louis
Lapicque, which replacing the coupled nonlinear differential equations from HH model
by a reset mechanism. The simplest and most common model of this class is the Leaky
Integrate-and-Fire (LIF) model since it is possible to simulate extensive networks of
such neurons and can be analyzed mathematically in great detail (at both neuron and
network levels).

Since Leaky Integrate-and-Fire (LIF) is the most common and simple model which
modeling neuron operations and some essential dynamic traits effectively with low
computational costs. From a biological perspective, membrane potential Vm stays still
at its resting value El if the absence of current stimulus I or synaptic input. The cell
membrane, which acts as a capacitor Cm, was changed when receiving a current stim-
ulus. The change of the membrane potential is (gL is the conductance here):

Cm
dVm

dt
= −gL(Vm − El) + I (1)

Besides, with the introduction of the firing mechanism in LIF, a neuron is firing
whenVm beyondVt and its membrane potential then reset to a predefined reset poten-
tialVreset:

Vm → Vreset (2)

The major limitations of LIF and other commonly-used neuron models are they
receive discrete spike trains (binary values are much less expressive than floating-point
numbers) as input. Besides, the training algorithm of it represented by Spiking Time
Dependent Plasticity (STDP) is not an ideal optimization algorithm because the lack of
global information, to some extent, hinders the convergence of neural networks.

2.2 Recurrent Neural Network

Recurrent neural network (RNN) [19], which is naturally suitable for handling sequen-
tial data due to whose neurons are capable of sending signals to each other and capturing
temporal information and the relationship between neurons is a typical class of artificial
neural network.

RNN comes in many variants like Simple Recurrent neural networks (SRN), Bidi-
rectional RNN (Bi-RNN) and etc. The most basic form of SRN, for example, can be
described by
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˜ht = Wx · xt + bx (3)

yt = σ(˜ht +Wh · ht−1) (4)

ht = yt (5)

where σ(...) denotes the activation function tanh, bx refers to the bias term. · rep-
resents matrix multiplication, � refers to the hadamard product whereas ⊗ refers to the
convolution product. As we have seen that basic RNN has two type of weights Wx

and Wh, in which Wx, Wh are used to do matrix multiplication separately by xt and
ht−1. In RNNs most general form,Wx (input dims × hidden units) andWh

(hidden units × hidden units) are both two-dimensional structure.
Due to the vanishing gradient problem [1], SRN is incapability in modeling long-

term dependencies. LSTM [9], GRU [4] and other variants were invented to address
this problem.

Besides, compared to LSTM and GRU, SRN has a smaller number of weights,
which represents a lower computational complexity. In addition, as RNN could approx-
imately simulate first-order neuro-dynamic equations mathematically. We internalized
this concept by reducing the number of weights in ARLIF and ConvARLIF2D to main-
tain its lightweight structure and in the meanwhile bring the biological traits of classical
neuron model into RNNs.

3 ARLIF Framework

In this section, we present the framework of the Adaptive firing threshold recurrent
Leaky Integrate-and-Fire model (ARLIF) with BPTT + self-adjust fthres. The main
idea is to make our ARLIF more biologically plausible and achieve high computational
efficiency as well. As our architecture follow by the paradigm of ANN, the general
information transmitting process of discrete spikes and synapses in SNN are thus aban-
doned, we instead use the continuous probability distribution, which avoids the non-
existence gradient phenomenon effectively.

3.1 ARLIF Model

Based on the basic Eqs. 1 and 2 of LIF, we incorporated this form into RNN then take
on the newly model form

vt = W · xt + α � vt−1 + b (6)

yt = σ(vt + δ) (7)

if yt ≥ fthres then
vt = vt − β (8)
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Here, we denote xt as the input spike signal, vt as the membrane potential, yt as the
activation level at discrete timestep t. Moreover, α is the leakage to accumulate mem-
brane potentials of each discrete timestep, β is the reset voltage which produces the
same effect [14] like Vreset in Eq. 2 as to simulate the inhibitory response of neurons,
δ is random activation or random noise for biological plausible, note that σ is a cus-
tom activation function or a regularized function, after which there is a novel learning
algorithm (we built it into the computational graph) to adjust the firing threshold fthres
automatically.

3.2 Fusion of ANN and SNN

As SNNs have difficulty in retrieving the gradients due to the shape of regularized func-
tion is a step function, which make the original LIF model hard to train and converge
since the gradient only exists in the place that meets the firing threshold.

To solve this, we propose a new regularized function σ with an adaptive firing
threshold fthres. The adaptive strategy of fthres,l is based on the distribution of yt,l

with current layer l and timestep t which beyond the “auto-tape” autograd mechanism.
The propose of the adaptive firing threshold aims at guaranteeing a relatively reason-
able distribution of neurons excitation and inhibition, which effectively solves the prob-
lem that setting a fixed firing threshold may cause most neurons to fail in reaching the
intensity of excitation. Generally, we compared the fthres,l with yt,l before firing. To
facilitate understanding, we first sort the activations yt,l in ascending order. Then we
use thresl and thresh to represent the threshold that greater than p1(%), p2(%) of
the ordered mini-batch data. Hence, p1 represents the lower confidence limits of the
data distribution of that given mini-batch whereas p2 represents the higher confidence
limits of the data distribution of the same mini-batch. If the results show that fthres,l
is larger than thresl and smaller than thresh, the self-adjust learning algorithm for
fthres,l would not be activated until one of these conditions is not met. Plus, the learn-
ing rate of this algorithm is denoted as lrthres.

In many layer-wise SNN’s methods [13,26], there lies the fact that the input layer
has the highest spike activity, and the spike activity reduces significantly as the network
depth increases. The self-adjust fthres,l algorithm hence serves as imposing a strong
constraint to the model, which indeed helps maintain a steady and smooth firing rate to
train a very deep network successful with avoiding the disappearance of spike activity
in deeper layers.

Since the instability of STDP, we replace it with BPTT to ensure a smooth training
process. Besides, the adoption of the firing mechanism in SNN improves the robustness
with less reliance on the number of parameters as we replace the matrix multiplication
Wh · ht−1 in Eq. 4 with α �Vt−1 in Eq. 6 to simulate the accumulation of membrane
potential. For instance, we set SRN, LSTM and our ARLIF have the same number of
neurons (1000) and the same input data dimension (3072). The number of weights of
sequential model and ARLIF is compared in Fig. 1 (without constant terms).
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Fig. 1. The comparison of the number of weights, our ARLIF has fewer weight numbers than
commonly used sequential models like SRN, GRU and LSTM.

3.3 Architecture

Define. We denote update as our self-adjust learning method for fthres, x, v and y as
Tensor, fthres as Scalar, step as:

step(a, b) =
{

1, a ≥ b
0, a < b

(9)

and clip (value, LB, UB) means clip value between lower bound (LB) and upper
bound (UB).

Process of Algorithm. At each time step t, ARLIF receives yt,l−1 from the previous
layer as input and produces the hidden state ht,l and then update the membrane poten-
tial vt,l and produce current activation yt,l. Since we extent this self-adjust method
for fthres,l to an iterative procedure, to eliminate the possibility of infinite loop, we
restricted the number of iterations Ti per batch to Tmax = 50, The complete updating
process of fthres, the most novelty part of ARLIF, is shown in Algorithm 1. Figure 2 is
the detailed structure of ARLIF.

Moreover, ConvARLIF2D (inspired by ConvLSTM2D [21]), is a combination of
the timing modeling capability of RNN and the engravement of local features of CNN
which can further reduce the number of weights, was proposed in this paper by replac-
ing the element-wise product of matrices with convolution in Eq. 6:

vt = Wx ⊗ xt + α � vt−1 (10)

Through Algorithm 1, more than p1 = 85% of the neurons are de-activated; mean-
while, only a few neurons are activated in ARLIF. This phenomenon, to some extent,
accords with the realistic response law of biological neurons. A noteworthy point here
is that p1 = 85%, p2 = 98% are determined by heuristic method, which means p1, p2
can be determined through experiment.
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Algorithm 1. Forward Propagation of l − th layer of ARLIF at timestep t

Input: yt,l−1, vt−1,l

Parameter: Wl−1, bl−1, α, β, δ
Output: yt,l, vt,l

step 1: calculate hidden state ht,l.
xt,l = yt,l−1

ht,l = Wl−1 · xt,l + bl−1

step 2: update membrane potential vt,l.
vt,l = ht,l + α � vt−1,l

step 3: get activations yt,l.
yt,l = σ(vt,l + δ)
step 4: update fthres through adaptive learning method.
fthres,l = update(fthres,l)

1: sorted mini-batch yt,l (ascending order),
2: set hyper parameter lrthres = 0.001, p1 = 85% (thresl), p2 = 98% (thresh).
3: while fthres,l < thresl or fthres,l > thresh and Ti < Tmax do
4: if fthres,l < thresl then
5: fthres,l = fthres,l + lrthres
6: else
7: fthres,l = fthres,l − lrthres
8: end if
9: end while
10: return fthres,l

step 5: regularized vt,l according to yt,l and fthres,l.
vt,l = vt,l − β � step(yt,l, fthres,l)
step 6: restrict yt,l with a changing boundaries.
yt,l = clip(yt,l, 0, fthres,l)

According to our experiments, good results could be achieved through a fixed value
through every ARLIF layer in the model. However, better result could be achieved
through customizing each layer with different p1 and p2, but it is hard to quantify the
difference with the composition of the uncertain number of feature extraction layers,
different combination order and type of tasks.

Therefore, people are allowed to flexibly adjust p1 and p2 of each ARLIF layer in
their model. But for simplicity, the following experiments all using fixed p1 and p2 as
described in Algorithm 1 by default.

4 Experiments

We evaluate ARLIF (ConvARLIF2D) with a range of sequential models like SRN and
LSTM on (a) action recognition and (b) object recognition. We implement ARLIF on
Keras platform and train it using the backpropagation through time algorithm [25] and
our proposed algorithm for the adjustment of fthres dynamically.
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Fig. 2. A diagram of ARLIF cell. The details can be seen in Algorithm 1.

4.1 Action Recognition

As shown in Fig. 4, our network falls into the two-stream paradigm in action recognition
where combines optical flow information and RGB image as input. The adoption of the
Temporal Conv Layer (especially ConvARLIF2D) is the novelty of this network. Here,
t is the length of frame sequence, Spatial Conv Layer consists of Conv3D with strides
(1, 2, 2), LeakyReLU and Batch Normalization, the target of Temporal Conv Layer is
the aggregate of temporal information at each timestep explicitly.

Fig. 3. Sampled video clips of UCF-101. (we choose the first t frames to generate optical flow
and train our network)
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Fig. 4. Our Two-stream Spatial-Temporal Network structure for action recognition. ×4 means
there are four Spatial Conv layers in our network, Conv is the short form for Convolutional, FC
for Fully Connected and Concat for Concatenate.

In Table 1, we compare our network with different Temporal Conv Layer (Con-
vSRN2D, ConvARLIF2D and ConvLSTM2D respectively) to the state-of-the-arts
works. The input single RGB and optical flow are both resized into resolution of 112 ×
112, note that we sampling video clips at equal temporal spacing as much as possible, if
the number of frames in a video is less than t, t ∈ {8, 16}, we pad the input by repeating
the last frame to fill the missing volume. We visualize our sampled video clips in Fig. 3,
where it can reflect a relatively complete action when using our sampling tactic.

Moreover, we train our networks on the UCF-101 dataset [22], the algorithm for the
computation of optical flow is Brox [2,15].

Table 1. The comparison of accuracy of SOTA and our two-stream network (with merely the
layer of temporal conv changed).

Method Acc

LRCN [6] 82.92

C3D (1 net) [23] 82.3

C3D (3 nets) [23] 85.2

C3D (3 nets) + iDT [23] 90.4

I3D (input RGB + Flow) [3] 93.4

TSN (input RGB + Flow) [24] 94.0

Ours (Temporal Conv Layer) t = 8 t = 16

ConvLSTM2D (input RGB + Flow) 88.88 92.56

ConvLSTM2D (input RGB) 76.17 79.58

ConvSRN2D (input RGB + Flow) 74.93 78.44

ConvSRN2D (input RGB) 65.93 68.20

ConvARLIF2D (input RGB + Flow) 82.20 85.43

ConvARLIF2D (input RGB) 74.56 76.86
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The experiment results on UCF-101 split 1 are listed in Table 1. During the experi-
ment, we observed the fact that the number of params of ConvLSTM2D in our network
structure is 737,536, which exceeds approximately five times the params of ConvA-
RLIF2D (147,650) whereas the recognition accuracy down to acceptable levels. Con-
vSRN2D, however, with an exceeding of 24% number of parameters than ConvAR-
LIF2D, is inferior to ConvARLIF2D, which demonstrates the exceptional ability of
ConvARLIF2D in obtaining discriminative features with fewer weights.

Though there is a gap between ConvLSTM2D and ConvARLIF2D in the accuracy
of the action recognition task, the feature of low complexity and computational amount
of ConvARLIF2D could make it feasible to deploy on edge devices and neuromorphic
chips, which exhibits great potential in the usage of video analysis tasks.

Table 2. Comparison of our work with other SNN models on CIFAR10 [12] (T = 10, SA is short
for self-adjust).

Model Training method Acc

Sengupta et al. [20] ANN-SNN conversion 91.55

Lee et al. [13] Spiking BP 90.45

Wu et al. [27] Surrogate gradient 90.53

ST-Resnet18 BPTT+ SA fthres 91.72

ST-Resnet34 BPTT+ SA fthres 90.21

Fig. 5. ST-Resnet18’s accuracy on Fashion MNISTT [28] with vary T ∈ {1, 5, 10}. (Both
Mobilenet and Densenet are pre-trained on ImageNet.)
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4.2 Object Recognition

Here, we choose Fashion MNIST [28] for evaluation given that MNIST is too simple
as a benchmark dataset. Fashion MNIST [28] is a dataset that consists of a training set
of 60,000 examples and a testing set of 10,000 examples. In our experiment, each 28
× 28 grayscale image with a label annotated, which belongs to 10 classes, i.e. T-shirt,
trousers, dress.

To the exploration of SNN with deep architecture to solve complex visual recog-
nition problems as well as verify the effectiveness of ARLIF. Temporal structure is
added to Resnet and a spatial-temporal Resnet (ST-Resnet) is built. The differences
between ST-Resnet and Resnet are: 1) In order to verify the effect of feature extraction
of ARLIF, we replace Conv2D by ConvARLIF2D to make all of the feature extraction
layers in our ST-Resnet are the hybrid of ANNs and SNNs. 2) As LN performs well in

(a) Original Residual Block (b) Rectified Residual Block in ST-Resnet

Fig. 6. Residual blocks of original Resnet and our ST-Resnet. Unlike original residual block,
we extend the rectified residual block into time domain. Therefore, Layer Normalization is fit
seamlessly after ConvARLIF2D and ReLU is used in every single step of t.
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the paradigms of the recurrent neural network, Batch Normalization (BN) is replaced
by Layer Normalization (LN) in ST-Resnet.

The structure of rectified residual block of ST-Resnet is depicted in Fig. 6. Since the
input for our ST-Resnet needs to be sequential, then we transform the still images in
Fashion MNIST and CIFAR10 into sequential by copy the original data T times.

About training settings, we use Adam optimizer with a mini-batch size of 64. The
learning rate remains unchanged in two datasets, take 0.0001. Besides, we use categor-
ical cross-entropy as our loss function and dropout mechanism to prevent overfitting
while extending [17] to ARLIF to initialize our network parameter.

As we compare our ST-Resnet with ANN’s state-of-the-art works on the above two
datasets. First, from Fig. 5, we can observe that ST-Resnet18 with T = 10 achieves
the 95.75% on Fashion MNIST, which beyond Densenet (93.45%) and Mobilenet
(94.11%). Next, we compare our ST-Resnet architecture with state-of-the-art SNN
methods on CIFAR10 [12]. As shown in Table 2, the results demonstrate that a net-
work with its all feature extraction layer ARLIF performs well and achieve 91.72%
which beyond [20] (91.55%), but in the meanwhile, there is no significant accuracy
drop happened when continue deepening ST-Resnet (ST-Resnet18 to ST-Resnet34).

5 Conclusions

In this paper, we propose the adaptive firing threshold recurrent Leaky Integrate-and-
Fire (ARLIF) model, which absorbs the mechanisms of both ANN and SNN, which has
potent biological plausibility and low parameters as well. ARLIF is a model that can
alleviate the enormous computational cost from the traditional sequential models (SRN,
LSTM and its common variants), so would ConvARLIF2D likewise. According to the
experiments, our ARLIF is easily extended to architecture (ST-Resnet18, ST-Resnet34
and etc.) that with more than ten feature extractor layers without significant accuracy
drop-off, the thorny problem of vertical expansion of SNNs network structure hence
solved in an ANN-SNN hybrid perspective. Besides, the result of action recognition
could demonstrate that our unique learning algorithm for the ARLIF help model achieve
a stronger-than-expected result with few weight parameters. Given ARLIF’s flexibility
and efficiency, we believe that ARLIF has a broad prospect and can be applied to many
challenging tasks such as neural machine translation, video understanding and etc.
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Abstract. Artificial behavioral agents are often evaluated based on
their consistent behaviors and performance to take sequential actions
in an environment to maximize some notion of cumulative reward. How-
ever, human decision making in real life usually involves different strate-
gies and behavioral trajectories that lead to the same empirical outcome.
Motivated by clinical literature of a wide range of neurological and psy-
chiatric disorders, we propose here a more general and flexible paramet-
ric framework for sequential decision making that involves a two-stream
reward processing mechanism. We demonstrated that this framework is
flexible and unified enough to incorporate a family of problems spanning
multi-armed bandits (MAB), contextual bandits (CB) and reinforcement
learning (RL), which decompose the sequential decision making process
in different levels. Inspired by the known reward processing abnormalities
of many mental disorders, our clinically-inspired agents demonstrated
interesting behavioral trajectories and comparable performance on sim-
ulated tasks with particular reward distributions, a real-world dataset
capturing human decision-making in gambling tasks, and the PacMan
game across different reward stationarities in a lifelong learning setting
(The codes to reproduce all the experimental results can be accessed at
https://github.com/doerlbh/mentalRL.).

Keywords: Reinforcement learning · Contextual bandit ·
Neuroscience

1 Introduction

In real-life decision making, from deciding where to have lunch to finding an apart-
ment when moving to a new city, and so on, people often face different level of
information dependency. In the simplest case, you are given N possible actions
(“arms”), each associated with a fixed, unknown and independent reward proba-
bility distribution, and the goal is to trade between following a good action chosen
c© Springer Nature Singapore Pte Ltd. 2021
Y. Wang (Ed.): HBAI 2020, CCIS 1369, pp. 14–33, 2021.
https://doi.org/10.1007/978-981-16-1288-6_2
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previously (exploitation) and obtaining more information about the environment
which can possibly lead to better actions in the future (exploration). The multi-
armed bandit (MAB) (or simply, bandit) typically models this level of exploration-
exploitation trade-off [4,23]. In many scenarios, the best strategy may depend on
a context from current environment, such that the goal is to learn the relationship
between the context vectors and the rewards, in order to make better prediction
which action to choose given the context, modeled as the contextual bandits (CB)
[2,24], where the context can be attentive [11,31] or clustered [28,33,34]. In more
complex environments, there is an additional dependency between contexts given
the action an agent takes, and that is modeled as Markov decision process (MDP)
in reinforcement learning (RL) problem [43].

To better model and understand human decision making behavior, scientists
usually investigate reward processing mechanisms in healthy subjects [37]. How-
ever, neurodegenerative and psychiatric disorders, often associated with reward
processing disruptions, can provide an additional resource for deeper understand-
ing of human decision making mechanisms. From the perspective of evolution-
ary psychiatry, various mental disorders, including depression, anxiety, ADHD,
addiction and even schizophrenia can be considered as “extreme points” in a
continuous spectrum of behaviors and traits developed for various purposes dur-
ing evolution, and somewhat less extreme versions of those traits can be actu-
ally beneficial in specific environments. Thus, modeling decision-making biases
and traits associated with various disorders may enrich the existing computa-
tional decision-making models, leading to potentially more flexible and better-
performing algorithms. In this paper, we extended previous pursuits of human
behavioral agents in MAB [10] and RL [29,30,32] into CB, built upon the Con-
textual Thompson Sampling (CTS) [2], a state-of-art approach to CB problem,
and unfied all three levels as a parametric family of models, where the reward
information is split into two streams, positive and negative.

2 Problem Setting

In this section, we briefly outlined the three problem settings:

Multi-Armed Bandit (MAB). The multi-armed bandit (MAB) problem mod-
els a sequential decision-making process, where at each time point a player
selects an action from a given finite set of possible actions, attempting to max-
imize the cumulative reward over time. Optimal solutions have been provided
using a stochastic formulation [4,23], or using an adversarial formulation [3,5,9].
Recently, there has been a surge of interest in a Bayesian formulation [12], involv-
ing the algorithm known as Thompson sampling [44]. Theoretical analysis in [1]
shows that Thompson sampling for Bernoulli bandits is asymptotically optimal.

Contextual Bandit (CB). Following [25], this problem is defined as follows.
At each time point (iteration) t ∈ {1, ..., T}, an agent is presented with a context
(feature vector) xt ∈ RN before choosing an arm k ∈ A = {1, ...,K}. We will
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denote by X = {X1, ...,XN} the set of features (variables) defining the context.
Let rt = (r1t , ..., rK

t ) denote a reward vector, where rk
t ∈ [0, 1] is a reward at time

t associated with the arm k ∈ A. Herein, we will primarily focus on the Bernoulli
bandit with binary reward, i.e. rk

t ∈ {0, 1}. Let π : X → A denote a policy. Also,
Dc,r denotes a joint distribution over (x, r). We will assume that the expected
reward is a linear function of the context, i.e. E[rk

t |xt] = μT
k xt, where μk is an

unknown weight vector associated with the arm k.

Reinforcement Learning (RL). Reinforcement learning defines a class of
algorithms for solving problems modeled as Markov decision processes (MDP)
[43]. An MDP is defined by the tuple (S,A, T ,R, γ), where S is a set of possible
states, A is a set of actions, T is a transition function defined as T (s, a, s′) =
Pr(s′|s, a), where s, s′ ∈ S and a ∈ A, and R : S × A × S �→ R is a reward
function, γ is a discount factor that decreases the impact of the past reward
on current action choice. Typically, the objective is to maximize the discounted
long-term reward, assuming an infinite-horizon decision process, i.e. to find a
policy function π : S �→ A which specifies the action to take in a given state, so
that the cumulative reward is maximized: maxπ

∑∞
t=0 γtR(st, at, st+1).

3 Background: Contextual Thompson Sampling (CTS)

As pointed out in the introduction, the main methodological contribution of this
work is two-fold: (1) fill in the missing piece of split reward processing in the
contextual bandit problem, and (2) unify the bandits, contextual bandits, and
reinforcement learnings under the same framework of split reward processing
mechanism. We first introduce the theoretical model we built upon for the con-
textual bandit problem: the Contextual Thompson Sampling, due to its known
empirical benefits. In the general Thompson Sampling, the reward ri

t for choos-
ing action i at time t follows a parametric likelihood function Pr(rt|μ̃i). Follow-
ing [2], the posterior distribution at time t + 1, Pr(μ̃i|rt) ∝ Pr(rt|μ̃i)Pr(μ̃i) is
given by a multivariate Gaussian distribution N (μ̂i(t+1), v2Bi(t+1)−1), where
Bi(t) = Id +

∑t−1
τ=1 xτx�

τ , and where d is the context size xi, v = R
√

24
ε dln( 1

γ )

with R > 0, ε ∈ ]0, 1], γ ∈ ]0, 1] constants, and μ̂i(t) = Bi(t)−1(
∑t−1

τ=1 xτrτ ). At
every step t, the algorithm generates a d-dimensional sample μ̃i from N (μ̂i(t),
v2Bi(t)−1), selects the arm i that maximizes x�

t μ̃i, and obtains reward rt.

4 Two-Stream Split Models in MAB, CB and RL

We now outlined the split models evaluated in our three settings: the MAB case
with the Human-Based Thompson Sampling (HBTS) [10], the CB case with
the Split Contextual Thompson Sampling (SCTS), and the RL case with the
Split Q-Learning [29,32]. All three split agent classes are standardized for their
parametric notions (see Table 1 for a complete parametrization and Appendix A
for more literature review of these clinically-inspired reward-processing biases).
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Split Multi-Armed Bandit Model. The split MAB agent is built upon
Human-Based Thompson Sampling (HBTS, Algorithm 1) [10]. The positive and
negative streams are each stored in the success and failure counts Sa and Fa.

Algorithm 1 Split MAB: Human-Based Thompson Sampling (HBTS)
1: Initialize: Sa′ = 1, Fa′ = 1, ∀a′ ∈ A.
2: For each episode e do
3: Initialize state s
4: Repeat for each step t of the episode e
5: Sample θa′ ∼ Beta(Sa′ , Fa′), ∀a′ ∈ At

6: Take action a = arg maxa′ θa′ , and
7: Observe r+ and r− ∈ Ra′

8: Sa := λ+Sa + w+r+

9: Fa := λ−Fa − w−r−

10: until s is the terminal state
11: End for

Split Contextual Bandit Model. Similarly, we now extend Contextual
Thompson Sampling (CTS) [2] to a more flexible framework, inspired by a wide
range of reward-processing biases discussed in Appendix A. The proposed Split
CTS (Algorithm 2) treats positive and negative rewards in two separate streams.
It introduces four hyper-parameters which represent, for both positive and neg-
ative streams, the reward processing weights (biases), as well as discount factors
for the past rewards: λ+ and λ− are the discount factors applied to the pre-
viously accumulated positive and negative rewards, respectively, while w+ and
w− represent the weights on the positive and negative rewards at the current
iteration. We assume that at each step, an agent receives both positive and neg-
ative rewards, denote r+ and r−, respectively (either one of them can be zero,
of course). As in HBTS, the two streams are independently updated.

Algorithm 2 Split CB: Split Contextual Thompson Sampling (SCTS)

1: Initialize: B+
a′ = B−

a′ = Id, μ̂+
a′ = μ̂−

a′ = 0d, f
−
a′ = f−

a′ = 0d, ∀a′ ∈ A.
2: For each episode e do
3: Initialize state s
4: Repeat for each step t of the episode e
5: Receive context xt

6: Sample μ̃+
a′ ∼ N(μ̂+

a′ , v
2B+

a′
−1

) and μ̃−
a′ ∼ N(μ̂−

a′ , v
2B−

a′
−1

), ∀a′ ∈ At

7: Take action a = arg maxa′(x�
t μ̃+

a′ + x�
t μ̃−

a′), and
8: Observe r+ and r− ∈ Ra′

9: B+
a := λ+B+

a + xtx
�
t , f+

a := λ+f+
a + w+xtr

+, μ̂+
a := B+

a
−1

f+
a

10: B−
a := λ−B−

a + xtx
�
t , f−

a := λ−f−
a + w−xtr

−, μ̂−
a := B−

a
−1

f−
a

11: until s is the terminal state
12: End for

Split Reinforcement Learning Model. The split RL agent is built upon
Split Q-Learning (SQL, Algorithm 3) by [29,32] (and its variant, MaxPain, by
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[14]). The processing of the positive and negative streams is handled by the two
independently updated Q functions, Q+ and Q−.

Algorithm 3 Split RL: Split Q-Learning (SQL)
1: Initialize: Q, Q+, Q− tables (e.g., to all zeros)
2: For each episode e do
3: Initialize state s
4: Repeat for each step t of the episode e
5: Q(s, a′) := Q+(s, a′) + Q−(s, a′), ∀a′ ∈ At

6: Take action a = arg maxa′ Q(s, a′), and
7: Observe s′ ∈ S, r+ and r− ∈ R(s), s ← s′

8: Q+(s, a) := λ+Q̂+(s, a)+ αt(w+r+ + γ maxa′ Q̂+(s′, a′) − Q̂+(s, a))
9: Q−(s, a) := λ−Q̂−(s, a)+ αt(w−r− + γ maxa′ Q̂−(s′, a′) − Q̂−(s, a))

10: until s is the terminal state
11: End for

Clinically Inspired Reward Processing Biases in Split Models. For each
agent, we set the four parameters: λ+ and λ− as the weights of the previ-
ously accumulated positive and negative rewards, respectively, w+ and w− as
the weights on the positive and negative rewards at the current iteration. DIS-
CLAIMER: while we use disorder names for the models, we are not claiming
that the models accurately capture all aspects of the corresponding disorders.

In the following section we describe how specific constraints on the model
parameters in the proposed method can generate a range of reward processing
biases, and introduce several instances of the split models associated with those
biases; the corresponding parameter settings are presented in Table 1. As we
demonstrate later, specific biases may be actually beneficial in some settings,
and our parameteric approach often outperforms the standard baselines due to
increased generality and flexibility of our two-stream, multi-parametric formula-
tion.

Note that the standard split approach correspond to setting the four
(hyper)parameters used in our model to 1. We also introduce two variants which
only learn from one of the two reward streams: negative split models (algorithms
that start with N) and positive split models (algorithms that start with P), by
setting to zero λ+ and w+, or λ− and w−, respectively. Next, we introduce the
model which incorporates some mild forgetting of the past rewards or losses (0.5
weights) and calibrating the other models with respect to this one; we refer to
this model as M for “moderate” forgetting.

We also specified the mental agents differently with the prefix “b-” referring
to the MAB version of the split models (as in “bandits’), “cb-” referring to the
CB version, and no prefix as the RL version (for its general purposes).

We will now introduced several models inspired by certain reward-processing
biases in a range of mental disorders-like behaviors in Table 1.

Recall that PD patients are typically better at learning to avoid negative
outcomes than at learning to achieve positive outcomes [17]; one way to model
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Table 1. Parameter setting for different types of reward biases in the split models.

λ+ w+ λ− w−

“Addiction” (ADD) 1 ± 0.1 1 ± 0.1 0.5 ± 0.1 1 ± 0.1

“ADHD” 0.2 ± 0.1 1 ± 0.1 0.2 ± 0.1 1 ± 0.1

“Alzheimer’s” (AD) 0.1 ± 0.1 1 ± 0.1 0.1 ± 0.1 1 ± 0.1

“Chronic pain” (CP) 0.5 ± 0.1 0.5 ± 0.1 1 ± 0.1 1 ± 0.1

“bvFTD” 0.5 ± 0.1 100 ± 10 0.5 ± 0.1 1 ± 0.1

“Parkinson’s” (PD) 0.5 ± 0.1 1 ± 0.1 0.5 ± 0.1 100 ± 10

“moderate” (M) 0.5 ± 0.1 1 ± 0.1 0.5 ± 0.1 1 ± 0.1

Standard (HBTS, SCTS, SQL) 1 1 1 1

Positive (PTS, PCTS, PQL) 1 1 0 0

Negative (NTS, NCTS, NQL) 0 0 1 1

this is to over-emphasize negative rewards, by placing a high weight on them, as
compared to the reward processing in healthy individuals. Specifically, we will
assume the parameter w− for PD patients to be much higher than normal w−
(e.g., we use w− = 100 here), while the rest of the parameters will be in the same
range for both healthy and PD individuals. Patients with bvFTD are prone to
overeating which may represent increased reward representation. To model this
impairment in bvFTD patients, the parameter of the model could be modified
as follow: wM

+ << w+ (e.g., w+ = 100 as shown in Table 1), where w+ is the
parameter of the bvFTD model has, and the rest of these parameters are equal
to the normal one. To model apathy in patients with Alzheimer’s, including
downplaying rewards and losses, we will assume that the parameters λ+ and λ−
are somewhat smaller than normal, λ+ < λM

+ and λ− < λM
− (e.g., set to 0.1 in

Table 1), which models the tendency to forget both positive and negative rewards.
Recall that ADHD may be involve impairments in storing stimulus-response
associations. In our ADHD model, the parameters λ+ and λ− are smaller than
normal, λM

+ > λ+ and λM
− > λ−, which models forgetting of both positive and

negative rewards. Note that while this model appears similar to Alzheimer’s
model described above, the forgetting factor will be less pronounced, i.e. the
λ+ and λ− parameters are larger than those of the Alzheimer’s model (e.g., 0.2
instead of 0.1, as shown in Table 1). As mentioned earlier, addiction is associated
with inability to properly forget (positive) stimulus-response associations; we
model this by setting the weight on previously accumulated positive reward
(“memory”) higher than normal, τ > λM

+ , e.g. λ+ = 1, while λM
+ = 0.5. We model

the reduced responsiveness to rewards in chronic pain by setting w+ < wM
+ so

there is a decrease in the reward representation, and λ− > λM
− so the negative

rewards are not forgotten (see Table 1).
Of course, the above models should be treated only as first approximations

of the reward processing biases in mental disorders, since the actual changes
in reward processing are much more complicated, and the parameteric setting
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must be learned from actual patient data, which is a nontrivial direction for
future work. Herein, we simply consider those models as specific variations of our
general method, inspired by certain aspects of the corresponding diseases, and
focus primarily on the computational aspects of our algorithm, demonstrating
that the proposed parametric extension of standard algorithms can learn better
than the baselines due to added flexibility.

5 Empirical Evaluation

Empirically, we evaluated the algorithms in four settings: the gambling game of
a simple MDP task, a simple MAB task, a real-life Iowa Gambling Task (IGT)
[41], and a PacMan game. There is considerable randomness in the reward, and
predefined multimodality in the reward distributions of each state-action pairs
in all four tasks. We ran split MAB agents in MAB, MDP and IGT tasks, and
split CB and RL agents in all four tasks.

5.1 MAB and MDP Tasks with Bimodal Rewards

In this simple MAB example, a player starts from initial state A, choose between
two actions: go left to reach state B, or go right to reach state C. Both states
B and C reveals a zero rewards. From state B, the player observes a reward
from a distribution RB. From state C, the player observes a reward from a dis-
tribution RC . The reward distributions of states B and C are both multimodal
distributions (for instance, the reward r can be drawn from a bi-modal distribu-
tion of two normal distributions N(μ = 10, σ = 5) with probability p = 0.3 and
N(μ = −5, σ = 1) with p = 0.7). The left action (go to state B) by default is
set to have an expected payout lower than the right action. However, the reward
distributions can be spread across both the positive and negative domains. For
Split models, the reward is separated into a positive stream (if the revealed
reward is positive) and a negative stream (if the revealed reward is negative).

Experiments. To evaluate the robustness of the algorithms, we simulated 100
randomly generated scenarios of bi-modal distributions, where the reward can be
drawn from two normal distribution with means as random integers uniformly
drawn from −100 to 100, standard deviations as random integers uniformly
drawn from 0 to 50, and sampling distribution p uniformly drawn from 0 to 1
(assigning p to one normal distribution and 1−p to the other one). Each scenario
was repeated 50 times with standard errors as bounds. In all experiments, the
discount factor γ was set to be 0.95. For non-exploration approaches, the explo-
ration is included with ε-greedy algorithm with ε set to be 0.05. The learning
rate was polynomial αt(s, a) = 1/nt(s, a)0.8, which is better in theory and in
practice [15].

Benchmark. We compared the following algorithms: In MAB setting, we have
Thompson Sampling (TS) [44], Upper Confidence Bound (UCB) [4], epsilon
Greedy (eGreedy) [42], EXP3 [5] (and gEXP3 for the pure greedy version
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Fig. 1. MAB in MAB task: example where Split MAB performs better than base-
lines.

of EXP3), Human Based Thompson Sampling (HBTS) [10]. In CB setting,
we have Contextual Thompson Sampling (CTS) [2], LinUCB [26], EXP4 [8]
and Split Contextual Thompson Sampling (SCTS). In RL setting, we have
Q-Learning (QL), Double Q-Learning (DQL) [20], State–action–reward–state–
action (SARSA) [38], Standard Split Q-Learning (SQL) [29,32], MaxPain (MP)
[14], Positive Q-Learning (PQL) and Negative Q-Learning (NQL).

Evaluation Metric. In order to evaluate the performances of the algorithms,
we need a scenario-independent measure which is not dependent on the specific
selections of reward distribution parameters and pool of algorithms being con-
sidered. The final cumulative rewards might be subject to outliers because they
are scenario-specific. The ranking of each algorithms might be subject to selec-
tion bias due to different pools of algorithms being considered. The pairwise
comparison of the algorithms, however, is independent of the selection of sce-
nario parameters and selection of algorithms. For example, in the 100 randomly
generated scenarios, algorithm X beats Y for n times while Y beats X m times.
We may compare the robustness of each pairs of algorithms with the proportion
n : m.

Results. Figure 1 and Fig. 2 are two example scenarios plotting the reward dis-
tributions, the percentage of choosing the better action (go right), the cumulative
rewards and the changes of two Q-tables (the weights stored in μ̃+

a and μ̃−
a ) over

the number of iterations, drawn with standard errors over multiple runs. Each
trial consisted of a synchronous update of all 100 actions. With polynomial learn-
ing rates, we see split models (HBTS in bandit agent pool, SCTS in contextual
bandit agent pool, and SQL in RL agent pool) converged much more quickly
than baselines.
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Fig. 2. CB in MAB task: example where SCTS performs better than baselines.

Tables 2 and 4 summarized the pairwise comparisons between the agents with
the row labels as the algorithm X and column labels as algorithm Y giving n : m
in each cell denoting X beats Y n times and Y beats X m times. For each cell
of ith row and jth column, the first number indicates the number of rounds the
agent i beats agent j, and the second number the number of rounds the agent
j beats agent i. The average wins of each agent is computed as the mean of the
win rates against other agents in the pool of agents in the rows. The bold face
indicates that the performance of the agent in column j is the best among the
agents, or the better one. Among the algorithms, split models never seems to fail
catastrophically by maintaining an overall advantages over the other algorithms.

For instance, in the MAB task, among the MAB agent pool, HBTS beats
non-split version of TS with a winning rate of 52.65% over 46.72%. In the CB
agent pool, LinUCB performed the best with a winning rate of 57.07%. This sug-
gested that upper confidence bound (UCB)-based approach are more suitable for
the two-armed MAB task that we proposed, although theoretical analysis in [1]
shows that Thompson sampling models for Bernoulli bandits are asymptotically
optimal. Further analysis is worth pursuing to explore UCB-based split models.
In the RL agent pool, we observe that SARSA algorithm is the most robust
among all agents, suggesting a potential benefit of the on-policy learning in the
two-armed MAB problem that we proposed. Similarly in the MDP task, the
behavior varies. In the MAB agent pool, despite not built with state representa-
tion, gEXP, an adversarial bandit algorithm with the epsilon greedy exploration
performed the best. We suspected that our non-Gaussian reward distribution
might resemble the nonstationary or adversarial setting that EXP3 algorithm
is designed for. In the CB agent pool, we observed that LinUCB performed the
best, which matched our finding in the similar MAB task above. In the RL
agent pool, one of the split models, MP performed the best against all baselines,
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Table 2. MAB Task: 100 randomly generated scenarios of Bi-modal rewards

Table 3. “Mental” Agents in MAB Task: 100 randomly generated scenarios
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Table 4. MDP Task: 100 randomly generated scenarios of Bi-modal rewards

Table 5. “Mental” Agents in MDP Task: 100 randomly generated scenarios
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Fig. 3. Learning curves in IGT scheme 1: “Mental” MAB, CB and RL agents.

Table 6. Schemes of Iowa Gambling Task

Decks Win per

card

Loss per card Expected

value

Scheme

A (bad) +100 Frequent: −150 (p = 0.1), −200 (p = 0.1),

−250 (p = 0.1), −300 (p = 0.1), −350 (p = 0.1)

−25 1

B (bad) +100 Infrequent: −1250 (p = 0.1) −25 1

C (good) +50 Frequent: −25 (p = 0.1), −75 (p = 0.1), −50 (p = 0.3) +25 1

D (good) +50 Infrequent: −250 (p = 0.1) +25 1

A (bad) +100 Frequent: −150 (p = 0.1), −200 (p = 0.1),

−250 (p = 0.1), −300 (p = 0.1), −350 (p = 0.1)

−25 2

B (bad) +100 Infrequent: −1250 (p = 0.1) −25 2

C (good) +50 Infrequent: −50 (p = 0.5) +25 2

D (good) +50 Infrequent: −250 (p = 0.1) +25 2

suggesting a benefit in the split mechanism in the MDP environments that we
generated.

To explore the variants of split models representing different mental disor-
ders, we also performed the same experiments on the 7 disease models proposed
above. Tables 3 and 5 summarized their pairwise comparisons with the standard
ones, where the average wins are computed averaged against three standard base-
line models. Overall, PD (“Parkinson’s”), CP (“chronic pain”), ADHD and M
(“moderate”) performed relatively well. In the MAB setting, the optimal reward
bias are PD and M for the split MAB models, ADHD and CP for the split
CB models, and bvFTD and M for the split RL models. In the MDP setting,
the optimal reward bias are PD and M for the split MAB models, ADHD and
bvFTD for the split CB models, and ADHD and CP for the split RL models.
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5.2 Iowa Gambling Task

The original Iowa Gambling Task (IGT) studies decision making where the par-
ticipant needs to choose one out of four card decks (named A, B, C, and D),
and can win or lose money with each card when choosing a deck to draw from
[7], over around 100 actions. In each round, the participants receives feedback
about the win (the money he/she wins), the loss (the money he/she loses), and
the combined gain (win minus lose). In the MDP setup, from initial state I, the
player select one of the four deck to go to state A, B, C, or D, and reveals pos-
itive reward r+ (the win), negative reward r− (the loss) and combined reward
r = r++ r− simultaneously. Decks A and B by default is set to have an expected
payout (−25) lower than the better decks, C and D (+25). For baselines, the
combined reward r is used to update the agents. For split models, the positive
and negative streams are fed and learned independently given the r+ and r−.

There are two major payoff schemes in IGT. In the traditional payoff scheme,
the net outcome of every 10 cards from the bad decks (i.e., decks A and B) is
−250, and +250 in the case of the good decks (i.e., decks C and D). There are
two decks with frequent losses (decks A and C), and two decks with infrequent
losses (decks B and D). All decks have consistent wins (A and B to have +100,
while C and D to have +50) and variable losses (summarized in Table 6, where
scheme 1 [18] has a more variable losses for deck C than scheme 2 [22]). We
performed the each scheme for 200 times over 500 actions.

Fig. 4. Average final scores in Pacman with different stationarities: Columns
as (a) stationary; (b) stochastic reward muting by every 10 rounds; (c) stochastic
reward scaling by every 10 rounds; (d) stochastic reward flipping by every 10 rounds.
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Results. Among the variants of Split models and baselines, the split contex-
tual bandit (SCTS) performs best in scheme 1 with an averaged final cumula-
tive rewards of 1200.76 over 500 draws of cards, significantly better than the
MAB baseline TS (991.26), CB baseline LinUCB (1165.23) and RL baseline QL
(1086.33). Mental variants of SCTS, such as CP (“chronic pain”, 1136.38), also
performed quite well. This is consistent to the clinical implication of chronic pain
patients which tend to forget about positive reward information (as modeled by
a smaller λ+) and lack of drive to pursue rewards (as modeled by a smaller w+).
In scheme 2, eGreedy performs best with the final score of 1198.32, followed by
CP (1155.84) and SCTS (1150.22). These examples suggest that the proposed
framework has the flexibility to map out different behavior trajectories in real-
life decision making (such as IGT). Figure 3 demonstrated the short-term (in
100 actions) and long-term behaviors of different mental agents, which matches
clinical discoveries. For instance, ADD (“addiction”) quickly learns about the
actual values of each decks (as reflected by the short-term curve) but in the
long-term sticks with the decks with a larger wins (despite also with even larger
losses). At around 20 actions, ADD performs better than baselines in learning
about the decks with the better gains. In all three agent pools (MAB agents, CB
agents, RL agents), we observed interesting trajectories revealed by the short-
term dynamics (Fig. 3), suggesting a promising next step to map from behavioral
trajectories to clinically relevant reward processing bias of the human subjects.

5.3 PacMan Game Across Various Stationarities

We demonstrate the merits of the proposed algorithm using the classic game of
PacMan. The goal of the agent is to eat all the dots in the maze, known as Pac-
Dots, as soon as possible while simultaneously avoiding collision with ghosts,
which roam the maze trying to kill PacMan. The rules for the environment
(adopted from Berkeley AI PacMan1) are as follows. There are two types of
negative rewards: on collision with a ghost, PacMan loses the game and gets
a negative reward of −500; and at each time frame, there is a constant time-
penalty of −1 for every step taken. There are three types of positive rewards.
On eating a Pac-Dot, the agent obtains a reward of +10. On successfully eating
all the Pac-Dots, the agent wins the game and obtains a reward of +500. The
game also has two special dots called Power Pellets in the corners of the maze,
which on consumption, give PacMan the temporary ability of “eating” ghosts.
During this phase, the ghosts are in a “scared” state for 40 frames and move at
half their speed. On eating a “scared” ghost, the agent gets a reward of +200, the
ghost returns to the center box and returns to its normal “unscared” state. As a
more realistic scenarios as real-world agents, we define the agents to receive their
rewards in positive and negative streams separately. Traditional agents sum the
two streams as a regular reward, while Split agents use two streams separately.

We applied several types of stationarities to PacMan as in [27]. In order to
simulate a lifelong learning setting, we assume that the environmental settings

1 http://ai.berkeley.edu/project overview.html.

http://ai.berkeley.edu/project_overview.html
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arrive in batches (or stages) of episodes, and the specific rule of the game (i.e.,
reward distributions) may change across batches, while remaining stationary
within each batch. The change is defined by a stochastic process of the game
setting that an event A is defined for the positive stream and an event B is defined
for the negative stream, independent of each other (A ⊥ B). The stochastic
process is resampled every 10 rounds (i.e. a batch size of 10).

Stochastic Reward Muting. To simulate the changes of turning on or off
of a certain reward stream, we define the event A as turning off the positive
reward stream (i.e. all the positive rewards are set to be zero) and the event
B as turning off the negative reward stream (i.e. all the penalties are set to be
zero). P(A) = P(B) = 0.5 in the experiments.

Stochastic Reward Scaling. To simulate the changes of scaling up a certain
reward stream, we define the event A as scaling up the positive reward stream
by 100 (i.e. all the positive rewards are multiplied by 100) and the event B as
scaling up the negative reward stream (i.e. all the penalties are multiplied by
100). P(A) = P(B) = 0.5 in the experiments.

Stochastic Reward Flipping. To simulate the changes of flipping certain
reward stream, we define the event A as flipping the positive reward stream
(i.e. all the positive rewards are multiplied by −1 and considered penalties) and
the event B as flipping the negative reward stream (i.e. all the penalties are
multiplied by −1 and considered positive rewards). We set P(A) = P(B) = 0.5.

We ran the proposed agents across these different stationarities for 200
episodes over multiple runs and plotted their average final scores with standard
errors.

Results. As in Fig. 4, in all four scenarios, the split models demonstrated com-
petitive performance against their baselines. In the CB agent pools, where the
state-less agents were not designed for such a complicated gaming environment,
we still observe a converging learning behaviors from these agents. LinUCB as
a CB baseline, performed better than the SCTS, which suggested a potentially
better theoretical model to integrate split mechanism for this game environment.
However, it is worth noting that in the reward flipping scenario, several mental
agents are even more advantageous than the standard split models as in Fig. 4(d),
which matches clinical discoveries and the theory of evolutionary psychiatry. For
instance, ADHD-like fast-switching attention seems to be especially beneficial
in this very non-stationary setting of flipping reward streams. Even in a full sta-
tionary setting, the behaviors of these mental agents can have interesting clinical
implications. For instance, the video of a CP (“chronic pain”) agent playing Pac-
Man shows a clear avoidance behavior to penalties by staying at a corner very
distant from the ghosts and a comparatively lack of interest to reward pursuit
by not eating nearby Pac-Dots, matching the clinical characters of chronic pain
patients. From the video, we observe that the agent ignored all the rewards in
front of it and spent its life hiding from the ghosts, trying to elongate its life span
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at all costs, even if that implies a constant time penalty to a very negative final
score (The videos of the mental agents playing PacMan after training here2).

6 Conclusions

This research proposes a novel parametric family of algorithms for multi-armed
bandits, contextual bandits and RL problems, extending the classical algorithms
to model a wide range of potential reward processing biases. Our approach draws
an inspiration from extensive literature on decision-making behavior in neuro-
logical and psychiatric disorders stemming from disturbances of the reward pro-
cessing system, and demonstrates high flexibility of our multi-parameter model
which allows to tune the weights on incoming two-stream rewards and memo-
ries about the prior reward history. Our preliminary results support multiple
prior observations about reward processing biases in a range of mental disorders,
thus indicating the potential of the proposed model and its future extensions
to capture reward-processing aspects across various neurological and psychiatric
conditions.

The contribution of this research is two-fold: from the machine learning per-
spective, we propose a simple yet powerful and more adaptive approach to MAB,
CB and RL problems; from the neuroscience perspective, this work is the first
attempt at a general, unifying model of reward processing and its disruptions
across a wide population including both healthy subjects and those with mental
disorders, which has a potential to become a useful computational tool for neu-
roscientists and psychiatrists studying such disorders. Among the directions for
future work, we plan to investigate the optimal parameters in a series of com-
puter games evaluated on different criteria, for example, longest survival time
vs. highest final score. Further work includes exploring the multi-agent interac-
tions given different reward processing bias. These discoveries can help build
more interpretable real-world humanoid decision making systems. On the neu-
roscience side, the next steps would include further tuning and extending the
proposed model to better capture observations in modern literature, as well as
testing the model on both healthy subjects and patients with mental conditions.

A Further Motivation from Neuroscience

In the following section, we provide further discussion with a literature review on
the neuroscience and clinical studies related to the reward processing systems.

Cellular Computation of Reward and Reward Violation. Decades of
evidence has linked dopamine function to reinforcement learning via neurons in
the midbrain and its connections in the basal ganglia, limbic regions, and cortex.
Firing rates of dopamine neurons computationally represent reward magnitude,
expectancy, and violations (prediction error) and other value-based signals [39].

2 https://github.com/doerlbh/mentalRL/tree/master/video.

https://github.com/doerlbh/mentalRL/tree/master/video
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This allows an animal to update and maintain value expectations associated
with particular states and actions. When functioning properly, this helps an
animal develop a policy to maximize outcomes by approaching/choosing cues
with higher expected value and avoiding cues associated with loss or punishment.
The mechanism is conceptually similar to reinforcement learning widely used in
computing and robotics [43], suggesting mechanistic overlap in humans and AI.
Evidence of Q-learning and actor-critic models have been observed in spiking
activity in midbrain dopamine neurons in primates [6] and in the human striatum
using the BOLD signal [36].

Positive vs. Negative Learning Signals. Phasic dopamine signaling repre-
sents bidirectional (positive and negative) coding for prediction error signals [19],
but underlying mechanisms show differentiation for reward relative to punish-
ment learning [40]. Though representation of cellular-level aversive error signal-
ing has been debated [13], it is widely thought that rewarding, salient information
is represented by phasic dopamine signals, whereas reward omission or punish-
ment signals are represented by dips or pauses in baseline dopamine firing [39].
These mechanisms have downstream effects on motivation, approach behavior,
and action selection. Reward signaling in a direct pathway links striatum to cor-
tex via dopamine neurons that disinhibit the thalamus via the internal segment
of the globus pallidus and facilitate action and approach behavior. Alternatively,
aversive signals may have an opposite effect in the indirect pathway mediated
by D2 neurons inhibiting thalamic function and ultimately action, as well [16].
Manipulating these circuits through pharmacological measures or disease has
demonstrated computationally-predictable effects that bias learning from posi-
tive or negative prediction error in humans [17], and contribute to our under-
standing of perceptible differences in human decision making when differentially
motivated by loss or gain [45].

Clinical Implications. Highlighting the importance of using computational
models to understand predict disease outcomes, many symptoms of neurological
and psychiatric disease are related to biases in learning from positive and neg-
ative feedback [35]. Studies in humans have shown that when reward signaling
in the direct pathway is over-expressed, this may enhance the value associated
with a state and incur pathological reward-seeking behavior, like gambling or
substance use. Conversely, when aversive error signals are enhanced, this results
in dampening of reward experience and increased motor inhibition, causing symp-
toms that decrease motivation, such as apathy, social withdrawal, fatigue, and
depression. Further, it has been proposed that exposure to a particular distribu-
tion of experiences during critical periods of development can biologically pre-
dispose an individual to learn from positive or negative outcomes, making them
more or less susceptible to risk for brain-based illnesses [21]. These points dis-
tinctly highlight the need for a greater understanding of how intelligent systems
differentially learn from rewards or punishments, and how experience sampling
may impact reinforcement learning during influential training periods.
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Abstract. Consider a question, “Can machines be conscious?” The sub-
ject “consciousness” is vague and challenging. Although there has been a
rich collection of literature on consciousness, computational modeling of
consciousness that is both holistic in scope and detailed in simulatable
computation is lacking. Based on recent advances on a new capability—
Autonomous Programming For General Purposes (APFGP)—this work
presents APFGP as a clearer, deeper and more practical characterization
of consciousness, for natural (biological) and artificial (machine) systems.
All animals have APFGP but traditional AI systems do not. This work
reports a new kind of AI systems—conscious machines. Instead of argu-
ing what static tasks a conscious machine should be able to do, this work
suggests that APFGP is a computationally clearer and necessary crite-
rion for us to dynamically judge whether a system can become maturely
conscious through lifelong development, even if it (e.g., a fruit fly) does
not have a full array of primate like capabilities such as vision, audition,
and natural language understanding. The results here involve a series of
new concepts and experimental studies for vision, audition, and natural
languages with new developmental capabilities that are not present in
many published systems, e.g., IBM Deep Blue, IBM Watson, AlphaGo,
AlphaFold and other traditional AI systems and intelligent robots.

Keywords: Consciousness · Brain · AI · Natural intelligence ·
Autonomous development · Vision · Audition · Natural language
understanding

1 Introduction

We can trace the origin of modern concept of consciousness to John Locke’s
“Essay Concerning Human Understanding”, published in 1690, in which he
defined consciousness as “the perception of what passes in a man’s own mind”.

Merriam-Webster On-line Dictionary defined consciousness as 1. a: the qual-
ity or state of being aware especially of something within oneself; b: the state
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or fact of being conscious of an external object, state, or fact; c: awareness; 2:
the state of being characterized by sensation, emotion, volition, and thought:
mind; 3: the totality of conscious states of an individual; 4: the normal state of
conscious life; 5: the upper level of mental life of which the person is aware as
contrasted with unconscious processes.

Christof Koch [6] wrote: “Consciousness is everything you experience. It is
the tune stuck in your head, the sweetness of chocolate mousse, the throbbing
pain of a toothache, the fierce love for your child and the bitter knowledge that
eventually all feelings will end.”

As we can see, the term “consciousness” has been very vague and superficial,
without a computational basis that has been mathematically proven to bear
the claim of “totality” (Merriam-Webster) and “everything” (Koch), at least in
principle. This paper intends to clarify this vagueness and ground this super-
ficialness on a deep foundation. This computational basis is a well-established
theory called Universal Turing Machines.

A Dialogue of AMD Newsletters has a topic: “will social robots need to be
consciously aware?”, Yasuko Kitano, Conelius Weber & Stefan Wermter, Justin
Hart & Brain Scassellati, Axel Cleereman, Juyang Weng, and Guy Hoffman &
Moran Cerf made a total of six commentaries. The Dialogue coordinator Jenet
Wiles wrote: “Weng [21] takes a different position from the other commentaries,
starting from the assertion that all aspects of awareness are tightly interrelated
and each cannot function without the others. He calls attention to his brain
scale models ... Integrative systems are needed in modeling, but we should be
sceptical of approaches that exclude progress on understanding the biological
sub-systems of different neural regions.” The title “Consciousness for a social
robot is not piecemeal” in Weng [21] does not mean to “exclude progress” on
piecemeal studies of “subsystems”. But rather, it means that we need a holistic
approach in order not to get lost in the maze of this extremely rich subject.

This work further explains why. As we will see from the theory of emergent
Universal Turing Machine here, “subsystems of different neural regions” are
like a block of computer memory of a particular Universal Turing Machine.
When one studies each sub-system of consciousness without a holistic theory
about consciousness, he is like one of the blind men in Fig. 1. Many disciplines
like biology, neuroscience, psychology, electrical engineering, computer science,
mathematics, and physics are related to consciousness. Yes, we often say physics
is everything. In my humble personal view, each such traditional discipline is like
a blind man when it studies a biological brain in general and its consciousness
in particular. If the reader has learned the theory of Universal Turing Machines,
he can understand why there are many kinds of Universal Turing Machines and
better appreciate that each brain, ranging from fruit flies to humans, is a different
Universal Turing Machine. No two brains should be exactly the same!

Why is each discipline like a blind man? The term “consciousness” has been
used in very different contexts. In particular, the term involves extremely com-
plex physical entities, such as brain, body, environment, life and biology. For
example, how does a cattle or a human in Fig. 2 learn consciousness so that
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Fig. 1. When we study only a sub-system of consciousness of the brain without a
holistic understanding, each of us is like a blind man touching an elephant. Further-
more, among biology, neuroscience, psychology, electrical engineering, computer sci-
ence, mathematics, and physics each discipline is like a blind man.

it navigates autonomously through the hustle and bustle of streets to reach its
home daily? Can an artificial machine learn to do the same and much more?
The theory of emergent Universal Turing Machine as a computational basis can
explain all such complexity and richness in a principled way.

Therefore as a science of consciousness, we need a concise, but highly precise
description of a minimal set of computational mechanisms that have a potential
to give rise to natural consciousness and verifiable artificial consciousness. Such
a set is not meant to explain every minor detail of all biological systems. This is
because any model of biology is inevitably an approximation. However, I argue
that we must take a holistic approach. Even though such a holistic approach is
still an approximation, it is more insightful than piecemeal approaches.

This minimal holistic set has a potential to make consciousness clearer and
deeply understood. Hopefully, the set not only accounts for a wide variety of
natural consciousness, but also guides developments of artificial consciousness.
By artificial consciousness, I mean a robot that displays a repertoire of senso-
rimotor behaviors that resemble what we call “consciousness”, like that from
lower to higher animals.

The remainder of this paper is organized as follows. Section 2 overviews the
theory of Turing Machines. Section 3 introduces the theory of Universal Tur-
ing Machines. Section 4 discusses eight (8) necessary conditions as GENISAMA
that seem to be necessary for realizing consciousness. Section 5 presents the new
characterization of consciousness—the APFGP capability that are made possi-
ble by GENISAMA Universal Turing Machines. Section 6 describes Development
Networks that have a potential to give rise to consciousness through lifetime
development. Section 7 outlines motivation which includes emotion. Section 8
summaries properties of DN. Section 9 discusses how a DN learns consciousness.
Some early experimental results are reported in Sect. 10. Section 11 provides
concluding remarks.
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Fig. 2. A cattle (solid ellipse) and a human (dashed ellipse) navigate on a busy street
of New Delhi, India. They are conducting conscious learning, as defined in Definition 2.

2 Turing Machines

We assume natural and artificial consciousness all arises from computations of
information. Before we talk about what we mean by computation, let us look at
a well-known but extremely simple model of computing.

Turing Machines, originally proposed by Alan Turing [18] in 1936, were not
meant to explain consciousness at all. However, as we will surprisingly see below,
we need the assistance of Turing Machines to understand how consciousness
arises from computations by a machine, both natural and artificial.

3

cΔ a t s a r e m y

Fig. 3. An example of Turing Machine. Each cell of the tape bears only a symbol. The
controller has a current state (3 in the figure) at each integer time.

A Turing Machine (TM) [3,10], illustrated in Fig. 3, consists of an infinite
tape, a read-write head, and a controller. The controller consists of a sequence
of moves where each move is a 5-word sentence of the following form:

(q, γ) → (q′, γ′, d) (1)
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meaning that if the current state is q and the current input that the head senses
is γ on the tape, then the machine enters to next state q′, writes γ′ onto the
tape, and its head moves in direction d (left, right, or stay) but no more than
one cell away. The Turing Machine starts from the initial state q0 and input on
the tape. When the state is halt h, what on the tape is the output computed by
the TM from the input.

Intuitively speaking, let us consider each symbol in the above 5-word expres-
sion as a “word”. Then all such 5-word expressions are “sentences”. Thus, a
human-handcrafted “program” is a sequence of such 5-word sentences the TM
must follow in computation. Obviously, although such sentences are not a natural
language, they are more precise than a natural language.

After we have tried a variety of small programs, such as (1) checking whether
a sequence satisfies a predefined property (e.g., it contains an odd number of sym-
bol b), (2) doing arithmetic computations (e.g., additions, subtractions, multipli-
cations, and divisions); (3) enabling a program to call another program, and so
on, we came up with a thesis: A Turing Machine can do any number of compu-
tations that a paper-and-pencil procedure allows a human to do by hand. This
is called the Church-Turing thesis [3,10].

Weng 2015 [20] proposed that the 5-word vector in Eq. (1) can be concep-
tually simplified by combining the right side as a new space of state/action, so
that the control of any Turing machine can be modelled by a finite automaton
(FA) by expanding the state on the left side to the new space.

The remaining problem then that Alan Turing faced was that such a program
is for a special purpose, and such a machine is called a special-purpose computer.
The revolution discussed in the next section broke this restriction.

3 Universal Turing Machines

How can we make the above machine of general purposes? Turing found that
we do not need to change the above definition. All we need is to augment the
meaning of the input on the tape!

His bright idea is that the tape contains not only the input data for the
machine to process, but also the input program for the machine to emulate using
the input data!

In his 1936 paper [18], Turing explained in detail how this emulation is done.
His main idea is to treat the program section on the tape as a sequence of 5-word
moves. This new machine has a new program, called a compiler that compiles
any valid program and emulates the input program on the input data. This
new kind of Turing Machines is called Universal Turing Machines (UTM). We
called it universal because the program on the tape is open-ended, supplied by
any users for any purposes. This great ideas of universal computers gave rise to
today’s thriving computer industry.

However, Universal Turing Machines do not explain consciousness. They
are still not conscious as we know it. The important rule of Universal Turing
Machines in helping us understand consciousness is not known until this paper.
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Furthermore, traditionally consciousness is a subject primarily of philosophy.
This challenging subject has been largely off-limit to AI other than many recent
piecemeal discussions.

To see the link between Turing Machines and consciousness, we must break
a series of restrictions in Turing Machines, as explained in the next section, so
that a new kind of super machines can do AGPFG like brains.

4 Eight Requirements for Consciousness

The eight requirements below were not well known as necessary for consciousness.
At least the APFGP capability in the title requires all of them. However, they are
insufficient for giving rise to APFGP without the full Developmental Networks
(DN) to be discussed in the next section.

To facilitate memorization, let us summarize the eight requirements in eight
words:Grounded, Emergent,Natural, Incremental, Skulled,Attentive,Motivated,
and Abstractive, or acronym GENISAMA. Let us explain each of them below.

Grounded: Grounded means sensors and effectors of a learner must directly
grounded in the physical world in which the learner lives or operates. IBM Deep
Blue, IBM Watson, and AlphaGo are not grounded. Instead, it is humans who
synthesize symbols from the physical world, and thus shield them off from the
rich physical game environments, including their opponents.

Emergent: The signals in the sensors, effectors and all representations inside the
“skull” of the learner must emerge automatically through interactions between
the learner and the physical world by way of sensors, effectors, and genome (aka
developmental program). Because genome is meant to fit the physical world
through the entire life, not only for only a specific task during the life. For
example, fruit flies must do foraging, fighting and mating. Thus, task-specific
handcrafting of representation in sensors, effectors, and inside the “skull” is
inconsistent to consciousness. The emergence requirement ruled out task-specific
and handcrafted representations, such as weights duplication in convolution used
by deep learning [5,7–9,13,15,26,27]. Likewise, an artificial genetic algorithm
without lifetime learning/development does not have anything to emerge since
each individual does not learn/develop in life.

Natural: The learner must use natural sensory and natural motor signals, instead
of human hand-synthesized features from sensors or hand-synthesized class labels
for effectors, because such symbols and labels are not natural without a human
in the loop. For robots, natural signals are those directly available from a sensor
(e.g., RGB pixel values from a camera) and raw signals for an effector/actuator.
IBM Deep Blue, IBM Watson and AlphaGo all used handcrafted symbols for the
board configurations and symbolic labels for game actions. Such symbols are not
natural, not directly from cameras and not directly for robot arms.

Incremental: Because the current action from the learner will affect the next
input to the learner (e.g., turn left will allow you to see left view), learning must
take place incrementally in time. IBM Deep Blue, IBM Watson and AlphaGo
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appear to have used a batch learning method: all game configurations are avail-
able as a batch for the learner to learn. The learner is not aware how it has
improved from early mistakes in the lifetime.

Skulled: The skull closes the brain of the learner so that any teacher interactions
with the internal brain representation (e.g., twisting internal parameters) are not
permitted. For example, Gary Kasparov [16] “accused the Deep Blue team of
cheating. The allegation was that a grandmaster, presumably a top rival, had
been behind the move.” If this allegation is true, such tempering with Deep Blue
during a game violated the skull-closed rule. Likewise, how can the brain be ware
of what a neurosurgeon did inside its skull?

Attentive: The learner must learn how to attend to various entities in its
environment—the body and extra-body environment. The entities include loca-
tion (where to attend), type (what to attend) and scale to attend (e.g., body,
face, or nose), as well as abstract concepts that the learner learned in life (e.g.,
am I doing the right thing?). IBM Deep Blue, IBM Watson and AlphaGo did
not seem to think “what am I doing?”.

Motivated: The beautiful logic that a Universal Turing Machine posses to emu-
late any valid program does not give rise to consciousness as we know it. By
motivation, we mean that the learner must learn motivation based on its intrin-
sic motives, such as pain avoidance, pleasure seeking, uncertainty awareness, and
sensitivity to novelty. A system that is designed to do facial recognition does not
have a motive to do things other than facial recognition. IBM Deep Blue, IBM
Watson and AlphaGo did not feel real pleasure when they won a game.

Abstractive: Although a shallow definition of consciousness means awareness,
full awareness requires a general capability to abstract higher concepts from
concrete examples. By higher concepts here I mean those concepts that a normal
individual of a species is expected to be able to abstract. Consider movie “Rain
Man”: If a kiss by a lady on the lip is sensed only as “wet”, there is a lack of
abstraction. A baby cannot abstract love from the first kiss, but a normal human
adult is expected to be able to. Thus, abstraction is a learning process.

With the above eight requirements, we are ready to discuss GENISAMA
Universal Turing Machines as a characterization of consciousness.

5 GENISAMA Super Universal Turing Machines:
APFGP

This section describes how a Developmental Network (DN) is capable of learn-
ing any GENISAMA Universal Turing Machine, or GENISAMA UTM for short.
Such a GENISAMA UTM is further capable of APFGP, which the unique capa-
bility that motivated me to propose here as an alternative characterization of
consciousness.

First, we need recognize that there are different degrees of consciousness. A
baby, a first grader in a primary school, a freshman in a college, and a professor
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all has different awareness in terms of knowledge. In other words, consciousness is
related to the environment and the age. However, the APFGP capability would
allow a baby to be a professor of any discipline.

Second, a dog of 10 years old has a different degree of consciousness than a
normal human child of the same age. Namely, consciousness is related to how
much computational resources (e.g., the size of the brain) as well as the genome
(i.e., developmental programs of each species). Thus, APFGP is bounded by the
computational resources and the genome.

Third, if we propose APFGP as a characterization of consciousness, where
does a conscious learner’s input programs from? A UTM takes a program from
the tape along with its data to apply to. However, a conscious machine must
not only do the same. It should be able to run a UTM, but it should also learn
various programs from its environments. That is, the learned programs are from
the physical environments, including school teaching.

We consider five entities W,Z, Y,X,X ′ at times t, t = 0, 1, 2, ..., as illustrated
in the following Table 1. We use discrete times indexed by non-negative numbers
so as to facilitate understanding how consciousness arises in natural and artificial
devices through discrete times sampled from real time.

Table 1. Unfolding time for APFGP in DN

Time 0 1 2 3 4 5 6 7 . . . t

Actable world W W (0) W (1) W (2) W (3) W (4) W (5) W (6) W (7) . . . W (t)

Motor Z Z(0) Z(1) Z(2) Z(3) Z(4) Z(5) Z(6) Z(7) . . . Z(t)

Skulled brain Y Y (0) Y (1) Y (2) Y (3) Y (4) Y (5) Y (6) Y (7) . . . Y (t)

Sensor X X(0) X(1) X(2) X(3) X(4) X(5) X(6) X(7) . . . X(t)

Sensible world W ′ W ′(0) W ′(1) W ′(2) W ′(3) W ′(4) W ′(5) W ′(6) W ′(7) . . . W ′(t)

The first row in the table gives the sample times, indexed by non-negative
integers.

The second row denote the actable world W , such as the body which acts on
W , such as a hand-tool or two shoes.

The third row is the motor Z, which has muscles to drive effectors, such as
arms, legs, and mouth to speak.

The fourth row in the skull-closed brain Y . The computation inside the brain
Y must be fully autonomous, without intervention from any external teachers,
in a task nonspecific way [28].

The fifth row is the sensor X, such as cameras, microphones, and touch
sensors (e.g., skin).

The last row is the sensible world, such as surfaces of objects that reflects
light received by cameras.

The actable world W is typically not exactly the same as the sensible world
W ′, because where sensors sense from and where effectors act on can be different.

Next, we discuss the rules about how a DN denoted as N = (X,Y,Z) works
in W and W ′.
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Extend the tape of the Turing Machine to record the images from sensors,
instead of symbol σ. Let X be the original emergent version of input, e.g., a
vector that contains values of all pixels.

Extend the output from the Turing Machine (q′, γ′, d) to be the muscle images
from motor Z, instead of symbols. Thus, the GENISAMA Turing Machine
directly acts on the physical world.

Unfolding Time: We treat X and Z as external because they can be “super-
vised” by the physical environment as well as “self-supervised” by the network
itself. We add the internal area Y to be hidden—cannot be directly supervised
by external teachers. Furthermore, we should unfold the time t and allow the
network to have three areas X, Y , and Z that learns incrementally through time
t = 0, 1, 2, ...: ⎡

⎣
Z(0)
Y (0)
X(0)

⎤
⎦ →

⎡
⎣

Z(1)
Y (1)
X(1)

⎤
⎦ →

⎡
⎣

Z(2)
Y (2)
X(2)

⎤
⎦ → ... (2)

where → means neurons on the left adaptively links to the neurons on the right.
Note, all neurons in every column t use only the values of the column t −

1 to its immediate left, but use nothing from other columns. This is true for
all columns t, with integers t ≥ 1. Otherwise, iterations are required. Namely,
by unfolding time in the above expression, the highly recurrent operations in
recurrent DN become not recurrent in time-unfolded DN. In fact, DN runs in
real time.

Now, we are ready to see how a natural or artificial machine learns conscious-
ness in principle:

The motor area Z starting from Z(0), represents many muscles signals in
a developing body, from an embryo all the way to an adult. The larger the
developing body, the more muscle neurons are dynamically grown where cell
deaths and cell grows both take place. Muscle cells at time t take inputs from
the Y area and the Z area at the t−1 column, acting on the environment and also
learning from the physical environment mostly through self-supervision—trials
and practices.

Likewise, the sensory area X, starting from X(0), also develops within a
developing body, also from an embryo all the way to adult. What is different
between the motor area Z and the sensory area X is that the latter develops
receptors that sense the environment instead of neurons that drive muscles.

Concurrently, the brain Y , starting from Y (0), also dynamically develops,
from an embryo all the way to an adult. Each Y neuron at time t gets multiple
inputs from all three areas, X, Y and Z, at the t−1 column. Competition among
neurons allows only few Y neurons to win. These winner Y neurons at the time
t column directly link to firing neurons in the muscle area Z at the t+1 column.

As time goes by, the learner looks more and more rule-like, since a GENISAMA
Universal Turing Machine emerges as proven mathematically in [20]. In the brain
this machine autonomously makes an increasingly sophisticated, highly integrated
program. In the eyes of humans, this learner becomes increasingly conscious. The
next section discusses what network this process results.
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6 Developmental Networks for Learning Consciousness

A Developmental Network (DN) is meant for consciousness because it is a holistic
model for a biological brain, also fully implementable on an artificial machine.

6.1 DN-1

The following section presents Developmental Network 1 (DN-1).
The hidden Y area corresponds to the entire “brain”. In the following, we

assume the brain has a single area Y but it will enable many subareas to emerge.
The response vector y the hidden Y area of DN is then used by Z and X

areas to predict the next z and x respectively in discrete time t = 1, 2, , 3, ...:
⎡
⎣
z(t − 1)
y(t − 1)
x(t − 1)

⎤
⎦ → y(t) →

⎡
⎣
z(t + 1)
y(t + 1)
x(t + 1)

⎤
⎦ (3)

where → denotes the update on the left side using the left side as input. The
first → above is highly nonlinear because of the top-1 competition so that only
one Y neuron fires (i.e., exactly one component in binary y is 1). The second →
consists of simply links from the single firing Y neurons to all firing neurons on
the right side.

The expression in Eq. (3) is extremely rich as illustrated in Fig. 4 as a
schematic diagram of the DN that realizes Eq. 3.

Self-wiring within a Developmental Network (DN) as the control of
GENISAMA TM, based on statistics of activities through “lifetime”, without
any central controller, Master Map, handcrafted features, and convolution.

The above vector formalization is simple but very powerful in practice. The
pattern in Z can represent the binary pattern of any abstract concept—context,
state, muscles, action, intent, object type, object group, object relation. However,
as far as DN is concerned, they mean the same—a firing pattern of the Z area.

Equation (3) indicates that each neuron in the hidden area Y of the network
has six fields in general: Sensory Receptive Field (SRF), Sensory Effective Field
(SEF), Motor Receptive Field (MRF), Motoric Effective Field (MEF), and Lateral
Receptive Field (LRF) and Lateral Effective Field (LEF). S: Sensory; M: motoric;
L: lateral; R: receptive; E: effective; F: field. But simulated neurons in X do not
have Sensory Receptive Field (SRF) and Sensory Effective Field (SEF) because
they only effect Y and those in Z do not have Motor Receptive Field (MRF)
and Motoric Effective Field (MEF) because they only receive from Y . Figure 4(b)
shows the resulting self-wired architecture of DN with Occipital, Temporal, Pari-
etal, and Frontal lobes. Regulated by a general-purpose Developmental Program
(DP), the DN self-wires by “living” in the physical world. The X and Z areas are
supervised by body and the physical world which includes teachers.

Through the synaptic maintenance, some Y neurons gradually lost their early
connections (dashed lines) with X (Z) areas and become “later” (early) Y areas.
In the (later) Parietal and Temporal lobes, some neurons further gradually lost
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Fig. 4. A conscious learning brain Y is theoretically modeled by an emergent DN as
the two-way bridge of the sensory bank X and the motor bank Z. All the connections
shown are learned, grown, updated and trimmed automatically by DN.

their connections with the (early) Occipital area and become rule-like neurons.
These self-wired connections give rise to a complex dynamic network, with shal-
low and deep connections instead of a deep cascade of areas. Object location and
motion are non-declarative concepts and object type and language sequence are
declarative concepts. Concepts and rules are abstract with the desired specifici-
ties and invariances. DN does not have any static Brodmann areas.

To explain how DN-1 learns any Turing Machine, y to y connections are
not needed, because in a Turing Machine, actions and states at each time are
symbolic, which can be explicitly represented by vectors in the motor area Z.
This gives us the external form of DN transition below:

[
z(t − 1)
x(t − 1)

]
→ y(t) →

[
z(t + 1)
x(t + 1)

]
(4)
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Definition 1 (External form). By external form in Eq. (4), we mean that the
hidden area Y (t) does not taken hidden area Y (t − 1) as input for t = 1, 2, 3, ...,
namely, all states/actions must be external in Z—no lateral Y to Y connections,
compared with the general form in Eq. (3).

The external form Eq. (4) is sufficient to prove that a DN can learn any Turing
Machine one-transition at a time without any errors as long as there are a
sufficient number of hidden neurons [20].

Like the transition function of a Turing Machine, each prediction of z(t+1) in
Eq. (4) is called a transition. but now in real-valued vector, without any symbols.
The same y(t) can also be used to predict the binary (or real-valued) x(t+1) ∈ X
in Eq. (4). The quality of prediction of (z(t + 1),x(t + 1)) depends on how state
Z abstracts the external world sensed by X. The more mature the DN is in its
“lifetime” learning, the better its predictions.

The brain or DN takes input from vector (z,x), not just sensory x but also
motor z, to produce an internal response vector y which represents the best
match of (z,x) with one of many internally stored patterns of (z,x):

The winner-take-all learning rule, which is highly nonlinear and simulates
parallel lateral inhibition in the internal (hidden) area Y is sufficient to prove
in [20] that a DN that has sufficient hidden neurons learns any Turing Machine
perfectly, immediately, and error-free.

The n neurons in Y give a response vector y = (y1, y2, ...yn) of n neurons in
which only the best-matched neuron fires at value 1 and all other neurons do
not fire giving value 0:

yj =

⎧
⎨
⎩

1 if j = argmax
1≤i≤n

{f(ti, z,bi,x)}
0 otherwise

j = 1, 2, ...n, (5)

where f is a function that measures the similarity between the top-down weight
vector ti and the top-down input vector z as well as the similarity between
the bottom-up weight vector bi and the bottom-up input vector x. The value
of similarity is the inner product of their length-normalized versions [20]. Cor-
responding to FA, both the top-down weight and the bottom-up weight must
match well for f to give a high value as inner product.

Namely, unified numerical processing-and-prediction in DN amounts to any
abstract concepts above. In symbolic representations, it is a human to handcraft
every abstract concept as a symbol; but DN does not have a human in the “skull”.
it simply learns, processes, and generates vectors. In the eyes of a human outside
the “skull”, the DN gets smarter and smarter.

In DN-1, each of multiple Y sub-areas has a static set of neurons so that the
competition within each sub-area is based on a top-k principle within each sub-
area. Namely, inhibition among neurons within each area is implicitly modeled
by top-k competition.

A DN-1 of internal form Eq. (3) does allow Y -to-Y connections, but each
Y sub-area has a fixed number of neurons which compete based on a sub-area
top-k competition within the sub-area. The external form of DN-1 in Eq. 4 has
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only one hidden area Y , but it is sufficient to learn any Turing Machines since a
Turing Machine does not have any hidden representations (i.e., no hidden area
Y ).

See Weng [22] for more mathematical details about how DN-1 conducts
APFGP and Weng [25] for a more detailed explanation of APFGP meant for
cognitive scientists.

6.2 DN-2

Developmental Network 2 (DN-2) [30] is different from DN-1 primarily in the
following sense.

In DN-2, there is no static assignment of neurons to any regions, so that
regions in DN-2 automatically emerges, along their scales, cascade, and nesting.
A direct advantage of DN-2 is that a human programmer is not in the loop
of deciding the distribution of neurons within the hidden Y sub-area, relieving
human from this highly complex and intractable task. However, the primary
advantage of DN-2 is to enable DN-2 to fully automatically generate hidden
neurons that represent a time span longer than a single time frame without
going external area Z. In other words, a DN-2 can automatically learn to think
without being externally supervised through its motor area Z what to think
about.

The computational explanation of DN-2 is out of the scope of this paper
since APFGP is sufficient to be explained by the external form of DN-1. The
reader is referred to [29] for DN-2.

7 Motivation

Motivation is very rich. It has two major aspects (a) and (b) in the current DN
model. All reinforcement-learning methods other than DN, as far as we know, are
for symbolic methods (e.g., Q-learning [12,17]) and are in aspect (a) exclusively.
DN uses concepts (e.g., important events) instead of the rigid time-discount in
Q-learning to avoid the failure of far goals.

(a) Pain avoidance and pleasure seeking to speed up learning important events.
Signals from pain (aversive) sensors release a special kind of neural transmit-
ters (e.g., serotonin [1]) that diffuse into all neurons that suppress Z firing
neurons but speed up the learning rates of the firing Y neurons. Signals
from sweet (appetitive) sensors release a special kind of neural transmitters
(e.g., dopamine [4]) that diffuse into all neurons that excite Z firing neurons
but also speed up the learning rates of the firing Y neurons. Higher pains
(e.g., loss of loved ones and jealousy) and higher pleasure (e.g., praises and
respects) develop at later ages from lower pains and pleasures, respectively.

(b) Synaptic maintenance—grow and trim the spines of synapses [2,19]—to
segment object/event and motivate curiosity. Each synapse incrementally
estimates the average error β between the pre-synaptic signal and the
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synaptic conductance (weight), represented by a kind of neural transmit-
ter (e.g., acetylcholine [33]). Each neuron estimates the average deviation β̄
as the average across all its synapses. The ratio β/β̄ is the novelty repre-
sented by a kind of neural transmitters (e.g., norepinephrine, [33]) at each
synapse. The synaptogenic factor f(β, β̄) at each synaptic spine and full
synapse enables the spine to grow if the ratio is low (1.0 as default) and to
shrink if the ratio is high (1.5 as default).

8 Optimal Properties Proven for DN

If a DN can learn quickly like other normal animals, we may have to call it
retarded with only a limited consciousness compared to other animals of the
same age. We do not want a DN to get stuck into a local minimum, as many
nonlinear artificial systems have suffered.

Weng 2015 [20] has proved: (1) The control of a TM is a Finite Automaton
(FA). Thus, the emergent FA can learn a emergent UTM for APFGP. (2) The
DN is always optimal in the sense of maximum likelihood conditioned on the
number of neurons and the learning experience. When there are neurons in the
hidden brain to be initialized, the learning is further error-free. This implies that
the DN has solved the century-old problem of local minima. The DN framework
is mathematically rigorous, not hand-wavy. In particular, the theory of Universal
Turing Machines has proved that a Universal Turing Machine of a finite-length
tape can learn any tasks, provided that the tape length is sufficiently long, but
finite [11]. Note, rules of any purpose are learned from the external physical
environment. For more detail, read [20].

In summary, every DN is optimal in the sense of maximum likelihood, proven
mathematically in [20]. Put intuitively, all DN are optimal, given the same learn-
ing environment, the same learning experience, and the same number of neurons
in the “brain”. There might be many possible network solutions some of which
got stuck into local minima in their search for a good network. However, each DN
is the most likely one, without got into local minima. This is because although a
DN starts with random weights, all random weights result in the same network.

However, this does not mean that the learning environment is the best pos-
sible one or the number of neurons is best possible one for many lifetime tasks.
Search for a better educational environment will be human challenge for their
future children, both natural and artificial kinds.

9 Conscious Learning Examples

A formal training in Universal Turing Machines seems necessary in order to
understand the above highly mathematical material here, such as Table 1 and
Eq. (2). A self-teaching process of automata theories could be insufficient. The
following presents examples for an analytical reader who has had a formal train-
ing in Universal Turing Machines.
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Suppose each time frame in Table 1 represents 20 ms, namely the real time
is sampled at 1000 ms/20 ms =50 Hz. Thus, the frames in Table 1 and Eq. (2)
run very fast in real time, as a real physical learner interacts with its physi-
cal environment via its sensors and effectors. Let us consider the following two
assumptions.

Assumption 1 (Supervised). At each time t, a teacher supervises z(t) of
the learner so that z(t) predicts correct state/actions for a Universal Turing
Machine, for all times t = 0, 1, 2, ....

This assumption is relatively easier to understand but not very practical since
it is difficult for any teacher to always supervise correctly in real time at 50 Hz.

Assumption 2 (Unsupervised). At each time t, the learner self-generates
z(t) so that z(t) approximates state/actions for a Universal Turing Machine, for
all times t = 0, 1, 2, ....

This assumption is more practical but, like a child, requires more practices,
through trials and errors, to improve its approximation of states/actions. The
motivational system plays an important rule, such as pain avoidance and pleasure
seeking explained in Sect. 7. This is a process called scaffolding [32] where early-
learned simple skills assist the learning of later more complex skills.

What is scaffolding and why is it powerful? In visual learning, the early
learned skills of recognizing a person’s face facilitates later learning of recognizing
his body. In auditory learning, the early-learned skill of recognizing phonemes
facilitates latter learning of words. In language learning, the early learned skills of
recognizing words like “have” and “time” facilitates latter learning of phrases like
“have time”. The learning of simple skills like English during early life facilitates
later learning of algebra and calculus in later school life. Such a learning process
of algebra and calculus may be through classroom teaching during which sensory
inputs (visual, auditory and language) about the skills for algebra and calculus
are translated into skills of conducting vision-guided, audition-assisted, language-
directed writing procedures of algebra and calculus. This leads to our definition
of conscious learning.

Definition 2 (Conscious learning). The conscious learning by a biologi-
cal or artificial machine is that the learner is conscious throughout its lifetime
learning—it bootstraps its consciousness, from defaultly conscious, to increas-
ingly conscious, to maturely conscious.

The term “defaultly conscious” is species specific. For lower animals, inborn
behaviors that are reflexive can be called defaultly conscious.

As we can see from the above discussion, scaffolding not only facilitates learn-
ing skills from simple to complex, but is also essential for a machine to bootstrap
its consciousness—being conscious during learning, so that it consciously applies
early learned conscious skills to learning later more complex conscious skills.
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In practice, a real learning system interacts with its environment, which con-
tains different teachers at different ages. The mother, the father, schoolteach-
ers, colleagues, and physical facts are all teachers. This process of interactions
amounts to a lifelong process of scaffolding, making Assumptions 1 and 2 true at
different times, for different sensory modalities, on different motor modalities.

Regardless what environment a learner has, the acquisition of skills, from
simple to complex, throughout a lifetime requires that the skull-closed brain to
be fully automatic inside the skull, off-limit to manual intervention by any human
teacher based on the test set. In [23,24], Weng pointed out that (1) in symbolic
AI, a programmer handcrafts a set of symbols and (2) in connectionist AI, many
neural networks require handpicking features in the hidden areas. Weng argued
that both (1) and (2) require the human programmer to know the test set and,
therefore, amount to PSUTS.

Weng [20] has proven mathematically that an external form of DN-1 under
Assumption 1 learns any Turing Machine (which includes all Universal Turing
Machines) free of any error, as long as it has a sufficient but finite number of
hidden neurons.

10 Early Conscious Learning Experiments

We have conducted early experiments that learned consciousness in vision, audi-
tion and language understanding, respectively. These experiments are early ones
since we hope many more experiments will take place around the world empow-
ered by the theory of consciousness here. We claim conscious vision, conscious
audition, and conscious language understanding because this is the first work,
as far as we know, that is for general-purpose vision, audition, and understand-
ing of natural languages, respectively. It is important to note that according
to the definition of consciousness by the Merriam-Webster On-line Dictionary
(definition b above), the state or fact of being conscious of an external object,
state, or fact is consciousness. In these early experiments, we did not intend to
demonstrate other aspects of consciousness in Merriam-Webster.

In terms of novelty of the experimental work outlined here, there has been no
work in the computer vision area that used general-purpose vision as an emergent
Turing Machine. The same is true for audition and natural language processing
areas. It is worth noting the subject of language acquisition includes, but is
more than, the subject of language understanding. In contrast, if a traditional
computer vision system that is handcrafted to detect human faces, to recognize
a particular human face, or to classify a particular set of other patterns (e.g.,
finger prints), we hope that Merriam-Webster On-line Dictionary did not intend
to treat such special-purpose system as conscious even in terms of definition b.

Collectively, these three experiments seem to be also the first time where the
three sensing modalities use a single general-purpose learning engine in space-
time. Hopefully, when such systems are mature enough in the future after exten-
sive “living” and “learning” in the real physical world, such machines will have
a rich degree of animal-like consciousness in the eyes of human observers.



50 J. Weng

It is worth noting that at this early stage, there are no other experimen-
tal systems about consciousness and therefore there are no other experimental
general-purpose methods to compare the performance with.

What above comparing with special-purpose systems? DN and its predecessor
Cresceptron are the only two artificial systems we are aware of that do not suffer
from the controversy of PSUTS (Post Selection Using Test Sets) [23,24]. In other
words, if the PSUTS practice is banned, DN is the only system that is not only
free of PSUTS but also gives the best performance by far [23,24] for every given
amount of computational resource and every given incremental lifetime learning
experience.

Vision from a “Lifelong” Retina Sequence: How does a DN become visu-
ally conscious demonstrated by its motor behaviors? Let it learn by artificially
“living” in the real world!

Figure 5 provides an overview of the extensiveness of the training, regular
training, and blindfolded testing sessions. The inputs to the DN were from the
same mobile phone that performs computation. They include the current image
from the monocular camera, the current desirable direction from the Google
Map API and the Google Directions API. If the teacher imposes the state in Z,
this is treated as the supervised state. Otherwise, the DN outputs its predicted
state from Z. The DN learned to attend critical visual information in the current
image (e.g., scene type, road features, landmarks, and obstacles) depending on
the context of desired direction and the context state. Each state from DN
includes heading direction or stop, the location of the attention, and the type
of object to be detected (which detects a landmark), and the scale of attention
(global or local), all represented as binary patterns. None is a symbol.

Below, we discuss two more sensory modalities, audition and natural lan-
guages.

Audition from a “Lifelong” Cochlear Sequence: How does a DN become
auditory conscious demonstrated by its motor behaviors? Let it learn by artifi-
cially “living” in the real world!

For the audition modality, each input image to X is the pattern that simulates
the output from an array of hair cells in the cochlea. We model the cochlea in
the following way. The cells in the base of the cochlea correspond to filters with
a high pass band. The cells in the top correspond to filters with a low pass
band. At the same height, cells have different phase shifts. Potentially, such a
cochlear model could deal with music and other natural sound, more general
than the popular Mel Frequency Cepstral Coefficients (MFCCs) that are mainly
for human speech processing. The performance will be reported elsewhere due
to the limited space.

Take /u:/ as an example shown in Fig. 6. The state of concept 2 keeps as
silence when inputs are silence frames. It becomes a “free” state when phoneme
frames are coming in, and changes to /u:/ state when first silence frame shows
up at the end. At the same time, the states of concept 1 count temporally dense
stages.
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Fig. 5. Training, regular testing, and blind-folded testing sessions conducted on cam-
pus of Michigan State University (MSU), under different times of day and different
natural lighting conditions (e.g., there are extensive shadows in images). Disjoint test-
ing sessions were conducted along paths that the machine has not learned. This is the
first time for visual awareness to be learned by GENISAMA Turing Machines.

Natural Languages from a “Lifelong” Word Sequence: How does a DN
become language conscious demonstrated by its motor behaviors? Let it learn
by artificially “living” in the real world! Here, we assume grounded words are
emergent patterns, not symbols.

As far as we know, this seems to be the first work that deals with language
acquisition in a bilingual environment, largely because the DN learns directly
from emergent patterns, both in word input and in action input (supervision),
instead of static symbols.

The input to X is a 12-bit binary pattern, each represents a word, which
potentially can represent 212 words using binary patterns. The system was taught
1,862 English and French sentences from [14], using 2, 338 unique words (case
sensitive). As an example of the sentences: English: “Christine used to wait for
me every evening at the exit.” French: “Christine m’attendait tours les soirs à
la sortie.”

The Z area was taught two concepts: language type (English, French, and
language neutral, e.g., a number or name) represented by 3 neurons (top-1 firing),
and the language-independent meanings as meaning states, as shown in Fig. 7.
The latter is represented by 18 neurons (18-bit binary pattern), always top 5
neurons firing, capable of representing C(18, 5) = 8, 568 possible combinations
as states, but only 6, 638 actual meanings were recorded. Therefore, the Z area
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Fig. 6. The sequences of concept 1 (dense, bottom) and concept 2 (sparse, top) for
phoneme /u:/. The latest DNs do not need human to provide any labels. Instead, they
self-supervise themselves.

has 3 + 18 = 21 neurons, potentially capable of representing a huge number 221

binary patterns if all possible binary patterns are allowed.
However, the DN actually observed only 8, 333 Z patterns (both concepts

combined) from the training experience, and 10, 202 distinct (Z,X) patterns—
FA transitions. Consider a traditional symbolic FA using a symbolic transition
table, which has 6, 638 × 3 = 19, 914 rows and 2, 338 columns. This amounts to
19, 914 × 2, 338 = 46, 558, 932 table entries.

But only 10, 202/46, 558, 932 ≈ 0.022% of the entries were detected by the
hidden neurons, representing that only 0.02% of the FA transition table was
observed and accommodated by the DN. Namely, the DN has a potential to deal
with n-tuples of words with a very large n but bounded by DN size, because most
un-observed n-tuples are never represented. The FA transition table is extremely
large, but never generated.

Without adding noise to the input X, the recognition error is zero, provided
that there is a sufficient number of Y neurons. We added Gaussian noise into
the bits of X. Let α represent the relative power of the signal in the noisy
signal. When α is 60%, the state recognition rate of DN is around 98%. When
α is 90%, the DN has reached 0% error rate, again thanks to the power of DN
internal interpolation that converts a huge discrete (symbolic) problem into a
considerably smaller continuous (numeric) problem.

Again, as the only difference from the above two modalities is the patterns
in the X area and the Z area, the same DN learns the word inputs and the
supervised states.
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Fig. 7. The finite automaton for the English and French versions of some sentences. The
DN learned a much larger finite automaton. Cross-language meanings of partial- and
full-sentences are represented by the same state of meaning context qi, i = 0, 1, 2, ..., 24.
See, e.g., q1, q3, q4, and q5. But the language specific context is represented by another
concept: language type. The last letter is the return character that indicates the end
of a sentence.

11 Conclusions

We hope that the new APFGP characterization is now much clearer than exist-
ing other characterizations for notoriously vague term “consciousness” as we
discussed in the first section. Hopefully, it would give rise to animal-like artifi-
cial consciousness so future AI receive a long-overdue credulity. It might be also
useful as a computational model for unifying natural consciousness and artificial
consciousness, due to its holistic nature backed by the new capability APFGP
of GENISAMA Universal Turing Machines. Much exciting practical work on
learning consciousness remains to be done in the future.
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Abstract. Dimensionality reduction plays an important role in neu-
ral signal analysis. Most dimensionality reduction methods can effec-
tively describe the majority of the variance of the data, such as principal
component analysis (PCA) and locally linear embedding (LLE). How-
ever, they may not be able to capture useful information given a spe-
cific task, since these approaches are unsupervised. This study proposes
an autoencoder-based approach that incorporates task-related informa-
tion as strong guidance to the dimensionality reduction process, such
that the low dimensional representations can better reflect information
directly related to the task. Experimental results show that the proposed
method is capable of finding task-related features of the neural popula-
tion effectively.

Keywords: Neural population activity · Supervised dimensionality
reduction · Long short-term memory network · Autoencoder

1 Introduction

In recent years, neural activities recorded from the primate cortex by implanted
arrays of microelectrodes have gradually become a common tool for neural mech-
anism analysis [18,39]. Based on the extracted neural signals, several brain-
machine interface (BMI) applications have been successfully applied. For exam-
ple, algorithms that convert neural activity of a human with tetraplegia into the
desired prosthetic actuator movements [14,15]. However, it remains a question
about what insights can we gain from the recordings of a population of neurons
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[32,33]. It is reported that population analyses are necessary for situations in
which the neural mechanisms involve coordination of responses across neurons,
where some mechanisms exist only at the level of the population and not at
the level of single neurons [8]. Many studies of neural systems are shifting from
single-neuron to population-level analyses.

The dimensionality reduction methods are traditionally defined as methods
that map the high-dimensional data to low-dimensional data, which discover
and extract features of interest into the shared latent variables [41]. Nowadays,
dimensionality reduction plays an important role in the shifting process of neural
signal analysis [8,10,31]. On the one hand, the recorded neural signal of a chan-
nel corresponds to an underlying neuron ensemble, the response of a particular
neuron may obscure the information of other neurons within the ensemble. On
the other hand, activities of nearby neurons tend to be dependent on each other,
and they may be recorded by nearby channels [29]. Therefore, fewer channels are
needed for the explanation of the recorded neural signals, and it is a common
practice to select channels before subsequent analysis. Rather than inspecting
each neuron separately, dimensionality reduction methods can analyze neural
population recordings as a whole [8].

Several classical dimensionality reduction methods including linear and non-
linear dimensionality reduction methods have been adopted to analyze neural
signals. Principle component analysis (PCA) [19] is a linear dimensionality reduc-
tion method that projects the high-dimensional neural data into a new coordi-
nate system, where the input data can be expressed with fewer variables and
most of the variance of the data set can be captured. Non-linear dimensionality
reduction methods have also been applied, such as the locally linear embedding
method (LLE) [36] and Isomap [40]. LLE exploits local symmetries of linear
reconstructions of the original dataset, it learns manifolds close to the dataset
and project input data onto them. Isomap first determines the adjacency of
the points on the manifold, and then the geodesic distances between all pairs
of points are calculated on the manifold. Finally, the multidimensional scaling
method is applied to obtain the embedding of data. The dimensionality reduc-
tion methods were employed using the population response signals alone in most
existing studies [1,7,9,38]. In a real-world scenario, each data point in the high-
dimensional firing rate space has a corresponding label comprised of one or more
dependent variables, such as the subject’s behavior, the subject’s mental state,
and so on. Neglecting the task-related information may cause the dimensionality
reduction methods to fail to capture representative information of a specific task
[24,30]. However, classical dimensionality reduction methods are unsupervised
methods without effective ways to incorporate supervised task-related informa-
tion.

Recent advances in deep artificial neural networks provide new techniques for
nonlinear dimensionality reduction. The nonlinearity in neural networks enables
non-linear multivariate data compression and visualization [5,13]. The autoen-
coder (AE) is firstly introduced in the 1980s, which plays an important role in
unsupervised learning [37]. It is a simple yet effective unsupervised method to
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compress information of the input data. By reconstructing outputs from inputs
using the criterion of the minimum possible amount of Euclidean distance, it
learns a transformation that transforms inputs into a latent representation space
[5]. Improvements of autoencoder including the denoising autoencoder (DAE)
[42] and the variational autoencoder (VAE) [21] enhance the ability to learn effec-
tive representations from data. DAE aims to reconstruct clean data from noisy
inputs. It can learn representations that are robust to the noise by adding Gaus-
sian noises to samples or masking variables of samples randomly. The stacked
denoising autoencoder explores a greedy strategy for building deep neural net-
works consist of several layers of denoising autoencoder [43]. The stacked layers
are trained sequentially and a fine-tuning process is adopted to calibrate the
whole neural network. VAE is proposed to learn better feature representation
which can generate samples from the decoder. Instead of learning the encodings
directly, it uses a variational Bayesian approach to optimize an approximation
to the intractable posterior, which produces more stable and robust results. The
strong feature extraction ability of the AEs can be employed for the dimension-
ality reduction of the neural population signals.

With the introduction of the task-related information, the objective of dimen-
sionality reduction for the neural population can now be defined as to project
the data while differences in the dependent variables are preserved as many
as possible. In the extreme, we can seek to ‘demix’ the effects of the different
dependent variables, such that each latent variable captures the characteristic of
a single dependent variable [8]. The AEs are powerful non-linear unsupervised
models that can learn effective low-dimensional representation for neural popula-
tion signals. They are also flexible models that can easily incorporate supervised
task-related information into the learning process. Further, given that the neural
population activities are time-series data that are recorded sequentially. We can
learn even better low-dimensional representation by treating it as another type of
task-related information, which is incorporated through the architecture design
of our model. Specifically, the long short-term memory (LSTM) model [16] which
is a type of recurrent neural network (RNN) [27] is adopted to incorporate the
information.

In this paper, we investigate supervised dimensionality reduction techniques
for the neural population. The learned low-dimensional representation can better
capture features of interest directly related to the task. The contributions of this
paper are two-fold. Firstly, we propose a supervised dimensionality reduction
architecture which is suitable for different kinds of autoencoders. The archi-
tecture incorporates task-related information into the learning process of low-
dimensional representation through an artificial neural network module, which
is termed as ‘regressor’. The autoencoder takes multi-channel neural record-
ings from the primary motor cortex as input and reconstructs them. In the
meantime, the regressor predicts the task-related information from the learned
low-dimensional latent representations. Secondly, we propose a supervised archi-
tecture that considers the time-series nature of neural population activities. A
sequential encoder and a sequential decoder based on LSTM are employed to
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transform the input data into the latent space and reconstruct the input data
from the latent space, respectively. The task-related information is also employed
through a regressor in this architecture. Experiments are carried out with dif-
ferent kinds of autoencoders under different settings. The results show that our
proposed method learns a more effective task-related low-dimensional represen-
tation of the neural population.

2 Method

In this section, we first introduce the dataset we used in this paper. Then we give
the background knowledge of various autoencoders and the LSTM. Finally, we
introduce our proposed supervised autoencoder-based dimensionality reduction
method for the neural population.

2.1 Dataset

A dataset that contains multi-channel spike firing signals with synchronous kine-
matic information is adopted to evaluate the performances of the supervised and
unsupervised dimensionality reduction methods [44]. The dataset is recorded
from a male macaque monkey that performs a radial-4 center-out task in a 2-D
horizontal plane. For each trial, a target ball appears on the screen in front of
the monkey, and the monkey is requested to move a cursor to the target with the
joystick. Once the monkey hits the target ball within 2 s and holds for 300 ms,
rewards will be given. The neural signal is recorded by a 96-microelectrode Utah
array which is implanted in the monkey’s arm area of the primary motor cor-
tex contralateral to the arm used in the experiments. A total of 96 channels of
neural signals are recorded with Cerebus multichannel system at a sample rate
of 30 kHz. The raw signals are filtered by a high-pass Butterworth filter and the
detected spikes are sorted with Offline Sorter software to produce binned spike
rates. The trajectory of the joystick is recorded synchronously with neural sig-
nals by a micro-controller system at a sample rate of 1 kHz. We downsample the
trajectory to correspond to the bins of spike rates. A channel selection method
and a data selection method are further employed such that 8 subsets of spike
data are obtained. The details of the dataset are shown in Table 1.

2.2 Prerequisites

Autoencoder and Its Variations. Consider a data set of samples {xn} where
n = 1, · · · , N , and xn is a Euclidean variable with dimensionality D. A fully
connected layer of the neural network can be defined as

y = φ(Wx + b), (1)

where W and b denote trainable weights and bias, and φ denotes a non-linearity
function. A basic autoencoder consists of an encoder and a decoder. The encoder
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Table 1. The details of the dataset.

Subset #Neuron #Trials #Up #Down #Left #Right

1 61 74 17 19 17 21

2 63 81 19 21 18 23

3 61 70 17 14 19 20

4 56 64 20 11 19 14

5 49 83 25 19 22 17

6 56 75 21 14 21 19

7 61 85 17 23 20 25

8 61 79 14 23 17 25

The #Neuron denotes the number of neurons and the #Trials
denotes the number of total trials. The #Up, #Down, #Left,
#Right denote the number of trials with up, down, left, and
right directions, respectively.

is comprised of several fully connected layers and the layers are usually stacked
one by one with reducing dimensionality. We can denote the encoded latent
feature as z, which is a Euclidean variable with dimensionality M . Then the
encoder E(x) can be defined as

E(x) = z = φL(WLφL−1(WL−1φL−1(· · · W 1φ1(x) + b1 · · · ) + bL−1) + bL), (2)

where L denotes the number of stacked fully connected layers. Similarly, the
decoder D(z) can be defined as

D(z) = x̃ = φL(WLφL−1(WL−1φL−1(· · · W 1φ1(z) + b1 · · · ) + bL−1) + bL), (3)

where x̃ denotes the reconstruction of x. The loss function of the autoencoder is
usually defined as the mean squared error between the input x and the recon-
struction x̃, which can be defined as

Lreconstruction =
1
N

N∑

i=1

(xn − x̃n)2, (4)

where xn and x̃n denote the nth sample and its reconstruction, respectively. In
[5], the stacked fully connected layers of the encoder and decoder are trained
layer-wise using a greedy strategy. However, as the proposed of more advanced
techniques such as the Relu non-linearity function [28], the second-order opti-
mizer Adam [20], and the batch normalization layer [17], the layer-wise training
strategy is no longer needed. In this paper, we directly optimize the entire neural
network for all autoencoder-based models.

The denoising autoencoder is proposed to make the learned representations
robust to partial corruption of the input pattern [43]. It first corrupts the initial
input x to get a partially destroyed version x̂ through a stochastic mapping.
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The stochastic mapping process is usually defined as a randomly masking pro-
cess, where a fixed number of features are chosen at random and their values are
forced to 0. Another common corruption choice is to add Gaussian noise to each
feature separately. In this paper, the stochastic mapping process that randomly
masks features is selected as the default corruption choice.

The variational autoencoder introduces a stochastic variational inference that
can deal with intractable posterior distributions [21]. Let us define the proba-
bilistic encoder as qϕ(z|x) and the posterior of the generative model as pθ (x, z).
The prior over the latent variables can be defined to be a centered isotropic
multivariate Gaussian pθ (z) = N (z;0, I). We can then define pθ (x|z) to be a
multivariate Gaussian whose distribution parameters are estimated from z with
an artificial neural network with multiple fully connected layers. Assume that
the true posterior follows to an approximate Gaussian with diagonal covariance,
which is defined as

logqϕ(z|xi) = logN (z;μi,σ2(i)I), (5)

where the mean and standard deviation are outputs of the encoding artificial
neural network. Using the reparameterization trick, the estimator for the model
and data point xi is defined as

L(θ,ϕ;xi) � 1
2

J∑

j=1

(1+log((σ(i)
j )2)−(μ(i)

j )2−(σ(i)
j )2)+

1
L

L∑

l=1

logpθ (xi|zi,l), (6)

where zi,l = μi + σi � εl and εl ∼ N (0, I), and � denotes element-wise product.
The entire network can then be optimized with a standard back-propagation
method [23].

Long Short-Term Memory. The LSTM is an improvement of vanilla RNN
that aims to mitigate the gradient vanishing problem [6]. The input sequence
is denoted as x = (x1, · · · , xT ), the hidden vector sequence is denoted as h =
(h1, · · · , hT ), and the output vector sequence is denoted as y = (y1, · · · , yT ). The
update rule of the hidden vector sequence of the vanilla RNN can be defined as

ht = tanh(Wxhxt + Whhht−1 + bh), (7)

where tanh denotes the hyperbolic tangent function, Wxh and Whh are learnable
weights and bh is learnable bias. The output at timestamp t can be defined as

yt = Whyht + by, (8)

where Why is the learnable weights and by is the learnable bias.
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The LSTM architecture used in this paper is defined as

it = tanh(Wxixt + Whiht−1 + bi),
jt = sigm(Wxjxt + Whjht−1 + bj),
ft = sigm(Wxfxt + Whfht−1 + bf ),
ot = tanh(Wxoxt + Whoht−1 + bo),
ct = ct−1 � ft + it � jt,

ht = tanh(ct) � ot,

(9)

where sigm denotes the sigmoid function, the W∗ variables are learnable weights
and the b∗ variables are learnable biases.

2.3 Supervised Autoencoders-Based Dimensionality Reduction for
Neural Population

The architecture of our proposed supervised autoencoders for neural signal
dimensionality reduction is shown in Fig. 1. Binned and smoothed neural fir-
ings are served as raw inputs. The supervised autoencoder module is divided into
three parts including the encoder, the latent representation, and the decoder. The
encoder first transforms the raw inputs into their latent representations through
the encoder. Two separate forks stem from the latent representation. The first
one is the unsupervised decoder which reconstructs the inputs from the latent
representations. The second one is a supervised regressor which incorporates the
task-specific information (kinematic information). The supervised regressor is
implemented as an artificial neural network that takes the latent representation
as input and predicts corresponding task-related information. The artificial neu-
ral network can be built by stacking several fully connected layers. The distance
between the predicted movements and the kinematic information is measured
by the mean squared error function.

The architecture of our proposed supervised autoencoder based on LSTM
that considers the time sequence characteristic of the neural population is shown
in Fig. 2. In Fig. 1, the encoder and the decoder are built as artificial neural
networks that consist of fully connected layers. Now the encoder and the decoder
are built as multi-layer LSTM networks. At each timestamp, the LSTM encoder
takes current spikes and the previous hidden state as input and generates current
hidden state and output. The output is considered as the latent representation,
and two forks stem from the latent representation including the unsupervised
LSTM decoder and the supervised regressor. The unsupervised LSTM decoder
takes the latent representation as input and reconstructs the input spikes. The
supervised regressor is the same as the one shown in Fig. 1, which takes the
latent representation as input and predicts task-related information. Note that,
we reconstruct the input spikes and predict task-related information at each
timestamp.

The loss of our proposed model consists of two parts including the unsuper-
vised reconstruction loss and the supervised regression loss. The unsupervised
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Fig. 1. The architecture of our supervised Autoencoders for dimensionality reduction.
Binned and smoothed neural firings are served as raw inputs. The supervised autoen-
coder module can be divided into three parts including the encoder, the latent repre-
sentations, and the decoder. The supervised encoder first transforms the raw inputs
into their latent representations. Then two separate forks stem from the latent repre-
sentation including the unsupervised decoder and the supervised regressor.

Fig. 2. The architecture of our proposed supervised autoencoder based on LSTM. This
model considers the time sequence characteristic of the neural population. At each
timestamp, the LSTM encoder takes current spikes and the previous hidden state as
input and generates current hidden state and output. The LSTM decoder reconstructs
the input spikes and the regressor predicts the task-relation information.

reconstruction loss computes the mean square error between the input spikes
and the reconstructed spikes, which is denoted as Lreconstruction. The super-
vised regression loss computes the mean square error between the predicted
task-related information and the ground truth recorded simultaneously with
the spikes, which can be denoted as Lregression. We have also added an L2-
regularization to the network to prevent overfitting, and its loss can be denoted
as Lregularization. Thus, the overall loss of our model can be defined as

L = Lreconstruction + λ1 ∗ Lregression + λ2 ∗ Lregularization, (10)

where λ1 and λ2 are coefficients that trade off different losses. The entire network
can be optimized using the standard back-propagation method.
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3 Experimental Results

In this section, we first introduce the default settings we used for autoencoder-
based models. Then we introduce the criteria we employed for performance
evaluation. After that, we compare our proposed method with other unsuper-
vised methods. Finally, we evaluate our proposed method under different settings
including different types of autoencoders, different kinds of incorporated task-
related information, and different levels of added noises to inputs.

3.1 Settings

The kinematic information is considered as the task-related information by
default, which is the position of the joystick. Firstly, the recorded neural sig-
nals and kinematic information are smoothed with a window size set to 5. Then
we standardize and scale the smoothed spikes to the range [0, 1]. The parameters
λ1 and λ2 are set to 1 and 1e−4, respectively. The encoder we used in this paper
is an artificial neural network consists of two fully connected layers with 64 and
32 units. The decoder we used in this paper is an artificial neural network con-
sists of two fully connected layers with 32 and 64 units. The same encoder and
decoder settings are used for all autoencoder models. The regressor we used to
incorporate the supervised information is an artificial neural network consists of
one fully connected layer with 32 units and a linear layer. The autoencoder and
the denoising autoencoder use the Relu nonlinearity function, and the variational
autoencoder uses the tanh nonlinearity function. No nonlinearity functions are
applied after the last layer of the encoder, decoder, and the regressor for all
models. We run ten trials for all models, and the final performance is obtained
by averaging over ten trials for each of them. For all models, the weights are ini-
tialized with the He initialization method [12]. For autoencoder models without
LSTM, the batch size is set to 64, the learning rate is set to 1e−3, and we run
200 epochs for each trial. The Adam optimizer is adopted for optimization.

For the autoencoder model based on LSTM, we mean-center the recorded
neural signals and the kinematic information. The batch size is set to the number
of trials of the subset, which means we optimize the network using the whole
data of a subset at each step. We train the whole network for 5000 steps. The
LSTM encoder is a two-layer LSTM network with 64 and 32 units. The LSTM
decoder is a two-layer LSTM network with 32 and 64 units. The regressor is
an artificial neural network consists of one fully connected layer with 32 units
and a linear layer. The learning rate is set to 5e−3, and we decay the learning
rate with a ratio set to 0.95 for every 500 steps. The Rmsprop is adopted for
optimization [4]. The layer normalization is applied in our LSTM encoder and
LSTM decoder [3]. Hereafter, the supervised versions of AE, DAE, and VAE
are denoted as SAE, SDAE, and SVAE. Without loss of generality and to avoid
introducing assumptions upon the dataset, the supervised autoencoder based on
LSTM uses vanilla AE as building blocks and we denote it as LSTM-SAE.
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3.2 Criterion

Two criteria are employed for performance comparison. The first one is the intra-
class distance, the inter-class distance, and their ratio. The intra-class distance
is defined as

d(Ωi)2 =
1

NiNi

Ni∑

k=1

Ni∑

l=1

||xi
k − xi

l||22, (11)

where Ωi denotes the ith class, xi
k denotes the kth samples of the ith class, and

Ni denotes the number of samples of the ith class. The inter-class distance is
defined as

d(Ωi, Ωj) =
1

NiNj

Ni∑

k=1

Nj∑

l=1

||xi
k − xj

l ||22, (12)

and the ratio is defined as

R =
1

2(C − 1)

∑
d(Ωi, Ωj)∑
d(Ωi)2

, (13)

where C denotes the number of classes. The second criterion is the silhouette
score [34], which is a measure of how similar an object is to its own cluster
compared to other clusters. Its value ranges from −1 to 1, where a high value
indicates that the object is well matched to its own cluster and poorly matched
to neighboring clusters.

Table 2. Performance comparison with existing methods.

Method d(Ωi)
2 d(Ωi, Ωj) R Silhouette score

PCA 4.1199 8.8835 0.3700 0.1362

LLE 2.5551 8.5650 0.7292 0.3231

Isomap 3.2198 11.0912 0.6513 0.3129

LDA 3.2950 11.3075 0.5748 0.3799

NCA 3.2897 10.5672 0.5380 0.3879

KDA 1.4771 9.3935 1.0720 0.5128

AE 3.6004± 0.1268 9.5917± 0.2535 0.4626± 0.0149 0.2323± 0.0122

DAE 3.5703± 0.0757 8.8452± 0.1283 0.4277± 0.0104 0.1964± 0.0142

VAE 3.9912± 0.0528 9.0624± 0.0989 0.3873± 0.0088 0.1492± 0.0089

SAE 2.5356± 0.1340 11.3700± 0.3324 0.7983± 0.0683 0.5197± 0.0403

SDAE 2.5473± 0.0872 9.9521± 0.3430 0.6767± 0.0286 0.4653± 0.0218

SVAE 2.7154± 0.0558 11.6781± 0.1991 0.7281± 0.0049 0.5486± 0.0047

LSTM-SAE 2.3423± 0.1148 13.7175±0.3547 1.0279± 0.0313 0.6458±0.0115

AE, DAE, and VAE denote autoencoder, denoising autoencoder, and variational autoen-

coder, respectively. SAE, SDAE, SVAE denote supervised autoencoder, supervised

denoising autoencoder, and supervised variational autoencoder, respectively. LSTM-

SAE denotes the supervised autoencoder based on LSTM.
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3.3 Comparison with Existing Methods

Several classical unsupervised and supervised methods are employed for com-
parison with our proposed supervised autoencoder methods. The unsupervised
methods include PCA [19], LLE [36], and Isomap [40]. The number of neigh-
bors is setting to 5 for LLE and Isomap. The supervised methods include LDA
[26], NCA [35], and KDA [11]. The employed KDA uses the ‘RBF’ kernel and
the corresponding parameter gamma is setting to 5. Note that, the discrete
direction information is adopted as the task-related information for the classical
supervised methods. The targeted dimensionality reduction methods for neu-
ronal population data including dPCA [22], TDR [25] mTDR [2] are not consid-
ered in this paper because of the limited number of experimental task variables
of the adopted dataset. We have also included the unsupervised autoencoder
and its variations for comparison. The corruption ratios of the DAE and SDAE
are set to 0.1. The dimensionality of the latent representation is set to 2. The
learned features are scaled to the range [0, 1] before we compute the distances,
ratio, and silhouette of the trials.

The results are shown in Table 2. As we can see, our proposed LSTM-SAE
obtains the best performance of the inter-class distance and the Silhouette score.
The KDA obtains the best performance of the intra-class distance and the best
ratio. Our LSTM-SAE obtains an intra-class distance of 2.3423 and an inter-
class distance of 13.7175, which leads to a ratio of 1.0279 that is comparable to
the best ratio of 1.0720 obtained by KDA. Our LSTM-SAE also obtains the best
Silhouette score of 0.6458. The better intra-class distance and ratio obtained by
KDA is mainly due to the fact that KDA only considers the direction infor-
mation and neglects the trace information. The consequences are two-fold, on
the one hand, KDA can maps samples into a more compact region of the low-
dimensional space, which results in better intra-class distance and ratio. On the
other hand, KDA may fail to separate points from different directions in the low-
dimensional space, given limited direction information and powerful kernel. The
statement is confirmed by the visualization we will discuss later. KDA obtains
the best performance among the baseline methods and outperforms unsupervised
autoencoders. The supervised autoencoders (SAE, SDAE, and SVAE) obtain
comparable performances with KDA. The supervised autoencoders beat their
corresponding unsupervised versions by big margins. The results show that the
incorporation of supervised information is crucial for the learning of discrimina-
tive low-dimensional representations.

The visualizations of the learned representations of different methods are
shown in Fig. 3. The eighth subset of the dataset is selected for visualization.
We use different colors for different classes, which represent different directions.
The red lines plot trials with direction ‘up’, the green lines plot trials with direc-
tion ‘down’, the blue lines plot trials with direction ‘left’, and the yellow lines
plot trials with direction ‘right’. The numbers of trials with different directions
are shown in Table 1, each trial is visualized as a single line. As we can see in
Fig. 3, compares with other existing methods, KDA obtains better latent repre-
sentations with better cohesion within each class and separation between classes.
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Autoencoders without supervised information including AE, DAE, and VAE fail
to learn discriminative latent representations. However, autoencoders that take
advantage of supervised information including SAE, SDAE, and SVAE learn
better latent representations, as we can see from the improved performances in
Table 2 and the discriminative latent representations in Fig. 3. As shown by our
proposed LSTM-SAE, considering the time-series nature of the neural popula-
tion and incorporating it into the architecture design can further improve the
performance. As we have mentioned earlier, KDA maps samples into a more
compact region with disordered lines of different directions, and some directions
can be indistinguishable.

Fig. 3. The visualizations of the latent representations of different methods. We visu-
alize classical unsupervised methods including PCA, LLE, and Isomap, and supervised
methods including LDA, NCA, and KDA. Unsupervised autoencoders including AE,
DAE, and VAE are also visualized. Our proposed methods including SAE, SDAE,
SVAE, and LSTM-SAE are visualized in the second and the third row. The red lines
plot trials with direction ‘up’, the green lines plot trials with direction ‘down’, the
blue lines plot trials with direction ‘left’, and the yellow lines plot trials with direction
‘right’. (Color figure online)

3.4 Model Evaluation Under Different Settings

In this section, we evaluate our proposed supervised autoencoder-based methods
under different settings. Firstly, we evaluate our proposed methods with different
types of autoencoders. Then we evaluate our proposed methods with different
kinds of task-related information. After that, we evaluate the performances with
different levels of noise adding to the inputs.
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We first evaluate the performances of our proposed methods with different
types of autoencoders. The results are shown in Table 2, and their correspond-
ing visualizations are shown in Fig. 3. Compared with AE, SAE improves the
ratio from 0.4626 to 0.7983 and the silhouette score from 0.2323 to 0.5197. Com-
pared with DAE, SDAE improves the ratio from 0.4277 to 0.6767 and the sil-
houette score from 0.1964 to 0.4653. Compared with VAE, SVAE improves the
ratio from 0.3873 to 0.7281 and the silhouette score from 0.1492 to 0.5486. As
shown in Fig. 3, unsupervised autoencoders fail to learn discriminative latent
representations of different directions. On the opposite, our proposed supervised
autoencoders successfully learn discriminative latent representations for most of
the trials. LSTM-SAE learns near-optimal latent representations, given that the
start points of all trials should be the same and thus will overlap with each other.
The results show that, compared with unsupervised autoencoders, our proposed
supervised autoencoders can effectively improve the learned latent representa-
tions.

Table 3. The Silhouette scores of different supervised autoencoders with various com-
binations of task-related information.

Method Information

P V A PV PVA

SAE 0.5197± 0.0403 0.3972± 0.0163 0.3090± 0.0233 0.5302± 0.0239 0.4675± 0.0195

SDAE 0.4653± 0.0218 0.3237± 0.0151 0.2576± 0.0165 0.4082± 0.0227 0.3695± 0.0194

SVAE 0.5486± 0.0047 0.4457± 0.0055 0.3851±0.0098 0.6125± 0.0116 0.5795± 0.0089

LSTM-SAE 0.6458±0.0115 0.4703±0.0165 0.3361± 0.0127 0.6701±0.0192 0.6500±0.0059

P denotes the position information, V denotes the velocity information, and A denotes acceleration infor-

mation. PV denotes the combination of the position and velocity information. PVA denotes the combination

of the position, velocity, and acceleration information.

Next, we evaluate the performances of our proposed methods with different
kinds of task-related information. Three kinds of task-related information are
considered in this paper including the position, velocity, and acceleration. Five
sets of experiments are carried out with different combinations of them. The
Silhouette scores are shown in Table 3. As we can see, the most informative task-
related information is the position, since all supervised models obtain their best
performance given solely the position information. Comparison with position
information available solely, the addition of velocity information on the basis
of position information improves the performances of SAE, SVAE and LSTM-
SAE, and hurts the performance of SDAE. Comparison with position information
available solely, the addition of velocity and acceleration information hurts the
performances of SAE and SDAE, but slightly improves the performance of SVAE
and LSTM-SAE. As the results showed, LSTM-SAE obtains best performances
in most cases, and SVAE utilizes the additional information most effectively.
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Table 4. The Silhouette scores of different supervised autoencoders with various noise
levels.

Method Noise level

0.00 0.05 0.1 0.15 0.2

SAE 0.5197± 0.0403 0.4691± 0.0178 0.3939± 0.0230 0.3378± 0.0245 0.3039± 0.0156

SDAE 0.5176± 0.0234 0.5102± 0.0292 0.4663± 0.0187 0.4265± 0.0198 0.3933± 0.0240

SVAE 0.5486± 0.0047 0.4759± 0.0072 0.4032± 0.0080 0.3394± 0.0053 0.2836± 0.0052

LSTM-SAE 0.6458±0.0115 0.6358±0.0207 0.6374±0.0206 0.6158±0.0181 0.5748±0.0135

Finally, we evaluate the performances of our proposed supervised autoen-
coders with different levels of added noises. The noises we added to the samples
are identical to the corruption process we applied for the denoising autoencoder.
Different corruption ratios are considered including 0.05, 0.1, 0.15 and 0.2. The
noises are added in the testing stage after training completed. The performances
are shown in Table 4. As we can see, as the level of noise increases, the perfor-
mances of all models decrease. Compared with SAE and SVAE, SDAE is more
robust to noise, which is a reasonable result because the training process of
DAE has already considered robustness to noises. It is a surprise that our pro-
posed LSTM-SAE also represents robustness to noises. We conjecture that the
robustness may come from the time-series nature of the neural population, which
implies that LSTM-SAE has successfully learned the dynamical time structure
of the neural population.

4 Conclusions

In this paper, we address the problem of information loss using unsupervised
dimensionality reduction methods on neural population signals. We design a
supervised architecture base on autoencoder which incorporates task-related
information as strong guidance to the dimensionality reduction process, thus the
low dimensional representations can better capture information that is directly
related to the task. We also consider the time-series nature of the neural popu-
lation and incorporate it using an LSTM based autoencoder. Our experimental
results show that the proposed architecture captures information related to the
task effectively.
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Abstract. In neuroscience, visual encoding based on functional magnetic res-
onance imaging (fMRI) has been attracting much attention, especially with the
recent development of deep learning. Visual encoding model is aimed at predict-
ing subjects’ brain activity in response to presented image stimuli . Current visual
encodingmodels firstly extract image features through a pre-trained convolutional
neural network (CNN) model, and secondly learn to linearly map the extracted
CNN features to each voxel. However, it is hard for the two-step manner of visual
encoding model to guarantee the extracted features are linearly well-matched with
fMRI voxels, which reduces final encoding performance. Analogizing the devel-
opment of the computer vision domain, we introduced the end-to-end manner into
the visual encoding domain. In this study, we designed an end-to-end convolu-
tion regression model (ETECRM) and selective optimization based on the region
of interest (ROI)-wise manner to accomplish more effective and efficient visual
encoding. The model can automatically learn to extract better-matched features
for encoding performance based on the end-to-endmanner. Themodel can directly
encode an entire visual ROI containing enormous voxels for encoding efficiency
based on the ROI-wise manner, where the selective optimization was used to
avoid the interference of some ineffective voxels in the same ROI. Experimen-
tal results demonstrated that ETECRM obtained improved encoding performance
and efficiency than previous two-step models. Comparative analysis implied that
the end-to-end manner and large volume of fMRI data are potential for the visual
encoding domain.

Keywords: Visual encoding · End-to-end manner · Convolutional neural
network (CNN) · Selective optimization

1 Introduction

In the neuroscience domain, researchers have been exploring how visual perception from
the external visual stimuli to neuron activity is formed in the human vision system. Func-
tional magnetic resonance imaging (fMRI) can effectively reflect neuron activity, hence,
visual encoding models [1, 2] that predict the corresponding fMRI voxels in response
to external visual stimuli, have attracted much too attention in these years. Meanwhile,
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other modalities such as EEG, functional near-infrared spectroscopy (fNIRS), and so
on, also were employed to model the visual perception [3–5]. In this study, we mainly
focus on visual encoding models based on fMRI because of the high spatial resolution.

In the human vision system, themapping from external visual stimuli to neuron activ-
ity is usually deemed highly nonlinear. To simulate the nonlinear mapping, linearizing
encoding manner [2] is used widely. The linearizing encoding manner is mainly com-
posed of one nonlinear mapping from image stimuli to image features, and one linear
mapping from image features to voxels of visual areas. Some simple linear regression
models with regularization are commonly used to realize the linear mapping, hence,
how to construct an effective nonlinear mapping, namely feature transformation [6] is
important for a linearizing encoding model.

In the computer vision domain, how to construct a better nonlinear feature transfor-
mation is also the most critical part whether for image classification or object detection
or other tasks [7, 8]. Therefore, visual encoding and computer vision domains can share
a lot in terms of feature transformation. Hence, visual encoding models are designed
mainly based on existing feature transformation in the computer vision domain. In the
early period of the computer vision domain, many methods mainly depended on the
hand-crafted feature transformation [9], such as Gabor wavelet pyramid (GWP), his-
togram of oriented gradient (HOG), local binary patterns (LBP), scale-invariant feature
transform (SIFT) and so on. Kay et al. employed GWP features to construct the famous
encoding model [10], and obtained major improvement for encoding primary visual
cortices. For high-level visual cortices, visual encoding models are usually based on
hand-marked image labels [11], because high-level semantic features are hard to design
manually. Since the big breakthrough [12] made by deep network and big data [13], deep
networks with hierarchical feature transformation have driven the enormous advance in
the computer vision domain [14, 15]. In contrast, deep networks can automatically learn
or minemore effective features from big data towards a specific task, especially for those
tasks that require high-level semantic features. Shortly afterwards, the hierarchical and
powerful feature transformation was introduced into the visual encoding domain [16],
obtaining better encoding performance and deeper understanding of the human vision
system once again [17–20]. Recently, some new network architectures were used to
construct visual encoding models, such as ResNet [21], recurrent neural network [22],
variational autoencoder [23], and Capsule Network [24].

From the above review, the two domains have been crossing and learning from
each other. Researchers have been pursuing a kind of nonlinear feature transformation
well-matched with the human vision system. Therefore, choosing effective features is
important and directly influences subsequent encoding performance. At present, some
hand-crafted and learned features have been validated and accepted, for example, Gabor
features are similar to the visual representation of primary visual cortices, and hierar-
chical pre-trained convolutional neural network (CNN) architecture better accords with
hierarchical visual representation in the human vision system. Although these methods
have obtained fine results, there is still far from accurately predicting human neuron
activity [20, 25], which suggests that these features still are limitedly matched with
neuron activity, hence, the performance of visual encoding is unsatisfactory. Besides,
our previous work [26] proposed a visual encoding method based on transfer learning
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and the improvement owing to the nonlinear regression mapping indicated the extracted
features based on pre-trained deep models are not well matched with neuron activity.

However, it is hard to determine what kind of feature transformation is the best
for visual encoding, because there is only little prior information about neuron activity
at hand. The prior information usually confines that the primary and high-level visual
cortices are responsible for low-level features (edges, corners, and so on) and semantic
features (object shape, category, and so on), respectively. Hence, a very natural question
emerges for visual encoding domain: with the development from hand-crafted features
to deep learning features, from the computer vision to visual encoding domain, what is
the next breakthrough for visual encoding?

In conclusion, current encoding paradigm can be defined as one two-step manner
of encoding including firstly choosing well-matched feature transformation with fMRI
voxels, and secondly encoding each voxel through linear regression models. Essen-
tially, it is hard for this kind of two-step manner to find well-matched features for the
sake of a good encoding performance, because it is hard to obtain the knowledge about
encoded voxels before constructing the next step of linear mapping. In the computer
vision domain, except the CNN architecture, the other deep learning elements includ-
ing the end-to-end manner and big data also contribute to significantly improving the
performance compared with the two-step manner of feature engineering method (e.g.
combining hand-crafted features and classifiers for the classical image classification
task). These elements together drive enormous advances in many computer vision tasks.
The employed CNN feature extractor is learned from some kind of computer vision
task instead of the visual encoding task. Hence, the extracted features are hard to be
matched with beforehand unknown voxels of visual areas. That is to say, mismatching
data and task [10, 27] make it inappropriate to directly transfer the fixed CNN feature
extractor into the visual encoding domain. According to the above analysis, we think of
replacing the two-step visual encoding manner with the end-to-end manner. In this way,
the encoding model can automatically learn better-matched features and linear weights
(linear regression mapping) from fMRI data for visual encoding.

Previous methods constructed visual encoding models using the voxel-wise manner
[2]. In this way, an individual linear regression model needs to be trained for each voxel.
Eventually, thousands of regression models are constructed for several visual regions
of interest (ROIs) containing thousands of voxels. In order to improve the encoding
efficiency, we assume that voxels from one visual ROI can be characterized by a kind
of specific features and propose a new ROI-wise encoding model that encodes entire
voxels in each visual ROI once.

However, not all voxels in one visual ROI can be effectively or easily encoded, which
can be seen from encoding results of previous work. The phenomenon may be caused
by two aspects of problems. On one hand, the employed features are not suitable for
those voxels; on the other hand, those voxels with much low signal-noise ratio (SNR)
rarely reflect the neuron activity of presented stimuli, thus cannot be effectively encoded.
The first problem can be solved by learning better-matched features through the end-
to-end manner. The second problem indicated that there exist ineffective voxels in each
visual ROI and these voxels will influence the optimization of effective voxels during
the ROI-wise and end-to-end encoding. That is to say, although the end-to-end method
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is a well-established method, direct employment of this method for visual encoding is
difficult. Hence, the end-to-end encoding manner needs a kind of selective optimization,
during which those effective voxels are focused and ineffective voxels are ignored. In
this study, we propose a series of operations for the selective optimization to construct
an encoding model in an end-to-end manner.

The contributions of this study are as follows: 1) we analysed current drawbacks of
visual encoding in terms of the development of the computer vision and visual encod-
ing domain; 2) we introduced the end-to-end manner to learn better-matched features,
improving encoding performance of low-level visual cortices; and 3) we proposed a
series of selective optimization operations to realizeROI-wise encoding in the end-to-end
manner.

2 Materials and Methods

2.1 Experimental Data

The dataset used in this study was provided from the previous studies [10]. The dataset
included visual image stimuli and corresponding voxels in V1, V2, V3, V4, and LO
visual areas for two subjects. In total, the dataset is composed of 1750 training and 120
testing samples for each subject. In detail, each subject went through five sessions and
each session included 5 training runs and 2 testing runs, respectively. In each training
run, 70 different images were presented two times. In each testing run, 12 different
images were presented 13 times. In total, 1750 (5 sessions × 5 runs × 70) images and
120 (5 sessions × 2 runs × 12) images were presented to each subject for the training
and testing set. The detailed information could refer to the previous studies [10]. The
dataset is open source and can be found in http://crcns.org/data-sets/vc/vim-1.

2.2 Method Overview

Generally, two computationmodels are required for the two-stepmanner of visual encod-
ing. As shown in Fig. 1a, the first model is used to map input stimulus space to feature
space (S2F model: feature transformation), and the second model is used to map feature
space to voxel space (F2Vmodel: regression). Usually, the parameters of S2F model are
fixed and do not need to be retrained, and only linear weights of F2V regression model
need to be trained. The famous GWP model based on Gabor features can be seen in
Fig. 1b. The two-step manner of visual encoding models based on CNN features only
replaces the Gabor features with CNN features, and similarly, the parameters of CNN
models used to extract image features are fixed.

Convolutional neural networks (CNNs) with powerful feature representation have
been widely used in the computer vision domain. In this study, we proposed a convolu-
tional regression model and train it in the end-to-end manner (ETECRM) to improve the
two-step manner of visual encoding. As shown in Fig. 1c, ETECRM also can be divided
into two parts, and the front convolutional operations belong to S2F part and the last
linear fully connected (FC) layer represents F2V part. Most importantly, ETECRM is
trained in an end-to-end manner. The end-to-end learning manner is from the deep learn-
ing domain, during which all of the parameters are trained jointly. For visual encoding,

http://crcns.org/data-sets/vc/vim-1
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Fig. 1. The proposed method based on end-to-end learning and ROI-wise encoding. a. Three
spaces and twomappings are included in the linearizing encoding manner. b. The two-step manner
of visual encoding model including a nonlinear feature transformation with fixed parameters and a
linear regressionmappingwithweights learning. c. The convolution regressionmodel forROI-wise
encoding in an end-to-end learning manner.

it means that the proposed model can directly learn the mapping from stimulus space to
voxel space (S2V model), that is to say, the parameters of S2F part and F2V part in the
convolution regression model are learned together from fMRI data samples. In this way,
the S2F part can approach better-matched feature transformation with training samples
thus obtain better encoding performance.

Different from general linear regression models with regularization, F2V part or FC
layer employed self-adapting regression weights to render voxels can paymore attention
to those features well related to themselves. Besides, an ROI-wise encoding manner is
used to replace the traditional voxel-wise encoding, which can be seen from Fig. 1c.
About the loss, we employed the Pearson correlation (PC) instead of mean square error
(MSE) between the observed and predicted voxel responses. To avoid the interference
of those ineffective voxels during ROI-wise encoding, the weighted correlation loss and
noise regularization are used to accomplish the selective optimization. In conclusion,
ETECRM is trained in the end-to-end manner and map stimuli to entire voxels of visual
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ROI once, which realize an effective and efficient visual encodingmodel. Next, we intro-
duce the proposed model’s details including loss function for the selective optimization,
corresponding control models, and the evaluation.

2.3 CNN Feature Transformation and Self-adapting Regression

In ETECRM, the F2V part mainly composed of several convolutional layers is used to
extract features of input images. Through the stack of convolution layers with stride 2
and Rectified Linear Unit (ReLU) activation function, defined feature transformation
Fwc in the Eq. (1) can transform one image stimulus si into the last layer of convolution
features f i. wc represents the weights of all convolutional layers in the S2F part. Each
layer of weights includes convolutional kernel parameters and corresponding intercepts.
The dimensionality of convolutional kernel parameters is c1 × c2 × s × s, where the
kernel number c1 is 128, the kernel size s is 3 × 3 or 5 × 5 (see Table 1) and previous
features’ channel c2 is 128, except that the initial grey image has 1 colour channel.
The dimensionality of intercepts is the same as the kernel number c1. Fwc represents
schematically the mapping F with the parameters wc extracting image features to be
fed to the final linear regression layer. As shown in Eq. (2), predicted voxels v′ in a
specific visual ROI can be obtained based on a linear regression model. In this study, we
assume that bigger weight values in the matrix wfc indicate that corresponding features
are more important than those features whose corresponding weight values are smaller.
Hence, we replace wfc with w2

fc. The dimensionality of wfc is n1 × n2, where n1 and
n2 represent the number of predicted voxels v′ and the size of the last image features
c1 × s× s, respectively, where s changes with the number of convolutional layers d with
stride 2 and is 128/2d . The corresponding intercept b has the same dimensionality as the
number of voxels in a specific visual ROI. In this way, weight learning can dynamically
adjust the learning rate of weights according to the current status, which contributes
to selective optimization. Equation (3) gives the computation of gradient through the
backpropagation with the chain rule, hence, the learning rate of weights becomes self-
adapting µwfc compared to previously fixed learning rate µ during optimization.

Table 1 Network configuration. The “conv” represents the convolutional layer with the kernels
“3 × 3” or “5 × 5”, and “fc” is the fully connected layer and used as the regression mapping from
features to predicted voxels.

ROI V1 V2 V3 V4 LO

S2F part 3 × conv (3 × 3) 3 × conv (3 × 3) 3 × conv (5 × 5) 4 × conv (5 × 5) 4 × conv (5 × 5)

F2V part 1 × fc 1 × fc 1 × fc 1 × fc 1 × fc

f i = Fwc(si) (1)

v′ = wfcfi + b → v′ = w2
fcf i + b (2)

�wfc = −µwfc�v′ (3)
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2.4 Weighted Correlation Loss and Noise Regularization

In the linear regression mapping, the predicted v′ and true v represent entire voxels in a
specific ROI (V1, V2, V3, V4, or LO). Hence, to relieve the influence of those ineffective
voxels during optimizing effective voxels in the ROI-wise encoding, we add gauss noise
ng with zero mean and one variance multiplying by the super-parameter ϕ on each of
predicted voxels v′ to restrain those ineffective voxels in the Eq. (4). The added noise
can make those ineffective voxels harder to optimize from the perspective of SNR. The
hyperparameter ϕ is used to control the rate of the added noise. To update weights of
S2F and F2V parts of ETECRM in an end-to-end manner, we use PC values to measure
the encoding performance, instead of MSE. Equation (5) presents the computation of
correlation of K th voxels in a specific visual ROI. Note that, in the experiment, vk is
a matrix whose dimensionality is m × n, and ng has the same dimensionality. n is the
number of voxels in a specific ROI, and m is the batch size. Each predicted voxel k in
one ROI has a PC value defined as cork .

v′ = v′ + ϕ · ng (4)

cork = cor
(
vk, v

′
k

)
=

Cov
(
vk, v

′
k

)
√
Var(vk) · Var(v′

k

) (5)

Instead of computing the mean value of PC values for all voxels in an entire ROI as
the loss function, we think of introducing the weighted PC loss defined as L to further
make the optimization pay attention to those effective voxels. However, whether the
K th voxel is important is unknown before optimization, hence the corresponding weight
value ηk is hard to determine in Eq. (6). In this study, we employed the current iteration
of cork to determine its weight. The cork is a value that ranges from −1 to 1, and
the absolute value of cork indicates the importance of the k th voxels. In this way, we
use the cor2k as the weight in Eq. (7), which can realize dynamic adjustment during
the optimization. If one voxel has a higher encoding correlation, its learning rate of
optimized weights can be bigger, and vice versa. Besides, a kind of noise regularization
is added to prevent the predicted voxels v′ from becoming bigger to make the added
gauss noise ng ineffective. The super-parameter γ is used to balance the fidelity and
regularization. Equation (8) gives the final loss function, and the super-parameter γ is
used to adjust the proportion of the regular term and fidelity term. In the end-to-end
learning, all parameters (wc and wfc) in ETECRM are updated at the same time. We
solve the problem through gradient descent to minimize the loss function based on the
open-source of deep learning framework PyTorch.

L = −
∑

k ηkcork
n

+ γ

∣∣∣∣∣
∑

k v
′
k

n

∣∣∣∣∣ (6)

ηk = cor2k (7)

L = −
∑

k ηkcork
n

+ γ

∣∣∣∣∣
∑

k v
′
k

n

∣∣∣∣∣ = −
∑

k cor
3
k

n
+ γ

∣∣∣∣∣
∑

k v
′
k

n

∣∣∣∣∣ (8)
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2.5 Control Models and Evaluations of Encoding Performance

In the experiment, we selected two two-step manner of control encoding models to
validate ETECRM. The two methods are the GWP-based model [10] (GWPM) and
CNN features-basedmodel (CNNM) [15], respectively. GWPMextractedGaborwavelet
features and CNNM uses the pre-trained AlexNet [9] to extract CNN features for input
images. The two methods both use the sparse linear regression [28] to map the extracted
features to voxel responses. For CNNM, we totally constructed 8 encoding models for
each layer of AlexNet and choose the model with the best encoding performance as the
control model.

To evaluate the encoding performance, we used the Pearson correlation (PC) value
between the true and the predicted voxel responses for all 120 images in the testing set.
Hence, we can obtain a PC value of GWPM, CNNM, and ETECRM for each voxel in
all visual regions. In order to evaluate the encoding performance of each visual region
for different methods, we Firstly made a scatter diagram of voxels for each visual ROI in
Figs. 3a and 4a, and we presented the corresponding number of voxels when PC value’s
distance between the two methods locates at specific abscissa intervals in Figs. 3b and
4b. Secondly, for each visual ROI, the voxels are sorted in descending order according to
the PC values to demonstrate the relationship between the PC value and the number of
effective encoding voxels for GWPM, CNNM, and ETECRM. To evaluate the encoding
efficiency,wepresented the training time for differentmethods in theExperimentDetails.

3 Result

3.1 Experiment Details

Table 1 presents the details of the network configuration and Table 2 presents the corre-
sponding encoding performance for the two subjects. Since lower-level and higher-level
visual ROIs have smaller and bigger receptive fields, respectively, the S2F part employs
a smaller convolutional kernel (3 × 3) for V1 and V2, and bigger convolutional kernel
(5 × 5) for V3, V4, and LO to extract image features. The F2V part includes one FC
layer for linear regression. The hyperparameters ϕ and γ are given in Table 2. During
the end-to-end training, we employ the PyTorch deep network framework, set batch
size as 64, and use Adam optimization with learning rate 0.001 to update togetherly the
parameters of the S2F and F2V parts through gradient descent. On the Ubuntu 16.04
systemwith one NVIDIA Titan Xp graphics card, about 20 epochs are required to obtain
stable results, which lasts about 3 min for encoding one visual ROI. After training, the
proposed method can achieve real-time predicting for one visual region, which is effi-
cient. The two-step model additionally still needs about 40 min for one visual ROI using
one layer of CNN features, excluding the feature extraction of all image stimuli. In this
way, the ROI-wise manner has much higher efficiency than the two-step manner. After
all, the proposed method can encode one visual ROI once, which makes the training
and testing efficient. Hence, the following section focus on the comparison of encoding
performance between the proposed method and control methods.
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Table 2. Encoding performance. “Mean PC” represents the mean Person correlation of entire
voxels in a specific visual ROI, and “Top-300 mean PC” represents the mean Person correlation
of top 300 better-encoded voxels in a specific visual ROI.

Subject – V1 V2 V3 V4 LO

Subject 1 ϕ 1.0 1.0 1.0 1.0 1.0

γ 1e−3 1e−3 1e−4 1e−5 1e−5

Mean PC 0.257 0.189 0.110 0.085 0.046

Top-300 mean
PC

0.650 0.612 0.429 0.312 0.131

Subject 2 ϕ 0.1 0.1 0.1 0.1 0.1

γ 1e−4 1e−4 1e−5 1e−5 1e−5

Mean PC 0.162 0.129 0.067 0.043 0.029

Top-300 mean
PC

0.491 0.442 0.248 0.052 0.031

The mean PC value of entire voxels and selected voxels (Top-k, k = 300) in each
visual ROI are given in Table 2. The detailed comparisonwith controlmodels can be seen
in the below subsection. Meanwhile, we can see that many voxels are not successfully
encoded, in terms of the big difference between mean and Top-300 mean correlation,
which validates the necessity of selective optimization in ROI-wise encoding.

3.2 Selective Optimization

A series of optimization strategies including self-adapting regression weights, weighted
correlation loss, and noise regularization are used in ETECRM, to selectively optimize
those effective voxels and suppress those ineffective voxels. Figure 3 presents the dis-
tribution of PC values of V1 (1294 voxels in total) on the training set and testing set,
respectively. We can see that the sparse distribution of PC values, and voxels have higher
or lower PC values. By restraining those ineffective voxels and paying more attention
to those important voxels, the model can automatically learn effective features in an
end-to-end manner and obtain better encoding performance. The sparse distribution val-
idates the selective optimization of the proposed method during the ROI-wise encoding
(Fig. 2).

3.3 Comparison with Two-Step Manner of Visual Encoding

Firstly, we make a comparison with GWPM in Fig. 3. It can be seen that ETECRM
was extremely better than GWPM and about 90% of voxels for all ROIs can be better
encoded by ourmodel. It can be seen that ETECRMalmost exceeds all voxels, especially
in V4 and LO, and only a few voxels can be better explained by the GWPM. The results
demonstrate a significant advantage of end-to-end learning than hand-crafted Gabor
features.
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Fig. 2. The distribution of PC value of each voxel in V1 on a. the training set and b. the testing
set during optimization, respectively.

Fig. 3. The encoding performance of ETECRM compared to GWPM. a. Each subfigure presents
a comparison of the two models in a specific visual ROI. In each subfigure, the ordinate and
abscissa of each dot represent the PC values of GWPM and ETECRM respectively. The green
dashed lines represent the threshold (0.27, p< 0.001) for significant PCvalue, hence, the black dots
correspond to those voxels that cannot be effectively encoded (under 0.27) by either of GEPM and
ETECRM. The red dots correspond to those voxels that can be better encoded by ETECRM than
GWPM and vice versa for the cyan dots. b. Distribution of the encoding performance between
ETECRM and GWPM. The ordinate and abscissa of each subfigure represent the number of
voxels and the PC value’s distance between the two methods, respectively. Those pillars compute
the number of the voxels whose PC value’s distance between the two methods locates at specific
abscissa intervals. The red and cyan pillars indicate better encoding performance for ETECRMand
GWPM, respectively. The number for each side represents the fraction of voxels whose encoding
performance is higher than that of the other model. (Color figure online)
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Next, we make a comparison with CNNM in Fig. 4. For the first subject (S1), ETE-
CRMhas higher accuracy than the CNNM inV1, V2, andV3, andV4, and slightly worse
in LO. Especially for V1, about 80% of voxels can be better encoded by the ETECRM.
The encoding performance on the second subject (S2) behaved similarly. From V1 to
LO, we can see that the advantages of the proposed ETECRM become less and less,
which indicates that it becomes harder to learn the feature representation of higher-level
visual ROIs in an end-to-end manner, and pre-trained CNN based onmillions of samples
demonstrates the advantage in the encoding of high-level visual ROIs.

Fig. 4. The encoding performance of ETECRM compared to CNNM. All subfigures have the
same definitions as Fig. 3. (Color figure online)

3.4 Model Comparison by Sorting Voxels in PC Values

Besides, we took out the voxels that were significantly predicted (PC > 0.27) [10] by
GWPM, CNNM, and ETECRM, and sorted them in descending order according to the
PC values in Fig. 5. For the first subject (S1), ETECRM (red line) and CNNM (blue
line) showed better encoding performance than GWPM (cyan line). Hence, we mainly
focus on the comparison with CNNM. For V1, V2, and V4, the red line is above the blue
line, which indicated that the encoding performance of ETECRM is better. For V3, the
red line roughly exceeds the blue line, and slightly better performance was obtained by
ETECRM. For LO, ETECRM behaves worse than CNNM. The encoding performance
on the second subject (S2) is similar. In conclusion, ETECRM performs better in V1,
V2, and V3; slightly better in V4; worse in LO than CNNM, which behaves gradually
descending advantage from low-level to high-level visual cortices. We speculate that
relatively more data is required for encoding high-level visual ROIs that are responsible
for high-level visual representation, and current fewer data suppresses the function of
the end-to-end manner, hence, reduce the encoding performance.
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Fig. 5. Encoding performance of ETECRM compared to GWPM and CNNM. Effectively pre-
dicted voxels are sorted in descending order according to PC values. ETECRM, GWPM, and
CNNM are represented by the red, cyan, and blue lines, respectively. (Color figure online)

4 Discussion

4.1 The Step-by-Step and End-to-End Methods

The step-by-stepmethod is a commonway to solve a complex problembydecomposing it
into several simple sub-steps. In the traditional computer vision domain, it is also awidely
adoptedmanner. For example, several steps such as preprocessing, feature extraction and
selection, and classifier design are included to solve the image recognition task. The step-
by-step method makes the sub-problems or sub-steps simple, controllable, and easier to
solve, compared to the overall problem. However, its disadvantages are equally obvious:
the optimal solutions of sub-problems do not necessarily mean the global optima of the
initial problem. On the contrary, deep learningwith a powerful nonlinear ability provides
a useful tool to emphasize the end-to-end learning instead of artificially dividing steps
or sub-problems, it is completely handed over to neural networks to directly learn the
mapping from the original input and the expected output. Compared to the step-by-
step strategy, the end-to-end learning manner is more likely to obtain a better overall
solution, since the sub-parts can coordinate with each other. Current methods almost
employ the end-to-end manner to solve the image recognition task. Similarly, the end-
to-end manner also has advantages compared to the two-step manner of methods for
the visual encoding problem. This study is the first to introduce the end-to-end manner
to design the visual encoding model and obtain better encoding performance based on
better-matched features with voxels.

4.2 How to Encode High-Level Visual ROIs

Regardless of the two-step manner of encoding or the end-to-end manner of encoding,
the encoding performance of high-level visual ROIs such as LO is worse compared
to the encoding of low-level visual ROIs. High-level visual ROIs are responsible for
complex semantic visual representations, which are essentially hard to characterize. In
this way, seeking well-matched features with those voxels from the computer vision
domain seems hard to realize. Although the proposed method still seems helpless, the
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encoding results have validated the advantage of the end-to-endmanner, andwe think that
complex high-level ROIs can be encoded with more fMRI data, namely the potential of
the end-to-end manner was restricted with the limited amount of fMRI data, compared
to big data that has millions of samples in the computer vision domain. The end-to-
end manner has led the rapid development with big data at hand in the computer vision
domain. Therefore, collectingmore datawill be the next direction for the visual encoding
domain. Although a minority of researchers [23] start to be aware of the problem of data,
their volume of data still cannot be called “big data”, compared to the classical ImageNet
in the computer vision domain. Visual encoding can refer to the development path of the
computer vision domain, and the encoding domain might be taking off by combining
the end-to-end manner and big fMRI data.

5 Conclusions

In this study,we proposed anROI-wise visual encoding using an end-to-endCNN regres-
sion model. Through selective optimization, we obtained higher encoding performance
than the two-step manner-based models in low-level visual areas. From the perspec-
tive of effectiveness, the proposed method showed the ability to automatically learn
better-matched features with neuron activity from training data. From the perspective
of efficiency, the proposed method accomplished the ROI-wise encoding with better
performance. Overall, effective and efficient encoding is accomplished based on the
proposed method. Besides, one referable way to develop computational neuroscience
models from the perspective of computer vision was provided and further give rise to
consideration of the potential of end-to-end manner and a large volume of fMRI data
for future visual encoding.
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Abstract. Graph Neural Networks (GNNs) have shown to be vulner-
able against adversarial examples in many works, which encourages
researchers to drop substantial attention to its robustness and security.
However, so far, the reasons for the success of adversarial attacks and the
intrinsic vulnerability of GNNs still remain unclear. The work presented
here outlines an empirical study to further investigate these observations
and provide several insights. Experimental results, analyzed across a vari-
ety of benchmark GNNs on two datasets, indicate that GNNs are indeed
sensitive to adversarial attacks due to its non-robust message functions.
To exploit the adversarial patterns, we introduce two measurements to
depict the randomness of node labels and features for a graph, noticing
that the neighborhood entropy significantly increased under adversar-
ial attacks. Furthermore, we find out that the adversarially manipulated
graphs typically tend to be much denser and high-rank, where most of the
dissimilar nodes are intentionally linked. And the stronger the attacks
are, such as Metattack, the patterns are more apparent. To sum up, our
findings shed light on understanding adversarial attacks on graph data
and lead potential advancement in enhancing the robustness of GNNs.

Keywords: Graph adversarial attack · Network robustness · Graph
neural networks · Node classification

1 Introduction

Graph structure data is a unique non-Euclidean data structure that is pervasive
across different domains in machine learning , ranging from recommendation sys-
tems, social networks, knowledge graphs, and many other practical applications
[5,6,18,26]. Graph Neural Networks (GNNs), as a class of models that combine
deep learning models and methods for structured data, has gained a consider-
able amount of research attention due to the expressive power in modeling the
relationships between nodes or edges in a graph. Naturally, at the meantime,
a wide range of techniques on graph analysis have been developed in this field,
which has made considerable progress over the last decade.

Despite the great success, recent studies have shown that the well-performed
GNNs inevitably inherit the limitations of deep neural networks—they are found
c© Springer Nature Singapore Pte Ltd. 2021
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to be sensitive to the well-designed inputs, i.e., adversarial examples. On this
basis, a broad range of techniques on attacking GNNs have been proposed
towards this area, revealing the high vulnerability of GNN models [3,8,24,28,29].
Take the node classification task as an example, an attacker can easily enforce
the model to make certain misclassification by small, often imperceptible pertur-
bations (e.g., a few edge flips) to the input graph. By exploring the vulnerability
of GNNs, Zügner et al. [28] first propose an efficient attack on graph data, which
can perform perturbations on both graph structure and node features, while the
perturbations are still constrained to ensure the attack’s “unnoticeability”. Xu
et al. [24] present a novel gradient-based approach for attacking the GNNs from
an optimization perspective, showing an impressive performance to fool GNNs.
Most of the attackers reveal the strong ability on fooling GNNs, however, the
adversarial patterns of attacks and the explanations to GNNs’ vulnerability are
less discussed.

In this work, we conduct comprehensive experiments to provide some insights
to graph adversarial learning. We attempt to investigate the adversarial patterns
of attacks and the reasons for the intrinsic vulnerability of GNNs. To achieve
this, we employ a line of attack methodologies, including state-of-the-arts, and
evaluate their performance with several GNNs (target models) on two benchmark
datasets. From experimental results, we find that the adversarially manipulated
graph is (i) much denser, (ii) high-rank, (iii) higher neighborhood entropy, and
(iv) has more dissimilar nodes connected than the original graph statistically.

In conclusion, we make the following contributions whilst exploring this area:

– We analyze the reasons for the intrinsic vulnerability of GNNs, showing that
the non-robust message functions would result in a high vulnerability.

– We provide a comparison for different attacks over a line of GNNs on node
classification task to explore the adversarial patterns.

– We introduce several measurements to further capture these patterns and
support our observations and claims.

2 Related Work

With the rise in the threat of security, researchers evidently have dropped a
large amount of attention in studying graph adversarial attack [4,14,20]. As
the first work in graph domain, Zügner et al. [28] propose Nettack based on
a linear version of Graph Convolution Network (GCN) [15], which generates
adversarial perturbations by searching the perturbation space sequentially. In
a follow-up study, Zügner et al. [29] study the discreteness of graph data, and
solve the bilevel problem of poisoning attacks using meta gradients. Wu et al.
[22] introduce integrated gradients that could guide the attack of perturbing
certain features or edges while still benefiting from the parallel computations.
Additionally, several heuristic methods are also proposed to poison the GNNs
[1,8,16], revealing the vulnerability of GNNs in different graph analysis tasks.
However, the adversarial patterns of attacks are less explored and the reasons of
the success of attacks still remain unclear.



Deep Insights into Graph Adversarial Learning 89

In order to defend the aforementioned attacks, a line of techniques has been
used as a practical countermeasure to improve the robustness of GNNs. Zhu et al.
[27] derive a robust graph convolution model by learning the hidden representa-
tion as a Gaussian distribution and using the attention mechanism to aggregate
the messages from node neighborhoods. In addition, it is an intuitive way to pre-
process the input data and thus reducing the effects of adversarial examples. Wu
et al. [22] inspect the input graph and recover the potential adversarial examples
with Jaccard Similarity. Entezari et al. [9] demonstrate that attackers only affect
the high-rank singular components of the graph, and further propose a low-rank
approximation method to reduce the adversarial effects.

A recent work [23] offers an important insight into the neighborhood aggre-
gation of GNNs, i.e., the neighborhood aggregation is not always necessary and
beneficial. Following this insight, we aim to deepen our understanding of the vul-
nerability of GNNs from an empirical study perspective. Our work reveals the
adversarial patterns of attacks and provides the explanation that the aggregation
functions have a significant influence on the robustness of GNNs.

3 Analysis of Graph Neural Networks

In this section, we intend to discuss the vulnerability of GNNs, and to further
draw attention on the reasons for this. Specifically, we begin with giving some
basic notations of graph data and discuss the details of the message passing
Graph Neural Networks. What’s more, two measurements of the neighborhood
entropy are introduced to depict the chaos in node neighborhoods.

3.1 Notation

In line with the focus of this work, we consider the task of semi-supervised
node classification in an undirected, unweighted graph. Formally, we follow the
widely used notation to represent a graph G = (V,E), where V = {vi} is a
finite set of vertices (nodes) and E = {ej} is a finite set of links (edges). The
D dimensional node features can be denoted as a matrix X ∈ {0, 1}N×D where
N = |V |. Typically, the connections of node pairs in a undirected graph G can
be represented as an adjacency matrix A ∈ {0, 1}N×N , where Au,v = 1 denotes
an edge is present between node u and v while Au,v = 0 otherwise. In addition,
for the node classification task, a set of class labels Y is given where yi denotes
the ground-truth label of vi.

3.2 Message Passing Graph Neural Networks

There are several works in studying the expressive power of GNNs [10,17,23,25],
including its depth, width, representational properties and limitations. Specifi-
cally, most of GNNs follow a neighborhood aggregation scheme, where the hidden
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Fig. 1. Neighborhood aggregation of GNN before and after the attack. The darker
color indicates the larger values of the node features. A GNN may have a high degree
of robustness in predicting the class label of a node if its neighborhood share similar
features (messages) with it, as opposed to the low robustness with a neighborhood
where the features (messages) of nodes vary greatly from the central node.

representation of a node is computed by recursively aggregating and passing mes-
sages from its neighborhood. Based on this work [11], we define message passing
graph neural networks as follows:

m
(K+1)
i = M (K)({h

(K)
j |vj ∈ N (vi)}),

h
(K+1)
i = U (K)(h(K)

i ,m
(K+1)
i )

(1)

where M (K) and U (K) denote the message passing function and update function
at K-th layer, m

(K)
i and h

(K)
i are the message and hidden representation of vi

correspondingly. In particular, h
(0)
i = Xi. N (vi) denotes the neighboring nodes

adjacent to vi in the graph G.
From Eq. (1), the hidden representation of a node vi is overly dependent on

the message aggregated and transformed from its neighborhood. If the message
function and update function are improperly designed, e.g., sensitive to noisy
inputs, the message aggregation will be negatively affected and result in the
failure of GNNs. To illustrate why GNNs are vulnerable due to message passing
functions, we take GCN as an example and describe its message passing function
and update function as follows:

M (K)({h
(K)
j |vj ∈ N (vi)}) =

∑

vj∈N (vi)∪vi

h
(K)
j W (K)

√
(|N (vi)| + 1)(|N (vj)| + 1)

,

U (K)(h(K)
i ,m

(K+1)
i ) = σ(m(K+1)

i )

(2)

where σ denotes the element-wise activation function.
Following the scheme of message aggregation, the GNNs can learn the hidden

representations of a node from its neighborhood. For all of its advantages, mes-
sage aggregation or neighborhood aggregation is something of a double-edged
sword. Notice that the message passing function of GCN can be regarded as a
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mean-like function, which is useful for aggregating the neighborhoods message
and is widely adopted in most of GNNs. However, the mean aggregation is sen-
sitive when there are extreme values in the neighborhood’s messages, e.g., very
distinctive features from the adjacent nodes. This suggests that an attacker can
easily affect the message aggregation of a node by injecting some vicious nodes
with dissimilar features or labels into its neighborhood. As shown in Fig. 1, a
GNN may have a high degree of robustness in predicting the class label of the cen-
ter node by aggregating the messages from its neighborhood, where the majority
share similar features (messages) with it. In comparison to the low robustness
with a neighborhood where the features (messages) of nodes vary greatly from
the central node. We therefore claim that the vulnerability of GNNs may be
derived from the high dependency on the node neighborhoods, i.e., they will natu-
rally become vulnerable if the message functions are improperly designed while
the node neighborhoods are intentionally changed.

3.3 Neighborhood Entropy Measurements

As we discussed in Sect. 3.2, the vulnerability of GNNs is mainly due to the
aggregation layers exploiting the messed-up neighborhoods. So, no matter what
the exact procedure is, the outcome of a specific attack method will always wind
up making connections between nodes with dissimilar features or different labels,
and so is the defense method doing the opposite operations.

In addition, Xie et al. [23] argue that the neighborhood aggregation operation
is not always necessary and beneficial when the neighbors of a node are highly
dissimilar. In this spirit, we propose two measurements of entropy to depict the
chaos in node neighborhoods and use them to represent the predictability of a
graph. To obtain the label-diversity for a graph, we compute the Neighborhood
Entropy of nodes labels (NE-label) by the following:

NE-label(vi) = −
C∑

c

Pc(vi) log (Pc(vi)) ,

where Pc(vi) =

∑
vj∈N (vi)∪vi

[yj = c]

|N(vi)| + 1
,

(3)

where C is the number of classes, and [yj = c] is the indicator function that equals
to 1 if the label of node vj is c, and equals to 0 otherwise. As for the feature-
diversity for one single node, we similarly compute the Neighborhood Entropy
of the node features (NE-feature) in its neighborhood including its own:

NE-feature(vi) = −
D∑

d

Pd(vi) log (Pd(vi)) ,

where P (vi) =
p(vi)∑D
d pd(vi)

,

p(vi) =
∑

vj∈N (vi)∪vi

hj√
(|N (vi)| + 1)(|N (vj)| + 1)

,

(4)
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where p(vi) is an aggregation of all the features for neighbors of vi including vi
(similar to what GCN do in Eq. (2)) and P (vi) is normalized p(vi).

These two measurements indicate how wild the label and feature distributions
are in the neighborhood of a single node. For example, within a graph with high
predictability, the average value of neighborhood entropy for all of the nodes
is expected to be rather low, since two nodes with the same label and similar
features are more likely to be linked to [2] (more details will be discussed in Sect.
4.2). As it turns out, just as we expected, the relatively high entropy results in
high chaos of nodes neighborhood and low robustness of GNNs.

4 Experiments and Discussions

Dataset. For all experiments, we adopt two commonly used datasets as bench-
marks: CiteSeer and Cora [19]. For each dataset, we randomly select 20% of the
nodes to make up the training set (half of which are treated as the validation
set), and treat the remaining as the test set. We also follow the setting of [28]
which only considers the largest connected component of the graph. In addi-
tion, we assume that the attackers have full access of the datasets, i.e., the link
connections and node features, but the target model is completely unknown to
attackers. In our experiments, both the poisoning attack and the non-targeted
attack are considered, i.e., the primary goal of attackers is to reduce the overall
performance of classifiers, whose weights are retrained after attacks. The study of
evasion attack and targeted attack is left for future work. Table 1 is an overview
of the datasets.

Target Models. To validate the vulnerability caused by the non-robust mes-
sage functions, a line of frequently used GNNs are adopted: Graph Convolutional
Network (GCN) [15], Simplified Graph Convolution (SGC) [21], Cluster-GCN
[7], GraphSAGE [13]. These models primarily use the “mean” message passing
function to aggregate the hidden activations of a node from its neighborhoods.
In addition to the GNNs using mean-like message passing function, we adopt
RGCN [27] which enhances the neighborhood aggregation by imposing Gaussian
distribution and attention mechanism.

Attacker Models. We concentrate primarily on the structure attack for a fair
comparison, as most of the previous works do not consider the feature attack.
To better compare the performance of various attacks, we assemble a number of
attack methods including state-of-the-arts.

– RAND. The simplest attack that inserts or removes edges from the graph
randomly.

– DICE [2]. “Delete Internally, Connect Externally” (DICE) is originally a
heuristic algorithm for disguising communities. The core idea is to randomly
connect nodes with different labels or remove edges between nodes that share
the same label.
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Table 1. Dataset statistics. We only consider the largest connected component of the
graph for each dataset.

Dataset #Nodes #Edges #Classes #Features #Density

CiteSeer 2,110 3,668 6 3703 0.082%

Cora 2,485 5,069 7 1433 0.082%

– Fast Gradient Sign Method (FGSM) [12]. A vanilla gradient-based method
that simply generates adversarial examples based on the sign of gradient
derived from the partial derivative of classification loss w.r.t. the input graph.

– PGD [24]. A state-of-the-art gradient-based that leverage projected gradient
descent (PGD) from a first-order optimization perspective.

– Metattack [29]. A state-of-the-art gradient-based method that solves the
bilevel optimization problem of poisoning attacks using meta learning.

Setup. For each target model, we fine-tune the hyperparameters on the original
graph and keep them fixed on the perturbed one. Besides, we impose the same
perturbation constraint τ (i.e., the attack budget) on different attackers, ranging
from 5% to 25% of edges in the graph. We use the classification accuracy as an
evaluation metric, with results obtained over 10 runs to minimize the effect of
randomness. Specifically, we enforce these adversarial attack methods to a fair
situation, i.e., prior knowledge of datasets and target models is the same in order
to investigate their performance in more depth.

4.1 Structural Vulnerability of Graph Neural Networks

In order to show the performance of GNNs under different attacks, we use dif-
ferent attack methods separately to poison the input graph and train the target
GNNs to evaluate the classification performance using the generated adversarial
examples. The classification results of GNNs on CiteSeer and Cora can be seen
in Table 2, here we report the mean classification accuracy (in percent) on the
clean graph and the perturbed one with increasing perturbation rates.

Performance of Adversarial Attacks. Observed from Table 2, it is clear
that GNNs are indeed sensitive to adversarial attacks even with relatively small
perturbations. The classification accuracy is easily affected by the attackers.
Simple attacks like RAND are expected to have little impact on the poisoning
of target models even with larger perturbations (25%). However, based on the
core idea—“Delete Internally, Connect Externally”, the enhanced randomized
DICE attack shows stronger performance in attacking GNNs. This implies that
most of the non-robust message functions can be influenced by injecting more
edges between dissimilar nodes and removing them between similar nodes in the
graph.
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In addition, we can find that the gradient-based attacks, particularly Metat-
tack, have gained dramatic attack performance on both datasets. These attack
methods utilize the gradients derived from the surrogate model (GCN), showing
the significant performance and transferability in attacking other GNNs as well
as GCN. With higher τ , Metattack shows the performance of a strong attacker
that decreases the accuracy by more than 30% on Cora dataset. While other
gradient-based approaches, FGSM and PGD perform worse than Metattack but
are still successful in attacking target GNNs. A possible explanation for the
results is that the gradient obtained by meta learning has better approximation
on the loss of target models, thus have advantage on exploiting the vulnerability
of GNNs sufficiently.

Vulnerability of Graph Neural Networks. From the viewpoint of GNNs,
various models display varying levels of robustness to attacks. For GCN and
SGC, whose message passing functions are simple mean-like functions, both of
them struggle to preserve their robustness against attacks. However, Cluster-
GCN and GraphSAGE behave more robustly even in the face of stronger attacks.
We are giving the explanations from the aggregation schemes: (i) Cluster-GCN.
Using a graph clustering algorithm, Cluster-GCN samples a number of subgraphs
whose nodes are strongly correlated. In view of this, certain low-correlation edges
between subgraphs will be dropped as if the clustering algorithm works function-
ally. By doing so, some of the effects of the adversarial behaviors can be allevi-
ated. However, the clustering algorithm can also be tricked as the perturbations
increase. (ii) GraphSAGE. GraphSAGE is a more universal graph convolution
network that samples and aggregates the messages from nodes’ neighborhoods.
Here we adopt the GraphSAGE-mean in this experiment. Based on Eq. (1), the
message passing of GraphSAGE can be denoted as follows:

M (K)({h
(K)
j |vj ∈ N (vi)}) =

∑

vj∈N (vi)

h
(K)
j W (K)

|N (vj)| ,

U (K)(h(K)
i ,m

(K+1)
i ) = σ(m(K+1)

i ‖h
(K)
i W (K)),

(5)

where ‖ denotes the concatenate operation.
Despite using the mean aggregation as a message passing function, the higher

robustness of GraphSAGE may be derived from the update function with the
concatenate operation. The message aggregation of GraphSAGE is less depen-
dent on the neighborhoods but more on the node itself, whose feature is unper-
turbed in the structure attack setting. This explains the higher robustness of
GraphSAGE and it shows a simple but effective way to improve the robustness
of message aggregation, which is also useful to enhance the robustness of GNNs.

For RGCN, it uses Gaussian distribution in graph convolution layers to
absorb the effects of adversarial attacks and introduces a variance-based atten-
tion mechanism to prevent the propagation of unnecessary messages in node
neighborhoods. The message functions are designed more robust than mean-like
functions, and therefore, it is beneficial for defending such adversarial attacks.
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This also indicates the importance of designing more robust message functions
for GNNs.

As described in Sect. 3, the message functions of GNNs have high dependen-
cies on the neighborhoods of nodes. Just like a double-edged sword, it is useful
to learn the hidden representations of nodes by following a message aggregation
scheme. On the other hand, it also results in high vulnerability of GNNs if mes-
sage function are incorrectly designed. Therefore, an effective way to improve
the robustness is to design a more robust message aggregation function against
the attacks. To conclude, we argue that the vulnerability of GNNs is on account
of the high dependencies on the neighborhoods of nodes (as shown in Fig. 1).
If the message functions can be somehow improved to reduce the dependencies
(like GraphSAGE and RGCN), the model will be more robust against attacks.

4.2 Adversarial Patterns of Attacks on Graph Data

As stated in Sect. 4.1, the vulnerability of GNNs is observed in Table 2, which is
consistent with the previous studies. In this part, we aim to further discover the
adversarial patterns of attacks on graph data, which helps researchers to under-
stand the reasons of the success in attacking GNNs and thus considering the
countermeasures against such attacks. Indeed, the following adversarial patterns
are observed:

High Neighborhood Entropy. Previously, Xie et al. [23] mention that the
neighborhood aggregation is not always necessary and beneficial for GNNs. Actu-
ally, it is consistent with our claim that the main reason for the vulnerability of
GNNs is the non-robust message functions. To better understand this, we plot
the distribution of neighborhood entropy under different attacks on Cora dataset
in Fig. 2. A clear difference between the neighborhood entropy statistics for the
unperturbed versus perturbed nodes can be observed, especially for the stronger
attacks FGSM, PGD and Metattack. We can see that the more the neighbor-
hood entropy has increased, the more vulnerable of the GNNs and the stronger
of the attacks. This is consistent with the results in Table 2. An attacker always
manages to increase the neighborhood entropy to affect the non-robust message
functions and hinder the message aggregation of nodes, therefore, it should be
more cautious in performing aggregation when the neighborhood entropy is high.

High Rank, Dense and High Distinct Rate. Given that, high neighborhood
entropy hinders the message aggregation of nodes, there is a high probability
that an attacker will cause the node neighborhoods to become messed up (e.g.,
Fig. 1) to increase the neighborhood entropy. Following this insight, we aim to
explore the characteristics of the perturbed graph, including the changes of rank
and edges. Beyond that, we use Distinct Rate r to calculate the ratio of edges
connected with nodes belonging to different classes in a graph, i.e.,

r =

∑
u,v[yu �= yv]

|E| (6)
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(a) Neighborhood Entropy (feature) (b) Neighborhood Entropy (label)

Fig. 2. Box plots of neighborhood entropy statistics for the unperturbed graph (green
dots) and perturbed graph (red dots, τ = 15%) on Cora dataset. (Color figure online)

Fig. 3. Statistics (rank, edges, Distinct Rate r) of graph under different attacks on two
datasets.

where [yu �= yv] is an indicator that equals 1 if the class of u and v are different,
and equals 0 otherwise.

As shown in Fig. 3, the adversarially manipulated graph has the following
patterns: high rank, dense and high Distinct Rate with higher perturbations
τ . The adversarial patterns suggest that: (i) the rank of a graph is increasing
when being attacked even though the edges are randomly added or removed.
A possible explanation is that attackers will affect the high-rank (low-valued)
singular components of the graph; (ii) attackers prefer adding edges rather than
removing them. The three strongest attacks intentionally add adversarial edges
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Fig. 4. Change of BC margins and the gaps for each class under the attacks of Metat-
tack and DICE on Cora dataset.

into the graph to affect the message aggregation1; (iii) most of the injected edges
appeared in the neighborhoods of dissimilar nodes (Distinct Rate r increases as
τ grows), leading to the significant increase of the neighborhood entropy.

We give explanations for these interesting patterns. For (i), we refer readers
to [9] therein for more thorough reviews. For (ii), we claim that adding edges
is more efficient and practical to fool the classifier than removing them2. In a
classification task, an attacker attempts to mislead the prediction of GNNs on
the majority of nodes, i.e., decreasing the prediction probability of real class and
increasing that of other classes of nodes. To demonstrate this process, we define
the Between-Class (BC) margin Δ as follows:

Δj =

∑
vi∈V (Zci,0 − Zci,j )

|V | , where j = 1, 2, · · · , C − 1, (7)

where Z ∈ RN×C is the prediction matrix of a classifier, ci,j denotes the jth most
probable class label of node vi. Specifically, ci,0 denotes the predicted class of vi.
The BC margin represents the confidence of a GNN in predicting the nodes. In
other words, a lower Δj means the model is less confident with the prediction,
which inevitably yields a poorer performance in classification. In addition, we

1 The edges of the graph perturbed by RAND and DICE almost unchanged since they
randomly choose to add or remove edges with the same probability.

2 In fact, removing edges may result in singleton nodes and it is also not beneficial for
attacks.
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also define δi,j = Δi − Δj to capture the gaps between BC margins of a GNN
under attacks. The aforementioned measurements of GCN under the attacks
of DICE and Metattack are shown in Fig. 4. We omit the statistics of RAND,
FGSM and PGD for simplicity since they show similar patterns with the chosen
two methods. As it turns out, a strong attack like Metattack (Fig. 4(a)) tends
to decrease Δ1 more dramatically than other BC margins, especially compared
with a rather ineffective method like DICE (Fig. 4(c)). This pattern is pictured
more clearly in Fig. 4(b) and (d), which shows the gaps (δi,1) between the rest
and the second probable class for Metattack are increasing, but the gaps (δi,1) for
DICE almost unchanged statistically. That is, a stronger attack may followed by
dramatically changes of BC margins especially Δ1. This seems pretty reasonable
since we only need one wrong class’s probability to surpass that of the ground-
truth class. As the attack budget is fixed to a small value, it is relatively more
efficient to increase the second most probable class’s probability rather than the
others. This is why effective methods are always more likely to add edges instead
of removing them. For removing an edge with a node of the ground-truth label
may increase all the other class’s probability simultaneously, while adding one
with a node of the second probable class will mainly increase the probability
of itself. Accordingly, though adding and removing edges both have the ability
to fool the classifier, the former could achieve the same effect with a rather
lower budget. We believe this pattern will be even more clear with the targeted
attacks, which is not discussed in this paper and shall be covered in future works.
For (iii), it’s straightforward to follow the core idea of DICE, and the empirical
results show the efficiency in attacking GNNs. A stronger attacker will not only
choose to add adversarial edges and also consider the ones that connected with
dissimilar nodes. Moreover, an interesting phenomenon is observed that DICE
has a similar Distinct Rate r with FGSM, PGD, and Metattack but it does
not cause a high increase of neighborhood entropy from Fig. 2. Actually, this
also suggests that adding adversarial edges is more beneficial for attacks than
removing them.

5 Conclusion and Future Work

In this work, we study the vulnerability of GNNs and the adversarial patterns
of attacks on graph data. Through a comprehensive study of several widely used
GNNs on two real-world benchmark datasets, we draw the following conclusions:
(i) GNNs are vulnerable if the message functions are incorrectly designed and
maliciously utilized; (ii) high neighborhood entropy of node features and labels
will lead to worse performance of GNNs; (iii) most of attacks may lead to a dense
and high-rank graph structure. In addition, attackers prefer adding adversarial
edges (especially between dissimilar nodes) rather than removing them to mis-
lead the message aggregation in the node neighborhoods, since the former is a
relatively more economical way.

This project provides a comprehensive investigation on graph adversarial
learning and offers deep understandings on the reasons of GNNs’ intrinsic vul-
nerability. More generally, these basic findings are consistent with previous
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researches. Future research could fruitfully explore these insights further by
studying other types of attacks (e.g., evasion attack). Moreover, the robustness
of GNNs could be improved by designing a more robust message function.
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Abstract. The SSVEP-BCI system usually uses a fixed calculation time and a
static window stopmethod to decode the EEG signal, which reduces the efficiency
of the system. In response to this problem, this paper uses an adaptive FBCCA
algorithm, which uses Bayesian estimation to dynamically find the optimal data
length for result prediction, adapts to the differences between different trials and
different individuals, and effectively improves system operation effectiveness. At
the same time, through thismethod, this paper constructs a brain-controlled robotic
arm grasping life assistance system based on adaptive FBCCA. In this paper, we
selected 20 subjects and conducted a total of 400 experiments. A large number of
experiments have verified that the system is available and the average recognition
success rate is 95.5%. This also proves that the system can be applied to actual
scenarios. Help the handicapped to use the brain to control the mechanical arm
to grab the needed items to assist in daily life and improve the quality of life. In
the future, SSVEP’s adaptive FBCCA decoding algorithm can be combined with
the motor imaging brain-computer interface decoding algorithm to build a corre-
sponding system to help patients with upper or lower limb movement disorders
caused by stroke diseases to recover, and reshape the brain and Control connection
of limbs.

Keywords: BCI · SSVEP · Adaptive FBCCA · EEG

1 Introduction

At the end of the 1990s, the first Brain Computer Interface (BCI) international confer-
ence defined BCI: BCI is a special communication system that does not depend on the
peripheral nerve and muscle tissue of the human body [1]. In 2012, Wolpaw gave a more
strict definition of BCI: BCI can replace, repair, enhance, supplement or improve the
normal output of the central nervous system by detecting the activity of the central ner-
vous system and turning it into artificial output, so as to change the interaction between
the central nervous system and the internal and external environment [2]. Steady state
visual evoked potential [3] (SSVEP) is a commonly used BCI input signal. Compared
with event-related potentials, spontaneousEEGsignals, P300 and othermethods, SSVEP
has the advantages of simple operation, fewer electrodes, high information transmission
rate, no training, and strong anti-interference ability [4].

© Springer Nature Singapore Pte Ltd. 2021
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At present, the basic principle of the BCI system designed based on SSVEP is that
when the human eye receives a fixed frequency visual stimulus, the visual cortex of the
brain will generate a continuous response signal related to the stimulation frequency
(the fundamental frequency or octave band of the stimulation frequency) [5]. By decod-
ing the response signal, the person’s intention can be recognized, and then external
devices such as computers can be controlled by the brain. In foreign countries, Profes-
sor Middendorf of the United States designed the SSVEP-BCI control system in 2000
[6]; Professor Muller-Putz of Austria realized the SSVEP-BCI-based robotic prosthesis
control system [7]; Professor Bakardjian used SSVEP- The BCI system designed virtual
games and realized the function of playing games using EEG signals [8]; In China, Gao
Xiaorong’s team at Tsinghua University developed a high-speed BCI speller based on
SSVEP technology [9, 10]; Li Yuanqing’s team from South China University of Tech-
nology The designed SSVEP and P300 hybrid BCI system is suitable for the control
of wheelchairs and other equipment [11, 12]. In recent years, SSVEP-BCI technology
has been developed by leaps and bounds, and it has demonstrated important value in
the fields of rehabilitation engineering, biomedicine [13], virtual reality [14], military,
aerospace, and games. At present, almost all SSVEP-BCI systems at home and abroad
are using fixed calculation time window static stop decoding method. Few proposed
adaptive Filter Bank Canonical Correlation Analysis (FBCCA) dynamic time window
cut-off method and applied this method to actual scenes.

The brain-controlled robotic arm grasping life assistance system based on adaptive
FBCCA designed in this paper applies the adaptive FBCCA dynamic time window cut-
off method to the actual scene, so that the system has good human-computer interaction
functions and high accuracy of EEGdecoding and recognitionAccording to the designed
experimental paradigm, after 20 subjects participated in the experiment, the average brain
control grabbing accuracy was 95.5%. The system image recognition speed is fast, and
the recognition status and results can be fed back in real time, so that the system can
help handicapped people with motor dysfunction such as stroke to grab the objects they
need without help, and help them fulfill certain life needs, improve the quality of life.

2 Method

So far, almost all SSVEP-BCI systems are using a statically stopped decoding method
with a fixed calculation time window. However, due to individual differences, each
person’s BCI ability is different, and even the BCI ability of the same subject at different
times is also different, because the state of the brain changes at any time. Therefore, an
adaptive FBCCA decoding algorithm is adopted to select different size calculation time
windows according to the difference of each subject to achieve a dynamic stop decoding
method, which can effectively solve the above problems and improve the operation of
the SSVEP-BCI system effectiveness.

2.1 CCA Algorithm

The Canonical Correlation Analysis (CCA) algorithm is a multivariate statistical analy-
sis method that uses the correlation between comprehensive variable pairs to reflect the
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overall correlation between the two sets of indicators. The principle is: in order to grasp
the correlation between the two sets of indicators as a whole, two representative compre-
hensive variables Wx and Wy are extracted from the two sets of variables (respectively
the linear combination of the variables in the two variable groups), Use the correlation
between these two comprehensive variables to reflect the overall correlation between
the two sets of indicators.

When CCA extracts the SSVEP response frequency, the two sets of multivariate
are defined as X and Y respectively, where X is the EEG (Electroencephalography,
electroencephalogram) multi-channel signal of EEG.

X =

⎡
⎢⎢⎢⎢⎢⎣

channeli
channelj

. . .

channelm
channeln

⎤
⎥⎥⎥⎥⎥⎦

(1)

In formula (1), the subscript of channel represents the number of different channels, and
Y is the reference signal related to the stimulation frequency. In formula (2), N is the
number of harmonics of the stimulation frequency, and the number of channel in X is
also N .

Y =

⎡
⎢⎢⎢⎢⎢⎣

sin(2π ft)
cos(2π ft)

. . .

sin(2πNft)
cos(2πNft)

⎤
⎥⎥⎥⎥⎥⎦

(2)

CCA finds a pair of vectors Wx and Wy for the two sets of multidimensional variables
X and Y , and maximizes the correlation between the related variables x = X TWX and
y = YTWY through Wx and Wy, as shown in formula (3).

max
wx,wy

ρ = E
[
xT y

]
√
E
[
xT x

]
E
[
yT y

] = E
[
WT

x XY
TWy

]
√
E
[
WxXX TWx

]
E
[
WT

y YY
TWy

] (3)

The formula (3) derives the maximum value of the correlation coefficient ρ between X
and Y . When different frequencies are selected, the calculated ρ is also different. The
frequency corresponding to the maximum ρ is considered the response frequency of
SSVEP.

2.2 FBCCA Algorithm

FBCCA adds a filter bank on the basis of CCA, so that the harmonic components of
the EEG signal that are not fully utilized in the traditional CCA algorithm are used
to improve the accuracy of the algorithm. The FBCCA method mainly includes three
parts: (1) filter bank analysis of EEG signals; (2) CCA analysis of SSVEP sub-band
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components and sine and cosine reference signals; (3) target recognition. First, filter
bank analysis decomposes the signal into multiple subband signals through multiple
different bandpass filters. We use a zero-phase Chebyshev type I IIR filter to extract
each subband component (XSBn, n = 1, 2, . . . ,N ) from the original EEG signal x. In
order to meet the requirement of zero phase, we use the filtfilt function in MATLAB
for filtering. After the analysis of the filter set, the typical correlation coefficients of
the sinusoidal reference signals corresponding to each subband component and each
stimulation frequency (Yfk , k = 1, 2, . . . , 12) are calculated. For the kth stimulation
frequency fk , the correlation vector ρk consists of N correlation coefficients:

ρk =

⎡
⎢⎢⎢⎣

ρ1
k

ρ2
k
...

ρN
k

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎣

ρ
(
X T
SB1

WX
(
XSB1Yfk

)
,YTWY

(
XSB1Yfk

))

ρ
(
X T
SB2

WX
(
XSB2Yfk

)
,YTWY

(
XSB2Yfk

))

...

ρ
(
X T
SBN

WX
(
XSBN Yfk

)
,YTWY

(
XSBN Yfk

))

⎤
⎥⎥⎥⎥⎥⎥⎦

(4)

In formula (4), ρ(x, y) represents the correlation coefficient between x and y. The square
of the correlation coefficient corresponding to each subband component is multiplied
by the corresponding weight coefficient and added and summed as the feature of target
recognition (Fig. 1).

Fig. 1. Schematic diagram of frequency identification process based on FBCCA

ρ̃k =
∑N

n=1
w(n) · (ρn

k )
2 (5)

In formula (5), n represents the subband index. Since the signal-to-noise ratio of SSVEP
harmonic components decreases with the increase of the response frequency, the weight
coefficients of each subband component are defined as follows:

w(n) = n−a + b, n ε [1 N ] (6)
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In formula (6), a and b are constants. In fact, we use the grid search method to find a and
b based on offline data to make the system classification performance optimal. Finally,
ρ̃k corresponding to each stimulation frequency (i.e. ρ̃1, . . . , ρ̃12) is used to determine
the frequency of SSVEP, and the frequency of the reference signal corresponding to the
maximum correlation coefficient ρ̃k is considered the frequency of SSVEP.

ftarget = max
fk

ρ̃k , k = 1, 2, . . . , 12 (7)

2.3 Adaptive FBCCA Algorithm

The static stopmethod adopted by the traditional SSVEP decoding algorithm uses a fixed
data length for all trials, but due to the variability between trials, the optimal data length
for each trial is different. Therefore, in order to improve the operating efficiency of the
SSVEP-BCI system, an adaptive FBCCA method is adopted to decode the EEG signal,
which is to dynamically find the optimal data length for prediction through Bayesian
estimation.

It can be seen from the above FBCCA algorithm that the classification result of
the algorithm is the stimulus frequency corresponding to the maximum value of the
cumulative correlation coefficient. Therefore, it can be assumed that there is a correlation
between the correlation coefficient values corresponding to all stimuli and the correctness
of the classification results. The confidence of the classification result is related to the
difference between the largest and the second largest correlation coefficient, and the
difference corresponding to the correct prediction is often larger than the error prediction.
At the same time, the data length and the classification accuracy rate are related, because
the longer the data length, the higher the probability of getting the correct prediction
result. Then according to theBayesian estimationmethod to dynamically find the optimal
data length, it tries to estimate the probability of correct prediction under the conditions
of a given correlation coefficient value and data length, as an estimate of the confidence
of the classification result. According to correct prediction and wrong prediction, the
correlation coefficients of all training trials are divided into correct prediction group and
wrong prediction group, and the likelihood probability density function of the correlation
coefficient is constructed respectively. The correlation coefficient here is the largest
cumulative correlation coefficient after standardization.

dm = ρ̃k∑N
n=1 ρn

k

(8)

In formula (8), ρ̃k is the largest cumulative correlation coefficient among all categories.
Suppose the correct prediction is written as H1 and the wrong prediction is written as
H0. Likelihood probability density functions p(dm|H1, t) and p(dm|H0, t) are generated
by Gaussian kernel density estimation, that is, make a histogram of grouped dm, and then
use Gaussian kernel density estimation to expand and Smoothing, where t represents the
data length used for classification.

In the online process, for each new data segment, first calculate the standardized
cumulative correlation coefficient and obtain the predicted target character, and then
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estimate the posterior probability of being correctly predicted according to Bayesian
inference:

P(H1|dm, t) = P(dm|H1, t)P(H1|t)
P(dm|H1, t)P(H1|t) + P(dm|H0, t)P(H0|t) (9)

In formula (9), P(H1|t) and P(H0|t) are the prior probability of correct prediction and
wrong prediction under different data lengths. They are estimated based on the classi-
fication accuracy rate under different data lengths in offline experiments of. Once the
posterior probability reaches the threshold Pthre, the predicted result will be output,
where the threshold is determined offline by grid search. If the current trial fails to meet
the threshold condition, the predicted result is forced to output when the length of the
data segment reaches the preset maximum value.

3 Data Collection

Based on the adaptive FBCCA algorithm proposed above by Bayesian estimation to
dynamically find the optimal data length for prediction, a brain-controlled robotic arm
grasping assisted life system based on adaptive FBCCA is constructed. The algorithm
is applied to practical applications to assist the daily life of disabled persons with motor
dysfunction such as stroke.

The experimental data of the system is collected by DSI 24 Dry Electrode EEG
Headset of Wearable Sensing (USA) Company. The EEG acquisition device is a 24-lead
electrode cap, which is convenient, fast and comfortable to use and does not require
conductive paste. EEG sensors are arranged in the international 10/20 system Fp1, Fp2,
F7, F3, F4, Fz, F8, T3, C3, C4, Cz, T4, T5, P3, P4, T6, O1 and O2 positions, the
EEG cap sampling frequency is 300 Hz, and the data is transmitted via Bluetooth. The
experimental data processing uses 7 channels in 24 leads, namely P3, P4, Cz, T5, T6,
O1 and O2.

The system uses a depth camera for object positioning and a robotic arm for object
capture. The depth camera used is Intel’s RealSense D435, which has high resolution
and fast transmission speed. The manipulator used is a JACO three-finger lightweight
manipulator of Kinova, which consists of a 6-degree-of-freedom manipulator and a
three-degree-of-freedom finger grip. It has the characteristics of light weight, simple
control, high safety, and friendly human-computer interaction. The robotic arm has a
compact structure, each joint can be independently controlled, redundant safety control
and the use of singularity avoidance algorithms make the robotic arm suitable for this
brain control system to meet the basic life needs of the disabled.

The experimental paradigm interface for collecting data contains 12blocks, 12 blocks
representing 12 instructions, apple 1, banana 1, green tea, orange, cola, apple 2, banana
2, mineral water, orange, 7 up, cancel and confirm. 12 blocks correspond to 12 blinking
frequencies, 9, 9.25, 9.5, 9.75, 10.25, 10.5, 10.75, 11, 11.25, 11.5, 11.75 and 12 Hz
(Fig. 2).
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9Hz 9.25Hz 9.5Hz 9.75Hz

10.25Hz 10.5Hz 10.75Hz 11Hz

11.25Hz 11.75Hz11.5Hz 12Hz

Fig. 2. Data collection experiment paradigm interface

The data collection process of this experiment is shown in Fig. 3, including 4 blocks,
corresponding to apples, bananas, green tea, and oranges. Each block includes 5 trials
and 1 trial for 20 s.

1 trial includes:

1) Choose visually stimulating objects for 2 s, a total of 10 target objects, and rest for
1 s.

2) 2 s visual stimulus to confirm or cancel the capture, skip to step (1) to cancel the
capture.

3) 15 s to grab items by robotic arm.

Fig. 3. Experimental data collection process

In this experiment, 20 students from Shanghai University were invited as subjects
(12 males, 8 females, age: 20–30 years old) to participate in this experiment. Each
subject performed a total of 20 trials and collected a total of 400 trial experiment data.
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Before participating in the experiment, the subjects were told whether the experiment
harmed the human body, and signed an informed consent form for the experiment.
After the experiment, each person was given a certain amount of remuneration. The
brain-controlled robotic arm experiment is shown in Fig. 4.

Fig. 4. Brain-controlled robotic arm experiment diagram

4 Results

4.1 EEG Topographic Map

The subject looked at the EEG signal generated by the scintillation stimulus in the Apple
2 block and plotted the EEG topographic map as shown in Fig. 5(b). It can be seen that
the subject’s brain produces a steady-state visual evoked potential, which reflects the
occipital lobe The energy in the occipital region was significantly increased, which also
verified the conclusion that SSVEP is mainly related to the occipital region of the brain.
Figure 5(a) shows the target lock display after the subject has successfully watched the
Apple 2 block.

(a) (b)

Fig. 5. (a) Subject looks at apple 2 (b) EEG topographic map
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4.2 EEG Signal Spectrogram

The collected subjects’ original time-domain EEG signals are drawn into frequency-
domain maps. The original EEG signal is shown in Fig. 6(a), the ordinate is the EEG
channel, and the abscissa is time, showing the amplitude change of the EEG signal of
each channel over time. The drawn frequency domain diagram is shown in Fig. 6(b),
the ordinate is the amplitude, and the unit is decibel. It can be seen that the peak of the
corresponding spectrum map is 12 Hz when the subject fixates the confirmed grasping
block in the experimental pattern, which corresponds to the stimulation flicker frequency
of the confirmed grasping block. This also verifies that the EEG signals generated by
the subject staring at different blocks can be recognized by adaptive FBCCA.

(a) (b)

Fig. 6. (a) Subject’s original EEG signal (b) 12 Hz SSVEP spectrogram

4.3 Accuracy

There are 20 subjects in this experiment, and each subject has 4 blocks, and one block
contains 5 trials, that is, one subject has 20 object grabs. The grasping success rate of the
robotic arm of this system is 100%, so the grasping success rate of the brain-controlled
robotic arm depends on the correct rate of EEG decoding. The correct rate of EEG
decoding of 20 subjects is shown in Fig. 7. After calculation, 20 people are obtained.
The average accuracy rate of the subjects’ brain-controlled grabbing objects was 95.5%.

Fig. 7. Accuracy of subjects
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Compared with the fixed window FBCCA, the recognition accuracy rate is increased by
about 4%, and the recognition speed is increased by about 30%.

5 Conclusion

This paper uses an adaptive FBCCA algorithm based on Bayesian estimation to dynam-
ically find the optimal data length to predict the result, adapt to the differences of differ-
ent trials and different individuals, and solve the traditional SSVEP-BCI system usually
used a fixed calculation time, the static stop of the window leads to the problem that
the efficiency of the system decreases. Through this method, an adaptive FBCCA-based
brain-controlled robotic arm grasping life assistance system was constructed. The sys-
tem’s robotic arm grasping accuracy rate was 100%, the EEG decoding accuracy rate
was 95.5%, and the brain-controlled robotic arm grasping average accuracy rate reached
95.5%, can be used to assist disabled persons with physical disabilities such as stroke to
perform some simple tasks to improve the quality of life.

In the future, SSVEP’s adaptive FBCCA decoding algorithm can be combined with
the motor imaging brain-computer interface decoding algorithm to construct a corre-
sponding BCI system to help patients with upper or lower limb movement disorders
caused by stroke diseases to recover and reshape the brain Connect with body control.
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Abstract. Nowadays, Sleep disorder is a common disease, and spindle spindles
are important features of the second stage non-rapid eyemovement (NREM) sleep.
In this paper, we propose an improved automatic detection method of spindles
based on wavelet transform. The spindles automatic detector is mainly composed
of wavelet transform and clustering. We collected the electroencephalography
(EEG) signals of six patients with sleep disorders all night for ten hours, and then
preprocessed the data and other operations, and then used our improved method
to detect the sleep EEG signals by spindles. By comparing with the previous auto-
matic detection method not improved and another automatic detection method,
the results show that the accuracy of sleep spindles detection can be effectively
improved. The accuracy of the improved detector is 5.19% higher than before, and
9.7% higher than that of another method based on amplitude threshold. Finally,
we made a simple comparison between people with sleep disorders and normal
people.We found that therewere significant differences in spindle density between
people with sleep disorders and people without sleep disorders. The average spin-
dle density in the normal population averaged 2.59 spindles per minute. People
with sleep disorders had an average spindle density of 1.32 spindles per minute.
In future research, our research direction is to improve the accuracy of spindles
automatic detection by improving the spindles detector and study the difference
of spindles between patients with sleep disorders and normal people in a large
number of samples, so that the difference of spindles can be used as the basis for
the diagnosis of sleep disorders.

Keywords: Sleep spindles · EEG · Automatic detection · Sleep disorders ·
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1 Introduction

1.1 A Subsection Sample

Sleep spindles are characteristic waves in N2 stage of NREM sleep, and one of the few
transient events that is different from the normal sleep. Although its appearance time is
very short, it has been found to be related to various sleep diseases, especially playing an
important role in the consolidation of human memory [1]. In the clinic, some research
scholars have found that various disorders, such as schizophrenia, Parkinson’s syndrome,
autism, and sleep disorders, are related to changes in the density of the spindles. Sleep
spindles are produced in the thalamusof humanbrain,which are producedby the complex
interaction among thalamus, limbic area and cortical area. They are defined as the short
period oscillation waves visible on the EEG signal graph, which generally exist in the
“non rapid eye movement sleep” state. In the sleep microstructure, spindle is one of the
most important elements, which, together with K-complex wave, constitutes a sign to
distinguish “non rapid eye movement second sleep stage (N2)”. Berger first described
the sleep spindles in 1933. Loomis et al. First used 20–40 uV amplitude and 14–15 Hz
frequency to define the spindles. The sleep spindle consists of a group of rhythmic waves
whose amplitude gradually increases and then decreases. Studies have examined their
frequency ranges andmethods of analyzingEEG signals visually or computer bymedical
experts [2–5]. According to the research, the human body produces sleep spindles from
the thalamus of the brain in the state of fatigue. Its purpose is precisely to transmit signals
to other parts of the brain, so as to prevent external interference signals from stimulating
these other parts during sleep, so as to ensure good sleep performance.

The American Academy of sleep medicine (AASM) defines sleep spindles as EEG
signals with sinusoidal spindles lasting for 0.5 s–3 s, with a frequency distribution of
11–16 Hz, which has a very obvious central bias in EEG data [6–9]. This definition of
sleep spindles will be used throughout this study. Since the American Society of sleep
medicine standard does not distinguish between slow (<13Hz) and fast (>13Hz)waves,
this paper does not make a distinction in the study. It is generally defined that the central
frequency of sleep spindle is between 11 and 16 Hz. The duration of sleep spindles is
generally defined as at least 0.5 s, and some papers define the maximum limit of spindles
as 3 s [10–13]. As shown in Fig. 1.

Experts have been testing spindles to represent the golden rule, but the consistency
among experts is only 86%. Visual segmentation is often affected by personal factors,
and often miss some spindle that can be detected by automatic algorithm. Because the
signal-to-noise ratio of the background wave changes greatly throughout the night, and
the characteristics (frequency, duration, amplitude) of the spindles also changes with the
individual, sleep stage, sleep cycle, and acquisition point, it is very difficult to ensure the
consistency of the spindles [14–18]. In order to solve this problem, it is put forward to
let many experts divide the spindle wave independently, but this method is more time-
consuming and labor-consuming. Therefore, the development of automatic algorithm
has always been the focus of engineering research.

In this paper, our data is from Dr. Huang Chaoyang, sleep monitoring room of
Xuanwu Hospital in Beijing. The data collection equipment uses PSG. In addition to
EEG, We collected the EEG data of 3 channels on the left and right. F3 and F4 are
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Fig. 1. Sleep spindle.

the frontal brain areas, C3 and C4 are the central brain areas, and O1 and O2 are the
occipital areas. These electrode positions have the highest frequency of spindle waves. In
general, the central brain area is the largest. Data analysis toolsmainly useMatlab 2016a,
Python, etc. Based on Morlet wavelet transform, we improved the automatic detection
of sleep spindles with cluster. Compared with the method before and another automatic
detection method, the accuracy of the improved automatic detection of spindles has been
significantly improved. Finally, we compared the difference between the patients with
sleep disorders and the normal people, hoping to provide a method for clinical diagnosis
and treatment of sleep disorders.

2 Methods

2.1 Data Acquisition

The six data used for the study were collected from Dr. Huang Chaoyang, sleep mon-
itoring room of Xuanwu Hospital in Beijing. The sleep data of six patients with sleep
disorders were collected all night for 10 h. The data were obtained by polysomnogra-
phy, including EEG, eye electricity, mandibular electromyography, oronasal airflow and
respiratory motility, ECG, blood oxygen, snoring, limb movement, body position and
other parameters. Before sleep monitoring, we will tell patients to pay attention to their
eating habits and keep their scalp clean, which is helpful to collect sleep EEG data.
Before sleep monitoring, patients should urinate and defecate in advance to ensure that
ten hours of sleep data from 9 p.m. to 7 a.m. are collected. The sampling frequency is
512 Hz. Because most of the sleep spindles appear in the second stage of non rapid eye
movement, many spindles detector need to be divided into sleep stages in advance. The
automatic detector used in this paper can directly detect the spindles of the sleep data of
10 h in the whole night. In this paper, we use F4 channel in EEG channel, The relevant
electrode positions we collected are shown in the Fig. 2 below. The analysis tools mainly
use Matlab 2016a and Python.
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Fig. 2. Related electrodes distribution.

2.2 Automatic Detection of Sleep Spindles

Our improved automatic spindle detection method mainly uses wavelet transform and
unsupervisedmethod-K-means clustering. First, we use the traditionalwavelet transform
method to detect the spindles of the processed EEG signal. After the detection is over, we
then use the clustering method to cluster the detected spindle wave extraction frequency
and amplitude features. Finally, we can cluster the results of the spindle detection. The
flow of the entire experimental method is shown in Fig. 3.

Fig. 3. Sleep spindles automatic detection.

Continue wavelet transform (CWT) is a signal analysis method that projects one-
dimensional signal to two-dimensional time-scale plane. This two-dimensional plane
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form is established by the translation and expansion transform of a parent wavelet [16–
19]. The definition of wavelet function is as follows:

+∞∫

−∞
ϕ(t)dt = 0 (1)

Here, ‖ϕ(t)‖ = 1, the center of the function is at t = 0, which is called the mother
wavelet function, also called the base wavelet function. The wavelet function generated
by the parent wavelet function can be expressed as:

ϕμ,s(t) = 1√
s
ϕ(

t − μ

s
) (2)

Here,μ and s are translation parameters and scale parameters respectively. Changing
the translation parameterμ can change thewindow position and analyze the composition
characteristics of f (t) in different time periods. By changing the scale parameter s, the
shape and size of the window can be changed, thus the spectrum structure of the parent
wavelet can be changed. This also reflects the advantages of wavelet transform in time
resolution and frequency resolution.

For any signal function f (t) ∈ L2(R), if the signal is decomposed on this wavelet
function, its wavelet transform can be obtained as:

W {f (μ, s)} = <f , ϕμ,s> =
+∞∫

−∞
f (t)

1√
s
ϕ∗( t − μ

s
)dt (3)

Here, ϕ∗ is the complex conjugate function of ϕ,W is the result of wavelet transform,
and<a, b> is the inner product of variable a and variable b. The concept of inner product
can express the similarity of two functions. Wavelet transform shows the similarity of f
andϕμ,s.When s> 1, it is equivalent to stretching thewaveform. The global profile of the
signal and the similarity of thewavelet function are observed on a large scale.When s< 1,
it is equivalent to compressing the waveform, and observing the local characteristics of
the signal and the similarity of the wavelet function from the details. The mother wavelet
function used in this paper isMorlet wavelet. Morlet wavelet has good centralization and
symmetry in time and frequency domain, and has certain similarity with spindle wave,
so we choose Morlet wavelet as the mother wavelet of wavelet transform [20–24].

Based on Morlet wavelet, the function of automatic selection of spindle wave is
defined as:

ϕ(x) = (πFB)−0.5 exp(2π iFCx) exp(−x2/FB) (4)

Where, FB = 2s2, s = n/2πFC , n is the number of cycles of complex Morlet wavelet.
Fc is the center frequency. Set it to 13.5, which is the most accurate frequency target.
We first calculate the CWT of the filtered signal according to the center frequency of the
complex Morlet wavelet at 13.5 Hz, then select the real part of the wavelet coefficient
corresponding to the frequency range of 11Hz to 16Hz, and use the 0.1 smovingwindow
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to calculate its moving average value. Setting 4.5 times of the accumulated meanmoving
value of all time periods without artifacts as the threshold value. If the real-time mean
moving value > threshold, and the duration of the real-time mean moving value greater
than the threshold value is greater than 0.5 s and less than 3 s, it is judged as spindle
wave. If the distance between the identified spindles is less than 1 s, the latter spindles
will be discarded, and finally the spindles will be merged in the duration range (Fig. 4).

Fig. 4. Morlet wavelet transform.

We propose to improve themethod of automatic selection of spindle wave by cluster-
ing. Clustering is the process of clustering similar things together and dividing different
things into different categories. It is a very important means in data analysis. In terms
of data analysis, clustering and classification are two technologies. Classification means
that we have known the classification of things and need to learn the classification rules
from the samples, which is a kind of guided learning. Clustering is a kind of unsupervised
learning, in which we give simple rules to get the classification. First, we determine a k
value, that is, we want to cluster the data sets to get k sets. Randomly select k data points
from the dataset as the center of mass [25]. For each point in the data set, calculate its
distance from each centroid (such as the Euclidean distance).

Euclidean distance:

d12 =
√

(x1 − x2)2 + (y1 − y2)
2 (5)

Cosine distance:

cos θ = x1x2 + y1y2√
x21 + y21

√
x22 + y22

(6)

Correlation coefficient:

ρXY = Cov(X ,Y )√
D(X )

√
D(Y )

= E((X − EX )(Y − EY ))√
D(X )

√
D(Y )

(7)

If it is close to any centroid, it will be divided into the set to which that centroid
belongs. After putting all the data together, there are k sets. Then recalculate the centroid
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of each set. If the distance between the newly calculated centroid and the original centroid
is less than a set threshold (indicating that the position of the recalculated centroid
changes little, tends to be stable, or converges), we can think that the clustering has
reached the expected result, and the algorithm is terminated. The process of K-means
clustering is shown in Fig. 5. In this paper, we extract the central frequency and amplitude
of each spindles as a data set of clustering. Cluster the spindles automatically selected
from each sample, and then test the clustering results.

Fig. 5. K-means clustering process.

3 Data Processing and Result

The automatic detection process of spindle wave is shown in the figure above. Our data
is from Dr. Huang Chaoyang of Xuanwu Hospital in Beijing. We collected six patients
with sleep disorders. The patients were in a quiet sleep monitoring room for 10 h of
signal collection from 9 p.m. to 7 a.m. We analyzed the related F4 channel EEG signals.
Any standard signal preprocessing includes filtering, down sampling and re reference.
We used 0.5–35 Hz band-pass filter to reduce the sampling frequency from 512 Hz to
256 Hz. For the processed signal, we first evaluated six data by experts, and detected the
spindle wave using the golden rule. Then we use the Morlet wavelet transform to detect
the spindles automatically. We selected 669, 733, 634, 657, 768, 594 spindles during
the whole night’s sleep. We calculated the accuracy of the true spindles detected by the
experts. As shown in Table 1.
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Table 1. Spindles detection based on Morlet wavelet

The
Subjects

Spindles recognized by detector True spindles Accuracy

S1 669 592 88.49%

S2 733 623 84.99%

S3 634 571 90.06%

S4 657 589 89.64%

S5 768 674 87.76%

S6 594 527 88.72%

Average 4085 3576 87.53%

After using the detection method based on Morlet wavelet transform, we cluster the
spindles based on this method. We calculate the frequency and amplitude of the spindle
wave detected by each detector. We use a band-pass filter of 11–16 Hz to calculate
the amplitude of each spindle, which is defined as the maximum peak value. Then, the
center frequency of each spindlewave is calculated by FFT. The frequency and amplitude
characteristics of each spindle are combined to cluster. We use k-means clustering to
cluster the spindles into 5 categories, most of the non spindles into one category. We
delete themost of the non spindles,which improves the detection accuracyof the detector.
The specific results are shown in Table 2.

Table 2. Spindles detection after clustering

The subjects Spindles after clustering True spindles Accuracy

S1 623 584 93.73%

S2 671 611 91.05%

S3 599 562 93.82%

S4 616 582 94.48%

S5 707 655 92.64%

S6 573 519 90.57%

Average 3789 3513 92.72%

In order to further verify the performance of the improved automatic spindles detec-
tor, we use another detectionmethod based on amplitude threshold to detect the spindles.
The main operation flow of this method is as follows: firstly, 11–16 Hz band-pass filter
is applied to the data firstly, and then the signal envelope is obtained by connecting
the local maximum value of the band-pass rectifier signal. In the envelope, we look for
peaks and troughs, and construct the top 120 sequence graph based on frequency. We
set the minimum threshold to twice the maximum frequency of the envelope amplitude
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peak. The upper limit of the threshold is 8 times of the mean value of F4 channel filtered
absolute value. All points in the envelope that exceed the lower limit of the threshold are
marked as the spindle wave boundary. All points in the envelope larger than the upper
limit of the threshold are marked as possible spindles. For each peak, find the boundary
point before and after it, and calculate the duration. The criterion is 0.5 s–3 s. The results
of automatic detection of spindle wave are shown in Table 3.

Table 3. Spindles detection based on amplitude threshold

The subjects Spindles recognized by detector True spindles Accuracy

S1 703 586 83.36%

S2 662 534 80.66%

S3 659 548 83.15%

S4 615 499 81.13%

S5 817 686 83.97%

S6 543 467 86.00%

Average 3999 3320 83.02%

4 Comparison

Sleep spindle is the characteristic wave of the second stage of sleep. Sleep spindle is
closely related to sleep quality. The density of the spindles is defined as the number
of spindles per minute. In order to study the spindle difference between sleep disorder
patients and normal people, we processed and analyzed the spindles of six sleep disorder
patients, and calculated the spindle density of these six patients. After that, we processed
the sleep EEG data of six normal people. The specific number of detected spindles is
not listed here. We calculated and plotted the spindle density of the two populations in
Fig. 6. As shown in the figure below, the spindle densities of the six patients were 2.09,
1.39, 0.98, 0.89, 1.59, 1.01, and the average density was 1.32. The spindle densities
of the six controls were 2.73, 2.38, 2.92, 1.68, 3.53, 2.28, and the average density was
2.59. We compared the spindle density of these six patients with the spindle density of
normal people. It is found that the spindle density of people with sleep disorders is much
lower than that of normal people. It can be concluded that the spindle density of most
patients with sleep disorders may be lower than normal. Our future research hopes to
analyze this phenomenon through more data. In addition, our next goal is to analyze
other characteristics of spindles in different populations, such as average amplitude and
frequency characteristics.
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Fig. 6. Sleep spindle density comparison in disorder and normal subjects.

5 Conclusion

At present, sleep disorder has become a universal disease, which is distributed in all
ages. However, there are many kinds of sleep disorders. Most of the diagnosis of sleep
disorders still depends on the analysis of the scale. Sometimes different doctors rely on
experience to make judgments. So sleep disorders need to be judged by a standard. Sleep
spindles are proposed as a characteristic index of sleep quality assessment. The detection
of sleep spindle mainly depends on manual detection. The number of spindles in a night
varies from 200 to 1000. It takes a lot of manpower to detect the spindle manually. In
addition, different doctorsmay have different judgments based on experience. Therefore,
the demand for automatic spindle detector is very urgent. At present, there are some
spindles automatic detectors. However, the accuracy of some spindles detectors is not
ideal, or there are many requirements for data.

In this paper, we propose a clustering method to improve the Morlet wavelet based
spindles detector. We carried out the experiment and research on the 10 h sleep data of
six patients with sleep disorders. Before the detection of the spindles, only the original
data was filtered by a simple band-pass filter. The results show that the improved detector
improves the average accuracy by 5.18%. The accuracy of S4 in one sample can reach
94.48%. The average accuracy can reach 92.72%. In addition, we also compared the
performance of the improved spindles detector with another detector based on amplitude
threshold. According to the comparison between Table 2 and Table 3, we can find that
the accuracy of the improved spindles detector is 8.75% higher than that based on the
amplitude threshold. This shows that we can improve the spindle wave detector to a
certain extent. After that, we compared the difference of spindles density between sleep
impaired and normal people. It can be found that the spindles density of sleep impaired
people is significantly lower than that of normal people. The average density of spindles
in the normal population is 2.59 per minute, while the density of spindles in the patients
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with sleep disorders we collected is only 1.32 per minute. The main purpose of our
article is to propose an improved spindles automatic detector, hoping to improve the
performance of spindle detector to a certain extent, so as to reduce the cost of human and
material resources in clinical spindles detection. Then through the study of the difference
of spindles characteristics between sleep disorder patients and normal people, we found
that the spindles density of sleep disorder patients decreased. In the future research, our
goal is to find out more differences of spindles between patients with sleep disorders and
normal people, so as to provide a method for clinical judgment and treatment of sleep
disorders.
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Abstract. Parkinson’s disease (PD) is the second most common neurodegener-
ative disease after Alzheimer’s disease. Due to the complex etiology and diverse
clinical symptoms, it’s difficult to accurately diagnose PD. In this study,we applied
multimodal physiological signals, which include electroencephalography (EEG),
electrocardiogram (ECG), photoplethysmography (PPG), and respiratory (RA),
to classify PD and healthy control (HC) based on a multimodal support vector
machine (SVM). Our experiments achieved an accuracy of 96.03%. Besides, we
performed statistical analysis on the four types of physiological data of the PD
group and theHCgroup.Results showed that theEEGof non-dementia PDpatients
had a significant decrease in high-frequency power, and the high-frequency energy
distribution of the normalized PPG signal increased compared with HC. The cur-
rent study suggests that combining the physiological information ofmultiplemod-
els and machine learning methods could improve the diagnosis accuracy of PD
disease and be a potentially effective method of clinical diagnosis.

Keywords: Parkinson’s disease · Electroencephalography · Multimodal
physiological signals · Machine learning

1 Introduction

Parkinson’s disease (PD) is the second most common neurodegenerative disease after
Alzheimer’s disease and affects two percent to three percent of people over 60 [1, 2]. The
motor symptoms of PD are bradykinesia, postural instability, rigidity, and rest tremor
[3, 4]. PD is a long-term disease that usually occurs in middle-aged and elderly people,
and its average age of onset is about 60 years old. Accompanying the development of
the disease a few years later, the self-care ability of patients will be gradually lost or
even bedridden for a long time.

In terms of pathophysiology, the characteristic of PD is that the death of dopaminergic
neurons in the basal ganglia leads to the loss of dopamine, which affects the processing
of information by the cerebral cortex. Due to the complex etiology and diverse clinical
symptoms of PD, it’s difficult to accurately diagnose PD, especially in the early stage [5].
The clinical diagnosis of PD is completed by clinical scales and combined with clinical
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symptoms, neuroimaging data, and other diagnostic criteria [5]. The physiological signal
can be obtained efficiently with low cost and is associatedwith the disease characteristics
of PD patients. Building a machine learning classification model based on physiological
signals is an excellent auxiliary method to improve the certainty of the clinical diagnosis
of PD disease [6].

Electroencephalography (EEG) is a widely used examination method for clinical
neurological diseases, and it can detect dynamic changes in the brain activity of PD
patients. The high time resolution of EEG allows it to be used to study sub-second
dynamic changes in brain neural activity [7]. The quantitative EEG technology (QEEG)
is widely used for EEG analysis. The increase of delta and theta relative power and
decrease of alpha and beta relative power of EEG appear in the early stages of PD,
and the main changes are the slowing of EEG and the reduction of dominant frequency
[8, 9]. Neurofeedback training of sensorimotor rhythm (SMR) can effectively improve
PD symptoms and clinical scale scores, which suggests that the sensory-motor rhythm
(SMR) may have a significant correlation with PD motor dysfunction [10]. In addition
to motor dysfunction, autonomic nerve dysfunction quite possibly occurs in PD at an
early stage. Electroencephalography (ECG) can detect the innervation effect of the heart
sympathetic and parasympathetic nerves. Studies have shown that people with low heart
rate variability (HRV) have a 2–3 times higher risk of PD that’s than people with normal
HRV [11]. The changes in electrocardiographic may be earlier than the appearance of
PD [12]. However, current research has not yet determined the value of ECG in the early
diagnosis of PD. The dysfunction of the cardiovascular system is one of the common
non-motor symptoms of PD, which can be detected by the PPG signal [13]. Autonomous
muscle activity of PD patients is affected by motor dysfunction and may lead to lung
dysfunction, such as shortness of breath, repeated coughing, etc. [14]. Above all, we can
improve the accuracy of the clinical diagnosis of PD by combining the differences of
various physiological signal characteristics.

From the view of physiological signal processing, data-driven machine learning
methods are becoming more powerful and widely used. Machine learning methods can
be applied to multimodal physiological data analysis due to the advantages of their mul-
tivariate property. Additionally, unlike traditional signal processing methods, machine
learning methods can ensure the optimal use of a large amount of information that
exists in heterogeneous data from multiple sources. Moreover, the multivariate pattern
analysis method can discover potential biomarkers based on multimodal physiological
signals to distinguish patients from normal controls at the individual level and further
highlight the physiological mechanism of PD behavioral symptoms. Recently, many
researchers combine multimodal physiological data with machine learning methods and
have obtained many valuable results [15–18]. Kyle Ross et al. used ECG and galvanic
skin response (GSR) signals to classify professional trauma patients and novices at a
professional level and achieved an accuracy of 79.84% [15]. Rong L et al. used EEG and
ECG signals combined with the SVMmodel to classify cognitive load, which yielded an
accuracy of 97.2% [16]. Sara et al. used electromyogram (EMG) andECGdata combined
with feature selection andmachine learning algorithms to detect the psychological stress
of healthy people, and the four levels of pressure recognition accuracy reached 96.2%
[17]. Wei et al. recognized emotions by using four modal physiological signals (EEG,
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ECG, respiratory (RA), and GSR) combined with a weight fusion strategy, successfully
improved the accuracy rate of 74.52% in single-mode to 84.62% in multi-mode [18].

In our study,we analyzedmultimodal physiological signals of early andmid-termPD
with cognitively normal and healthy controls by using machine learning methods. Con-
sidering the heterogeneity between different modal physiological data, we employed
a multimodal kernel SVM to improve model accuracy and provide multiple analysis
perspectives. The purpose of our research is: 1) to construct a multi-modal auxiliary
diagnosis model and compare the performance with the single-modal model. 2) to ana-
lyze the characteristic differences between EEG, ECG, PPG, and RA signals between
HC and PD patients.

2 Materials and Methods

2.1 Subjects

18 participants were recruited from November 2019 to January 2020 in the present
study. 9 nondemented Parkinson’s disease patients were recruited from the Neurological
Rehabilitation Center of Beijing Rehabilitation Hospital Affiliated to Capital Medical
University and 9 healthy controls were recruited from the Physical Examination Center
of Aerospace Central Hospital in Beijing, China. Demographic and clinical details are
summarized in Table 1. This study was approved by the Ethics Committee of the Beijing
Rehabilitation Hospital Affiliated to Capital Medical University and Aerospace Central
Hospital following the Declaration of Helsinki, and all participants were given informed
written consent before the experiment.

Table 1. Demographic data.

PD HC P-value

N (sex ratio M/F) 9 (3/6) 9 (0/9) 0.058a

Age (SD), y 55.22 (6.25) 52.11 (4.98) 0.287b

H&Y (SD) 2.28 (0.71) – –

UPDRS III (SD) 25.89 (7.32) – –

MMSE (SD) 28.11 (0.99) 28.77 (0.92) 0.182b

MoCA (SD) 25.00 (4.12) – –

H&Y, Hoehn & Yahr stage; UPDRS III, Movement
Disorders Society-Unified Parkinson’s Disease Rating
Scale-Part III (severity of motor symptoms); MMSE,
Mini-Mental State Examination; MoCA, Beijing version
of the Montreal Cognitive Assessment.
aχ2 test
bTwo-sample t-test.
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2.2 Multimodal Physiological Data Recording and Processing

Participants were instructed to sit comfortably, stay awake, and keep eyes open and
in a quiet room during the 15-min Multimodal physiological signals (including EEG,
ECG, photoplethysmography (PPG), and respiratory (RA) signals) synchronous record-
ing. The EEG was recorded with an ActiCHamp amplifier system using an electrode
cap with 32 Ag/AgCl electrodes placed according to the standard international 10–20
system (LiveAmp, Brain Products GmbH, Gilching, Germany). The reference was the
Left Mastoid Process. Synchronous acquisition of ECG, photoplethysmography, and
respiratory signals by using the external AUX port of the ActiCHamp amplifier system.
The sampling rate was 1,000 Hz, and the EEG electrode impedances were kept below
5 K�. An online bandpass filter with 0.1–100 Hz and an offline bandpass filter with 0.1–
45 Hz was used to improve the signal-noise ratio. Multimodal physiological data were
pre-processed by MATLAB R2014a (Mathworks Inc., Natick, MA, United States) with
the open-source toolbox EEGLAB (Swartz Center for Computational Neuroscience, La
Jolla, CA,United States). To remove artifacts, such as electrooculogram artifacts, muscle
artifacts, an independent component analysis was used on EEG data within all channels.
The voltage of EEG data segments exceeding 150μVwas removed, and the other modal
signal segments were removed at the same time. Then, the pre-processed multimodal
physiological data were divided into 60 s for each epoch to extract features. Finally, to
ensure that the number of epochs is the same between subjects, fourteen valid epochs
without artifacts were selected from each subject.

For each epoch of EEG data, a fast Fourier transform was used to calculate spectral
power for EEG data within all channels. The selected frequency bands were: delta (2–
4 Hz), theta (4–8 Hz), alpha (8–13 Hz), beta (13–30 Hz), and SMR (12–15 Hz), absolute
powers, and relative powers of the delta, theta, alpha, and beta band were computed
for each scalp electrodes. The relative power was the ratio of the absolute power in a
frequency band to the power of the entire frequency spectrum from 2 to 30 Hz. Then,
the ratio of the alpha spectrum to theta spectrum was calculated.

For each epoch of ECG data, we first detected the R peaks and computed the R-
R intervals which are the time between every two consecutive peaks [19]. The ECG
waveform is shown inFig. 1. Then,we computed theHeartRate (HR) values, the standard
deviation of normal R-R interval (SDNN), the Heart Rate Variability (HRV), the root
mean square of successive R-R interval (RMSSD), and the proportion of NN50 divided
by the total number of R-R intervals (PNN50). In addition to the heart rate features,
we computed the power spectra of the R-R interval using Fast Fourier Transformation
(FFT). We got the following frequency-domain features: very-low-frequency power
(VLF, 0–0.04 Hz), low-frequency power (LF, 0.04–0.15 Hz), high-frequency power
(HF, 0.15–0.4 Hz), normalized low-frequency power (nLF), normalized high-frequency
power (nHF), the ratio between the power on LF and HF bands of the ECG and the total
power (TP). The normalized calculation for LF and HF is shown in Eq. (1) and (2).

nLF = 100 ∗ LF/(TP − VLF) (1)

nHF = 100 ∗ HF/(TP − VLF) (2)
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Fig. 1. ECG and QRS waveform. P, the peak of P; Q, the peak of Q; S, the peak of S; T, the peak
of T.

After an offline bandpass filter with 0.1–30 Hz for PPG and respiratory signals, we
normalized the data by subtracting themean and dividing by the standard deviation. Then
we calculated the pulse rate variability (PRV) [20], mean, and the standard deviation
of pulse intervals, pulse rate, and respiratory. We calculated the spectral power of the
normalized PPG signals and respiratory signals.

2.3 Feature Selection

We employed the elastic network method for our feature selection on the subset of the
original features. The elastic network was proposed by Hui Zou’s team in 2005 [21],
which is used the L1 penalty and L2 penalty. Elastic net is similar to lasso but with fewer
limitations and more widely used. To find the optimal norm regularization parameters
L1 and L2, we employed two circulations in the code.

2.4 Multimodal SVM Algorithm

SVM is a classic supervised learning algorithm and has been successful in many fields.
Multimodal SVM have shown more benefits for data from multiple heterogeneous
sources, it can choose a suitable kernel function for each modality’s data. When each
modality’s data matched the suitable kernel function, the decision function and kernel
function as shown in Eq. (3) and (4),

ŷ(x) =
∑n

i=1
αiyiK(xi, x) + b (3)

K
(
xi, xj

) =
∑M

m=1
βmkm

(
xmi , xmj

)
,
∑

m
βm = 1 (4)

where n is the number of training samples and αi is the weight coefficient. yi is the label

of the training sample. xi is the input data of the training sample. km
(
xmi , xmj

)
is the

kernel function of the mth modality. βm is the modality weight of the mth modality. And
b is a constant coefficient.
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A linear kernel was used to utilize a multimodal SVM algorithm. The feature of
EEG, ECG, PPG, and respiratory represents different physiological characteristics of
the body. The βm was used to balance the four modalities. During model training and
testing, we used a 9-fold cross-validation approach to test our model. Moreover, to
further avoid possible biases during partitioning, we randomly repeated the experiments
10 times. In each experiment, the parameters of model and feature selection and βm

were determined by inner iterations. When model-training was finished, the frequency
of the selected feature for each modality in all experiments was calculated. We used the
LIBSVM library toolbox (http://www.csie.ntu.edu.tw/cjlin/libsvm) [22] to construct the
multimodal SVM algorithm by MATLAB R2014a.

3 Results

3.1 Classification Model Comparison

The comparison results ofmulti-modal and single-modalmethodswere shown inTable 2.
With single-modal methods, we obtained a cross-validated accuracy of 87.54% for EEG
modality, 62.10% for ECG modality, 71.5% for PPG modality, and 73.3% for respira-
tory modality. We got a significant increase in accuracy, 96.06% for Multimodal, by
using multi-modal methods. Moreover, we compared the receiver operating characteris-
tic (ROC) curves and the area under the curve (AUC) values between single-modal and
multi-modal (Fig. 2).

Table 2. The performance of classification for multimodal and single-modal methods

Model Accuracy Sensitivity Specificity

EEG 87.54 ± 13.46% 86.19 ± 15.14% 88.89 ± 19.75%

ECG 62.10 ± 23.83% 72.22 ± 25.28% 51.98 ± 28.51%

PPG 71.50 ± 18.57% 74.84 ± 21.95% 68.17 ± 29.27%

RA 73.37 ± 15.38% 76.43 ± 16.78% 70.32 ± 24.23%

Multimodal 96.03 ± 6.30% 94.44 ± 9.30% 97.62 ± 5.10%

The plus-minus gives the standard deviation; EEG,
electroencephalogram; ECG, electrocardiogram; PPG,
photoplethysmography; RA: respiratory; Multimodal: EEG +
ECG + PPG + RA.

3.2 Feature Statistical Analysis

Before feature selection, the two-sample t-tests were performed on the features of each
modality’s data to test the significant differences (p< 0.05). The characteristic statistical
results (top 10) of the four modal physiological signals were shown in Table 3. There
were 10 significant differences in the characteristics of EEGmodalities, all ofwhichwere
listed in Table 3. Among them, the frontal lobe high-frequency power (SMR, alpha, and

http://www.csie.ntu.edu.tw/cjlin/libsvm
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Fig. 2. ROC curves of single-modal and multi-modal. The AUC values in this experiment are as
follows: EEG, 0.9075; ECG, 0.6192; PPG, 0.7103; Respiratory, 0.7351; and Multimodal, 0.9712.

Table 3. The results of statistical analysis for multimodal physiological signal

EEG ECG PPG RA

Feature P-value Feature P-value Feature P-value Feature P-value

FP1-SMR 0.040b PNN50 0.091b P.S.0.5 0.127b RA.rate 0.319a

F3-Beta 0.027b HR 0.176a P.S.0.8 0.083b R.S.0.8 0.284a

P7-rBeta 0.009b M.RR 0.250b P.S.5.3 0.019a R.S.1.3 0.291b

P3-SMR 0.020b VLF 0.240b P.S.5.5 0.005a R.S.2.0 0.449b

CP2-Beta 0.025b TP 0.242b P.S.6.5 0.038a R.S.2.3 0.220b

C4-Beta 0.007b nLF 0.376b P.S.6.8 0.018a R.S.2.5 0.218b

C4-SMR 0.028b LF 0.408b P.S.7.8 0.018a R.S.3.0 0.377b

F8-Alpha 0.031b HRV 0.434b P.S.8.0 0.018a R.S.3.3 0.231b

F8-Beta 0.010b LF/HF 0.424b P.S.11.5 0.047a R.S.3.5 0.335b

F8-SMR 0.005b SDNN 0.674b P.S.11.8 0.062a R.S.3.8 0.445b

EEG, electroencephalogram; ECG, electrocardiogram; PPG, photoplethysmography; RA,
respiratory; r, relative power; M.RR, mean of R-R interval; LF/HF, the ratio between the power
on LF and HF bands; P.S., Spectral power of PPG signal; RA.rate, respiratory rate; R.S., Spectral
power of the respiratory signal.
The bolded text indicated a significant difference in the two groups(p < 0.05).
amean of the feature of PD > mean of the feature of HC
bmean of the feature of PD < mean of the feature of HC
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beta power of F8 electrode, SMRpower of FP1 electrode, and beta power of F3 electrode)
of PD patients showed a downward trend compared with HC. The high-frequency power
of the central area and the parietal lobe (Relative beta power of the P7 electrode, SMR
power of P3 electrode, beta, and SMR power of the C4 electrode, and beta power of
CP2 electrode) also showed a downward trend compared with HC. Figure 3 shows the
topographicmap of the brain in each frequency band of the extracted absolute energy and
relative energy of the PD and HC groups, and these brain electrical changes described
above can be observed in the brain topography. There were no significant statistical
differences in the physiological characteristics of the ECG and respiratory modalities.
The spectral power of the normalized PPG signal of PD showed an upward trend in the
interval of 5 to 11 Hz.

Fig. 3. The topography of the distribution of mean power in the different frequency bands. The
warmer colors indicate higher relative power (scaled from minimum to maximum values of the
total group). Re, relative power.
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4 Discussion

Here we constructed a single-modal classification model and a multi-modal classifi-
cation model respectively for early and mid-stage PD patients and HC based on mul-
timodal support vector machine (SVM) and compared the classification performance
of two types of models. The results showed that the classification performance of the
multi-modal model had greatly improved classification performance compared with the
single-modal model. Based on the multi-kernel learning method, the multi-modal fusion
model can fully combine the information between different modal data. Compared with
one-dimensional physiological information, multi-dimensional physiological informa-
tion can more comprehensively reflect the truly pathological state of the PD patients.
Moreover, we found that the high-frequency power of EEG in PD patients decreased in
the frontal, parietal and central areas. For the PPG signal, the spectral power increased
at 5–11 Hz of the normalized PPG signal of PD patients. While there were no significant
differences in characteristic indicators in ECG and respiratory modalities.

EEG is an importantmarker of cognitive decline, and the study of PDpatients showed
that a decrease of EEG spectrum power above 8 Hz and an increase of spectrum power
below 8 Hz compared with the healthy [23–25]. The bradykinesia of PD is inversely
proportional to the power ofβoscillations in the basal ganglia (BG) and frontal cortex [26,
27]. Moreover, the decrease in alpha background activity also occurs in non-dementia
patients [28]. In our study, patients in our PD group are cognitively normal, accompanies
with dyskinesia symptoms such as bradykinesia, and we detected significantly increased
beta and SMR power in the frontal, parietal, and central regions. Sensorimotor rhythm
(12–15 Hz) originates from the sensorimotor cortex [29], most of which belong to the
range of beta band (13–30 Hz). Moreover, alpha power decreased in the right frontal
lobe, and there was no significant increase in delta and theta power, whichmay be related
to our patient with non-dementia.

In patients with cardiovascular diseases, the frequency spectrum energy distribution
decreases in the low frequency (below 5 Hz) of the pulse signal, while the frequency
spectrum energy distribution increases at the high frequency (above 5 Hz) compared to
HC [30]. Our results showed that an increase in the 5–11 Hz spectrum of the normalized
PPG signal, but there was a downward trend with no significant below 5Hz. Besides, PD
patients are always accompanied by autonomic dysfunction and respiratory dysfunction
[31, 32] (with symptoms such as shortness of breath and cough). And we can know that
the time-domain indicator of heart rate variability PNN50 has a downward trend from
Table 3, although there were no statistical differences in ECG and respiratory signals
may due to the limited number of samples.

Above all, our results showed the reduction of EEG power at high-frequency of
non-dementia PD patients and the increase in high-frequency energy of PPG signals.
Considering there is a high probability that PD patients will be accompanied by cardio-
vascular diseases, respiratory characteristics, and heart rate variability indexes deserve
further study. By constructing the multi-modal model to identify early and mid-stage
PD patients and HC based on the physiological signals of the four modalities, we got an
accuracy rate of 96.03%. To enhance the stability and practicality of the model, future
research will increase the sample size.
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To avoid errors caused by randomness and the overfitting effect of the model, we
used a 9-fold cross-validation approach to test our model 10 times. Several limitations
need to be noted regarding the present study, the sample size was relatively small and the
gender and age were not exactly matched. Currently only a preliminary exploration of
Parkinson’s auxiliary diagnosis by using multimodal physiological signals, the results
proved higher classification for multi-modal diagnosing than any single-modal. In future
research, we will increase the sample size and further improve the accuracy and stability
of the multi-modal.

5 Conclusion

In our study, we constructed a single-modal and a multi-modal classification model
respectively based on multi-modal physiological data and compared the classification
performance of the two types of models. The results showed that the multi-modal clas-
sification model has a great improvement in accuracy compared with the single-modal
classification model. However, our study just demonstrated that the multi-modal clas-
sification model is better than any of the single-modal classification models. Besides,
we found that the reduction of EEG at high-frequency power and the increase of PPG
signals at high-frequency energy in the PD group. Our preliminary investigation sug-
gests that multi-modal physiological signal fusion analysis can effectively improve the
accuracy of PD patients different from the healthy, and as a potential diagnose method
in PD clinical research.
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Abstract. Emotion recognition based on multimodal physiological sig-
nal has attracted a bunch of attention. Tensor learning helps to extract
effective shared features from multi-modal high-dimensional data. How-
ever, in tensor decomposition, the determination of the core size has
always been a difficult problem, resulting in the loss of effective feature
information. In this paper, we propose a multi-core voting tensor learn-
ing method, namely MCVTL, for multimodal emotion analysis, which
try to improve the results of emotion recognition by fusing multi-core
information of various scales. Especially, through fusing the knowledge
with 4 cores, the performance is improved by nearly 5% in valence and
6% in arousal compared with the single-core case. The empirical results
demonstrate the effectiveness of the proposed method.

Keywords: Physiological signal · Emotion recognition · Tensor
learning

1 Introduction

Emotion is a spontaneous psychological performance of humans (animals) in
response to certain interpersonal relationships or related events [16]. In recent
years, with the development of human-computer interaction technology, emotion
recognition has attracted more and more attention. However, human emotions
are affected by many factors [11,17], and there are usually no clear boundaries
between different emotions, which makes automatic emotion recognition a huge
challenge. Existing studies have shown that emotional changes can cause corre-
sponding changes in a variety of physiological signals in the human body [18],
such as electrocardiogram (ECG) [13], electroencephalogram (EEG) [12], mus-
cle electrogram (EMG) [1], blood pressure (BVP), galvanic skin response (GSR),
etc. Therefore, research on emotion recognition based on physiological signals has
become a hot topic. In addition, in order to obtain richer emotional information,
many studies have tried to fuse multi-modal physiological information to obtain
more accurate emotional states.
c© Springer Nature Singapore Pte Ltd. 2021
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Multi-modal physiological signal data naturally have tensor characteristics,
that is, there are multiple dimensions such as channel, time, and frequency band.
Therefore, this kind of data is suitable for organizing into high-dimensional ten-
sor form, and tensor decomposition is helpful to discover the characteristic pat-
terns shared between different modal data. [4] reviewed the application of ten-
sor in EEG signal analysis and proved its effectiveness. [14] described in detail
the tensor decomposition calculation process, and achieved effective results in
image classification and motor imagery (MI) experiments. At the same time, the
paper gives an objective evaluation performance of the tensor decomposition
algorithm and points out that computational complexity is the key issue of ten-
sor decomposition. Fortunately, although it is not completely solved, lraSNTD
[19] algorithm has significantly improved the computational efficiency. Due to
the lack of a method to determine the optimal kernel size, the current feature
extraction methods based on single-core tensor decomposition may lose a lot of
effective information. In this paper, for the problem of emotion recognition based
on multimodal physiological signals, we propose MCVTL method, which aims
to improve the accuracy of emotion recognition by fusing multi-core information
of different scales.

The organization structure of this paper is as follows: the second section
depicts our method. The third section is given the experiment processing, includ-
ing preprocessing, parameter settings, etc. The fourth section is results and anal-
ysis. Finally, we give our conclusion.

2 Methods

It is difficult to exploit multi-scale complex characteristics only with a single
core. Hence, through similar ensemble learning, MCVTL is proposed to fuse
multi-scale information from the data.

The framework of our method is given in Fig. 1. Therein, the left part is fea-
ture extraction procedure. We tensorized the original data first. Multiple tensor
cores with different sizes are obtained by tensor decomposition from the original
tensor respectively. Since the feature extraction is independent and sizes are dif-
ferent, all cores have rarely shared information. The right part is classification
process. The classification result is obtained through the same classifier with
similar ensemble learning strategy.

2.1 Tensor Decomposition

A tensor is a multidimensional or N-way array, covering multi-linear and multi-
aspect structural information, usually represented by Y. The representation of
a tensor is composed of the product of different modes, which are also called
modes (different modes can refer to time, frequency, space, transparency, color,
theme, experiment, category, etc.). The specific representation of tensor and the
calculation operations involved can refer to [14]. For feature extraction, tensor
decomposition models are usually divided into two categories, CP decomposition
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Fig. 1. Structure diagram of MCVTL

and Tucker decomposition [14]. In our paper, we employ Tucker decomposition
to extract features. The main idea of Tucker decomposition is to decompose the
original tensor Y ∈ R

I1×I2×···×IN data into a tensor core and a series of principal
component matrices, usually using the tensor core as the extracted features [14].
The formula is shown as follows,

Y = G ×1 A(1) ×2 A(2) · · · ×N A(N) (1)

G ∈ R
R1×R2×···×RN is the tensor core, and A(N) ∈ R

In×Rn(n = 1, 2, · · · ,N) is the
principal component matrix. Tucker decomposition is performed based on the
original tensor data, which is usually very large, leading to high computational
complexity.

To solve this problem, low-rank NMF (lraNMF) is applied to obtain the ten-
sor core and factor matrix in the form of low-rank approximation, so that the
original tensor does not need to be loaded into the memory, only its low-rank
factors need to be loaded. lraSNTD [19] does not need to expand the original
large tensor in each dimension, reducing the computational loss. lraSNTD runs
lraNMF on the expansion matrix corresponding to each mode to obtain approx-
imate non-negative factor matrices for all modes, which are employed to update
the tensor core. Therefore, the tensor core G can be calculated efficiently.



140 H. Xu et al.

2.2 Multiple Core Size Determination

In order to calculate the size of G, we perform HOOI [6], which is a multilin-
ear algorithm of the singular value decomposition as shown in Algorithm1. For
each dimension Rn(n = 1, 2, · · · ,N), the size is determined by the threshold θ
in HOOI. To obtain the multi-core sizes, we firstly reach an approximate opti-
mal size of a basic tensor core G0 ∈ R

R1×R2×···×RN by setting the threshold
θ in HOOI. In order to obtain other core sizes and retain more information,
we change the size of one dimension and make other dimensions fixed, which
preserves the effective information of other dimensions as much as possible.
And Rn is replaced with Rn(1 − αn) where αn is the percentage of information
loss. Then we capture the sizes of N tensor cores, G1 ∈ R

(R1·(1−α1))×R2×···×RN ,
G2 ∈ R

R1×(R2·(1−α2))×···×RN , · · · , GN ∈ R
R1×R2×···×(RN·(1−αN)). All cores have

rarely shared information since the feature extraction is independent and core
sizes are different. For example, suppose G1 ∈ R

10×10×2, G2 ∈ R
10×2×10, then

the two similar parts are in R
10×2×2, only account for 20%.

Algorithm 1. High-order orthogonal iteration (HOOI).
Input: Nth-order Y ∈ R

I1×I2×···×IN(usually in Tucker format);
Output: Improved Tucker approximation using Alternating Least Square (ALS) app-

roach, with orthogonal factor matrices U(n);
1: Initialzation via the Tucker decomposition;
2: repeat
3: for n = 1 to N do
4: Z ← Y ×q �=n

{
U(q)T

}
;

5: X ← Z(n)Z
T
(n) ∈ R

R×R;

6: U(n) ← leading Rn eigenvectors of X;
7: end for
8: G ← Z ×N U(N)T ;
9: until the cost function (‖Y‖2

F − ‖G‖2
F ) cases to decrease;

10: return �G;U(1),U(2), ...,U(N)�;

2.3 Classification

As shown in Fig. 1, N + 1 tensor cores (G0,G1, · · · ,GN) are obtained through
lraSNTD from the original tensor Y. Then each core is put into the Extreme
learning machine (ELM) [7] network separately. ELM is a shallow network
framework for capturing effective information and obtaining predicted prob-
abilities. For M classes, the predicted probability is denoted as Pmn

(n =
0, 1, 2, · · · ,N,m = 1, 2, · · · ,M). Through the soft voting method, we receive the
max of the predicted probability Pmn

. According to Ppre = max
1≤m≤M

∑N
n=0 Pmn

,

we find the corresponding predicted class.
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2.4 Performance Meatures

We use accuracy and F1-score as performance meatures.
Accuracy is the correct proportion of the entire sample judged by the classi-

fier.
accuracyk =

TP + TN

TP + TN + FP + FN
, (2)

where TP (True Positive) is the numbers that positive sample is correctly pre-
dicted as a positive sample, and TN (True Negative) is the numbers that negative
sample is correctly predicted as a negative sample, and FP (False Positive) is
the numbers that negative sample is wrongly predicted as a positive sample, and
FN (False Negative) is the numbers that positive sample is wrongly predicted
as a negative sample.

F1-score is a measure of a test’s accuracy, reflecting the balance between the
precision and recall, obtained as follows:

F1-score = (
1
n

∑ 2 · precisionk · recallk
precisionk + recallk

)2, (3)

where precision is the proportion of TP in all cases that are predicted to be
positive and recall is the proportion of TP in the actual positive cases, obtained
by

precisionk =
TP

TP + FP
, recallk =

TP

TP + FN
. (4)

2.5 Deap Database

Our paper is conducted in the publicly available emotion database DEAP [8],
which consists of multimodal information for the analysis of human emotional
states. A total of 32 EEG channels and eight peripheral physiological signals
of 32 subjects (aged between 19 and 37) were recorded whilst watching music
videos. The 40 one-minute video clips were carefully selected to elicit different
emotional states in valence-arousal emotion model. In DEAP, each video clip
is rated from 1 to 9 for valence and arousal by each subject after the viewing,
and the discrete rating value can be used as a classification label in emotion
recognition [15]. In this paper, Two emotional states (high valence: valence ≥ 5;
low valence: valence < 5; high arousal: arousal ≥ 5; low arousal: arousal < 5) are
classified to verify the effectiveness of our method. The experimental procedure
is shown as Fig. 2.

3 Experiment

In our work, 16-channel [2] EEG (FP1, FP2, AF3, AF4, F3, F4, T7, T8, C3,
C4, CP1, CP2, P3, P4, O1, O2) and 8 physiological signals (2 EOG, 2 EMG,
skin electricity, respiration, blood pressure and skin temperature) are used for
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fixation 
duration (3s)

audio stimuli 
play (60s) rating

trial 1 trial 2 ... trial 40trial 3 trial 4

Fig. 2. The procedure of experiment in DEAP

emotion recognition. In the preprocessing procedure, 4.0–44 Hz, 0.1–12 Hz, 50–
63 Hz, 0–2.4 Hz, 0–2.4 Hz, 0–2.4 Hz, 0–0.2 Hz band pass filters were employed to
EEG, EOG, EMG, skin electricity, respiration, blood pressure and skin temper-
ature signals respectively. [9] reported that the effective window size for valence
recognition using the DEAP was between 3–12 s. Therefore, in our paper, each
60 s trial is segmented into 20 3 s samples with non-overlapping for the pur-
pose of increasing the number of samples. Finally, we get a total of 800 (40
trials × 20 samples) samples for each subject. All the samples are derived from
the same trial share the same category label. In order to organize physiological
signals data into a tensor, the discrete wavelet transform (DWT) is applied to
obtain the time-frequency information. EEG signals and other physiological sig-
nals have different frequency ranges, so the frequency domain scale in DWT is
set to 10. To valid performance of the MCVTL model, all 32 subjects’ data are
used. The data are organized into 25600 (800 * 32, samples * subjects) 3rd-order
tensors with the size 10 (frequency bins) ×384 (time frames) ×24 (channels). In
addition, all data of each channel has been normalized separately.

To capture the multiple cores sizes, we set the threshold θ =
99% in HOOI, finding that the size of the basic tensor core G0 ∈
R

frequency bins×time frames×channels of each subject is around 6 × 80 × 10, so we
obtain the suitable size of tensor core G0 ∈ R

6×80×10. For obtaining other
core sizes, we set the value α1 = 0.17, 0.33, 0.5, α2 =0.25, 0.5, 0.75, α3 =0.2,
0.4, 0.6, and explore the sizes of other 9 tensor cores, G1 ∈ R

5×80×10, G2 ∈
R

4×80×10, G3 ∈ R
3×80×10, G4 ∈ R

6×60×10, G5 ∈ R
6×40×10, G6 ∈ R

6×20×10,
G7 ∈ R

6×80×8, G8 ∈ R
6×80×6, G9 ∈ R

6×80×4.
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lraSNTD is employed to decompose the training data to obtain three factor
matrices referring to frequency bins, time frames and channels. The training
data and the testing data are projected onto the feature subspace composed of
the three factor matrices to obtain the training features and testing features.
Then, through the classification system of MCVTL, we receive the prediction
result.

To compare the performance of multi-core and single-core models, we verify
10 models (MCV-n(n = 1,2,· · · ,10)) on the task where each MCV-n includes n
cores. Specifically, G0 is employed to MCV-1 ([14] proves the basic tensor core
has the best performance with θ = 99%), but the cores of other model MCV-n
are selected from these 10 cores, G0 to G9. The number of the different options
for each model MCV-n(n = 2,· · · ,10) is full combination Cn

10. However, there will
be reduplicate sequences if we randomly select cores. Therefore, we traverse all
the different cases and grasp the average results.

To validate the effectiveness of our methods, the average classification accu-
racy is computed using a scheme of three 10-fold cross-validations to increase
the reliability of our results for each subject. In a 10-fold cross validation, all the
validation samples are divided into 10 subsets. Nine subsets are used for train-
ing, and the remaining one is applied for testing. Furthermore, the results are
statistically evaluated by a paired t-test method to further support and validate
our conclusion.

4 Results and Analysis

4.1 Comparison Between Multi-core and Single-Core Models

The performance of the single-core model (MCV-1) and the multi-core models
(MCV-2 to MCV-10) in the valance dimension are demonstrated in the Fig. 3.
It is found that the average classification accuracy and F1-score of MCV-1 are
0.7614 (point A1) and 0.7532 (point A2), and the results of the multi-core models
are higher than MCV-1 (paired t-test, p< 0.05). At the same time, it is observed
that with the increase in the number of cores, its performance showed an upward
trend, reaching 0.8206 (point C1) in accuracy and 0.8154 (point C2) in F1-
score on MCV-10, an increase of nearly 5% compared to MCV-1 (paired t-test,
p< 0.05).

Similarly, the performance of the single-core model (MCV-1) and the multi-
core models (MCV-2 to MCV-10) in the arousal dimension are shown in the
Fig. 4. It is observed that the accuracy and F1-score of MCV-1 are 0.7865 (point
A1) and 0.7717 (point A2), and the results of the multi-core models are higher
than MCV-1 (paired t-test, p< 0.05). Moreover, it shows that with the number
of cores increasing, the performance is improved, reaching 0.8466 (point C1) in
accuracy and 0.8354 (point C2) in F1-score on MCV-10, an increase of nearly 6%
compared to MCV-1 (paired t-test, p< 0.05). More importantly, the accuracy
and F1-score curves become almost stable on MCV-4 (with a slight reduction
of 1% compared to MCV-10, point B1 and B2) both in valence and arousal.
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Fig. 3. Results of MCV-1 to MCV-10 in valence dimension

Fig. 4. Results of MCV-1 to MCV-10 in arousal dimension

It is seen that the performance of MCVTL has been greatly improved on the
single-core model and it indicates the fact that 4 cores are enough to exploit
multi-lever characteristics. We could infer that multi-core model can efficiently
integrate multi-scale information.
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Fig. 5. Results of 32 subjects with MCV-1 and MCV-4 in valence dimension

4.2 Intra-subject Classification Performance with MCVTL Model

The performance of 32 subjects in the valence dimension with MCV-1 and MCV-
4 are shown in the Fig. 5. We found that compared to MCV-1, MCV-4 exhibits
an improvement in the accuracy across subject (paired t-test, p< 0.05). In MCV-
4, the highest accuracy and F1-score are 0.88625 (point B1) and 0.8742 (point
B2) on subject 16, the lowest accuracy and F1-score are 0.74875 (point C1) and
0.7376 (point C2) on subject 24. Importantly, the greatest accuracy improvement
is on subject 1, which increases by 0.09 (line A1), and the smallest improvement
is on subject 30, which increases by 0.0225 (line D1). Also, the greatest F1-
score improvement is on subject 10, which increases by 0.0863 (line A2), and the
smallest improvement is on subject 30, which increases by 0.0268 (line D2).

Fig. 6. Results of 32 subjects with MCV-1 and MCV-4 in arousal dimension
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Similarly, the performance of 32 subjects in the arousal dimension with MCV-
1 and MCV-4 are shown in the Fig. 6. It also reflects that compared to MCV-1,
MCV-4 exhibits an improvement in the accuracy and F1-score of each subject
(paired t-test, p < 0.05). In MCV-4, the highest accuracy and F1-score are
0.9375 (point B1) and 0.9119 (point B2) on subject 13, the lowest accuracy and
F1-score are 0.76875 (point C1) on subject 5 and 0.6852 (point C2) on subject
12. Importantly, the greatest accuracy improvement is on subject 20, which
increases by 0.1070 (line A1), and the smallest improvement is on subject 8,
which increases by 0.0268 (line D1). Also, the greatest F1-score improvement is
on subject 20, which increases by 0.0966 (line A2), and the smallest improvement
is on subject 7, which increases by 0.0243 (line D2). It shows that MCVTL is
suitable for all subjects.

4.3 Comparison with Related Works

As shown in Table 1, our method has a better classification accuracy than pre-
vious studies. For instance, our result is improved by 9% in arousal and 10% in
valence compared with [10].

Table 1. Comparison on DEAP dataset with related works.

Ref. Methods Accuracy (%)

Valence Arousal

[10] MEMD-based features, ICA, k-NN 67 51

[10] MEMD-based features, ICA, A-NN 72 75

[3] Multiband Feature Matrix, CapsNet 66 68

[5] DT-CWPT, SVM 65 66

[20] Time series, SVM 71 69

This study MCV-10, ELM 82 84

5 Conclusion

In this paper, we proposed a MCVTL method for multimodal emotion analysis.
MCVTL is able to integrate the multi-scale characteristics by fusing multi-core
information of various scales. By fusing the knowledge with 4 cores, the per-
formance is improved by a margin of nearly 5% in valence and 6% in arousal
compared with the single-core case. The empirical results show the effectiveness
of the proposed method. In the future, we need more studies to explore whether
the MCVTL model is suitable for other tasks, such as MI, ERP, or image recog-
nition, semantic text recognition, etc.
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Abstract. Driver mental state detection has been playing an increasingly signifi-
cant role in safe driving for decades. Electroencephalogram (EEG)-based detection
methods have already been applied to improve detection performance. However,
numerous problems still have not been addressed in practical applications. Specif-
ically, most of the existing traditional methods require a large number of training
data, caused by differences in cross-subject samples and cross-time of the same
subject, resulting in enormous calculations and time consumption. To overcome
the above limitations, transfer learning, which applies data or knowledge from the
source domain to the target domain, has been widely adopted in EEG process-
ing. This article reviews the current state of mainstream transfer learning methods
and their application based on driver mental state detection. To the best of our
knowledge, this is the first comprehensive review of transfer learning methods for
driving fatigue detection.

Keywords: Transfer learning · Electroencephalogram · Driver mental state
detection

1 Introduction

Fatigue driving refers to the physiological and psychological disorders caused by the
driver’s long continuous driving [1–4]. Due to lack of sleep, long continuous driving,
and other factors, the driver is easily fatigued, in turn resulting in inattentive driving,
decreased judgment, improper driving operation, and increasing the potential for traffic
accidents [5, 6]. Effective driver mental state detection reduces the probability of unsafe
driving and property loss [7].

Currently, there are three main driver mental state detection methods: computer
vision-based [8–10], human physiological signal-based [11, 12], and information inte-
gration technology-based [13, 14]methods. Previousmethods typically collect images of
the driving process, establishing appropriate criteria for judgement and using image pro-
cessing techniques to analyze the driver’s facial expressions to determine if the driver
is fatigued. Human physiological signal-based methods usually collect data such as
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the subject’s electroencephalogram (EEG), eye motion, electrocardiogram (ECG), heart
rate, and blood pressure to analyze the driver’s physical state and predict its mental
state. Information integration technology-based methods mainly establish an integra-
tion model of a variety of factors that may contribute to the driver’s mental state, so as
to perform the driver mental state detection and analysis. Among them, EEG [15], as
an objective signal, is capable of quickly reflecting the process of human physiological
and mental changes and is widely considered as the most readily available and effective
driver mental state detection method.

However, the followingproblems are inevitably encounteredwhenusingEEGsignals
for analysis.

1. The EEG signal is particularly weak and susceptible to noise.
2. EEG is spontaneous and highly individualized, with varying data distributions across

subjects and time periods.
3. EEG data samples are precious, and the collection of large amounts of data entails

high time and financial costs.

Accordingly, it is extremely important to obtain desirable detection results from a
small number of cross-subject sample features. Transfer learning [16] can address the
problem of sparse data labels by transferring knowledge from the learned source domain
to an unlabeled target domain. It differs from traditional machine learning methods in
two aspects: (1) Transfer learning approaches forbid the premise that data from different
domains obey the same distribution and are applicable to cases where data distribu-
tions are inconsistent; (2) Transfer learning approaches attempt to solve unsupervised
problems based on only a few samples.

A growing number of studies have used transfer learning for driver state detection as
transfer learning continues to progress in EEG data processing. Among current review
articles [17–19] addressing driver mental state and fatigue, to the best of our knowledge,
this is the first review article that focuses on the transfer learning approach.

The remainder of this paper is organized as follows. Section 2 provides a simple
introduction to transfer learning. Section 3 describes the transfer learning-based driver
fatigue detection methods. Finally, our conclusions are outlined in Sect. 4.

2 Transfer Learning

Transfer learning is the ability to systematically identify and apply knowledge and skills
learned in a previous domain to a new domain.

There are two very important terms in transfer learning: domain and task. In EEG-
based driver fatigue state detection, a domain usually represents the EEG observations
obtained when a subject performs the same learning task. The EEG observations of dif-
ferent subjects under the same task are defined as their own domains. Furthermore, the
domain can be divided into the source domain (DS) and the target domain (DT ), depend-
ing on whether the domain has knowledge or not. Specifically, the source domain with
label information is defined as {XS ,YS}, and the target domain without label information
is recorded as {XT }. Additionally, a learning task consists of labels and the corresponding
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function, in which labeled spaces are represented by Y and the function is represented
by f (·). For instance, sentiment analysis and driver state analysis are two different tasks.

2.1 Definition of Transfer Learning

Definition 1. As described in [16], there are two important parts in domain D, namely,
feature space X and marginal probability distribution P(X ), X = {x1, x2, . . . , xn}. Obvi-
ously, various domains have various feature spaces or obey various marginal probability
distributions. Furthermore, given a source domainDS , a learning task TS , a target domain
DT , and a learning task TT , the goal of transfer learning is to improve the learning per-
formance of the target prediction function fT(·) in DT by effectively employing the
knowledge learned by DS and TS , in which the following formula must be obeyed:
DS �= DT or TS �= TT .

The conditionDS �= DT implies that the source and target domain instances are vari-
ous, i.e.,XS �= XT , or that the source and target domainmarginal probability distributions
are various, PS(X ) �= PT (X ). Specifically, for each task, T = {Y , f (·)}, where f (·) rep-
resents the conditional probability distribution P(Y|X). Furthermore, TS �= TT means
that the source labels are unequal to target domain labels, i.e., YS �= YT , or that the source
and target conditional probability distributions are unequal, P(YS |XS) �= P(YT |XT ). It is
worth noting that the current problem becomes a traditional machine learning problem
if the source and target domains are equal, DS = DT , and the source and target tasks are
also equal, TS = TT .

Domain Adaptation. As described in [20], Given a marked source domain DS =
{Xi,Yi}ni=1 and an unmarked target domain DT = {Xj}mj=1, it is assumed that their
eigenspaces are the same, i.e., XS = XT , and their class spaces are also the same, i.e.,
YS = YT . However, the marginal and conditional distributions of both domains are
different, i.e., PS(X ) �= PT (X ) and P(YS |XS) �= P(YT |XT ). Then, the goal of transfer
learning is to use marked data DS to train a classifier f : xS → yS to classify the label
yT ∈ YT of the target domain DT .

2.2 A Brief Introduction of Transfer Learning Methods

Instance-Based Transfer Learning. To efficiently use the similarity with the target
domain, some source domain data samples are reused according to weight generation
rules to carry out the transfer learning [21–24]. The instance-based weight method has
rich theoretical achievements and is easily deduced and used. However, this type of
method is usually effective only when the distribution difference between fields is small.

Feature-Based Transfer Learning. This type of method mine the correlation between
the source and target domains through feature transformation, so as to decline the vari-
ation between the two domains [25]; or merge the data features of the source and target
domains into a unified feature space, so that the improved traditional method is able to
complete the related task [26–31]. Currently, this is the most important and common
transfer learning method, which is extensively employed for the cross-subject transfer
of EEG in fatigue driving.
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Model (Parameter)-Based Transfer Learning. Let the data in the source and target
domains share certain model parameters, then the goal of transfer learning is to discover
the shared relevant parameters from the source and target domains. Presently, methods
involved in deep neural networks [32–35] are also among the model-based transfer
learning methods. In addition, models combining domain adaptation and deep neural
networks are commonly used methods, which are not only model-based but also feature-
based methods.

Relationship-Based Transfer Learning [36]. Most of this type of method emphasize
on identifying the relationship between the source and target domain samples, but with
only a few related studies. Furthermore, most of them are based on Markov logic net to
mine the commonality between various domains.

Over the past decades, to tackle the non-linear, unstable, and high-dimensional char-
acteristics ofEEGdata, an abundance of effectiveEEGfeature extractionmethods further
upgraded the extraction effectiveness. In the current EEG-based application, instance-
based, feature-based, and model (parameter)-based methods have mostly drawn the
attention of researchers. Therefore, Sect. 3 focuses on introducing the development of
these three methods.

3 Transfer Learning-Based Driver Fatigue Detection Methods

Transfer learning has been proposed to address the small sample problem and the adap-
tation of different domains. Transfer learning is capable of providing more effective
solutions to the EEG transfer classification problem across subjects. Accordingly, it has
been applied in driver fatigue detection.

In the application of transfer learning in driver fatigue detection, most existing detec-
tion systems (framework) have the same construction processes, inwhich several general
characteristics can be summarized. Therefore, the first part of this chapter summarizes
the characteristics of driver fatigue detection systems based on transfer learningmethods.
Presently, the transfer learning pattern recognition methods for driver fatigue detection
are mainly feature- and model-based, and to a lesser proportion instance-based. These
methods are summarized next.

3.1 System Features

Driver fatigue detection systems collect EEG signals during driving, process EEG signals
either online or offline, feedback and control the results.

A complete driver fatigue detection system [18, 37] usually includes signal
acquisition, signal preprocessing, feature extraction, pattern recognition, and feedback.

Signal acquisition: The weak EEG signal is detected by an electrode placed on the sub-
ject’s scalp, then amplified and digitized, and finally recorded by the matching recording
system. It is mainly collected by the EEG cap and other EEG devices, including 64- and
32-electrode EEG caps.
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Signal preprocessing: Used to remove common noise, interference, and artifacts, in
order to improve signal quality. Commonly used preprocessing methods are digital
filtering and independent component analysis (ICA).

Feature extraction:Used to reduce the dimensionality of EEG data and extract relevant
features for pattern recognition. Common feature extraction methods are in temporal,
frequency, and spatial domains aswell as a combined analysis of the two in three domains
Frequency domain analysis: autoregressive (AR) model and power spectrum estimation
(PSD); temporal-frequency analysis: wavelet transform and wavelet packet transform;
spatial domain analysis: principal component analysis (PCA) and common spatial pattern
(CSP).

Pattern recognition model (PRM): The existing transfer learning pattern recognition
driver fatigue detection model is mainly based on classification (C) and regression (R)
models. The classification model usually sets the category information for the driver’s
mental state from the EEG data according to a certain threshold. Then, the transfer learn-
ing model outputs the fatigue category, which is a discrete value. The regression model
predicts the specific sleepiness state through the model, and the output is a continuous
value.

Explore transferability in transfer learning:Many existingmethods [38–40] consider
how to select the optimal auxiliary source domains in order to further reduce the transfer
learning cost and error. The appropriate auxiliary data is often more effective for transfer
learning with less effort.

In the literature, feature extraction methods and pattern recognition models have
some characteristics that can be summarized. In the following sections we summarize
them according to different pattern recognition methods.

3.2 Instance-Based Transfer Learning Methods

The processing of instance-based transfer learning method is simple. In order to fully
utilize the existing source domain data in EEG-based fatigue detection, it is necessary to
perform similarity matching with the target domain according to weight generation rules
to complete the data alignment and transfer learning. Table 1 summarizes this approach.

Wu et al. [38] proposed an online weighted adaptation regression regularization
(OwARR) algorithm used to decrease the amount of data required for a given subject
calibration. A source domain selection (SDS) method was also proposed to reduce the
computational cost of OwARR by 50%. The online classification/regression task means
that there is not enough labeled data for calibration. In the literature, each subject per-
forming the same driving task is considered a distinct source domain. Initially, OwARR
is applied to each source domain, then the final regression model is constructed as a
weighted mean of these basic models. Together, the final regression models are applied
to future unlabeled data. Specifically, SDS is employed to reduce the clustering error of
multiple source domains before domain adaptation. By selecting the best first Z source
domains, SDS maintains model performance with less computation cost. On average,
the training time for OwARR-SDS is approximately half of that for OwARR.
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Table 1. Instance-based transfer learning methods.

Ref. Year Task Dataset Signal Feature
extraction

Pattern
recognition
method

Performance PRM

Wu et al.
[38]

2017 Simulated
driving

[41] EEG Power
spectral
density (PSD)

OwARR Calibration
time
reduced by
~50%

R

Wei et al.
[39]

2015 Lane-keeping
driving

– EEG Welch’s fast
Fourier
transform

Selective
transfer
learning

– R

Wei et al.
[40]

2018 Lane-keeping
driving

– EEG Multi-channel
EEG powers

Hierarchical
cluster analysis
and
Subject-transfer
framework

Calibration
time
reduced by
90%

R

As EEG correlations between individuals are stable, there are existing auxiliary
subject data to improve EEG performance. Wei et al. [39] proposed a framework for
selective transfer learning that effectively utilizes the large amount of training data from
other subjects to improve the recognition efficiency of unlabeled target domain data.
This theoretical finding is a good reference for cross-subject transfer.

In an effort to improve system performance with minimal personalized calibration
data, Wei et al. [40] used hierarchical clustering methods to evaluate inter- and intra-
subject variability in a wide-scale EEG dataset of a simulated driving task. In addition,
based on the existing data collected from the source subject, a model source pool was
constructed. Furthermore, the framework carries out the design of an adjustment mech-
anism for ordering and fusing the source models of each target subject. In terms of time
cost, the calibration time of the self-decoding (SD) method was 89.91 min, and that of
the subject-transfer (ST) method was 1.48 min, the calibration time required for new
users was reduced by 90%.

3.3 Feature-Based Transfer Learning Methods

The largest proportion of EEG-based driver fatigue detection methods are feature-based
transfer learning methods due to its better feature alignment effect. This method tends
to find source and target domain data based on two common mapping spaces, either
optimization based on probability distribution alignment, or a combination of both. It is
not difficult to train and the training effect is significant. Furthermore, compared to deep
learningmethods, training time and training data costs are low, therefore, it is extensively
used in EEG-based tasks. Table 2 summarizes this approach.

An online multi-view and transfer Takagi–Sugeno–Kang (TSK) fuzzy system [42]
is proposed to estimate the driver’s sleepiness, which represents the source and target
domain characteristics from multiple perspectives. In this algorithmic framework, the
domain EEG data are characterized in terms of multiple perspectives. The multi-angle
setting is injected into the transfer learning framework to enhance the consistency of the
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different angles. This online fuzzy system is more flexible and controllable than offline
training.

Chen et al. [43] proposed an automatic detection system based on cross-subject
feature selection and transfer classifiers to identify different driving mentalities. Consid-
ering the negative effects of noise and irrelevant information on transfer learning, they
designed the class separation and domain fusion (CSDF) and utilized a hybrid feature
choice methodology to combine different types of filtering methods in one framework.
Additionally, they adopted a common adaptation regularization-based transfer learning
(ARTL) as the pattern recognitionmethod,which simultaneously optimizes the structural
risk, the joint distribution, and the manifold consistency of two domains. This optimiza-
tion method is based on the structural risk minimization principle and regularization
theory.

The kernel spectral regression (KSR) with transformable discriminant dimension
reduction (TDDR) method was proposed by Zhang et al. [44]. This method uses the
reduced feature vector dimensionality to achieve the transfer of the classifier model
cross-subjects. However, considering only low-dimensional source space discrimina-
tion is undesirable, as this would poorly generalize to the target domain of traditional
dimensions. In this work, knowledge transfer using TDDR rewards the separation of
domain merge data and penalizes the distance between the source and target domains by
defining an objective function that rewards domainmerge data. A low-dimensional latent
space can be found, ensuring both discriminability and transferability, which addresses
the problem of traditional dimension reductionmethods only considering low dimension
recognition. Furthermore, KSR is capable of overcoming the linear discriminant anal-
ysis (LDA) limitation to detect nonlinear components when reducing the EEG feature
dimension. In the literature, detection results on two datasets show that the framework
improves the performance of multi-class and multi-bandwidth identification.

Liu et al. [45] proposed a transfer learning-based cross-subject EEG fatigue recog-
nition algorithm without correction. They also explored the influence of the number of
EEG signal channels on algorithm accuracy and compared single and multi-channel sit-
uations. Specifically, the random forest algorithmwas used to select the channel with the
highest characteristic resolution. Their experimental results demonstrated that the occip-
ital lobe channel has a better effect when considering only one channel. In this paper,
two classical transfer learning strategies, namely, transfer component analysis (TCA)
and maximum independence domain adaptation (MIDA) [46], are used. Among them,
TCA is employed to alleviate the classification accuracy decline problem resulting from
the distribution mismatch between the source and target data. The goal of TCA is to seek
a potential mapping subspace where the maximummean difference (MMD) between the
source and target data is reduced in the Reproducing Kernel Hilbert Space (RKHS) [47].
The distance between these measures is empirically averaged. MIDA enables data from
different domains into a potential domain invariant space, where the projected samples
are independent of domain features. The accuracy was determined to be 73.01% for all
thirty channels using MIDA and 68.00% for one selected channel using TCA, which
was better than the baseline and deep learning methods.
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3.4 Model-Based Transfer Learning Methods

A parametric model-based transfer learning method in driver fatigue detection usually
addresses how to find a common parameter or prior distribution between the spatial
model of the source and target domains in order to transfer knowledge through fur-
ther processing. Deep transfer learning methods also belong to this category. Table 3
summarizes this approach.

Wu et al. [51] proposed a combined method based on transfer learning, active class
selection (ACS), and a mean squared difference user-similarity heuristic and selects the
best sample. Specifically, collaborative filtering is used to combine training data from
a solitary subject with external training data from other similar subjects. In addition,
in order to improve learning performance by combining a limited number of training
samples with a substantial number of supplementary training samples from other sim-
ilar topics, ACS optimizes class selection to generate individual user-specific training
samples. It can boost recognition accuracy by not increasing the number of training
samples.

Wu et al. [41] proposed an online EEG-based sleep estimation method based on
adaptive model fusion. In this framework, only a few subjects require correction to
achieve satisfactory results. Specifically, for each domain in Z auxiliary source domains,
it combines with the target domain to implement the ridge regression-based domain
adaptation operation and Z different models are obtained, which are fused into the final
model.

In [52], a deep neural network-based transfer learning driver fatigue detection system
is proposed, which increased system availability by relying solely on EEG channels.
First, the signal is preprocessed and filtered, then transformed into two-dimensional
spectrum. Then, the two-dimensional spectrum is classified by using AlexNet, the final
normal and fatigue classification is carried out by using a transfer learning method.
The FP1 and T3 channels have been shown experimentally to be the most effective
channels for reflecting the driver’s fatigue state. Furthermore, with the improvedAlexNet
convolutional neural network (CNN) model, an efficient driver fatigue detection system
can be obtained using only one channel. This method makes the driver fatigue detection
system flexible, which is a major advantage.

In [53], two kinds of domain adaptive neural network (DaNN) and adverse dis-
criminative domain adaptation (ADDA), based on the SEED-VIG dataset [50], are
used to classify electrooculogram (EOG) and EEG signals. Compared with traditional
domain adaptation methods, this method significantly improves the data. The experi-
mental results show that the Pearson correlation coefficients of both domain adaptation
networks are improved by more than 10% compared to the baseline. Therefore, the use
of adversarial networks for EEG driver fatigue classification is a promising experiment.

Due to the continuous development of deep networks, EEG data could also be pro-
cessed using model-based transfer learning methods. Moreover, parameter-based meth-
ods could be combined with feature-based methods to achieve better experimentation
performance. However, there are not many deep network-based methods for fatigue
detection and classification, which are necessary to further adopt efficient methods and
achieve better experimental results.
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4 Conclusion

With the continuous improvement of EEG acquisition devices, EEG-based driver men-
tal state detection methods have become objective and accurate. Presently, traditional
machine learning- and deep learning-based methods effectively achieve remarkable
results on inter-subject experiments. However, EEG data distribution is complex and
unstable. In practice, samples are precious, and more powerful models are needed to
address the problem of monitoring cross-subject and cross-time EEG signals. The cross-
subject problem may be addressed more effectively with the on-going transfer learning
research. However, there are still certain limitations, which could be overcome in the
future with the development of a large number of transfer learning algorithms.
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