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1 Introduction

In the 1900s, infectious diseases were responsible for the major share of disease
deaths. By the next century, most of these diseases were brought under control. In
the current generation, cancer and heart diseases account for the major share of
disease burden. Cancer is probably the most dreaded disease of the present century.
Several treatment methods have been tried, but we have not been successful in
eliminating cancer. Chemotherapy is one of the well-known modes of cancer
therapy. Traditional chemotherapeutic agents had limited success, and some of
them were also highly toxic. Hence, there is a need for newer modalities of cancer
chemotherapy.

Magnetic nanoparticles (NPs) have a magnetic core, biocompatible coating, and
surface functionalizations. Such a structure allows integration of targeting agents,
chemotherapeutic and biotherapeutic agents. They have theranostic properties [1].

2 Hyperthermia Therapy

It is well-known that cancer cells die when exposed to higher temperatures. This is
the basis of hyperthermia therapy, which is receiving increasing attention. The body
is exposed to higher temperatures. In the case of cancer, local hyperthermia is used.

Heat can be produced by different means, like microwave, radiofrequency,
ultrasound or magnetic hyperthermia. For smaller tumors, radio-ablation is used by
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a technique known as superficial hyperthermia, where the tissue is exposed to
radiation. If needles are inserted into the tissues, it is known as interstitial hyper-
thermia [2–4].

Hyperthermia kills cells directly, but the more significant effects are produced
when it is combined with other modalities of cancer therapy [5]. It increases blood
perfusion as well as produced hyperbaric conditions, proving to be toxic to cancer
cells [6]. There is hypothesis that the size of cancer cells may decrease with heat.
However, it should be remembered that hyperthermia is not specifically toxic to
cancer cells; it can also damage normal cells. Hence, hyperthermia is not without
side effects. Side effects of heat include surface burns, swelling, blood clots, and
bleeding complications [6]. Systemic toxicities including cardiovascular toxicity
and systemic shock syndrome may occur [7]. The most important aspect is to be
able to control the temperature inside the cells/body.

Targeted radiotherapy refers to delivery of higher dose of radiation to cancer
cells without causing damage to nearby tissues. It is used in many types of cancers,
including head and neck, brain, lung, and prostate cancers. Hyperthermia assists
this process significantly [8].

Magnetic hyperthermia may trigger differentiation of cancer cells, preventing
progression of cancer [9]. Dendrimers can form effective hybrid platforms with
magnetic nanoparticles to form the basis of cancer therapy [10].

3 Magnetic Nanoparticles

Magnetic nanoparticles (MNPs) are a group of nanoparticles whose properties can
be modified by application of magnetic fields. MNPs are particular in that they
produce controlled increase in temperature. Temperature distribution can be con-
trolled by the velocity, size, and distribution of MNPs within the body [11, 12].

Upon application of external magnetic field, MNPs are able to convert elec-
tromagnetic energy to thermal energy and thereby increase the temperature [13].
The increase in temperature enhances tumor oxygenation and chemo- and
radio-sensitivity. The net effect is shrinkage in tumor size [14]. Heat may be dis-
sipated as well, especially when alternating magnetic current is applied.
Nanoparticles, including magnetic NPs, bring about thermal ablation of tumors.
They have advantages over conventional heating methods [15].

Utilizing intra-tumoral Fenton reaction for cancer therapy is a new field known
as chemodynamic therapy. The acidic pH of tumor environment is not exactly
suited for normal Fenton reaction and hence requires enhancement [16].

Suitable methods need to be developed to produce localized hyperthermia and
targeted release of chemotherapy drug. Many modifications of the basic technology
have been investigated, and further, methods may need to be evaluated [17, 18].

Magnetic hyperthermia has been useful in the treatment of oral cancer [19, 20].
When exposed to alternating magnetic field, certain NPs can generate heat through
hysteresis [21]. This phenomenon forms the basis of cancer therapy using MNPs
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[22]. Multifunctional magnetic gold nanomaterials have been used for the treatment
of cancer [23–25].

4 Superparamagnetic Nanoparticles

Magnetofection using superparamagnetic nanoparticles (SPIONs) has been used as
an alternative to gene therapy in human breast cancer MCF7 cells for gene transfer
[26]. Hyaluronic acid-modified mesoporous silica-coated superparamagnetic iron
oxide particles are used for targeted cancer therapy [27].

5 Multifunctional Nanoparticles

Functionalized magnetoparticles sensitize tumors to X-rays and protons and act as
radio-enhancers. These are thus used in cancer therapy [28]. Multifunctional
nanoparticles (MFNPs) have wide theranostic potential; some examples of studies
where they have been used are given below [29].

Mesoporous polydopamine nanosponges on a multifunctional platform have
been used for the treatment of cancer [30]. Fe3O4-TMZ-ICG MNPs are produced by
incorporating iron oxide NPs with temozolomide (TMZ) and indocyanine green
(ICG). These agents enhance apoptosis-mediated death through various genes
involved in the pathway. Such selective chemo-phototherapy using these agents has
found applications in the treatment of brain cancer [31].

Core-shell-structured iron carbide (Fe5C2@Fe3O4) nanoparticles (NPs) produce
reactive oxygen species (ROS), through the catalysis of the Fenton reaction.
Normally, ROS-mediated therapy is an inefficient process, but these agents have
showed great promise because of high efficiency and high specificity [32].
Biocompatible core-shell magnetic nanocomposite based on cross-linked chitosan
hydrogels (using synthetic terephthaloyldiisothiocyanate as a cross-linker) is used
for cancer therapy based on in vitro hyperthermia [33].

MFNPs have also been formed by genetically manipulating NK cells by genetic
engineering and conjugating them with magnetic and fluorescent NPs. They have
enhanced cancer cytotoxicity [34]. Silica-coated iron oxide NPs (SIO-MNPs) have
enhanced radio-sensitivity in breast cancer cells [35]. Graphene oxide NPs kill
cancer cells better when they are multifunctional, incorporated with iron oxide NPs
and hyaluronic acid. This enables the use of magnetic hyperthermia and kills cancer
cells better [36]. An oral drug delivery system [polyacrylic acid (PAA) and chitosan
(CS) on Gd3+ -doped mesoporous hydroxyapatite nanoparticles (Gd-MHAp NPs)]
has been developed which might be useful for orthotopic colon cancer therapy [37].

MFNPs have been used in the treatment of brain cancer [38]. Multifunctional
iron oxide nanocomposites have been used for imaging-guided photothermal

6 Magnetic Nanoparticles for Hyperthermia a New Revolution … 121



therapy of cancers [39]. Certain functionalized NPs are used for fluorescence
imaging-guided photothermal therapy [40].

Magnetic NPs have also been used for imaging-guided immunotherapy [41].
MFNPs have also been used for metastatic cancers [42]. Cisplatin-functionalized
NPs have been used for the treatment of breast cancer [43]. Some MFNPs
[Fe3O4@KCTS, a core-shell type of magnetic nanoparticles, prepared by activating
Fe3O4 with carbodiimide and cross-linking it with a-ketoglutarate chitosan
(KCTS)] are also used for cancer detection [44]. Advantages include excellent
loading efficiency, real-time monitoring, and improved cargo bioavailability and
bioselectivity [45].

A triple-modal superparamagnetic iron oxide (Fe3O4), IR780, doxorubicin
(DOX), and perfluoropentane (PFP) entrapped poly-lactide-co-glycolide (PLGA)
nanoparticles (IR780/Fe3O4@PLGA/PFP/DOX NPs) have been used experimen-
tally for breast cancer treatment [46].

Doxorubicin-loaded magnetic mesoporous silica nanoparticles (ND-MMSNs)
have been used for targeting glioma cells. The platform has been used for imaging
as well as therapeutic purposes [47].

PEGylated branched gold (Au)-iron oxide (Fe3O4) Janus nanoparticles (JNPs)
are used for simultaneous trimodal imaging and photothermal therapy of cancer
cells [48].

Exceedingly small magnetic iron oxide nanoparticles (ES-MIONs) (<5 nm) are
used for magnetic resonance imaging (MRI) as well as for therapeutic purposes in
cancer in experimental animals [49].

Dual surfaced dumbbell-like gold magnetic nanoparticles (Au–Fe3O4) are used
for targeted aptamer delivery, and these are used as carriers for cancer hyperthermia
therapy [50].

Superparamagnetic iron oxide particles have been successfully implemented for
the treatment of gastric cancer [51].

Magnetically responsive microbubbles are used in the treatment of pancreatic
cancer. Microbubbles are lipid or polymer stabilized gas filled particles [52].

Magnetically and thermally sensitive poly(N-isopropylacrylamide) (PNIPAAm)/
Fe3O4–NH2 microgels encapsulated with curcumin (Cur) are used as controlled
release cancer therapeutic drugs [53].

Colorectal cancer with liver metastasis has been treated by hybrid functionalized
magnetic-gold NPs [54]. Magnetic MFNPs are used in the treatment of prostate
cancer [55, 56] and bladder cancer [57].

Core-shell PB@MIL-100(Fe) dual metal-organic-frameworks (d-MOFs)
nanoparticles are used for theranostic cancer therapy [58]. MFNPs enables Fenton
reaction assisted photodynamic therapy [59].

Magnetotactic bacteria are aquatic organisms having strong biomedical appli-
cations. This is because of their hyperthermia effect, affecting cancer cell prolif-
eration [60].

Stable hybrid nanobiocatalyst is formed when biomimetic silica (Si) nanopar-
ticles are entrapped with Horseradish Peroxidase and magnetic nanoparticles. These
NPs have wide applications in cancer therapy [61]. The degradable poly
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(AA-co-DMA) nanohydrogels with surface-tailorable functionalities are used with
nanomaterials and drug molecules for cancer therapy [62].

Because of the superparamagnetic, biocompatible and biodegradable properties,
iron oxide NPs are used in the treatment of breast cancer [63]. A multifunctional
drug-loaded nanosystem (F/A-PLGA@DOX/SPIO) has been used in the treatment
of lung cancer [64].

MFNPs are also used as radiosensitizers in the radiation therapy and imaging
[65]. Up-conversion MFNPs are used for photodynamic therapy [66].

Copper sulfide NPs have wide applications in therapeutics [67].
SPIONs with gold NPs have been used for phototherapy [68].
Graphene oxide nanosheets are loaded by magnetic iron oxide nanoparticles

(mGO), followed by the technique of layer-by-layer (LbL) self-assembly for the
production of chitosan/sodium alginate functionalized mGOnaocomposites. They
are used in targeted anticancer drug delivery and photothermal therapy [69].

A synergistic treatment platform was developed with plasmonic-magnetic hybrid
nanoparticle (lipids, doxorubicin (DOX), gold nanorods, and iron oxide nanocluster
(LDGI))-loaded mesenchymal stem cells (MSCs) for the imaging and treatment of
triple negative breast cancer [70].

Cold atmospheric plasma (CAP) combined with magnetic NPs has been used in
the treatment of lung cancer [71].

Magnetic nanogels made of thermosensitive and biocompatible polymers and
core-shell nanoparticles with a magnetic core and molecularly imprinted polymer
shell are both used for cancer therapy [72].

Dual-responsive multifunctional magnetic complex micelle (sPEG/HA/
CSO-SS-Hex/Fe3O4/GA) consisting of reducible hexadecanol-modified chitosan
oligosaccharide polymer micelle (CSO-SS-Hex) coated with hyaluronic acid
(HA) and DCA grafted sheddable PEG-PLL (sPEG) copolymers and loaded with
gambogic acid (GA) and Fe3O4 nanoparticles is used for the treatment of triple
negative breast cancer [73].

Polymer-coated gold-ferric oxide superparamagnetic nanoparticles have thera-
nostic applications [74].

Hydrophilic graphene-based yolk-shell magnetic nanoparticles functionalized
with copolymer pluronic F-127 (GYSMNP@PF127) produces hyperthermia and is
used for cancer therapy [75].

Multifunctional iron–gold alloy nanoparticles are used for combined hyper-
thermia and dual stimuli-responsive drug delivery [76]. Poly lactic-co-glycolic acid
(PLGA)-modified magnetic nanoplatform was synthesized with iron oxide NPs for
enhanced apoptosis and therapy in human brain cancer [77].

Functionalized boron nitride nanotubes (BNNTs) are efficient tools for magne-
tohyperthermia treatment [78].

Gold MFNPs have significant theranostic properties. They have autophagy-
based chemotherapeutic applications [79].

Nearly monodispersed magnetic Fe3O4@MTX-LDH/Au nanoparticles (NPs)
containing methotrexate (MTX) produce hyperthermia and are used in cancer
therapy [80].
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The chemotherapeutic drug, sorafenib with PVA/SPIONs showed better anti-
cancer efficiency than free sorafenib in the treatment of hepatocellular carcinoma
[81].

Amphipathic chitosan-based nanomicelle with doxorubicin and SPIONs are
used in the treatment of metastatic breast cancer [82].

Hydroxyapatite-coated iron oxide NPs are used for producing magnetic hyper-
thermia for the treatment of cancer cells [83].

Curcumin-loaded magnetic alginate/chitosan nanoparticles were used for therapy
in MDA-MB-231 breast cancer cells [84].

6 Hybrid Nanoparticles

Hybrid NPs are formed by integrating Gd doped silicon nanoparticles (Si–Gd NPs),
chlorine e6 (Ce6), doxorubicin (DOX), zeoliticimidazolate framework-8 (ZIF-8),
poly(2-(diethylamino)ethyl methacrylate) polymers (HOOC-PDMAEMA-SH), and
folic acid-polyethylene glycol-maleimide (MaL-PEG-FA) into one single
nanoplatform. Such hybrid NPs are good theranostic agents [85].

Her2 functionalized gold-nanoshelled magnetic hybrid NPs are used as thera-
nostic agents for dual-modal imaging and photothermal therapy of breast cancer
cells. The advantages are non-invasive diagnosis and used as adjuvant therapy in
SKBR3 cells [86].

7 Synthesis of Magnetic NPs

Production of sub-10 nm SPIONs is a challenging task. Several methods are
available for the same. One such involves poly(ethylene glycol) (PEG) reactor
adsorbed onto reduced graphene oxide nanosheets (rGO) via the microwave
hydrothermal route [87].

Microrobots are small, non-invasive and can be subjected to robotic control.
They are important vehicles for targeted therapy. Degradable hyperthermia
microrobot (DHM) containing poly(ethylene glycol) diacrylate (PEGDA) and
pentaerythritoltriacrylate (PETA) and magnetic Fe3O4 nanoparticles (MNPs) and
5-fluorouracil (5-FU) are useful agents for targeted therapy and hyperthermia [88].

8 Other NPs Producing Hyperthermia

Magnetic NPs are the main agents producing hyperthermia. However, there are
some other NPs which also produce hyperthermia and hence may be used for the
treatment of cancer.
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Hyaluronic acid-based NPs include micelles, polymersomes, hydrogels, and
nanoparticles. They bind to receptors over-expressed in certain cancers. They are
important platforms for hyperthermic cancer therapy [89].

Near-infrared (NIR)-based iron oxide nanomaterials (NIR-IO) are excellent
vehicles for tumor ablation and were found to have good biocompatibility and low
cytotoxicity. They have great potential as theranostic agents in cancer [90].

Reactive oxygen species (ROS)-producing NPs have the natural ability to pro-
duce hyperthermia. Indeed magnetic NPs can also produce ROS by Fenton reaction
and otherwise. This has been discussed earlier in this chapter [91].

Others include glutathione producing particles including ultra-small gadolinium
oxide NPs. These are used for CT/MR-guided photothermal and radio-combination
cancer therapy [92]. Iron-doped copper sulfide NPs also can produce hyperthermia
and are used for MRI [93]. Iron-containing multifunctional nanozymes kills tumor
cells efficiently [94]. Carboxymethyl chitosan (CMCS) is used as a nanodelivery
system carrier for sustained intracellular release of rose bengal (RB) and doxoru-
bicin (DOX) to achieve combinational drug treatment [95].

Magnetoliposomes containing MgFe2O4 nanoparticles are used in cancer ther-
apy, allowing combined magnetic hyperthermia and chemotherapy [96].
Co-delivery system of (DOX/MEL)-loaded citric acid-functionalized Fe3O4 mag-
netic nanoparticles (CA-MNPs) is highly capable to be used in magnetically tar-
geted cancer therapy [97].

Silk-PEI nanoparticles (SPPs) and magnetic-silk/PEI core-shell nanoparticles
(MSPPs) were used for targeted delivery of c-myc antisense oligodeoxynucleotides
(ODNs) into MDA-MB-231 breast cancer cells [98]. Gold nanocages (AuNCs)
modified with hyaluronic acid (HA) and conjugated with anti-Glypican-1
(anti-GPC1) antibody, oridonin (ORI), gadolinium (Gd), and Cy7 dye have been
used for the treatment of pancreatic cancer [99].

Folic acid (FA)-conjugated poly (lactic-co-glycolicacid) (PLGA)-polyethylene
glycol (PEG) nano-noisome has been used for the treatment of cervical cancer
[100]. Indocyanine green (ICG)-conjugated NPs are used for photothermaltumor
therapy [101].

9 Magnetic Liposomes

Magnetic liposomes are used in cancer therapy [102]. Bacterial magnetosomes have
been developed recently co-loaded with siRNA and doxorubicin, using polyethy-
lineamine as a cross-linking agent. These nanocarriers are used in cancer thera-
peutics [103]. Magnetic nanoclusters have been also used for delivery of cisplatin
for chemotherapy [104].

Neoadjuvantnano-photothermal therapy (NNPT) has been used in breast cancer
treatment. When it is done before surgery, NNPT is found to improve the benefits
of surgery [105].
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Multifunctional nanohybrids have various applications in improving drug
delivery of magnetic NPs [106]. Gadolinium-based nanoplatforms have been used
for cancer therapy [107].

Superparamagnetic nanoparticles (SPIONs) have been coated with the amphi-
philic copolymer INU-LA-PEG-FA and loaded with doxorubicin (DOXO-SPIONs)
to function as smart agents for colon cancer therapy [108].

10 Ferroptosis

Iron-dependent cell death mediated by lipid peroxidation is known as ferroptosis.
Fenton reaction produces reactive oxygen species, which also contributes to lipid
peroxidation. Iron-based NPs can produce ferroptosis [109]. Ferroptosis is also used
in the treatment of brain tumors [110]. Ferroptosis contributes to the hyperthermia
in producing the effects of magnetic NPs.

11 Challenges

The main challenge of magnetic NPs is toxicity itself. They can produce cytotox-
icity, pyrogenicity, genotoxicity, in vitro hemolysis, skin reactivity, and acute and
chronic systemic toxicity in experimental animals [111]. The other disadvantage is
a lack of sensitivity toward tumor tissues [112].

12 Conclusion

Various magnetic NPs have been described in the recent years. A complete
description of the complete armamentarium of these species is beyond the scope of
any publication. However, we have tried to focus on the latest and most important
of this important group of NPs. The most important mechanism by which magnetic
NPs work is by producing hyperthermia. In addition, ROS production and Fenton
reaction, as well as ferroptosis, contribute to the same. There are other NPs which
produce hyperthermia, but magnetic NPs are the most important among them.
Future years shall reveal newer magnetic NPs, including MFNPs, with better
functionalities. Indeed, as is the case with any NP, the main issue shall remain as
toxicity. Once, we solve the toxicity paradox, magnetic NPs shall become one of
the most important tools available to the physician for the treatment of a variety of
cancers.
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