A Novel Approach on Auto-Scaling m
for Resource Scheduling Using AWS L

L. George Fernandez and J. Arokia Renjith

Abstract The mostly wide adoptions in cloud computing for businesses have the
several reason; among that the elasticity in cloud computing is the virtual infrastruc-
tures which will be the dominating leader. The most important area is elasticity that
allows to auto-scale the resources which are on-demand. On the other hand, Web
applications typically comprise dynamic workload and are hard to predict. The cloud
service providers and researchers are jointly working together to condense the cost at
the same time as maintaining quality of service (QoS). AWS command-line interface
(CLI): the command-line tools, which is Python written, introduce the efficient use
cases for managing the AWS services through the sets precisely modest in command.
Forecasting on historical data by way of inputting in order to make the up-to-date
assessment which are analytical in modeling a path for forthcoming trends. Prophet
which acts as a tool will be built to report such concerns, and it delivers real-world
methodology in forecasting that is at scalable. From the experimental result, it is
found that when predicted value is greater than 51% of CPU usage, then a new EC2
instance is created.

Keywords Amazon web services + Amazon EC2 - Auto-scaling - Prophet * Time
series + Elastic load balance

1 Introduction

Scalability in cloud applications is being main reasons behind the wide adoption
for cloud computing. Most of the [aaS cloud services providers (CSP) offer auto-
scaling services to familiarize the VMs to the shifting demand. A virtual entity of new
type called container, which allows user to proposal the loosely coupled applications

I. George Fernandez (B<)
Department of Information Technology, Jerusalem College of Engineering, Chennai, Tamil Nadu,
India

J. Arokia Renjith
Department of Computer Science and Engineering, Jeppiaar Engineering College, Chennai, Tamil
Nadu, India

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2021 99
R.J. Kannan et al. (eds.), International Virtual Conference on Industry 4.0,

Lecture Notes in Electrical Engineering 355,

https://doi.org/10.1007/978-981-16-1244-2_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-16-1244-2_8&domain=pdf
https://doi.org/10.1007/978-981-16-1244-2_8

100 I. George Fernandez and J. Arokia Renjith

containing of several small building blocks. These building block such as micro-
services implements a minor fixed of functions and interconnect with other micro-
services. In auto-scaling, the decision-making technique provisioned to allocate the
number of resources to divergent process is classified as reactive and proactive. The
reactive technique regularly monitors events, namely CPU utilization, workloads,
queues, etc., and it performs the elastics operation on resources based on threshold.
In proactive techniques, forecasting methods are used to predict traffic from past
workload.

Bitbrains, a service provider, which is specialized in business computation and
managed hosting for enterprises. The requirements would come in form of request
such as data transfers among the customer, and the data center through protected
networks, the calculate nodes are rented as virtual machines (VM) cutting-edge data
center which delivers a expectable routine and provide in elevation obtainability for
consecutively of business-critical simulation.

Prophet is a technique aimed at foretelling, time series statistics which are
constructed on an additive model such that nonlinear trends is appropriate with the
annual or weekly and on everyday seasonality, in addition to leave effects. This work
finest through the time series that invent healthy periodic effects and numerous spells
of the past data.

Time series forecasting finds significant problem with various industrial applica-
tions such as the trade request estimating, economic forecasts, prediction of stream
of traffic, or the climate patterns. In broad, these shows a crucial part in the indus-
trializing commercial developments. These methods are included in the well-known
auto-regression (AR), ARIMA, the classical Box-Jenkins methodology, exponen-
tial smoothing, and more precisely linear state-space models. Conversely, these
approaches will not certainly accessible to enormous datasets through the lots of
time series, owed the essential for the specific training. Furthermore, they will not
help from the mutual temporal configurations in whole dataset although the prediction
and training.

Amazon Web services (AWS): Amazon provides auto-scaling services in partic-
ular TaaS public cloud. Amazon Web services auto-scaling is precisely auto-scaling
group (ASG). The auto-scaling group is a fixed of various Amazon elastic compute
cloud (EC2) instance, the virtual machines (VM’s) which are sharing the similar.
Consequently, each VM pioneering the collection consumes the similar Amazon
machine image in addition the identical hardware features. Load distribution among
the virtual machines (VMs) are automated by elastic load balancer (ELB). Amazon
cloud watch is performance monitoring tool, be responsible for the performance data
cast-off in scaling rules.

1.1 Reactive Auto-Scaling

Reactive auto-scaling (automatic scaling) technology that enabled for automatic
provisioning as well as termination of the virtual entities to familiarize the resource

A Novel Approach on Auto-Scaling for Resource Scheduling ... 101

capacity for changing demand. The automation is accomplished via a monitoring
service to retrieve related resource utilization metrics by which the alarms and also
triggers can be defined. Reactive auto-scaling is one such type of auto-scaling which
will either deploy or will terminate based on predefined amount of the virtual entities
as a response to change of some metrics. Therefore, reactive auto-scaling proceeds
only on the basis of given parameters, which can be either provided or measured by
the monitoring solution or by the cloud administrator. The number of changes will
be the number of virtual entities which are allocated or terminated is encoded based
set of rules.

1.2 Predictive Scaling

Predictive scaling or proactive scaling influences historical data just about the virtual
infrastructure and the application which is collected via the monitored solutions.
Collected historical data are in different forms, namely: logs, application traces,
time series, etc. These data will be required in the derivation of the prototypes that
are used to generalize, future values of the particular metrics. For example, the poised
requests per second time series are used to develop a model and to forecast such as
predict or extrapolate, the requests per second values for a particular service at some
instant in near future.

2 Literature Review

Papadopoulos et al. [1] proposed an auto-scaling policy on performance evaluation
approach constructed on a chance constrained optimization problem explained by
means of scenario theory. The approach was implemented in performance evaluation
framework for auto-scaling (PEAS) and tested on the several existing auto-scaling
policies using 796 real workload traces. The work introduced a numerous distinct
metrics to estimate the autoscaling performance with the core metrics of the average
number of under provisioned resources and over provisioned resources. Ilyushkin
et al. [2] proposed a set of performance metrics to estimate the auto-scaling policy.
The set which includes, namely wrong-provisioning timeshare, under- and over-
provisioning accuracy, instability as well as the other user-oriented metrics such
as elastic slow-down, response time, wait time, average task throughput, or average
number of resources. Bauer et al. [3] investigated predictive auto-scaling solution: (a)
collects the monitoring data for forecasted parameters, (b) derives forecast models, (c)
derives the virtual infrastructure and the application performance models, (d) derives
the scaling policy to guarantee provision of virtual entities that are be able to assist
forecast workload, and (e) finally executes the scaling action for forecast [4]. Anshul
et al. [5] proposed experimental evaluations of the multilayered auto-scaling, perfor-
mance with the mixture on virtual setup auto-scaling of Google compute engine,

102 I. George Fernandez and J. Arokia Renjith

AWS, and Microsoft Azure by the pods for flat auto-scaling of the Kubernete via
demonstrating ScaleX based on four typical patterns of load. Benjamin et al. [6]
demonstrated performance analysis [7] and for sake of comparisons and evaluated
the forecasted procedures and also introduced a tool which enable the analyst to
make use of their expertise reliable and forecasting business time series more prac-
tically. Fang et al. [8] analyzed that prophet and LSTM which are used in prediction
for the trends of the time series data, and author studied that prediction trends can
be united by the contrary neural network exemplary aimed at the prediction. Shen
et al. [9] analyzed business-critical workloads hosting in distributed data center with
1,750 virtual machines workload traces of long term and large scale. Traces are
also analyzed on actual resource usage as well as requested resources, in terms of
CPU, memory, disk I/O, and network I/0. Walid et al. [10] proposed the optimiza-
tion framework which can adaptively solve the joint VM-to-PM packing problem
and VM auto-scaling. Prathanra et al. [11] investigated that the performances of the
machine knowledge prototypes can forecast recital of the Jupyter notebook on the
JupyterHub popular relationships of their response time.

3 System Architecture

In the proposed model, complete architecture is depicted (Fig. 1 shows proposed
system architecture), which contains five components such as AWS auto-scaling
group, elastic load balancer (ELB), prophet, prediction manager, and cloud watch.
The various works are allocated according to the various requests by cloud users.

3.1 AWS Auto-Scaling Group

The AWS launch configuration is used to form the auto-scaling group (ASG) in
Amazon Web service cloud using the user metrics. The auto-scaling group is a usual
of dissimilar Amazon elastic compute cloud (EC2) instances.

3.2 Elastic Load Balancer (ELB)

Load distribution among the virtual machines (VMs) is automated by elastic load
balancer (ELB). To direct the loads to the auto-scaling group, the elastic load balancer
(ELB) remains added. It functions as a distinct endpoint aimed at the load generations
workload, which in turn, the load is disseminated between the ASG instances.

A Novel Approach on Auto-Scaling for Resource Scheduling ... 103

AWS Auto-scaling
Group

Instance 1

Instance 2

Instance N

Prophet

Prediction
Manager

Fig. 1 Proposed system architecture

3.3 Prophet

Prophet is sklearn exemplary API, which can generate an instances of prophet class,
call the fit besides prediction methods expectially. The input parameter to the prophet
exists data frame has two columns, namely y and ds. The y column necessity must
be numeric. The date stamp (ds) column must be of a setup likely by Pandas. It
represents the magnitude that anticipated to estimate.

3.4 Prediction Manager

The prediction manager manages the prediction rules that are available to predict
according to the prophet predict method to forecast.

104 I. George Fernandez and J. Arokia Renjith

3.5 AWS Cloud Watch

Amazon cloud watch is performance monitoring tool, be responsible for the
performance data castoff in scaling rules.

4 Proposed Work

In our proposed work, we investigate the active traces explanatory intended
at business-critical capabilities. Business-critical capabilities regularly comprise
requests on creditworthiness areas, and these are repeatedly Monte Carlo imita-
tion balanced marketable exposing requests. The Auxiliary requests that illus-
trate business-critical capabilities are database, CRM, email, and management plus
collaborative amenities.

4.1 Traces Collected

In proposed work, we obtain traces which cover both actually used and requested
resources, basically four types of resource such as memory, CPU, network, and
disk. The traces collected from August to September 2013, the bit fastStorage which
comprises of 1250 virtual machines (VM’s), and fastStorage trace contains a complex
section of application servers and the compute nodes.

4.2 Dataset

The records are systematized into three subdirectories in terms of month that each
metrics remain documented. The setup specification of individually file is racket
wise; each such racket signifies an opinion for concert metrics such as timestamp in
milliseconds, CPU usage in percentage, the CPU’s are in cores, the CPU’s capability
in MHZ, memory’s capability in kilobyte (KB), the memory’s usage in KB, the
disk read throughput in kilobytes per second, the disk write throughput in kilobytes
per second, network transmitted throughput in kilobyte per sec network received
throughput in kilobytes per second.

A Novel Approach on Auto-Scaling for Resource Scheduling ... 105

4.3 AWS Auto-Scaling

Boto3 which is the AWS SDK used for Python that provides a low-level direct
access and object-based API’s to AWS services such as elastic compute cloud.
AWS command-line linterface (CLI): The command-line tool which is Python
programmed that familiarizes a well-organized use cases for managing the Amazon
Web services through established of precise modest instructions.

4.4 Experimental Setup

We install the AWS CLI and the Python Boto3 libraries, in order to create our own
consumer authorizations for the Amazon Web service solace, since AWS ameni-
ties will remain accessible programmable. After creating the user and obtaining the
credentials (Access ID and Secret key). Python scripting environment is configured
with credentials for managing EC2 instances. We now build a key pair for EC2
instances, which can be accessed in later stages, so that virtual machines (VMs) are
launched programmatically by using the Python.

Ec2_instances = elasticcomputecloudec2.Create_AW instances (
node_Id = 'ami-0323c3dd2da7fb37d’,

Count_MIN =1,

Count_MAX = 3,

Type_Instances = ‘tl.micro’,

Name_Key='auto-key pair’)

From the above program code, Node_ID which stipulates, Amazon machine image
(AMI) ID of the AWS EC2 illustration. Count_MIN and Count_MAX that are used
to express, the quantity of EC2 occurrences which are to be launched. For example,
Count_MIN = 1 and Count_ MAX = 3, number of instances launched are said to be
3. The Typt_Instances specify instance size such as: t1.micro, t1.small, or M3.large.
The Name_key is name distinct for key pair which will permit to[12] admittance
EC2 instances; for example, in our proposed work, we use the name “auto-key pair”
which is created in the AWS proposed scenario. The virtual machine configuration
in proposed on clouds is given in Table 1. The AWS AMI image for operating system
we used for the VM configuration is centos 7.

From Table 2, we encounter minimum instances and maximum instances that
remain cast-off to explain, the quantity of EC2 instances which are near be launched.
For example, minimum instances are 1, and maximum instances are 3; number of
maximum instances launched are said to be 3. The scaling metrics are CPU utilization,
and the threshold to launch a new instance is said to be 50%.

Table 1 Virtual machine

St T Inst Virtual CPU
configuration of proposed orage memory ype_Instance irtua s

1GB tl.micro 1 CPU

106 I. George Fernandez and J. Arokia Renjith

Table 2 Conﬁgur.atlon of Metrics for Threshold (%) Minimum Maximum
Amazon web service . . .
. scaling instance instances
auto-scaling
CPU usage 50 1 3

5 Results and Discussion

In proposed work, we obtain traces which are the used and requested resources, here
four types of resource such as memory, CPU, network, and disk. The traces collected
from August to September 2013, the trace fastStorage which consists of 1250 virtual
machines (VMs).

5.1 Dataset Importing

To prophet involvement stays continually a data frame through two stakes, namely y
and ds. The ds stands for date stamp stake, always in format predictable in Pandas.
For the analysis in our proposed, we are using an excel file that contains a total of
“CPU Usage in Percentages,” traces collected from August to September 2013, the
trace fastStorage which consists of 1250 virtual machines (VMs).

5.2 Converting the Dataset to Prophet Compliant

We can convert the historical dataset to be prophet compliant. Now convert the given
data into the formats that are desired by prophet from Table 3. It is renamed as the
date: ds and the CPU Usage (%): y.

Table 3 Conv.erted dataset to Date CPU usage (%)
prophet compliant

0 2013-08-12 13:40:46 40.866667

1 2013-08-12 13:45:46 42.100000

2 2013-08-12 13:50:46 40.733333

3 2013-08-12 13:55:46 44.000000

4 2013-08-12 14:00:46 42.300000

A Novel Approach on Auto-Scaling for Resource Scheduling ... 107

25 1
4

L T T T L} T T T

™M = — un (=] — i (=2} m
4 &4 § &§ & g 9 g o
w w0 =] w w0 o o (=4 [=4]
S © g 9 9 & g g 9
m (] m m m m m m m
—t — — — — — — -l —
= = & & & R = & (]

Fig. 2 Forecast plotting of CPU usage versus timestamp

5.3 The Forecasting in Prophet

To forecast, in prophet for prediction in near future. A data frame is created for the
purpose of future predictions by making use of make_future_dataframe. Predict the
CPU Usage (%) for upcoming 300 s. Forecast plotting using prophet: Forecast can
be plotted by calling method as Prophet.plot, and it is passed to forecast data frame.

From (Fig. 2 CPU Usage versus timestamp), we can forecast the CPU Usage in
percentage with timestamp, logs from August to September 2013.

5.4 The Proposed Future Prediction

When predicted value is greater than 51% of CPU usage for 300 s in next 50 min,
then create new EC2 instance. The forecast technique shall allocate for, respectively,
rows in the forthcoming of prediction assessment which it is named as yhat.

Algorithm for Future Prediction

Step 1: if len(out[out[’yhat’]>51])>300

Step 2: r=requests.get (url=\"http://localhost:5000/api/start\")
Step 3:data = r.json()

Step 4:print (data)

Step 5: else

Step 6: x=requests.get (url=\"http://localhost:5000/api/stop\")
Step 7:data2 = x.json/()

108 I. George Fernandez and J. Arokia Renjith

Step 8:print (data2)
Step 9: end

From the (Fig. 3 future prediction), it represents the quantity we desire to forecast,
and we can predict that when the CPU Usage increased above 51 percentages; then,
a new instance of AWS EC2 is created.

From the (Fig. 4 CPU Utilization), the cloud watch monitoring tool of AWS
experimental result found that only about 9% of CPU utilization is done.

100 -

0 -

2013-08-12 20130819 2013-08-26 2013-09.02 2013-09.09
as

Fig. 3 Future prediction when CPU Usage above 51%

CPU Utilization (Percent) Statistic: | Average ~ | Time Range: Period:[5 Minutes v | <>

0. [>]

Fig. 4 CPU utilization in terms of percentage vs time interval

A Novel Approach on Auto-Scaling for Resource Scheduling ... 109

6 Conclusion

In this paper, the traces collected from August to September 2013, the trace fast-
Storage which consists of 1250 virtual machines (VMs). We use the Python, namely:
Pandas, Numpy, and Matpoltlib are the modules which are used for analysis and the
transformation. In our proposed work, we have converted the historical dataset to be
prophet compliant. Implemented AWS auto-scaling for predicting the future work-
load by applying algorithm for future prediction. Prophet acts as tool, real-world
methodology in forecasting that are at scalable.
The main finding of the proposed work is:

(1) When predicted value is greater than 51% of CPU usage for 300 s in next
50 min, then create new EC2 instance.
(i) We found that only about 9% of CPU utilization is done.

References

1. Papadopoulos AV, Ali-Eldin A, Arzen KE, Tordsson J, Elmroth E (2016) PEAS: A performance
evaluation framework for auto-scaling strategies in cloud applications. In: ACM transactions
on modeling and performance evaluation of computing systems

2. Ilyushkin A, Ali-Eldin A, Herbst N, Papadopoulos AV, Ghit B, Epema D, Iosup A (2017)
An experimental performance evaluation of autoscaling policies for complex workflows. In:
Proceedings of the 8th ACM/SPEC on International conference on performance engineering,
ICPE’17. L’ Aquila, Italy, pp 75-86

3. Bauer A, Herbst N, Kounev S (2017) Design and evaluation of a proactive, application-aware
auto-scaler: tutorial paper. In: Proceedings of the 8th ACM/SPEC on International conference
on performance engineering, ICPE’17. L’ Aquila, Italy, pp 425-428

4. Podolskiy V, Jindal A, Gerndt M (2019) Multilayered autoscaling performance evaluation: can
virtual machines and containers co—scale. Int J Appl Math Comput Sci

5. Jindal A, Podolskiy V, Gerndt M (2017) Multilayered cloud applications autoscaling perfor-
mance estimation. In: IEEE 7th International symposium on cloud and service computing

6. Sean]. Taylor, Benjamin Letham (2017) Forecasting at Scale https://doi.org/10.7287/peerj.pre
prints.3190v2

7. Taylor SJ, Letham B (2017) Forecasting at scale 10.7287

8. Fang W-X, Lan P-C, Lin W-R (2019) Combine Facebook prophet and LSTM with BPNN
forecasting financial markets: Morgan Taiwan Index. In: International symposium on intelligent
signal processing and communication systems (ISPACS)

9. Shen S, Van Beek V, Iosup A (2015) Statistical characterization of business-critical workloads
hosted in cloud datacenters

10. Guo 'Y, Stolyar A, Walid A (2018) Online VM auto-scaling algorithms for application hosting
in a cloud. IEEE Trans Cloud Comput 1-1

11. Prathanrat P, Polprasert C (2018) Performance prediction of Jupyter notebook in JupyterHub
using machine learning. ICIIBMS

12. https://aws.amazon.com/sdk-for-python

https://doi.org/10.7287/peerj.preprints.3190v2
https://aws.amazon.com/sdk-for-python

	 A Novel Approach on Auto-Scaling for Resource Scheduling Using AWS
	1 Introduction
	1.1 Reactive Auto-Scaling
	1.2 Predictive Scaling

	2 Literature Review
	3 System Architecture
	3.1 AWS Auto-Scaling Group
	3.2 Elastic Load Balancer (ELB)
	3.3 Prophet
	3.4 Prediction Manager
	3.5 AWS Cloud Watch

	4 Proposed Work
	4.1 Traces Collected
	4.2 Dataset
	4.3 AWS Auto-Scaling
	4.4 Experimental Setup

	5 Results and Discussion
	5.1 Dataset Importing
	5.2 Converting the Dataset to Prophet Compliant
	5.3 The Forecasting in Prophet
	5.4 The Proposed Future Prediction

	6 Conclusion
	References

