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Abstract. With the widespread popularity of computer vision appli-
cations, single image deraining problem has attracted more and more
attentions. Though various deep-learning based algorithms are designed
for single image rain steak removal, deraining performance is still lim-
ited due to the insufficient utilization of multi-scale features, which either
fails to remove rain steaks completely or damages the original image con-
tent. In our paper, a novel deraining network called Multi-scale Gated
Feature Enhancement Network (MGFE-Net) is proposed to deal with
different types of rain streaks meanwhile achieve a satisfied restoration
effect. In MGFE-Net, a multi-scale gated module (MGM) is first uti-
lized between the encoder and decoder to extract multi-scale features
according to image content and keep the consistence between high-level
semantics and low-level detail features. Furthermore, to cope with diverse
rain streaks with different representative characteristics, we integrate the
receptive field block (RFB) into encoder and decoder branches to enhance
extracted rain features. Multi-level outputs of decoder are fused to obtain
a final refined result. Extensive deraining results on synthetic and real-
istic rain-streak datasets present that our MGFE-Net performs better
than recent deraining methods.

Keywords: Single image deraining · Gated feature enhancement ·
Multi-scale features

1 Introduction

Due to the occlusion of rain steaks with various shapes and sizes, the images
captured under different rainy conditions usually tend to seriously damage the
texture details and loss image contents, which hampers the further applications
[3,13,19]. In this way, designing an efficient single-image deraining algorithm
is highly necessary, which can remove diverse rain streaks while preserve more
image details, especially in the complicated outdoor scenes. In the past few
years, deraining researches have drawn considerable attentions, which mainly
revolve around rain removal in video and single image [10,23,25]. Compared with
video rain removal which exploits the temporary correlations between successive
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frames to restore clean background video, single image deraining [6,9,12] is more
challenging due to the shortage of temporary information.

The widespread popularity of deep learning-based methods in other visual
tasks [13,19,20], has promoted convolutional neural networks (CNN) applied
into single image deraining. In [5], Fu et al. propose that it is tough to separate
background from rainy image by directly using convolution network, thus they
adopt CNN to cope with high frequency feature map rather than the original
rainy image. Besides, joint detection [26], density estimation [29], and residual
learning [11] are also introduced for rain steak detection and removal. Zhang et al.
[29] propose a two-stage algorithm, which first predicts rain steak distribution
and then removes them from background. Wang et al. [21] utilize an attention
network to guide deraining process and generate clear background. Yang et al.
[27] focus on hierarchy of local features which influences deraining effect a lot.
Although these methods have achieved considerable performance improvements,
existing deep learning-based deraining algorithms are still restricted in the details
restoration of deraining photos. From the perspective of human visual percep-
tion, the restoration effects of some methods are not very satisfactory, which
either fail to remove rain steaks completely or have an over-deraining effect
resulting in distortion of original image content. For example, some methods
tend to blur the background or remove some image details while removing rain
steaks, because of the different levels of overlaps between background texture
details and rain streaks. Besides, most deep-learning based methods are trained
on synthetic data sets that results in limited generalization capability to cope
with real-life rainy images well.

To cope with the restrictions of prior frameworks, we propose a novel Multi-
scale Gated Feature Enhancement Network (MGFE-Net), which is based on a
typical framework of encoder and decoder. More specifically, the receptive field
block (RFB) [13] is embedded into encoder and decoder to cope with diverse
rain steaks removal and clean background restoration. Furthermore, we design
the multi-scale gated module (MGM) to control propagation of multi-scale fea-
tures, which can not only selectively combine multi-scale features acquired from
different layers of encoder and decoder, but also keep the consistence between
high-level semantics and low-level detail features. At last, several coarse derain-
ing results are obtained by subtracting the feature maps generated by decoder
from the original rainy image, and the final refined restored image is obtained by
a fusion of these coarse deraining results. The proposed MGFE-Net can remove
diverse rain steaks while well preserve the background content details. The com-
parison results validate that our MGFE-Net achieves best performance among
recent designed deraining methods.

In general, the following three contributions are included in our paper:

1. We propose a novel network named Multi-scale Gated Feature Enhancement
Network (MGFE-Net) based on a typical framework of encoder and decoder
to deal with various rain streaks accumulated from different directions with
different shapes and sizes while ensure the background content details well-
preserved.
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2. In MGFE-Net, we introduce receptive field block (RFB) into the encoder
and decoder respectively to enhance multi-scale feature extraction. Besides,
we design the multi-scale gated module (MGM) to selectively combine multi-
scale features and keep the consistence between high-level semantics and low-
level detail features for satisfied rain-free image restoration.

3. The comparison results on several benchmark synthetic and realistic datasets
indicate that our MGFE-Net can present an excellent deraining performance
and generalize well to real-life photos, which significantly improves the derain-
ing effect and human visual perception quality of restored images.

2 The Proposed Method

2.1 Network Architecture

In our paper, the Multi-scale Gated Feature Enhancement Network (MGFE-Net)
based on a typical encoder and decoder framework [26] is designed to deal with
single image deraining task. Figure 1 presents the overall architecture. First, we
embed the receptive field block (RFB) into diverse layers to strengthen the recep-
tive field of filtering kernels in encoder and enhance the extracted deep features
of decoder. Then, different from normal skip-connection in U-net framework, we
design a gated module to selectively concatenate the shallow features and deep
features, which can benefit to keep the consistence between shallow detail con-
tent and deep semantics. At last, in order to generate a refined restored rain-free
image, a fusion strategy is adopted to integrate coarse deraining results obtained
from different outputs of decoder layers.
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Fig. 1. Illustration of the MGFE-Net. The designed receptive filed block (RFB) and
multi-scale gated module (MGM) are embedded in encoder and decoder. The final
deraining result is acquired by fusing several coarse outputs of decoder.
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Fig. 2. The schematic illustration of designed modules in our MGFE-Net. (a) The inte-
grated receptive filed block (RFB) for enhancing feature extraction. (b) Our proposed
multi-scale gated module (MGM) with well consistence between high-level semantics
and low-level details.

2.2 Enhanced Feature Extraction with Receptive Filed Block

The shapes, sizes and extension directions of rain steaks in real life are ran-
domly varied, which makes the single image deraining a challenging problem.
The performance of typical single image methods is always restricted, due to
the limited receptive filed of simple cascaded convolution filters. To handle this
issue, we integrate the RFB to promote model capability of extracting enough
information by leveraging multi-scale features between adjacent convolution lay-
ers. As illustrated in Fig. 1, RFB is embedded after each layers of encoder and
decoder. More specifically, RFB contains multiple forward paths with different
kernel sizes, as can be seen in Fig. 2(a). For the input feature map FI ∈ R

H×W×C

from previous layers in encoder or decoder, RFB adopts different filtering kernels
followed by diverse dilation rates [3] to effectively extract rain streak features
in complex scenes. These feature maps in multiple forward paths are finally
concatenated together to obtain the output feature map fO ∈ RH×W×C .

2.3 Multi-scale Gated Module

Except the inability to completely remove rain steaks, another common short-
age of most rain removal methods is over-deraining, which leads to damage
original image content and seriously affect the visual perception quality of
restored images. Thus we design a gated module to control the propagation of
multi-scale features, which can not only selectively combine multi-scale features
acquired from different layers of encoder and decoder but also keep the consis-
tence between image semantics in high level and texture details in low level. By
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adding the gated module between different layers of encoder and decoder, the
model can achieve a good deraining effect meanwhile keep background content
details well-preserved.

As described in Fig. 2(b), Fi and Gi+1 denote the corresponding shallow and
deep features in encoder and decoder, respectively. We first employ an upsam-
pling layer UP2× and a 1 × 1 convolution layer to make the spatial size of Fi

same as Gi+1. Then the output feature maps are stacked with Fi using a con-
catenation operator Conc along the channel dimension. The cascaded feature
maps can be denoted as:

Ui = Conc (Fi,Conv1×1 (UP2× (Gi+1)) , i = H − 1, . . . , 1 (1)

where Ui ∈ R
H×W×C indicates the concatenation result of Fi and Gi+1, H

indicates the number of convolution layers in total.
As shown in Fig. 2(b), the right branch includes average pooling layer and

two fully connected layers, and a weight map for gated feature is generated by
selecting sigmoid function after the fully connected network layer. For the left
branch, a 1×1 conv-layer and relu activation function [1] are adopted to change
channel number of Ui. Then the gated feature is generated by multiply outputs
from two branches, which contains consistent low-level detail information and
abstract semantic features. The whole process can be denoted as follow:

Fg,i = (fRight (Ui) ⊗ fLeft (Ui)) ⊕ Ui, i = H − 1, . . . , 1 (2)

where Fg,i denotes the gated features in the ith layer, ⊗ and ⊕ are element-wise
product and sum operation, respectively. Before being sent into deeper layer of
decoder, the gated feature Fg,i is refined by as a dense block:

Gi,1 = fDense (Fg,i) , i = H − 1, . . . , 1 (3)

where Gi,1 denotes the final output feature in ith layer of decoder and fDense

denotes a dense block (DB) [7], which consists of three consecutive convolution
layers with dense connections. The predicted derained image Yi in the ith layer
is obtained by subtracting the decoder output feature maps from the original
rain maps,

Yi = I − Gi,1, i = H, . . . , 1 (4)

In the end, we further fuse the coarse deraining results (i.e., YH , . . . , Y1) to obtain
final refined deraining image Ŷ , which can be denoted as follow:

Ŷ = Conv1×1 (Conc (YH , . . . , Y1)) (5)

2.4 Loss Function

In order to guarantee the satisfied deraining effect and visual perception of
restored image, the proposed MGFE-Net is optimized by combining content
loss, SSIM loss and gradient loss. Specifically, we first conduct content loss to
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effectively measure the differences between restored images and corresponding
rain-free images by leveraging a L1 loss, which is formulated as follow:

L1 =
H∑

i=1

‖Yi − Y ‖1 + ‖Ŷ − Y ‖1 (6)

where H represents the amount of coarse deraining outputs of decoder, Y is the
groundtruth image, Yi and Ŷ denote the restored image obtained from the ith

layer of decoder and the final predicted deraining image, respectively.
Besides, the SSIM loss is utilized to evaluate structural similarity between

restored images and rain-free images, which can ensure the preservation of con-
tent textures and is formulated as follow:

Lssim =
H∑

i=1

(1 − SSIM (Yi − Y )) + (1 − SSIM(Ŷ − Y )) (7)

Furthermore, inspired by the advantages of sobel operator in edge prediction
during image reconstruction [2,24], we compare the derained images with its
rain-free images in gradient domain to keep the same gradient distribution. Thus
the gradient loss is defined as:

Lgrad =
∥∥∥∇x(Ŷ ) − ∇x(Y )

∥∥∥
1

+
∥∥∥∇y(Ŷ ) − ∇y(Y )

∥∥∥
1

(8)

Finally, the total loss function for MGFE-Net is defined as follows:

Ltotal = L1 + λgLgrad + λsLssim (9)

where λg and λs are coefficients to balance different loss items.

3 Experiment

3.1 Experiment Setup

Implementation Details. The MGFE-Net is applied on the deep learning-
based PyTorch [17] framework. The training image samples are cropped into
patches with size of 256 × 256 and we further horizontally flip these patches
in a probability of 0.5. The Adam optimizer is utilized with a batch size of 10
while the learning rate is 2 × 10−4 at the beginning stage and then decreased
to 1 × 10−5 after 50,000 training iterations. During testing, these input rainy
images keep original sizes without any data augmentations.

Datasets. In our paper, we compare MGFE-Net with other recent deraining
algorithms on three synthetic benchmark datasets and a real world rainy image
set. For specific, Rain1200 [29] contains a total of 24, 000 pairs of rainy/rain-free
images, of which 12, 000 pairs are in training/testing image set, respectively.
Besides the pairs in Rain1200 are conducted with three levels of rainy density.
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Rain1400 [5] collects 1, 000 clean images and each of them is transformed into 14
different rainy images. There are 12, 600/1400 sample pairs for training/testing
set. Rain1000 [21], covering a wide range of realistic scenes, is the largest single
image deraining dataset including 28,500/1,000 pairs for training/testing set
respectively. In addition, we collect 146 realistic rainy photos from [21,26], in
which rain steaks vary in content, intensity, and orientation.

Evaluation Metrics. We adopt two typical measures, PSNR [8] and SSIM
[22], to compare the performance of our MGFE-Net with recent methods. For
real-world set which lacks corresponding ground truth, we use another two quan-
titative indicators, NIQE [15] and BRISQUE [14], to evaluate the visual quality
of deraining photos. Smaller values of NIQE and BRISQUE mean better restora-
tion effect and better visual perceptual quality. The recent deraining models we
compared with are Clear [4], JORDER [26], DID-MDN [29], DualCNN [16],
RESCAN [11], SPANet [21], UMRL [28] with cycle spinning, and PReNet [18].

3.2 Comparison with the State-of-the-Art Methods

Comparison Results on Synthetic Datasets. Table 1 summarizes the quan-
titative comparison results of different single image deraining methods where our
MGFE-Net outperforms previous methods on all the benchmark datasets. Note
that the performance of PReNet is very close to our MGFE-Net, the possible
main reason we consider is that PReNet [18] adopts frequent image cropping
to expands dataset by several times. Specifically, on Rain1200, Rain1400, and
Rain1000 datasets, our method promotes the PSNR values by an average of
0.28 db, 0.68 db, 2.78 db compared with the second best results of each dataset. It
is a remarkable fact that our method has an excellent performance on Rain1000,
which collects images in kinds of natural scenes and contains lots of real rain
steaks.

We then qualitatively compare our MGFE-Net with other methods by
demonstrating details of the restored deraining images. As shown in Fig. 3, our
MGFE-Net is the only model to successfully handle with different rainy situ-
ations. For the first two rows in Fig. 3 where the rain steaks are very densely
distributed or different significantly in shapes, we can observe that the recent
three methods cannot removal rain steaks completely while our method gener-
ates a clean deraining result. For the last two rows, other methods either leave
obvious artifacts in restored images or blur the original background, while our
method obtain a better visual effect and keep the content details well preserved.

Comparison Results on Real-World Dataset. Considering most deraining
models are trained with synthetic rainy images, it is necessary to evaluate the
generalization ability of deraining methods on realistic rainy photos. As shown in
Table 2, it is obvious that our MGFE-Net performs better than previous methods
according to NIQE and BRISQUE for reference-free evaluation. We also present
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Table 1. Comparison results in PSNR and SSIM between our MGFE-Net and other
recent methods for single image deraining on three synthetic datasets.

Methods Rain1200 Rain1400 Rain1000

PSNR SSIM PSNR SSIM PSNR SSIM

Clear [4] 22.02 0.7889 24.73 0.8448 31.14 0.9248

JORDER [26] 30.29 0.8782 29.03 0.8881 37.45 0.9680

DID-MDN [29] 27.98 0.8626 26.96 0.8642 26.44 0.9052

DualCNN [16] 27.79 0.8210 26.10 0.8403 32.57 0.9272

RESCAN [11] 32.12 0.8998 30.92 0.9095 36.37 0.9578

SPANet [21] 26.97 0.8091 28.46 0.8801 38.51 0.9750

PReNet [18] 32.30 0.9136 30.73 0.9172 38.97 0.9782

UMRL [28] 30.49 0.8917 27.82 0.8924 28.10 0.9169

MGFE-Net(Ours) 32.58 0.9140 31.60 0.9230 41.75 0.9837

(a) Input (b) SPANet (c) UMRL (d) PReNet (e) MGFE-Net (Ours) (f) Ground Truth

Fig. 3. Qualitative comparison of SPANet [21], UMRL [28], PReNet [18] and our pro-
posed MGFE-Net on three synthetic datasets.

several restored images for qualitative comparison in real-world rainy situation
in Fig. 4. Whether it is in the case of heavy rain with dense rain steaks or spare
rain steak distribution with complicated shapes, our MGFE-Net has a better
generalization ability to remove rain steaks in the realistic scenes than other
methods.

3.3 Ablation Study

To verify the effectiveness of designed modules in MGFE-Net, we conduct four
different experimental settings and evaluate their performances on Rain1200
[29]. As shown in Table 3, the four experimental settings are used to present the
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Table 2. Comparison results in NIQE and BRISQUE on the real-world photos.

Method DualCNN [16] SPANet [21] UMRL [28] PReNet [18] MGEF-Net

NIQE 5.425 5.105 5.047 5.641 4.477

BRISQUE 34.74 30.92 27.58 33.42 26.44

Net (Ours)

Fig. 4. Comparison results in real-world rainy situations of SPANet [21], DualCNN
[16], UMRL [28], PReNet [18] and our proposed MGFE-Net. Intuitively, our MGFE-
Net performs better than recent deraining methods.

effectiveness of receptive filed block (RFB), multi-scale gated module (MGM)
and gradient loss (GL), respectively. Note that, the Backbone means the simple
encoder and decoder framework under the only optimization of L1 loss and
Lssim loss. It can be seen obviously that supervising rain-free image generation
by adding gradient loss does have a great effect on performance improvements.
By integrating RFB and MGM into the experimental setting Mb sequentially, the
fourth setting Md (i.e., our proposed MGFE-Net) enhances the extracted deep
features in larger receptive fields and effectively utilizes the multi-scale features,
which could further promote the model capability and generate rain-free images
with best visual effects.
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Table 3. Ablation study on four experimental settings of MGFE-Net. Performances
are evaluated on Rain1200 [29] dataset.

Settings Backbone RFB MGM GL PSNR/SSIM

Ma
√

31.61/0.8963

Mb
√ √

32.08/0.9071

Mc
√ √ √

32.45/0.9127

Md
√ √ √ √

32.53/0.9151

3.4 Conclusion

In our paper, a novel multi-scale gated feature enhancement network (MGFE-
Net) is proposed to solve single image deraining task. In MGFE-Net, we leverage
the receptive field block (RFB) to strengthen the efficient extraction of multi-
scale features and use the multi-scale gated module (MGM) to selectively com-
bine multi-scale features and keep the consistence between image semantics in
high level and texture detail information in low level. By embedding the two mod-
ules into typical framework of encoder and decoder, the proposed MGFE-Net can
not only generate a clean deraining image but also keep the background content
well preserved. Sufficient comparison results demonstrate that our MGFE-Net
not only presents an excellent performance but also generalize well to real-life
photos, which significantly improves the deraining effect and enhance human
visual perception quality of derained images.
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