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Abstract. Event based cameras mean a significant shift to standard
cameras by mimicking the work of the biological retina. Unlike the tra-
ditional cameras which output the image directly, they provide the rel-
evant information asynchronously through the light intensity changes.
This can produce a series of events that include the time, position, and
polarity. Visual tracking based on event camera is a new research topic.
In this paper, by accumulating a fixed number of events, the output of
events stream by the event camera is transformed into the image rep-
resentation. And it is applied to the tracking algorithm of the ordinary
camera. In addition, the data sets of the ground-truth is relabeled and
with the visual attributes such as noise events, occlusion, deformation
and so on so that it can facilitate the evaluation of the tracker. The data
sets are tested in the existing tracking algorithms. Extensive experiments
have proved that the data sets created is reasonable and effective. And it
can achieve fast and efficient target tracking through the SOTA tracking
algorithm test.

Keywords: Dynamic vision sensor + Visual tracking - Correlation
filters + Deep learning

1 Introduction

Event-based cameras are driven by the events which occur in a scene like their
biological counterparts. They are different from conventional vision sensors, on
the contrary, they are driven by the timing and control signals by man-made,
and that have nothing to do with the source of visual information [18]. Dynamic
Vision Sensor (DVS) [27] (Fig. 1a) is a kind of the event based, it provide a series
of asynchronous events [9] (Fig.1b). And these bio-inspired sensors overcome
some of the limitations of traditional cameras: high temporal resolution, high
dynamic range, low power consumption and so on. Hence, event cameras can
take an advantage for high-speed and high dynamic range visual applications
© Springer Nature Singapore Pte Ltd. 2021
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Fig. 1. (a) The Dynamic Vision Sensor (DVS). (b) The difference between event camera
with traditional camera when a blackspot move on the platform.

in challenging scenarios with large brightness contrast. Since these advantages,
vision algorithms based on event cameras have been applied in the areas of
like event-based tracking, Simultaneous Localization and Mapping (SLAM), and
object recognition [26,31,32,35], etc.

Visual tracking is a hot topics and it is widely used in video surveillance,
unmanned driving, human-computer interaction and so on. While tracking algo-
rithms are well established and have achieved successful applications in many
aspects. Their visual image acquisition methods are based on traditional fixed-
frequency acquisition frames which suffer from high redundancy, high latency
and high data volume. Event-based sensors provide a continuous steam of asyn-
chronous events. The position, time and polarity of the each event is encoded
by address event representation (AER) [19]. The AER is triggered by the event.
The pixels work asynchronously and only outputs the address and information
of the pixel whose light intensity changes. Instead of passively reading out each
pixel information in the frame, they can eliminate redundant information from
the source. Real-time dynamic response with scene change, image super-sparse
representation, and the events of output asynchronously can be widely used in
high-speed object tracking and robot vision.

The current visual tracking algorithm works on nature images. Since each
pixel of the frame needs a uniform time for exposure, it will cause image blur
and information loss when the object moves quickly. And the tracking algo-
rithms are susceptible to lighting, fast movement of targets, etc. Event-based
tracking maybe solve this problem. Event-based cameras cannot directly out-
put the frames. Therefore, it cannot be directly applied to the computer vision
algorithm of ordinary cameras.

In our work, we convert the event stream generated by the event camera into
image representations. The converted image is formed by integrating a certain a
mount of events with a sliding event window. We select seven event data records
from the DVS benchmark data sets [14]. By accumulating the DVS data into the
frames, we have remarked the ground-truth to further accurately determine the
locations of tracking object for the current tracking algorithms evaluation. All
of the frames are annotated with axis-aligned bounding boxes, the sequences are
relabeled with the visual attributes such as noise events, occlusion, deformation
and so on. The experiments test and verify the reasonable validity of the labeled
data and show that the tracking algorithms can track the specific targets with
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high accuracy and robustness in complex scenes based on the output frames of
the event camera.

2 Related Work

Many methods for the event-based tracking have been presented up to now.
Because of the low data processing and latency of the event based cameras, early
researchers track targets which moving in a static scene as the clusters of events,
and they achieve good performances in applications such as traffic monitoring,
high-speed robot tracking and so on [7]. At the same time, the event-by-event
adaptive tracking algorithm has been proved in some high contrast user-defined
shapes. Ni et al. [25] proposed the nearest neighbor strategy, which linked the
incoming event with the target form and updated its conversion parameters.
Glover et al. [10] proposed an improved particle filter which can automatically
adjust the time window of the target observation for tracking a single target in
event-space. All of the above methods need a experience premise or user-defined
to define the target to be tracked. When the motion range of the object is grad-
ually enlarged, other methods determine to distinct the natural features to track
by analyzing the event [8]. Zhu et al. [36] proposed a soft data association mod-
eled with probabilities, which relying on grouping events into a model. Features
were generated by the motion compensated events, which generated to pointsets
based on registered templates of new events. Lagorce et al. [18] proposed an
event-based multi kernel algorithm, which tracked the characteristics of incom-
ing events by integrating various kernels like Gaussian and user-defined kernels
and so on. The appearance features of the event stream objects were obtained
from a multi-scale space independent of the data foundation, and the original
features could not be retained. Kogler et al. [17] presented an event-to frame
converter and tested on two conventional stereo vision algorithms. Schraml et
al. [30] proposed to integrate DVS events in a period of 5-50 ms and used them
to track moving objects in stereo vision. However, one difference between an
event camera and a normal camera is that the stationary object is not imaged,
which result in the sparse data on the space and time. When integrating events
at a fixed time, the time information is destroyed and the spatial data is sparse
in different frames. Li et al. [20] proposed a tracking algorithm based on the
CF mechanism by encoding the event-stream object by the rate coding. But it
produces a lot of noise events.

3 Event-Image Representation Based on Event
Time-Stamp

Event based cameras have independent pixels and response to changes in log-
arithm of light intensity e,, = (X, tm,pm). In the ideal case of no noise, the
event is triggered by the address-event representation combines the position,
time, and polarity of the event (a signal with a change in brightness, an ON
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Fig. 2. The sliding event window diagram. The incoming event stream is depicted as
red (positive events)/green (negative events) in the timeline). Events are divided into
N events windows (blue box) by sliding windows. Each window is formed into each
frame. In this example, N =38. (Color figure online)

event is a positive event indicating an increase in brightness, and an OFF event
is a negative event indicating a decrease in brightness). The event as:

€m = (Xmatmapm) (1)

Where: X,, = (:L’m,ym)T indicates the pixel address; ¢, indicates the time
when the event occurs; p,, € {+1,—1} indicates the polarity of event, p,, = +1
indicates the brightening event, otherwise it becomes dark. The triggered event
means that the brightness increase from the last event reaches a preset threshold
+C, namely:

AL (X tm) = pmC (2)

where:
AL (X, tm) = L (X, tm) — L (X, tm — Aty) (3)

At,, indicates the time elapsed since the last trigger event of pixel’s X,,.

As mentioned above, the event camera outputs the captured image as an
asynchronous event stream. Since a single data stream contains a lot of data, it
should be processed in batches firstly. In this paper, a sliding event window [28,
29] with a fixed number of N events is used to slide on the data stream, thereby
completing the transition from an event stream which containing huge amounts
of data to a small batch of data with a fixed number of events. The sliding
window divides the event stream into multiple small windows, and controls the
flow of one small window every time. This method can overcome the large of
traffic data. The sliding window works as shown in Fig. 2.

The valid information of the event stream rely on the number of events
are processed at the same time. There are generally two methods for event
processing: One is based on event-driven that work on event by event, and the
other method that work on a set of events. The former process the every of
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Fig. 3. An example of a girl scene that accumulates a certain number of events. The
(a) shows a girl captured by a normal camera. The (b) shows the visualization of the
space-time information within the stream of events of the girl. The (c) shows the girl
image of corresponding Integral reconstruction.

incoming single event. However, an independent event does not provide enough
information frequently and may generate a large number of noise events. The
later method integrate all of the information contained in the events. we choose
the fixed events information to integrate the event stream, which can achieve
better results. We define E(t) as the sum of events during a little time interval
of the sliding window:

E(t) = Z (event, £ 1, event, +1,t) (4)

t€eventwindow

We accumulate 7500 events into the frames in this paper. By the process of
accumulating framing, the position where the event occurs is converted to the
pixel position and formed the image frame. The position of the event in the world
coordinates is mapped to the image coordinates by the mapping relationship by
the Eq. 5:

U fz 0 ¢, 0 Iy i(/w
vl =1/2.10 f,¢,0 [01} Zw (5)
1 0010 lw

Fixed events can make the deviation range between two adjacent frames not too
big.

To reduce the effect of the image surface’s noise, we add an event counter
synchronously during accumulating the events. At the same time, we record the
every pixel’s coordinate position (x, y) and times in the event. The more events
accumulate, the higher weight of events, and the higher of the activity in the
process of data accumulating and framing. It is easier to get strongly vitality in
the event selection and it is not easy to eliminate. On the contrary, the fewer the
number of event accumulations, the easier to obtain a higher elimination rate in
the event selection, and it is easy to die. Compared to the time surface [23,34],
the ability to handle the local patch is flat (weaker), but the speed of processing
is faster and the resource of consumption is less.
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The accumulated events are represented by image binarization, and the
pixel’s gray value is set to 0 or 255. Hence, the entire image exhibit a distinct
between black and white effect. Since the size of the data sets provided by DVS
benchmark data sets is different, we divide them into 200*200 pixels,and adjust
the object to the middle of the lens to obtain effective information. The way
of processing can improve the robustness of the input data. The Fig. 3 shows a
scene by accumulating a fixed number of events.

Table 1. The distribution of the video sequence attributes and the length of the video
recording table, 1 means the attribute, 0 means no.

Sequence Long(s) Noise |Complicated |Occlusion Deformation|Scale
events |background variation
singer 13 1 1 1 1 1
figure_skating 34 1 1 1 1 1
girl 36 1 0 1 1 1
Sylvester 21 1 0 0 1 1
Vid_J_person_floor 21 1 1 1 1 1
Vid_E_person_part_occluded| 8 1 1 1 0 0
Vid_D_person 22 1 1 0 0 0

4 Experiment and Evaluation

4.1 The DVS Data Sets

We choose seven event data records from the DVS benchmark which recorded by
the DVS output of a DAVIS camera [14]. The tracking targets including the per-
son, head, doll. These seven sequences are “figure_skating” , “singer”, “girl”,
“sylvester”, “Vid_D_person”, “Vid_E_person_part_occluded”, “Vid_J_person_
floor”, which are accumulated into 696, 263, 731, 437, 443, 160 and 422 frames,
respectively.

The ground-truth provided by the tracking data sets is slightly offset from the
actual position and size. Therefore, we relabel the locations of tracking object in
the seven sequences. Each frame is annotated with an axis aligned bounding box.
The description of boxes is (x, y, w, h), where (x, y) is the left-top corner vertex
position, and w, h represent the width and height. Moreover, all of the sequences
are labeled with five visual attributes, including the noise events, occlusion,
complicated background, scale variation and deformation. The distribution of
these attributes and the long of recordings are presented in Table 1.
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Fig. 4. The performance comparison of the tracking algorithms. The success and accu-
racy rate are shown in the left and right figures respectively.

4.2 Evaluation

The evaluation methodology: The success rate and accuracy are used to the
tracking algorithms for evaluating. The former is measured by average overlap
rate (AOR), that is, the percentage of sequence frames whose overlap exceeds the
set threshold. And the latter is measured by the center location error (CLE),
that is, the distance between the target and actual location is less than the
percentage of the sequence frame with the set threshold.

The evaluation tracking algorithms: According to the learning mechanism of
algorithms, we divide them into the tracking algorithms based on deep learning
(SiamBAN [5], MDNet [24], DIMP [3], SiamMask [33]), the Correlation filtering
tracking algorithms with hand-crafted features (CSK [12], KCF [13], FDSST [6],
LCT [22], Staple [2], CSRT [21]), and other tracking algorithms like (CT [15],
BOOSTING [11], MIL [1], TLD [16], MOSSE [4]).

Quantitative Analysis. It is found through the experiments that the visual
tracking algorithms can effectively track our event stream sequences and achieve
good performance. Among them, the KCF tracking algorithm performs best.
The comparsion results of accuracy and success rate plot are showed in Fig. 4.
From the Fig.4 we can see that the SOTA deep learning algorithms perform
not well. The improved feature extraction algorithm (such as KCF with hog
feature) can track accurately and effectively. The pre-20 and suc-50 are 0.856
and 0.628, respectively. It performs better than the CSK algorithm that use a
cyclic matrix based on gray features, which is beyond doubt. But its accuracy
is better than that the staple tracking algorithm that combine the Hog and
color histogram Fortunately, this may be related to our video sequence with the
binary grayscale images. In addition, the effect of tracking drift is easily caused
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Fig.5. Examples of the results of some tracking algorithms in seven event stream
sequences.

by scale change, the FDSST algorithm introduce to the scale estimation, and
the LCT algorithm add a confidence filter to the scale is slightly better than its
performance, but they are worse than the KCF tracking algorithm. In summary,
the data transformed by event camera is valid and reasonable.

Quantitative Analysis. The tracking results of some trackers in the seven
event stream sequences are shown in Fig.5. The scale of the skater change
repeatedly for the figure_skating sequence. At the beginning, all of the six track-
ing algorithms are able to track the object, but when it continue to change, the
tracker will drift gradually. At the 485th frame, the other five tracking algorithms
completely lose the target, and the KCF can still keep tracking. In the singer
sequence, under the disturbance of the background, the singer is blurred. Due to
the sudden change of the stage (the 111th frame and the 131th frame), the target
is lost for the CT and CSK tracking algorithm. Similarly, in the Vid_D_person
and Vid_E_person_part_occluded sequence, the CSK and CT also drift. However,
for the Sylvester sequence, even if the target is deformed, all the trackers can still
track robustly. In the girl sequence, The face target is constantly deformed and
changed, and the tracker gradually drift. At the 619th frame, only Staple and
FDSST can keep effective tracking. In the Vid_J_person_floor sequence, When
the target is interfered by another person, the CT and CSK will track the wrong
target, which makes the tracking fail. But the rest of the tracking algorithm can
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still achieve stable tracking when the two are separated (via. the 125th frame
and 183th frame).

5 Conclusion

We accumulated the events stream into frames by integrating a certain number of
asynchronous events. It applied to the SOTA tracking algorithm of the ordinary
camera, successfully, and achieved good performance in complex visual scenes.
The experiments showed the rationality of converting the event stream into a
frame image. At the same time, the processing of the method not only avoided
the effects of lighting, but also reduced the effects of the background, which
could protect the privacy outside the target. In the future, we will put forward
a novel target tracking algorithm with high robustness for the data sets made in
this paper.
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