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OCT Angiography
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Abstract

Optical coherence tomography angiography 
(OCTA) is a relatively new technology that 
enables noninvasive visualization of the 
microvasculature of ocular tissues. Altered 
ocular perfusion being understood as an 
important factor in the pathogenesis of glau-
coma, OCTA has emerged as a promising tool 
to evaluate ocular blood flow in patients with 
glaucoma. OCTA may have the potential to 
provide new information about the pathophys-
iology of glaucoma, as well as to assist in its 
diagnosis and treatment. This chapter briefly 
describes the basic principles and interpreta-
tion of OCTA, and evaluates its clinical use in 
patients with glaucoma. This chapter also 
introduces recent research findings observed 
using OCTA in glaucoma, including micro-
vascular changes in the optic nerve head, ret-
ina, and choroid, and discusses how they may 
be related to the pathophysiology of 
glaucoma.
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1  Introduction

Alterations in ocular perfusion have long been 
implicated in the pathogenesis of glaucoma. 
Compromised ocular blood flow (Huber et  al. 
2004; Findl et al. 2000; Shiga et al. 2016; Sehi 
et al. 2014) and reduced perfusion of the retina 
and choroid (Schwartz et al. 1977; Hitchings and 
Spaeth 1977; Yamazaki et al. 1996; Laatikainen 
1971; O’Brart et  al. 1997; Funaki et  al. 1997) 
have been associated with glaucoma. 
Epidemiologic and clinical studies have demon-
strated associations between glaucoma and low 
blood pressure (Tielsch et al. 1995; Bonomi et al. 
2000; Leske et al. 1995) and nocturnal reductions 
in blood pressure (Graham and Drance 1999; 
Charlson et al. 2014). However, details of the role 
of ocular perfusion in glaucoma have remained 
elusive due to limitations in methods used to 
assess ocular blood flow.

Optical coherence tomography (OCT) angiog-
raphy (OCTA) is a new imaging technique that 
enables visualization of the retinal and choroidal 
microvasculature, producing a three-dimensional 
(3D) reconstruction of vascular networks. OCTA 
providing structural and vascular maps in tan-
dem, it is considered a promising tool to evaluate 
ocular perfusion in individual structural layers. 
Moreover, OCTA is noninvasive and does not 
require injection of dye, making it free from 
adverse effects and enabling repeated perfor-
mance in busy clinics. Thus, OCTA imaging can 
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not only help evaluate glaucoma patients in the 
clinic, but enables studies investigating the rela-
tionship of parapapillary microvascular compro-
mise to the pathophysiologic features of 
glaucomatous optic neuropathy.

2  Basic Principles

Vascular imaging by OCTA is based on the OCT 
volume scan, which is auto-segmented and 
showed en-face to provide a view of the vascula-
ture in individual segmented layers of the retina 
and choroid. The basic principle of OCTA is the 
taking of sequential B-scans at the same retinal 
location, followed by analysis to determine if 
there were any changes in the amplitude (intensity 
signal-based technique) (Jia et al. 2012a) and/or 
phase (phase signal-based technique) (Wang 
2010) of the scan (Kashani et al. 2017). Changes 
signify movement of the retinal tissue at this loca-
tion. This movement is thought to be due to the 
flow of red blood cells (RBCs) in the vasculature 
(i.e., functioning blood vessels Fig. 1). In contrast 
to traditional angiography (i.e., fluorescein or 
indocyanine green angiography), OCTA produces 
a static map of the vascular network without pro-
viding true information regarding blood flow or 
vascular leakage. Various systems are commer-
cially available, with these systems using differ-
ent acquisition, saving, and analytic processes (Li 
et al. 2018; Corvi et al. 2018).

3  Production of an En-Face Image 
from Segmented Tissue Layers

A two-dimensional (2D) en-face vascular map 
can be constructed from the 3D volume data 
obtained from any layer of interest. OCTA sys-
tems usually have preset layers of interest, with 
these layers segmented through an automated 
process. Although the preset layers vary slightly 
among systems, most systems provide images 
segmented in the radial peripapillary capillary 
plexus (RCP), superficial capillary plexus (SCP), 
deep capillary plexus (DCP), and choriocapil-
laris/choroidal layers (Fig.  2) (Spaide et  al. 
2015a). Manual segmentation can also be 
performed.

Most OCTA platforms generate en-face OCTA 
and B-scan OCT images with vascular signal 
overlay, enabling the in-tandem visualization of 
both the vasculature and structure (Fig. 2).

4  Strengths of OCTA

The outstanding feature of OCTA is that it does 
not require injection of a contrast dye, thus elimi-
nating both systemic and local adverse effects. A 
single volume scan requires only a few seconds. 
OCTA has a high reproducibility and repeatabil-
ity (Venugopal et al. 2018). Unlike conventional 
2D angiography, OCTA is based on 3D images, 
allowing the depth-resolved en-face visualization 
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Fig. 1 Basic principle of OCTA. Sequential B-scans are 
taken at the same location, and compared to detect any 
changes in signal. A significant change in signal is thought 
to indicate blood flow. Alterations in signal are assessed 

mathematically to provide a decorrelation signal repre-
senting the amount of blood flow at that location. OCTA, 
optical coherence tomography angiography
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of the different retinal capillary plexuses that 
cannot be distinguished by conventional fluores-
cein angiography (FA, Fig.  3). OCTA has been 
shown superior to traditional FA in imaging the 
RCP and DCP (Spaide et al. 2015a).

5  Limitations of OCTA

In contrast to traditional angiography (i.e., fluo-
rescein or indocyanine green angiography), 
OCTA produces a static map of the vascular net-
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Fig. 2 Peripapillary OCTA images of a glaucomatous 
eye, obtained in the 4.5 × 4.5 mm area centered on the 
ONH using DRI OCT Triton (Topcon, Tokyo, Japan). The 
upper panel shows en-face OCTA images segmented in 
the (a) RCP, (b) SCP, (c) DCP, and (d) choroidal layers. 
The lower panel shows B-scan images (e–h) indicating 
the layers segmented to produce the en-face images in the 

upper panel. RCP, SCP, and DCP are segmented in the 
RNFL (e), GCL (f), and INL (g), respectively. OCTA, 
optical coherence tomography angiography; ONH, optic 
nerve head; RCP, radial peripapillary capillary plexus; 
SCP, superficial capillary plexus; DCP, deep capillary 
plexus; RNFL, retinal nerve fiber layer; GCL, ganglion 
cell layer; INL, inner nuclear layer

a ba b

Fig. 3 (a) En-face OCTA image of the RCP and (b) an 
FA image of a healthy eye. The RCP is seen in exquisite 
detail on OCTA (a), whereas visualization on FA is poor 
(b). OCTA image was obtained using DRI OCT Triton 
(Topcon) and FA image was obtained Spectralis HRA + 

OCT (Heidelberg Engineering, Heidelberg, Germany). 
OCTA, optical coherence tomography angiography; RCP, 
radial peripapillary capillary plexus; FA, fluorescein 
angiography
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work and therefore does not provide true infor-
mation regarding blood flow or vascular leakage. 
Quantitative assessment of flow speed using 
OCTA is currently unreliable.

OCTA is also prone to image artifacts result-
ing from patient motion, projection from super-
ficial retinal vessels, and segmentation errors 
(Spaide et al. 2015b; Ghasemi Falavarjani et al. 
2017). Because OCTA involves scans of the 
same area repeated multiple times, motion arti-
facts are likely to be caused by microsaccades, 
breathing, and cardiac cycle changes (Fig.  4). 
Blinking artifacts are caused by eye closure 
during image capture (Fig.  4). Fluctuating 
shadows from RBCs in superficial vessels can 
cast extra flow signals to deeper vascular net-
works, leading to projection artifacts (Fig.  4). 
Refracted, reflected, absorbed, or passing of the 
OCT beam through a vessel can generate false 
blood flow signals.

Various motion correction and eye-tracking 
technologies are applied to each OCTA system to 
reduce motion artifacts (Li et al. 2018). A recently 
developed projection resolved technique has been 
incorporated into OCTA (Takusagawa et al. 2017).

6  Evaluation of OCTA in Glaucoma

OCTA has been shown useful in distinguishing 
between glaucomatous and healthy eyes. As a 
diagnostic tool, OCTA can serve as an addition 
to conventional methods, or can substitute for 
the latter in eyes in which conventional tools are 
inconclusive, including eyes with high myopia 
(Shin et al. 2019; Lee et al. 2020a, b; Na et al. 
2020) and advanced glaucoma (Kim et al. 2019a; 
Moghimi et al. 2019). OCTA may also be useful 
in the detection of glaucoma progression (Lee 
et al. 2019, c; Park et al. 2019; Hou et al. 2020).

Blinking Artifacts

Motion Artifacts

Fig. 4 Artifacts in OCTA.  The upper panel shows en- 
face images of the SCP with motion (blue arrows) and 
blinking (red arrows) artifacts. The lower panel shows an 
example of a projection artifact. Signals of retinal vessels 
(colored in light-red) in the OCTA image of the SCP layer 
(a) are also observed (vessels demarcated with red lines) 

in the image of the choroidal layer (b, c). Images were 
obtained using DRI OCT Triton (Topcon) and RTVue XR 
Avanti (Optovue, Fremont Inc, California, USA), respec-
tively. OCTA, optical coherence tomography angiogra-
phy; SCP, superficial capillary plexus
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6.1  Macular Imaging

OCTA imaging of the macula usually involves an 
area ranging from 3 × 3 to 9 × 9 mm2 centered on 
the fovea. Vessel density (VD) in the segmented 
retinal layers and foveal avascular zone (FAZ) 
are the two most frequently used parameters in 
glaucoma evaluation.

6.1.1  FAZ
The FAZ is a region lacking capillaries at the center 
of the macula surrounded by interconnected capil-
lary networks. FAZs are larger in area and have a 
more irregular shape in eyes with glaucoma than in 
healthy eyes (Zivkovic et al. 2017; Choi et al. 2017). 
These findings are topographically correlated with 
the location of visual field (VF) defects (Fig.  5) 
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Fig. 5 Findings of macular OCTA (DRI OCT Triton, 
Topcon) in a glaucomatous eye with inferior ONH dam-
age. The upper panel shows a color disc photograph (a), a 
red-free fundus photograph (b), an OCTA VD map (c), 
and a gray scale plot of VF examination (d). The blue 
color in the VD map (c, arrowheads) coincides with the 
localized RNFL defect shown in the red-free photograph 
(b, arrowheads). The lower panel shows en-face OCTA 
images of a 6.0 × 6.0 mm2 area centered on the macula, 
segmented in the layers of SCP (e), DCP (f), choriocapil-
laris (g), and choroid (h). The localized reduction in mac-

ular VD is clearly visualized in the SCP (e, arrowheads), 
but less clearly in the DCP (f, arrowheads), and is not 
visible in the choriocapillaris (g) and choroidal (h) layers. 
Note that choroidal vessels are not clearly visible in the 
choroidal OCTA image (h), because of signal attenuation 
by the pigmented RPE and choriocapillaris. OCTA, opti-
cal coherence tomography angiography; ONH, optic 
nerve head; VD, vessel density; VF, visual field; RNFL, 
retinal nerve fiber layer; SCP, superficial capillary plexus; 
DCP, deep capillary plexus; RPE, retinal pigment 
epithelium
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(Kwon et al. 2017a). FAZs are larger in eyes with 
pseudoexfoliative glaucoma than with open angle 
glaucoma (Philip et  al. 2019). Moreover, FAZs 
are larger in women than in men, especially in 
older women (Gomez- Ulla et al. 2019), indicat-
ing that age and gender should be considered 
when assessing FAZs.

6.1.2  Macular Microvessel Density
Reduced macular VD has been observed in both 
the SCP and DCP of glaucomatous eyes (Choi 
et  al. 2017; Wu et  al. 2019; Kim et  al. 2020a; 
Lommatzsch et al. 2018; Akil et al. 2017). These 
changes in macular microvessels were found to 
be well correlated with the degrees of structural 
(Wu et al. 2019; Kim et al. 2020a; Lommatzsch 
et  al. 2018; Akil et  al. 2017; Hou et  al. 2019; 
Chung et  al. 2017; Rao et  al. 2017a; Lu et  al. 
2020) and functional (Lommatzsch et  al. 2018; 
Lu et al. 2020) damage (Fig. 5) and were inde-
pendent of age-related capillary loss (Wu et  al. 
2019). Choroidal imaging is limited in the macu-
lar area because the light is scattered or attenu-
ated by the pigmented RPE and choriocapillaris 
with dense vascular structure (Fig. 5).

6.2  Peripapillary Imaging

Scanning of the ONH and peripapillary area is 
the most widely used OCTA imaging in glau-
coma evaluation. Evaluation of the peripapillary 
microvasculature using OCTA helps to diagnose 
glaucoma (Moghimi et al. 2019; Liu et al. 2015; 
Enders et al. 2020; Rolle et al. 2019; Akagi et al. 
2016; Yarmohammadi et al. 2018) and predict its 
progression (Jia et  al. 2014; Cennamo et  al. 
2017). Abnormalities in the retinal and/or choroi-
dal microvasculature may indicate reduced ocu-
lar perfusion, indicating that OCTA evaluation of 
the peripapillary microvasculature could shed a 
light on the vascular theory of glaucoma. 
However, it remains unclear whether the abnor-
mal microvasculature in glaucomatous eyes is a 
causal factor in glaucoma pathogenesis or a sec-
ondary result of glaucomatous nerve fiber loss.

Peripapillary OCTA images are usually 
obtained from 3 × 3, 4.5 × 4.5 or 6 × 6 mm2 areas 

centered on the ONH.  The most common are 
those from peripapillary 4.5  ×  4.5  mm2 scans 
(Fig. 1), which have been shown to better detect 
glaucomatous changes than images from 
6.0 × 6.0 mm2 scans (Chang et al. 2019). However, 
one study reported that wider scans were superior 
in investigating capillary loss during early stages 
of glaucoma (Jia et al. 2017).

6.2.1  Optic Nerve Head
OCTA has been shown to detect abnormalities of 
ONH perfusion in glaucoma (Chung et al. 2017; 
Jia et  al. 2012b, 2014). Imaging of the deeper 
ONH tissues (i.e., the lamina cribrosa [LC]) is 
limited by the shadowing or projection of large 
retinal vessels. However, there are studies where 
deep ONH tissues, including the LC and prelami-
nar tissues, have been imaged successfully 
(Numa et al. 2018; Kim et al. 2018, 2019b). The 
microvasculature in the LC was found to be nega-
tively associated with the LC curvature, an indi-
cator of mechanical stress derived from 
translaminar pressure difference (Fig.  6) (Kim 
et al. 2019b). In addition, reversal of the LC cur-
vature following surgical IOP reduction was pos-
itively associated with the increased microvascular 
density in the LC (Fig.  6) (Kim et  al. 2018). 
These findings indicate that LC deformation 
caused by mechanical stress can also influence 
perfusion of the ONH axons by compressing the 
laminar capillaries (Burgoyne et al. 2005).

6.2.2  Peripapillary Retina
Peripapillary retinal microvasculature can be 
assessed in the RCP, SCP, and DCP. In glaucoma, 
reduced VD is more prominent in the superficial 
than in the deeper layers (Liu et al. 2019). VD has 
been shown to correlate with both structural 
(Chung et al. 2017; Rao et al. 2017a; Enders et al. 
2020; Lee et al. 2016a; Ichiyama et al. 2017) and 
functional (Liu et  al. 2015; Akagi et  al. 2016; 
Ichiyama et al. 2017; Shin et al. 2017a) damage, 
and is an excellent parameter for diagnosing 
glaucoma (Liu et  al. 2015; Rolle et  al. 2019; 
Bekkers et  al. 2020). In patients with localized 
RNFL defects, reduced VD in the superficial ret-
ina was observed to coincide with wedge shaped 
RNFL defects (Fig.  7), suggesting that the 
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Fig. 6 A glaucomatous eye that underwent trabeculec-
tomy, showing that reduction of the LC curvature (red 
glyphs) was associated with an increased microvascular 
density in ONH tissues (arrows). Images in the left col-
umn were obtained 1 day preoperatively (a–c), and images 
in the right column were obtained 3 months postopera-
tively (d–f). The top row (a, d) shows B-scan images of 

the central ONH, illustrating that the LC curvature was 
reduced after surgery (red glyphs). Note the increased 
microvasculature (arrows) in the prelaminar tissue (e) and 
in the LC (f). Images were obtained using DRI OCT 
Triton (Topcon). LC, lamina cribrosa; ONH, optic nerve 
head

OCT Angiography
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decrease in retinal microvasculature is likely a 
secondary loss or closure of capillaries in areas of 
glaucomatous RNFL atrophy (Lee et al. 2016a).

6.2.3  Peripapillary Choroid
The peripapillary area, which is distinct from the 
macular area, frequently accompanies an area 
with atrophic RPE, thus allowing detailed OCTA 
imaging of the parapapillary choroidal microvas-
culature. Focal dropout of the juxtapapillary cho-
roidal microvasculature has been observed in 
glaucomatous eyes (Suh et al. 2016), which had a 
good topographic correlation with glaucomatous 
RNFL (Lee et  al. 2017a) and VF (Akagi et  al. 
2016; Suh et al. 2018) defects. Microvasculature 
dropout (MvD) in the peripapillary choroid has 
been shown to coincide with perfusion defects 
detected by indocyanine green angiography 
(ICGA, Fig. 8) (Lee et al. 2017b), indicating that 

MvD is likely indicative of a true perfusion defect 
in the choroid. Glaucoma progression was found 
to be faster in eyes with than without juxtapapil-
lary choroidal MvD (Lee et al. 2019, 2020c).

6.3  Anterior Segment Imaging

Anterior segment OCTA has been utilized to 
image the vasculature in the conjunctiva and intra-
sclera. Hyperemia of the anterior segment, which 
has been associated with elevated IOP, as well as 
post-trabeculectomy avascular bleb could be 
imaged using the anterior segment OCTA (Akagi 
et al. 2019a, b). The clinical usefulness of anterior 
segment OCTA imaging in glaucoma remains to 
be determined. Experimental studies have 
attempted to image the aqueous humor outflow 
tract (Zhang et al. 2020; Gottschalk et al. 2019).

a c

b

Fig. 7 En-face OCTA image of the superficial retina, 
including the RCP and SCP (a); a red-free fundus photo-
graph (b); and the red-free fundus photograph superim-
posed on the en-face angiogram (c). The vascular 
impairment shown by OCTA appears to be identical to the 
RNFL defects evident in red-free photographs (arrows). 

OCTA Images were obtained using DRI OCT Triton 
(Topcon). OCTA, optical coherence tomography angiog-
raphy; RCP, radial peripapillary capillary plexus; SCP, 
superficial capillary plexus; RNFL, retinal nerve fiber 
layer
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7  Clinical Use of OCTA in Glaucoma 
Patients and OCTA in Glaucoma 
Research

7.1  Diagnosis of Glaucoma

Variable OCTA parameters can be useful in 
diagnosing glaucoma, with their diagnostic 
power being comparable to those of OCT 
(Yarmohammadi et  al. 2018; Cennamo et  al. 
2017; Kumar et  al. 2016) or VF examination 
(Kumar et al. 2016; Yarmohammadi et al. 2016). 
Sectors of the SCP and DCP with reduced 
microvessel density (Akagi et  al. 2016; Lee 
et al. 2016a; Shin et al. 2017a) and the locations 
of MvD (Akagi et  al. 2016; Lee et  al. 2017a) 

and abnormal FAZ (Kwon et al. 2017a) were all 
well correlated with the locations of glaucoma-
tous RNFL and VF loss. The magnitude of VD 
reduction (Cennamo et  al. 2017; Shin et  al. 
2017a; Yarmohammadi et  al. 2016) and MvD 
size (Lee et al. 2017a; Shin et al. 2018) and FAZ 
(Kwon et al. 2017a, b) also showed good corre-
lations with the severity of glaucomatous 
damage.

The advantage of using OCTA in glaucoma 
assessment is that it is unaffected by the low 
reflectance of the RNFL or structural deforma-
tions of the optic nerve, such as optic disc tilt or 
PPA. Therefore, OCTA can be useful for evaluat-
ing glaucomatous damage in highly myopic eyes 
(Fig. 9) (Na et al. 2020).
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Fig. 8 Color disc photograph (a), en-face OCTA image 
of the choroid (b), and ICGA image at the peak phase 
(36 s, c) in a glaucomatous eye with an MvD. Images (d) 
and (e) are magnified images of (b) and (c), respectively. 
The parapapillary capillary dropout shown in the OCTA 
image exactly coincides with the perfusion defect shown 
in the ICGA image (areas demarcated by dashed lines). 

Focal dropout of intrapapillary microvessels is also 
observed in both the OCTA and ICGA images (arrows). 
OCTA and ICGA images were obtained using DRI OCT 
Triton (Topcon) and Spectralis HRA + OCT (Heidelberg 
Engineering), respectively. MvD, microvasculature drop-
out; OCTA, optical coherence tomography angiography; 
ICGA, indocyanine green angiography
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In addition, OCTA measurements of microves-
sel density are less affected by the thickness of 
large vessels and are therefore unaffected by a 
floor effect. These advantages make OCTA par-
ticularly useful in evaluating glaucomatous dam-
age in eyes with advanced damage (Kim et  al. 
2019a; Moghimi et al. 2019). OCTA can also be 
useful for monitoring disease progression in eyes 
with advanced glaucoma, with the rate of macu-
lar VD loss being more rapid than the rate of 
structural thinning (Hou et al. 2020).

The clinical usefulness of OCTA in patient 
diagnosis requires a technique to enhance image 
quality, a reliable algorithm to accurately quan-
tify microvessel damage, and normative data 
based on a diverse population.

7.2  Study of Vascular Theory

The increased clinical availability of OCTA has 
led to an increase in the number of studies 
assessing the link between the OCTA vascula-
ture and decreased ocular perfusion in the 

pathogenesis of glaucoma. Reductions in retinal 
microvasculature have been shown to precede 
VF damage in early preperimetric glaucoma (Lu 
et  al. 2020; Kumar et  al. 2016), with reduced 
retinal VD being more pronounced in glauco-
matous eyes with lower than higher IOP (Xu 
et al. 2018). Lower baseline VD in the retina has 
been associated with a faster rate of RNFL thin-
ning, suggesting that reduced ocular perfusion 
may have led to faster glaucomatous damage 
(Moghimi et al. 2018). Decreased VD on OCTA 
may represent dysfunctional retinal ganglion 
cells with lower metabolic demands. However, 
the findings of various studies have been incon-
sistent (Hou et al. 2019; Hirasawa et al. 2021; 
Kim et  al. 2017; Mursch-Edlmayr et  al. 2020; 
Bojikian et al. 2016), with results to date unable 
to determine whether reductions in retinal 
microvasculature are indicative of reduced ocu-
lar perfusion causing ischemic axonal damage. 
Based on our study, showing an exact overlap 
between localized RNFL defects and reduced 
retinal microvasculature (Lee et al. 2016a), this 
is more likely to be a secondary phenomenon 
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Fig. 9 A highly myopic glaucomatous eye with inferior 
ONH damage. Color disc photograph (a) shows inferior 
neuroretinal rim loss. En-face OCTA images (b, c) clearly 
show reduced retinal vessel density (arrowheads) and a 
choroidal MvD (red arrow) in the inferior hemisphere. 
The location of capillary loss corresponded well with the 
location of hemifield VF defect (d). In contrast, an OCT 
peripapillary scan (e) failed to demonstrate RNFL loss 
accurately, a failure that was due to segmentation error. 

The light-green arrows indicate the locations of segmen-
tation errors resulting in false positive color codes in the 
N, NS, and TS sectors (f). OCTA images were obtained 
using DRI OCT Triton (Topcon). G, global; TS, temporal 
superior; T, temporal; TI, temporal inferior; NI, nasal 
inferior; N, nasal; NS, nasal superior; OCTA, optical 
coherence tomography angiography; MvD, microvascula-
ture dropout; VF, visual field; OCT, optical coherence 
tomography; RNFL, retinal nerve fiber layer
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resulting from glaucomatous atrophy of the 
RNFL and GCL (Fig. 7).

The retinal microvasculature consists of capil-
laries supplied by the central retinal artery system. 
However, the ONH is supplied with blood by the 
short posterior ciliary artery (SPCA). Layer seg-
mentation in OCTA allows individual examination 
of the microvasculature supplied by the SPCA. The 
peripapillary choroidal microvasculature is of par-
ticular interest in understanding vascular theory, 
because this microvasculature is supplied by the 
SPCA, which also perfuses deep ONH tissues. 
OCTA has identified localized MvD in the peri-
papillary choroid of patients with glaucoma 
(Akagi et al. 2016). This localized MvD has been 
associated with both the location (Ichiyama et al. 
2017; Lee et  al. 2017a) and severity (Ichiyama 
et al. 2017; Suh et al. 2016) of glaucomatous dam-
age. Areas of MvD were found to correspond to 
areas of perfusion defects on ICGA, indicating 
that MvD represents a true vascular compromise 
(Fig. 8) (Lee et al. 2017b). The presence of MvD 
was found to be associated with lower systemic 

blood pressure and lower ocular perfusion pres-
sure (Suh et al. 2016; Lee et al. 2017b, 2018). In 
addition, MvD was a strong predictor of early 
parafoveal scotoma (Lee et al. 2018; Kwon et al. 
2018), which is thought to represent systemic vas-
cular risk factors (Park et al. 2011; Yoo et al. 2017). 
Taken together, these findings suggest that MvD 
may be a key to understanding vascular pathogen-
esis. MvD has been shown to be a strong predictor 
of glaucoma progression (Lee et al. 2019, 2020c; 
Kwon et al. 2019). A prospective study found that 
the occurrence of MvD was the second strongest 
predictor of glaucoma progression, with larger LC 
curvature, an indicator of mechanical stress, being 
the strongest predictor (Fig. 10) (Lee et al. 2019). 
Therefore, areas of MvD may represent the loca-
tion of ischemia affecting the viability of axons 
and retinal ganglion cells, causing ischemic insult 
in addition to mechanical stress. Interestingly, 
areas of MvD could be identified in nonglaucoma-
tous healthy eyes of patients with low systemic 
blood pressure profiles (Kim et al. 2020b). Further 
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Fig. 10 Rapidly progressing glaucoma in an eye with an 
MvD in the inferior sector (arrow). The right panel shows 
progressive changes in RNFL thickness and rapid pro-
gressive thinning of the RNFL in the inferior sector (red- 
colored area). The diurnal IOP ranged from 15 to 
17 mmHg before treatment and was maintained within a 

range of 10–12 mmHg during the entire treatment period. 
The OCTA image was obtained using DRI OCT Triton 
(Topcon). TMP, temporal; SUP, superior; NAS, nasal; 
INF, inferior; MvD, microvasculature dropout; RNFL, 
retinal nerve fiber layer; IOP, intraocular pressure
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studies are warranted to determine whether such 
eyes would eventually undergo structural damage.

MvD has been frequently found in glaucoma-
tous eyes with PPA β- and γ-zones associated 
with myopia. However, the β- and γ-zones have 
different pathomechanisms (Dai et al. 2013; Kim 
et al. 2013), and MvDs observed in these zones 
differ in their underlying microstructures, sug-

gesting differences in the pathogenesis of para-
papillary MvD in the β- and γ-zones (Fig.  11) 
(Lee et al. 2017c, d).

MvD-like structures have also been identified 
in nonglaucomatous eyes, including in highly 
myopic eyes without glaucoma (Fig.  12) (Kim 
et al. 2020c) and in eyes with compressive optic 
neuropathy (Fig. 13) (Lee et al. 2020d). However, 

a

d e f

b ca

d e f

b c

Fig. 11 Glaucomatous eyes having MvD in the γ-zone 
(upper) and β-zone (lower). Color disc photographs show 
PPA consisted of γ-zone (a) and β-zone (d) in each eye. 
Light-green arrows (b, e) indicate the locations of the 
B-scans in (c) and (f), respectively. Yellow and red arrow-
heads (b, c, e, f) indicate the points of the clinical disc 
margins (proximal MvD margins) and the distal margins 
of the MvD, respectively. Although choroidal tissue of 

noticeable thickness is present under the MvD in the 
β-zone (f), only the border tissue of Elschnig, which does 
not contain choroidal tissue, is present under the MvD in 
the γ-zone (c), suggesting differences in the pathogenesis 
of parapapillary MvD in the β- and γ-zones. OCTA images 
were obtained using DRI OCT Triton (Topcon). MvD, 
microvasculature dropout; PPA, parapapillary atrophy; 
OCTA, optical coherence tomography angiography

a b ca b c

Fig. 12 A nonglaucomatous eye with high myopia. 
En-face choroidal OCTA image (b), showing an MvD- 
like structure in the non-juxtapapillary area (between the 
red and yellow arrows). The light-green arrow indicates 
the clinical optic disc margin. B-scan image (c), showing 
that the MvD-like structure did not consist of choroid, but 

mainly of border tissue and scleral flange. Dashed lines 
(a, b) indicate the location from which the B-scan image 
in (c) was obtained. OCTA image was obtained using DRI 
OCT Triton (Topcon). OCTA, optical coherence tomogra-
phy angiography; MvD, microvasculature dropout
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Fig. 13 Findings in a patient with compressive optic neu-
ropathy associated with a pituitary adenoma (upper panel) 
and a patient with glaucomatous optic neuropathy (lower 
panel). The patterns and locations of reduced retinal VD 
(arrowheads) and choroidal capillary dropouts (arrows) 

in the en-face OCTA images clearly differed in these two 
eyes. OCTA images were obtained using DRI OCT Triton 
(Topcon). VD, vessel density; OCTA, optical coherence 
tomography angiography
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the locations, structures, and accompanying clin-
ical characteristics of these MvDs differed from 
the MvDs identified in glaucoma, suggesting that 
their pathogeneses and pathogenic meanings may 
differ from those of MvDs observed in glauco-
matous eyes. These differences, however, remain 
to be determined.

7.3  Evaluation of Perfusion Recovery 
After Treatment

Reduced mechanical stress is thought to increase 
microvasculature in the peripapillary retina and in 
ONH tissues. IOP reduction following filtering sur-
gery has been found to induce reversal of the 
deformed LC (Lee et  al. 2012, 2016b). Studies 
using OCTA have shown that the increase in micro-
vasculature was associated with the magnitude of 
LC reversal after IOP lowering surgery (Fig.  6) 
(Kim et al. 2018; Shin et al. 2017b), suggesting that 
this reversal of LC relieves compression on the 
capillaries within the LC trabeculae, potentially 
increasing blood flow to the ONH axons.

Microvasculature changes after application of 
topical medications have not yet been clarified. 
Topical application of the Rho-assisted coiled- 
coil forming protein kinase inhibitor ripasudil 
was found to enhance peripapillary VD, whereas 
topical application of the alpha-2 agonist brimo-
nidine did not (Chihara et al. 2018). Because both 
medications reduce IOP to a similar extent, the 
increase in VD induced by ripasudil may not be 
caused by its reduction of mechanical stress but 
by its vasodilatory effect.

7.4  Differences Among Types 
of Glaucoma

OCTA does not seem to differentiate among dif-
ferent types of glaucoma. Studies have compared 
OCTA findings in eyes with normal-tension and 
high-tension glaucoma (Xu et al. 2018; Mursch- 
Edlmayr et al. 2020; Bojikian et al. 2016) and in 
eyes with primary angle-closure, primary open 
angle, and pseudoexfoliative glaucoma (Rao 
et al. 2017b; Jo et al. 2020; Simsek et al. 2020), 

but most of these studies failed to detect signifi-
cant differences.

8  Conclusions

OCTA can provide reproducible information 
about the microvasculature in the ONH and ret-
ina, with an ability to diagnose glaucoma compa-
rable to that of OCT and VF examinations. OCTA 
may therefore be a useful addition to these latter 
methods in diagnosing glaucoma, particularly 
when the findings from these conventional meth-
ods are inconclusive. The rapid, noninvasive, and 
reproducible nature of OCTA examinations may 
facilitate the evaluation of glaucoma patients in 
busy clinics.

En-face OCTA images show the microvascu-
lar structure in individual retinal layers and ONH 
tissues. These findings correspond to those of 
conventional angiography, and can even visualize 
vascular layers not evaluable by conventional 
methods. This capacity enables OCTA to assess 
individual microvasculature systems supplying 
the ONH and peripapillary area, resulting in 
increased understanding of vascular pathogenesis 
in glaucoma.

Current OCTA systems are limited by artifacts 
that affect image quality, by an inability to quan-
tify blood flow, and by the lack of a reliable nor-
mative database. However, technologies are 
rapidly evolving, and it will not be long before 
these limitations are overcome.
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