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Abstract. Modern business intelligence relies on efficient processing on
very large amount of stream data, such as various event logging and
data collected by sensors. To meet the great demand for stream pro-
cessing, many stream data storage systems have been implemented and
widely deployed, such as Kafka, Pulsar and DistributedLog. These sys-
tems differ in many aspects including design objectives, target appli-
cation scenarios, access semantics, user API, and implementation tech-
nologies. Each system use a dedicated tool to evaluate its performance.
And different systems measure different performance metrics using dif-
ferent loads. For infrastructure architects, it is important to compare
the performances of different systems under diverse loads using the same
benchmark. Moreover, for system designers and developers, it is critical
to study how different implementation technologies affect their perfor-
mance. However, there is no such a benchmark tool yet which can evalu-
ate the performances of different systems. Due to the wide diversities of
different systems, it is challenging to design such a benchmark tool. In
this paper, we present SSBench, a benchmark tool designed for stream
data storage systems. SSBench abstracts the data and operations in dif-
ferent systems as “data streams” and “reads/writes” to data streams. By
translating stream read/write operations into the specific operations of
each system using its own APIs, SSBench can evaluate different systems
using the same loads. In addition to measure simple read/write perfor-
mance, SSBench also provides several specific performance measurements
for stream data, including end-to-end read latency, performance under
imbalanced loads and performance of transactional loads. This paper
also presents the performance evaluation of four typical systems, Kafka,
Pulsar, DistributedLog and ZStream, using SSBench, and discussion of
the causes for their performance differences from the perspective of their
implementation techniques.
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1 Introduction

Nowadays Internet companies are generating tremendous amount of data every-
day. They keep recording various events all the time. For example, social media
platforms keep recording state changes of their users; online shopping platforms
keep recording transactions as well as clicking events of their users; data centers
keep recording machine states, including CPU, memory, network and disk. These
data could contain great value. Through efficient processing of these data, the
companies can recommend preferences for users, formulate more accurate adver-
tising strategies for businesses, or propose more efficient solutions for data cen-
ter resource scheduling. Therefore, stream processing platforms are widely used
to analyze real-time data quickly and efficiently [24–27]. The characteristics of
stream processing are real-time, scalability and openness [1]. The processing
objects of stream processing are data streams. Writers can continuously append
data to the data stream, and the data stream can simultaneously accept multi-
ple readers to start reading data from a certain position in the data stream. In
general, stream data has the following characteristics [2]:

– Real-time: Stream data are generated in real time, and each piece of data
describes in detail what happened.

– Continuous flow: Stream data are generated ceaselessly, that is, the applica-
tions always generate new data without stopping.

– Append-only: New data are written into the data stream in an append mode,
and no modification operation will be performed on the existing data.

– Sequentiality: Stream data are generally appended to the data stream in
chronological order.

Since the continuously generated stream data contains rich value, it is impor-
tant to persist them for later processing using streaming or batch queries. To
support various stream processing scenarios, stream data storage systems should
provide high read and write performance. Many such storage systems are devel-
oped either in academia or industry to store stream data. However, each of them
only satisfies some of the characteristics of stream data. Moreover, these systems
have different interfaces, functions, technologies, and performance.

According to their technologies, existing stream data storage systems can
be divided into two categories: pub-sub systems and shared log systems. Typical
pub-sub systems include Kafka [3], Pulsar [4], RocketMQ [5], etc. They abstract
their data as a topic, and provide a publish/subscribe interface to the topic. They
can provide fast read and write to stream data by using technologies including
partitioning, sharding, multi-layer architecture and replication. Distributed log
systems, such as Corfu [6], vCorfu [7], Tango [29] and BookKeeper [8], abstract
their data as logs, and provide read and write interfaces to logs. They emphasis
on data consistency guarantees by using the transaction technology and a global
sequencer.

Due to the wide diversities of stream data storage systems, each system only
uses its own performance measuring tool for evaluation. Currently, it is impossi-
ble to evaluate different systems using the same benchmark tool. Therefore, it is
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difficult for users to choose the best-performing system according to their needs.
However, to design a benchmark tool for performance evaluation of different sys-
tems is non trivial, because they have different design goals, access interfaces,
semantics, and technologies. There is no such benchmark tool yet which can
evaluate these systems.

In this paper, we present SSBench, a performance benchmark tool designed
for evaluate stream data storage systems. SSBench abstracts the data and opera-
tions in different systems as “data streams” and “reads/writes” to data streams.
By translating stream read/write operations into the specific operations of each
system using its own APIs, SSBench can evaluate different systems using the
same loads. In addition to measure simple read/write performance, SSBench also
provides several specific performance measurements for stream data, including
end-to-end read latency, performance under imbalanced loads and performance
of transactional loads. Moreover, as a case study, we use SSBench to evaluate
four typical systems, Kafka, Pulsar, DistributedLog [14] and ZStream [28], and
analyze the causes for their performance differences from the perspective of their
implementation techniques.

The paper is organized as follows. Section 2 provides an overview of stream
data storage systems, including the differences between typical systems. Section 3
describes SSBench, the performance benchmark tool we designed and imple-
mented. Section 4 presents using SSBench to systematically compare the per-
formance of different systems. Section 5 discusses related work, and Sect. 6 con-
cludes the paper.

2 Overview of Stream Data Storage Systems

In this section, we first discuss typical application scenarios and their require-
ments for stream data storage systems. Then, we summarize the critical tech-
nologies of existing stream data storage systems. And finally, we briefly survey
several typical stream data storage systems, highlighting the differences between
them.

2.1 Typical Application Scenarios

Several typical application scenarios of stream processing are listed as follows.

– Website activity tracking. In the LinkedIn social platform [9], it is neces-
sary to record the information that each user searched for and followed. By
using machine learning models, it can predict social connections, match users
with suitable positions, and optimize advertising. By analyzing the events of
each person clicking on the company and position, we can show users some
similar job opportunities. This requires the data platform to quickly ana-
lyze and process the user’s click event data in real time, and quickly make
recommendations for users in a short time.
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– Monitoring data. In the trafficmanagement platform [10],Theplatformeval-
uates and monitors real-time congestion and accidents by monitoring GPS and
SCATS sensor data. In addition, it also needs to monitor the content posted by
local social platform to determine traffic conditions. In the network flow mon-
itoring scenario [11], network monitoring data (such as TCP data packets sent
and received within a certain period of time) are usually generated in the form
of streams, which need to be continuously analyzed and monitored.

– Social network platform. In the Twitter open social platform scenario [12],
users can send tweets with a certain hashtag, and users can click on a certain
hashtag to view all the tweets under that topic. The real-time tweets sent
by the user are appended to the data stream. The data stream is partitioned
and partitioning rule is to hash the hashtags. This calculation method makes
the tweets of the same hashtag be sent to the same partition. When some
hot events occur, hot topics will appear. There will be a large number of read
and write requests for a certain topic within a certain period of time. In a
scenario where topics are used as the partition standard, hot partitions will
be caused. Some partitions have less access, and some partitions have more
access, which will cause data skew and access skew.

– Commit log. The system log needs to record all the operations of the system.
It is a very important data source and contains many values. In LinkedIn [13]
and Twitter [14], the stream data storage system is used as the write ahead
commit log of the Espresso [30] and Manhattan databases [31] to record the
modification operations on the database. Batch processing, stream processing,
or the operation of data warehouses can analyze submission logs and extract
important values.

– Distributed transaction. In the scenario of bank transfer [15], using the
above-mentioned stream data storage system as the commit log of the balance
database needs to ensure the correct execution of distributed transactions.
There cannot be an intermediate situation where only one operation succeeds
and another operation fails.

2.2 Requirements

The various scenarios involved in stream processing put forward several require-
ments for the storage of stream data:

– Fast reading and writing. It can quickly store a large amount of detailed
data generated in real time, and can support fast reading for real-time data,
so that the data can be quickly analyzed.

– Efficient analysis. Stream data has no semantics, and the stream processing
system cannot only extract key fields for query analysis. If the data storage
itself can be semantically aware, and the processing system can quickly extract
important fields, query efficiency can be greatly improved.

– Load balancing. Stream data storage systems usually use partitions to
increase concurrency. Partitions will inevitably cause hot spots. Stream data
storage systems should load balance hotspot partitions to reduce the writing
and reading of hot partitions and servers.
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– Distributed transactions. For certain scenarios of stream data storage
systems, it is required to provide support for distributed transactions and
support the atomic execution of multiple write operations.

2.3 Critical Technologies

Based on the requirements of stream data storage, the key issues that the stream
data storage system mainly solves are as follows:

– Fast reading and writing. Stream data records the detailed data that
occurred at the time of recording. Storing the stream data is essential for
data analysis and processing. Stream processing requires that stream data can
be read and written quickly to support efficient stream processing analysis.
Therefore, fast storage of stream data and provision of fast access are the
most critical technologies for stream data storage systems.

– Efficient analysis query support. Stream data is required to support low-
latency stream processing requirements as well as efficient query and analysis
requirements. Therefore, the data transfer from non-semantic-aware stream
data into column data stream data and the performance guarantee of low
latency and high bandwidth have become challenges for stream data.

– Automatic load balancing. Load balancing needs to determine the parti-
tions and nodes with heavier loads accurately in order to migrate the heavier
loads. Therefore, determining the time point of load balancing trigger and the
location of load migration is the focus of load balancing work. And it is also
very important to ensure the correctness of load migration and correctness
after failure recovery in the process of load balancing.

– Efficient distributed transaction support. Stream data storage systems
should address the need for atomic completion of multiple write operations
in storage. Distributed transactions need to solve the problem of isolation of
uncommitted transaction messages. The characteristics of data streams cause
the stream data storage system to only support append-only writes. For reads,
users can read stream continuously from a certain position. Therefore, if we
mix ordinary data, committed transaction data, and uncommitted transaction
together, it is difficult to guarantee the isolation and transactional reading
and writing will interfere with the reading and writing of ordinary events,
which is a key point in distributed transactions.

2.4 Typical Systems

Pub-Sub Systems. Kafka is the most classic publish-subscribe messaging sys-
tem. Kafka increases read and write throughput through partitioning in paral-
lel [3]. In terms of read, sendfile technology is used to reduce multiple copies of
data between kernel mode and user mode. Since the data in Kafka is appended
to the topic in a non-semantic sense, the data cannot be quickly analyzed. For
the load balancing of hot data, load migration will cause the migration of old
data and waste cluster resources. The advanced version of Kafka has supported
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distributed transactions. The mixed storage of ordinary messages and transac-
tion messages can cause some problem. Short transactions must wait for long
transactions to be submitted before their data can be seen by users. Therefore,
this transaction isolation method is less efficient.

Pulsar is a relatively new publish-subscribe messaging system. Its data
abstraction and interface are similar to Kafka. Pulsar also uses partitioning to
increase the throughput of reads and writes [4]. Similarly, Pulsar does not pro-
vide a semantic-aware storage format and cannot perform efficient analysis and
processing of data. In Pulsar, load balancing is also considered, but Pulsar’s load
balancing stays in the service layer. In addition, Pulsar does not yet support the
distributed transaction feature, which does not meet all our requirements for
stream data storage systems.

Shared-Log Systems. In Corfu [6] and vCorfu [7], the global log is responsi-
ble for ensuring consistency, global order, and transactionality, and the virtual
materialized flow increases scalability. But in essence, every write must firstly
go through the global log before being written to the partitioned stream. This
shared log uses a centralized sequencer, and its throughput is limited by the
speed at which the sequencer allocates address space. FuzzyLog [16] is based on
the shortcomings of Corfu/vCorfu. At the cost of strict order, it supports the
causal order of each additional operation rather than a global order by estab-
lishing a directed acyclic graph of events. But FuzzyLog is not orderly for each
partition. In some strictly orderly scenarios, there may be errors.

The distributed log storage system BookKeeper [8] is a log stream service that
provides persistent storage. It uses striping and read-write separation mechanism
to provide high performance. However, BookKeeper does not support semantic
awareness for storing data, and cannot provide cross-ledger transactions, which
does not meet all our requirements for stream data storage systems. Distribut-
edLog [14] is a distributed log warehouse. It uses log stream to represent the
continuous data stream. It uses BookKeeper as a storage component. So Dis-
tributedLog has the same problem as BookKeeper.

ZStream [28] is a stream data storage system that divides a stream into
more fine-grained partitions, called ranges. ZStream asynchronously converts row
stream data into column stream data, and supports efficient columnar reading
performance. By dynamically splitting and merging the partitions, the imbal-
anced load of the partitions is solved. And the transaction buffer technology
solves the problem of distributed transaction isolation and the interference of
transactional requests to ordinary requests.

3 Design of SSBench

In order to compare the performance of systems, a general performance evalua-
tion tool is needed. The results of the evaluation of each system under the same
dimension, unified environment and unified test conditions can be comparable.
As far as we know, there is still a lack of such a performance evaluation tool for
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stream data storage systems. So we designed and implemented a unified stream
data storage system benchmark tool called SSBench, which abstracts based on
the common characteristics of each system. SSBench aims at evaluating the per-
formance of different systems. It encapsulates the read and write operations of
stream data that is separate from the specific system, and supports multiple
read-write mode test scenarios. In addition, we also considered the scalability of
SSBench itself to facilitate the evaluation of adding new systems.

3.1 Architecture and Functions

Architecture. The system architecture of SSBench is shown in Fig. 1. The
top layer is the user interface. By providing users with a simple and easy-to-use
operation interface, users can input simple test parameters and specific system
commands to define test scenarios, start test programs, and obtain test results.

Fig. 1. Architecture.

The command parsing module determines the number of read and write client
processes to start, the specific settings of each read and write task, and creates
client processes on each test node by parsing user commands. The communica-
tion module is responsible for the communication between client processes. It
includes the distribution of read and write tasks on multiple test machines, the
maintenance of client life status, and the unified collection of test data. The sta-
tistical data module is responsible for collecting the performance of each client
process in the process of performing read and write tasks. When the performance
information generated, results will be output to the console and files.

In addition, SSBench also provides a more flexible evaluation method. Users
can start a single client process through commands, and use scripts to start
multiple client processes. Therefore, in multi-client read and write tasks, differ-
ent parameters can be set for different client processes to achieve more flexible
evaluation.
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The abstract interface layer provides a unified read and write interface
(send/read) for the stream data storage system, with the functions of sending
and receiving messages.

Unified Interface. For the two major types of stream storage systems, the data
abstraction and writing unit are different. In general, the message system data is
abstracted as a topic, and the distributed log is a log stream. So we abstract these
operating objects as streams. Reader reads streams and writer writes to streams
respectively. Users of SSBench only need to specify how to read and write and does
not need to care about how the specific system reads and writes.

For write operations of different stream data storage systems, the client can
write one message at a time and return the result asynchronously. In addition,
some systems can also write synchronously, that is, when writing a message, the
writing process is blocked, waiting for the returned result before writing the next
message. Therefore, we abstract a unified client-side write operation interface.
For each system, you can choose to write synchronously or asynchronously, write
one message at a time, and continuously loop to support continuous writing.

For read operations, different systems read slightly differently. For example,
the Kafka consumer adopts the pull mode. Each read operation will pull a batch
of data to read. The amount of a batch of data is determined by time. The default
setting is 100ms. While the reading of Pulsar and DistributedLog needs to be
obtained through asynchronous monitoring. Once a new message is available,
then it returns the received new message. Due to the difference between the two
methods, our framework does not support the read-by-item interface similar to
the write interface. Instead, each system implements the function of continuously
reading data. Therefore, we abstract a unified read interface, and each system
reads data in its own way, returns the read results asynchronously, and the
unified read interface completes the collection of performance results.

Therefore, for a specific stream data storage system, you only need to imple-
ment the above abstract interface, and you can use this framework for testing.
So SSBench can support a unified test platform and compare the differences
between systems horizontally.

Functions. For the design, we refer to the framework structure of YCSB
(Yahoo! Cloud Serving Benchmark) [18]. In order to test the performance of
different databases, YCSB abstracts the addition, deletion, modification, and
query interfaces. Specific databases need to implement these interfaces, while the
test scenarios are implemented by YCSB, such as database performance under
different mixing ratio operations. In SSBench, we use the following functions to
fairly test different systems:

1) Given a list of available client nodes, users of SSBench can specify the
number of clients, that is, how many write processes and how many read pro-
cesses. Then the test framework will evenly start all write (or read) processes on
given nodes. Therefore, the write (or read) process can run on different machines,
so SSBench is a distributed performance evaluation tool.
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2) For the writing and reading process, the status of writing or reading, such
as throughput and latency, is displayed in the form of a window (fixed time) and
the running time can also be configured.

3) For the writing process, users of SSBench can specify the data format
to be sent, such as fixed size, random content, etc. They can also specify the
sending rate, such as fixed rate, unlimited rate, gradual rate, and random rate. In
particular, some stream data storage systems support distributed transactions,
so for the write process, users can specify whether it is a transaction write
request, as well as transaction-related sending interval, number of sent and other
parameters.

4) For the reading process, the user of SSBench can specify where to start
reading, such as reading from the beginning or reading from the end. The former
is to read from the oldest data, and the latter is to read from the latest data.

3.2 Common Read/Write Performance

For ordinary reading and writing, different systems use different technologies to
ensure fast reading and writing. For example, for the replication mechanism,
Kafka adopts the leader-follower model for multi-copy replication. First, a par-
tition is sent to a leader node and then the followers pull data from the leader.
Compared with Pulsar and DistributedLog, BookKeeper provides quorum repli-
cation mechanism. Data will be sent to three Bookies at the same time, and
it only needs to receive most Bookie’s confirmation so that the message can be
known as persisted. Based on different copy strategies, we hope to understand the
differences in write performance of different systems in their respective modes.

Therefore, for ordinary read and write performance evaluation, this paper
evaluates the difference in write performance of different systems in the syn-
chronous write mode, and summarizes the impact of different replication mecha-
nisms based on the read and write performance of stream data storage systems.

3.3 Column Read/Write Performance

For column read and write evaluation, this paper mainly evaluates the difference
in read and write performance of different systems in a multi-field scenario. Users
can customize the number of event fields, field types, the number of fields of each
type, and the number of read and write client processes to evaluate the impact
of different field numbers on the performance of different stream data storage
systems.

3.4 Imbalanced Load Performance

SSBench can simulate unbalanced load scenarios. User-defined evaluation of the
number of streams and the ratio of write speed in each stream can verify read
and write performance under load balanced and load imbalanced conditions.
For ZStream, due to its own implementation of load balancing, this paper uses
SSBench to adjust ZStream to a better performance state by setting different
load balancing parameters of ZStream.
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3.5 Transactional Load Performance

Distributed transactions simulate distributed transaction scenarios in stream
data storage. Users can set the number of streams involved in each transaction,
the number of data written in each stream, and the interval between transac-
tion sending to evaluate the performance of distributed transactions. For long
transactions, users can set the duration of long transactions and the proportion
of long transactions in all transaction requests to evaluate the impact of long
transaction requests on performance.

4 Performance Evaluation of Typical Systems

For the evaluation of reading and writing of ordinary messages, Sect. 4.1 uses
the synchronous writing method to evaluate the write throughput of Kafka,
Pulsar and DistributedLog when writing multiple copies. For column storage
characteristics, Sect. 4.2 uses multi-event data sets to compare and evaluate
ZStream and Kafka. For the load balancing feature, the evaluation results of
ZStream, Kafka and Pulsar are compared in the case of balanced and imbalanced
loads in Sect. 4.3. For distributed transactions, Sect. 4.4 evaluates the comparison
results of ZStream and Kafka.

This paper uses a cluster platform with five nodes interconnected, each of
which is configured with two Intel Xeon E5645 CPUs (each CPU has 12 hyper-
threaded cores). The nodes are connected by 10 Gigabit Ethernet. The stream
data storage system cluster uses 4 nodes, one of which serves as the master
node to start the NameNode (for HDFS) or ZooKeeper (for ZStream, Kafka,
and Pulsar) services. The other four are used as servers or clients. Storage nodes
use SSDs as data storage.

4.1 Common Read/Write Performance

In this experiment, SSBench creates a write process, which creates a stream, and
writes messages to this stream synchronously at a rate of 100000 msg/s (each
message size is 1KB).
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The results are shown in Fig. 2. It can be seen that Pulsar has the lowest
and most stable write latency, followed by DistributedLog, and Kafka is the
worst, which are about 2 times and 3 times that of DistributedLog and Pulsar,
respectively. Kafka also has the worst write throughput, reaching only 30% of
Pulsar and 50% of DistributedLog. The reason is Kafka is a two-step serial
replication. First, a message is sent to the leader node, and the two follower
nodes pull data from the leader node. While Pulsar and DistributedLog are one-
step parallel replication, they send a message to all replica nodes. DistributedLog
and Pulsar use BookKeeper to store data persistently, and the message will be
sent to multiple Bookie nodes at the same time. They only need to receive
the confirmation returned by most Bookie to consider that the message has
been persisted in all Bookie nodes. Since the Bookie node uses SSD as the log
disk, data can be written sequentially at high speed, so the write latency of
DistributedLog and Pulsar is low.

0
2
4
6
8

10
12
14

1 2 4 8 12
0.1

1

10

100

1000

10000

Th
ro
ug

hp
ut
(1
05

ev
en
t/s
)

La
te
nc
y(
m
s)

Number of Streams
Kafka-tp

CStream-tp
Kafka-99-lat

CStream-99-lat
Kafka-avg-lat

CStream-avg-lat

Fig. 3. Write performance. Each event
has 6 fields and totally 38 bytes.

0
2
4
6
8

10
12
14
16

1 2 4 8
0

1000

2000

3000

4000

5000

6000

Th
ro
ug

hp
ut
(1
05

ev
en
t/s
)

La
te
nc
y(
m
s)

Number of Streams
Kafka-tp

CStream-tp
Kafka-avg-lat

CStream-avg-lat
Kafka-99-lat

CStream-99-lat

Fig. 4. Read performance. Each event
has 6 fields and totally 38 bytes.

0
100
200
300
400
500
600
700

kafka pulsar zstream zstream+lb
0
0.2
0.4
0.6
0.8
1
1.2
1.4

Th
ro
ug

hp
ut
(M

B
/s
)

La
te
nc
y(
s)

System
balanced-tp

imbalaced-tp
balanced-lat

imbalanced-lat

Fig. 5. Write throughput under bal-
anced and imbalanced load.

0

500

1000

1500

2000

1 2 4 8 16 32

Th
ro
ug

hp
ut
(M

B
/s
)

Number of client processes
kafka
pulsar

zstream
zstream+lb

Fig. 6. Read throughput under imbal-
anced load.

4.2 Column Stream

In this experiment, SSBcnch creates a stream, and creates a read process and
a write process. The writing process is responsible for writing multi-field data
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to the image system. Each event includes six fields, including types Int, Long,
Float, Double, Boolean, and String. The total length of each event is 38 bytes,
to verify the difference in read and write performance.

Figure 3 shows the write performance. It can be seen from the figure that
the write performance of ZStream is significantly better than that of Kafka. The
difference in write performance of Kafka is mainly due to its leader-follower repli-
cation strategy. ZStream uses BookKeeper’s Quorum mechanism, which leads to
low latency of writing. Figure 4 shows the read performance. When the number
of streams increases, the end-to-end latency of both ZStream and Kafka changes.
Because of its lower write latency, the end-to-end latency of ZStream is also lower
than that of Kafka. In addition, due to its high network utilization, it also shows
higher throughput.

4.3 Load Balance

This experiment compares ZStream with Kafka and Pulsar under load balancing
and load imbalancing conditions. For ZStream, we first test the situation when
load balancing is not enabled, and then enable the load balancing for evaluation.

Figure 5 shows the comparison of the write throughput. It can be seen that
for the three systems, the write performance will suffer a 30%–50% loss under
imbalanced load condition. Because when the load is imbalanced, the write speed
of a single stream is limited by the speed of a single thread to write data. For the
load balancing situation with ZStream+lb (ZStream enabled load balancing),
the partition will not be triggered for load balancing, so the performance is
consistent with the original ZStream load balancing situation. In the case of
load imbalancing, the partition with large traffic can be divided into two sub-
partitions, so writing increases the degree of parallelism, it can show higher write
performance. Pulsar also supports load balancing, but Pulsar only migrates the
partitions with large traffic to the lighter load machine, and does not split the
large traffic. Therefore, during the experiment, there will always be a partition
with large traffic, which is constantly migrating between the two data nodes,
but the throughput has not been improved.

Figure 6 shows how the read throughput of the three systems varies with the
number of client processes when the load is imbalanced. As can be seen in the
figure, ZStream with load balancing enabled increases in concurrent reads due
to splitting, and can maintain a performance advantage of 30% to 50% when the
number of read processes is small, and is limited to the ZStream reader when the
number of read client processes is large. Performance disadvantages are shown
without aggregation processing and multi-process sharing.

4.4 Distributed Transactions

In this experiment, a write client process continuously sends write requests and
transaction requests with four read client processes read data in real time. Trans-
action requests are sent every 100 ms.
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Figure 7 and 8 show the end-to-end latency with the write time of each long
transaction and the proportion of long transactions. The end-to-end latency
changes relatively smoothly with the long transaction execution time and the
proportion of long transactions. In Kafka, as the long transaction request time
and the proportion of long transactions increase, the end-to-end latency is on
the rise. For Kafka, reading of ordinary messages has to be blocked by uncom-
mitted long transactions. Especially when the long transaction takes a heavier
part and the execution time of the long transaction is long, most of the real-
time message reading will be in a blocking state, so Kafka shows poor end-to-end
latency. ZStream uses transaction buffers. When long transactions are not com-
mitted, ordinary messages and short transaction messages can still be read in
real time. Only long transaction data has a long end-to-end latency, and the
overall performance is 70% to 90% better than Kafka.
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5 Related Works

5.1 Benchmarks for Storage Systems

fio is an IO test tool that can run on a variety of systems [19]. It can test the
performance of local disks, network storage, etc. fio simulates different loads by
specifying the type of I/O to be tested, configuring I/O size, block size, engine,
I/O depth and other parameters to simulate different loads to verify storage
performance under different loads. Filebench [20] is an automated testing tool
for file system performance. It tests the performance of the file system by quickly
simulating the load of a real application server. It can not only simulate micro-
operations (such as copyfiles, createfiles, randomread, randomwrite), but also
simulate complex applications (such as varmail, fileserver, oltp, dss, webserver,
webproxy). Filebench is more suitable for testing file server performance, but it
is also an automatic load generation tool, and can also be used for file system
performance.

The goal of the YCSB project is to develop a frame work and a set of com-
mon workloads to evaluate the performance of different key value stores and
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cloud service storage systems [18]. Users can install different database systems
in the same hardware environment, use YCSB to generate the same workload,
and compare and evaluate different systems. YSCB is to test the performance of
different databases through abstract addition, deletion, modification, and query
methods. Specific databases need to implement these methods, while the test sce-
narios are implemented by YCSB, such as database performance under different
mixing ratio operations.

YCSB++ is an extension of YCSB to improve the testing of advanced
database functions [21]. YCSB++ includes multi-tester coordination for load
increase and eventual consistency measurement, multi-stage workloads for quan-
tifying the consequences of work delays and the benefits of expected configura-
tion optimization (such as B-tree pre-splitting or batch loading), and high-level
features in abstract API benchmarks for explicit consolidation.

We learns a lot from YCSB’s method. Similar to YCSB, SSBench abstracts
the basic interfaces such as read/write APIs for the basic operations, and each
specific stream data storage system only need to implement these methods. In
addition, SSBench also generates specific workloads such as imbalanced loads
and transactional loads, and enables users to evaluate their system on more
scenarios.

5.2 Benchmarks for Data Processing Systems

In order to help users choose the most suitable platform to meet their big
data real-time stream processing needs, Yahoo has designed and implemented
a stream processing benchmark program based on real-world scenarios and
released it as an open source [22]. In this benchmark test, Kafka and Redis were
introduced for data extraction and storage to build a complete data pipeline to
more closely simulate actual production scenarios. The benchmark test platform
scenario for stream processing is different from the storage scenario, and does
not meet the needs of the storage system evaluation in the paper.

OLTP-Bench is a scalable DBMS benchmark test platform [23]. The main
contribution of OLTP-Bench is its ease of use and scalability, support for trans-
action mixing, strict control of request rate and access allocation, and the ability
to support all major DBMS platforms. In addition, it also bundles 15 workloads
with varying complexity and system requirements, including 4 comprehensive
workloads, 8 workloads from popular benchmarks, and 3 jobs from real applica-
tions load. The OLTP evaluation evaluates the transaction characteristics of the
database management system. It has a single function and does not meet the
multiple requirements of the storage system in the stream processing scenario.

6 Conclusion

This paper implements a benchmark tool based on stream data storage system
called SSBench, and uses it to evaluate and compare the performance of multiple
stream data storage systems. Our experimental results show that for common
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read and write operations, different replication mechanisms and caching strate-
gies can bring great performance differences. For column data read and write,
unbalanced load read and write, and distributed transaction scenarios, ZStream
has 30% to 90% advantages over the other systems.
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