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Abstract. Face Recognition is one of the prominent problems in the
computer vision domain. Witnessing advances in deep learning, signif-
icant work has been observed in face recognition, which touched upon
various parts of the recognition framework like Convolutional Neural
Network (CNN), Layers, Loss functions, etc. Various loss functions such
as Cross-Entropy, Angular-Softmax and ArcFace have been introduced
to learn the weights of network for face recognition. However, these loss
functions do not give high priority to the hard samples as compared to
the easy samples. Moreover, their learning process is biased due to a
number of easy examples compared to hard examples. In this paper, we
address this issue by considering hard examples with more priority. In
order to do so, We propose a Hard-Mining loss by increasing the loss for
harder examples and decreasing the loss for easy examples. The proposed
concept is generic and can be used with any existing loss function. We
test the Hard-Mining loss with different losses such as Cross-Entropy,
Angular-Softmax and ArcFace. The proposed Hard-Mining loss is tested
over widely used Labeled Faces in the Wild (LFW) and YouTube Faces
(YTF) datasets. The training is performed over CASIA-WebFace and
MS-Celeb-1M datasets. We use the residual network (i.e., ResNet18) for
the experimental analysis. The experimental results suggest that the per-
formance of existing loss functions is boosted when used in the framework
of the proposed Hard-Mining loss.

Keywords: Face Recognition · Deep learning · Loss functions ·
Sigmoid function · Hard-Mining loss

1 Introduction

In the past few years, the face recognition task has seen a tremendous growth
in terms of the robust recognition and applications in various spheres of human
lives. Face Recognition has been seen with a significant usage in multiple domains
like biometric-based security tools and criminal identification system among
many others. Such applications of the face recognition has lead to researchers and
developers to work and design face recognition systems strongly built to work in

c© Springer Nature Singapore Pte Ltd. 2021
S. K. Singh et al. (Eds.): CVIP 2020, CCIS 1378, pp. 70–80, 2021.
https://doi.org/10.1007/978-981-16-1103-2_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-16-1103-2_7&domain=pdf
https://doi.org/10.1007/978-981-16-1103-2_7


Hard-Mining Loss Based Convolutional Neural Network for Face Recognition 71

an unconstrained environment as its usage is expected to grow exponentially in
the forthcoming years [35].

The advancements in deep learning have significantly accelerated the growth
and performance of face recognition. AlexNet [14], proposed by Krizhevsky et
al., is marked as the birth of the Convolutional Neural Networks (CNNs) which
became a revolutionary architecture developed for the task of image classifica-
tion and won the ImageNet Large Scale Challenge in 2012 [19]. Since then, many
CNN based approaches have been introduced for face recognition such as, Deep-
Face [26], DeepID2 [24], FaceNet [20], SphereFace [17], and ArcFace [3]. The CNN
based approaches [5,10,11,14,29] have shown a tremendous growth in the perfor-
mance as compared to the hand-crafted features [1,6–8,13,22]. The above growth
was accompanied by the development of large-scale face datasets for training
and testing the CNN based models, which majorly include CASIA-Webface [33],
MS-Celeb-1M [9], Labeled Faces in the Wild (LFW) [12] and YouTube Faces
(YTF) [31] among other face datasets. In this work, the CASIA-Webface and
MS-Celeb-1M face datasets are used for training. However, the LFW and YTF
face datasets are used for the testing.

The trend of CNN over time shows that the deep CNN architectures perform
better as compared to the shallow networks. It was the motivation for the deeper
architectures like GoogleNet [25] and ResNet [10]. The residual network shows
that the performance of the deeper plain model is not improved because it is
hard to optimize such model [10]. Thus, researchers also started exploring the
relevance of loss functions in optimizing the deep networks. The Cross-Entropy
(i.e., Softmax) loss is very widely used for optimizing the deep learning models.
Recently, the work in loss functions has been quite significant with functions
like SphereFace (i.e., Angular-Softmax) [17] and ArcFace [3], specially designed
for the face recognition task and have shown very promising gain in the per-
formance. Some other existing loss functions are Marginal loss [4], Soft-margin
softmax loss [15], Large-margin softmax loss [18], Additive margin softmax [27],
Minimum margin loss [30], Cosface: Large margin cosine loss [28], and Adaptive-
Face: Adaptive margin loss [16]. Moreover, in another work, we have conducted
a performance analysis of different loss functions and found that the ArcFace
outperforms other losses [23].

A few attempts are also made to utilize the complexity of data in training
such as the hardest positive pairs and hardest negative pairs are computed using
margin sample mining loss by Xiao et al. [32]; an adaptive hard sample mining
strategy it used by Chen et al. [2] to pick the hard examples in the training
pair images; and an auxiliary embedding is used by Smirnov et al. [21] to pick
the hard examples in mini-batches. Note that these methods try to find out the
hard examples first and then use it for training. Whereas, the proposed method
gives the high priority to hard examples inherently during training based on the
performance of model in that iteration.

The main drawback of above mentioned loss functions is associated with its
inefficiency while modelling the hard examples which lead to mis-classification.
The loss due to the more number of easy examples dominates over the loss
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due to the less number of hard examples. This is because while training is in
progress, the number of hard examples decreases while the number of easy exam-
ples increases as network learns over iterations. In this paper, we address the
above mentioned problem by giving more importance to hard examples through
loss function in each iteration. We propose the Hard-Mining loss which increases
the loss for the hard samples leading to high loss and decreases the loss for
the easy samples leading to low loss. As a result, the average loss contains the
significant contributions from the hard examples.

This paper is structured as follows: Sect. 2 proposes the Hard-Mining loss and
existing losses in the Hard-Mining framework; Sect. 3 describes the experimental
setup and details about the architecture and training and testing face datasets
used. Section 4 presents the experimental results and comparisons; and finally,
Sect. 5 concludes the paper with summarizing remarks.

2 Proposed Hard-Mining Loss

The loss functions are used in deep learning to judge the goodness of any model
under given parameters. The stochastic gradient descent (SGD) optimization is
widely adapted to train the Convolutional Neural Networks (CNNs). The SGD
computes the gradient of loss function w.r.t. to the parameters which is used to
update that parameter such that in the next iteration, the loss should decrease.
Thus, the loss functions judge the performance of the designed architecture as
well as guide the learning process. It is shown in introduction that most of the
existing losses are not able to penalize the mis-classification efficiently caused
by harder examples. In this paper, we propose the concept of Hard-Mining loss
which increases the loss for harder examples and decreases the loss for easier
examples such that the average loss should have the better representation of hard
examples. A comparison between the Cross-Entropy loss and proposed Hard-
Mining loss is presented in Fig. 1 as a function of probability of being classified
in the correct class. In this section, first we present the Cross-Entropy loss, then
we propose the idea of Hard-Mining loss, and finally we extend the existing
losses such as Cross-Entropy, Angular-Softmax, and ArcFace in the proposed
Hard-Mining framework.

2.1 Cross-Entropy Loss

The Cross-Entropy (or softmax) loss has been majorly used to judge the perfor-
mance of CNN models for image classification task [10,14]. Mathematically, the
Cross-Entropy loss can be given as

LCE = − 1
N

N∑

i=1

log
eWT

yi
xi+byi

∑n
j=1 eWT

j xi+bj
, (1)

where W is the weight matrix, b is the bias term, xi is the ith training sample,
yi is the class label for ith training sample, N is the number of samples, Wj and
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Fig. 1. Loss value vs Likelihood (i.e., probability for correct class) plot for the Cross-
Entropy loss and Hard-Mining loss functions. Note that the Hard-Mining loss is com-
puted on the output of Cross-Entropy loss.

Wyi
are the jth and yth

i columns of W , respectively. The Cross-Entropy loss is
used as the baseline by the recent loss functions such as Angular-Softmax and
ArcFace over the face recognition problem. Hence, we also use the Cross-Entropy
loss as the baseline along with Angular-Softmax and ArcFace losses.

The behavior of the Cross-Entropy loss w.r.t. the probability of being classi-
fied in the correct class for an example is plotted in Fig. 1. It can be observed from
this analysis that the Cross-Entropy loss gradually follows a downward slope and
there is no big difference between easy and hard examples. We believe that if
the probability is more than 0.5 then the loss should be minimum. Whereas, if
the probability is less than 0.5 then the loss should be on higher side. This is
our intution to propose the Hard Mining Loss described next.

2.2 Hard-Mining Loss

Motivated from the fact that the loss for harder examples should be more, we
propose the idea of Hard-Mining loss. The proposed Hard-Mining loss increases
the loss if the probability is less than roughly 0.5, while at the same time it also
decreases the loss if probability is more than 0.5 roughly. The Hard-Mining loss
is defined as

LHM = α × L × σ(β × L) (2)

where L is the loss generated by any other loss function such as Cross-Entropy,
Angular-Softmax, etc., α and β are the hyperparameters and σ is the sigmoid
function given as:

σ(x) =
1

1 + e−A(x−B)
(3)

where A and B are the hyperparameters.
Note that the Hard-Mining operation is generic in nature, i.e., it can be used

along with any existing loss function. In this paper, we use the Hard-Mining
operation along with Cross-Entropy, Angular-Softmax, and ArcFace losses.
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Algorithm 1. Hard-Mining Cross-Entropy Loss Algorithm
Input: Predicted class scores, Ground-truth class label, and hyper-parameters α, β,
A and B.
Output: Loss generated.

1. LCE ← CrossEntropy(input, target, W )
2. x ← β × LCE

3. y ← A × (x − B)
4. z ← Sigmoid(y)
5. LHM CE ← α × x × z
6. return LHM CE

2.3 Hard-Mining Cross-Entropy Loss

As mentioned previously, the Hard-Mining concept is generic and can be used
with existing losses. Primarily, we define the Hard-Mining loss with Cross-
Entropy loss. The Hard-Mining Cross-Entropy loss (LHM CE) is defined as

LHM CE = α ∗ LCE ∗ σ(β ∗ LCE) (4)

where α and β are the hyperparameters, σ is defined in (1), and LCE is the
Cross-Entropy loss given in (1). Algorithm 1 shows the step-by-step instructions
for the proposed Hard-Mining Cross-Entropy loss (LHM CE).

The behavior of Hard-Mining operation on Cross-Entropy loss is depicted in
Fig. 1. Note that the values of hyper-parameters α, β, A, and B are set to 1.5,
1.1, 35, and 0.75, respectively. It can be seen that the Hard-Mining operation
increases the loss for hard examples (i.e., with less than half probability) while it
decreases the loss for easy examples (i.e., with more than half probability). Our
definition of hard/easy examples is relative to the probability of being classified
in the correct class in a given iteration. Thus, the hard examples at the start of
the training might become easy examples after training of some iterations.

Since, the Cross-Entropy is a very widely used loss function in various
machine learning problems, it is paramount that we study the performance of
Hard-Mining operation with loss functions specially designed for the face recog-
nition problem. We consider two loss functions (i.e., Angular-Softmax [17] and
ArcFace [3]) designed for the face recognition problem in the proposed Hard-
Mining loss framework.

2.4 Hard-Mining Angular-Softmax Loss

The Hard-Mining Angular-Softmax loss (LHM AS) is defined as follows:

LHM AS = α × LAS × σ(β × LAS) (5)
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where α and β are the hyper-parameters, σ is given in (3), and LAS is the
Angular-Softmax loss defined in the SphereFace model [17] and given as

LAS = − 1
N

N∑

i=1

log
( e‖xi‖ψ(θyi,i

)

e‖xi‖ψ(θyi,i
) +

∑
j �=yi

e‖xi‖ cos(θj,i)

)
(6)

where xi is the ith training sample, ψ(θyi,i)=(−1)k cos(mθyi,i)−2k for θyi,i ∈
[kπ

m , (k+1)π
m ], k∈ [0,m − 1] and m≥1 is an integer controlling the size of angular

margin.

2.5 Hard-Mining ArcFace Loss

ArcFace loss has been used in the recently developed ArcFace model for face
recognition [3]. In a recent performance comparison study, ArcFace has been fig-
ured as the outstanding loss for face recognition [23]. The Hard-Mining ArcFace
loss (LHM AF ) is defined as

LHM AF = α × LAF × σ(β × LAF ) (7)

where α and β are the hyper-parameters, σ is given in (3), and LAF is the
ArcFace loss [3] and given as

LAF = − 1
N

N∑

i=1

log
es·(cos(θyi

+m))

es·(cos(θyi
+m)) +

∑n
j=1,j �=yi

es·cos θj
, (8)

where s is the radius of the hypersphere, m is the additive angular margin
penalty between xi and Wyi, and cos(θ + m) is the margin which makes the
class-separations more stringent.

3 Experimental Setup

In this section, we discuss the CNN architectures, training and testing datasets
used for the experiments along with other settings like optimizers, learning rate,
epochs, etc.

3.1 CNN Architectures

Several CNN architectures have been developed for different computer vision
tasks. The recent trend is to utilize the power of residual learning. The ResNet
model uses the residual blocks [10] which is very commonly used nowadays. In
this paper, we consider ResNet architecture with 18 depth (i.e., ResNet18) for
all the experiments.
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3.2 Training Datasets

In our experiments, we primarily use two publicly available datasets such as
CASIA-Webface [33] and MS-Celeb-1M [9] as the training datasets. The CASIA-
Webface is one of the most widely adapted and available dataset used for the
face recognition task. It contains 4,94,414 colored face images belonging to 10,575
different individuals. Second dataset used in our experiments is the MS-Celeb-
1M dataset which consists of 1,00,000 face identities with each class containing
100 images leading to about 10M images, which are scraped from public sources.
Being a humongous dataset, it contains a lot of noise and variations which impact
the performance of the trained model. Hence, we use a cleaned and refined subset
of the dataset as per the cleaned list provided by the ArcFace [10] authors.

3.3 Testing Datasets

We use the Labeled Faces in the Wild (LFW) [12] and Youtube Faces (YTF) [31]
as the testing datasets in this paper. The LFW dataset contains 13, 233 images
of 5749 identities. The YTF dataset consists of 3, 425 videos of 1, 595 different
people with images available in frame-by-frame format and retrieved through the
provided meta data. Both the datasets use the standard LFW benchmark for face
verification, which provide the verification accuracies over the testing dataset.
These accuracies are used as the performance measure in the state-of-the-art face
recognition works. Hence, we also use the accuracy as the performance measure
in this paper.

3.4 Input Data and Network Settings

Following the recent trend [3,17], we use the MTCNN [34] to align the face
images. The images are normalized by subtracting 127.5 from each pixel and
then being divided by 128. The batch-size is kept at 64 with the initial learning
rate as 0.01. The learning rate is multiplied by 0.1 at 8th, 12th and 16th epochs.

Table 1. Verification accuracies (%) using ResNet18 model over LFW and YTF face
recognition testing datasets under different loss functions. The training is performed
over CASIA-WebFace dataset.

Loss function Accuracy on
LFW dataset

Accuracy on
YTF dataset

Cross-Entropy loss (LCE) 95.35 91.8

Hard-Mining Cross-Entropy loss (LHM CE) 96.75 93.1

Angular-Sofmax loss (LAS) 97.12 93.9

Hard-Mining Angular-Sofmax loss (LHM AS) 97.3 94.1

ArcFace loss (LAF ) 97.79 94.54

Hard-Mining ArcFace loss (LHM AF ) 97.9 94.67
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The model is trained up to 20 epochs. The Stochastic Gradient Descent with
Momentum (SGDM) is used as the optimizer to train the network. The values
of hyper-parameters α, β, A, and B are empirically set to 1.5, 1.1, 35, and 0.75,
respectively, in this paper.

4 Experimental Results and Observations

In order to show the effect of the proposed Hard-Mining loss, the face recognition
experiments are conducted in this paper with ResNet18 model. Three existing
loss functions, namely Cross-Entropy, Angular-Softmax and ArcFace, are used
in the framework of the proposed Hard-Mining loss. The training is performed
over the CASIA-WebFace and MS-Celeb-1M datasets and testing is performed
over the LFW and YTF datasets.

The results in terms of the verification accuracies are reported in Table 1
using ResNet18 model for the CASIA-WebFace training dataset over the LFW
and YTF testing datasets. It can be seen that an improvement is obtained by the
Hard-Mining Cross-Entropy loss, Hard-Mining Angular-Softmax loss, and Hard-
Mining ArcFace loss as compared to the Cross-Entropy loss, Angular-Softmax
loss, and ArcFace loss, respectively, over both the LFW and YTF datasets.

The results in terms of the verification accuracies are reported in Table 2
using ResNet18 model for the MS-Celeb-1M training dataset over the LFW
and YTF testing datasets. It is noticed from this result that the performance
of Hard-Mining operation based losses is either better or comparable over LFW
dataset w.r.t. the losses without Hard-Mining operation. Moreover, Hard-Mining
operation is also suited with Cross-Entropy loss over YTF dataset when training
is performed over MS-Celeb-1M datasets.

The experimental results suggest that increasing the loss for harder examples
and decreasing the loss for easy examples in each iteration enforce the network
to learn the characteristics of hard-examples as well. Overall, the proposed Hard-
Mining loss is well suited for the face recognition problem along with the existing
loss functions.

Table 2. Verification accuracies (%) using ResNet18 model over LFW and YTF face
recognition testing datasets under different loss functions. The training is performed
over MS-Celeb-1M dataset.

Loss function Accuracy on
LFW dataset

Accuracy on
YTF dataset

Cross-Entropy loss (LCE) 95.1 92.45

Hard-Mining Cross-Entropy loss (LHM CE) 95.1 92.5

Angular-Softmax loss (LAS) 96.9 94.1

Hard-Mining Angular-Softmax loss (LHM AS) 97.05 93.8

ArcFace loss (LAF ) 97.6 95.1

Hard-Mining ArcFace loss (LHM AF ) 98 94.9
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5 Conclusion

In this paper, a concept of Hard-Mining loss is proposed which increases the
loss for hard examples being mis-classified and decreases the loss for easy exam-
ples. By doing so, we enforce the network to learn the characteristics of hard
examples. The proposed concept is generic in nature and can be used with any
existing loss function. We have tested the proposed Hard-Mining loss with Cross-
Entropy, Angular-Softmax and ArcFace losses. The experiments are performed
over CASIA-WebFace and MS-Celeb-1M training datasets and LFW and YTF
testing datasets using ResNet18 model. It is observed from the experiments that
the proposed Hard-Mining loss boosts the performance of existing losses in most
of the cases.
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