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Abstract. Video Captioning is the task of describing the content of a
video in simple natural language. Encoder-Decoder architecture is the
most widely used architecture for this task. Recent works exploit the
use of 3D Convolutional Neural Networks (CNNs), Transformers or by
changing the structure of basic Long Short-Term Memory (LSTM) units
used in Encoder-Decoder to improve the performance. In this paper,
we propose the use of a sentence vector to improve the performance of
the Encoder-Decoder model. This sentence vector acts as an interme-
diary between the video space and the text space. Thus, it is referred
to as semantic cross embedding that bridges the two vector spaces, in
this paper. The sentence vector is generated from the video and is used
by the Decoder, along with previously generated words to generate a
suitable description. We also employ the use of a skip-connection in the
Encoder part of the model. Skip-connection is usually employed to tackle
the vanishing gradients problem in deep neural networks. However, our
experiments show that a two-layer LSTM with a skip-connection per-
forms better than the Bidirectional LSTM, for our model. Also, the use
of a sentence vector improves performance considerably. All our experi-
ments are performed on the MSVD dataset.

Keywords: Video captioning - Skip-connection - Semantic cross
embedding + Sentence vector

1 Introduction

Humans are quite capable of giving a proper caption for a video clip without
many semantic errors or misconceptions. Figure 1 shows the description given
by humans for the video which is quite accurate. However, for machines it is
not quite easy to identify the objects involved, the interactions among them
and generate a fitting description. With the introduction of CNNs reading an
image has become a feasible task for machines. The progress in Natural Lan-
guage Processing, helped machines to understand human language in the form of
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word embeddings. Word embeddings are used in applications like neural machine
translation, text generation and information retrieval.

Video Captioning is processing the visual information to generate textual
information. Processing videos is a challenging task because unlike an image, a
video has both spatial and temporal information. CNNs are capable of capturing
the spatial information in the images and the temporal information of the video
is captured by the use of one or more LSTM layers.

Attention is a mechanism used for tasks related to language translation,
visual content description, question-answering and became important in the
Encoder-Decoder architecture which is used for all sequence-to-sequence related
tasks. Soft attention is used in particular for these where the context vector for
the Decoder is computed as a weighted sum of the encoder output states.
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Fig. 1. Caption: a man is kneading a ball of dough

Thus the overview of our contribution is as follows:

I Word embeddings from pre-trained models like BERT base [3], GloVe, Elmo
are used. Comparisons among these embedding approaches based on the
performance of our model are made.

IT Experiments are conducted with feature vectors for video frames taken from
different CNNs like Inception-v3, VGG-16 and NASNet-Large.

IIT The use of Multi-Head attention for the Decoder to softly select the encoder
states.

IV Employing the use of a skip-connection in the Encoder and comparing it to
the Bidirectional model.

V The concept of a sentence vector to aid the Decoder. A sentence vector is a
part of the caption space. We try to map the video information, which is in
visual space, directly to its corresponding caption in the caption space.

2 Related Work

Initial works mostly concentrated on Image Captioning that were later extended
to video captioning. Vinayals et al. [18] has proposed a deep-recurrent model that
used latest advances in computer vision and machine translation to generate
captions to images. His model was trained to maximize the likelihood of the
target description sentence for a training image. You et al. [25] combines both
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top-down and bottom-up strategies to extract richer information from an image,
and combines them with a RNN that can selectively attend semantic attributes
detected from the image. Fang et al. [4] proposed a language model to generate
captions and rank them using a dual-stream RNN model. The model learns to
extract nouns, verbs, and adjectives from regions in the image. Using the above
words the model generates a meaningful sentence describing the image.

Y. Pan et al. [9] proposed a novel deep learning architecture using Long Short-
Term Memory with Transferred Semantic Attributes (LSTM-TSA). LSTM-TSA
is used for transferring semantic attributes from the images and videos into the
CNNs and RNNs in an end-to-end manner. In this, image and video seman-
tics reinforce each other to boost video captioning. L. Gao et al. [6] proposed
an Encoder-Decoder architecture with an attention LSTM in the Decoder to
improve the context of caption and introduced a new loss function to improve the
semantics of the caption. Song et al. [14] proposed a novel hLSTMat encoderde-
coder framework, which integrates a hierarchical LSTMs, temporal attention and
adaptive temporal attention. This model decides when to use visual information
and semantic information on its own.

Xu et al. [22] used combination of convolutional neural networks and recur-
rent neural networks called RCN and combined it with a trainable vector of
locally aggregated descriptor (VLAD) layer to develop a novel Sequential layer
called SeqVLAD. They have tested this framework on video captioning and video
action recognition task and proved its effectiveness. Ning Xu et al. [21] designed
attention in attention network to hierarchically explore the attention fusion in
an end-to-end manner. It specifically has multiple encoder attention modules
and fusion attention modules.

Bin et al. [2] proposed a new LSTM called Bi-directional LSTM that pro-
cesses videos in both forward and backward direction to gain information for
decoding from future time steps as well. Also, a soft attention mechanism is
proposed that focuses on targets with certain probabilities at every timestep.
J. Song et al. [13] proposed a new end-to-end framework known as multi-model
stochastic RNNs (MS-RNN) that takes uncertainty in the data into considera-
tion by introducing stochastic variables. This approach combines BiLSTM and
soft attention mechanism with a new LSTM called S-LSTM that introduces
uncertainty in the training phase.

Y. Yang et al. [23] uses the concept of generative adversarial networks shortly
known as GAN for captioning the videos. The generator is responsible for giving
captions for videos where as the discriminator classifies the sentences into true or
generated data thereby acting as an adversary to caption generator. Q. Zheng
et al. [26] proposed a Syntax-Aware Action Targeting (SAAT) module which
learns actions by simultaneously referring to the subject and video dynamics.
First, they identify the subject by mapping global dependence among multiple
objects and then decode action from a common space that fuses the embedding
of the subject and the temporal feature of the video.
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3 Proposed Approach

Our goal is to generate a natural language description for a given video. We pro-
pose a Semantic Cross Embedding (SCE) based Encoder-Decoder architecture
with a skip-connection in the Encoder for this task. Our model takes feature
vectors extracted from a 2D CNN as inputs and encodes them to capture the
spatio-temporal information from the video. The overall architecture of our final
model is shown in Fig. 2. We make use of the concept of a sentence vector which
will be explained in Sect. 3.4.

SCE Branch

w2 — multiheaded

1 attention
i . ) o
| Awoman is preparing food. — | pre-process H LSTMy

Wiy —|

(X) Concatenation
Wi —

*  pre-trained
Decoder

Fig. 2. The Architecture of our video captioning model with Semantic cross embedding

and skip-connection (SCE 4 SC) has 3 main modules: a) Encoder with skip-connection

b) Decoder with Multi-Head Attention c¢) Semantic Cross Embedding Branch.

3.1 Feature Extraction

The first phase consists of extracting feature vectors from the videos. The videos
are broken down to frames, resized and re-scaled. Resize and re-scale are needed
because the videos from the dataset are of varying frame sizes and also to suit
the input needs of the pre-trained CNN model. The pre-processed frames are fed,
in order, to a CNN model to extract feature vectors that are a high-level repre-
sentation of videos. Three different models namely NASNet-Large, Inception-v3,
VGG-16 are used to extract feature vectors.

NASNet-Large is a Convolutional Neural Network that takes an image of size
331 x 331 as input and outputs a feature vector of size 4032.

In NASNet-Large, though the overall architecture is predefined as in [27], the
blocks or cells are not predefined by authors. Alternatively, they are explored
by reinforcement learning search method i.e. the number of repetitions N and
the number of initial convolutional filters are as free parameters and used for
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scaling. The variant used for our work is taken from the Tensorflow Hub and
consists of 18 Normal cells, starting with 168 convolutional filters.

A Normal cell is a group of convolutional cells that return a feature map of
the same dimension and a Reduction cell is a group of convolutional cells that
return a feature map where the feature map height and width is decreased by a
factor of two.

InceptionV3 [15] is a Convolutional Neural Network developed by Google
for image captioning that takes a 299 x 299 sized image as input and outputs a
feature vector of size 2048.

The basic unit of this network is an ‘inception cell’, which consists of multiple
convolutions running in parallel and ultimately concatenating the output. The
input channel depth is adjusted using 1 x 1 convolutions. Each inception cell uses
1x1,3x3 and 5 x5 filters to learn features at various scales from input. Max
pooling is used with ‘same’ padding to retain the dimension for concatenation.

VGG 16 Visual Geometry Group [12] (VGG-16) was developed by Oxford that
takes a 224 x 224 sized image as input and outputs a feature vector of size 4096.

VGG-16 uses only 3 x 3 filters with a stride of 1 in the convolution layers
and 2 x 2 filters in the pooling layers with ‘same’ padding. All hidden layers use
ReLU activation function and are followed by 3 fully-connected layers.

3.2 Terminology and Notation

Let the video for which a caption needs to be generated be denoted by V =
{v1,v2,V3...., 0}, where n is the number of frames. Now the visual features
extracted, from video V as described in Sect.3.1, be X = {x1,29,23....,; 2}
eR%*" where d; is the dimension of the feature vector of a single frame. Let the
caption be denoted by WeR%*¢ where d,, is the dimension of a word embedding
and c is the number of words in the caption. The caption generated by the model
be represented as W’ eR%w*e.

3.3 Encoder-Decoder

The role of the Encoder is to capture the temporal features from the 2-D CNN
features extracted at the frame level. We use Long Short-Term Memory Networks
for this task. LSTMs are used to extract a fixed-dimensional vector representa-
tion for a series of frames. Our Encoder consists of a two-layer LSTM with a
skip-connection.

The Decoder should learn to predict the caption given the video information.
The caption is generated one word at a time. So given a current word and the
output from the Encoder, the Decoder predicts the next word in the caption.
We use multi-head attention for the model which takes the encoder output and
the decoder state to attend to selective regions in the encoder output which
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determine the Decoder output. The loss that captures the translation from videos
to words is computed as

N.

lOSSl = —ZlogP(wt|E,w1,w2,...,wt_l) (1)
t=1

where, N,, represents the number of words in the caption and Eq. 2 represents
the probability of the predicted word w, given the previously generated words
wy, Wa, ..., wy_1 and the encoder output F.

P(wt\E,wl,wg,...,wt_l) (2)

3.4 Semantic Cross Embedding

The feature vector X from the video, as described in Sect. 3.2, is passed to an
LSTM layer to generate a 768-D vector. During the training process, we compare
it against the hidden state from an LSTM autoencoder, as shown in Fig. 3,
trained on the caption set. Since this hidden state captures the content of the
caption and is used in regenerating the caption, it gives extra information to the
Decoder to predict the next word. Since this vector summarizes a caption we
refer to it as a sentence vector.

Let the sentence vector from the language model be SV and the sentence
vector generated by SCE branch be SV’ then the Huber loss is computed as

1 7\2 /

=(sv, — sv or |svy — svy| <6

e = 2( _ /k)_ 152 f ‘ ) k| (3)
d|svp — svp| — 50 Otherwise

day
lossy = Z ek (4)
k=0

Wy —p

Encoding| Repeat Decoding
LSTM Vector LST™M softmax | 105Scce

Awoman is preparing food.

Wm-1 —]
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hidde

Fig. 3. LSTM autoencoder
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3.5 Multi-head Attention

The encoder output contains information about the entire video. But for the
Decoder to generate the next word given the current word it needs to select
only a subset of the features. So scalar dot product attention [16] allows the
Decoder to attend to only selective information from the Encoder. Consider Eq.
5, Query, Value represents the encoder output information, Key represents the
decoder previous state information. Here the encoder output is weighted for
different regions based on the current decoder states to produce a context vector
for the next word. This constitutes one head of the multi-head attention. The use
of multiple heads makes it possible for the Decoder to attend to the information
from the Encoder at different positions from different representational spaces at
the same time. Single head attention is computed as

Attention(Q, K, V) = softmax( % W (5)
(Q.K,V) = (RaW® RW" RWY) (6)

where Ry is the decoder states, R, is the encoder states, {W? WX WV}
eR%*dn are the weights for multiple attention heads, where d; is the dimension
of the attention input and d,, is the number of units in an attention head.

3.6 Training

We train the language model initially to get the sentence vectors of all the cap-
tions. Then we train the proposed architecture, loading the pre-trained language
model, as shown in Fig. 2 with an objective loss function built by integrating
two loss functions which simultaneously consider video translation to words and
sentence vector generation. The experimental setup can be found in Sect. 4.2

loss = Moss1 + (1 — N)lossg (7)

where A is a hyper-parameter between 0 and 1.

4 Experimental Results and Discussion

4.1 Dataset

The Microsoft Video Description (MSVD) dataset has a total of 1,970 short video
clips from YouTube, with attached human-generated descriptions. On average,
there are around 41 descriptions per video. This dataset contains about 80,000
clip-description pairs, with each clip having descriptions in different languages.
For our work we use the English descriptions only. We adopt the same data
split as provided in [17], with 1,200 video clips for training, 100 video clips for
validation and the remaining 670 clips for testing.
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4.2 Implementation

Data Preprocessing and Evaluation. The average duration of the videos
from the corpus is 10.2s. So we sample only 28 frames per clip uniformly. These
frames are pre-processed and passed to a CNN, here we consider NASNet-Large
pre-trained model, to extract a 4032-D feature vector for each frame. So we have
a 28*4032-D vector for each video from NASNet-Large. Every video has at least
28 frames and hence there is no need for padding here.

The captions provided for the videos are collected from different sources and
are of varying lengths. Therefore we remove the punctuation from the captions,
convert them to lower case and tokenize. The misspelt words and the least occur-
ring words are filtered out from the vocabulary. Captions are adjusted to a length
of 20. Any caption exceeding the size is truncated and a caption with less than
20 tokens is padded. Word Embedding techniques like BERT [3], GloVe, Elmo
are used to obtain 768-D, 300-D or 1024-D vector for each token. We compare
the performance of different word embeddings for our model in 4.4. The bos,
eos tokens are used to mark the beginning and the end of the caption, pad as
padding token and unk as unknown, for words not found in the vocabulary.

Experimental Setup. The 28%4032 feature vector represents the video to be
processed. It is passed to the Encoder, which is a two-layer LSTM with a skip-
connection. The number of units in the LSTM is taken as 512. So we get 28%512-D
from layer 1 and 28*512-D from layer 2 that makes a 28%1024-D vector, from
the Encoder. The SCE branch contains a single LSTM layer with 768 units and
a pre-trained LSTM autoencoder. The number of units in the attention layers is
set to 512. The number of units in the Decoder LSTM is taken as 1024. Adam
Optimizer with a learning rate of 5e-4 is used for training and a batch-size of
64. Beam search with a beam-width of 3 is used during testing.

4.3 Evaluation Metrics

To evaluate the performance of the model we have considered 3 standard metrics:
BLEU, ROUGE, CIDER and to compare the final results of our work with state-
of-art papers on MSVD we have considered BLEU, METEOR and CIDER as
the metrics.

— BLEU (BiLingual Evaluation Understudy) BLEU calculates the n-gram
hit ratio of output caption against the ground truth. It is suitable for short
sentences. We have used Bleu 1,2,3 and 4 scores for our performance analysis.

— ROUGE (Recall-Oriented Understudy of Gisting Evaluation) Rouge
metric is based on the longest common subsequence. The longer the common
subsequence the more similar the reference and candidate sentences.
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- METEOR (Metric for Evaluation of Translation with Explicit
Ordering) METEOR is a mean value of unigram-based recall and preci-
sion scores. The main difference between METEOR, and BLEU is this metric
combines both recall and precision.

— CIDEr (Consensus-based Image Description Evaluation) CIDER
score for n-grams of length n is computed using the average cosine similarity
between the generated sentence and the human annotated sentences, which
accounts for both precision and recall.

4.4 Results and Analysis

Ground Truth : {'a woman is chopping broccoli', 'a woman is cuttinga  Ground Truth : {'a man is singing and playing a guitar', 'a man sings

stalk of broccoli into small pieces’. 'a woman is cutting broccoli with a and plays a guitar', 'a boy playing a guitar’, 'a man is singing a song
knife', 'A woman is cutting up a stalk of broccoli’ } with guitar’ }

Baseline : 'a woman is cutting broccoli' Baseline : 'a man is playing guitar’

SCE+SC : 'a woman is cutting a piece of broccoli' SCE + SC : 'a man is playing a guitar’

- -
Ground Truth : { 'aman is shooting at a distant target, 'a man shoots Ground Truth : { 'a person is adding water into the pan', 'a man is

a gun at a distant target’, 'a man aiming his gun at a target’, 'a man is pouring water into a pan', 'a man pours water into a pan’, 'a man is
shooting with gun'} cooking on a stove'}

Baseline : 'a man is holding a gun’ Baseline : 'a man is pouring oil into a bowl'

SCE + SC : 'a man is shooting a gun’ SCE + SC : 'a man is pouring liquid into a pan'

Fig. 4. The qualitative comparison of our proposed SCE+SC model, baseline and
ground truth captions

Qualitative Analysis. Figure 4 shows the qualitative comparison of our pro-
posed SCE+SC model against ground truth and baseline model captions. The
video frames and ground truth shown in the figure are taken from MSVD dataset.
Both the baseline model and our proposed SCE4+SC model have given a good
set of captions for the videos.

But the baseline model fails to identify the portrayed action and objects in
few cases. The SCE+SC model has performed well in object and action identi-
fication. For example, the baseline model has given holding whereas the action
shooting identified by SCE+SC model is more precise according to the context.
Also, the word bowl is given by the baseline model whereas the word pan given
by SCE+SC model is more appropriate. Therefore, it is clear that the semantic
cross embedding helped in getting proper words.
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Table 1. Performance comparison with various methods on the MSVD test dataset

Model B@4 | METEOR | Rouge | CIDEr
S2VT [17] — 29.2 - -
h-RNN [24] 49.9 | 32.6 - 65.8
V-ShaWei-GA [7] |47.9 |30.9 - -
S2VT+RL [11] 45.6 | 32.9 69.0 |80.6
SCN-LSTM [5] 51.1 1 33.5 - 7.7
MMVDN [20] 37.6 129.0 - -
aLLSTM [6] 50.8 | 33.3 - 74.8
BAE [1] 42.5 324 - 63.5
TA [24] 41.9 129.6 - 51.7
M3 [19] 52.833.3 - -
MARN [10] 48.6 |35.1 71.9 |92.2
S-VC [8] 35.1 [29.3 - -
Baseline 49.0 | 33.8 70.6 82.3
SCE+SC 52.1 |35.5 72.1 |85.7

Quantitative Analysis. We compare the performance of our method with
state-of-the-art methods using BLEU@4, METEOR, ROUGE and CIDEr met-
rics on MSVD dataset. The methods include S2VT [17], h-RNN [24], V-ShaWei-
GA [7], S2VT+RL [11], SCN-LSTM [5], MMVDN [20], aLSTM [6], BAE [1],
TA [24], M3 [19], MARN [10], S-VC [8] including our baseline method. All the
methods have followed the same train-validation-test split provided in [17].

Table 1 shows the metrics of various models. M3 [19] achieved the highest
BLEU@4 score followed by our model which outperformed the rest in terms of
BLEU®@4 score. This shows that our proposed model has been able to identify the
exact set of words in the dataset better than the other models which improved
the BLEU@4 scores as it is measured by the n-gram hit ratio.

In terms of CIDEr metric, our proposed model ranked second. Our model
achieved the highest Rouge and METEOR scores compared to others’. This
trend shows that our SCE+4SC model outperforms the state-of-the-art methods
in video captioning. When compared to the baseline model, the proposed model
achieved the highest scores. This shows that semantic cross embedding and skip-
connection has boosted the performance of the model.

Table 2. Effect of various Word Embedding techniques on the model training

Model | B@1 | B@2 | B@3 | B@4 METEOR | Rouge | CIDEr
BERT | 81.0|68.8|59.1 149.0 | 33.8 70.6 | 82.3
Elmo |80.3 |68.7 |59.3|49.7|33.5 70.1 |80.8
GloVe | 80.6 |67.0 | 55.7 |47.8 |33.1 70.3 |80.3
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Table 2 shows the effect of the use of different pre-trained word embeddings
in our base model. With the use of BERT embeddings, the results are slightly
better than Elmo and GloVe embeddings.

Table 3. Performance comparison of Bidirectional LSTM Encoder and Encoder with
a skip-connection

Model Bal | B@2 | B@3 B@4 | METEOR | Rouge | CIDEr
BiLSTM 81.1 [69.5 |59.8 149.1 |33.8 69.7 | 79.1
LSTMs with SC | 82.8 | 71.0 | 60.9 | 50.9 | 34.2 70.3 |82.4

Table 3 compares the performance of Bidirectional LSTM Encoder and
Encoder with a skip-connection. Encoder with a skip-connection performed
slightly better for every metric.

Table 4. Comparison of different trained CNN models used for obtaining spatial fea-
tures

Model Ba@l | B@2 | B@3 B@4 | METEOR | Rouge | CIDEr
NASNet-Large | 75.8 | 61.9 | 50.7 |41.1 | 31.4 68.4 |76.8
Inception-v3 |72.6 |57.9 |48.9 |39.2 |30.8 60.5 |66.4
VGG-16 69.8 1 54.5 [43.1 |31.4 |29.3 64.6 55.4

Table 4 shows the comparison between the performances of a basic Encoder-
Decoder model with a single-head attention using different 2-D CNN models. It is
clear that NASNet-Large features have performed well when compared to VGG-
16 and Inception-v3 based feature vectors. So, we have chosen to use NASNet-
Large to extract feature vectors for the video/images.

Figure 5 shows BLEU@4 and METEOR scores for different values of the
hyper-parameter \ in Eq. 7. We can observe that the model performs best when
A=0.9.
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Fig.5. BLEU@4 and METEOR scores for different values of A
Conclusion

In this paper, we proposed semantic cross embedding and skip-connection in
Encoder for Video Captioning. The SCE or sentence vector is a representation of

the

video in the caption space. It assists the Decoder to improve the performance

of the model. The use of a skip-connection in the Encoder performs better than a
Bidirectional Encoder. Experiments conducted on MSVD validate our approach
and analysis. Our approach gave better results when compared to various other
state-of-the-art techniques. Our future work would be to make use of 3-D CNNs
along with 2-D CNNs to further boost the process of video captioning.
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