
DeblurRL: Image Deblurring with Deep
Reinforcement Learning

Jai Singhal(B) and Pratik Narang(B)

Department of CSIS, BITS Pilani, Pilani, India
{h20190021,pratik.narang}@pilani.bits-pilani.ac.in

Abstract. Removing non-uniform blur from an image is a challenging
computer vision problem. Blur can be introduced in an image by various
possible ways like camera shake, no proper focus, scene depth variation,
etc. Each pixel can have a different level of blurriness, which needs to
be removed at a pixel level. Deep Q-network was one of the first break-
throughs in the success of Deep Reinforcement Learning (DRL). How-
ever, the applications of DRL for image processing are still emerging.
DRL allows the model to go straight from raw pixel input to action, so
it can be extended to several image processing tasks such as removing
blurriness from an image. In this paper, we have introduced the applica-
tion of deep reinforcement learning with pixel-wise rewards in which each
pixel belongs to a particular agent. The agents try to manipulate each
pixel value by taking a sequence of appropriate action, so as to maximize
the total rewards. The proposed method achieves competitive results in
terms of state-of-the-art.

1 Introduction

It is prevalent to adopt image deblurring techniques to recover the images from
the blurry images. Blur in an image can be obtained in several ways, it may
be introduced due to movement or shake of the camera (called motion blur), or
by camera focus (called focused blur). It has been observed that the common
type of blur found in the image is mainly due to motion and focus blur which
therefore degrades the quality of the image [7].

Learning to control the agents from high-resolution images, or any signal
like audio and video is one of the challenges of reinforcement learning. But,
recent advances in deep learning made it possible to extract the features from
high-resolution images, which is a breakthrough in fields like image processing,
computer vision, speech recognition, etc. These methods utilize the power of neu-
rons that makes a giant multi-level neural network architecture. These network
techniques can be integrated with reinforcement learning (RL).

As deep Q-network (DQN) [2,9] has been introduced, many algorithms per-
taining to RL were proposed that could play the Atari console games the same
way a human would and beating professional poker players in the game of heads

c© Springer Nature Singapore Pte Ltd. 2021
S. K. Singh et al. (Eds.): CVIP 2020, CCIS 1377, pp. 445–454, 2021.
https://doi.org/10.1007/978-981-16-1092-9_37

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-16-1092-9_37&domain=pdf
https://doi.org/10.1007/978-981-16-1092-9_37


446 J. Singhal and P. Narang

up no-limit Texas hold’em, etc. This has attracted researchers to focus on deep
reinforcement learning. However, these methods cannot easily be applied in
applications such as image-deblurring [7] where pixel-wise manipulations are
required. To deal with this problem, we have proposed a multi-agent Reinforce-
ment Learning approach where an agent is assigned to each pixel to learn the
optimal behavior i.e. to maximize the average expected total rewards of all pixels
and update the pixel value iteratively. It is computationally not feasible to apply
the existing techniques in a naive manner since the number of agents evaluated
is huge (e.g., 1 million agents for 1000 × 1000 pixel images). To tackle this chal-
lenge we use a fully convolution network (FCN) so that all the parameters are
shared and learning can be performed efficiently.

In this paper, we propose a deep reinforcement learning-based approach for
image deblurring. We propose a reward map convolution which proves to be an
effective learning method, wherein each agent considers not only the future states
of its pixel but also those of their neighboring pixels. For setting up the deep rein-
forcement learning, the set of possible actions for a particular application should
be pre-defined; this makes the proposed method interpretable, by which actions
applied by the agents can be observable. The agent picks the best sequence of
actions determined by the rewards provided by the environment. Our experi-
mental result shows that the trained agents achieve better performance when
compared to other state-of-art blinded/non-blinded deconvolutional and kernel
estimation based fully CNN based approaches.

2 Related Work

Previously, [1,4,10–12,14] have employed CNN and other deep learning tech-
niques for de-blurring. Xu et al. [14] proposed a non-blind setting whereas Schuler
et al. [11] proposed a blind setting for deconvolutional scheme neural networks.
In [14], the generative forward model has been used, where they have estimated
the kernel by combining the locally extracted features from the image. Now, this
information is used to reduce the difficulty of the problem. Sun et al. [12] has
used an effective CNN based non-uniform motion deblurring approach to esti-
mate the probabilistic distribution of motion kernels at the patch level. Kim et al.
[4] proposed an approach that approximated the blur kernel such that the locally
linear motion and the latent image are jointly estimated. Nah et al. [10] proposed
a multi-scale convolutional neural network with multi-scale loss function, which
avoids problems such as kernel-based estimation. Kupyn et al.[6] presented an
end-to-end learning model using conditional Ad-versarial Networks for Blind
motion deblurring, which is also a kernel free based deblurring approach and
shows good result on GoPro and Kohler dataset.

On the other hand, Ryosuke et al. [3] proposed a deep reinforcement tech-
nique in which they have worked at a pixel level and have experimented with
various image processing tasks such as image denoising, image restoration, color
enhancement, and image editing; and have shown better performance with other
state-of-the-art methods. They have used the deep reinforcement and pixel-based



DeblurRL: Image Deblurring with Deep Reinforcement Learning 447

rewards technique which certain discrete sets of actions which therefore makes
different from other deep learning techniques.

3 Reinforcement Learning Background

In this paper, we have considered settings of the standard reinforcement learn-
ing in which over a discrete number of time steps, the agent interacts with an
environment(E). Agent receives a state sτ at time step τ , then the agent chooses
an action from a set of possible actions “A” according to its policy obtained (π),
where π is a mapping from states sτ to actions aτ . In return, the agent receives
the next state sτ+1 and receives a scalar reward rτ . This process continues until
the agent reaches a terminal state after which the process restarts.

The Rτ is equals to

Rτ = rτ + γrτ+1 + γ2rτ+2 + γ3rτ+3

+... + γn-1rτ+n-1 + γnV (sτ+n)
(1)

Rτ is the total accumulated reward return at time step τ with discount factor
γ ∈ (0, 1]. The main objective of an agent is to maximize the expected return
from each state sτ .

In extension to the standard reinforcement learning, we have introduced pixel
level agent, where each agent’s policy is denoted as πi(aτ

i |sτ
i ) for each pixel

ranging from i ∈ [1, n]
A3C [8] is a actor-critic method, which uses policy and value network both.

We have denoted the parameter of policy and value network as θp and θv respec-
tively. Both network uses the current state sτ as input. Value network gives the
expected total rewards from state sτ which is nothing but the value V(sτ ) which
shows the goodness of the current state.

The gradient for value network is calculated as follows:

dθv = ∇θv(R
τ − V (sτ )2) (2)

The policy network results in the policy π(aτ—sτ ), and uses a soft-max layer
at the end to output the action to be applied to the pixel.

A(aτ , sτ ) = (Rτ − V (sτ )) (3)

A(aτ , sτ ) is called advantage, and V(sτ ) is subtracted to reduce the variance
of the gradient [8]. The gradient for policy network is calculated as:

dθp = −∇θp logπ(aτ |sτ )A(aτ , sτ ) (4)



448 J. Singhal and P. Narang

Table 1. Table denoting the filters, its size, the dilation factor, and number of output
channels, respectively. (Dil. denotes Dilated, and Conv denotes Convulation)

Common network

Conv + ReLU Dil. Conv + ReLU Dil. Conv + ReLU Dil. Conv + ReLU

3X3, 1, 64 3 × 3, 2, 64 3 × 3, 3, 64 3 × 3,4,64

Policy network

Dil. Conv + ReLU Dil. Conv + ReLU ConvGRU Conv + Softmax

3 × 3, 3, 64 3 × 3, 2, 64 3 × 3, 1, 64 3 × 3, 1, ‖A‖
Value network

Dil. Conv + ReLU Dil. Conv + ReLU Conv

3 × 3, 3, 64 3 × 3, 2, 64 3 × 3, 1, 1

3.1 Reinforcement Learning with Pixel-Wise Rewards

The network discussed above is obtained by combining the policy and value
network. The network is fully convolutional A3C, and its specification of shared,
policy, and value network are shown in Table 1. This network architecture is
inspired by [15].

The objective of the problem is to learn the optimal policies π = (π1, ... πN)
which can maximize the overall mean of the expected rewards at each and every
pixel.

π∗ = argmaxEπ(
∞∑

τ=0

γτ r̄τ
i ) (5)

r̄τ =
1
N

N∑

i=0

(rτ ) (6)

Here, r̄t is the mean of each reward at ith pixel rτ
i.

This is taken to observe that, training N networks is computationally not
practical when the image size is very huge, i.e., the number of pixels is huge.
To solve this issue, this paper proposed the usage of the FCN instead of N
networks, this will help the GPU to parallelize the computation, which makes
the training efficient. This technique also makes sure that N agents can share
their parameters. To boost the overall performance, we have proposed a powerful
learning method known as reward-map convolution.

The gradients can be denoted in matrix form as follows [3]:

dθv = ∇θv

1
N

JT {(Rτ − V (sτ )) � (Rτ − V (sτ ))}J (7)

A(aτ , sτ ) = Rτ − V (sτ ) (8)

dθp = ∇θp

1
N

JT{log π(aτ |sτ ) � A(aτ , sτ )}J (9)



DeblurRL: Image Deblurring with Deep Reinforcement Learning 449

where (ix, iy) are the elements of matrices A(aτ , sτ ) and π(aτ |sτ ) respec-
tively. J is ones-vector where every element is one, and � denotes element-wise
multiplication [3].

dω = −∇ω
1
N

N∑

i=1

logπ(aτ
i |sτ

i )(R
τ
i − V (sτ

i ))

+∇ω
1
N

N∑

i=1

(Rτ
i − V (sτ

i ))
2

(10)

= −∇ω
1
N

JT{log π(aτ |sτ ) � A(aτ , sτ )}J

+∇ω
1
N

JT{{(Rτ − V (sτ )) � (Rτ − V (sτ ))}J

(11)

The first term in Eq. 10 outputs a higher total expected reward. And Eq.
(11) operates as a regularizer such that Ri is not deviated from the prediction
V (sti ) by the convolution [3].

Fig. 1. Different actions (based on probability) applied on the pixels on the current
image

3.2 Actions

The actions specified in Table 2 are applied depending on the pixel requirement.

Sharpening helps to sharpen the edges in the image. It increases the contrast
between bright and dark regions which brings out the features in the given image.
Blurriness causes the loss of the sharpness of most of the pixels.



450 J. Singhal and P. Narang

Bilateral Filter is a non-linear, edge-preserving, smoothening, and noise
removal filter from the image. It does so by replacing the intensity of each pixel
with its weighted average of the neighboring pixels. It is applied as an action to
smoothen the surroundings while preserving the edges of the image. It is applied
as two actions with change in sigmaColor(σc) and sigmaSpace(σS). Sigma Color
takes care of mixing the neighborhood color, whereas Sigma Space influences the
farther pixels.

Table 2. Different actions applied to the pixel with its respective configurations and
kernels.

Sno Action Kernel size Filter/Conf

1 Sharpness 3 × 3 0 −1 0

−1 5 −1

0 −1 0

2 High pass filter 3 × 3 0 −5 0

−5 3 −5

0 −5 0

3 Low pass filter 3 × 3 1/9 1/9 1/9

1/9 1/9 1/9

1/9 1/9 1/9

4 Bilateral filter – σc = 0.1; σs = 5.0

5 Bilateral filter – σc = 1.0; σs = 5.0

6 Unsharp masking – Radius = 5, amount = 1

7 Unsharp masking – Radius = 5, amount = 2

8 Pix up – *= 1.05

9 Pix down – *= 0.95

10 No action – –

High Pass and Low Pass Filter are the frequency domain filter to smoothen
and sharpen the image, by attenuating the particular(high/loss) component from
the image.

- Low pass filter attenuates the high-frequency component, giving smoothness
in the image, and also removes the noise from the image.

- A high pass filter attenuates the low-frequency component, giving sharpness
to the image.

Unsharp masking is a linear image processing technique used to increase the
sharpness in the image. The sharpness details are obtained by the difference



DeblurRL: Image Deblurring with Deep Reinforcement Learning 451

between the original and blurred images. The difference is calculated and added
back to the original image.

enhanced img = img + amt ∗ (img − blurred img) (12)

Pix Up and Down helps to adjust the pixel level by increasing/decreasing the
pixel value.

The following actions are subjected to each pixel on each state and try to
maximize the total reward. Figure 1 shows how different actions are applied
to the current state image. These actions are evaluated from the FCN [8] net-
work. The actions are evaluated for each pixel value, and then applied to the
current state image. After applying these actions to the pixels, total rewards
are calculated of the current state, and checked for the reward, compared with
the previous state, it will check the current state is how much better than the
previous one.

Input DeblurRL [4] [12]

Fig. 2. Qualitative comparison on GoPro dataset.

4 Experiments

In this paper, we have implemented the proposed method using Python3, chain-
nerRL and Chainer [13] which are applied to the Deblurring application. We
have experimented with two different sets of blurs, custom blurs using imgaug
Motion Blur at a higher severity level and blurriness of GoPro dataset.

4.1 Input and State Actions

The input image is a blurred RGB image, the agents try to remove the blur from
the photo, by applying several types of filters depending on the action required.



452 J. Singhal and P. Narang

Input DeblurRL Ground truth

Fig. 3. Qualitative results after applying custom blur.

In Table 2, we have shown the various types of filters/actions applied to the input
pixels which were empirically decided. One thing to note here is that we have
only applied the classical image filtering techniques in our proposed method.

4.2 Implementation Details

We have used the GoPro dataset which has over 2103 different RGB images for
training, and over 1111 RGB images for testing. The GoPro dataset for dynamic
scene deblurring is publicly available1 [10]. We set the mini-batch of random 50
images from the pool of training images with 70 × 70 random cropping. For the
different experiments, we have added custom blur using imgaug blur and used
Motion and Defocused blur at a severity level of 4.

For training, we have used Adam Optimizer [5], with the starting learning
rate as 0.001. We have set the max episodes of 25,000, where the length of each
episode is 5(t max).

4.3 Results

We have implemented our model using Chainer and ChainerRL python library.
All the experiments were performed on a workstation with Intel Xeon W-2123
CPU @3.6 GHz and NVIDIA Titan-V GPU.

We have evaluated the performance of our model for the GoPro dataset. We
have tested the model for the 1111 test images available in the GoPro dataset

1 https://seungjunnah.github.io/Datasets/gopro.

https://seungjunnah.github.io/Datasets/gopro


DeblurRL: Image Deblurring with Deep Reinforcement Learning 453

Table 3. Quantitative deblurring performance comparison on the GoPro dataset.

Measures [12] [4] DeblurRL

SSIM 0.764 0.743 0.763

PSNR 31.573 31.965 31.87

Runtime 20 min 1 h 5.5 s

and compared the results with state-of-the-art methods of [4] and [12] in both
qualitative and quantitative ways. In contrast, our results are free from kernel-
estimation problems. Table 3, shows the PSNR (Peak signal-to-noise ratio) and
SSIM (structural similarity index measure) scores. The SSIM score is perceptual
metrics that quantify the degradation of the image after applying any image
processing task. These are the average SSIM and PSNR score over testing all
1111 GoPro dataset test images.

The qualitative results obtained in the experiment are shown in Fig. 2. These
results are compared with the results of [4] and [12]. Moreover, in Fig. 3, the
qualitative results are shown for custom blur (using imgaug python library)
which is compared with ground truth. The proposed approach is able to restore
the blurred image close to the ground truth.

5 Conclusion

In this paper, we have proposed a new application of Deep reinforcement learn-
ing which operates the problem at a much granular level i.e., pixel-wise, and
applies the given action at a pixel level. We have experimented with a tech-
nique to remove the blur from dynamic scene blurriness data-set (GoPro) from
the given RGB image. Our experimental results show higher quantitative as
well as qualitative performance when compared to other state-of-art methods of
application.

This paper talks about how to maximize and focus on the pixel level. This
paper also discusses how we can maximize each pixel reward, which makes our
method different from other conventional convolutional neural networks based
image processing methods. We believe that our method can be used for other
image processing tasks where supervised learning can be difficult to apply.

References

1. Chakrabarti, A.: A neural approach to blind motion deblurring. In: Leibe, B.,
Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9907, pp. 221–235.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46487-9 14

2. François-Lavet, V., Henderson, P., Islam, R., Bellemare, M.G., Pineau, J.: An intro-
duction to deep reinforcement learning. arXiv preprint arXiv:1811.12560 (2018)

3. Furuta, R., Inoue, N., Yamasaki, T.: Pixelrl: fully convolutional network with rein-
forcement learning for image processing. IEEE Trans. Multi. 22(7), 1702–1719
(2019)

https://doi.org/10.1007/978-3-319-46487-9_14
http://arxiv.org/abs/1811.12560


454 J. Singhal and P. Narang

4. Hyun Kim, T., Mu Lee, K.: Segmentation-free dynamic scene deblurring. In: Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 2766–2773 (2014)

5. Kingma, D.P., Ba., J.: Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980 (2014)

6. Kupyn, O., Budzan, V., Mykhailych, M., Mishkin, D., Matas, J.: Deblurgan: blind
motion deblurring using conditional adversarial networks. In: Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, pp. 8183–8192
(2018)

7. Li, D., Wu, H., Zhang, J., Huang., K.: A2-rl: aesthetics aware reinforcement learn-
ing for image cropping. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 8193–8201 (2018)

8. Mnih, V., et al.: Asynchronous methods for deep reinforcement learning. In: Inter-
national Conference on Machine Learning, pp. 1928–1937 (2016)

9. Mnih, V., et al.: Playing atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602 (2013)

10. Nah, S., Hyun Kim, T., Mu Lee, K.: Deep multi-scale convolutional neural network
for dynamic scene deblurring. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 3883–3891 (2017)

11. Schuler, C.J., Hirsch, M., Harmeling, S., Schölkopf, B.: Learning to deblur. IEEE
Trans. Pattern Anal. Mach. Intell. 38(7), 1439–1451 (2015)

12. Sun, J., Cao, W., Xu, Z., Ponce, J.: Learning a convolutional neural network for
non-uniform motion blur removal. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 769–777 (2015)

13. Tokui, S., et al.: Chainer: a deep learning framework for accelerating the research
cycle. In: Proceedings of the 25th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, pp. 2002–2011 (2019)

14. Xu, L., Jimmy, S.J., Ren, C.L., Jia, J.: Deep convolutional neural network for
image deconvolution. Adv. Neural Inf. Process. Syst. 27, 190–1798 (2014)

15. Zhang, K., Zuo, W., Gu, S., Zhang, L.: Learning deep CNN denoiser prior for
image restoration. In: Proceedings of the IEEE Conference on Computer Vision
Pattern Recognition, pp. 3929–3938 (2017)

http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1312.5602

	DeblurRL: Image Deblurring with Deep Reinforcement Learning
	1 Introduction
	2 Related Work
	3 Reinforcement Learning Background
	3.1 Reinforcement Learning with Pixel-Wise Rewards
	3.2 Actions

	4 Experiments
	4.1 Input and State Actions
	4.2 Implementation Details
	4.3 Results

	5 Conclusion
	References




