q

Check for
updates

Accelerated Stereo Vision Using Nvidia Jetson
and Intel AVX

Imran A. Syedl(g), Mandar Datarz, and Sachin Patkar’

! Center for Artificial Intelligence and Robotics, DRDO, Bangalore, India
imransyed@cair.drdo. in
2 Department of Electrical Engineering, IIT Bombay, Mumbai, India

Abstract. Stereo vision is a low cost and passive mechanism to perceive the
environment for robotic applications. The huge compute requirements of stereo
vision algorithms have been a major challenge for their usage in real world
applications on small robots. Standard stereo depth estimation algorithms Sum
of Absolute Differences (SAD), census transform and an advanced algorithm
Semi-Global Matching (SGM) are discussed in this work. This paper presents
novel real time implementation of these three stereo vision algorithms on two
different compute platforms i) Intel AVX (Advanced Vector Extension) and ii)
Nvidia Jetson GPU (Graphical Processing Unit). The Intel CPU implementation
of stereo algorithms is optimized by using OpenMP (Open Multi-Processing) for
multi-threading, AVX registers for vectorization and several other novel ideas
for real time processing. Nvidia Jetson implementation is efficiently designed for
maximum speed-up on a low end GPU such as Jetson TK1. Post processing
steps such as local extrema detection, left-right consistency and median filter are
used to improve the final disparity image. We have achieved speedup of the
order of 30x when compared with naive CPU implementation.

Keywords: Stereo vision * Depth estimation - Intel AVX - Nvidia Jetson *
GPU acceleration

1 Introduction

1.1 Stereo Depth Estimation

Stereo cameras are low cost and low SWAP (Size, Weight, And Power) devices due to
which they are used extensively in Autonomous aerial and ground robotic vehicles for
environment perception. Stereo cameras give a 3D perception of the environment
which can be used for applications such as Simultaneous Localisation and Mapping
(SLAM) [1], 3D obstacle avoidance [2], object detection etc. Depth estimation from
stereo cameras is one of the preliminary steps required for any of these 3D perception
algorithms. This is a computationally expensive problem and processing requirements
increases linearly with image size. To reduce the computation time, multi core CPUs or
General Purpose Graphical Processing Units (GPGPU) are used but have high power
requirements. Due to power constraints on the robotic platforms, low power embedded
systems such as Jetson GPU and FPGA boards have become popular due to their
massive parallelization capability.

© Springer Nature Singapore Pte Ltd. 2021
S. K. Singh et al. (Eds.): CVIP 2020, CCIS 1377, pp. 137-148, 2021.
https://doi.org/10.1007/978-981-16-1092-9_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-16-1092-9_12&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-16-1092-9_12&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-16-1092-9_12&domain=pdf
https://doi.org/10.1007/978-981-16-1092-9_12

138 I. A. Syed et al.

In this work, three algorithms have been attempted, Sum of Absolute Differences
(SAD), CENSUS & Semi-Global Matching (SGM) algorithms, which take in cali-
brated and rectified [4] stereo pair as input and produce a output disparity image which
can be converted to depth image using calibration parameters. SAD & CENSUS are
simple stereo algorithms that have lower accuracy but much faster in terms of compute
whereas SGM is complex algorithm that has higher accuracy but slower in terms of
compute. More complex deep learning based algorithms exist but low power real time
implementation of such algorithms is a challenge. SGM algorithm is being adapted and
published even in the recent journals owing to its robustness in varied environments.

1.2 Hardware Selection

For real time implementation of depth estimation algorithms from stereo cameras,
various hardware options are considered such as using (i) GPU cards in a desktop
computer, (ii)) FPGA boards, (iii) custom embedded boards, and (iv) exploiting the
multi core architecture of commercially available multi-core CPUs. GPU cards support
massive parallelization but have huge power requirement which inhibits their usage on
small platforms such as drones etc. Implementations of stereo algorithms on high end
GPUs exist in literature but they have not been adapted or fine-tuned for low powered
devices and hence do not perform as efficiently as our implementation. The second
alternative FPGA boards have been explored for stereo cameras and have shown
promising results as detailed in the literature survey. Custom products for aerial plat-
forms are available with FPGA hardware for stereo depth estimation. The third alter-
native is to use specialized embedded boards such as Nvidia Jetson which are low
power devices with GPU capabilities. These boards are used extensively for small
robotic platforms. We have chosen one such board TK1 from Jetson family to prove
the real time implementation on mobile platforms with low power. The fourth alter-
native is to use existing CPUs for depth estimation. Commercially available multi core
CPU architecture supports vector processing of instructions and multi-threading
capabilities, which can be exploited for fast processing without the use of any extra
hardware. In this paper we have established stereo depth estimation on Intel Xeon CPU
which can be extended to any Intel CPU with Advanced Vector Xtension (AVX) [3]
registers. In this work we have implemented on Intel Xeon CPU and Nvidia Jetson
independently. Nvidia Jetson is based on NVIDIA’s mobile processors Tegra, which is
a System on Chip (SoC) with ARM+GPU+ISP custom made by Nvidia for integrated
processing in low power devices. Jetson TK1 has 2 GB integrated memory with quad
core ARM processor A15 as well as 16 GB onboard memory. Compute Unified Device
Architecture (CUDA) programming language, developed by Nvidia, is used for pro-
gramming the Jetson device.

This paper presents a novel implementation of the stereo SGM algorithm proposed
in [10] with several ideas to reduce the computation time but not modifying the
algorithm itself. Some of these ideas have been explored already by other papers such
as OpenMP multi-threading, two pass approach, and vectorization. However, these
ideas have not been able to reach real time speeds. Additional ideas such as recursive
XOR for minima computation, AVX register usage, usage of shared GPU memory,
CUDA shuffle instructions and better memory coalescing has led to very fast depth

Accelerated Stereo Vision Using Nvidia Jetson and Intel AVX 139

estimation. Novelty of this paper lies in the implementation rather than the stereo
algorithms. The ideas presented in this work are not specific to SGM algorithm and can
be extended to other such algorithms as well but require detailed study and analysis of
the algorithm. Minima computation, two-pass approach, and vectorization are generic
in nature, which can be applied to any parallelization framework. But memory coa-
lescing and CUDA shuffle instructions have to be carefully designed for specific
algorithms.

2 Literature Survey

Stereo depth estimation papers date back from 1960 with accurate and faster solutions
being published even now. Stereo matching essentially finds the shift of each pixel in
left and right images on the corresponding horizontal epipolar lines. There are three
types of approaches for stereo depth estimation; local, global and machine learning
(ML) based.

In local approaches, a small window is selected around the pixel to match with the
candidate pixels in right image. The matching cost between two windows can be
computed using various distance measures such as Sum of Squared Distances (SSD),
Sum of Absolute Distances (SAD), Normalized Cross Correlation (NCC) [5]. Census
Transform [6] distance measure encompasses the contrast information and is compu-
tationally less expensive. Instead of a fixed window size, adaptive windows [7], shifted
window [8], hierarchical windows [9] have been proposed to improve the accuracy.
Global methods use constraints on the whole image and optimize a global cost function
to generate a disparity map and hence tend to be more accurate than the local methods.
SGM [10] is a global stereo disparity estimation method based on global mutual
information cost function minimization. Various versions of this method are still
among the top performing stereo algorithm on Middlebury datasets. In Graph cut
method [11] and Belief propagation methods are other such popular global methods.
A common problem with global methods is the large computation time as they involve
solving a global optimization problem. The paper [18] implements NCC based local
window matching algorithm (similar to SAD/CENSUS as discussed in this paper) on
Jetson TX2 (newer version of Jetson TK1).

Recent trend in stereo depth estimation problem is shifting towards Machine
learning. The main difficulty with machine learning approach is that it requires large
labeled datasets with ground truth. To solve this problem a large synthetic dataset [12]
is developed for training the neural network. FlowNet [13] was trained on this simu-
lated data but surprisingly performed well on real world datasets. In another approach
[14], self-learning approach is used where image warping loss function is used instead
of a labeled ground truth. However, these ML approaches requires GPU with 4 GB
memory per image and more than 100 W GPU power usage and optimizing these
approaches is a challenge in itself as deep learning model have become increasingly
complex over time and the usage of multiple libraries which are generic in nature and
are less optimized for that reason.

Optimization of the stereo depth estimation methods on the latest compute hard-
ware is an alternative solution to this problem. NCC based block matching is

140 I. A. Syed et al.

implemented in real-time [15] with good results but NCC is a simple block matching
technique with low accuracy when compared with SGM. SGM algorithm is accelerated
using FPGA hardware [16] to achieve 5 fps. M/s DIJI, which is an aerial drone man-
ufacturing company, has produced a product Guidance Kit, which uses FPGA for
stereo depth estimation. Even though FPGA is low powered and show promising
results, FPGA development is costly and not easily available for low production.
General purpose GPUs have massive parallelization capability and are used for
accelerating stereo vision in multiple applications but their power requirements have
been a hindrance for their application on small robotic platforms. Embedded imple-
mentation of SGM on Jetson has been explored in [17] with focus on GPU imple-
mentation but implementation on CPU has not been discussed. Optimization of the
algorithm using vector registers and multi-threading for use on Intel architectures and
low powered GPUs has not been explored in literature as per our knowledge.

3 Our Implementation

For real time implementation of stereo depth estimation, we have shown on two
different platforms. Nvidia Jetson was chosen due to its GPU, low power requirements
and portability on mobile robots. Intel CPUs were chosen due to their ubiquitous
presence and modern multi-core architectures. We implemented stereo algorithm in real
time on Intel Xeon CPU without use of any extra hardware.

3.1 Intel CPU Optimization

The main challenges were the shifting window approach and 8-directional cost update
step. The shifting window approach involves repeated memory access and computation
on the same pixel. Cost update step involves aggregating cost from 8 different direc-
tions as per the update equation which requires computing the minimum and aggre-
gating for each pixel across disparity space. These challenges are addressed using
OpenMP and AVX registers of the CPU as well as algorithmic changes such as
dividing the cost computation in two steps for saving memory access, recursive XOR
for computing minimum in logarithmic complexity, and vectorization of the instruc-
tions, which are detailed in this section. This has led to a speedup of ~50x on a Intel
Xeon processor.

SAD Algorithm. For each pixel in the left image, a fixed number of candidates (N) are
chosen in the right image. This fixed number is called disparity range. For each can-
didate window, the SAD distance measure is computed with the reference window. In
case of serial implementation, the absolute differences and summations are recomputed
multiple times for neighboring pixel since neighboring blocks have almost the same
reference blocks. Moreover, this leads to repeated memory access of same element. In
our approach, all the absolute differences are computed in first pass, by shifting the
right image successively by one pixel and saving the stack of difference images as
shown in Fig. 1. The computation of absolute difference for each shift is done using
AVX instructions which compute 8 pixels in one instruction. Also multi-threading is

Accelerated Stereo Vision Using Nvidia Jetson and Intel AVX 141

used to parallelize the processing so that each thread works on fixed number of col-
umns depending on the available cores. In the second pass, for each image of the stack,
a box filter is applied to compute the summation. Then the minimum is chosen across
stack for each pixel. This improves the speed from naive approach by ~ 15x.

D=0
Left image D=1
Stack of diff images (3‘2"“’:; ':Z;:(azr
For di ities 0-32
Sor each pixel)
Rightimage

Fig. 1. SAD optimization

CENSUS Algorithm. For each pixel, a CENSUS vector is computed for every win-
dow and hamming distance measure is computed with reference window.
Since CENSUS uses contrast information in the window, it eliminates sensitivity to
absolute intensity and to outliers. In naive implementation, neighbouring pixels com-
pute CENSUS vectors repeatedly for same reference pixels. This is optimized by
dividing the process in two passes. In the first pass, all CENSUS vectors are computed
for both images, using multi-threading and vectorized instruction set and saved as 64-
bit integers(window size of 9 x 7 is chosen). In the second pass, hamming distance is
computed between candidate pixel and reference pixels. 128-bit AVX registers are used
for computing hamming distance processing 4 pixels, simultaneously. The minimum
cost computation uses recursive XOR mechanism using AVX registers, which will
reduce the number of instructions to logarithmic scale. The naive implementation takes
2 s, where as our implementation took only 20 ms with a speedup of 100x on Intel
Xeon CPU.

Table 1. Computation times of SAD/CENUS on Intel AVX

Dataset Time in milliseconds

SAD CENSUS

Naive | Intel AVX | Naive | Intel AVX
Cones128 | 2569 | 164 2215 |14
Tsukuba32 | 1733 | 171 1464 |12
Teddy128 |2640 |165 2199 |16
Sawtooth32 | 2530 | 159 2193 |14

SGM Algorithm. SGM [10] tries to minimize a global cost function with smoothness
constraints using the Eq. 1. The notations are same as in the SGM [10]. The cost (C) at

142 I. A. Syed et al.

each pixel (p) in the disparity space (d) is updated with the penalized (P1, P2) minimum
cost of the previous pixel(L’) in a given direction(r).

L(p—rd),
/ B | Lp—rd—1)+P,
L(p,d) = Clp,d)+min| 7(p _r d+41)+P, (m)

miinL’r(p —r,i)+P;

The naive CPU implementation takes a very long time (>4 s for Teddy Image) as it
involves global cost optimization. SGM has four steps, first step computes the initial
cost per disparity value, second step updates the costs with eight directional opti-
mizations and third step aggregates the cost and the fourth applies cost minimization
for disparity estimation.

In the first step, SGM proposes mutual information based cost metric, but in
literature, other matching cost computation methods achieved either similar or better
results. In this work, we have tested various cost metrics and found census transform to
be better as a distance measure. The optimization on the computation of CENSUS
vector is already discussed. So we explain the cost update and aggregation steps in
detail.

In 8-directional cost update step, for each direction, boundaries are identified and
are filled with existing cost values from the initial cost matrix. The 8 directional cost
updates are parallelized using multi-threading. In each direction, cost is updated
sequentially using the SGM equation. Since the cost is an 8-bit value, SGM update
equation for 16 cost values can be processed in a single AVX-128 vector instruction.
The minimum of the previous pixels’ disparity values is needed as per the SGM
equation. The minimum is computed using recursive XOR mechanism which reduces
the number of instructions to logarithmic scale.

In the cost aggregation step, all the 8 directional costs are aggregated and the
accumulated cost will require 2 bytes memory. This requires processing the high and
low byte separately due to which we can effectively process only eight costs at once
instead of 16 as in previous step. The minima computation is done along with this step
to save the memory access. This approach has a ~50x speed up in case of Teddy
image with 128 disparity levels on Intel Xeon ES processor with 20-core architecture.
The results with other datasets are tabulated in Table 1 and Table 2.

Table 2. Computation times of SGM on GPU

Dataset Time in milli
seconds

Naive | Intel AVX
Cones128 | 4286 |81
Tsukuba32 |2807 |54
Teddy128 |4252 |82
Sawtooth32 | 4129 |78

Accelerated Stereo Vision Using Nvidia Jetson and Intel AVX 143

3.2 Nvidia Jetson Implementation

The algorithm implementation is custom designed for our target - Jetson TK1 board.
The main challenges with this board are the lower number of cores (192), slow texture
memory and thread availability. These challenge are addressed by exploiting the shared
memory per block in the GPU, CUDA PTX instruction set, diving the summation in
two steps, better memory coalescing and using CUDA shuffle instructions for accessing
data from neighboring threads inside a GPU warp. We designed the implementation for
maximum thread utilization to use the available cores to the full extent possible instead
of maximum number of threads. This has led to a speedup of ~30x which enable us to
use SGM in real time applications.

SAD/CENSUS Algorithm. In both these algorithms, at every pixel, a window of size
9 x 7 is required, which makes it imperative to use 2D GPU blocks. Images are
divided into GPU bocks of size 32 x 32 with each thread working on one pixel. At
every pixel, 63 global memory read operations are required. To reduce this, texture
memory is generally used for images but in Jetson GPU, texture memory implemen-
tation is actually found to be slower than global memory, which can be attributed to
limited resources in Jetson. So shared memory is used in this work to reduce the
memory read operations and results are shown in Table 3. Every GPU block has a fixed
amount of shared memory and all thread in the block use this shared memory. Padded
blocks of size (32 + 8) x (32 + 6) are used to manage pixels on borders as shown in
Fig. 2. Each thread populates the shared memory by single read from the global
memory. So the total number of global memory reads per thread are reduced from 63 to
(40 * 38)/(32 * 32) ~=1.5.

Table 3. CENSUS vector computation times

Time (msec) | Global memory | Texture memory | Shared memory
Cones 5.6 7.7 2.95

Tsukuba 3.29 5.28 1.86

Teddy 6.5 8.2 2.3

Sawtooth 5.22 7.47 2.82

Image

Fig. 2. GPU Kernel design of the 2D blocks for cost computation

144 I. A. Syed et al.

In case of SAD algorithm, a single GPU kernel computes the disparity from the two
images. The absolute differences are computed using CUDA PTX Instruction and are
saved in the shared memory. Summation of this absolute difference in a window can be
used for neighboring window summation. This is done using thread synchronization
inside a GPU block in two steps, one for all vertical summations in the shared memory
and then horizontal summation for each pixel. This saves considerable compute time.

Fig. 3. GPU block diagram for CENSUS

In case of CENSUS, two kernels are used as shown in Fig. 3. In the first kernel,
shared memory is used to create CENSUS vectors at every pixel in both images. This
kernel is very fast since only comparison operation is used. In the second kernel, the
hamming distance is computed for each pixel in left image with all candidates in the
right image. Since the candidates are horizontal epipolar line, each row in the image is
processed by one GPU block as shown in Fig. 4(a) and the full row of the right image
is saved in the shared memory. Global memory reads per thread are reduced from N
(disparity range) to 2 (one per image). In case of large images, shared memory may not
be enough to save the full row. In such cases, data can be processed in multiple chunks.
For better memory coalescing, each GPU block uses Disparity Range (N) number of
threads. The minimum computation is also done in this hamming distance kernel and
the best disparity is written to the disparity image.

N
Y
¥
& GPU Block H
DSI Matrix DSI Matrix
w
(a) (b)

Fig. 4. GPU kernel design for (a) Hamming distance, and (b) for cost aggregation in top-down
direction

Accelerated Stereo Vision Using Nvidia Jetson and Intel AVX 145

SGM Algorithm. SGM has 4 main steps; cost computation, cost aggregation, cost
minimization and post processing are implemented using multiple kernels. The cost
computation is same as CENSUS kernel already discussed. The hamming kernel is
similar except that instead of finding minimum, the actual cost values are saved to a 3D
cost matrix. The cost matrix is designed for better memory coalescing by placing all the
disparity levels for a pixel in contiguous memory locations.

In the 8-directional cost update step, for each direction, a kernel is designed and
these kernels can run in parallel basing on streaming microprocessor (SMP) availability
on the GPU. Each kernel updates the cost on separate cost 3D matrix. This enables us
to have one write operation in each thread i.e. fast compute at the expense of more
memory requirement. For top to bottom direction kernel, we can see that there is
vertical dependency of data. So every vertical column is processed by a GPU Block as
shown in Fig. 4(b). Shared memory cannot be used in this case as the dependency for
each row is the previous row which will be varying at every iteration. Inside each
block, numbers of threads is chosen to be equal to the disparity range (N), which is 128
in our case. We have designed to use 32 threads in a single block and each thread
processing 4 disparity values, thus working on 128 disparity levels in total. Spe-
cial CUDA shuffle instructions are used for communication across threads inside a
warp (32 threads) to compute minimum. The description is demonstrated in the Fig. 5
where a 8 lanes are shown and in each step half the comparisons are done to get to the
minimum. Each of these lanes is a thread.

Lane

[e[7fels]a]a02]"]
e

xorwithox11 [1| 2 [[a | [[[]

/

XOR with 0x011 ‘ 1 | 3 ‘ ‘ | l l | I

e

XORWithOxOOl‘ 1 | l l l l | I ‘

Fig. 5. XOR minima computation

The other directions of left to right, right-left and bottom-top also follow a similar
approach, with only the direction and orientation of GPU block varying. In the case of
diagonal kernels, slanted image slices are used. At boundaries, the column index is
wrapped back to zero so that it starts at the first column of the next row. This way, only
W blocks are required and each block works on same number of pixels for diagonal
kernels too.

The cost aggregation and cost minimization happens in the last cost update kernel
itself, which saves one memory access for every pixel since current cost is already with
the thread. Minimum computation is done using CUDA shuffle instructions and
CUDA PTX, which improves the efficiency. To optimize further, vectorization is used
to process four disparity values in a single instruction of 4 bytes.

146 I. A. Syed et al.

To suppress salt and pepper noise, median filter is applied to the disparity image
using the 2D tiled GPU blocks. Occlusion is removed by using left to right consistency
check. This can be performed on the same aggregated cost matrix instead of computing
again from right image to left image. To manage discontinuities, background aware
interpolation is used. By using these post-processing steps, accuracy is improved
further but the speed reduces and should be used only if very accurate depth is required.
The results are tabulated in Table 4 and Table 5.

Table 4. Computation times of SAD/CENUS on GPU

Time (msec) | SAD CENSUS
Naive | Jetson | Naive | Jetson
Cones 2569 |30 2215 124
Tsukuba 1733 |25 1464 |10
Teddy 2640 |31 2199 | 114
Sawtooth 2530 |31 2193 |11.8

Table 5. Computation times of SGM on GPU

Time (msec) | Naive | Jetson

Cones 4286 | 122
Tsukuba 2807 | 71
Teddy 4252 130

Sawtooth32 | 4129 | 123

The computational complexities of SAD algorithm is O(WxHxDxN) where W, H
are width and height of the image, D is the maximum disparity levels and N is the
window size. For naive CENUS algorithm the complexity is the same as SAD, whereas
two pass CENSUS algorithm has a complexity O(WxHx(D+N)). We can see that the
multiplication (NxD) part has been divided into 2 steps which reduced the complexity
to addition (N+D). Since SGM uses the 2 pass CENSUS feature vectors, the com-
plexity of SGM is given as O(WxHx(N+18D)) where the cost aggregation and minima
computation leads to the 18 times access of each element in the DSI. Given a
640 x 480 image, with window size of 9 x 7 and 128 disparity values the com-
plexities are 2.5 x 109, 5.8 x 107, 7.2 x 108 respectively for SAD, 2-pass CENSUS
and SGM. We can notice that the computational complexity of SGM is less than SAD
but 3D array memory access slows down the SGM drastically in practical
implementation.

Middleburry dataset have been used for testing the algorithms and the qualitative
bad pixel percentages are tabulated in Table 6. This paper shows that the computation
time is optimized for the exact same result as the naive implementation and so the bad

Accelerated Stereo Vision Using Nvidia Jetson and Intel AVX 147

Table 6. Qualitative comparison of SAD, CENSUS and SGM

Error pixels (%) | SAD | CENSUS | SGM
Cones 18.3 |20.1 6.9
Tsukuba 14.0 | 12.2 5.7
Teddy 16.6 | 18.2 7.1
Sawtooth 19.2 20.1 7.0

pixel numbers will not increase and remain exactly same for both implementations. The
algorithms have also been tested on real-time ZED stereo camera images as shown in
Fig. 6. As the ground truth is not available for these images, accuracy cannot be
computed.

Fig. 6. Left image and SGM disparity image

4 Conclusion

In this work, it is established that optimum utilization of resources led real time
implementation of stereo vision algorithms which was otherwise not feasible. Opti-
mization of the algorithm on Intel Xeon CPU is shown to achieve ~50x speed-up
without using any extra hardware, compared to naive implementation on same. Also
efficient design of parallelization framework on Nvidia Jetson GPU is proven to
increase the speed by 30x compared with naive implementation on the Intel Xeon CPU
with < 10 W power usage. Several techniques for optimization in CPU as well as GPU
are discussed which led to the improvement, such as OpenMP multi-threading, two
pass approach, vectorization, recursive XOR for minima computation, AVX register
usage, usage of shared GPU memory, CUDA shuffle instructions and better memory
coalescing. We achieved real time implementation of these algorithms and demon-
strated the results on recorded stereo data as well as on the live images from ZED stereo
camera using Nvidia Jetson board as well as Intel Xeon processor. Using these depth
images for fast obstacle avoidance on a drone is the immediate extension of this work.

148

I. A. Syed et al.

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

. Mur-Artal, R., Tardés, J.D.: ORB-SLAM2: an open-source slam system for monocular,

stereo, and RGB-D cameras. IEEE Trans. Rob. 33(5), 1255-1262 (2017)

. Broggi, A., Caraffi, C., Fedriga, R.I., Grisleri, P.: Obstacle detection with stereo vision for

off-road vehicle navigation. In: 2005 IEEE Computer Society Conference on Computer
Vision and Pattern Recognition (CVPR 2005)-Workshops (2005)

. Anderson, C.S., Zhang, J., Cornea, M.: Enhanced vector math support on the Intel® AVX-

512 architecture. In: 2018 IEEE 25th Symposium on Computer Arithmetic (ARITH) (2018)

. Fusiello, A., Trucco, E., Verri, A.: A compact algorithm for rectification of stereo pairs.

Mach. Vis. Appl. 12(1), 16-22 (2000). https://doi.org/10.1007/s001380050120

. Mattoccia, S., Tombari, F., Di Stefano, L.: Fast full-search equivalent template matching by

enhanced bounded correlation. IEEE Trans. Image Process. 17(4), 528-538 (2008)

. Banks, J., Bennamoun, M., Corke, P.: Non-parametric techniques for fast and robust stereo

matching. In: TENCON 1997 Brisbane-Australia, Proceedings of IEEE TENCON 1997,
IEEE Region 10 Annual Conference, Speech and Image Technologies for Computing and
Telecommunications (Cat. No. 97CH36162) (1997)

. Kanade, T., Okutomi, M.: A stereo matching algorithm with an adaptive window: theory and

experiment. IEEE Trans. Pattern Anal. Mach. Intell. 16(9), 920-932 (1994)

. Fusiello, A., Roberto, V., Trucco, E.: Efficient stereo with multiple windowing. In:

Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern
Recognition (1997)

. Bergen, J.R., Anandan, P., Hanna, K.J., Hingorani, R.: Hierarchical model-based motion

estimation. In: Sandini, G. (ed.) ECCV 1992. LNCS, vol. 588, pp. 237-252. Springer,
Heidelberg (1992). https://doi.org/10.1007/3-540-55426-2_27

Hirschmuller, H.: Stereo processing by semiglobal matching and mutual information. IEEE
Trans. Pattern Anal. Mach. Intell. 30(2), 328-341 (2007)

Kolmogorov, V., Zabih, R.: Computing visual correspondence with occlusions using graph
cuts. In: Proceedings Eighth IEEE International Conference on Computer Vision. ICCV
2001 (2001)

Mayer, N., et al.: A large dataset to train convolutional networks for disparity, optical flow,
and scene flow estimation. In: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (2016)

Ilg, E., Mayer, N., Saikia, T., Keuper, M., Dosovitskiy, A., Brox, T.: FlowNet 2.0: evolution
of optical flow estimation with deep networks. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (2017)

Zhong, Y., Dai, Y., Li, H.: Self-supervised learning for stereo matching with self-improving
ability. arXiv preprint arXiv:1709.00930 (2017)

Fan, R., Dahnoun, N.: Real-time implementation of stereo vision based on optimised
normalised cross-correlation and propagated search range on a GPU. In: 2017 IEEE
International Conference on Imaging Systems and Techniques (IST) (2017)

Honegger, D., Oleynikova, H., Pollefeys, M.: Real-time and low latency embedded
computer vision hardware based on a combination of FPGA and mobile CPU. In: 2014
IEEE/RSJ International Conference on Intelligent Robots and Systems (2014)
Hernandez-Juarez, D., Chacon, A., Espinosa, A., Vazquez, D., Moure, J.C., Lopez, A.M.:
Embedded real-time stereo estimation via semi-global matching on the GPU. Procedia
Comput. Sci. 80, 143-153 (2016)

Cui, H., Dahnoun, N.: Real-time stereo vision implementation on Nvidia Jetson TX2. In:
2019 8th Mediterranean Conference on Embedded Computing (MECO). IEEE (2019)

https://doi.org/10.1007/s001380050120
https://doi.org/10.1007/3-540-55426-2_27
http://arxiv.org/abs/1709.00930

	Accelerated Stereo Vision Using Nvidia Jetson and Intel AVX
	Abstract
	1 Introduction
	1.1 Stereo Depth Estimation
	1.2 Hardware Selection

	2 Literature Survey
	3 Our Implementation
	3.1 Intel CPU Optimization
	3.2 Nvidia Jetson Implementation

	4 Conclusion
	References

