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Abstract. In recent years, a number of manifold learning techniques
have been proposed in the literature to address the age estimation prob-
lem. In manifold methods, appearance features are projected onto a
discriminant aging subspace and the age estimation is performed on
the aging subspace. In these methods the manifold is learn from the
gray intensity images. We propose a feature based discriminant manifold
learning and feature selection scheme for robust age estimation. This
paper also presents an experimental analysis of the manifold learning
and feature selection schemes for age estimation. The exact age value is
estimated by applying regression on the resultant feature vector. Experi-
mental analysis on a large scale aging database MORPH-II, demonstrate
the effectiveness of the proposed scheme.
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1 Introduction

Human face conveys significant information for human to human as well as
human-machine interaction. Estimating various facial attributes such as age,
gender and expression plays a vital role in various forensic, multimedia and law
enforcement applications. Facial aging related research is broadly classified into
three categories: age estimation, age synthesis and age invariant face recognition.
Age estimation and synthesis mainly consider aging information that change due
to aging.

Although significant research has been carried out on age invariant face
recognition, relatively few publications have been reported on age estimation
[4,11,15,31,35]. This is due to various factors such as complex biological changes,
lifestyle, ethinicity skincare. These various factors changes the shape and tex-
ture of the face. Different aging patterns are observed due to diversity in cli-
matic conditions, races and lifestyle. Due to such large variations, it is difficult
even for humans to precisely predict a person’s age from the facial appearances.
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In the recent years, many efforts have been devoted to identify discriminant aging
subspaces for age estimation. Some representative subspace learning methods
used for age estimation include principal component analysis (PCA) [9], local-
ity preserving projections (LPP) [21], orthogonal locality preserving projections
(OLPP) [1], and conformal embedding analysis (CEA) [11,16]. The basic idea
of the subspace learning methods is to find a low-dimensional representation in
an embedded subspace and then perform regression in the embedded subspace
to predict exact age. Geng et al. [14] proposed a subspace called AGing pat-
tErn Subspace (AGES) to learn personalized aging process from multiple faces
of an individual. For age group classification, Guo et al. [16] used manifold based
features and Locally Adjusted Robust Regressor (LARR).

Manifold feature descriptors are characterise by a low dimensionality. Apart
from age discriminative information, it also contains other related information
such as identity, expression and pose. Therefore for achieving large improvements
in age estimation, it is important to figure out which feature is more appropriate
and important for describing the age characteristic. Existing manifold methods
extract manifold features from the gray intensity or image space. However, the
image space is inefficient to model the large age variations. The texture features
such as HOG [7], SIFT [27] and GOP [26] are used to capture the textural varia-
tions due to aging. But the manifold of such feature space has not been explored
for age estimation. Also, selection of relevant features from these texture fea-
tures is an important direction in this area. In this paper, we present analysis of
manifold and feature selection methods and their quantitative impact on the age
estimation. We extract age-discriminative features from the manifold subspace
as well as through feature selection for age estimation. The main advantages of
these features are low dimensionality, robustness under illumination variation
and intensity noise resulting in improved performance.

2 Related Work

Early research on age estimation mainly focused on anthropometric measure-
ments to group facial images into different age groups. Following the develop-
ment of local features, instead of age classification, much attention was focused
on exact age estimation. Recent research in age estimation is classified based
on the feature extraction and the feature learning methods. In this section, we
briefly review them based on the facial features and learning methods for age
estimation.

2.1 Aging Feature

After preprocessing, facial feature extraction is first step in typical age estima-
tion approach as shown in Fig. 1. Early age estimation approaches used Active
Appearance Models (AAM) [6] for shape and texture representation. These sys-
tems utilize the shape and texture variations observed in the facial images. Lani-
tis et al. [25] proposed a person-specific age estimation method, wherein they
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Fig. 1. Age estimation framework.

have used AAM to extract craniofacial growth and aging patterns at different
age groups. Further, various age estimation approaches [4,13,14,24] proposed
variations in AAM to capture aging patterns for age group classification. In case
of AAM based methods, accurate localization of facial landmarks is a deciding
factor for performance improvement.

For appearance feature extraction, apart from the earlier listed global fea-
tures, histogram based local features like HOG, LBP, SIFT, BIF and Gabor
are also used. Bio-Inspired Features (BIF) proposed in [19] for age estimation is
based on a bank of multi-orientations and multiscale Gabour filters. Recently,
for age estimation variants of BIF have been used [17,18,20]. BIF is specially
designed for age estionation. Various existing local features that are also used
for aging feature representation [10,22,33,36]. In [33], combination of PCA, LBP
and BIF is used as aging feature. In [28] combination of global and local features
is proposed. AAM is used for global feature representation whereas LPQ, LBP
and Gabor for local feature extraction. Feature fusion is followed by dimension-
ality reduction for compact representation of the feature vector. HOG is used as
aging feature in [10,22], whereas MLBP and SIFT are used as feature vectors in
[36] for age estimation approach.

Besides, the local and global facial features, manifold based features are used
to learn low dimensional manifolds. Various methods such as PCA, LPP, OLPP,
and CEA are used in age estimation approaches. In these methods, low dimen-
sional representation in embedded subspace is learned and age estimation is per-
formed in the embedded subspace. Personalized aging process is learned from
multiple faces of an individual using a AGing pattErn Subspace (AGES) [14].
Although, the performance of manifold based features is better than the image
based features, these methods require large training data to learn the manifold.

2.2 Age Regression

After feature extraction, classification or regreesion methods are applied on the
local features for age group classification or exact age estimation respectively.
Information obtained from the facial feature has been effectively used by vari-
ous learning methods for regression or classification. Age estimation from facial
images falls under two categories of machine learning, classification and regres-
sion. For age group classification, an age range is treated as a class lable, whereas,
for the regression it is treated as an ordered continuous value. Initial work on
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age estimation in [24] compared the performance of Artificial Neural Networks
(ANN), quadratic function and nearest neighbor classifier for age classification.
Performance of quadratic function and ANN is found to be better than near-
est neighbor. Moreover, Support Vector Regression (SVR) and Support Vector
Machine (SVM) [8] are the most popular choices for age estimation. Aging pat-
ters are learned in [17] using KPLS regression. Age values represents ordered
information this relative order information is encoded in Ordinal Hyperplane
Ranking algorithm (OHRank) in [4]. Other than above mentioned regression
methods, a Gaussian process based multitask warped gaussian process regres-
sion was developed in [35] for person specific age estimation. To reduce compu-
tational burdon during training an efficient version of WGP called Orthogonal
Gaussian process (OGP) regression was proposed in [36].

Discriminant manifold subspaces are explored to encode the face for age esti-
mation. OLPP technique is used in [12] and [11] to extract discriminant aging
subspace. These methods learn the aging subspace from the raw image space,
which is not able to represent the large facial variations due to aging. Vari-
ous local feature descriptors such as LBP, HOG and SIFT are available in the
literature which encode the facial features such as fine lines, smoothness, and
wrinkles. We propose a method to extract age relevant features from the fea-
ture space instead of raw image space. Also, it is not known in advance which
manifold is suitable for the age discriminative feature. We provide experimental
analysis of feature manifold for age estimation. The local feature descriptors such
as HOG, SIFT etc. extract important gradient and edge information and they
are used for facial analysis. Hence it is important to select the age discriminative
features from them. Among various machine learning approaches, feature selec-
tion is a technique which selects and rank relevant features according to their
degrees of relevance and preference. In the literature of age estimation use of the
feature selection method has not been identified. In this paper, we extract the
age discriminative features using the feature selection methods.

Section 1 presents introduction followed by literature survey in Sect. 2. The
proposed method is presented in Sect.3 while Sect.4 presents experimental
results. Section 5 presents the final conclusion of this paper.

3 Proposed Work

The proposed age estimation framework mainly incorporates four modules: face
preprocessing, feature extraction, feature transformation/ selection, and regres-
sion. In the first stage, face images undergo normalizations such as pose cor-
rection and histogram equalization. Then, the histogram-of-oriented-gradient
(HOG) feature is computed for each image. Being histogram based local feature,
the dimension of the extracted feature vector could be very high depending on
the number of scales and orientations. High dimensionality of the extracted local
features is in general handled by dimensionality reduction technique. However in
the dimensionality reduction, it is not analysed whether the transformed space
truly represents the aging subspace. It is possible that the transformation of
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the local features by dimensionality reduction technique may lead to a subspace
which is not discriminative for age estimation. For analysis of facial images var-
ious local feature descriptors such as HOG, SIFT, LBP are used. These local
descriptors are found suitable for both face recognition as well as age estimation
task. Which implies these features carry information about both identity and
age. But the dimensionality reduction techniques are not able to discriminate
between aging feature and other facial features while reducing the dimension
of the local features. Hence, it is highly essential to select only those features
which carry the relevant aging information. Therefore, along with the analysis of
manifold features, we also provide the analysis of feature selection methods for
age estimation. After extracting relevant feature we apply orthogonal Gaussian
process regression for estimating exact age.

3.1 Aging Manifold Features

Suppose the facial feature space F is represented as F = { fi: fi €RP }i\il where
D is dimension of the data and N is number of face images. True age labels q;
are represented as y = {a; : a; € N}fvzl. We want to learn a low dimensional
manifold G that is embedded in F and subsequently a manifold aging feature

{zi tx; € Rd}il with d << D. More specifically, our goal of learning the mani-

fold is to find a D x d projection matrix P = [py,ps--- ,pq] such that X = PTF
where F' = [f1, fa, -, fn] € RP*N . Various linear as well as nonlinear man-
ifold learning techniques are available in the literature. Different from linear
techniques, the nonlinear methods are designed to handle complex nonlinear
data. Real world data mostly forms a highly nonlinear manifold. In such situ-
ations the solution lies with the nonlinear dimensionality reduction techniques.
It should be noted that, in case of complex artificial tasks, the performance of
nonlinear techniques surpasses that of linear counterparts. We adopt various fol-
lowing linear as well as nonlinear techniques for learning the manifold features
from the feature space.

Principle Component Analysis (PCA). The PCA is a popular dimensional-
ity reduction technique which constructs a low-dimensional representation of the
data that is based on data variance. In PCA the projection matrix is obtained as
argmax(PTSP) where S denotes the scatter matrix. In PCA, important infor-
lPlI=1

mation is extracted using data variance and further this information is expressed
into a set of orthogonal basis popularly known as principal components (PCs).
The principal components are obtained such that the first principal components
retain maximum variance. The principal components are the eigenvectors of a
data covariance matrix.

Isometric Feature Mapping ISOMAP. In many practical applications high-
dimensional data lies on or close to a smooth low-dimensional manifold. In case of
low dimensional representation, if pairwise Euclidean distances are considered
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then two data points which are near in the original space may remain far in
manifold space. This problem is solved by preserving pairwise geodesic distances
between datapoints in Isomap [30] technique. The distance between any two
points measured along the surface is called as Geodesic or curvilinear distance.
For given datapoints (xi)i]il the geodesic distances are computed by constructing
a neighborhood graph. In the neighborhood graph, the connection between the
each datapoint z; is established based on its k£ nearest neighbors (xij)le in the
dataset X. Finally classical PCA is applied to the matrix of graph distances to
construct an embedded manifold. Limitation of the Isomap algorithm is the high

computational complexity.

Locally Linear Embedding (LLE). Local Linear Embedding (LLE) also
constructs a graphical representation of the datapoints. Local properties of the
data are preserved by this technique. In LLE, linear combination of nearest
neighbors is used to represent high dimensional datapoints.

In case of LLE, the low-dimensional representation is achieved by retaining
the reconstruction weights in the linear combinations as much same as possible.
To encode the local properties of the manifold around a datapoint x; linear
combination of datapoint are written as a linear combination of its k nearest
neighbors x;;. Due to the local linearity assumption, the reconstruction weights
w; of the datapoints x; become invariant to rotation, translation and scaling.
Such invariance to the transformations preserves the reconstruction weights in
the lower dimensional space.

Orthogonal Locality Preserving Projections (OLPP). Using the LPP
[21] approach, the OLPP constructs orthogonal basis for discriminative manifold.
The local neighborhood distance information is used in LPP to preserve manifold
structure. The weight is computed as s;; = exp (M) if z; and z; are k
nearest neighbors else s;; = 0. The optimal projection matrix is computed from,

N N
pP= i PTa; — PTa;)’ s 1

3.2 Feature Selection

Among various machine learning approaches, feature selection is a technique
which selects and rank relevant features according to their degrees of relevance
and preference. Reduction of dimensionality and noise in data sets is the main
objective of feature selection which further results in the improvement of the
accuracy and performance of classification or regression methods. The feature
selection problem is defined as: given a feature space F = { fi: fieRP }jvzl of
N face images and ground truth a;, the feature selection problem is to find a
low subspace of relevant d dimensional features from the D dimensional feature
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space (d << D) that optimally characterizes the ground truth. The optimal-
ity condition is generally given to select the best features. Feature selection
methods are applied to select low dimensional discriminative feature subspace
from the high dimensional indiscriminative features. Feature selection methods
are categorized as wrappers, embedded methods and filter methods. Classifiers
are used in wrappers to assign the scores to the feature subset. The selection
process is embedded in the classifiers for feature selection in the embedded meth-
ods. The filter method ignores the classifiers and analyzes intrinsic properties of
the data for feature selection. Ranking and subset selection are two important
operations in the feature selection techniques. In this work, our focus is mainly
on filter methods which are computationally efficient than wrapper methods [4].
Among filter methods, we adopt Laplacian Scores (LS) and maximum-Relevance
Minimum-Redundancy (mRMR) as discriminative aging feature selection meth-
ods for age estimation

Laplacian Score (LS). For relevant feature selection Laplacian score uses
an unsupervised learning method i.e. k-means clustering, hence LS is also an
unsupervised method. In LS, using the locality preserving power of the feature,
a score for each feature is computed. Using (2) the Laplacian Score L,. of the 7
feature f, is computed.

> (fri — Fri)? S
var(fr)

where var(f.) represents the variance of the r* feature, S;; denotes the
similarity between two nodes which is nonzero if nodes are in k-neighbor of
each other. Relevant feature implies the larger value of S;;, smaller difference
(fri — frj) which results into smaller Laplacian Score. Therefore, the ascending
order of the score represents the importance of the features.

L, = (2)

max-Relevance Min-Redundancy (mRMR). One of the popular
approaches to feature selection is a max-Relevance Min-Redundancy. It is a
supervised feature selection algorithm that selects the features with the highest
relevance to target class (label). Correlation or mutual information is used to
characterize the degree of relevance. For given two features f; and f; the mutual
information I (f;, f;) is computed as,
A 3 p(fi, f3) >
1) = S o (2l 0

To measure the relevance level or a similarity level among the features the
mutual information is used. Our objective is to select dissimilar features so that
redundancies are avoided. Dissimilarity implies minimum or less redundant fea-
ture which results into compact and relevant feature set and hence a better



Feature Selection and Feature Manifold for Age Estimation 119

and low dimensional representation of the dataset. The minimum redundancy
condition to acquire the subset S of selected features is defined as,

1
minWI, W]:ﬁ E I(fiafj) (4)
1517 i5es

where |S| denotes number of features in subset S. The maximum relevance con-
dition is given by,

1
mazVy, Vi=ig > I(cf) ()
151 5%
where ¢ represents the target class labels ¢ = (¢1,c2, -+ ,cn). In mRMR,

relevant features are selected by optimizing both (4) and (5).

3.3 Regression

After finding the low-dimensional representation of the facial image space via
manifold embedding and/or feature selection, we define the age estimation as a
regression problem. Various linear and nonlinear regression methods are avail-
able in the literature. For a comparative analysis of the manifold and features
selection methods we use Orthogonal Gaussian Process (OGP) regression [306]
on the extracted aging feature.

4 Experiments and Results

4.1 Experimental Setup

For benchmarking with the state-of-the-art methods, we have used We have
MORPH 1I [29] facial aging database. It consist of 55,314 facial images spanning
the age range 16 to 77 years. The images in this database contain large variations
with respect to ethnicity, age and gender. Due to different ethnic origins different
errors level are observed. To avoid this biasness on the performance [2,3,5,32]
selected images from only Caucasian descent for the experimentation. We have
also followed similar settings and used a randomly selected set of 10,000 images
of Caucasian descent for experimentation. We have used 80% of them are used
for training and 20% for testing.

4.2 Experiments and Results

For evaluation of the proposed method we have used two popular evaluation
metrics i.e. Cumulative Score (CS) and Mean Age Error (MAE). To demon-
strate the effectiveness of the manifold learning and feature selection scheme,
we perform regression on the aging features extracted from the manifold and
through feature selection. MAE and CS values using different manifold and fea-
ture selection techniques are listed in Table 1. We observed that feature selection
methods are more suitable for age estimation than the manifold learning.
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Table 1. Performance of the proposed method with different feature transformation
and feature selection methods.

Method Reduced feature dimension | MAE (Years)/CS @ 5 Years (%)
PCA 500 5.2/60.98

OLPP 500 4.65/71.35

ISOMAP 400 4.75/69.75

LLE 500 4.18/73.51

mRmR 500 3.53/81.2

Laplacian score | 400 3.51/80.7

Furthermore, we have also analyzed the effect of dimensionality of various
manifold and feature selection methods on MAE. Upper limit for the reduced
dimensionality was selected as 500. Figure 2 compares MAE versus dimension-
ality of various manifold and feature selection methods. We clearly observe in
Fig. 2 that feature selection methods surpass the manifold learning methods. We
also compare the proposed approach with the state-of-the-art age estimation
algorithms such as Scattering Transform (ST) [2], RED-SVM [3], CA-SVR [5]
and Relative Attribute+SVM [32]. Benchmarking results of the proposed app-
roach and various state of-the-art approaches in terms of CS at 5 years error and
MAE are presented in Table 2 and shown in Fig. 3. Clearly, the proposed method
surpasses the competing approaches in terms of MAE and CS. Therefore, the
feature selection is an important direction for age estimation and discriminative
manifold learning.

i T T T T
—O— mRMR+Regression
6.5F —¥— Laplacian score+Regression |
—»— LLE+Regression
{0~ OLPP+Regression
—O— PCA+Regression
—— lsomap+Regression

45
4t i
351
3 1 1 I 1
0 100 200 300 400 500
Dimensions

Fig. 2. MAE versus dimensionality of aging subspace.
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Fig. 3. MAE versus CS.

Table 2. Comparison of the proposed age estimation method with previous works in
terms of MAE (Years) and CS (% ).

Method Face representation MAE (Years)/CS @ 5 Years (%)
ST [2] Scattering transform 3.7/56.03
RED-SVM [3] AAM 6.4/-
CA-SVR [5] AAM 5.8/-
Relative attribute+SVM [32] | SIFT 4/-

Han et al. [20] Demographic informative features|5.10/—
CNN [23] Deep features 3.88/—
Multi-scale CNN [34] Deep features 3.63/—
CPNN [13] Deep features 4.87/—
Proposed method Manifold lerning 4.18/73.51
Proposed method Feature selection 3.51/80.7

5 Conclusion

In this paper, we proposed a different perspective of dimensionality reduction,
i.e. manifold feature and feature selection for age estimation. The technique
learns discriminative aging features from these two techniques. A feature based
discriminant manifold learning and feature selection both these approaches have
not so far been previously considered for age estimation. In our opinion instead
of looking for a new feature descriptor for age estimation, extracting or selecting
relevant features from the existing feature representations is an important future
direction. Our experimental analysis validates our claim and shows that the
performance of the proposed method using feature selection surpasses the-state-

of-the-art methods.
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