Real-Time Multi-obstacle Detection)
and Tracking Using a Vision Sensor for L
Autonomous Vehicle

Sobers Francis, Sreenatha G. Anavatti, Matthew Garratt,
and Hussein A. Abbass

Abstract In this paper, an effective approach for real-time multi-obstacle detection
and tracking in the navigation module is discussed. To calculate a feasible path for an
autonomous ground vehicle (AGV) from the start position to goal position, efficient
Dstar lite global planner is added and adhered to ROS nav_core package. Later, the
clustering of points based on distance from a laser scanner data is carried out to
perform multi-obstacle detection and followed by tracking. Then, the clusters are
categorised as static and dynamic obstacles from their location, orientation, speed
and size of an individual cluster. Using this approach, dynamic obstacles’ paths
are estimated from their respective past positions. To predict the dynamic obstacle
for the next five-time steps, linear extrapolation and line fitting are employed. The
estimated obstacles’ path data are published as a PointCloud ROS message, then
it is subscribed by the costmap node of the ROS navigation package. The costmap
automatically updates the obstacle map layer and rebuilds the 2D occupancy grid map
with new information about obstacles. Then, the path planner replans the path using
updated costmap to avoid obstacles in the dynamic environment. Finally, real-time
experiments are conducted to validate the efficacy of this intelligent system.

Keywords Multi-obstacle tracking + Collision avoidance - Intelligent vehicles *
ROS navigation

1 Introduction

AGVs are widely utilised for scientific, commercial, industrial, and military applica-
tions for different tasks such as exploration in hazardous environments and unknown
areas, military surveillance and reconnaissance, search and rescue missions and
industrial automation.

An AGV must be able to adequately sense its surroundings to operate in unknown
environments and execute autonomous tasks in which vision sensors provide the

S. Francis (X)) - S. G. Anavatti - M. Garratt - H. A. Abbass
School of Engineering and IT, University of New South Wales, Canberra, Australia
e-mail: s.anavatti @adfa.edu.au

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2021 873
H. Sharma et al. (eds.), Communication and Intelligent Systems, Lecture Notes
in Networks and Systems 204, https://doi.org/10.1007/978-981-16-1089-9_67

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-16-1089-9_67&domain=pdf
mailto:s.anavatti@adfa.edu.au
https://doi.org/10.1007/978-981-16-1089-9_67

874 S. Francis et al.

necessary information required for it to perceive and avoid any obstacles to accom-
plish autonomous path planning. Hence, the vision (perception) sensor becomes the
key sensory device for perceiving the environment in intelligent mobile robots, and
the perception objective depends on three basic system qualities, namely rapidity,
compactness and robustness [1].

The basic operation of mobile robot navigation encompasses the robot’s ability
to act and react based on partial knowledge about its operating environment and
vision sensor readings to reach its goal positions efficiently and reliably as possible
[2]. Path planning in a cluttered environment involves identifying a trajectory in a
partially known map and with a target location that will cause the mobile robot to
reach the location when executed. Obstacle avoidance means modifying the mobile
robot’s path to avoid collisions using real-time sensor data. The problem in a dynamic
environment is that in most real applications as future motions of moving objects
are a priori unknown, and it is necessary to predict them based on observations of
the obstacles’ past and present states, so that the AGVs path can be re-planned in
advance to avoid a collision in critical conditions. So, an approach is required to
estimate future positions and orientations of moving obstacles [3].

Until recently, most motion prediction techniques [4] have been based on kine-
matic models that describe how the state (e.g. position and velocity) of an object
evolves. The models that are used to improve prediction results are the hidden Markov
stochastic models, the grey prediction, least-mean square-error, and Kalman filter.
In this paper, numerical prediction approaches, such as linear extrapolation and lin-
ear fitting are used to predict future positions and orientations of a moving object
in dynamic environments because they are simple and convenient. Light detection
and ranging (LIDAR) [5] is widely utilised as a mobile robot’s vision sensor in the
detection and tracking of obstacles. The supervised machine learning technique is
used to classify the detect objects with the help of a clustering algorithm for robust
detection and tracking from the lidar data [6]. It requires more computation time than
the conventional method during the training phase.

The robotic operating system (ROS) is an open-source, meta-operating robot
framework, which was originally developed in 2007 by the Standford Artificial Intel-
ligence Institute and is a set of software frameworks for robotics engineering [7]. In
our work, ROS is adopted for implementing the navigation planner, tracking obsta-
cles from laser data, and controlling the AGV. Our main contributions of this paper
can be summarised as follows:

1. A simple but effective way of detecting and estimating the dynamic obstacles as
clusters with the help of range information from a single laser sensor is developed,
by which a mobile robot can navigate the large-scale cluttered map with ease.

2. The estimated obstacles’ path data are projected into the costmap of the ROS
navigation package automatically which helps to update the 2D occupancy grid
map regularly. Using this, the path planner replans the path, if needed, without
any delay for each cycle.

3. Finally, the effectiveness of the proposed obstacle detection and avoidance
approach has been demonstrated by real-time experiments.

Real-Time Multi-obstacle Detection and Tracking ... 875

Fig. 1 Jackal with laser
range finder [autonomous lab
@ UNSW Canberra]

The paper is organised as follows: Section2 discusses the custom ROS navigation
stack configuration. The multi-obstacle detection and tracking approach is explained
in Sect.3 along with the obstacle avoidance strategy. In Sect.4, real-time experi-
ments are demonstrated to validate the performance of the approach. Lastly, Sect. 5
concludes the paper with some recommendations for future work.

1.1 System Overview

The Jackal AGV is a small, fast and entry-level field robotics research platform,
which has an on-board computer, GPS and IMU fully integrated with ROS for out-
of-the-box autonomous capability [8]. Figure 1 shows one of our SICK LMS 111
laser-rangefinder equipped Jackal AGVs from the UNSW Canberra autonomous
system lab. The AGV has the following specifications:

e Processor: Intel i5-4570TE Dual Core, 2.7 GHz Processor with 8GB RAM.
o Sensors: LMS 111 Laser finder, in-built Odometer fused with IMU.
e OS: ROS Kinetic Kame in Ubuntu 16.04.

2 ROS Path Planner

Path planning of mobile robots relies greatly on known information about the imme-
diate environment and the motion constraints of robot kinematics and dynamics.
ROS provides a package to navigate from a start position to goal position while
avoiding obstacles. The navigation stack [9] is a ROS package that subscribes to

876 S. Francis et al.

goal position Navigation Stack

ngf move_base
- "map"
amcl > \ 4 COST MAP < map_server
PLANNER Layers:
- Static Map "sensor_msgs/PointCloud"
position » E|0b?| - Inflation
B B 71 -Loca
sensors odom - Obstacle Map <€ Obstacles Tracker
"nav_msgs/Path" A
"sensor_msgs|/LaserScan"
"cmd_vel"
Laser Scanner
base controller Sensor

Fig. 2 ROS navigation stack with obstacle tracker

different ROS topics from odometry (robot position and orientation), sensor sources
(like Laser scanner (“scan’)) and a goal position (“move_base_simple/goal”) and
publishes safe velocity commands (“cmd_vel”) to a mobile base controller. Then,
the mobile base controller converts the “cmd_vel” topic into motor commands to
send to a mobile base.

Adaptive Monte Carlo localization (amcl) is a package that deals with mobile
robot localisation in which the position and orientation data representing the robot’s
pose [10]. Figure 2 illustrates an overview of the navigation stack configuration used
for our approach. The occupancy grid path planning method in ROS divides the
operating area into cells/map pixels and assigns them as occupied or empty. The
path planner finds a feasible path that avoids any of the occupied cells.

An efficient Dstar lite path planner [11] is added and adhered to the nav_core ::
BaseGlobalPlanner C++ interface defined in nav_core package [12]. A new path
planner is added as a plugin to ROS, so that the AGV determines path sequence
to move from starting position to destination in the navigation move_base package.
The navigation stack uses two different costmap (local and global costmap) to store
information about the obstacles from the static map and obstacles. Global costmap
is for planning over the entire map, whereas local costmap is for local planning and
obstacle avoidance. Each ROS topic can be subscribed by the navigation stack cycles
at the rate specified by the parameter which determines the frequency, in Hz, at which
the topic will run its update loop.

3 Multi-obstacles Detection and Tracking

This section provides a detailed explanation about multi-obstacles tracking of
dynamic obstacles. The present navigation stack can only subscribe sensor data pub-
lished using ROS message type, sensor_msgs/LaserScan and sensor_msgs/Point

Real-Time Multi-obstacle Detection and Tracking ... 877

Fig. 3 Flowchart: raw laser
data to multi-obstacle R
information

Laser Scan

sensor_msgs/LaserScan

-
Pt Y

N Clusters .

.q Linear Exploration &

A Line Fitting .

.4 Dyn obstacle Path je

.
H Custom ROS msg

*a] ROS Message !
type converter [*s

Yemue?

sensor_msgs/PointCloud
B

Obstacle Map 4

Cloud. The laser sensor is used to provide information to the navigation stack about
the environment. Flowchart (Fig. 3) depicts the step-by-step approach in sequential
order to detect and track the obstacles.

The location of the obstacles with respect to the scanner on the robot can be plotted
in xy coordinates Eq. (1).

Xx_obs = range[i] * cos(angle_min + i * angle_increment))
y_obs = rangel[i] * sin(angle_min + i % angle_increment)
where i is the total number of measurement steps varies from zero to maximum values
and range[i] is the distance measurement corresponding to measurement steps.
Initially, laser scan data is subscribed, and their successive time step data are
compared to filter the obstacles if any. Followed by the clustering of points based
on distance is carried out to perform multi-obstacle detection. Then, the clusters are
grouped as static and dynamic obstacles from their location, orientation, speed and
size of an individual cluster. Later, dynamic obstacles’ paths are estimated from their
respective past positions. Linear extrapolation is employed to estimate future values
by observing the relationship between the available data values. The range values
of a cluster at different time steps are sampled periodically, and these data are used
to approximate the future values. Then, the series of cluster position points have
fitted a line using line fitting. These estimated obstacles path data are published as a
PointCloud ROS message, and then it is subscribed by the costmap node of the ROS
navigation package. The costmap automatically updates the obstacle map layer and
rebuilds the 2D occupancy grid map with new information about obstacles. Then,
the path planner replans the path using updated costmap to avoid obstacles in the
dynamic environment.

878 S. Francis et al.

The costmap ROS package [13] offers a configurable structure that keeps the
information about where the AGV should navigate in the form of an occupancy grid.
Each cell in this costmap structure can be either free, occupied or unknown and
has assigned to special cost values (one of 255 different cost values). The occupied
cells in the costmap are allotted a costmap_2d :: LETHAL_OBSTACLE with cost
value = 254, the unknown cells are assigned a costmap_2d :: NO_INFORMATION
cost, and others are allotted a costmap_2d :: FREE_SPACE with cost value = 0. For
each cycle, the costmap updates the map information at the rate of update_frequency
(5Hz).

3.1 Obstacle Avoidance Strategy

There is a need for a strategy to avoid obstacles, while the AGV is travelling to
the goal position in a cluttered environment. In this paper, an obstacle avoidance
strategy is followed as explained below. Laser sensor (LMS111) can provide data
up to amaximum range of 20 m. In LaserScan.msg, LIDAR scans from the start angle
which commences along the positive x-axis to the end angle in a counter-clockwise
direction. To discard the unnecessary range data, laser scan data is filtered with a
start angle of +90° and an end angle of —90° as illustrated in Fig.4. Our strategy
procures obstacle data once their range is leq10 m. When the obstacles enter a 10m
region, the algorithm starts to cluster the obstacles as static and dynamic obstacles
and predicts their next trajectory points if it is a dynamic obstacle. Further, when
obstacle arrives within a 5 m region, obstacle map layer of costmap updates the map
about the new obstacles information. Finally, the planner replans the mobile robot’s
path if there is any chance of collision.

Figure4 shows the laser scan image with two obstacles Obs1 and Obs2. Both
Obsl and Obs2 are clustered and tracked as their distances are below 10m away
from the laser. But the costmap updates only Obs1 information into the map layer
that helps the planner to perform re-planning only if necessary. The estimated Obs,
paths are updated in the map with the cost value assigned to 255 and projected into
a costmap structure.

4 Experimental Results

To validate the performance of our approach, various experiments are carried out
on Jackal’s model in Gazebo and mainly in Jackal UGV with LMS111 laser finder
as a vision sensor. Though the Jackal is mounted with other vision sensors such
as 3D Velodyne, Bumblebee camera and IP camera, only the LMSI111 sensor is
utilised for obstacle avoidance and estimation. A map is created with gmapping
ROS package using a laser camera and is used by the map server. The map of the
operating environment is of 4000 x 4000 pixels with 0.05m/cell in Fig.5. During

Real-Time Multi-obstacle Detection and Tracking ... 879

Multi-obstacle
Detection

| and

I Tracking region

I range upto 10m

I

I

|
Obstacle layer of |
costmap region |
|
|

.90 degree range upto 5m

Fig. 4 Top view of laser scan with the obstacles

Fig. 5 Operating map in
ROS rviz

the experiments, other Jackal robots, which can be controlled manually through the
PS4 gaming controller, are used as the dynamic obstacles as shown in Fig. 7.

The laser range values from LMS 111 are utilised to detect the moving obstacles,
and later, their position and orientation are estimated. These estimated trajectories
are incorporated with the path planning algorithm, which helps to handle dynamic
obstacles, so that AGV can calculate its feasible path without any collision. LIDAR
LMSI111 sensor has a maximum aperture angle of 270° with a scanning frequency
of 25/50Hz. The angular resolution of the scan measurement is of 0.25 or 0.50. In
this work, LaserScan Message holds information about a single scan of range data
as in Table .

880 S. Francis et al.

Algorithm 1 Costmap updates map with the tracked obstacles

Require: LaserScan.msg provides start angle angle_min, end angle of the Laser scan, angle incre-
ment angle_incre, range_min and range_max. The Off _angle is the angle ignored at the sides.
The ns is the number of samples per degree. The range_count is the number of range data per
scan

Ensure: Clusters of Obstacles, Estimation of dynamic obstacles
n<0
for i <— off _ang * ns to [range_count — off _ang % ns] do

if rangesli] > range_min and ranges[i] < 10.0 then
obstacle_distances[n] = ranges|i]
y < ranges|i] x sin(angle_min + i x angle_incre)
x < rangesli] x cos(angle_min + i x angle_incre)
—— > Cluster the obstacles
—— > Estimate the obstacles position
if ranges[i] < 5.0 then
LETHAL_OBSTACLE: cost_lethal =254
—— > Insert obstacles information into costmap
—— > Assign cell cost value = 254
—— > Replan the planner if necessary
end if
n++
end if
end for

return Obstacles path, costmap updation

Table 1 Single laser scan from LMS111
LaserScan.msg

Message definition Values

angle_min —1.60570287704 rad
angle_max 1.60570287704 rad
angle_increment 0.00873
time_increment 2.77777780866¢e-05
scan_time 0.0199999
range_min 0.00999999 m
range_max 20.0m

In Experiment I, the Jackal is stationary where a dynamic obstacle is moving

towards the robot along with a few static obstacles. The consecutive laser scans
are compared and then match each grid cells with cells from the previous iteration
(based on distance). The location, size and speed of the obstacles as clusters are
updated through observations by using a weighted average from cluster matches.
ROS packages can also use a static map to help remove static obstacles and also
to find out the moving obstacles. Once the obstacle enters the costmap region (<

Real-Time Multi-obstacle Detection and Tracking ... 881

Fig. 6 Experiment I: detection and estimation of trajectories of the dynamic obstacle in ROS 3D
visualiser

Fig. 7 Real-time path planning with obstacles

Sm) as proposed, its path is predicted and costmap updated. Figure 6 shows the
static obstacles as blue circle clusters, dynamic obstacles with the predicted future
trajectories as red circles (Fig. 7).

For Experiment II, Jackal has to perform a safe navigation task in a partially known
map, and during its traverse towards the goal location, it simultaneously detect, esti-
mate and avoid the obstacles and replan its path if necessary. Once the goal location
is selected in the ROS rviz window inside the map, Jackal finds an initial feasible
path to reach the goal. The readings from the laser scan on the Jackal help to locate
the obstacles and provides information about the cluster whether static or dynamic.
The dynamic cluster points are estimated from their past and present locations with
the employed linear extrapolation and line fitting approach. Once the obstacles enter
the 5-m region, the obstacles’ trajectories are projected into the obstacle layer of the
ROS costmap package. Eventually, Jackal has successfully reached the goal position
by avoiding the obstacles, and the snapshots of the experiment are shown in Fig. 8.

The experimental results show that the proposed approach can help Jackal to
detect and avoid both static and dynamic obstacles independently while performing
navigation.

882 S. Francis et al.

Fig. 8 Real-time path planning with static and dynamic obstacles

5 Conclusion

In this article, an approach for detecting and tracking obstacles is presented. The
purpose of obstacle detection and tracking is to obtain the movement state of the
moving obstacle, to predict the possible state and trajectory of the dynamic obstacle,
which is of great significance to path planning of autonomous ground vehicles.

For future work, more experiments are planned with more complex scenarios to
test and validate our approach. The performance of our approach needs to be verified
with different scenarios such as when the AGV turns too fast when the surrounding
has obstacles with various shapes and sizes and wider laser angles.

Acknowledgement This material is based upon work supported by the U.S. Army Ground Vehicle
Systems Centre and International Technology Centre-Pacific under Contract No. FA5209-18-P-
0140. Any opinions, findings and conclusions or recommendations expressed in this material are
those of the author(s) and do not necessarily reflect the views of the U.S. Army.

References

1. Patnaik S (2007) Robot cognition and navigation—an experiment with mobile robots. In:
Cognitive technologies

2. Siegwart R, Nourbakhsh IR, Scaramuzza D (2011) Introduction to autonomous mobile robots,
2nd edn. The MIT Press, Cambridge

Real-Time Multi-obstacle Detection and Tracking ... 883

10.
11.

12.

13.

Volos CK, Jahanshahi H, Sari NN (2020) Recent advances in robot path planning algorithms:
a review of theory and experiment. Robotics research and technology series. Nova Science
Publishers, Incorporated

Jiang R, Tian X, Xie L, Chen Y (2008) A robot collision avoidance scheme based on the
moving obstacle motion prediction. In: 2008 ISECS international colloquium on computing,
communication, control, and management, vol 2, pp 341-345

Xie D, Xu Y, Wang R (2019) Obstacle detection and tracking method for autonomous vehicle
based on three-dimensional LiDAR. Int J Adv Robot Syst 16:172988141983158

Karakaya S, Yasar Ocak H, Kiigiikyildiz G (2015) A bug-based local path planning method for
static and dynamic environments*

Quigley M, Conley K, Gerkey B, Faust J, Foote T, Leibs J, Wheeler R, Ng A (2009) ROS: an
open-source robot operating system, vol 3

Jackal: Unmanned ground vehicle. https://clearpathrobotics.com/jackal-small-unmanned-
ground-vehicle/

Fabro J, Guimardes R, Oliveira A, Becker T, Brenner V (2016) ROS navigation: concepts and
tutorial 625:121-160

Zheng K (2017) ROS navigation tuning guide. 06

Francis S, Anavatti SG, Garratt M (2018) Real-time path planning module for autonomous
vehicles in cluttered environment using a 3D camera. Int J Veh Auton Syst 14:40

LiY, Shi C (2018) Localization and navigation for indoor mobile robot based on ROS. In: 2018
Chinese automation congress (CAC), pp 1135-1139

ROS: Costmap guide. http://wiki.ros.org/costmap_2d

https://clearpathrobotics.com/jackal-small-unmanned-ground-vehicle/
https://clearpathrobotics.com/jackal-small-unmanned-ground-vehicle/
http://wiki.ros.org/costmap_2d

	 Real-Time Multi-obstacle Detection and Tracking Using a Vision Sensor for Autonomous Vehicle
	1 Introduction
	1.1 System Overview

	2 ROS Path Planner
	3 Multi-obstacles Detection and Tracking
	3.1 Obstacle Avoidance Strategy

	4 Experimental Results
	5 Conclusion
	References

