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Abstract. Despite recent advancements in single image super-
resolution (SISR) methodologies, reconstruction of photo-realistic high
resolution (HR) image from its single low resolution (LR) counterpart
remains a challenging task in the fraternity of computer vision. In this
work, we approach the problem of SR using a modified GAN with
specialized Efficient Channel Attention (ECA) mechanism. CA mech-
anism prioritizes convolution channels according to there importance.
The ECA mechanism, an extension of CA, improves model performance
and decreases the complexity of learning. To capture the image tex-
ture accurately low-level features are used for reconstruction along with
high-level features. A dual discriminator is used with GAN to achieve
high perceptual quality. The experimental result shows that the pro-
posed method produces better results for most of the dataset, in terms
of Peak Signal-to-Noise Ratio (PSNR), Structural Similarity Index Mea-
sure (SSIM), and mean-opinion-score (MOS) over the state-of-the-art
methods on benchmark data-sets when trained with same parameters.

1 Introduction

Image Super-Resolution (SR), is the process of reconstructing an HR image
from one or more LR image. SR is inherently a challenging ill-posed problem
since there exist multiple HR image that corresponds to a single LR image.
SR has its application in various image processing and computer vision tasks
ranging from surveillance, medical imaging, object detection, satellite imaging
to different image restoration and recognition tasks.

The SR algorithms can be broadly classified into two categories, one based
on the number of input LR images the other based on the principle used to
construct the HR image. Further, based on the principles used in the con-
struction of SR image, the SR algorithms can also be categorized into three
categories [24]: interpolation-based, model-based, and deep learning-based algo-
rithms. Interpolation-based algorithms like bi-linear or bi-cubic interpolation
use local information in an LR image to compute pixel values in the correspond-
ing SR image, which are characterized by high computational efficiency. Prior
knowledge is used in model-based algorithms such as the Maximum a Posteriori
(MAP) to constrain the solution space whose performance is improved compared
to the interpolation-based approach.
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Supervised machine learning approaches learn the mapping function that
maps LR images to it’s corresponding HR images from a large number of exam-
ples. The mapping function learned during the training phase is inverse of the
down-sample function that is used to transform the HR image to its corre-
sponding LR image, which can be known or unknown. With the help of known
downgrade functions like bi-cubic, bi-linear down-sampling, the LR-HR pair can
automatically be generated. This allows the creation of large training data-sets
from a vast amount of freely available HR images which can be used for self-
supervised learning (Figs. 1 and 2).

(a) Low-resolution (b) Super-resolution (c) High-resolution

Fig. 1. Reconstructed Super-resolution images comparison with Original High-
resolution and Low-resolution images.

This work proposes a GAN based SISR model that produces HR image with
realistic texture details. Our contributions can be summarized as follows.

1. The generator architecture consists of multiple ECA blocks which emphasize
on certain channels, along with it a 3-layer CNN network is added to the
generator that extracts sufficient low-level features. The ECA block avoids
dimensionality reduction step which destroys the direct relation with a chan-
nel and it’s weight, instead, we use 1D convolution to determine the cross
channel interaction. The generator achieves state-of-the-art PSNRs when it
is trained alone without discriminators.

2. The proposed SISR framework utilizes a dual discriminator network inspired
by SRFeat [12] architecture, one that works on image domain that uses Mean
Square Error (MSE) loss, the other that works on feature domain that uses
perceptual feature loss.
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Fig. 2. Example of super-resolution images from different models.

3. During the GAN training phase, the generator and the feature discriminator
are trained on perceptual loss [12], which utilizes a pre-trained VGG19 net-
work to calculate the difference of feature map extracts between the original
HR image and the generated HR image.

4. The performance of the system is measured based on objective evaluation
indicators such as PSNR/SSIM on several public benchmarks data-sets Set5,
Set14, and BSD100 [16]. To find the perceptually better image, Mean Opinion
Score (MOS) is calculated with the help of 10 people.

Comparative study shows that the proposed architecture with low model
complexity significantly improve the performance of the model in terms of
PSNR/SSIM and MOS score over the state-of-the-art methods [12,13,17,22,25]
on benchmark data-sets when trained with same parameters.

2 Related Work

Before the application of deep learning in computer vision became popular in
2012 on-wards, the problem of super-resolution was approached using traditional
computer vision techniques. Chang et al. in their work [3], used Bi-cubic interpo-
lation for super-resolution. Bi-cubic interpolation and Lanczos re-sampling [15]
are very computationally effective techniques, but they suffer from the draw-
back that they can’t produce an accurate super-resolution image. The Markov
Random Field (MRF) [23] approach was first embraced by Freeman et al. to
investigate the accessible real images. Similarly, scientists applied sparse coding
techniques to SISR [8] problems. Random forest [14] additionally accomplished
a lot of progress in the reconstruction of the SISR. Many use a combination
of reconstruction based as well as a learning-based approach to decrease the
artifacts produced by external training examples.

In recent years, Deep Learning based Image Super-resolution models has
demonstrated noteworthy improvement to reconstruction based and other
learning-based methods. Dong et al. [5] first presented CNN for SISR reason,
from that point forward there have been different enhancements to SISR methods
utilizing Deep learning-based methodology [6,10,12,13,17,21,22,25]. SRCNN
had its downside since it utilized a shallow three-layer architecture, thus high-
light features couldn’t be caught. Kim et al. proposed VDSR [10], which was an
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improvement to SRCNN by increasing the number of convolution layers to 20.
Influenced by ResNet engineering Lim et al. [13] presented EDSR model which
had long and short skip associations that helped to prepare profound SISR sys-
tems. Also removing Batch Normalization (BN) layers in the lingering residual
network, they improved computational advantages. Even though the models so
far created a high Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity
(SSIM) score, they couldn’t produce SR image with realistic feature details.

Ledig et al. [12] were probably the first to use GAN for the purpose of SR. A
GAN [7] generally consists of two networks, one generates a fake/new image where
the other one tries to find whether it’s fake or not. Ledig et al. [12] used SRResNet
as generator of GAN. SFTGAN [21] demonstrated that it is conceivable to recoup
sensible surfaces by tweaking highlights of a couple halfway layers in a single system
adapted on semantic division likelihood maps. SRFeat [17] is another GAN-based
SISR strategy where the creators previously proposed the double discriminator,
one chip away at picture space and other on highlight areas to deliver perceptually
practical HR picture. Xintao et al. introduced ESRGAN [22], which is an improved
version of SRGAN, where they use Residual in Residual (RIR) generator architec-
ture. Also, they added realistic discriminator that estimates the probability that
the given real data is more practical than fake data. They enhanced the SRGAN
model by using features before activation to calculate the perceptual loss of the
generator during the adversarial learning phase.

Attention Mechanism. Recent studies show that the uses of attention mech-
anisms enhance the performance of CNN networks for various tasks. Attention
mechanism was first introduced in CNN for image classification task [9,19,20].
Hu et al. [9] utilized channel-wise inter-dependencies among various feature chan-
nels. [4,25] used channel attention mechanism for SISR purpose. The dimension-
ality reduction step used in channel attention mechanism makes correspondence
between the channel and its weight indirect. This limitation was surmounted by
[18] with the attention mechanism that introduced a local cross channel interac-
tion method using 1D convolution.

3 Network Architecture

The network architecture as shown in Fig. 3 utilizes a GAN based approach with
a generator that produces super-resolution images along with a dual discrimina-
tor architecture that classifies the produced SR images into real and fake classes
which helps the generator to produce realistic-looking images. The efficient chan-
nel attention mechanism used by the generator allows the network to focus on
certain channels by modeling their inter-dependencies. The feature maps of the
CNN network are then passed through two sub-pixel convolution layers where
HR images are generated by upsampling.
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Fig. 3. ECASR architecture.

3.1 Generator

The LR image after passing through the first convolutional layer of the generator
enters the high-level and low-level feature extractors

F0 = HSF (ILR), (1)

where F0, HSF and ILR denotes initial feature map, first convolutional layer and
input low-resolution image respectively.

FHF = HECA(F0) (2)
FLF = H3CN (F0) (3)

HECA denotes a deep feature extractor consisting of multiple ECA blocks which
extract high-level features (FHF ) and H3CN denotes the 3-layer shallow convo-
lutional feature extractor that controls the flow of low-level features (FLF ) to
the final output.

FTotal = FHF + FLF (4)

FTotal is the total feature after adding both the features maps element-wise, the
total feature map is then passed through the upsampling layer.

ISR = HREC(HUP (FTF )) (5)

HUP and HREC denotes the upsampling and reconstruction layer respectively
that generates the super-resolution image.

Channel Attention. The resultant weight of the channel attention mechanism
introduced in SENet [9] also utilized by [4,25] can be expressed as

ω = σ(W2δ(W1G(χ)), (6)
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G(χ) is the channel-wise global average pooling (GAP) of the output of a convo-
lution block, χ ∈ R

W×H×C , where W , H and C are width, height and channel
dimension. GAP can be expressed as

G(χ) =
1

WH

W,H∑

i=1,j=1

χij (7)

where δ(·) and σ(·) indicates the Rectified Linear Unit [1] and Sigmoid activation
function respectively. In order to avoid high computational complexities dimen-
sion of the channels are first reduced into (Cr ) and then transformed back into
(C). This step of first reducing the dimension of channels into a low dimension
space and then mapping it back to the original dimension makes indirect cor-
respondence between the channel and it’s weight which degrades performance
by losing valuable information. In this paper we use Leaky ReLU over ReLU
activation which fixes the “dying ReLU” problem, as it doesn’t have zero-slope
parts, also it provides additional benefit in training speed.

Efficient Channel Attention (ECA) [18]. Instead of using dimensionality
reduction to reduce model complexity which destroys the direct correspondence
between the channel and its weight, this work uses channel attention mechanism
by efficiently using 1D convolution of kernel size k which. Given an output of a
convolution block, χ, the resultant weight of efficient channel attention can be
expressed as

ω = σ(WG(χ)), (8)

where W is a C×C parameter matrix. Let y =G(χ) and y ∈ R
C where the weight

of ith channel (yi) can be calculated by considering the interaction among yi and
its k neighbors that can be given as,

ωi = σ

( k∑

j=1

ωjyj
i

)
, yj

i ∈ Ωk
i (9)

where Ωk
i indicates the set of k adjacent channels of yi, ωi is weight of yi and

ωj is convolutional kernel. Equation (9) can be efficiently achieved by using 1D
convolution as shown in Eq. (10)

ω = σ(Conv1Dk(y)), (10)

The size of the kernal can be determined with the Eq. (11) as mentioned in [18].

k =
∣∣∣∣
log2(C)

γ
+

b

γ

∣∣∣∣
odd

, (11)

here γ and b are constants, we use 2 and 1 respectively in our training process.
|x|odd denotes the nearest odd integer to x. Let FECA−1 be the input to our
ECA block, the weighted output based on channel attention mechanism can be
finally expressed as

FECA = ω ⊗ (FECA−1) (12)
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3.2 Discriminator

The generator is coupled with a dual discriminator network which is similar to
the architecture proposed by SRFeat [17]. One discriminator works on the image
domain and the other works on the feature domain. The image discriminator is
similar to the discriminator network used by SRGAN [12] while the feature
discriminator has the same architecture as the image discriminator but the only
difference is that the inputs to the feature discriminators are feature map extracts

Fig. 4. Visual comparison of 4× SR on BSD100.
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of the HR image and the super-resolved image from Conv5 of VGG-19 network.
Both of them try to classify an image into a real and a fake class.

3.3 Loss Functions

A network that minimizes MSE loss tends to produce excessively smooth images.
The generator network thus is pre-trained on Mean Absolute Error (MAE) loss
that produces perceptually better-looking images to human eyes.

LMAE =
1

WH

W∑

i

H∑

j

|Ihi,j − Igi,j | (13)

Here W , H indicates the dimension of the image. The objective of utilizing GAN
system here is to improve the perceptual quality. GAN structure can be explained
as a minmax game where the generator tries to minimize the discriminator’s
gain and the discriminator tries to minimize the generator’s gain which can be
characterized as below:

min
g

max
d

(Ey∼Pdata(y)[log(d(y))] + Ex∼Px(x)

[1 − log(d(g(x)))]) (14)

Here g(x) is the output of a generator network g for x where x is irregular noise.
On the other hand d(y) is the output of discriminator for y, where y is an example
of genuine information distribution. Pdata(y) refers to distribution of real data
and Px(x) is the distribution of generator output.

The discriminators, di and df denotes a pair of dual discriminators taking
a shot at picture and feature area, separately. The generative adversarial pro-
cedure with a pre-trained generator and discriminators follows the loss-function
characterized as:

Lg = Lp + λ(Li
a + Lf

a) (15)

where Lp is a perceptual similarity loss, Li
a is a image GAN loss for the generator

Lf
a is a feature GAN loss for the generator and λ is the weight for the GAN loss

terms. To prepare discriminators di and df , we minimize the loss of Li
d and, Lf

d

which corresponds to Li
a and Lf

a . The generator and discriminators are trained
by thus limiting Lg, Li

d and Lf
d . For adversarial learning, the discriminator uses

loss functions introduced in [21]. There are by and large three-loss terms adding
to the all-out loss, to be specific, perceptual similarity loss, image GAN loss, and
GAN loss calculated based on features obtained by passing the super-resolution
and high-resolution images through a VGG19 network. The description of each
loss will be expressed as follows.

Perceptual Similarity Loss Lp. This loss processes the difference between
two pictures in the feature area, rather than the pixel space, prompting all the
more perceptually fulfilling outcomes. The perceptual loss is characterized as:
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1
WmHmCm

Wm∑

i

Hm∑

i

Cm∑

i

(φm
i,j,k(I

h) − φm
i,j,k(I

g))2 (16)

where Wm, Hm, Cm describes the dimensions of the m-th feature map extract
from a pre-trained VGG network with φm

i,j,k indicating the feature map obtained
by the j-th convolution (after activation) before the i-th maxpooling layer within
the VGG network.

Image GAN Losses Li
a and Li

d. The image GAN loss term Li
a for the generator

and the loss function Li
d for the image discriminator are characterized as:

Li
a = −log(di(Ig)), (17)

Li
d = −log(di(Ih)) − log(1 − (di(Ig))), (18)

where di(I) is the yield of the image discriminator di.

Feature GAN Losses Lf
a and Lf

d . The element GAN loss term Lf
a for the

generator and the capacity Lf
d for the element discriminator are characterized

as:

Lf
a = −log(df (φm(Ig))), (19)

Lf
d = −log(df (φm(Ih))) − log(1 − (df (φm(Ig))), (20)

where df (φm) is the yield of the feature discriminator df .

4 Experiments

Experiments are done in two phases, in the first phase generator alone is trained
on MAE loss, in the second phase the generator is trained on perceptual loss
along with the dual discriminators. The performance of the pre-trained generator
is evaluated and compared with other state-of-the-art approaches in terms of
PSNR and SSIM score. Finally, the results obtained from the GAN based SISR
network are evaluated and compared on PSNR/SSIM and MOS score, which
proves the efficiency of our network.

Table 1. Comparison of PSNR/SSIM score with and without Low-level feature extrac-
tor after 64000 iterations.

PSNR/SSIM w/o Low level
feature extractor

with Low level
feature extractor

Set4 30.06/0.8520 30.12/0.8544

Set14 27.22/0.7485 27.27/0.7501

BSD100 26.74/0.7098 26.76/0.7110
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The training data-sets are obtained by bi-cubic down-sampling of the HR
images. The cropped HR images are of the size 296 × 296, while the LR images
are of the size 74 × 74, which are then again normalized to [–1,1] intensity. DIV2K
[2] data-set is used for training which consists of 800 HR training images and
100 HR validation images. The data-set is augmented into 160000 images by
random cropping, rotating (90◦, 180◦, and 270◦) and horizontally flipping. Pub-
licly available data-sets Set5, Set14, BSD100 are used for validation. We train
the generator network on Nvidia Titan X GPU for 3.2 × 106 iterations with a
batch size of 16 which is optimized by Adam [11] optimizer. The learning rate
is initialized 1 × 10−4 with a decay of 0.5 for every 1 × 105 iterations.

Table 2. Comparison with PSNR oriented pre-trained models SRGAN, EDSR,
ESRGAN, SRFeat, RCAN and our proposed model ECASR on benchmark data
[12,13,17,22,25]. [4× upscaling]

PSNR/SSIM Set5 Set14 BSD100

Bicubic 28.42/0.8104 26.00/0.7027 25.96/0.6675

SRCNN 30.48/0.8628 27.50/0.7513 26.90/0.7101

VDSR 31.35/0.8830 28.02/0.7680 27.29/0.7260

SRGAN 31.67/0.8864 28.30/0.7770 27.40/0.7318

EDSR 32.01/0.8917 28.48/0.7832 27.53/0.7373

ESRGAN 31.83/0.8892 28.44/0.7801 27.46/0.7340

SRFeat 31.45/0.8821 28.14/0.7719 27.26/0.7271

RCAN 32.05/0.8920 28.57/0.7821 27.60/0.7360

ECASR 32.12/0.8924 28.58/0.7830 27.54/0.7371

Table 3. Comparison of GAN-trained models, SRGAN [12], SRFeat [17], ESRGAN
[22] and the proposed model ECASR on benchmark data-set.

PSNR/SSIM Set5 Set14 BSD100

SRGAN 29.158/0.8643 26.165/0.7791 25.459/0.5775

ESRGAN 29.752/0.8665 26.323/0.7854 25.505/0.6279

SRFeat 29.420/0.8245 26.100/0.7850 25.417/0.5675

ECASR 29.864/0.8677 26.436/0.778 25.461/0.6454

5 Results

In order to prove the effectiveness of the shallow low-level feature extractor,
we do an ablation study. The network is trained and tested with and without
the low-level feature extractor. Results are tabulated in Table 1. It shows that
the use of the low-level feature extractor helps in achieving a high PSNR/SSIM
score.
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Table 4. MOS ratings of SRGAN, ESRGAN, SRFeat [12,17,22] and our Proposed
Model ECASR on BSD100 [16].

Models SRGAN SRFeat ESRGAN ECAS (ours)

MOS 3.72 3.87 4.08 4.12

The performance of the generator network is evaluated and compared to bi-
cubic interpolation and other state-of-the-art models which proves the efficiency
of our proposed network. Quantitative results are summed in Table 2 that shows
our model produces comparable results. EDSR and RCAN have higher values for
Set14 and BSD100 which is because of their deeper architecture, if we stack up
more ECA blocks in our network it should necessarily produce a higher bench-
mark score. Though the generator produces images that have high PSNR/SSIM
values, they lack in perceptual quality. We then compare the performance of our
GAN trained network as shown in Table 3 and Fig. 4 provides visual examples
that show considerably better performance. The dip in the PSNR/SSIM score of
our GAN trained network is presumably for the competition between the MSE
based content loss and adversarial loss. We further obtained MOS ratings from a
group of 10 people, who rated the images from 1 to 5 based on the reconstruction
quality of the images, higher the better. Table 4 shows our proposed model has
better MOS ratings compared to SRGAN, SRFeat, and ESRGAN.

6 Conclusion

In this paper, we have proposed a new GAN based SR scheme. In the proposed
scheme, ECA method has been used, probably for the first time to solve SR
problem. ECA tends to produce higher PSNR results with a smaller number
of parameters. Considering low-level features with high-level features for super-
resolution, both the fine texture details as well as overall description of the image
are captured accurately. Dual discriminator helps the generator to create photo-
realistic SR images. Comparison with various models with the same training
data-set and parameters show the superiority of our proposed method. There
is always a trade-off between model complexity and quality. Stacking up more
ECA layers into our model, expected to result better SR images but it will also
increase the training complexity.
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