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Abstract. In this paper, we design a framework for denoising hyper-
spectral images (HSI) using Maximum a posteriori (MAP) criterion with
emphasis on Gaussian-impulse noise which is the characteristic of HSI
data. We derive fidelity terms with respect to Gaussian-Laplacian dis-
tribution to collectively remove mixed Gaussian noise and sparse high
intensity impulse noise. We split the degradation model into two parts
to facilitate removal of residual noise encountered, while separately han-
dling the two noise cases. Behaviour of this residual noise, often rendered
as artefacts in the final results, is handled by proper tuning of hyper-
parameters in our objective function. Experimental results on synthetic
data are conducted in the noise range of 20 dB to 5 dB for Gaussian noise
and 0.5% to 20% for impulse noise. Quantitative and qualitative denois-
ing results on synthetic and real HSI data illustrate the effectiveness of
our method against the state-of-the-art techniques.

Keywords: Hyperspectral image · Image denoising ·
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1 Introduction

Hyperspectral Imaging (HSI) is the application of remote sensing for capturing
image data beyond the visible parts of electromagnetic spectrum in order to
observe reflectance from real scenes, spanning across a wide wavelength range
from 400 nm to 2500 nm [17]. It facilitates visualization of areas which are
not visible through conventional cameras. Its application areas range from agri-
culture [1], object detection, mineral exploration to military surveillance [28],
pharmaceuticals [9], medicine [15], etc.; to name a few.

Noise, however, introduced during the image acquisition process deteriorates
the visual quality of the acquired images and is characterized by grainy tex-
ture, horizontal and vertical stripes in the images. Noise affects the subsequent
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applications of object tracking, spectral unmixing and classification tasks from
the HSI data. In HSI, noise is characterised by Gaussian noise as well as sparse
noise [5]. Image denoising is a class of algorithms that are used to mitigate the
effect of noise from acquired images.

One of the earliest references of HSI denoising can be seen in the work of [16]
where signal dependent nature of noise in spectral domain is handled by exploit-
ing the dissimilarity of signal along spatial and spectral dimension and working
in the derivative domain using wavelet shrinkage operator. A filtering-based app-
roach called Color Spectrum filtering is utilized based on the assumption that
under a normal scenario, the spectrum is smooth [19]. Here, noisy channel is
detected based on de-correlation with neighbouring channels. Also, assumption
of Gaussian noise as the only source of noise [14] can have limiting performance
on such methods. A Bayesian framework is adopted in [8] by modelling noise as
non-identical and independently distributed Mixture of Gaussian (MoG) using
Low Rank Matrix Factorization (LRMF) strategy to imitate the complex nature
of HSI noise.

Total Variation (TV) based methods can be seen in many works. An opti-
mization framework is designed using Split-Bregman as the optimization tech-
nique using 2D Total Variation (TV) along spatial dimension and 1D TV in the
spectral dimension [3]. Similar work can be found in [2]. Using lexicographical
ordering of data to exploit low rank behavior of clean data, Augmented Lagrange
Multiplier (ALM) is used in [29] to recover clean HSI data from its noisy obser-
vation. A combination of nuclear norm, �1-norm regularization and TV regular-
ization is adopted in a unified framework in [11]. Nuclear norm is used to exploit
spectral low rank property while TV regularization is used as prior to preserve
piece-wise smooth regions of the image. Similar approach is applied using spatio-
spectral TV augmented with group low rank property in [13]. Using ALM as the
optimization strategy in a variational framework is exploited by combinations of
TV regularization, �1-norm regularization and frebonius norm.

Sparse dictionary of spectral signature in HSI data is used as prior for restora-
tion of coloured (RGB) hyperspectral data [4]. Sparse dictionary learning is
explored by establishing redundancy and correlation (RAC) along spatial dimen-
sion by global RAC and along spectral dimension by local RAC to remove noise
from spatio-spectral dimensions [30]. An iterative non-local strategy is delivered
in [22] using decomposition of 3rd order tensor to 4th order tensors to obtain
non-local similarity along spatial direction and global similarity along spectral
direction. Similarly, non-local self similarity along with low-rank approximation
is focused in the works of Chang et al. [7]. In a method proposed in [23], uti-
lizing the low-rank property of clean HSI data, noisy image is reconstructed
using robust principal component analysis (RPCA). Authors in [25] effectively
denoised HSI data using non-local spatial similarity and low rank constraint
along spectral dimension. Similar techniques using non-local similarity and low-
rank behaviour along spatial-spectral dimension is explored in works of [24]. A
novel approach is devised in [10] using hypothesis testing based on Kullback-
Leibler Divergence (KLD) for approximating Poisson distributed HSI data by



Two-Phase Splitting Approach for Hyperspectral Image Denoising 181

Gaussian distribution and vice-versa. The proposed method is tested with appli-
cations to Compact Reconnaissance Imaging Spectrometer for Mars (CRISM).

In this paper, we intend to design a MAP based variational framework for
the removal of mixed Gaussian and random-valued impulse noise from HSI data.
As we will discuss in the proposed section, we split the image degradation model
for HSI into two parts and fit a Maximum a posteriori (MAP) estimator to the
resultant model. The ensuing variational model helps in better recovery of noisy
data and artefacts, as has been shown in the experimental section.

Rest of the paper is organised as follows. We discuss image degradation model
faced in HSI data in Sect. 2 and set a background for our proposed technique
to be discussed in Sect. 3. We have conducted extensive experiments on syn-
thetically corrupted (Subsect. 4.1) and real HSI data (Subsect. 4.2) in Sect. 4.
Finally, paper is concluded in Sect. 5.

2 HSI Degradation Model and Objective

Image formation of HSI data is generally modelled as [5]:

f = u + g + s (1)

where u ∈ Rwh×c is the clean data corrupted by additive Gaussian noise g with
mean 0 and variance σ2

n (approximated by normal distribution g ∼ N (0, σ2
n)) and

additive impulse/sparse noise approximated by Laplacian distribution with given
location (0) and scale parameter (σs); denoted by s ∼ L(0, σn). w, h and c are the
width, height and number of spectral bands in the image respectively. To exploit
spatio-spectral correlation among different bands of HSI data, Casorati matrix
representation is employed [29] (by vectorisation of all HSI bands to obtain a
2D matrix). As a result, each band is reshaped into a vector of size wh × 1 to
produce a resultant 2D matrix of size wh × c obtained by concatenation of all the
bands together. This helps in proper utilisation of similarity among neighbouring
pixels in surrounding layers. A combination of Gaussian-impulse corrupted data
is represented by observation f . Impulse noise affects limited number of pixels
but affects them heavily and there is no easy way to recover impulse corrupted
noisy pixels. Impulse noise can be fixed valued impulse noise (FVIN) or random-
valued impulse noise (RVIN) [12]. Salt-and-pepper noise is a FVIN where pixels
are randomly replaced by two extreme values [umin, umax]. RVIN, on the other
hand, replaces pixels with any random value in the range [umin, umax] and hence,
is a more practical assumption [5,11,12,29] in HSI data. We have therefore made
the same noise assumption for modelling our degradation scenario.

Our objective is to recover an image û, from the observed noisy data f , which
will be visually as close as possible to u. Following Bayesian formulation we have:

û = arg max
u

p(u|f) = arg max
u

p(f |u) · p(u) (2)

Maximizing Eq. (2) is same as minimizing the negative log-likelihood of the
function (due to monotonically increasing property of log function):

û = arg min
u

− log p(u|f) = arg min
u

− log(p(f |u) + p(u)) (3)
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We derive our variational formulation by modelling the likelihood term p(f |u)
in accordance with the appropriate noise model and the prior term p(u) with
respect to the property we intend to achieve in our denoised image.

3 Proposed Denoising Framework

We propose to re-write Eq. (1) i.e., the image formation model by splitting it
into two parts with the help of a new variable v such that:

{
v = u + g
f = v + s

(4)

The variable v now accounts only for the Gaussian noise degradation of u and
then by adding impulse noise s to Gaussian corrupted v leads us to the final
composite noisy image f .

Since v is a Gaussian corrupted observation, its MAP estimator can be writ-
ten as:

û = arg min
u

− log

(
1√
2πσ2

g

exp

(
− (v − u)2

2σ2
g

))
− log p(u) (5)

The prior term can be modelled as Gibbs prior:

p(u) = e−αR(u), α > 0 (6)

We choose the Total Variation (TV) prior because of its high quality denoising
ability while preserving the high frequency details of the image [18]. We therefore
choose R(u) = |∇u|, where ∇ is the gradient operator. Substituting in Eq. (5),
we obtain:

û = arg min
u

(
(v − u)2

2σ2
g

+ α|∇u|
)

(7)

which can be equivalently written as:

û = arg min
u

1
2
‖v − u‖22 + ‖∇u‖1 (8)

Similarly f is corrupted by additive impulse noise s on v, which is already a
Gaussian corrupted image. Its MAP estimator is therefore given by fitting the
likelihood term with laplacian distribution [12] and is given by (using the same
expression for p(v) = |∇v|):

v̂ = arg min
v

− log

(
1

2σs
exp

(
− |f − v|

σs

))
− log p(v) (9a)

v̂ = arg min
v

(
|f − v|

σs
+ |∇v|

)
(9b)
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This is equivalent to minimizing the following energy functional:

v̂ = arg min
v

‖f − v‖1 + ‖∇v‖1 (10)

We propose to club Eq. (8) and Eq. (10) in a successive manner, such that:

{ v̂ = arg min
v

‖f − v‖1 + λ1‖∇v‖1
û = arg min

u

1
2
‖v̂ − u‖22 + λ2‖∇u‖1

(11)

It is important to mention here that �2 data fidelity term ‖ · ‖22 penalises
loss considering Gaussian distribution of noise with TV as the regularization
term (‖∇u‖1) utilizing prior information from clean data. Similarly, �1 data
fidelity term ‖ · ‖1 penalises loss considering laplacian distribution (impulse) of
noise with TV regularization on (‖∇v‖1). Also, from a different point of view,
�1−norm fidelity term is characterized by the contrast invariant property and
lack of continuous dependence on data [6]. As a result of separate TV regular-
ization terms, we are able to remove residual Gaussian and impulse noise from
our restored data while successively handling the effects of both noise sources.
Minimizing Eq. (11) with respect to v and u gives us the following:

vk+1 = vk − α

[(
(f − vk)√

(f − vk)2 + δ

)
+ λ1 div

(
∇vk

|∇vk|γ

)]
(12a)

uk+1 = uk − α

[
(v̂ − uk) + λ2 div

(
∇uk

|∇uk|β

)]
(12b)

Eq. (12a) and Eq. (12b) are the solutions obtained using first order optimization
technique like gradient descent to obtain the solutions for true image û ∼ u.
uk and vk are the corresponding solutions obtained at iteration k. In Eq. (12a),
initial data v0 is set with noisy observation f . Optimal value of v obtained at
v̂ is free from impulse noise but it still contains residual Gaussian noise. To
remove this residual noise, v̂ is used as initial value of u to obtain optimized
value of u at û. δ, β and γ are very small positive constant terms introduced
in order to avoid division by zero and α is the step size. λ1 and λ2 are the
regularization hyperparameters. As discussed in the experimental section, values
of hyperparameters are obtained after optimising them for the best metric result.

4 Experiments and Discussion

In this section, we conduct experiments on synthetic and real HSI datasets
to test the potential applicability of our technique over state-of-the-art meth-
ods available in the literature for denoising HSI data. For quantitative eval-
uation, we have used the Peak Signal to Noise ratio (PSNR) and Structural
Similarity (SSIM) [20] metrics. SSIM is a reliable metric used to compare the
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Fig. 1. Quantitative results for Beers dataset synthetically corrupted by Gaussian-
impulse noise at level (G, I) = (10 dB, 15%).

restoration results perceived by Human Visual System. For comparison, we
use three techniques; namely: Hyperspectral Image Restoration Using Low-
Rank Matrix Recovery (LRMR) [29], Reducing Mixed Noise from Hyperspectral
Images- Spatio-Spectral Total Variation (SSTV) [3] and Total-Variation Reg-
ularized Low-Rank Matrix Factorization for Hyperspectral Image Restoration
(LRTV) [11].

Table 1. (Mean) Peak Signal to Noise Ratio ((M)PSNR)

Images Noise levels Noisy LRMR [29] SSTV [3] LRTV [11] Proposed

Boat (20, 0.5) 37.93483 45.80103 45.19565 52.44666 53.93978

(18, 1) 37.0977 41.12151 40.97859 49.6807 50.18706

(15, 5) 33.72437 39.51454 38.99611 42.12812 43.52601

(12, 10) 30.57734 36.46679 34.49019 38.95098 39.05433

(10, 15) 27.66936 31.93391 29.60225 34.39635 35.32598

(5, 20) 20.76654 27.80054 25.07054 28.00373 30.59371

Bridge (20, 0.5) 40.38278 46.3108 42.53173 48.3635 49.37724

(18, 1) 38.07408 42.29087 40.27125 44.33467 45.20096

(15, 5) 35.19445 39.92664 37.74431 41.51511 42.90052

(12, 10) 31.57236 35.8077 33.49365 37.88711 38.60369

(10, 15) 29.24674 33.00381 31.81953 34.54515 35.73806

(5, 20) 22.70886 26.58061 24.63656 28.25876 29.50857

Beers (20, 0.5) 36.76521 38.04239 41.37883 47.8976 49.47953

(18, 1) 35.87462 37.98006 40.97298 43.7326 47.20774

(15, 5) 33.71041 35.27898 36.18821 39.73153 42.00363

(12, 10) 28.08486 32.33426 33.90704 35.24768 39.0979

(10, 15) 24.86433 30.55156 31.80095 32.10115 37.30939

(5, 20) 19.65303 25.92655 28.67122 33.89089 34.67122
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4.1 Results on Synthetic Data

In this section, we replicate the real degradation scenario in HSI data. As dis-
cussed in the introduction and proposed method section, images are syntheti-
cally corrupted with Gaussian noise of specific signal to noise ratio (SNR) in
dB followed by random-valued impulse noise specified in terms of percentage.
These synthetic noise cases are input to our benchmark techniques as well as
our proposed method.

We have obtained our images from two different sources: University of South
Carolina-Signal and Image Processing Institute (USC-SIPI)1 [21] consisting of
volumes segregated according to the nature of images: textures, aerials, miscella-
neous and sequences. All images are available in coloured and grayscale formats
with 8 bits/pixel in three different sizes: 256 × 256, 512 × 512 and 1024 ×
1024. To avoid the computational burden encountered especially in comparing
techniques in terms of their execution time, we have considered images of size
256×256 in grayscale format. We have normalized all images in the range [0...1]
to prevent bias caused when obtaining metric results.

Table 2. (Mean) Structural Similarity ((M)SSIM)

Images Noise levels Noisy LRMR [29] SSTV [3] LRTV [11] Proposed

Boat (20, 0.5) 0.891291 0.988813 0.983416 0.998113 0.999761

(18, 1) 0.7878 0.979479 0.967263 0.987904 0.994547

(15, 5) 0.717871 0.867266 0.826562 0.88981 0.897009

(12, 10) 0.627649 0.822675 0.803021 0.844951 0.854914

(10, 15) 0.543288 0.753964 0.732339 0.778921 0.781214

(5, 20) 0.295264 0.640181 0.620974 0.660521 0.675606

Bridge (20, 0.5) 0.917747 0.96997 0.95184 0.989784 0.997745

(18, 1) 0.834082 0.981924 0.980616 0.983476 0.984256

(15, 5) 0.752072 0.909482 0.889814 0.926699 0.946144

(12, 10) 0.709628 0.857968 0.842594 0.878801 0.899524

(10, 15) 0.659368 0.795371 0.801447 0.806718 0.823504

(5, 20) 0.556002 0.694112 0.684578 0.717476 0.732012

Beers (20, 0.5) 0.966358 0.985767 0.978484 0.990221 0.993756

(18, 1) 0.93884 0.955679 0.937405 0.96555 0.988339

(15, 5) 0.787316 0.908123 0.890531 0.92555 0.943737

(12, 10) 0.522937 0.862337 0.858968 0.880237 0.909475

(10, 15) 0.350952 0.812621 0.806346 0.831097 0.858242

(5, 20) 0.136451 0.652621 0.628371 0.714205 0.73973

1 http://sipi.usc.edu/database/database.php.

http://sipi.usc.edu/database/database.php
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To further study the effect of denoising along spectral dimension by differ-
ent methods including ours, we have used clean multi-spectral datasets obtained
over wavelength range 400 nm to 700 nm with 31 spectral bands from CAVE
database2 [27]. Images are obtained using multi-spectral CCD camera with spa-
tial resolution of 512 × 512 pixels along spatial directions separated by wave-
length of 10 nm along spectral domain in 16 bit PNG format. The entire database
contains 32 images organised into 5 scene types: stuffs, skin and hair, paints, food
and drinks and real and fake.

Original Noisy LRMR [29] SSTV [3] LRTV [11] Proposed

Fig. 2. Visual results of synthetically corrupted bridge image at varying levels of
Gaussian-impulse noise. Row 1: (G, I) = (12 dB, 10%); (λ1, λ2) = (1e − 3, 1e − 4),
Row 2: (G, I) = (10 dB, 15%); (λ1, λ2) = (0.5e − 3, 0.5e − 3) and Row 3:
(G, I) = (5 dB, 20%); (λ1, λ2) = (1e − 2, 1e − 3)

All the images used as synthetic data are corrupted by a combination of
Gaussian-Impulse noise of varying levels. SNR is used to specify Gaussian noise
levels of particular variance. Higher the SNR, lesser is the noise (lesser is
the variance) and vice-versa. SNR is specified in decibel (dB). Impulse noise
is specified in terms of percentage (%). More is the percentage of impulse
noise, more is the intensity of noise. We have conducted our experiments
by corrupting all data with six different levels of Gaussian-impulse noise:
(G , I) = (20 dB, 0.5%), (18 dB, 1%), (15 dB, 5%), (12 dB, 10%), (10 dB, 15%)
and (5 dB, 20%). Figure 1 shows the layer-wise PSNR and SSIM comparison for
one noise level: (10 dB, 15%) for beers dataset (from CAVE database) for layers
1 to 31. We can clearly see that the proposed technique outperforms the com-
peting algorithms. In Table 1 and Table 2 respectively, we provide PSNR and

2 https://www.cs.columbia.edu/CAVE/databases/multispectral/.

https://www.cs.columbia.edu/CAVE/databases/multispectral/
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Original Noisy LRMR [29] SSTV [3] LRTV [11] Proposed

Fig. 3. Visual results of synthetically corrupted beers [26] image at varying levels of
Gaussian-impulse noise. Row 1: (G, I) = (12 dB, 10%); (λ1, λ2) = (0.8e− 4, 1e− 5),
Row 2: (G, I) = (10 dB, 15%); (λ1, λ2) = (1.5e − 3, 1e − 3) and Row 3: (G, I) =
(5 dB, 20%); (λ1, λ2) = (1e − 2, 1e − 1)

SSIM for SIPI datasets and mean PSNR and mean SSIM for CAVE dataset mul-
tichannel beers image. In terms of quantitative evaluation, the proposed method
gives the best metric values signifying better denoising over the others.

We present visual results for three different noise cases ((12 dB, 10%), (10
dB, 15%) and (5 dB, 20%)) in Fig. 2 and Fig. 3 for bridge and beers datasets
respectively. For beers dataset, we have shown results of layer 24. We can clearly
observe that our proposed technique is able to remove noise of all levels from both
datasets without introducing unnecessary artefacts and without loss of detailed
structures in images. Although LRTV shows closer PSNR and SSIM values (over
the other methods) against our proposed technique, details in bridge images are
almost lost in LRTV. In addition to that, we can observe ringing artefacts for
noise level (10 dB, 15%) for beers dataset in LRTV.

4.2 Results on Real Data

To check the performance of the proposed technique on a practical HSI scenario,
we have conducted experiments on two real HSI datasets. Both the images are
obtained from Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) sen-
sor. Test site for Indian Pines3 is present in north-west Indiana obtained over
spatial resolution of 145 × 145 pixels with reflectance bands over range 0.4 to
2.5 µm with 200 bands. The area covered by the image is two-third agricultural

3 http://lesun.weebly.com/hyperspectral-data-set.html.

http://lesun.weebly.com/hyperspectral-data-set.html
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Noisy LRMR [29] SSTV [3] LRTV [11] Denoised

Fig. 4. Visual results of Salinas (λ1, λ2) = (2e − 3, 1e − 2) and Indian Pines dataset
(λ1, λ2) = (1e − 4, 1e − 3).

and one-third forest. Our second dataset is a 224 channels image from Salinas
Valley4, California covering an area with 512 × 217 pixels in spatial dimension.

In Fig. 4, we have shown results for Salinas and Indian pines dataset for
layer 3 and 111 respectively. We have chosen these layers in real data with a
view of high grainy texture rendered by high levels of noise. With fairly smooth
regions in Salinas dataset, we can see that our technique performs best among
all competing methods. This becomes more evident in magnified sections of
images where LRMR performs worst and SSTV develops a white cover upon
restoration. On the other hand, large sections of residual artefacts can be seen
in left side region of LRTV results. As far as Indian pines dataset is concerned,
the proposed technique preserves the details while significantly removing the
granular effects of noise. Details are particularly smoothed out in LRMR while
noise is not properly removed in SSTV. LRTV still provides a better compromise
between these two extremes.

5 Conclusion

In this paper, we have proposed a novel image denoising technique for HSI
data corrupted by a mixture of Gaussian-impulse noise. We have designed our
variational framework by modelling image degradation using a combination of
Gaussian-Laplacian distribution. Splitting the degradation model into two parts
and developing step-wise denoising framework provides necessary denoising gains
with special consideration for the removal of residual artefacts. Experimental
results on synthetically corrupted data and real HSI data suggest utility of our
technique in real scenario. As a future work, we intend to work on learning
based techniques to utilize the result of learning-based denoiser as prior into the
4 http://www.ehu.eus/ccwintco/index.php/.

http://www.ehu.eus/ccwintco/index.php/Hyperspectral_Remote_Sensing_Scenes
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MAP based iterative optimization techniques. Further, exploring the low-rank
behaviour of HSI data can help mitigate computational complexity incurred and
lessen burden of large size in HSI data.
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