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Abstract. Nowadays, skin cancer is growing-up due to exposure to
Ultraviolet (UV) radiation emanating from the sun light. Among sev-
eral categories of skin lesion, melanoma is the most deadly cancerous
kind. Diagnosing skin lesion in its early stage have a great chance to cure
the disease. Researchers have proposed several computer-aided diagnosis
techniques to detect skin lesions. In this work, we present an ensemble
model to classify skin lesion using a pre-trained DenseNet and Incep-
tionV3 algorithms. The fully layered fine-tuned technique is applied to
both the algorithms which are previously explored for ImageNet dataset.
The fine-tuned algorithms are utilized to train on the HAM10000 dataset.
The classification results obtained due to the pre-trained models are con-
catenated in the average ensemble method. The experimentation on the
standard datasets confirm the classification accuracy of 91% and indi-
cates that the proposed approach is a promising as compared to the
previously developed approaches.

Keywords: Deep learning · DenseNet · InceptionV3 · Ensemble
learning · Skin lesion classification

1 Introduction

Globally in each year, 132,000 new melanoma and 2 to 3 million non-melanoma
skin cancer patients appear which shows that the rate of skin cancer incidence is
drastically growing-up [1,2]. The major cause for this is due to ultraviolet (UV)
radiation which is the most significant spectrum of sunlight that can destroy the
DNA under the skin cell that leads to excess development of skin cells resulting
in skin cancer. The main cause of UV to reach our surroundings is the evac-
uation of the level of the ozone layer [3,4]. The most usual categories of skin
lesions are squamous cell carcinoma, melanoma, basal cell carcinoma, Benign,
Actinic keratosis, Melanocytic nevi, Vascular lesions, and Dermatofibroma [5–7].
Melanoma is the most serious cancerous kind of skin lesion, which is the cause
for 9000 mortality in 2017 in United States [8] only. If melanoma is diagnosed
in its early stage, nearly 95% of the cases have a possibility to cure, especially
basal cell and squamous cell carcinomas are highly curable cases [9].
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Skin lesion is primarily detected manually by using human naked eyes, which
require a magnifying and illuminated skin images. Among several procedural
techniques, the most common methods (ABCD) rule, Menzies 7-point checklist
and 3-point checklist are used to detect the melanoma in the early stages [10,11].
Reports on the performance of clinical dermatologists on diagnostic accuracy
have claimed 80% for a dermatologist who have ten years and more experience,
whereas dermatologist who have 3 to 5 years experience were able to reach
only 62% [12]. This shows that for detecting skin lesion with a better accuracy,
years of experience over difficult situations plays a great role. Applying machine
learning techniques on dermoscopic image to classify malignant and benign lesion
becomes popular task because of the ability to detect patterns in digital images.
Deep learning methods exhibit better performance in detection and classification
of various diseases by means of medical image examination [5,13].

Several studies have been prompted to classify skin lesion from dermascopic
images. Barata et al. [14] uses a global and local features for the detection
of melanoma in dermoscopy images. They have compared the effect of color
and texture features for lesion classification and concluded that a combination
of features leads to better performance. In the work of Codella et al. [15] a
combination of support vector machine (SVM), sparse coding techniques and
deep learning are applied on International Skin Imaging Collaboration (ISIC)
dataset to recognize/classify dermoscopy images. A convolutional network with
transfer learning is developed by Cıcero et al. [16] on a custom dataset of skin
image to get better performance in the skin lesion classification task.

In the recent days, we have been witnessing the application of deep learn-
ing for many of the medical image analysis problems. Among these, Esteva
et al. [17] applied a pretrained CNN technique, GoogleNet and Inception v3 for
image classification. In order to tackle the difficulties of classifying skin lesion,
Lopez et al. [18] presented a pretrained VGGNet algorithm with the transfer
learning method. The ISIC dataset is used for testing the proposed method. In
2017, Krizhevsky et al. [19] applied a deep CNN on a large dataset of ImageNet
LSVRC-2010. The number of different classes after classification is 1000. Codella
et al. [20] proposed an ensemble of deep residual network and fully CNN in com-
bination with SVM, hand-coded feature extractor and sparse coding method to
segment and detect melanoma cases on a dataset of International Symposium
on Biomedical Imaging (ISBI). To classify the dermoscopy image dataset of ISBI
2017 into three different classes, Harangi et al. [21] employ an ensemble tech-
nique that fuses the classification output of four different deep neural network
algorithms. Tan et al. [22] used a feature optimization technique considering Par-
ticle Swarm Optimization (PSO) for the purpose of classification of skin lesion
into benign and malignant. Dermofit Image Library, PH2, and Dermnet are the
datasets used for evaluation.

In addition to these works, most recently Hekler et al. [23] implements a
deep learning network for skin lesion classification into malignant melanoma
and benign nevus that could help human for the histopathologic melanoma
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diagnosis. To enhance the performance of skin lesion classification, a dilated
convolution of deep learning technique is applied on four pretrained algorithms
(VGG16, VGG19, MobileNet and InceptionV3) by [5]. They have used transfer
learning for the extraction of features from the images. Chaturvedi et al. [4] pro-
posed a transfer learning on pretrained MobileNet algorithm and evaluated on
HAM10000 dataset to classify into seven different classes. In Pratiwi et al. [13],
CNN model is proposed for the detection of skin cancer from HAM10000 der-
moscopy image. In the work of Khan et al. [24], an ensemble of pretrained
ResNet-50 and ResNet-101 through transfer learning based feature extraction
is employed for skin lesion classification. The features extracted are fed to SVM
for classification. Even though, several attempts are done for classification of
skin lesions, still there is lack of generality in their capability of classification
and have not achieved better accuracy because of the complexities in the image
itself [4].

In this study, we proposed an ensemble method that fuses the two most
common pretrained deep convolutional neural networks, namely DenseNet and
InceptionV3, which are pretrained on approximately 1.28 million images. In most
of the cases these two algorithms outperform in the HAM10000 dataset [25] as
we explore from the previous works. We use a fine tuning technique for the fea-
ture extraction (discussed in the methodology in detail). The proposed model is
trained and tested on HAM10000 dataset [25] that consists of 10015 dermoscopy
images. The rest of the paper is outlined as follows. Section 2 introduces the
proposed method which details about dataset description, data pre-processing
techniques, data augmentation and the proposed architecture. Section 3 present
experimental findings. Finally, Discussion and Conclusions are given in Sect. 4.

2 Proposed Methodology

In this section, we present the details of the proposed methodology which include
the dataset used for training and evaluation, data pre-processing and augmen-
tation techniques, and the architecture of the proposed method.

2.1 Dataset

To train, validate and test the proposed model, we have used a collection of der-
matoscopic images namely Human Against Machine with 10000 training images
(HAM10000) dataset which is available publicly on International Skin Imaging
Collaboration (ISIC). The dataset accommodates 10015 dermatoscopic images
gathered from different populations by using a variety of modalities. The dataset
is not equally distributed for each type of lesions, 6705 Melanocytic nevi (nv)
images, 1113 Melanoma (mel) images, 1099 Benign keratosis (bkl) images, 514
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Fig. 1. Randomly selected sample images for each cancer type from the HAM10000
dataset.

Basal cell carcinoma (bcc) images, 327 Actinic keratosis (Akiec) images, 142
Vascular (vasc) images and 115 Dermatofibroma (df) images. All images are
stored with 600 × 450 pixels resolution. This indicates that, more than 50% of
the dataset is imbalanced to only one type of lesion namely Melanocytic nevi.
Figure 1 shows five sample images from each lesion types.
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2.2 Data Pre-processing

The pixel resolutions of all the images used in this study are 600 × 450. To
make the size of these images compatible with our models (DenseNet and Incep-
tionV3), we downscale the pixel resolution to 256 × 192 by using Keras Image-
DataGenerator. Then normalization of the dataset is performed by dividing the
pixel values of the images by 255.0. Finally, we divide the dataset for the training
(8111 images), validation (902 images) and testing (1002 images) sets.

2.3 Data Augmentation

For deep learning algorithms, to get a better performance, a large amount of
data is required. But still, acquiring an adequate amount of data is the main
challenge in the area. One best solution to increase the dataset size is the data
augmentation technique as it raises the dataset size without eliminating the
structure of the data. In our study, the first data augmentation techniques used
is a rotation operation with a range randomly between 0 and 60◦. The other
concern in image data preparation is, objects of interest in the image may be
off-centred by several means. To handle this problem, we apply width shifting
and height shifting with a range of 0.2. At last, shear and random zooming
operations are applied with a range of 0.2.

2.4 Proposed Architecture

Recently, for image classification, CNN become the state-of-the-art method
because it achieved excellent performance on a well-known datasets such as MIN-
IST [26] and ImageNet [27]. There are several varieties of CNN algorithms for
image classification task, such as AlexNet [19], GoogLeNet [28], ResNet [29],
DenseNet [30], VGGNet [31], InceptionV3 [32] and others. In our work, we
perform the classification of skin lesion by using an ensemble method which
encompasses well-established deep learning architectures that have shown bet-
ter accuracy in the previous works, namely DenseNet and InceptionV3. These
architectures are available as a pretrained model that were initially trained with
ImageNet dataset that contains around 1.28 million natural images with 1000
classes. We use the weights and biases from the pretrained model to initialize
learning on our dataset, and then a fine-tuning technique is applied on all the
layers in the selected architectures. The details are presented in the following
subsections.

The DenseNet Architecture: The DenseNet architecture proposed by Huang
et al. [30] contains all the layers which are directly connected to each other to
optimize the flow of information between the layers. That means, each layer
in the network receive information from all the antecedent layers and feeds its
output to all the consequent layers. A concatenation operation is performed in
every layer to merge the inputs from the previous layers. Equation 1 presents the
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input feature map fetched to the ith layer from all the preceding layers [33]. The
connectivity pattern in each layer of a single dense block is illustrated in Fig. 2.
DenseNet is one of the best performer method on ImageNet dataset where it
performs 0.773 on top-1 and 0.936 on top-5 retrievals.

Fig. 2. A layout of single dense block which has 5 layers.

xi = Hi(x0, x1, ..., xi−1) (1)

Here, xi is the output of the ith layer and Hi is the composite function that
represent the operations such as rectified linear units (ReLU), Batch Normaliza-
tion (BN), and Convolution (Conv).

In our work, we have used the variant of DenseNet that is named as DenseNet-
201, which has 4 dense blocks and 201 layers. Figure 3 shows a DenseNet archi-
tecture with three dense blocks. In each dense block, there is a composition layer
which performs sequentially BN and ReLU and then a 3 × 3 convolution oper-
ations. The convolution operation is used to provide the concatenated output
feature map, say for example, to transform the input feature maps x0, x1, x2 to
output feature map x3 by using Eq. 1. The Batch Normalization operation is
used to normalize the input of each layer [34] in order to decrease the absolute
difference between data and make the relative difference higher.

Fig. 3. A deep DenseNet with 3 dense block.
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The other operation which is part of composition layer is the ReLU, which is
applied in DenseNet architecture. Equation 2 describes how the ReLU operation
works.

ReLu(x) =

{
x, if x > 0.
0, otherwise.

(2)

The changing of feature map size due to the down-sampling layers in con-
volutional networks makes difficult to perform the concatenation operation. To
facilitate down-sampling, the Densenet architecture separates the whole network
into various dense blocks that are connected densely. As shown in Fig. 3, there
are transition layers between these densely connected dense blocks used to per-
form convolution and pooling operation. In this work, these transition layers
include three different operations namely batch normalization, 1 × 1 convolu-
tion and a 2 × 2 average pooling operation [30]. Beside, a bottleneck layer is
incorporated within the dense blocks before a 3 × 3 convolution layer. It consists
of BN, ReLU and a 1 × 1 convolution layer. The 1 × 1 convolution operation in
this layer makes the network computationally efficient by reducing the number
of input feature maps to the 3 × 3 convolution operation in the dense block.
This layer make DenseNet method effective by reducing the complexity and size
of the model. The main benefits of DenseNet, when compared to other methods,
are presented below.

– Only a few parameters: Since the feature maps from the preceding layers acts
like an input for the current layer, many feature maps can be reused to learn
by some convolution kernels.

– Capability to reduce over fitting: The dense connection in the DenseNet net-
work built short paths from the beginning to the end layers. Due to this, the
loss function provides additional guidance for each layer. Consequently, the
dense connection protects the over-fitting problem in a better way, particu-
larly it is a good choice for learning from the small size of data.

– Layers are deeper: Because all layers are linked directly to each other, the
network has highly deep architecture.

The InceptionV3 Architecture: By enhancing the GoogleNet [28] net-
work, Szegedy et al. [32] proposed an algorithm called InceptionV3. The major
enhancement is reducing the size of the parameters by concatenating the con-
volutional filters which have different sizes into a new filter. Consequently the
computational complexity of the model is decreased. Figure 4 illustrates the
architecture of InceptionV3. This model scores an error rate of 3.5% on top-5
and 17.3% on top-1 of ImageNet dataset.

In this network, the number of parameters is reduced by replacing the convo-
lution filters of size greater than 3 × 3 (e.g. 5 × 5 or 7 × 7) by a sequence of 3 × 3
convolution layers. The computational cost of a large spatial filter convolution is
expensive [32]. In addition to this, spatial factorization into asymmetric convolu-
tions is applied. This means, replacing an n × n filters by two layer asymmetric
filters of n × 1 followed by 1 × n. The InceptionV3 network has 42 layers and
the detail of the network that is shown in Fig. 4 is presented in Table 1.
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Fig. 4. The architecture of InceptionV3.

Table 1. The detailed outline of InceptionV3 architecture. The input size column also
represents the output size of the previous layer.

Type of layer Patch size/stride Input size

Conv 3 × 3/2 299 × 299 × 3

Conv 3 × 3/1 149 × 149 × 32

conv padded 3 × 3/1 147 × 147 × 32

Pool 3 × 3/2 147 × 147 × 64

Conv 3 × 3/1 73 × 73 × 64

Conv 3 × 3/2 71 × 71 × 80

Conv 3 × 3/1 35 × 35 × 192

Pool 8 × 8 8 × 8 × 2048

Linear Logits 1 × 1 × 2048

Softmax Classifier 1 × 1 × 1000

Fine Tuned Ensemble: To increase the image classification accuracy on a
dataset which do not have sufficient amount of annotated images, an ensem-
ble of DNN is a powerful technique, which makes a decision by combining the
prediction results from multiple models [21]. In our work, we have explored an
ensemble of two well-known pretrained CNN algorithms, DenseNet and Incep-
tionV3. Firstly, the two methods (DenseNet and IncptuionV3) are fine-tuned
and trained on our dataset individually, and then the best performed model
is saved. The fine tuning technique is applied by freezing all the layers of the
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networks prior to the final fully connected layer. A fully connected layer of the
pretrained networks is removed and replaced by a new fully connected layer that
have seven neurons which is equivalent to the number of classes in the predic-
tion task. Finally, classification is performed by fusing saved models by averaging
technique. An averaging of a models’ prediction is an ensemble learning tech-
nique that predicts based on the predictions obtained by each model. It considers
each model equally for average calculation and used to bring down the variance
in the final neural network model [21]. Figure 5 presents the model architecture
of the current work.

Fig. 5. The proposed ensemble architecture.

3 Experimental Details

In this section, we present the details of the experimental setup, the evaluation
metrics and results with a detailed discussion on the experimentation.
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3.1 Experimental Setup

In the current study, we perform a classification task using two fine-tuned DNN
methods and then we have employed an ensemble technique. The proposed mod-
els are trained for 40 epochs with a batch size of 32 on our dataset. The evaluation
of the model is done using 902 sample images from the validation set and 1002
sample images from the test set. We have considered Adam optimizer to opti-
mize learning with a learning rate of 0.0001, the minimum learning rate is set
to 0.1 × 106. We have used the Top 1 accuracy, which is the standard perfor-
mance measure in CNN studies [19]. Firstly, we have compared the classification
accuracy obtained on the HAM10000 dataset considering

– Fine-tuned denseNet algorithm
– Fine-tuned InceptionV3 algorithm and
– An ensemble method of DenseNet and InceptionV3.

In addition, the best accuracy result from our evaluation is compared with other
previous studies which have better performance and done on HAM10000 dataset.
To program the model for our computer aided diagnosis (CAD) system, we use
python programming language. We built it on top of Keras deep learning frame-
work for neural networks [35] with the tensorflow [36] back-end. The training is
performed on Google Collaborator, which come up with a single 12 GB NVIDIA
Tesla K80 GPU and 12 GB RAM.

3.2 Evaluation Metrics

The overall testing of the proposed model is performed using 1002 unseen test
dataset. To assess the achievement of the proposed model, we use several evalu-
ation metrics, namely precision, recall, accuracy, and F1-Score. For each of the 7
groups’ precision, Recall, and F1-score are determined. Also, the weighted aver-
age which is a good measure for unbalanced dataset is also calculated for recall,
precision and f1-score.

3.3 Experimental Results

This part narrate the assessment outcomes of the proposed method empirically
and graphically on the HAM10000 dataset. As shown in Tables 2, 3 and 4,
the experimental result for DenseNet, InceptionV3, and the Ensemble of the
two models respectively is presented with precision, recall, and f1score on the
HAM10000 dataset for seven classes. Accordingly, for individual models, namely
DenseNet and InceptionV3, the Melanocytic nevi class which has the maximum
number of the test sample (678 out of 1002) scores the highest precision, recall,
and f1-score. For Melanocytic nevi class, DenseNet scores 95%, 96% and 95%
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Table 2. Precision, recall, and F1-score for each class due to DenseNet model.

Class name Precision Recall F1-score

akiec 0.94 0.57 0.71

bcc 0.92 0.79 0.85

bkl 0.73 0.83 0.78

df 0.92 0.73 0.81

nv 0.95 0.96 0.95

mel 0.93 0.93 0.93

vasc 0.71 0.71 0.71

Table 3. Precision, recall, and F1-score for each class due to Inceptionv3 model.

Class name Precision Recall F1-score

akiec 0.70 0.57 0.63

bcc 0.93 0.74 0.82

bkl 0.66 0.78 0.71

df 0.83 0.67 0.74

nv 0.84 0.95 0.95

mel 0.81 0.93 0.87

vasc 0.74 0.69 0.71

and InceptionV3 scores 94%, 95% and 95% precision, recall, and f1-score respec-
tively. The ensemble method scores the highest precision of 100% for Melanoma
and Dermatofibroma, the highest recall of 96% for Melanocytic nevi, and 96%
f1-score for melanoma classes. Quantitatively, Table 5 demonstrates the accu-
racy, weighted precision, weighted recall and weighted f1-score of our ensemble
network and the two fine-tuned network for test dataset. A weighted average of
precision, recall, and f1-score for DenseNet 90%, 89% and 89%; for InceptionV3
88%, 88% and 88%; and for Ensemble model 91%, 91% and 91% in the given
order is recorded. We have also computed the training-validation accuracy curves
for the proposed method. The training-validation accuracy curve for DenseNet
and InceptionV3 models are demonstrated in Fig. 6 and Fig. 7 respectively. The
graphs exhibit that there is a high increasing rate of accuracy until 25th epoch
and there-after 25th epoch, the graph becomes converge in both models. Another
evaluation metric that is applied in this study is to visualize the classification
performance using confusion matrix which is described in terms of correctly clas-
sified and wrongly classified test samples. The proposed method performance is
presented in Figs. 8, 9 and 10 for DenseNet, InceptionV3, and Ensemble models
respectively on HAM10000 dataset that contain seven classes. The diagonals of
a confusion matrix from top-left to bottom-right are correctly classified sam-
ples, and all other cells out of this diagonal represent wrongly classified samples.
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Table 4. Precision, recall, and F1-score for each class due to Ensemble approach.

Class name Precision Recall F1-score

akiec 0.87 0.71 0.78

bcc 0.98 0.86 0.92

bkl 0.74 0.86 0.80

df 1.00 0.73 0.85

nv 0.95 0.96 0.95

mel 1.00 0.93 0.96

vasc 0.77 0.75 0.76

Table 5. The evaluation metrics(%) of the proposed methods.

ModelName WeightedPrecision WeightedRecall WeightedF1Score Accuracy Loss

DenseNet 90 89 89 89.42 53.36

InceptionV3 88 88 88 87.82 55.55

Ensemble 91 91 91 90.91 38.33

Fig. 6. The classification accuracy curve due to DenseNet model.

Finally, we have made a comparative study with the existing state-of-the-art
methods that are validated on the HAM10000 dataset as shown in Table 6. The
highest outcome of proposed architecture is indicated by making bold. The com-
parison in the table indicates that the proposed method achieves better when
compared to existing algorithms.
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Fig. 7. The classification accuracy curve due to Inceptionv3 model.

Table 6. The Comparative analysis of the proposed method with the existing methods.

Method Model used Precision Recall F1 score Accuracy

Khan et al. [24] Resnet-50 and
Resnet-101

90.14 89.71 - 89.9

SS Chaturvedi et al. [4] MobileNet 89 83 83 83.15

Shahin et al. [37] Ensemble (ResNet
and InceptionV3)

86.2 79.6 - 89.9

MAR Ratul et al. [5] InceptionV3 89 89 89 89.81

RA Pratiwi et al. [13] VGG19 78.21 96.40 86.36 87.64

Our method (ensemble) DenseNet and
InceptionV3

91 91 91 90.91

Fig. 8. The confusion matrix due to DenseNet model.
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Fig. 9. The confusion matrix due to Inceptionv3 model.

Fig. 10. The confusion matrix due to Ensemble model.
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4 Discussion and Conclusions

The diagnosis and detection of skin cancer is the complex task due imbalanced
number of training samples. In the previous section, we have presented the
experimental results with well-known metrics numerically and graphically. It
is evident from the experimental results (see Tables 2 and 3) that the DenseNet
and InceptionV3 scores the highest precision, recall and f1-score with respect to
Melanocytic nevi class which has large number of samples. This class has 678
samples out of which 67% is considered for the test dataset. In the Ensemble
model, there is no single class that possess a good score than the other classes
with respect to all the evaluation metrics as indicated in the Table 4. But, almost
in all evaluation metrics for all individual classes, the ensemble model achieves
a better performance than DenseNet and InceptionV3 models. By observing the
classification rate of every individual class obtained from the experimental anal-
ysis, it is clear that almost all classes that have large categories have better
classification rates whereas those images from small classes are highly misclassi-
fied.

In addition, as the multi-class classification report shows in Table 5, the
ensemble model records a better classification accuracy when compared with
the individual models in terms of accuracy, loss, and weighted average of preci-
sion, recall, and f1-score. It achieves an accuracy of 91%, loss of 38.33% and an
equal score for weighted precision, recall, and f1-score of 91% for the unseen test
datasets. We have observed that concatenating two or more models together by
using various ensembling techniques can improve the prediction capability and
generalization ability of a classification model.

The confusion matrix also gives a clear illustration by comparing the True
label and Predicted label for each sample in the test set. Even if most of the
images are classified correctly, due to the presence of high similarity in the inter-
class and the variability due to intra-class between images in some classes in the
training data makes it impossible to reach high classification capability for each
class. The comparative process indicates that the proposed method achieves
better performance in terms of precision, f1-score, and accuracy. In terms of
recall, our model is in the second rank next to Pratiwi et al. ‘[13]’. But our
model is much better than this model in view of precision and hence better
f1-score is registered by the proposed study.

In summary, in the current work, we have employed a new ensemble method
for skin lesion classification by using deep learning. In our proposed method, the
fine-tuned technique is applied on DenseNet and InceptioV3 networks. These
algorithms were pretrained on ImageNet dataset which is a large image dataset
with 1000 different classes. For our task, we remove the last fully-connected layer
of the algorithms and replace it with a new fully-connected layer that is appro-
priate for our classification task on the HAM10000 dataset which has 7 classes.
After we train the algorithms on our dataset separately, we concatenate the
results by the average ensemble technique. Experimentation is performed on the
test dataset and achieved an accuracy of 89.42%, 87.82% and 91% for DenseNet,
InceptionV3 and ensemble models respectively. From the experimental result,
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we observe that through the fusion of two methods, the model scores better per-
formance than individual architectures. Moreover, the comparative study shows
that the result of the proposed method achieves better performance in most of the
parameters, when compared to the existing state-of-the-art methods. Although
the proposed method has improved accuracy, it still needs improvement to tackle
the overfitting problem and to increase the accuracy by using different regular-
ization techniques.
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