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Abstract Carbon is one of the most versatile elements in the periodic table and is
known to occur in various allotropic forms. It has beenwidely explored since the eigh-
teenth century and its investigation in various forms haswitnessed continuous growth
thereafter. The effect of these advancements has guided numerous discoveries which
have not only addressed several aspects of materials physics, but also their appli-
cations. The development of theoretical and computational tools accompanied by
novel characterization techniques along with the ability to synthesize these reduced
dimensionalities of the carbon family like fullerene, carbon nanotubes, graphene,
carbon quantum dots, etc. has significantly improved the understanding of these
nanostructures. The ability of computational and theoretical techniques to predict
and provide insights into the structure and properties of systems plays a crucial part
in substantiating experimental findings. Theoretical and computational modeling of
various carbon nanostructures such as fullerene, carbon nanotubes, graphene, and
carbon quantum dots will be critically reviewed. The chapter begins with the descrip-
tion of the historical timeline of carbon nanostructures. How the models developed
over time have led to the development of carbon nanoforms is reviewed. The impact
of theoretical and computational approaches in understanding the physics of these
carbon nanostructures is also highlighted.
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1 Introduction

Carbon is one of the essential elements in the world; in terms of abundance, it holds
the sixth position of typical elements in the universe, fourth in our solar system, and
about seventeenth in the Earth’s crust [1]. The approximated relative abundance for
carbon ranges 180–270 parts per million [2]. It is also noteworthy that the presence of
carbon in human beings as an element is only subsequent to oxygen [3] and therefore
acquires around 18% of human body weight. One of the remarkable characteristics
of carbon is that it can occur in a broad area of metastable phases modeled near
ambient environments along with their extensive kinetic stability. Despite the fact
that carbon in its elemental form is relatively scarce on the earth’s crust [1, 2, 4],
it plays a significant role in the ecosystem of the earth. With the ongoing research
toward the development of various unique forms of carbon, the current century can be
rightly called “The era of carbon allotropes” [5]. Carbon nanoforms or nanostructures
comprise various low-dimensional allotropes such as buckminsterfullerene or C60,
carbonnanotubes, graphene, poly-aromaticmolecules, and carbonquantumdots. The
uses of these nanostructures have been explored in different areas like nanoscience,
materials science, engineering, and technology [6–12]. Recently, nanotechnology
has gathered much attention because of its direct application in developing novel
materials comprising significant properties like better directionality, high surface
area with flexibility, etc. [13–18]. These properties uncover various applications
of carbon nanomaterials design in almost all research domains [9, 19–23]. Ergo,
in recent past decades, carbon science has become a trending topic along with its
nanoscience discipline.

Carbon is traditionally understood to occur in only two naturally occurring
allotropic configurations known as graphite and diamond. Nevertheless, the crystal
structure and properties of graphite and diamond are significantly different [24–
28]. Chemically, the tendency of carbon atoms to create covalent bonds with other
carbon atoms leads to the formation of novel allotropes in the carbon family [29]
such as buckminsterfullerene [30, 31], carbon nanotubes [32, 33], and graphene
[11]. Although the existence of carbon and its applications has been known to us for
centuries, the modern timeline for the development of carbon science is represented
in Fig. 1.

A new chapter in the exploration of the carbon family began with the discovery
of buckminsterfullerene’s (“buckyballs”) [30] in the mid-1980s accompanied by the
discovery of fullerene nanotubules (“buckytubes”) [33]. The breakthrough discovery
of these nanostructures triggered increased research efforts in the exploration of
carbon materials. Table 1 presents some predictions and discoveries of carbon
nanostructures.

The theoretical and computational approach has made significant contributions in
the field of carbon nanostructures (graphene, fullerenes, and carbon nanotubes) by
offering a framework with predictive structures along with their chemical and phys-
ical properties. Computational framework in nanoscience has consistently comple-
mented the experiments for the development of carbon nanostructures with the
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Fig. 1 Timeline of carbon nanostructures

Table 1 Timeline of predictions, discoveries, and observations of carbon nanostructures

Years Occurrence Observations

1966 Graphite molecules with hollow-shell were
described

Assumption of molecule shape by
graphite is made by Jones [34]

1970 A soccer ball-shaped C60 molecule is
suggested

Osawa [35]

1973 Prediction of stable C60 was described Huckel calculations; closed-shell
electronic structure is expected by
Bochvar and Galperin [36]

1980 Nanotubes were first observed Using arc discharge method by Iijima
[37]

1985 After several hypotheses,
Buckminsterfullerene, C60 was discovered

Kroto, Smalley et al. detected C60 and
C70 in the mass spectrum of
laser-evaporated graphite [30]

1991 Prediction of hyperfullerenes was made Curl and Smalley [38]

1993 Single-wall nanotubes were discovered Using arc process in the presence of iron
and cobalt catalytic particles by Iijima
et al. [39] and Bethune [40]

2004 Discovery of Graphene A monolayer graphene was developed
using a Scotch tape technique [41]

2004 Discovery of carbon quantum dots Fluorescent carbon quantum dots were
derived accidentally from single-wall
carbon nanotubes (SWCNTs) [42]
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prediction of their properties. The theoretical approach also provides an under-
standing of the reaction and separationmechanisms of carbon nanostructures. Exper-
imental methodologies like X-ray diffraction and nuclear magnetic resonance are
used for probing and solving the crystal structure of any material. A computa-
tional approach can be used alternatively. Several methodologies were developed
to deal with the problem of structure prediction. One prominent and effective model
comprises investigating material’s crystal structure, energy, and thereby choosing
the material with the lowest energy as the “best guess” solution. In this context,
various methods have been established. Random crystal structure prediction is an
easy way that produces random atomic compositions with optimization to stabi-
lize those compositions (inside the limits of bond lengths) [43]. While random
crystal structure prediction is simplistic, unbiased, and easy to parallelize, it necessi-
tates sampling various configurations to achieve better results. Another widespread
approach to improve efficiency is evolutionary algorithms [44], which initially starts
with a random structure and then enriches guesseswith the lowest-energy results with
each iteration [45]. In order to improve the results of structural prediction, different
algorithms, force statistics, and data mining [46–50] are used to study criteria for
crystallization such as in the Inorganic Crystal Structure Database [51]. However,
the drawback of data mining methodology is that it is identified by the compounds
analogous to previously observed ones, hence, lacking in novel and distinct structural
phases. The recent approach for efficient crystal structure prediction involves partial
experimental information to apply limitations on symmetry [52]. Every method has
its own significance for different applications.

To accomplish electronic structure calculations of carbon nanostructures like
fullerenes andmodel CNTs,many-body empirical potentials, empirical tight-binding
molecular dynamics, and local density functional (LDF)meanswere utilized at begin-
ning of the past decade [53, 54]. The Huckel approximation was used to investigate
electronic structure for large Ih point group fullerenes [55]. The geometry optimiza-
tions of these large fullerenes were also carried by methodologies like molecular
mechanics (MM3), semi-empirical methods [56], AM1 [57], PM3 [58], and Semi-
Ab InitioModel 1 (SAM1) [59]. The computational strength has also been extensively
evolving due to the availability ofmore powerful computing resources.Consequently,
theoreticians are delighted in examining and developing carbon nanostructures past
molecular mechanics and semi-empirical methods. An analysis of theoretical and
computational approaches utilized to explore different nanostructures of the carbon
family is provided in this chapter.
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2 Zero Dimensional (0D) Carbon Nanostructures

2.1 Fullerenes

Fullerenes form a hollow cage-like arrangement of carbon atoms comprising solely
of hexagon and pentagon rings. Buckminsterfullerene (C60) was the first in the series
of developments of such carbon nanostructures [30]. Kroto, Curl, and Smalley were
awarded the Nobel Prize in Chemistry in 1996 for this discovery. However, before
the experimental realization of these fullerenes, they were first hypothesized by
many researchers. In 1966, graphite molecules with hollow-shell were described in
the scientific column “Daedalus” [34]. Subsequently, various theoretical hypotheses
were made on the capability of 60 carbon atoms with truncated icosahedron [35,
36, 60, 61]. The occurrence of C60 was primarily predicted by Osawa in 1970 [35].
These results were later confirmed by mass synthesis of C60 by Krätschmer in 1990
using the carbon arcmethod accompanied by infrared (IR) spectroscopy for structure
verification [62]. The aforementioned findings since then sparked widespread novel
research for C60 along with other fullerene derivatives.

The study for fullerene with the early graphite laser vaporization was initiated
and observed by Rohlfing et al. [63]. The carbon clusters formed in the experiments
were noticeably bimaximal comprising of even and odd forms of Cn (where n < =
25), while only even forms in Cn (where n > = 40) relying upon their experimental
situations. According to ab initio and various spectroscopic investigations, carbon
clusters varying from n= 2 to 9 tend to present linear chain structures with single and
triplet electronic ground states in odd and even clusters, respectively [63]. Contrary
to that, some ab initio studies suggest that even number clusters in the range n = 2–8
show cyclic equilibrium structureswith lower electronic states [64, 65]. Furthermore,
Cn clusters ranging fromn=10 to 25presentmonocyclic ground state configurations.
The above-said conversion from linear chains to monocyclic rings is attributed to
the fact that additional bonding associated with ring closure ultimately surpasses the
strain energy acquiredwith the twisting of the polyyne chain to create a ring. Through
semi-empirical molecular orbital theory calculations, the transformation point with
10 carbon atoms is predicted [66, 67]. However, according to the intensities in the
high-mass region, these carbon nanostructures were indecisive and needed plausible
explanations [68]. The photoionization time-of-flight mass spectrum (PI-TOF-MS)
of these carbon nanostructures ranging from 1 to 100 atoms is presented in Fig. 2.

Evidently, these elucidations must justify the detail that ion signals of even Cn

were observed in the high-mass region. Subsequently, this instantly eliminates a
variety of probable configurations for Cnclusters, for instance, fractions of diamond
lattice/graphite sheet. These structures tend to present both even and odd peaks of
mass by means of linear chains and monocyclic rings. Moreover, it does not exclude
the possibilities of other configurations like “carbyne” [63]. The second probable
reason consistent with this analysis would be that the second sets of high-mass
region carbon clusters are all fullerenes (Fig. 2). This is the well-known fullerene
hypothesis and has gathered much attention for the reason that closed cages bypass
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Fig. 2 PI-TOF-MS spectrum (involving the amalgamation of two different spectra) for carbon
clusters attained through doubled Nd:YAG vaporizing laser energy (40 mJ) and unfocused ArF
ionizing laser energy (1.6 mJ and 193 run). The vertical deflection plate voltage of 300 V is utilized
for Cn

+, 1 < n < 30, leading to the optimization of C20
+ collection while 600 V was utilized for

C2n
+, 20 < n < 50, for the optimization of C100

+. Reproduced with permission from Rohlfing et al.
J. Chem. Phys 81, 3322 (1984). Copyright 1984 AIP Publishing

the dangling bonds of edges that are anticipated to destabilize fractions of diamond
and graphite lattices [30] and additionally, due to the fact that trivalent cages fulfill
the valence necessities of carbon atoms compared to linear chains and monocyclic
rings. These qualitative theoretical aspects of the fullerene hypothesis along with
electronic structure calculations provided support to the experimentation of C60 in
1985.

Oneof the important investigations performedwas the comparison of carbon cages
with chains, rings, and toroids along with fractions of infinite diamond and graphite
lattices using semi-empiricalmodels [69]. The analysis suggested that cage structures
with atoms greater than 25 would be the most stable carbon clusters. Furthermore,
the existence of solely pentagonal and hexagonal rings along with the unavailability
of adjacent pentagonal rings were conditions for the stability of cage structures [69].
The affinity of fullerenes comprising limited adjacent pentagonal rings was also
addressed by Kroto in 1987 using empirical arguments derived from chemical and
geodesic rules [70]. The structures studied by Kroto in 1987 are presented in Fig. 3.
It is noteworthy that both the aforementioned studies suggested that C60 was the
smallest fullerene without adjoining pentagonal rings consists of D5h isomer of C70.

Kroto’s inference ofC60 with Ih symmetry as foundational fullerenewas supported
by Krätschmer et al. [62] in 1990 through four-band IR absorption spectrum and
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Fig. 3 Structures of fullerenes by Kroto et al. a C70, most stable fullerene created by splitting two
halves of C60 through 10 extra carbon rings, b C50, comprising isolated singlet and doublet pentag-
onal structures, c structure of C32 with threefold axis, and d C28 which is a tetrahedral fullerene.
Reproduced with permission from Kroto, Nature 329, 529 (1987). Copyright 1987 Springer Nature

latterly in the same year by Taylor et al. [71] through 13C nuclear magnetic reso-
nance (NMR) spectroscopy. Thereafter, several other configurations of fullerenes
were synthesized including C76 [72], C78 [73, 74], and C84 [74, 75].

Various configurations of fullerenes are shown in Fig. 4. Each fullerene molecule
shows the features of a carbon cage, as each atom is bonded to the other three carbon
atoms in the same manner as in graphite [73]. The extensive series of techniques
to synthesize fullerenes observed that C60 is the most plenteous among fullerenes
accompanied by C70 [76]. C60 with Ih symmetry comprises two C–C bonds with (i)
one at the link of twohexagonal rings denoted and (ii) one at the link of pentagonal and
hexagonal rings. Contrarily, C70 with D5h symmetry consists of eight C–C bonds. It
is noteworthy that two pentagonal rings sharing similar C–C bonds are energetically
unfavorable. Mathematically, 1812methods are known to build isomers of 60 carbon
atoms, while C60 holds its uniqueness and special place with stability due to the fact
that all of its pentagonal rings are secluded by its hexagonal rings. The state is known
as the “isolated pentagon rule” (IPR) [77]. C60 being the smallestmember of fullerene
family obeying the IPR, C62, C64, C66, and C68 fullerenes does not follow the IPR.

Figure 5 presents that the number of IPR isomers is directly proportional to the
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Fig. 4 Structures of fullerenes along with their symmetries. Reprinted with permission from Ref.
[73]. Reproduced with permission from Yan et al. Nanoscale 8, 4799 (2016). Copyright 2016
Author(s), licensed under the Creative Commons Attribution 3.0 Unported License

Fig. 5 Size of fullerenes with respect to the number of isolated pentagon rule (IPR) isomers (the
details of isomers were taken from Ref. [77])
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size of fullerenes. The studies of IPR with possible isomers of fullerenes assisted
the experimentalists to identify and characterize them [78–80]. For instance, in C78

(consisting five isomers), isomers with C2v and D3 symmetry were identified using
13CNMR spectra [74]. Theoretical investigations of C82 lead to experimental char-
acterization of its three isomers having C2 symmetry also using 13C NMR spectra
[74, 81]. Additionally, several computational investigationswere performed since the
discovery of fullerenes to thoroughly study their isomers and subsequently to predict
the lowest-energy configurations of giant fullerenes [82–89]. Becke, 3-parameter,
Lee–Yang–Parr(B3LYP)hybrid functional along with various basis sets were used to
examine C86 along with its 19 isomers following IPR [87]. Their studies suggested
that isomer 17 (C2 symmetry of C86) is the most stable among them followed by
isomer 16 (Cs symmetry of C86). Similarly, several theoretical calculations played
a crucial role in predicting accurate lowest-energy structures of the fullerene family
[83, 87].

Several theoretical and computational studies in the last decades have been dedi-
cated to exploring C60 along with its chemical and physical properties. Theoretical
investigations by Fowler and Steer [90] suggested that Cn (n = 60 + 6 k, k = an
integer except one) should comprise closed-shell electronic structures. Schmalz et al.
showed that the aromaticity of C60 is less than that of benzene [69] through resonance
circuit theory and Huckel molecular orbital (HMO) theory. The stability occurring
through bond delocalization was explained by Amic and Trinajstic [91]. The elec-
tronic and vibrational properties of C60 were evaluated through the two-dimensional
HMOmethod [92]. Semi-empirical calculations involving overlapping of non-planar
π-orbital were also given by the free-electron model in the Coulson–Golubiewski,
self-consistent Huckel approximation for the curvature system [93]. The large-scale
restricted Hartree–Fock calculations were carried out presenting electron affinity of
0.8 eV and ionization potential to be 7.92 eV with �Hf = 415–490 kcal/mol [94–
96]. On the basis of ab initio self-consistent field (SCF) theory, the heat of formation
was also evaluated by Schulman and Disch [97]. To measure structural parameters,
electronic spectra, and oscillator strength, the Pariser–Parr–Pople method and the
CNDO/S method (with CI) were used by many researchers [98–101]. The ground
and excited states of C60 presenting π-bonding character were determined by the
tight-binding model using electron–phonon coupling [102]. The primarily vibra-
tional properties of C60 were investigated by Newton and Stanton using MNDO
theory [103]. It was observed that C60 contains four IR active modes because of its
high symmetry (“t1u” symmetry) and 10 Raman active modes involving eight “hg”
and two “ag” symmetries. The 174 vibrational modes of C60 contribute to 42 elemen-
tary modes with different symmetries. Proceeding to understand magnetic properties
of C60, by means of HMO and London theories, the ring current magnetic suscep-
tibility was evaluated with less than 1 ppm shielding because of the termination of
the contribution of both diamagnetic and paramagnetic spins [104, 105]. The theory
also presented the absence of usual aromatic behavior [104, 105]. Some investiga-
tions proposed that the diamagnetic part has been underestimated [106]. Fowler et al.
(using coupledHartree–Fock calculations) in their study proposed that the aforemen-
tioned shielding has to be approximately similar as for analogous aromatic structures
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[106]. Later on, Haddon and Elser addressed the shielding of fullerenes [104, 105,
107] and reinterpreted the study done by Fowler et al. [106], concluding that their
study is inconsistent with the results of small delocalized susceptibility. The chemical
shift observed in NMR analysis of C60 done by Taylor et al. indicated the presence
of aromatic systems; these were confirmed by Fowler and group subsequently [71].

Several theories and computational studies have also been dedicated to exploring
doping, defects, functionalization, etc. in fullerenes for their possible applications
in antiviral activity, DNA cleavage, photodynamic electron transfer, lightweight
batteries, lubricants, nanoscale electrical switches, cancer therapies, and astrophysics
[109, 110].

2.2 Carbon Quantum Dots

Carbon quantum dots or carbon dots are relatively newer members among the
carbon nanostructure family. These are quasi-spherical nanoparticles involving
sp2/sp3 amorphous or nanocrystalline forms having size generally <10 nm carrying
oxygen/nitrogen groups [111, 112]. Surprisingly, carbon dots were discovered unin-
tentionally in 2004 in an experimental study of carbon nanotubes through elec-
trophoretic fractionation of arc-discharge soot [42]. Carbon dots have gained much
attention due to the fact that they possess strong fluorescence with better solubility,
biocompatibility, and non-toxicity [113]. However, these fluorescent carbon nanos-
tructures gained significant attention due to improvedfluorescence emissions through
the surface passivation synthesis approach [114]. The carbon quantum dots along
with their STEM and absorption spectra are shown in Fig. 6.

Experimental and theoretical investigations have been used to understand the
chemical and physical properties of carbon quantum dots for their applications in
various fields like sensing, bio-imaging, nano-medicine, catalysis, optoelectronics,
and energy conversion/storage. However, there are considerably rare theoretical
studies on carbon quantum dots, and many of them are based on the graphene
nanoflakes model [115–120].

Analogous to other quantum dots, the emission of carbon quantum dots is asso-
ciated to their respective sizes. Carbon quantum dot size <1.2 nm showed UV light
emission [121], visible light emissions were reported for quantum dots with size
from 1.5 to 3 nmwhile near-infrared emissions were observed for quantum dots with
sizes ~3.8 nm [122]. These observations have also been supported using theoretical
calculations. The observation of indirect dependence of the HOMO–LUMO gaps on
the size of the carbon quantum dots lead to the conclusion that strong emission of
carbon quantumdots is a result of its quantum size rather than carbon–oxygen surface
[123]. The photoluminescence mechanism, electronic structures, and frontier molec-
ular orbitals of carbon quantum dots have also been studied using time-dependent
density functional theory (TD-DFT) as implemented in Gaussian 09 with B3LYP
hybrid functional and the 6-31G(d) basis set [124]. The carbon quantum dots were
categorized in two forms: class I representing graphitized carbon core and class II
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Fig. 6 a Carbon dots attached with PEG1500N in aqueous solution. b STEM images of carbon
dots. c The absorption (ABS) and luminescence emission spectra of carbon dots in an aqueous
medium; the graph is plotted with 20 nm increment from longer excitation wavelengths 400 nm
on the left and the intensities of emission spectral are normalized to quantum yields (inset is the
normalized spectral peaks). Reproduced with permission from Sun et al., J. Am. Chem. Soc. 128,
7756 (2006). Copyright 2006 American Chemical Society

representing disordered carbon core. These classes are depicted in Fig. 7 along with
their photoluminescence mechanism.

The study showed that the HOMO–LUMO gap decreases with an increase in the
size of class I carbon quantum dots while an opposite trend on the size-dependency
of the HOMO–LUMO gap is observed for class II carbon quantum dots. Several
studies related to the electronic structure of carbon quantum dots have been explained
using molecular orbital (MO) theory [121, 123, 125–127]. In the majority of these
reports, carbon quantum dots show n → π* and π → π* transitions because of
their well-available transition energies. The π-states of carbon quantum dots are
attributed to the sp2 hybridized carbon in their core, while the n-states are attributed
to the functional groups attached. It is found that the energy gap (Eg) among π-states
reduces consistently with the increase in the number of aromatic rings of carbon
quantum dots similar to organic molecules [121, 123]. The electronic properties of
amorphous carbon nanodots were explored using semi-empirical molecular–orbital
theory using the EMPIRE13 code [128]. Unexpectedly, electronic structures were
found to relyweakly on parameters like elemental composition and atomic hybridiza-
tion. Contrarily, the geometry of sp2 arrangement describes the band gap of carbon
quantumdots. The existence of localized electronic surface states resulting in ampho-
teric reactivity and near-UV/visible range optical band gaps was predicted [128]. The
molecular orbitals, molecular electrostatic potential (MEP), local electron affinity
(EAL), and ionization energy (IEL) maps along with excitation energies are depicted
in Fig. 8. There have been fewer theoretical studies to understand their optical and
electronic mechanisms and in-depth theoretical studies are further expected.
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Fig. 7 Photoluminescence (PL)mechanismof class I and class II carbon quantumdots. The number
of hexagonal rings is indicated after fused aromatic rings (FARs) and the number of repeating units
of cyclo-1,4-naphthylene (CN) is indicated by a number. Reproduced with permission from Zhu
et al., J. Mater. Chem. C 1, 580 (2013). Copyright 2013 Royal Society of Chemistry

Fig. 8 A 2 nm carbon dot with a molecular orbitals; left side presents band-like and right side
presents surface stateswith iso-density surfaces of 0.01 e−Å−3.bElectron iso-density surfacemaps,
MEP (left part) from −50 (blue) to 50 kcal mol−1 (red), EAL (middle part) from −150 (blue) to
5 kcalmol−1 (red) and IEL (right part) from 270 (blue) to 500 kcalmol−1 (red). cExcitation energies
calculated with different methods for different sized carbon dots. Reproduced with permission from
Margraf et al., J. Phys. Chem. B 119, 24, 7258 (2015). Copyright 2015 American Chemical Society
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3 One Dimensional (1D) Carbon Nanostructures

The first-ever proof for the existence of one-dimensional carbon allotrope was
reported in 1993 [40]. Single-walled carbon nanotubes (SWCNT) discovered by
Iijima and Bethune lead all scientists for a hunt to utilize this a new form of carbon in
many applications for technological advancement like field emission displays, energy
storage andenergy conversiondevices, sensors, hydrogen storage, and semiconductor
devices [129–134].

CNT is one of the exceptional inventions which has enriched the field of nanotech-
nology. It has been consistently studied since the past 20 years due to its potential
application in varied areas. The fullerenes discovered by Kroto et al. [30] were
the building blocks of the CNTs. CNTs have a variety of physical properties such as
stiffness, elasticity, deformation, and tensile strength alongwith electronic properties
showing superconducting, metallic, semiconducting, or insulating behavior.

The discovery of CNTs was reported as a “worm-like” structure long before this
tubular formof carbon could be imagined, in 1952byRadushkevich andLukyanovich
[135]. Dimensionally, SWCNTs are around 1 nm in diameter while their length is in
order of a few micrometres. Nevertheless, the size and the shape of nanotubes can
vary. The ratio of the diameter and length of the nanotubes, also known as aspect
ratio, is typically around 1000 due to which it is generally considered nearly as a
one-dimensional structure [136].

The different types of CNTs depend on the number of carbon layers present
in them. Monolayered tubes are called single-walled carbon nanotube (SWCNT),
while tubes having more than one layer are known as multi-walled carbon nanotubes
(MWCNTs). The SWCNTs are generally understood to form by rolling a graphene
sheet. Density functional theory calculations have shown the possibility of forming
CNTs from bilayer graphene nanoribbons under different pressure conditions
depending on the edges of nanoribbons involved [137]. The CNTs are classified into
three different types: armchair, zigzag (see Fig. 9), and chiral carbon nanotubes (see
Fig. 10). These are formed by rolling graphene sheets along a different axis. The axis
of rolling is the chiral vector which is represented by n and m pair (n, m) of indices
corresponding to the unit vectors along different directions in the graphene honey-
comb crystal lattice sheet. When m = 1, 2,… and n = 0, the nanotube is “zigzag”
and if m = n, the nanotube is then termed as “armchair” while the remaining config-
uration iscalled chiral [136, 138, 139]. Due to the rolling of the sheet into a tube,
the symmetry of the plane breaks and forms a new symmetry in a distinct direction
of the hexagonal lattice and the axial direction. This develops a peculiar electronic
behavior of the nanotube, which is metallic or semiconducting. In the case of the
semiconducting tube, its bandgap is sensitive toward its diameter; the small diameter
tube has a large band gap while the wide diameter consists of a lower band gap [140].
The diameter of the nanotube thusmakes it a conductor with conductivity higher than
copper as well as a semiconductor comparable to the potential of silicon. In the struc-
ture of a nanotube, every carbon atom is bonded covalently with three nearby carbon
atoms with its sp2 molecular orbital, creating one (the fourth) valence electron free in
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Fig. 9 a Unit cell for two different carbon nanotubes (armchair and zigzag) depicting the prim-
itive azimuthal angle θ (=2π/N). b Phonon dispersion curve for armchair and zigzag SWCNT.
Reproduced with permission from Maeda et al., Physica B 263–264, 479 (1999). Copyright 1999
Elsevier

every hexagonal unit, which is delocalized over all atoms providing the nanotube its
electrical nature. Some CNTs which show metallic nature have the resistivity in the
range of 0.34× 10–4 to 1.0× 10–4 �/cm [141]. The semiconducting CNTs generally
show p-type semiconducting behavior [142]. The SWCNTs can also be described
as quantum wires due to their ballistic electron transport, while the electronic trans-
port in MWCNTs is quasi-ballistic [143]. Apart from the well-known electronic
properties of CNTs, they show equally good mechanical properties as well. The sp2

carbon–carbon bonds present in the CNTs result in exceptional mechanical proper-
ties which were not observed in previously explored material systems. From some
previous studies, we get an idea about the stiffness of CNTs, basically in their axial
direction [144]. Among all carbon materials, CNTs show extremely high value for
Young’s modulus (~1TPa) which is even five times higher than steel, and provides
a measure of the stiffness of the material [145, 146]. All the studies regarding the
mechanical properties of CNTs were first predicted theoretically [53, 147–149]. The
transformation from the hexagonal ring of carbon to pentagon–heptagon in CNTs
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Fig. 10 a Icosahedral C140 fullerene-based hemispherical cap covered end chiral fiber with chiral
vector Ch = (10, 5). b Different probable vectors for the construction of chiral fibers. The two
different combinations of circled dots and dots denote the metallic and semiconducting behavior
for corresponding chiral fiber constructed. Reproduced with permission from Saito et al. Appl.
Phys. Lett. 60, 2204 (1992). Copyright 1992 AIP Publishing

was proposed by Yakobson [150] and Ru [151] when uniaxial tension is applied.
DFT calculations suggest that SWCNTs form novel quasi-two-dimensional sheets
when subjected to high pressure [152]. In a theoretical study done by Guanghua et al.
[153] on the CNTs’ mechanical properties, their nature of dependence on diameter
is revealed. They found Young’s modulus in the range of 0.6–0.7 TPa for nanotubes
with diameter >1 nm. The closest agreement with the experimental value of Young’s
modulus of MWCNTs (1–1.2 TPa) was theoretically calculated by Hernandez et al.
[154]. In this study, they also predicted that mechanical properties depend on the
diameter of the tube; when the diameter increases, the properties are also enhanced
to a certain value and ultimately reach the values corresponding to that of graphene.
Calculated values of Young’s modulus for individual SWNTs were found in the
range from 320 to 1470 GPa [144, 155] while the breaking strength ranged from 13
to 52 GPa [156]. The vibrational properties of CNTs are studied by the normal mode
analysis as this technique is standard to understand the dynamics of nanotubes. This
technique investigates the harmonic potential analytically for normal mode anal-
ysis. The linear combination of Cartesian co-ordinates provides the co-ordinates for



154 B. Roondhe et al.

normal mode. This method provides a natural description of molecular vibration as
it includes the motion of all atoms simultaneously during the vibration.

Apart from the small size, CNTs show quantum effects leading to the low-
temperature specific heat and thermal conductivity; CNTs are also of great impor-
tance for their thermal properties [149, 157, 158]. The thermal conductivity can be
modulated and increased by incorporating different materials with pristine CNTs.
The thermal conductivity measured at room temperature for MWCNTs was found
to be 3,000 W/K [159], while in a similar study the MWCNTs were found to have
thermal conductivities ~200 W/mK higher as compared to the SWCNTs [160]. The
main factor which influences the thermal properties is the number of active phonon
modes along with a free path of phonon and boundary surface scattering [160–162].
Properties of CNTs are observed to depend on the atomic arrangement, length and
diameter of tubes, structural defects, and impurities [163–165].

4 Two-Dimensional (2D) Carbon Nanostructures:
Graphene

Graphene is a single atom layer of carbon atoms arranged in a hexagonal honeycomb
pattern. It is one of themost studied two-dimensional (2D)materials to date. Figure 11
illustrates a graphene sheet as a 2D building block for different carbonmaterials in all
dimensions such as 0D buckyballs by wrapping up the graphene sheet, 1D nanotube
by rolling it, and in 3D graphite by stacking it. Thus, it is known as the mother of

Fig. 11 Graphene sheet is a 2D building block for different carbon materials in all dimensions like
0D buckyballs which is formed by wrapping of graphene sheet, 1D nanotube can be made by rolling
it and 3D graphite is formed by stacking it, therefore it is known as the mother of all graphitic forms
of carbon material
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Fig. 12 a Unit cell of graphene with the triangular Bravais lattice having lattice vectors a1 and a2;
unit cell comprises two atoms in the honeycomb lattice. b Band structure of graphene calculated by
the tight-binding method displaying the pi bands, with only nearest neighbor hopping. The inset E,
kx, and ky are the energy and the wave vector components in x- and y- directions, respectively. c The
unique linear dispersion of the band structure near K point with the pseudo-spin vector direction
indicated by the arrows. Reproduced with permission from Fuhrer et al. MRS Bulletin 35, 289
(2010). Copyright 2010 Cambridge University Press

all graphitic forms of carbon material. The research has exponentially developed
after 2004 when Geim and Novoselov isolated graphene for the first time using the
“Scotch Tape” method and characterized it. In the current scenario of the material
world, ongoing research is overwhelmed after focusing on characterization, mass
production of ultra-thin carbon films including graphene for various applications
[166–172].

A unit cell of graphene with the Bravais lattice along with the band structure is
shown in Fig. 12. The unique linear dispersion of the band structure near the K point
is illustrated by a pseudo-spin direction which is indicated by the arrows. From the
past one and half decades, promising applications in the field of corrosion prevention
[173], super capacitors [174, 175], long-lasting batteries [176], display panels [177],
efficient solar cells [178], desalination [179], and water purification [180–182] have
emerged.

The electronic properties of single-layer graphite were investigated by Wallace
even before its isolation [183] and introduced the term “graphene” back in 1947.
The electronic band structure was investigated theoretically by the tight-binding
(TB) approach. The TB approach is more suitable for handling larger systems than
the plane waves method, due to its low computational costs. The method was at
first described as an interpolation scheme by Slater and Koster [184]. It has been
developed comprehensively and now it is a well-established technique to explain the
electronic structure of solids [185].

The tight-binding (TB) calculations were performed using the Hamiltonian

H =
∑

il1σ

εl1a
†
il1σ

ail1σ +
∑

i j

∑

l1,l2,σ

(
t l1l2i j a†il1σa jl2σ + H.c.

)
(1)
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here, the spin σ of the electron is capable of jumping from the orbital l1 with its onsite
energies

(
εl1

)
existing in the ith unit cell to orbital l2 in the jth unit cell. The hopping

interaction strength labeled as t l1l2i j relies on the nature of the orbitals participating as
well as on the lattice geometry [184]. Following that, a least-squared error fitting is
executed through the alteration of the ε’s and t’s, leading to the calculation of band
dispersions at various high-symmetry points. Graphite layer shows semiconducting
behavior with zero activation energy at zero temperature, but at higher tempera-
tures due to excitation, the highest bands are filled and show metallic nature. Large
anisotropic diamagnetic susceptibility which is greatest across the layers is observed.
The study done byBoehm in 1962 provided the concept of single-layer graphite sheet
through the reduction of graphite oxide (GO) in dilute sodium hydroxide and also
by deflagration of heated GO [186]. To describe the atom intercalation in graphite,
effective-mass-approximation differential equations were used at that time for self-
consistent screening. At room temperature, graphene displays a strong ambipolar
electric field effect between the valence and the conduction bands. This results in
ballistic electron transfer at a speed which is slower than light speed and 10–100
times greater than that in silicon chips. Graphene is the thinnest material and is 200
times stronger than steel and harder than diamond but at the same time, it is flexible
and transparent [10, 187, 188].

Investigation of the physical properties of graphene reveals that it has a tremen-
dously high optical transparency of up to 97.7%, which makes it a potential material
for transparent electrodes for its use in solar cell applications [189]. It also consists
of high thermal conductivity of 5000 Wm−1 K−1 [190], and exceptional mechanical
properties like high Young’s modulus of 1 TPa [191], and most importantly large
specific surface area of 2630 m2 g−1 [192]. Still, there is a need to find a method for
the utilization of graphene in many applications and also to guarantee cost-effective
production by avoiding some major obstacles. It is a great need to develop a method
with the help of which ideally flat graphene membrane without any defects can be
achieved. The need to fill the large gap between the theoretical prediction and actual
fabrication of graphene is essential. Irreversible agglomerates and the restacking are
a key challenge in the synthesis of graphene which need to be addressed.

5 Summary and Outlook

Nanomaterials provide exotic properties, exclusive of the framework of their peri-
odic solid counterparts. Additionally, novel phenomena emerge at the nanoscale level
that is not observed in microcrystalline materials. Among all, carbon nanostructures
like three dimension (3D—Graphite, diamond), two dimension (2D—graphene), one
dimension (1D—carbon nanotubes), and zero dimension (0D—fullerenes and carbon
quantum dots) have gained significant attention due to their unique properties. The
discovery of C60 and carbon quantum dots (0D), CNTs (1D), and graphene (2D) has
led to the increased research activity in novel multidisciplinary areas, from synthesis
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to their theoretical and computational investigations for potential applications. In
the present chapter, the theoretical and computational development of carbon nanos-
tructures, specifically on fullerenes, carbon quantum dots, carbon nanotubes, and
graphene have been introduced and discussed. The underlying mechanism of size
dependency of these carbon cage structures (fullerenes and carbon nanotubes) is
essential for modifying their properties according to the potential nanotechnology
applications. Computational and theoretical studies have found significant role in
predicting and designing their properties accordingly. By the means of powerful
supercomputers, performing static and dynamic calculations at high-level ab initio
and DFT methodologies is achievable for these carbon nanostructures. Still, the
application of futuristic quantum chemical approaches to investigate the structures
and properties of large carbon nanostructures (fullerenes, carbon quantum dots,
graphene, and CNTs) is a daunting task. The theory of isolated pentagon rule (IRP)
in fullerenes chemistry has been discussed. The knowledge on the computational and
theoretical aspects of accidentally discovered carbon quantum dots were explored
which is still in its developing stage. The theoretical prediction of carbon nanotubes
(armchair, zigzag, and chiral) and graphene before their experimental realization is
provided. Obtaining insight of the electronic structures along with their chemical and
physical properties is still needed for constructing new materials based on carbon-
based nanostructures for certain applications. The synergy among theoreticians and
experimentalists will expand the applications of carbon nanostructures promptly.
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