Advances in Experimental Medicine and Biology 1315

Yi-Chun Zhu Editor

Advances in Hydrogen Sulfide Biology

Advances in Experimental Medicine and Biology

Volume 1315

Series Editors

Wim E. Crusio, Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, CNRS and University of Bordeaux, Pessac Cedex, France

Haidong Dong, Departments of Urology and Immunology, Mayo Clinic, Rochester, MN, USA

Heinfried H. Radeke, Institute of Pharmacology & Toxicology, Clinic of the Goethe University Frankfurt Main, Frankfurt am Main, Hessen, Germany

Nima Rezaei, Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran

Ortrud Steinlein, Institute of Human Genetics, LMU University Hospital, Munich, Germany

Junjie Xiao, Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Science, School of Life Science, Shanghai University, Shanghai, China Advances in Experimental Medicine and Biology provides a platform for scientific contributions in the main disciplines of the biomedicine and the life sciences. This series publishes thematic volumes on contemporary research in the areas of microbiology, immunology, neurosciences, biochemistry, biomedical engineering, genetics, physiology, and cancer research. Covering emerging topics and techniques in basic and clinical science, it brings together clinicians and researchers from various fields.

Advances in Experimental Medicine and Biology has been publishing exceptional works in the field for over 40 years, and is indexed in SCOPUS, Medline (PubMed), Journal Citation Reports/Science Edition, Science Citation Index Expanded (SciSearch, Web of Science), EMBASE, BIOSIS, Reaxys, EMBiology, the Chemical Abstracts Service (CAS), and Pathway Studio.

2019 Impact Factor: 2.450 5 Year Impact Factor: 2.324

More information about this series at http://www.springer.com/series/5584

Yi-Chun Zhu Editor

Advances in Hydrogen Sulfide Biology

Editor Yi-Chun Zhu Department of Physiology and Pathophysiology, Fudan University Shanghai Medical College Shanghai Key Laboratory of Bioactive Small Molecules, School of Basic Medical Sciences Shanghai, China

ISSN 0065-2598 ISSN 2214-8019 (electronic) Advances in Experimental Medicine and Biology ISBN 978-981-16-0990-9 ISBN 978-981-16-0991-6 (eBook) https://doi.org/10.1007/978-981-16-0991-6

© Springer Nature Singapore Pte Ltd. 2021

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors, and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Singapore Pte Ltd. The registered company address is: 152 Beach Road, #21-01/04 Gateway East, Singapore 189721, Singapore

Preface

Hydrogen sulfide (H_2S) has originally been found to regulate the function of a few organs including the cardiovascular system and the brain. In the recent two decades, more organs/systems/biological processes have been found to be regulated by H_2S including the kidney, nutritional metabolism, gastrointestinal tract, microbiota, immune system, inflammation, autoimmune diseases, cell senescence, and cancer. The mechanisms underlying the H_2S actions on such a variety of biological processes remain unknown. More recent studies show that epigenetic mechanisms are also involved in mediating the H_2S effects. Moreover, the interaction between H_2S and other gasotransmitters implies not only the complexity of the H_2S mechanisms but also the importance of H_2S signaling as one of the basal components in physiology and diseases.

An ultimate question on the mechanisms underlying the comprehensive biological effects of H₂S is about the direct target molecules to trigger the signaling networks to mediate the H₂S effects. H₂S might function as a "ligand" and its target molecules serve as "receptors." The established theory to explain the interaction between a ligand and its receptor is the "key-lock" or "hand-in-glove" mechanisms which are based on conformational matching between the ligand and its receptors. However, H₂S is a gas molecule too small to possess a three-dimensional structure sufficient for conformational matching with its potential "receptors." In the chapter "A Common Molecular Switch for H₂S to Regulate Multiple Protein Targets," we proposed a mechanism based on an interaction between the frontier molecular orbitals of H₂S and its target proteins. In such a model, the interaction between the "ligand" and the "receptors" is not based on the concept of conformational matching, but on an interaction between the sulfur atom of H₂S and the oxidized sulfur atom of the cysteine residues in the target proteins. This is actually a nucleophilic attack that occurred between two sulfur atoms. Only the oxidized sulfur atom is recognized and subsequently attacked by H₂S, while oxidization of the sulfur atom of the sulfhydryl group of the cysteine residues results in the formation of a reversible disulfide bond between two cysteine residues which might regulate the conformation and function of the proteins targeted by H₂S. Since endogenous H₂S levels have been found to be changed in a series of disease status, the conformation and function of potential H₂S targets might be changed in parallel with the changes in H₂S levels. We name such a reversible disulfide bond as a "molecular switch" for H₂S regulation. It might be due to the very small size of the H₂S molecule which facilitates its

penetration into the large protein molecules to get access to potential disulfide bonds, H_2S is found much potent in opening such disulfide bonds than other endogenous reducing factors at concentrations of equivalent reducing potent. Such a "molecular switch" is first found in the intracellular kinase domain of vascular endothelial growth factor receptor 2 (VEGFR2) to regulate VEGFR2 function and angiogenesis. In fact, VEGFR2 belongs to the receptor tyrosine kinases (RTKs) family which includes important members such as the insulin receptor (IR), epidermal growth factor receptor (EGFR), and thrombopoietin (TPO) receptor. Interestingly, H₂S has been found to activate these RTK members to mediate a variety of physiological functions, i.e. facilitating glucose uptake by increasing IR sensitivity, inducing Na⁺/K⁺-ATPase endocytosis, and inhibition in renal tubular epithelial cells by targeting EGFR and promoting the generation of megakaryocytes/platelets by activating the TPO receptor. All these RTK members share a similar intracellular kinase domain. It gives rise to a hypothesis that H₂S might target some common motif contained in various protein molecules to activate multiple signaling pathways. The idea deserves in-depth validation in the future. This may not only find how H₂S recognizes and activates its target proteins but also uncovers a new mechanism of the interaction between a very small ligand and its "receptors" beyond the established model of ligand-receptor interaction.

In the chapter " H_2S and the Kidney," Balakuntalam Kasinath and Hak Joo Lee describe how H_2S regulates kidney function. H_2S is endogenously generated in the kidney. H_2S regulates basal renal functions including an increase in glomerular filtration rate (GFR) by increasing renal blood flow. H_2S also regulates tubular functions by acting on some transporter and channels. H_2S is also involved in renal diseases. The deficiency of H_2S generation plays a role in many types of renal disorders and administration of H_2S might provide protection. H_2S is found to be involved in kidneyrelated diseases such as renovascular hypertension, preeclampsia, aging kidney, and adrenal cell carcinoma.

In the chapter "The Role of H_2S in the Metabolism of Glucose and Lipids," Jinsong Bian and colleagues describe the role of H_2S in the metabolism of major nutrients. H_2S is involved in diabetes, obesity, and metabolic syndrome by playing a central role in the metabolism of glucose and lipids. Potential therapeutic approaches based on the pharmacological regulation of H_2S in the disorder of glycolipid metabolism are also discussed.

Jingxin Li and colleagues describe the role of H_2S in the guts. In the chapter "The Role of H_2S in the Gastrointestinal Tract and Microbiota," the role of H_2S in the physiology and diseases in the gastrointestinal system is reviewed and discussed. In addition to the conventional biosynthesis pathways in gastrointestinal tissues, a unique route to generate H_2S in the gut is by using sulfides produced in food catabolism as raw materials. H_2S regulates gastrointestinal motility, secretion, absorption, as well as the endocrine cells and stem cells. The role of H_2S in the interaction between gastrointestinal microorganisms and host is also reviewed.

One of the major recent advances in the field of H_2S biology is its role in the immune system. In the chapter " H_2S and the Immune System," Peter Rose and colleagues describe the pro- and anti-inflammatory effects of H_2S in mammalian systems depending on the status of the subjects as well as the dosage used and the route of administration of this molecule. The signaling mechanisms underlying the regulation of H_2S in the immune cells are also described. The roles of H_2S in several immune-related diseases including arthritis, atherosclerosis, sepsis, and respiratory diseases have been reviewed.

 H_2S seems to participate in various signaling networks in the immune system. This topic is discussed by Madhav Bhatia and colleagues in the chapter " H_2S and Its Interaction with Other Players in Inflammation." Interaction of H_2S with substances P, NO, and CO in the immune response is reviewed. The pathways regulating reactive oxidant species (ROS), adhesion molecules, and leukocyte infiltration are described in various inflammatory diseases.

In the chapter "An Update of the New Therapeutic Approach of Hydrogen Sulfide in Inflammation and Immune Response," Yizhun Zhu and colleagues provide a more focused review on autoimmune diseases regulated by H_2S which regulates various immune cells in different disease conditions. The therapeutic potential of the H_2S donors is discussed, in particular, as an anti-inflammatory drug to treat rheumatoid arthritis.

The role of H_2S in the cardiovascular system is indeed the most important facet of this gas molecule and is reviewed extensively in two previous books edited by Hideo Kimura and Philip Moore. In the following two chapters, some most recent advances and ideas in this direction are reviewed and discussed.

Firstly, the epigenetic mechanisms underlying the cardiovascular effects of H_2S are reviewed by Qian Ding and Yizhun Zhu in their chapter "The Cardiovascular Effects of H_2S : The Epigenetic Mechanisms" where the roles of DNA methylation, histone modification, and noncoding RNAs in the cardiovascular effects of H_2S are reviewed.

Secondly, the interaction between H_2S and other gas molecules in the cardiovascular system is reviewed by Junbao Du and colleagues in their chapter "Interaction among H_2S and Other Gasotransmitters in Mammalian Physiology and Pathophysiology". H_2S interacts with other gasotransmitters including NO, CO, and SO₂ to regulate the function of cardiovascular system and also to be involved in disease status.

Some important roles of H_2S , e.g. in cancer or cell senescence, have been reviewed in the above chapters regarding particular mammalian systems.

All the above chapters show that H_2S is a fundamental signaling molecule found so far to be involved in almost every mammalian system. However, future works are required to uncover the mechanisms underlying such extensive biological effects. If the "molecular switch" mechanism mentioned in Chapter 1 can be applied to the findings described in the rest of the chapters remains to be examined with futures works. Moreover, are there any uncovered mechanisms beyond the "molecular switch" mechanism underlying the interaction between H_2S and its direct target molecules? In addition, the development of H_2S donors with proper pharmacokinetics would be valuable for future therapeutic approaches.

Shanghai, China

Contents

A Common Molecular Switch for H ₂ S to Regulate Multiple	
Protein Targets Bei-Bei Tao and Yi-Chun Zhu	1
Hydrogen Sulfide and the Kidney Balakuntalam S. Kasinath and Hak Joo Lee	17
The Role of H₂S in the Metabolism of Glucose and Lipids Hai-Jian Sun, Zhi-Yuan Wu, Xiao-Wei Nie, and Jin-Song Bian	51
The Role of H_2S in the Gastrointestinal Tract and Microbiota Ailin Xiao, Chuanyong Liu, and Jingxin Li	67
Hydrogen Sulfide and the Immune System Peter Rose, Yi-Zhun Zhu, and Philip K. Moore	99
Hydrogen Sulfide and its Interaction with Other Players in Inflammation	129
Hydrogen Sulfide: a Novel Immunoinflammatory Regulatorin Rheumatoid ArthritisM. Li, Jian-Chun Mao, and Yi-Zhun Zhu	161
The Cardiovascular Effects of Hydrogen Sulfide: The EpigeneticMechanismsQian Ding and Yi-Zhun Zhu	181
Interaction among Hydrogen Sulfide and Other Gasotransmitters in Mammalian Physiology and Pathophysiology	205

A Common Molecular Switch for H₂S to Regulate Multiple Protein Targets

Bei-Bei Tao and Yi-Chun Zhu

1 Introduction

Numerous studies have reported that hydrogen sulfide (H_2S) has numerous biological effects in different organs [1–11]. Especially, H_2S has many protective effects on the cardiovascular system. For instance, H_2S can lower high blood pressure [12] and ameliorate hypertension-induced myocardial remodeling in spontaneously hypertensive rats [13, 14]. H_2S also has protective effects in myocardial injury [15] and myocardial infarction [16].

In 2007, our research group found that H_2S has a significant pro-angiogenic effect in vitro and in vivo and the signaling molecules involved are PI3K/Akt [17]. After that, different research groups all reported the findings that both exogenous and endogenous H_2S can promote the process of angiogenesis [18–32].

Along with the numerous protective effects reported by research groups worldwide, there remains an important scientific problem. The problem is what is the "receptor" of H_2S or what is the target of it. As we all know, H_2S must have been acting upon certain proteins or other biological molecules in cells since it could not

B.-B. Tao · Y.-C. Zhu (⊠)

exert any effect acting upon nothing. Usually, a ligand can structurally match and then combine with its receptor, which leads to conformational change and activity increase of the receptor, ultimately resulting in a certain biological effect. However, as a gaseous molecule with a molecular weight of only 32 Dalton, H_2S is much smaller compared with its target protein. It probably could not interact with its "receptor" the same way as the ligand–receptor interaction. Therefore, there must have to be a different mechanism between H_2S and its "receptors," or target proteins.

As the research on H_2S goes on, several target proteins of H_2S and the molecular mechanisms have been discovered. In 2009, Asif K. Mustafa reported that H_2S can directly sulfhydrate the cysteine residue in GAPDH [33]. This is the first piece of evidence about the interaction between H_2S and its "receptor." After that, other papers reported several other target proteins of H_2S with the same modification (sulfhydration) on certain cysteine residues in proteins. All those findings are supporting the sulfhydration theory in H_2S – "receptor" interaction mode.

However, in our research, we failed to find any modification between H_2S donor NaHS and any of the 20 basic amino acids in a cell-free reaction system with mass spectrometry. Surprisingly, we found that H_2S can break up the disulfide bond in cystine and then transform cystine into cysteine with both mass spectrometry and Raman analysis. Meanwhile, we found that VEGFR2 is a

Shanghai Key Laboratory of Bioactive Small Molecules and Shanghai Key Laboratory of Clinical Geriatric Medicine, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China e-mail: yczhu@shmu.edu.cn

[©] Springer Nature Singapore Pte Ltd. 2021

Y.-C. Zhu (ed.), *Advances in Hydrogen Sulfide Biology*, Advances in Experimental Medicine and Biology 1315, https://doi.org/10.1007/978-981-16-0991-6_1

"receptor" of H₂S in vascular endothelial cells, and there exists a newly found disulfide bond C1045-C1024 located in the intracellular kinase domain near the activation loop of VEGFR2. The disulfide bond C1045-C1024 vanished after the administration of H₂S donor NaHS with a significantly increased activity of this tyrosine kinase receptor [34]. In addition to VEGFR2, we found several other "receptors" of H₂S with a disulfide bond molecular switch in these target proteins, such as insulin receptor [35], EGFR [36], etc. Therefore, we proposed the disulfide bond molecular switch regulation as another theory in H₂S– "receptor" interaction mode.

Both the sulfhydration theory and the disulfide bond molecular switch regulation theory are supported by large amounts of experimental data. Therefore, the key problem is what indeed the more direct effect of H₂S, or whether they exist in the different micro-environment of target proteins, or whether both of them are related to each other. We will review the papers about these two theories in recent years and try to discuss the above problems, to understand more about the interaction mode between H₂S and its "receptors."

2 Sulfhydration

2.1 H₂S Increases the Sulfhydration Level of Proteins

Sulfhydration is an important post-translational modification of proteins. Sulfhydration modification on cysteine residues usually leads to an increase in protein activity or a more stable state. Therefore, sulfhydration can enhance the biological effects of those proteins. In addition, sulfhydration of cysteine residues can protect them from oxidation to maintain a normal function of the proteins. It is reported that sulfhydration is a more common posttranslational modification than nitrosylation and about 25-50% of proteins in mouse liver lysates are sulfhydrated [37].

As shown in the papers, the process of sulfhydration is as follows. Persulfides are found to be formed in sulfurtransferases and cysteine desulfurases or be formed through the reaction with sulfenic acids, S-nitrosothiols, disulfides, polysulfides, etc. [38].

In 2009, Asif K. Mustafa reported that GAPDH from mouse liver lysate is a target protein of H_2S and H_2S can sulfhydrate (adding sulfur to the free thiol group) the Cys150 residue in GAPDH to form an -SSH state. Sulfhydration of GAPDH physiologically increased its catalytic activity by several fold and it can inhibit its interaction with Siah1 resulting in the protection of cell apoptosis. In this paper, Asif K. Mustafa used the modified biotin switch method and mass spectrometry to analyze the sulfhydration state [33].

After that, from 2009 till now, it is reported that sulfhydration of proteins by H_2S is playing an important role in the cardiovascular system [39]. Besides, sulfhydration also exists in neuro-degenerative diseases, such as Parkinson's disease, Alzheimer's disease, and traumatic brain injury [40].

There are many newly found H_2S receptors, such as GAPDH, Keap1, Sirt1, ATP5A1 (Table 1). These target proteins of H_2S all have one or two special cysteine residues which can be sulfhydrated by H_2S resulting in a significant change in protein activity. For instance, GAPDH can be sulfhydrated at Cys150, Keap1 can be sulfhydrated at Cys151, ATP5A1 can be sulfhydrated at Cys294... More target proteins with the modification sites are shown in Table 1.

2.2 The Methods for Analyzing Sulfhydration

2.2.1 Modified Biotin Switch Assay (Fig. 1a)

The biotin switch is previously used for nitrosylation assessment. And then, it was modified to detect S-sulfhydration. Therefore, this method has been named "modified biotin switch assay."

Protein	Cite	Effect	Method	References	Date
GAPDH	Cys150	Increase catalytic activity	Modified biotin switch assay Jaffrey and Snyder [41]	Mustafa et al. [33]	2009
Keap1	Cys151	Regulated Nrf2 activation to protect against cellular aging induced by oxidative stress	Modified biotin switch assay Nishida et al. [42]	Yang et al. [43]	2013
NF-κB	P65 subunit Cys38	Mediate the antiapoptotic effect of NF-kB	Modified biotin switch assay Mustafa et al. [33]	Sen et al. [44]	2012
Glutathione peroxidase 1		Clear free radicals and inhibit oxidative stress, reduced lipid peroxidation, and increased antioxidant defense	Modified biotin switch assay Mustafa et al. [33]	Cheung and Lau [45]	2018
Sirt1	Conserved zinc finger domains: CXXC domain (C371/374; C395/ 398)	Enhanced SIRT1 binding to zinc ion then promoted its deacetylation activity and increased SIRT1 stability, thus reducing atherosclerotic plaque formation	Modified biotin switch assay Cai et al. [46]	Du et al. [47]	2019
ATP5A1	Cys244 and Cys294	Maintain ATP synthase in a physiologically activated state, thereby supporting mitochondrial bioenergetics	Modified biotin switch assay Mustafa et al. [33]	Modis et al. [48]	2016
KLF5	Cys664	H ₂ S decreased KLF5 promoter activity; reduced KLF5 mRNA expression; attenuated specificity protein 1 binding activity with KLF5 promoter to prevent myocardial hypertrophy	"Tag-Switch" Method Zhang et al. [49]	Meng et al. [50]	2016
Sp1	Cys68 and Cys755	Maintaining vascular health and function	Modified biotin switch assay Paul and Snyder [51]	Saha et al. [52]	2016
MEK1	Cys341	Facilitates the translocation of phosphorylated ERK1/2 into the nucleus, where it activates PARP-1, mediates DNA damage repair, and cells are protected from senescence.	Modified biotin switch assay	Zhao et al. [53]	2014
P66Shc	Cys59	Enhance antioxidant effect	Modified biotin switch assay	Xie et al. [54]	2014
PTP1B	Cys215	Inhibiting PTP1B activity and thereby promoting PERK activity, alters the endoplasmic reticulum stress response	Cysteinyl labeling assay that utilizes a biotinylated iodoacetic acid probe Boivin et al. [55]	Krishnan et al. [56]	2011
PP2A		Inhibition of PP2A to activate the phosphorylation of AMPK	Modified biotin switch assay or the maleimide assay	Shimizu et al. [57]	2018
PPARγ	Cys139	Increases PPARγ activity, thereby promotes glucose uptake and lipid storage	Modified biotin switch assay Mustafa et al. [33]	Cai et al. [46]	2016
Kir6.1	Cys43	Causes vascular endothelial and smooth muscle cell hyperpolarization and	Modified biotin switch assay	Yang et al. [58]	2011

 Table 1
 Categories and functions of protein S-sulfhydration in the cardiovascular system

(continued)

Protein	Cite	Effect	Method	References	Date
		vasorelaxation by activating the ATP-sensitive			
MuRF1	Cys44	Prevent myocardial degradation in the cardiac tissues of db/db mice	Modified biotin switch assay Meng et al. [39]	Sun et al. [59]	2020
Hrd1	Cys115	H ₂ S regulates VAMP3 ubiquitylation via Hrd1 S-sulfhydration at Cys115 to prevent CD36 translocation in diabetes	Modified biotin switch assay	Yu et al. [60]	2020
Human antigen R	Cys13	S-sulfhydration of human antigen R prevents its homodimerization and activity, which attenuates the expression of target proteins such as CD62E and cathepsin S, to preserve endothelial cell function and delay atherogenesis	Modified biotin switch assay	Bibli et al. [61]	2019

Table 1 (continued)

An alkylating agent S-methyl methanethiosulfonate (MMTS) was used to block thiol in proteins. The persulfides group can be conjugated with N-[6-(biotinamido)hexyl]-30-(20-pyridyldithio) propionamide (biotin-HPDP). Then, the biotinylated protein representing the level of protein S-sulfhydration was immunoprecipitated by western blotting [33].

This method has been widely used in sulfhydration testing. Since the persulfide group and the thiol group have similar reactivity to MMTS, this method can provide false-positive results in analyzing sulfhydration modification [62, 63].

2.2.2 Maleimide Assay

Fluorescent maleimide reacts with both unmodified and modified sulfhydryl groups. DTT can reduce the modified cysteines, representing S-sulfhydration, which results in a decrease in fluorescent intensity. Then the fluorescent intensity can be detected by SDS-PAGE [64].

Unfortunately, the maleimide assay can also be used to determine nitrosylation and sulfenic

Fig. 1 Modified biotin switch method for S-sulfhydration (a) and dimedone switch method for S-sulfhydration (b)

acids, which decreases the credibility in detecting sulfhydration [65, 66].

2.2.3 Tag-Switch Method

Methylsulfonybenzothiazole (MSBT) is used to block thiols. Then, a reagent containing nucleophile and biotin will label only persulfides and there is no binding with the blocked thiol groups. Finally, the labeled persulfides representing S-sulfhydration can be conjugated with streptavidin and be further tested by western blotting [54, 67].

However, this method has no higher sensitivity which has posed a problem for S-sulfhydration measurement. Wedmann et al. reported an improved tag-switch method with new cyanoacetic acid derivatives such as fluorescent BODIPY moiety or the Cy3-dye for more sensitivity [68].

2.2.4 Mass Spectrometry Analysis

After thiols in protein samples have been blocked with MSBT, persulfide groups in samples can form biotin-labeled adducts by reacting with CN-biotin. Then, these biotin-labeled protein samples were digested into peptides by digestive enzymes, for instance, trypsin, for further mass spectrometry analysis [67]. The sulfhydrated proteins will be identified through their peptide fingerprints by comparing the MS results with the protein database. Besides, the location of the sulfhydrated cysteine can also be ascertained. However, it was very difficult to block the protein samples completely, and therefore, we cannot avoid false-positive results by using this method [67, 69].

Considering the difficulty in distinguishing unmodified and modified thiol groups, we can use mass spectrometry to find out sulfhydrated groups by using recombinant proteins. After digested into peptide fingerprints, recombinant protein peptides can be tested with LC-MS/MS. The sulfhydrated groups have an extra S group than the free thiols. Therefore, they can be located by comparing the results with the protein database under their unmodified state. Our group has been using LC-MS/MS and our software Create-Compare 2.0 for locating disulfide bonds, which can be used for locating sulfhydrated groups also [34].

2.2.5 Dimedone Switch Method (Fig. 1b)

4-chloro-7-nitrobenzofurazan (NBF-Cl) can react with both persulfide groups and free thiols, as well as sulfenic acids. It is used for the blocking and detection of thiols, amines, and sulfenic acids. After NBF-Cl reacting with persulfide groups, there shows a characteristic absorbance maximum at 412 nm. Then, the addition of dimedone results in a fast disappearance of the 412 nm peak. The two main products in the reaction mixture are the 4-thio-7-nitrobenzofurazan (NBF-SH) and dimedone labeled persulfide groups confirmed by electrosprayionization time-off light (ESI-TOF) mass spectrometry (MS)/MS analysis. It is a versatile, chemoselective persulfide labeling approach to selectively detect S-sulfhydration [70].

2.3 Existing Problems in S-Sulfhydration Theory for Hydrogen Sulfide

2.3.1 Why the Sulfhydration of Free Thiols in Cysteine Residues by H₂S Has Not Been Found in a Cell-Free Reaction System?

To investigate the reaction between H_2S and free thiols in cysteine residues, we put H_2S donor NaHS and L-cysteine, both resolved in ddH₂S, together. After the reaction, the reaction mixture was tested by mass spectrometry. The result showed that the free thiols in cysteine residues have not been modified and no sulfhydration of thiols has been found [34].

Since large amounts of papers reported the S-sulfhydration by hydrogen sulfide, why this phenomenon has not been seen in such a cell-free reaction system?

2.3.2 Why the S-Sulfhydration of Free Thiols in Cysteine Residues Cannot Happen in All the Cysteine Residues in Protein?

Each protein usually has many cysteine residues. However, the S-sulfhydration of the free thiols in cysteine residues only exists in specific sites. Why one cysteine residue is different from another cysteine residue? And how does hydrogen sulfide decide to modify this cysteine residue other than the cysteine at another site?

3 Molecular Switch of Disulfide Bond

3.1 The Molecular Switch of a Disulfide Bond in Target Proteins of H₂S (Fig. 2)

3.1.1 Target Protein of H₂S: Receptor Tyrosine Kinases

Receptor tyrosine kinases (RTKs) are a subclass of tyrosine kinases, which are involved in the control of cell viability, growth, migration, differentiation, and metabolism [76]. There are 58 known RTKs [76]. All RTKs have similar protein structures, including an extracellular ligand-binding domain, a transmembrane domain, an intracellular domain containing a para membrane regulatory region, a tyrosine kinase domain (TKD), and a C-terminal tail [71]. Dysfunction of the RTK signals usually result in many human diseases, especially tumors.

RTK is usually activated by receptor-specific ligands. The ligand binds to the extracellular domain of RTK, and then the receptor is activated by dimerization and/or oligomerization. The conformational changes of RTKs lead to the transautophosphorylation of TKD, thus making TKD present an activated conformation. Selfphosphorylation of RTKs also recruits and activates a variety of downstream signaling molecules, including SRC homology-2 (SH2) or phosphotyrosine binding (PTB) domains, thus activating key cellular signaling pathways in cells [77, 78].

In 2013, we reported that VEGFR2 (vascular endothelial growth factor receptor 2) in vascular endothelial cells is a "receptor," or target protein of H₂S. Instead of finding the S-sulfhydration of free thiols in cysteine residues in recombinant VEGFR2 protein, we discovered that there has been a newly found disulfide bond between C1024 and C1045 in the intracellular kinase domain of VEGFR2 (Fig. 2). This disulfide bond C1045-C1024 in recombinant VEGFR2 protein can be broken up after treated with NaHS, with an increase in protein activity. Besides, the mutation of C1045, which inhibits the formation of such disulfide bond, significantly increased the kinase activity of recombinant VEGFR2 proteins and abrogated the further enhancement in kinase activity after H₂S treatment. In addition, migration of vascular endothelial cells HUVECs has been increased and cannot be further increased by H₂S treatment, after the cells have been transfected with a mutated VEGFR2 (789-end) or VEGFR2 C1045A (789-end) [34]. Figure 2 shows the crystal structure of the tyrosine kinase domain of VEGFR2 [71].

In addition to VEGFR2, other proteins with the molecular switch of disulfide bond for H_2S have been discovered. For instance, EGFR (Cys797/Cys798) [36], insulin receptor [36], TPO [79], etc.

In investigating the role of H_2S in renal sodium and water homeostasis, we found that H₂S decreased the activity of Na⁺/K⁺-ATPase and promoted its endocytosis in renal tubular epithelial cells. siRNA interference of epidermal growth factor receptor (EGFR) abrogated the effect. H₂S increased phosphorylation of EGFR in renal tubular epithelial cells as well as in kidneys of chronic salt-loaded rats. H2S transiently bonded to and directly activated EGFR. The certain disulfide bond in EGFR intracellular kinase domain was broken up by H₂S. Mutations of EGFR Cys797 (human) or Cys798 (rat) significantly increased the activity of EGFR [36] (Fig. 2). Figure 2 shows the crystal structure of the tyrosine kinase domain of EGFR [36].

In investigating if H_2S can promote glucose uptake, we found that treatment with sodium

Fig. 2 The common molecular switch, disulfide bond, is located in the intracellular domain of target proteins for H₂S. The crystal structure of target domains (or part of the target domains) for H₂S is indicated in red circles. The origin of the structures shown for VEGFR2, EGFR, IR, TPOR, and the I_{10} potassium channel: the tyrosine kinase domain of VEGFR2 Δ 50 (M806-D1171, Δ T940–E989)

[71]; the tyrosine kinase domain of EGFR (G672-P966) [72]; the tyrosine kinase domain of IR (S981-K1283) [73]; the D. Human thrombopoietin functional domain complexed to neutralizing antibody TN1 Fab (C7-C151) [74]; and the crystal structure of the complex between KChIP1 and Kv4.2 N1-30 (M217-P237) [75]

hydrosulfide (NaHS, an H₂S donor) significantly increased glucose uptake in both myotubes and adipocytes. These effects were blocked by RNA interference of the insulin receptor (IR). The phosphorylation of IR was increased by NaHS. Besides, glucose uptake was reduced in the cells after RNA interference of the H₂S-generating enzyme cystathionine γ -lyase (CSE). The recombinant protein of IR reacted with NaHS for 1 h in a cell-free system. The result showed that NaHS, at concentrations of 50 and 400 µM, significantly increased the activity of the enzyme [36]. Given that IR is also a receptor tyrosine kinase, there probably also a disulfide bond existing in the intracellular domain of IR as a target for H_2S . Figure 2 shows the crystal structure of the tyrosine kinase domain of IR [73].

In investigating the role of H₂S in hematopoiesis using a mice model of myelosuppression and cultured fetal liver cells, we found that H₂S significantly promoted megakaryocytes generation and increased platelet levels. These effects were abrogated in thrombopoietin (TPO) receptor knockout mice (c-mpl $^{-/-}$ mice). However, these effects of H₂S promoted megakaryocytes/ platelets generation still exist in TPO knockout mice (TPO $^{-/-}$ mice). These results suggested that the target of H₂S was probably TPO receptors, not the ligand TPO. The TPO receptor, as a tyrosine kinase receptor, might also have a disulfide bond in its intracellular kinase domain acting as the target for H_2S . This hypothesis needs to be further investigated [79]. Figure 2 shows the crystal structure of the human thrombopoietin

functional domain complexed to neutralizing antibody TN1 Fab [74].

3.1.2 Target Protein of H₂S: Ion Channels

It has been reported that H_2S has regulatory roles in ion channels. H_2S inhibits L-type calcium channels in cardiomyocytes [80]. Exogenous H_2S protects myocardial ischemia-reperfusion injury by opening K_{ATP} [81]. H_2S inhibits Cav3.2 T-type Ca²⁺ channels, which play a central role in sensory nerve excitability [82].

In exploring the mechanisms underlying the potential regulation of H₂S on the ion channels, we found that H₂S showed a novel inhibitory effect on Ito potassium channels, and this effect was blocked by mutation at the Cys320 and/or Cys529 residues of the Kv4.2 subunit. H₂S broke the disulfide bond between a pair of oxidized cysteine residues; however, it did not modify single cysteine residues. H₂S extended action potential duration in epicardial myocytes and regularized fatal arrhythmia in a rat model of myocardial infarction. In conclusion, H₂S targets the Cys320/Cys529 motif in Kv4.2 to regulate the I_{to} potassium channels. However, H₂S did not change the function of other ion channels, including I_{K1} and I_{Na} [76]. Figure 2 shows the crystal structure of the complex between KChIP1 and Kv4.2 N1-30 [75].

3.1.3 Common Points of the Mechanism in Targeting "Receptors" by H₂S

There are several common points in targeting those "receptors" by H_2S .

Although the "receptors" of H₂S we previously found are all transmembrane proteins, for instance, receptor tyrosine kinase and ion channels, the target sites (the disulfide bond as a molecular switch) of H₂S are all in the intracellular domain of those "receptors." The maintenance of metabolic functions will be prohibited when ROS levels are high in cells. Besides, the maintenance of ROS in low levels inside cells is important to allow the redox-reduction changes to exit sensitively for the regulation [83]. We know that there are also disulfide bonds in the extracellular domain of transmembrane proteins.

However, the stronger oxidative environment outside the cells might probably inhibit the reducing ability of H_2S .

Breaking up disulfide bonds acting as molecular switches is necessary for the normal biological function of tyrosine kinase receptors. Without the disulfide bond broken, the kinase activity of tyrosine kinase receptors in dimerization will still be in an inhibited state. In our previous studies, the siRNA-mediated knockdown of CSE attenuated VEGF-induced migration of vascular endothelial cells and also attenuated VEGF-induced phosphorylation of VEGFR2 at Tyr1175 site. The results illustrate endogenous H₂S is required for VEGF to promote the migration of vascular endothelial cells [34].

In addition to the activating role of H_2S on its tyrosine kinase receptors by breaking up the disulfide bonds as molecular switches, H_2S exerts an inhibitory effect upon Ito potassium channels [76]. Whether H_2S is playing an activating role or an inhibitory role on target proteins depends on the role of a disulfide bond in proteins.

3.1.4 The Comparison Between H₂S and Other Reducing Species in Cells

Although endogenous H_2S is not the only reducing molecule in mammalian cells, it is the smallest one. Therefore, it is much easier for H_2S to reach the disulfide bonds which are embedded underneath the surface of proteins.

In previous experiments, we compared H_2S with a range of biological thiols, including glutathione, Cys, cysteinyl glycine, and homocysteine at concentrations with equal reducing potency. Comparison of ion intensity ratios between the cleaved ion and the peptide containing the Cys1045-Cys1024 S–S bond showed that H_2S was the most potent reducing factor in breaking S–S bonds as compared with these biological thiols (Fig. 3) [34].

3.1.5 H₂S Donors (Fig. 4)

The decrease of endogenous H_2S production is usually related to different kinds of diseases [1, 84]. Therefore, the administration of H_2S donors, for example, GYY4137 [85], FW1256

Fig. 3 H_2S was the most potent reducing factor in breaking S–S bonds as compared with other biological thiols (created from Fig. 4 C–H from ARS 2013 Aug 10;19(5):448–64)

[86], SG-1002 [87], etc., can be used to increase H_2S level for treatment.

S-propargyl-l-cysteine (SPRC) is a structural analogue of s-allylcystene (SAC). Unlike NaHS and other inorganic salts, SPRC releases H_2S through endogenous H_2S -producing enzyme

CSE or CBS. Therefore, SPRC is called an endogenous H_2S donor. Studies have shown that SPRC can improve the proliferation of endothelial cells and has an anti-inflammatory effect on myocardial cells [88, 89]. SPRC has a cardioprotective effect in vivo by inhibiting

SPRC, as an endogenous H_2S releasing molecule, is under the research of new drug (applying for new drug class 1.1)

Fig. 4 Nonspecific and specific H_2S -releasing drugs. SPRC releases H_2S through endogenous H_2S -producing enzyme CSE or CBS

mitochondrial dysfunction and promoting S-mercapto of CaMKII [90]. Besides, SPRC also has anti-cancer and anti-hypoxic/ischemia effects and improves A_{β} -induced neuronal damage [91].

Considering that H_2S might be oxidized and lost its reducing ability, different endogenous H_2S -producing enzyme might have different target proteins. Therefore, using a substrate of a certain enzyme usually results in a more specific distribution of H_2S close to certain targets to avoid nonspecific adverse effects.

3.2 The Methods for Analyzing Disulfide Bonds in Proteins

3.2.1 Mass Spectrometry [34]

Amino acids or peptides are loaded to a SHIMADZU mass spectrometer (LCMS-IT-TOF), and the MS analysis was operated with a capillary temperature of 200 °C. The spray voltage was 2.4 kV. Data acquisition and analysis

were performed using the SHIMADZU LCMS solution (Shimadzu Scientific Instruments).

3.2.2 Raman Spectroscopy [34]

HORIBA Jobin Yvon LabRam-1B Raman spectrometer (HORIBA Scientific) can be used for Raman spectroscopy. The excitation source was a helium-neon laser with a wavelength of 632.8 nm and an excitation power of 4.3 mW. The Raman S-S stretching band occurs in a vibrational spectrum of 488-504 cm⁻¹ and the S-H stretching band occurs in the range of 2500-2600 cm⁻¹.

3.2.3 Fluorescence Labeling of Reactive Cys Thiols [36, 92]

Recombinant proteins are subjected to immunoprecipitation with antibody and then are incubated with 10 μ M NEM for 2 h at room temperature. After being washed with PBS (pH 7.4), 100 μ M Cy3 maleimide is added and incubated for 30 min and then washed. After treated with 25 mM DTT for 1 h at room temperature, the immunoprecipitates were reacted with 100 μ M Cy5 maleimide for 30 min at room temperature and washed. The double-labeled immunoprecipitates are separated with SDS-PAGE. Fluorescent images and fluorescence levels are acquired and quantified.

3.3 Existing Problems in the Molecular Switch Theory for H₂S

As a reducing agent, H_2S can reduce the disulfide bond in a two-step reaction [34]. However, H_2S can easily be oxidized. Therefore, to maintain the reducing state of H_2S generated from endogenous H_2S -producing enzymes, the distance between the endogenous H_2S -producing enzyme and the target protein of H_2S should not be too far. Otherwise, H_2S might probably be in its oxidized form when it crosses a long distance and finally reaches its target. Besides, there might be different target proteins for each H_2S -producing enzyme, CTH, CBS, or MPST, since the endogenous H_2S is prone to react with nearby disulfide bonds in target proteins.

4 Which Theory Is the Truth, or Which Mechanism Is More Important?

4.1 The Specificity of S-Sulfhydration Measurement

Because of the similarity in chemical characteristics, the free thiols (unmodified thiols) and sulfhydration of thiols (modified thiols) cannot be easily discriminated against. Therefore, it might probably produce false-positive results. In 2019, a more specific method has been found and can be used to measure the S-sulfhydration of cysteine residues with more accuracy to find out more target proteins and the target cites of H_2S . Besides, this more accurate method can be used in combination with the RNA interference method. After RNA interference of CSE, CBS, or MPST, dependently, we can observe the S-sulfhydration of different target proteins by

endogenous H_2S generated from different H_2S -producing enzymes.

4.2 Persulfides Might Be Intermediates in the Process of Breaking Up Disulfide Bonds by H₂S

In our previous studies, we found that it is an HS^- , not a gaseous form of H_2S in water solution, that can break up disulfide bonds. The breakingup process contains two steps. One step is that one molecule of HS^- can break up the disulfide bond through a nucleophilic attack reaction, producing -SSH (persulfides) as an intermediate. The other step is that another molecule of HS^- can break up the S-S bond in -SSH, reducing the persulfides into free thiols and producing H_2S_2 . H_2S_2 is not stable and it can quickly change into H_2S and S [34].

Reaction 1:

$$\begin{aligned} HS^- + C_3H_6NO_2 - S - S - C_3H_6NO_2 \\ \to C_3H_6NO_2 - S^- + HS - S - C_3H_6NO_2 \end{aligned}$$

Reaction 2:

$$\begin{array}{l} HS^- + HS - S - C_3H_6NO_2 \\ \rightarrow C_3H_6NO_2 - S^- + HS - SH \end{array}$$

In this process, the persulfide has transiently appeared in the reaction by the method of mass spectrometry.

4.3 It Is Probably H₂S_n, Not Reducing the Form of H₂S, Producing Persulfides by Adding a Sulfur Atom to Free Thiol Directly (Fig. 5)

Dr. Kimura points out in his review that H_2S cannot add extra sulfur to free thiol in proteins when it is in a reducing form. However, H_2S can be easily transformed into an oxidized form H_2S_n by reacting with ROS. Then, H_2S_n can oxidize free thiols into persulfides.

Fig. 5 Reaction mechanisms for S-sulfhydration formation. S-sulfhydration can be induced by H_2S on cysteine sulfenic acids (Cys-SOH) (a) or cysteine disulfides (-S-S) (b), or by polysulfides on cysteine thiols (Cys-SH) (c). H_2S induces S-sulfhydration on cysteine thiols in oxidation conditions (d-e)

It is also reported by other scientists that H_2S cannot directly undergo an oxidizing reaction since it is a reducing agent. This reaction is impossible due to the thermodynamic constraints. H_2S can only modify free thiols directly when it is in an oxidizing environment [39, 44–46]. Incubation of proteins, such as GAPDH, BSA, or immunoglobulins with H_2S , led to no detectable protein S-sulfhydration [49, 93] confirming the theory [38].

5 Future Directions

Finding out target proteins and target mechanism and precisely locating the target cites of H_2S are of great value in H_2S biology. Finding out which theory is more important, S-sulfhydration theory, or the disulfide molecular switch theory, is essential in understanding the role of H_2S of both exogenous and endogenous origin.

5.1 Using or Finding Out More Accurate and Specific Methods When Testing Persulfides

Exploring more specific methods for sulfhydration assessment with lower false-positive results can provide us more accurate knowing for persulfides produced by H₂S.

5.2 Observing the Structure of Target Proteins and the Modification of the Proteins Directly

By expressing and purification recombinant target proteins, we can observe directly the structure of these proteins and the specific modification or reaction in certain cites of proteins produced by H_2S , using the method of cryo-EM and protein crystallization and X-ray. The sulfhydration modification and the molecular switch disulfide bond can both be presented directly when the structure is observed in these methods. Therefore, the problem of these two theories will be finally resolved.

Acknowledgments This work was supported by the funding of innovative research team of high-level local universities in Shanghai and a key laboratory program of the Education Commission of Shanghai Municipality (ZDSYS14005 to Yi-Chun Zhu). This work was supported by Ying Chen (Department of Physiology and Pathophysiology of Fudan University) in sketch drawing.

References

- Castelblanco M, Nasi S, Pasch A, So A, Busso N (2020) The role of the gasotransmitter hydrogen sulfide in pathological calcification. Br J Pharmacol 177:778–792
- 2. Distrutti E, Sediari L, Mencarelli A, Renga B, Orlandi S, Antonelli E, Roviezzo F, Morelli A, Cirino G, Wallace JL, Fiorucci S (2006) Evidence that hydrogen sulfide exerts antinociceptive effects in the gastrointestinal tract by activating KATP channels. J Pharmacol Exp Ther 316:325–335

- Kimura H (2020) Signalling by hydrogen sulfide and polysulfides via protein S-sulfuration. Br J Pharmacol 177:720–733
- Kimura H, Shibuya N, Kimura Y (2012) Hydrogen sulfide is a signaling molecule and a cytoprotectant. Antioxid Redox Signal 17:45–57
- Li L, Rose P, Moore PK (2011) Hydrogen sulfide and cell signaling. Annu Rev Pharmacol Toxicol 51:169–187
- Li H, Xu F, Gao G, Gao X, Wu B, Zheng C, Wang P, Li Z, Hua H, Li D (2020) Hydrogen sulfide and its donors: novel antitumor and antimetastatic therapies for triple-negative breast cancer. Redox Biol 34:101564
- Mani S, Untereiner A, Wu L, Wang R (2014) Hydrogen sulfide and the pathogenesis of atherosclerosis. Antioxid Redox Signal 20:805–817
- Patnana M, Menias CO, Pickhardt PJ, Elshikh M, Javadi S, Gaballah A, Shaaban AM, Korivi BR, Garg N, Elsayes KM (2018) Liver calcifications and calcified liver masses: pattern recognition approach on CT. AJR Am J Roentgenol 211:76–86
- Wang R (2012) Physiological implications of hydrogen sulfide: a whiff exploration that blossomed. Physiol Rev 92:791–896
- Wu D, Wang J, Li H, Xue M, Ji A, Li Y (2015) Role of hydrogen sulfide in ischemia-reperfusion injury. Oxidative Med Cell Longev 2015:186908
- Zhu XY, Liu SJ, Liu YJ, Wang S, Ni X (2010) Glucocorticoids suppress cystathionine gamma-lyase expression and H2S production in lipopolysaccharidetreated macrophages. Cell Mol Life Sci 67:1119–1132
- Zhao W, Zhang J, Lu Y, Wang R (2001) The vasorelaxant effect of H(2)S as a novel endogenous gaseous K(ATP) channel opener. EMBO J 20:6008–6016
- 13. Shi YX, Chen Y, Zhu YZ, Huang GY, Moore PK, Huang SH, Yao T, Zhu YC (2007) Chronic sodium hydrosulfide treatment decreases medial thickening of intramyocardial coronary arterioles, interstitial fibrosis, and ROS production in spontaneously hypertensive rats. Am J Physiol Heart Circ Physiol 293: H2093–H2100
- 14. Yan H, Du J, Tang C (2004) The possible role of hydrogen sulfide on the pathogenesis of spontaneous hypertension in rats. Biochem Biophys Res Commun 313:22–27
- 15. Geng B, Chang L, Pan C, Qi Y, Zhao J, Pang Y, Du J, Tang C (2004) Endogenous hydrogen sulfide regulation of myocardial injury induced by isoproterenol. Biochem Biophys Res Commun 318:756–763
- Chuah SC, Moore PK, Zhu YZ (2007) S-allylcysteine mediates cardioprotection in an acute myocardial infarction rat model via a hydrogen sulfide-mediated pathway. Am J Physiol Heart Circ Physiol 293: H2693–H2701
- Cai WJ, Wang MJ, Moore PK, Jin HM, Yao T, Zhu YC (2007) The novel proangiogenic effect of

hydrogen sulfide is dependent on Akt phosphorylation. Cardiovasc Res 76:29–40

- Abdollahi GA, Toro G, Szaniszlo P, Pavlidou A, Bibli SI, Thanki K, Resto VA, Chao C, Hellmich MR, Szabo C, Papapetropoulos A, Modis K (2020) 3-Mercaptopyruvate sulfurtransferase supports endothelial cell angiogenesis and bioenergetics. Br J Pharmacol 177:866–883
- Bir SC, Kolluru GK, McCarthy P, Shen X, Pardue S, Pattillo CB, Kevil CG (2012) Hydrogen sulfide stimulates ischemic vascular remodeling through nitric oxide synthase and nitrite reduction activity regulating hypoxia-inducible factor-1alpha and vascular endothelial growth factor-dependent angiogenesis. J Am Heart Assoc 1:e4093
- 20. van den Born JC, Mencke R, Conroy S, Zeebregts CJ, van Goor H, Hillebrands JL (2016) Cystathionine gamma-lyase is expressed in human atherosclerotic plaque microvessels and is involved in microangiogenesis. Sci Rep 6:34608
- 21. Coletta C, Papapetropoulos A, Erdelyi K, Olah G, Modis K, Panopoulos P, Asimakopoulou A, Gero D, Sharina I, Martin E, Szabo C (2012) Hydrogen sulfide and nitric oxide are mutually dependent in the regulation of angiogenesis and endothelium-dependent vasorelaxation. Proc Natl Acad Sci USA 109:9161–9166
- 22. Coletta C, Modis K, Szczesny B, Brunyanszki A, Olah G, Rios EC, Yanagi K, Ahmad A, Papapetropoulos A, Szabo C (2015) Regulation of vascular tone, angiogenesis and cellular bioenergetics by the 3-Mercaptopyruvate Sulfurtransferase/H2S pathway: functional impairment by hyperglycemia and restoration by DL-alpha-lipoic acid. Mol Med 21:1–14
- 23. Jang H, Oh MY, Kim YJ, Choi IY, Yang HS, Ryu WS, Lee SH, Yoon BW (2014) Hydrogen sulfide treatment induces angiogenesis after cerebral ischemia. J Neurosci Res 92:1520–1528
- 24. Katsouda A, Bibli SI, Pyriochou A, Szabo C, Papapetropoulos A (2016) Regulation and role of endogenously produced hydrogen sulfide in angiogenesis. Pharmacol Res 113:175–185
- Kohn C, Dubrovska G, Huang Y, Gollasch M (2012) Hydrogen sulfide: potent regulator of vascular tone and stimulator of angiogenesis. Int J Biomed Sci 8:81–86
- 26. Papapetropoulos A, Pyriochou A, Altaany Z, Yang G, Marazioti A, Zhou Z, Jeschke MG, Branski LK, Herndon DN, Wang R, Szabo C (2009) Hydrogen sulfide is an endogenous stimulator of angiogenesis. Proc Natl Acad Sci USA 106:21972–21977
- Szabo C, Papapetropoulos A (2011) Hydrogen sulphide and angiogenesis: mechanisms and applications. Br J Pharmacol 164:853–865
- Szabo C, Coletta C, Chao C, Modis K, Szczesny B, Papapetropoulos A, Hellmich MR (2013) Tumorderived hydrogen sulfide, produced by cystathioninebeta-synthase, stimulates bioenergetics, cell

proliferation, and angiogenesis in colon cancer. Proc Natl Acad Sci USA 110:12474-12479

- 29. Wang MJ, Cai WJ, Li N, Ding YJ, Chen Y, Zhu YC (2010) The hydrogen sulfide donor NaHS promotes angiogenesis in a rat model of hind limb ischemia. Antioxid Redox Signal 12:1065–1077
- 30. Wang M, Yan J, Cao X, Hua P, Li Z (2020) Hydrogen sulfide modulates epithelial-mesenchymal transition and angiogenesis in non-small cell lung cancer via HIF-1alpha activation. Biochem Pharmacol 172:113775
- 31. Zhen Y, Pan W, Hu F, Wu H, Feng J, Zhang Y, Chen J (2015) Exogenous hydrogen sulfide exerts proliferation/anti-apoptosis/angiogenesis/migration effects via amplifying the activation of NF-kappaB pathway in PLC/PRF/5 hepatoma cells. Int J Oncol 46:2194–2204
- 32. Zhou Y, Li XH, Zhang CC, Wang MJ, Xue WL, Wu DD, Ma FF, Li WW, Tao BB, Zhu YC (2016) Hydrogen sulfide promotes angiogenesis by downregulating miR-640 via the VEGFR2/mTOR pathway. Am J Physiol Cell Physiol 310:C305–C317
- 33. Mustafa AK, Gadalla MM, Sen N, Kim S, Mu W, Gazi SK, Barrow RK, Yang G, Wang R, Snyder SH (2009) H2S signals through protein S-sulfhydration. Sci Signal 2:a72
- 34. Tao BB, Liu SY, Zhang CC, Fu W, Cai WJ, Wang Y, Shen Q, Wang MJ, Chen Y, Zhang LJ, Zhu YZ, Zhu YC (2013) VEGFR2 functions as an H2S-targeting receptor protein kinase with its novel Cys1045-Cys1024 disulfide bond serving as a specific molecular switch for hydrogen sulfide actions in vascular endothelial cells. Antioxid Redox Signal 19:448–464
- 35. Xue R, Hao DD, Sun JP, Li WW, Zhao MM, Li XH, Chen Y, Zhu JH, Ding YJ, Liu J, Zhu YC (2013) Hydrogen sulfide treatment promotes glucose uptake by increasing insulin receptor sensitivity and ameliorates kidney lesions in type 2 diabetes. Antioxid Redox Signal 19:5–23
- 36. Ge SN, Zhao MM, Wu DD, Chen Y, Wang Y, Zhu JH, Cai WJ, Zhu YZ, Zhu YC (2014) Hydrogen sulfide targets EGFR Cys797/Cys798 residues to induce Na (+)/K(+)-ATPase endocytosis and inhibition in renal tubular epithelial cells and increase sodium excretion in chronic salt-loaded rats. Antioxid Redox Signal 21:2061–2082
- Paul BD, Snyder SH (2012) H(2)S signalling through protein sulfhydration and beyond. Nat Rev Mol Cell Biol 13:499–507
- Filipovic MR (2015) Persulfidation (S-sulfhydration) and H2S. Handb Exp Pharmacol 230:29–59
- Meng G, Zhao S, Xie L, Han Y, Ji Y (2018) Protein S-sulfhydration by hydrogen sulfide in cardiovascular system. Br J Pharmacol 175:1146–1156
- Paul BD, Snyder SH (2018) Gasotransmitter hydrogen sulfide signaling in neuronal health and disease. Biochem Pharmacol 149:101–109

- 41. Jaffrey SR, Snyder SH (2001) The biotin switch method for the detection of S-nitrosylated proteins. Sci STKE 2001:11
- 42. Nishida M, Sawa T, Kitajima N, Ono K, Inoue H, Ihara H, Motohashi H, Yamamoto M, Suematsu M, Kurose H, van der Vliet A, Freeman BA, Shibata T, Uchida K, Kumagai Y, Akaike T (2012) Hydrogen sulfide anion regulates redox signaling via electrophile sulfhydration. Nat Chem Biol 8:714–724
- 43. Yang G, Zhao K, Ju Y, Mani S, Cao Q, Puukila S, Khaper N, Wu L, Wang R (2013) Hydrogen sulfide protects against cellular senescence via S-sulfhydration of Keap1 and activation of Nrf2. Antioxid Redox Signal 18:1906–1919
- 44. Sen N, Paul BD, Gadalla MM, Mustafa AK, Sen T, Xu R, Kim S, Snyder SH (2012) Hydrogen sulfidelinked sulfhydration of NF-kappaB mediates its antiapoptotic actions. Mol Cell 45:13–24
- 45. Cheung SH, Lau J (2018) Hydrogen sulfide mediates athero-protection against oxidative stress via S-sulfhydration. PLoS One 13:e194176
- 46. Cai J, Shi X, Wang H, Fan J, Feng Y, Lin X, Yang J, Cui Q, Tang C, Xu G, Geng B (2016) Cystathionine gamma lyase-hydrogen sulfide increases peroxisome proliferator-activated receptor gamma activity by sulfhydration at C139 site thereby promoting glucose uptake and lipid storage in adipocytes. Biochim Biophys Acta 1861:419–429
- 47. Du C, Lin X, Xu W, Zheng F, Cai J, Yang J, Cui Q, Tang C, Cai J, Xu G, Geng B (2019) Sulfhydrated Sirtuin-1 increasing its deacetylation activity is an essential epigenetics mechanism of anti-atherogenesis by hydrogen sulfide. Antioxid Redox Signal 30:184–197
- 48. Modis K, Ju Y, Ahmad A, Untereiner AA, Altaany Z, Wu L, Szabo C, Wang R (2016) S-Sulfhydration of ATP synthase by hydrogen sulfide stimulates mitochondrial bioenergetics. Pharmacol Res 113:116–124
- 49. Zhang D, Macinkovic I, Devarie-Baez NO, Pan J, Park CM, Carroll KS, Filipovic MR, Xian M (2014) Detection of protein S-sulfhydration by a tag-switch technique. Angew Chem Int Ed Engl 53:575–581
- 50. Meng G, Xiao Y, Ma Y, Tang X, Xie L, Liu J, Gu Y, Yu Y, Park CM, Xian M, Wang X, Ferro A, Wang R, Moore PK, Zhang Z, Wang H, Han Y, Ji Y (2016) Hydrogen sulfide regulates Kruppel-like factor 5 transcription activity via specificity protein 1 S-Sulfhydration at Cys664 to prevent myocardial hypertrophy. J Am Heart Assoc 5:e004160
- Paul BD, Snyder SH (2015a) Protein sulfhydration. Methods Enzymol 555:79–90
- 52. Saha S, Chakraborty PK, Xiong X, Dwivedi SK, Mustafi SB, Leigh NR, Ramchandran R, Mukherjee P, Bhattacharya R (2016) Cystathionine beta-synthase regulates endothelial function via protein S-sulfhydration. FASEB J 30:441–456
- 53. Zhao K, Ju Y, Li S, Altaany Z, Wang R, Yang G (2014) S-sulfhydration of MEK1 leads to PARP-1

activation and DNA damage repair. EMBO Rep 15:792-800

- 54. Xie ZZ, Shi MM, Xie L, Wu ZY, Li G, Hua F, Bian JS (2014) Sulfhydration of p66Shc at cysteine59 mediates the antioxidant effect of hydrogen sulfide. Antioxid Redox Signal 21:2531–2542
- 55. Boivin B, Zhang S, Arbiser JL, Zhang ZY, Tonks NK (2008) A modified cysteinyl-labeling assay reveals reversible oxidation of protein tyrosine phosphatases in angiomyolipoma cells. Proc Natl Acad Sci USA 105:9959–9964
- 56. Krishnan N, Fu C, Pappin DJ, Tonks NK (2011) H2S-induced sulfhydration of the phosphatase PTP1B and its role in the endoplasmic reticulum stress response. Sci Signal 4:a86
- 57. Shimizu Y, Polavarapu R, Eskla KL, Nicholson CK, Koczor CA, Wang R, Lewis W, Shiva S, Lefer DJ, Calvert JW (2018) Hydrogen sulfide regulates cardiac mitochondrial biogenesis via the activation of AMPK. J Mol Cell Cardiol 116:29–40
- 58. Yang Y, Shi W, Chen X, Cui N, Konduru AS, Shi Y, Trower TC, Zhang S, Jiang C (2011) Molecular basis and structural insight of vascular K(ATP) channel gating by S-glutathionylation. J Biol Chem 286:9298–9307
- 59. Sun X, Zhao D, Lu F, Peng S, Yu M, Liu N, Sun Y, Du H, Wang B, Chen J, Dong S, Lu F, Zhang W (2020) Hydrogen sulfide regulates muscle RING finger-1 protein S-sulfhydration at Cys(44) to prevent cardiac structural damage in diabetic cardiomyopathy. Br J Pharmacol 177:836–856
- 60. Yu M, Du H, Wang B, Chen J, Lu F, Peng S, Sun Y, Liu N, Sun X, Shiyun D, Zhao Y, Wang Y, Zhao D, Lu F, Zhang W (2020) Exogenous H2S induces Hrd1 S-sulfhydration and prevents CD36 translocation via VAMP3 Ubiquitylation in diabetic hearts. Aging Dis 11:286–300
- 61. Bibli SI, Hu J, Sigala F, Wittig I, Heidler J, Zukunft S, Tsilimigras DI, Randriamboavonjy V, Wittig J, Kojonazarov B, Schurmann C, Siragusa M, Siuda D, Luck B, Abdel MR, Filis KA, Zografos G, Chen C, Wang DW, Pfeilschifter J, Brandes RP, Szabo C, Papapetropoulos A, Fleming I (2019) Cystathionine gamma Lyase Sulfhydrates the RNA binding protein human antigen R to preserve endothelial cell function and delay Atherogenesis. Circulation 139:101–114
- Aroca A, Serna A, Gotor C, Romero LC (2015) S-sulfhydration: a cysteine posttranslational modification in plant systems. Plant Physiol 168:334–342
- Pan J, Carroll KS (2013) Persulfide reactivity in the detection of protein s-sulfhydration. ACS Chem Biol 8:1110–1116
- 64. Sen N (2017) Functional and molecular insights of hydrogen sulfide signaling and protein sulfhydration. J Mol Biol 429:543–561
- 65. Paul BD, Snyder SH (2015b) H2S: a novel gasotransmitter that signals by sulfhydration. Trends Biochem Sci 40:687–700

- 66. Reisz JA, Bechtold E, King SB, Poole LB, Furdui CM (2013) Thiol-blocking electrophiles interfere with labeling and detection of protein sulfenic acids. FEBS J 280:6150–6161
- Park CM, Macinkovic I, Filipovic MR, Xian M (2015) Use of the "tag-switch" method for the detection of protein S-sulfhydration. Methods Enzymol 555:39–56
- 68. Wedmann R, Onderka C, Wei S, Szijarto IA, Miljkovic JL, Mitrovic A, Lange M, Savitsky S, Yadav PK, Torregrossa R, Harrer EG, Harrer T, Ishii I, Gollasch M, Wood ME, Galardon E, Xian M, Whiteman M, Banerjee R, Filipovic MR (2016) Improved tag-switch method reveals that thioredoxin acts as depersulfidase and controls the intracellular levels of protein persulfidation. Chem Sci 7:3414–3426
- 69. Gao XH, Krokowski D, Guan BJ, Bederman I, Majumder M, Parisien M, Diatchenko L, Kabil O, Willard B, Banerjee R, Wang B, Bebek G, Evans CR, Fox PL, Gerson SL, Hoppel CL, Liu M, Arvan P, Hatzoglou M (2015) Quantitative H2S-mediated protein sulfhydration reveals metabolic reprogramming during the integrated stress response. elife 4:e10067
- 70. Zivanovic J, Kouroussis E, Kohl JB, Adhikari B, Bursac B, Schott-Roux S, Petrovic D, Miljkovic JL, Thomas-Lopez D, Jung Y, Miler M, Mitchell S, Milosevic V, Gomes JE, Benhar M, Gonzalez-Zorn B, Ivanovic-Burmazovic I, Torregrossa R, Mitchell JR, Whiteman M, Schwarz G, Snyder SH, Paul BD, Carroll KS, Filipovic MR (2019) Selective Persulfide detection reveals evolutionarily conserved antiaging effects of S-Sulfhydration. Cell Metab 30:1152–1170
- Hubbard SR (1999) Structural analysis of receptor tyrosine kinases. Prog Biophys Mol Biol 71:343–358
- Zhang X, Gureasko J, Shen K, Cole PA, Kuriyan J (2006) An allosteric mechanism for activation of the kinase domain of epidermal growth factor receptor. Cell 125:1137–1149
- Hubbard SR, Wei L, Ellis L, Hendrickson WA (1994) Crystal structure of the tyrosine kinase domain of the human insulin receptor. Nature 372:746–754
- 74. Feese MD, Tamada T, Kato Y, Maeda Y, Hirose M, Matsukura Y, Shigematsu H, Muto T, Matsumoto A, Watarai H, Ogami K, Tahara T, Kato T, Miyazaki H, Kuroki R (2004) Structure of the receptor-binding domain of human thrombopoietin determined by complexation with a neutralizing antibody fragment. Proc Natl Acad Sci USA 101:1816–1821
- Zhou W, Qian Y, Kunjilwar K, Pfaffinger PJ, Choe S (2004) Structural insights into the functional interaction of KChIP1 with Shal-type K(+) channels. Neuron 41:573–586
- 76. Manning G, Whyte DB, Martinez R, Hunter T, Sudarsanam S (2002) The protein kinase complement of the human genome. Science 298:1912–1934
- Du Z, Lovly CM (2018) Mechanisms of receptor tyrosine kinase activation in cancer. Mol Cancer 17:58

- Lemmon MA, Schlessinger J (2010) Cell signaling by receptor tyrosine kinases. Cell 141:1117–1134
- 79. Liu HD, Zhang AJ, Xu JJ, Chen Y, Zhu YC (2016) H2S protects against fatal myelosuppression by promoting the generation of megakaryocytes/platelets. J Hematol Oncol 9:13
- Sun YG, Cao YX, Wang WW, Ma SF, Yao T, Zhu YC (2008) Hydrogen sulphide is an inhibitor of L-type calcium channels and mechanical contraction in rat cardiomyocytes. Cardiovasc Res 79:632–641
- 81. Johansen D, Ytrehus K, Baxter GF (2006) Exogenous hydrogen sulfide (H2S) protects against regional myocardial ischemia-reperfusion injury--evidence for a role of K ATP channels. Basic Res Cardiol 101:53–60
- 82. Elies J, Scragg JL, Huang S, Dallas ML, Huang D, MacDougall D, Boyle JP, Gamper N, Peers C (2014) Hydrogen sulfide inhibits Cav3.2 T-type Ca2+ channels. FASEB J 28:5376–5387
- Noctor G, Foyer CH (2016) Intracellular redox compartmentation and ROS-related communication in regulation and signaling. Plant Physiol 171:1581–1592
- 84. Li Z, Polhemus DJ, Lefer DJ (2018) Evolution of hydrogen sulfide therapeutics to treat cardiovascular disease. Circ Res 123:590–600
- 85. Li L, Whiteman M, Guan YY, Neo KL, Cheng Y, Lee SW, Zhao Y, Baskar R, Tan CH, Moore PK (2008) Characterization of a novel, water-soluble hydrogen sulfide-releasing molecule (GYY4137): new insights into the biology of hydrogen sulfide. Circulation 117:2351–2360
- 86. Feng W, Teo XY, Novera W, Ramanujulu PM, Liang D, Huang D, Moore PK, Deng LW, Dymock BW (2015) Discovery of new H2S releasing Phosphordithioates and 2,3-Dihydro-2-phenyl-2sulfanylenebenzo[d][1,3,2]oxazaphospholes with

improved antiproliferative activity. J Med Chem 58:6456-6480

- 87. Kondo K, Bhushan S, King AL, Prabhu SD, Hamid T, Koenig S, Murohara T, Predmore BL, Gojon GS, Gojon GJ, Wang R, Karusula N, Nicholson CK, Calvert JW, Lefer DJ (2013) H(2)S protects against pressure overload-induced heart failure via upregulation of endothelial nitric oxide synthase. Circulation 127:1116–1127
- 88. Kan J, Guo W, Huang C, Bao G, Zhu Y, Zhu YZ (2014) S-propargyl-cysteine, a novel water-soluble modulator of endogenous hydrogen sulfide, promotes angiogenesis through activation of signal transducer and activator of transcription 3. Antioxid Redox Signal 20:2303–2316
- 89. Pan LL, Liu XH, Gong QH, Zhu YZ (2011) S-Propargyl-cysteine (SPRC) attenuated lipopolysaccharide-induced inflammatory response in H9c2 cells involved in a hydrogen sulfide-dependent mechanism. Amino Acids 41:205–215
- 90. Wu D, Hu Q, Tan B, Rose P, Zhu D, Zhu YZ (2018) Amelioration of mitochondrial dysfunction in heart failure through S-sulfhydration of ca(2+)/calmodulindependent protein kinase II. Redox Biol 19:250–262
- Wen YD, Wang H, Zhu YZ (2018) The drug developments of hydrogen sulfide on cardiovascular disease. Oxidative Med Cell Longev 2018:4010395
- 92. Kang DH, Lee DJ, Lee KW, Park YS, Lee JY, Lee SH, Koh YJ, Koh GY, Choi C, Yu DY, Kim J, Kang SW (2011) Peroxiredoxin II is an essential antioxidant enzyme that prevents the oxidative inactivation of VEGF receptor-2 in vascular endothelial cells. Mol Cell 44:545–558
- Wedmann R, Bertlein S, Macinkovic I, Boltz S, Miljkovic J, Munoz LE, Herrmann M, Filipovic MR (2014) Working with "H₂S": facts and apparent artifacts. Nitric Oxide 41:85–96

Hydrogen Sulfide and the Kidney

Balakuntalam S. Kasinath and Hak Joo Lee

Abbreviations

3-MST	3-mercaptopyruvate
	sulfurtransferase
AAT	Aspartate amino transferase
ACC	Acetyl-CoA carboxylase
AE1	Anion exchanger-1
AKI	Acute kidney injury
AMP	Adenosine monophosphate
AMPK	AMP-activated protein kinase
AQP2	Aquaporin-2
AT1	Angiotensin receptor type 1
ATP	Adenosine triphosphate
ATPase	Adenosine triphosphatase
Bnip3	BCL2/adenovirus E1B 19kDA-
	interacting protein
CBS	Cystathionine β -synthase
ccRCC	Clear cell renal cell carcinoma
cGMP	Cyclic guanosine monophosphate
CHF	Congestive heart failure
CKD	Chronic kidney disease
CO	Carbon monoxide
CSE	Cystathionine γ-lyase

B. S. Kasinath (🖂)

Center for Renal Precision Medicine, Department of Medicine, University of Texas Health, San Antonio, TX, USA

Barshop Institute for Longevity and Aging Studies, University of Texas Health, San Antonio, TX, USA

Geriatric Research, Education & Clinical Center, South Texas Veterans Health Care System, San Antonio, TX, USA

e-mail: kasinath@uthscsa.edu

H. J. Lee

Center for Renal Precision Medicine, Department of Medicine, University of Texas Health, San Antonio, TX, USA

DAO	D-amino acid oxidase
DKD	Diabetic kidney disease
EGF	Epidermal growth factor
EMT	Epithelial-mesenchymal transition
ENaC	Epithelial Na channel
eNOS	Endothelial NO synthase
ER	Dietary restriction
ERK	Extracellular-signal-regulated
	kinase
ESKD	End stage kidney disease
FGF23	Fibroblast growth factor 23
FOXO3	Forkhead box O3
GFR	Glomerular filtration rate
GSK-3β	Glycogen synthase kinase-3β
H_2S	Hydrogen sulfide
HIF	Hypoxia inducible factor
HO-2	Hemoxygenase-2
HS	Hydrosulfide
IGF1	Insulin-like growth factor 1
IL	Interleukin
iNOS	Inducible NO synthase
IRI	Ischemic renal injury
IRβ	Insulin receptor β
JNK	c-Jun N-terminal kinase
KIM-1	Kidney injury molecule-1
MAP	Mitogen-activated protein kinase
kinase	
miR	microrna
MMP	Matrix metalloprotease
mTORC1	Mechanistic target of rapamycin
	complex 1
NAD	Nicotinamide adenine dinucleotide
NaHS	Sodium hydrosulfide
NFκB	Nuclear factor κ B
NMDA	N-methyl D-aspartate
NO	Nitric oxide
NOX	NADPH (nicotinamide adenine

dinucleotide phosphate) oxidase

© Springer Nature Singapore Pte Ltd. 2021

Y.-C. Zhu (ed.), *Advances in Hydrogen Sulfide Biology*, Advances in Experimental Medicine and Biology 1315, https://doi.org/10.1007/978-981-16-0991-6_2

Nrf-2	Nuclear factor erythroid-2 related
	factor-2
PARP-1	Poly(ADP ribose) polymerase-1
PI	Phosphoinositide 3 kinase
3 kinase	
PKG-II	cGMP activated protein kinase G-II
PlGF	Placental growth factor
PTEN	Phosphatase and tensin homolog
RCC	Renal cell carcinoma
ROS	Reactive oxygen species
SASP	Senescence associated secretory
	phenotype
sFlt1	Soluble fms-like tyrosine kinase
sGC	Soluble guanylyl cyclase
Sirt	Sirtuin
TGFβ	Transforming growth factor β
TNFα	Tumor necrosis factor α
VEGF	Vascular endothelial growth factor

1 Introduction

The kidney is a versatile organ that performs a wide variety of functions. In addition to waste elimination via urine generation, the kidney regulates blood pressure, body content of sodium and other electrolytes, volume in intracellular, interstitial, and extracellular compartments, acidbase balance, hormone synthesis and degradation, erythropoiesis, and bone metabolism. In order to perform these extensive functions, the kidney requires large amounts of energy; accordingly, the proximal tubular epithelial cells which account for majority of kidney cells and perform most of the reabsorption function are rich in mitochondria; incidentally, mitochondria are an important site of hydrogen sulfide (H₂S) generation and action. Either acute or chronic impairment in kidney function can be associated with abnormalities in nearly all other organ systems. The kidney also demonstrates a remarkable ability to regenerate itself following acute injury. In view of the extensive effects of kidney on critical aspects of human physiology, it is important to know the biological controllers of kidney function. It is in this context that recent

discoveries have highlighted a fundamental role for H_2S .

Evolution of life on the Earth has a close relationship with H_2S [1]. As primordial life appeared approximately 3.8 billion years ago, the Earth's environment was rich in H₂S and lacked oxygen. The emerging life forms probably used H_2S as a source of energy. With the increase in atmospheric oxygen by photosynthetic bacteria (the Great Oxidation Event), terrestrial sulfur was oxidized to sulfate which was reduced to H₂S in the presence of Fe⁺⁺ and bacteria capable of reducing sulfate. Eukaryotes are thought to have emerged under these conditions [2]. It is likely that the organ systems in the evolving life forms, including the kidneys, were affected by H₂S, a legacy that is still seen at the present time. Additionally, both humans and select bacteria share common steps in metabolism of H_2S [2], supporting the view that H₂S has had an intimate role in organic evolution.

2 Synthesis of H₂S in the Kidney

This topic has been reviewed in detail recently [3]. Kidney synthesizes H₂S during metabolism of L-cysteine in the trans-sulfuration pathway that involves two enzymes cystathionine β -synthase (CBS) and cystathionine γ -lyase (CSE) (Fig. 1). CSE is more abundant than CBS in the kidney [4]. These enzymes normally reside in the cytosol although they are capable of nuclear translocation [5]. CSE is expressed by glomerular podocytes, mesangial, and endothelial cells in addition to majority of tubular epithelial cells [6]. CBS has been identified in the tubular epithelial cells [7]. In addition, mitochondrial 3-mercaptopyruvate sulfurtransferase (3-MST) also contributes to H₂S synthesis in the kidney. Recent findings by Shibuya have shown that metabolism of D-cysteine in the peroxisome is another source of H₂S generation in the kidney [8]. In fact, this pathway is said to generate several fold more of the gas than the trans-sulfuration pathway [8]. With a pKa of 6.8, most of H_2S is present as HS^- in cells [9, 10]. H_2S degradation results in the formation of thiosulfate. A part of

thiosulfate is further converted to sulfite which is oxidized to sulfate; thiosulfate is also used as a sulfur donor to synthesize H_2S . The content of H_2S in cells and extracellular environment has been variably reported due to differences in assays employed.

Urinary sulfate and thiosulfate levels have been linked to dietary intake of sulfur containing amino acids and systemic H₂S [11, 12]. Circulating thiosulfate undergoes unimpeded filtration at the glomerulus [13], and both reabsorption and secretion occur in the proximal tubule [14]. Sulfate is also filtered completely at the glomerulus following which most of it is reabsorbed at the proximal tubule by transporters Na-Sulfate 1 (Na-Si 1) and Sat-1 [15]. Caution should be exercised in interpreting urinary levels of these metabolites as indices of H₂S metabolism as kidney injury can alter function of the proximal tubules. Additionally, bacterial contribution to H_2S generation in the body can also contribute to urinary metabolites of H_2S .

Cellular Transport of H₂S It is unclear how H_2S moves in and out of cells. Diffusion has been suggested as a mechanism [16]. In erythrocytes, anion exchanger-1 (AE1), a Cl⁻-HCO₃⁻ exchanger, has been implicated in H₂S transport [17]. This scenario involves movement of H₂S from the intracellular to the extracellular phase by diffusion or via a channel. In the extracellular space H₂S dissociates into HS⁻ and H⁺ resulting in lowering the pH (acidification). This is followed by entry of HS⁻ into cells in exchange for Cl⁻ facilitated by AE1. HS⁻ combines with H⁺ in the intracellular fluid to become H₂S. It is

not known whether this erythrocyte model applies to the kidney. A shorter form of AE1 that differs from the erythrocyte AE1 at the amino terminal is present in the basolateral membrane of α -intercalated cells of the kidney collecting ducts [18]; it remains to be seen if it can transport H₂S. A channel mediated transport is also a possibility; a HS⁻ channel exists in *Clostridium difficile*, a bacterium [9]. Recently, methemoglobin has been proposed as a carrier of H₂S in the blood which can facilitate its function at locations away from its sites of generation [19].

2.1 H₂S in Renal Physiology

In addition to waste clearance function, the kidney is involved in several other functions including generation of hormones such as erythropoietin and 1:25 dihydroxy vitamin D3, drug metabolism, and glucose generation by gluconeogenesis. Recent studies have shown that H_2S has far reaching effects on several of these functions.

We will first briefly review the structural and functional organization of the kidney. The basic unit of the kidney is a nephron which consists of a capillary tuft, the glomerulus, and the tubule. The unique aspect of the kidney glomerulus is that it is situated between the afferent and the efferent arterioles thereby encountering higher hydrostatic pressures than capillaries elsewhere in the body [20]. The kidneys are highly vascular organs receiving nearly a quarter of the cardiac output through the renal arteries. The blood reaching the glomerulus undergoes filtration across the capillary wall. The unfiltered blood in glomerular capillary is conveyed out of the glomerulus through the efferent arteriole. Once out of the glomerular area, the efferent arteriole branches into capillaries that surround the tubules. This arrangement serves the important purpose of returning to systemic circulation the water, ions and solutes reclaimed by the tubules during postglomerular processing of the glomerular filtrate. This return occurs via renal venules which unite

to form the major renal vein; the latter drains into the inferior vena cava and systemic circulation.

Glomerular filtration is the first step in urine formation [20]. The determinants of glomerular filtration are renal afferent arteriolar blood flow, difference in hydrostatic pressure across the glomerular capillary, difference in osmotic pressure across the glomerular capillary, and the surface area and permeability characteristics of the glomerular basement membrane. The glomerular basement membrane is a condensed form of extracellular matrix containing type IV collagen, and laminin, proteoglycans, many other molecules. Glomerular endothelial cells and podocytes, specialized epithelial cells, synthesize the glomerular basement membrane during development and postnatally. Nearly 20% of plasma in the glomerular capillary becomes the ultrafiltrate which can amount to nearly 160-170 liters per day. The ultrafiltrate has the same composition of the plasma except for proteins. Circulating cells in blood are mostly prevented from entering the ultrafiltrate. Charge and size barrier function of the glomerular capillary wall inhibits loss of albumin and other plasma proteins during filtration thereby conserving them. The glomerular filtration rate (GFR) is an important measure of waste clearance function of the kidney. Studies by Xia et al. have shown that renal arterial infusion of H₂S in the form of sodium hydrosulfide (NaHS) in doses that do not affect systemic blood pressure results in increase in GFR by augmenting renal blood flow [21]. Conversely, infusion of inhibitors of CSE and CBS, enzymes in the trans-sulfuration pathway, reduce renal blood flow indicating that the latter is under constitutive regulation by H₂S. Renin is an enzyme which catalyzes the conversion of angiotensinogen to angiotensin I. Angiotensin converting enzyme removes 2 amino acids from angiotensin I to generate angiotensin II, which causes marked vasoconstriction including of the afferent arteriole. H_2S can inhibit renin activity [22] to cause afferent arteriolar vasodilation and augment blood flow into the glomerular capillary leading to increase in GFR.

Downstream from the glomerular capillary, the filtrate enters the tubular part of the nephron

which is organized into distinct anatomical and functional segments: proximal tubule, descending and ascending loops of Henle, distal convoluted tubule, connecting duct, and cortical and medullary collecting ducts. The lining epithelia have different morphologic and transport characteristics depending on the tubular segment. These properties are not rigidly maintained. Recent investigations employing single cell RNA sequencing have shown that there are new cell types of epithelial cells that originate from a transitional cell, particularly in the collecting tubules [23]. The major function of the proximal tubule is reabsorption of most of water and electrolytes such as Na⁺ from the glomerular filtrate, and return them to systemic circulation via the capillary arrangement described above. The major cation in the glomerular filtrate is Na⁺. By means of coordinated actions of Na⁺-H⁺ exchanger 3 in the apical membrane and Na⁺-K⁺ ATPase in the basolateral membrane, most of the filtrate Na⁺ is reabsorbed in the proximal tubule [24]. Additionally, Na⁺ reabsorption is also coupled to glucose, sulfate, phosphate, and amino acids at this site [25]. The remaining Na⁺ is reabsorbed in the downstream segments. In the loop of Henle, Na⁺-K⁺-2Cl⁻ transporter aids in Na⁺ Na⁺-Cl⁻ reabsorption, whereas co-transporter assists in Na⁺ recovery in the distal convoluted tubule. Epithelial Na channel (ENaC) is the main conduit for Na⁺ reclamation in the collecting duct which occurs in exchange for K⁺ under the control of aldosterone, a mineralocorticoid hormone synthesized by the adrenal cortex [26].

In studies reported by Xia, H_2S infusion increases Na⁺ and K⁺ excretion [21]. The former was attributed to inhibition of Na⁺-K⁺-2Cl⁻ transporter in the ascending loop of Henle and Na⁺-K⁺ ATPase [21]. Additionally, H_2S can also inhibit Na⁺-H⁺ exchanger 3 as shown in studies on cells in culture [27]. H_2S may also inhibit Na⁺ reabsorption by ENaC in the collecting duct. Aldosterone stimulation of Na⁺ reabsorption by ENaC involves reactive oxygen species (ROS) [28]. In *Xenopus* A6 cells hydrogen peroxide augments opening of ENaC by stimulating phosphoinositide 3 kinase (PI 3-kinase); the kinase activity is augmented by inhibiting phosphatase and tensin homolog PTEN, its constitutive inhibitor [29]. H_2S abolished hydrogen peroxide inhibition of PTEN restoring its function leading to reduction in PI 3-kinase activity and ENaC opening. Thus, inhibition of ENaC could contribute to an increase in Na⁺ excretion by H₂S. Na⁺ -K⁺ ATPase located in the basolateral membrane is important for transporting Na⁺ out of tubular cell cytoplasm. H₂S inhibits its activity by promoting endocytosis of its subunits in in vitro studies tubular epithelial employing renal cells [30]. H_2S can activate the receptor for epidermal growth factor, a receptor tyrosine kinase, leading to activation of PI 3-kinase. NaHS administration reduced blood pressure and increased urinary Na⁺ excretion in rats with desoxycorticosteroneinduced hypertension; increase in EGF receptor-PI 3-kinase signaling pathway was also seen in the kidneys of NaHS treated hypertensive rats [27]. Cysteine 797/798 residue in the EGF receptor was found to be important in H₂S stimulation. It is unclear if this regulation involves persulfidation. It is interesting to note the contrast in H₂S regulation of PI 3-kinase, i.e., ENaC inhibition by H₂S requires suppression of PI 3-kinase activity [29], whereas inhibition of Na⁺ -K⁺ ATPase by H_2S involves stimulation of the kinase, indicating the importance of context in the recruitment of signaling pathways.

Water reclamation in distal nephron is dependent on aquaporin-2 (AQP2) water channel protein [31]. Lithium, a commonly employed drug in the management of bipolar disorders, inhibits AQP2 resulting in excessive urine formation, polyuria, which can be a bothersome side effect. Recent studies have shown that H₂S stimulates AQP2 expression and distribution to the cell membrane in the principal cells of the collecting duct; this results in increase in water reabsorption, the effect being mediated by the cAMP system; H_2S also inhibited lithium-induced diuresis [32] which has potential clinical application in alleviating polyuria. Lithium also causes CKD characterized mainly by tubulointerstitial fibrosis [33]. It is important to explore if H_2S can alleviate this complication which can lead to discontinuation of what may have been an effective treatment.

The area in the kidney outside the glomerulus and the tubules is called the renal interstitium. It contains two zones, i.e., the area around the afferent arteriole that contains the renin synthesizing perivascular interstitial cells [34, 35], and the area around the tubules and peritubular blood vessels called the tubulointerstitium. The latter area contains immunologically active cells such as the dendritic cells, monocytes, macrophages, and the resident stellate fibroblast-like cells which synthesize erythropoietin [34]. Synthesis of erythropoietin, a maturation factor for red blood cells, is regulated by ambient oxygen tension in the tubulointerstitium.

Regulation of acid-base balance is an important function of the kidney. The role of H_2S in this function has not been well studied. A positive association between urinary sulfate excretion and net acid excretion has been reported in human kidney transplant subjects; however, there was no correlation with serum bicarbonate or systemic pH [12].

2.2 Gasotransmitters in Oxygen Sensing

Recent studies have revealed a role for H_2S in oxygen sensing by the carotid body, which participates in the regulation of ventilation, heart rate, and blood pressure [36, 37]. Interestingly, gasotransmitters interact in this context [38]. The carotid body monitors oxygen tension in systemic circulation, and its chemoreceptors induce changes in ventilation in response to changes in systemic oxygen tension.

In states of normoxia, glomus cells in the carotid body generate CO by the action of hemoxygenase 2, which results in increase in cGMP through the action of soluble guanylyl cyclase, leading to stimulation of protein kinase G (PKG). PKG, in turn, promotes phosphorylation of Ser-377 on CSE resulting in inhibition and reduction in the production of H_2S (Fig. 2). The consequence of reduced H_2S generation is decrease in neural output from the carotid body.

Fig. 2 H_2S and oxygen sensing. Under normoxic conditions, CO generated by hemoxygenase-2 (HO-2) in the carotid body stimulates soluble guanylyl cyclase (sGC) to increase cGMP expression which leads to increased activity of phosphokinase G (PKG) II. The latter enzyme phosphorylates CSE on Ser-377 resulting in inhibition of H_2S generation and neural output from the carotid body. When hypoxia occurs, CO generation by HO-2 is reduced leading to decreased cGMP and inhibition of PKG-II activity. This results in decreased phosphorylation of CSE, stimulation of H_2S generation, and increase in carotid body neural output leading to stimulation of respiration

During hypoxia such as that seen during obstructive apnea, HIF1 α activity increases with generation of ROS via NOX2. Augmented ROS production inhibits hemoxygenase 2 leading to reduced generation of CO and decrease in PKG. This removes PKG-mediated inhibition of CSE and H₂S generation (Fig. 2). Increase in H₂S production leads to increase in neural activity, and stimulation of catecholamine production in the adrenal medulla with consequent hypertension. Inhibition of CSE by chemical inhibitors, or by genetic manipulation (CSE^{+/-} mice), or use of CO donors rescue mice from

hypoxia-induced hypertension [39]. The medullary region of the kidney is hypoxic compared to the cortex. It is important to study whether H_2S participates in oxygen sensing in the kidney. Other vascular beds in the heart and gastrointestinal tract seem to employ H_2S as an oxygen sensor [40, 41].

3 H₂S in Acute Kidney Injury (AKI)

Sudden reduction in the existing kidney function can occur in three ways: (1) Due to diseases that affect the perfusion of the kidney (pre-renal, e.g., reduced blood pressure due to loss of extracellular fluid, congestive heart failure), (2) Due to intrinsic renal events affecting the parenchyma of the kidney (e.g., acute tubular necrosis, glomerulonephritis, tubulointerstitial nephritis), or (3) Due to obstruction to the flow of urine in the urinary tract (post-renal, e.g., prostatic enlargement). Serum creatinine is a common index of GFR, and an increase of about 0.3 mg/dl over the normal values is indicative of AKI. It is important to note that for AKI to occur as indicated by the rise in serum creatinine both the kidneys should be affected by pathology; injury to one kidney in a person with *normally* functioning two kidneys at baseline will not result in kidney injury because the uninvolved kidney compensates and maintains the kidney function. However, in a person with a single functioning kidney, or in a patient with previous chronic kidney disease, pathology affecting a single kidney is enough to cause AKI. Deficiency of H₂S generation has been found to play a role in many types of AKI.

3.1 AKI Due to Intrinsic Damage to Renal Parenchyma

Ischemic Renal Injury (IRI) Critical events in IRI include reduced blood flow to the renal parenchyma followed by reperfusion resulting in oxidative stress, inflammation, and apoptosis of tubular epithelial cells. Bos and associates reported that kidney CSE mRNA and protein, and CBS mRNA were decreased post-ischemia [6]. IRI resulted in more severe kidney injury and greater mortality in mice lacking CSE compared to wild type controls; administration of NaHS ameliorated kidney injury and improved mortality [6]. Other studies have confirmed the protective role of H_2S in IRI [42, 43].

IRI is particularly relevant in the setting of kidney transplantation. Removal of the kidney from the donor interrupts blood supply, and implantation in the recipient subjects the kidney to reperfusion. The kidney mRNA content of CSE correlated directly with the integrity of kidney function at 2 weeks in the post-transplant period suggesting ability to generate H₂S offers protection against IRI [6]. Inhalational administration of H₂S induces a hypometabolic state, maintains mitochondrial integrity, markedly mitigates apoptosis and influx of inflammatory cells, and promotes survival in mice [44]. Inclusion of NaHS in the preservative fluid helps to minimize kidney injury by in a rat model of kidney transplantation [45].

Epidemiologic studies have linked urinary metabolites of H₂S, sulfate, and thiosulfate with outcomes after kidney transplantation [12]. Urinary thiosulfate levels have been used as an index of systemic H₂S levels as they appear to correlate with the amount of inhaled or intravenously administered H₂S [46]. However, gut bacterial contribution to urinary sulfate metabolites may be of concern. Multiple regression analysis accounting for confounding factors was conducted in 707 renal transplant recipients. Data showed that urinary sulfate and thiosulfate levels directly correlated with the clearance function of the kidney, and inversely with hypertension and parameters of cardiovascular disease such as serum levels of h-c reactive protein, and pro-brain type natriuretic peptide [12]. Furthermore, mortality in transplant recipients correlated with reduced urinary sulfate and thiosulfate levels; there was a significant gradient between the lowest and highest tertiles of urinary sulfate and thiosulfate and mortality. Urinary sulfate could reflect an acid load which could contribute to metabolic acidosis in transplant patients.

Although there was a significant correlation between urinary sulfate and acid excretion by the kidney it did not interfere with the salutary association with preservation of glomerular filtration rate and decreased mortality.

Mitochondrial generation of H_2S from D-cysteine via the action of 3-MST can also protect against IRI. AP-39 is an agent that is directed to mitochondria by triphenyl phosphonium, and contains dithiolethione which releases H_2S [47]. AP-39 offered partial protection against IRI in rodents by ameliorating oxidative stress and inflammation [48].

In another model of IRI employing body cooling followed by rewarming the kidney expression of all 3 enzymes (CBS, CSE, and 3-MST) was decreased; administration of dopamine shielded against ischemic kidney injury by maintaining the expression of the three enzymes and stabilizing H_2S generation [49]. There is an instance in nature in which animals undergo physiological ischemia and reperfusion and yet resist IRI, i.e., hibernation. During hibernation the animals undergo torpor characterized by reduction in ventilation, cardiac output, and metabolism [50]. During arousal from this state blood flow is restored, and yet animals do not manifest IRI [50]. Interestingly, epithelial structural integrity is maintained during hibernation [51]. A torpor-like state can be induced in mammals by the administration of H_2S ; metabolites of H₂S show differential regulation during periods of torpor and arousal [52]. Inhalational H₂S slows the metabolic rate, similar to hibernation, and protects the kidney following ischemia as reviewed above [44]. The ability of H₂S to lower body temperature by itself has been questioned recently [53]. If one understands the mechanism of kidney protection during hibernation and arousal, it could help develop strategies for preservation of kidney integrity during transplantation.

Restriction of intake of dietary calories also protects against IRI of the kidney and the liver by increasing H_2S generation; this could be partly due to restriction of dietary methionine [54]. Taken together, these studies show that constitutive H_2S generation is important for kidney defense against IRI. In diverse models of IRI of the kidney, H_2S deficiency occurs, and restoring it could be a therapeutic strategy.

Rhabdomyolysis Crush injuries are commonly encountered in the battlefield, and following earthquakes and vehicular accidents. Traumatic injury to the skeletal muscle (rhabdomyolysis) in these instances is commonly associated with acute tubular injury due to myoglobin and other substances released by the injured muscle. In this situation, kidney injury can be additionally brought on by hypotension and IRI. In a rat model of crush injury-induced AKI, administration of NaHS mitigated indices of kidney injury such as increase in kidney injury molecule-1 (KIM-1) expression, oxidative stress, and apoptosis, and reduced the elevation in serum creatinine indicating preservation of kidney clearance function [55].

Nephrotoxic Injury Acute tubular injury can also occur due to administration of nephrotoxic compounds such as antibiotics and chemotherapeutic agents.

Gentamicin Kidney Injury Gentamicin and related aminoglycoside antibiotics are commonly employed to treat serious infections. Aminoglycosides are concentrated by the proximal tubule, and in toxic doses they lead to tubular necrosis. Administration of NaHS, and, H₂S generated from garlic derived diallyl sulfides alleviate gentamicin-induced kidney injury ([56–58]). A recent study has proposed an interaction between gasotransmitters, H₂S, CO, and NO in gentamicin nephrotoxicity. Gentamicin administration resulted in tubular injury, rise in serum creatinine, and proteinuria which were associated increase in inflammatory markers, decrease in anti-inflammatory defense, and increase in inducible NOS and renal tissue NO content, whereas eNOS expression was decreased [59]. NaHS administration inhibited renal tubular injury, improved renal function, decreased inflammation by shoring up antiinflammatory defense, and inhibited iNOS induction resulting in decrease in renal tissue NO content while augmenting eNOS expression. These salutary effects of NaHS were reduced by zinc protoporphyrin, an inhibitor of hemoxygenase-1; the latter catalyzes release of CO. These data suggest that gentamicin administration is associated with increase in NO generation via iNOS, and the protective effects of H_2S are partly mediated by CO [59].

Cis-Platinum Kidney Injury Platinum based compounds are extensively used in the treatment of cancers. Among them, cis-platinum is well known to cause kidney injury by inducing oxidative stress and inflammation. Nearly 30% of patients treated with cis-platinum develop AKI which limits its use [60]. Cis-platinum is transported into the kidney proximal tubular epithelial cells by organic cation transporter-2 and copper transport protein-1 located on the membrane [60]. Initial basolateral studies employing rats reported that cis-platinuminduced kidney injury was associated with increase in the expression of CSE and H₂S generation leading to inflammation and apoptosis; it ameliorated CSE inhibitor was by propargylglycine [61]. It is important to note that PAG may have other properties such as inhibition of aminotransferases [62]. However, same conclusion was drawn in another study employing GYY4137, a long acting H₂S donor [63]; concerns about the dose and solvent employed in preparation of the agent have been raised [64]. Other studies have shown an opposite role for H₂S in this disease. Administration of NaHS ameliorated cis-platinum kidney injury by inhibiting oxidative stress, inflammation, and apoptosis [65]. Cis-platinum decreases the expression of renal cortical CSE leading to reduction in H_2S generation in rats [64]. Different H_2S donors were compared for their efficacy to alleviate cis-platinum kidney injury. In vitro studies employing porcine renal proximal tubular epithelial cells (LLC-PK1) showed that whereas the short acting NaHS and long acting GYY4137 were able to inhibit kidney injury, AP-39, a mitochondrially targeted donor of H₂S, was not. The mechanism of H_2S protection involved inhibiting oxidative stress due to ROS generated by NADPH oxidase (NOX), and protecting against apoptosis by decreasing MAP kinase activity, particularly Erk and JNK [64]. Inhibition of NOX appeared to involve persulfidation of p47phox, an important component of the oxidase. Administration of NaHS and GYY4137 effectively inhibited clinical indices of cis-platinum induced AKI in mice in association with suppresof tubular epithelial cell sion apoptosis [64]. Polysulfides (H_2Sn) are agents that have higher number of sulfane sulfur atoms than H₂S. They can manifest stronger properties than H_2S . H_2S_3 may be derived from H_2S , or, interestingly, their production may be catalyzed by 3-MST and rhodanase [66]. Similar to H_2S , sodium tetrasulfide inhibited cis-platinuminduced apoptosis and the associated activation of MAP kinases and NOX and ROS generation [67]. Sodium tetrasulfide increased the translocation of nuclear factor erythroid-2 related factor-2 (Nrf-2) to the nucleus which was dependent on Akt activation. Nrf-2 is a well-known inducer of anti-oxidant genes [68]. Intraperitoneal administration of sodium tetrasulfide to rats ameliorated cis-platinum-induced apoptosis of tubular epithelial cells, and resolved increase in serum creatinine, corresponding to in vitro data in LLC-PK1 cells [67]. Inflammation induction by *cis*-platinum involves NFkB-induced TNFa synthesis which was inhibited by NaHS [69, 70]. Garlic derived diallyl sulfides have been reported to alleviate *cis*-platinum kidney injury by inhibiting oxidative stress, NFkB regulated inflammation, and apoptosis [71, 72].

Recent studies have shown an additional mechanism of kidney injury due to *cis*-platinum. NAD-dependent deacetylase sirtuin-3 (Sirt-3) is a mitochondrial deacetylase which removes acetyl groups from superoxide dismutase-2, ATP synthase β [73], and optic atrophy-1 protein [74], leading to increase in the mitochondrial anti-oxidant capacity and function. Sirt-3 is decreased in the kidney in *cis*-platinum induced kidney damage, and augmenting its expression by

transplantation of mesenchymal stem cells protects kidney function [75]. Since H_2S at small concentrations can lead to mitochondrial DNA repair, suppression of ROS production, and improvement in ATP production [76], whether H₂S can protect against mitochondrial damage by *cis*-platinum has been explored by focusing on Sirt-3. Administration of NaHS to cis-platinum treated mice resulted in preservation of kidney function, reduction in tubular cell apoptosis, mitochondrial fragmentation and ROS production, increasing ATP content and [77]. Using both an in vivo model and in vitro cell culture of renal proximal tubular epithelial cells, the authors demonstrated that NaHS reversed cis-platinum-induced reduction in Sirt-3 expression. Cis-platinum augmented the acetylation of superoxide dismutase-2, optic atrophy-1, ATP synthase β , and increased ROS generation; these were reversed by H_2S by improving the deacetylation function of Sirt-3. Furthermore, NaHS increased the sulfhydration of cysteine residues in the zinc finger motif of Sirt-3, which was found to be required for its protective action against cis-platinum-induced toxicity.

In summary, multiple pathways are recruited by *cis*-platinum to cause kidney injury. Most studies favor a protective role for H_2S in *cis*platinum kidney toxicity. Development of agents that release H_2S which can be acceptable to humans may permit increase in the use of *cis*platinum in cancer management. Role of H_2S in cis-platinum kidney injury has been reviewed in depth recently ([65, 78]).

3.2 AKI Due to Post-Renal Causes

Obstructive Kidney Injury Obstruction to the flow of urine out of the kidney due to abnormalities in ureter, bladder, prostate, or urethra results in AKI due to back pressure on *both* kidneys. Song et al. showed that kidney obstruction leads to reduction in CBS content and decreased H_2S generation [79]. This was linked to inflammation, generation of TGF β , and transformation of interstitial fibroblasts to myofibroblasts leading to renal interstitial fibrosis. These abnormalities were prevented by the administration of NaHS. In other investigations, obstruction was reported to reduce CSE expression; CSE knockout mice displayed more severe injury [80]. H₂S deficiency in the obstructed kidney has been reported to promote TGF β -induced epithelial to mesenchymal transition leading to fibrosis [81]. This transition appears to involve the β -catenin and Erk pathways that are inhibited by H₂S [82]. The role of H₂S and other gasotransmitters in obstructive kidney injury has been expertly reviewed [83].

3.3 Role of H₂S in AKI: A Counterpoint

In contrast to the ameliorative effect of H_2S in the aforementioned models of AKI, an injurious role for the gasotransmitter has been proposed in AKI encountered in burns and failure of multiple organs. Compared to wild type mice, CSE knockout mice were protected from thermal injuryinduced kidney abnormalities [84]. Endotoxemia-induced AKI is reported to be decreased in CBS^{+/-} mice indicating mediation by CBS-generated H₂S [85]. A mediator role for H₂S in AKI due to IRI has also been suggested [86]. Clearly, more work is needed to clarify the role of H₂S in AKI.

4 Chronic Kidney Injury (CKD)

Progressive kidney injury results in replacement of functioning renal parenchyma with fibrosis, the structural hallmark of CKD. Diverse mechanisms are involved in this process. CKD can progress to end stage kidney disease (ESKD) requiring replacement of kidney function by dialysis or transplantation. CKD and ESKD result in shortened life span and significant morbidity. The currently available treatment modalities may slow the progression of CKD but are unable to stem the disease process altogether with recovery of normal kidney function; this indicates that we have not fully understood the underlying mechanisms. Thus, there is a need for new approaches to CKD.

Replacement of functioning parenchyma by fibrosis leads to glomerulosclerosis and tubulointerstitial fibrosis. More recently, the classic glomerulo-centric approach is making room for a tubulo-centric approach. Tubulointerstitial fibrosis is characterized by myofibroblast proliferation, matrix deposition, tubular atrophy, and capillary rarefaction [87]. Myofibroblasts may originate from the capillary pericytes, stem cells [87], or through epithelial to mesenchymal transition, and the topic is hotly debated. Proximal tubular epithelial cells play a central role in tubulointerstitial fibrosis; they undergo direct injury, reprogram their metabolism, and secrete molecules that promote matrix synthesis, e.g., angiotensin II, TGF^β [88, 89]. In CKD chronic changes occur in the vessel wall due either to the disease causing CKD, or to accompanying hypertension and atherosclerosis; this results in ischemic injury to the nephron. As such, CKD can be viewed as a composite of glomerular, tubular, and vascular injury.

There are several reasons for exploring the role of H₂S in CKD: (1) Low levels of H₂S, CBS, and CSE have been reported in circulating leukocytes in hemodialysis patients [90]. Since dialysis patients are at high risk for infections whether correcting H₂S deficiency has an effect on leukocyte defense against infections should be studied. Levels of serum lanthionine and homolanthionine products in the H₂S biosynthetic pathway are increased in dialysis patients [10]. In studies on endothelial cells in vitro lanthionine inhibited H₂S production which coincides with decreased CBS expression; lanthionine also reduced glutathionylation of CBS thereby reducing its activity [91]. In another study, plasma H_2S levels were lower and homocysteine levels higher in non-dialysis CKD patients, and associated with low mRNA levels of CSE and CBS but higher 3-MST expression in circulating mononuclear cells [92]. (2) The most common cause of death in ESKD is atherosclerotic vascular disease. Kuang et al. found a negative correlation between plasma H₂S levels and left ventricular ejection fraction [92]. Recent investigations have shown an important protective role for CSE in maintaining endothelial integrity and delaying atherosclerosis [93] supporting further exploration of the gasotransmitter in CKD-associated cardiovascular disease. (3) Urinary sulfate excretion was inversely associated with graft failure in a large cohort of kidney transplant patients suggesting that reduced ability of H₂S generation may contribute to graft failure [94]. In support of the protective role of H_2S in the transplant setting, CSE mRNA content in the transplanted kidney at the time of implantation directly correlates with kidney functional integrity in the post-transplant period [6].

Animal models have been employed to study the role of H_2S in CKD. Studies in rodents that have undergone removal of 5/6 of renal parenchyma have shown reduced content of CSE, CBS, and 3-MST in association with ROS generated by increased NOX 4 activity indicating that reduced ability to generate H₂S allows oxidative stress [95]. Dietary methionine restriction leads to increased H₂S generation in the kidney [54]. Administration of low methionine diet to mice with 5/6 nephrectomy resulted in protection as manifested by reduced impairment in GFR and albuminuria in association with decreased indices of inflammation and fibrosis [96]; these observations imply that the protection was at least partly due to H₂S generation.

Rodents with hyperhomocysteinemia have been extensively studied as another model of CKD. Homocysteine accumulation occurs when either the expression and/or activity of CBS is impaired, and leads to proteinuria (Fig. 1) [97, 98]. In a feedback manner, hyperhomocysteinemia inhibits the expression of CBS, CSE, and 3-MST [99] leading to H_2S deficiency, the effect on CSE being attributable to hypermethylation of its promoter [100]. The phenotypes of kidney injury in this model include hypertension, vascular injury attributable to matrix metalloprotease (MMP)-9, proteinuria, oxidative and nitrosative stress, inflammation, and mitophagy [101-103]. Administration of
NaHS to CBS heterozygous knockout mice resolves these kidney abnormalities [104, 105] demonstrating that H_2S deficiency underlies renal dysfunction. Vascular pathology including reduced renal cortical blood flow with consequent kidney fibrosis, hypertension, and impaired GFR has been linked to reduced eNOS in CBS^{+/-} mice with hyperhomocysteinemia. eNOS undergoes homocysteinylation impairing its function. These abnormalities were mitigated by treatment with NaHS [106].

Administration of sodium thiosulfate reduced vascular injury in another model of CKD in rats by mobilizing calcium in the deposits in the vessel wall, heart, and kidney, and promoting its urinary excretion suggesting a beneficial role for H_2S ; however, the bone strength was impaired indicating that careful studies on unwanted effects of sodium thiosulfate and H_2S are needed [107].

As stated above, angiotensin II and TGF^β contribute to tubulointerstitial fibrosis in CKD; epithelial-mesenchymal transition (EMT) has been suggested as an important underlying mechanism. An in vitro study showed that EMT induced by angiotensin II was mediated by TGF β in rat renal tubular epithelial cells; H₂S abolished EMT by preventing dimerization of the TGF^β resulting in an inactive monomer [108]. One may recall here the TGF β antagonizing actions of H₂S in obstructive kidney injury [79]. EMT is an area of intense controversy. Lineage tracing of cells involved in renal tubulointerstitial fibrosis showed pericyte as the origin of myofibroblasts; the authors questioned whether EMT of proximal tubular epithelial cells significantly contributes to the tubulointerstitial pool of myofibroblasts, i.e., proximal tubular epithelial cells do not assume a mesenchymal phenotype, and migrate to the interstitium as myofibroblasts [109]. More recently, Translation Ribosome Affinity Purification approach was employed to identify genes in proximal tubular epithelial cells involved in fibrosis in an obstruction model; the data showed that less than 3% of proximal tubular epithelial cells showed evidence of EMT in situ [89].

4.1 Anemia in CKD

Anemia is one of the serious complications of CKD. Lack of erythropoietin is a major mechanism for anemia although additional mechanisms exist. The renal interstitial stellate fibroblast-like cells synthesize erythropoietin mainly in the cortico-medullary junction [34, 35]. The partial pressure of oxygen in renal cortex is 50 mm Hg and decreases to about 30 mm Hg in the medulla in the rat [110] providing a hypoxic environment for erythropoietin synthesis. In response to anemia and hypoxia the kidney generates more erythropoietin. There is evidence that H₂S regulates erythropoietin synthesis. Cell culture studies have shown that induction of erythropoietin synthesis by hypoxia involves HIF1 α and HIF2 α ; the latter may exert greater influence а [111, 112]. H_2S generated by CBS is likely involved in increase in HIFs because blockers of CBS abolished hypoxia-induced erythropoietin production. Further confirmation of role of H₂S in erythropoietin metabolism has come from studies in patients on dialysis and mice lacking CSE. Hypoxia-induced increase in erythropoietin and hemoglobin was blunted in CSE knockout mice that could be mitigated by exogenous H_2S suggesting a role for H_2S and CSE [113].

Important insights into the complex role of H₂S in erythropoiesis have emerged from recent studies. CBS homozygous knockout mice die within 4 weeks and display anemia due to suppressed erythropoiesis associated with iron overload in several tissues; these abnormalities could be partially ameliorated by restoration of CBS via an adenoviral vector [114, 115]. Anemia in CBS knockout mice is macrocytic, and is associated with increase in blood levels of iron, hepcidin, and IL-6, an inflammatory cytokine. Studies on bone marrow showed decreased population of erythroid precursors, and reduced expression of enzymes involved in heme synthesis such as δ -aminolevulinate synthase-2 and ferrochelatase. Bone marrow content of transferrin receptor 1, involved in iron import into the cell, and the iron release protein ferroportin-1 was decreased indicating defective cellular uptake of iron and its release. The liver content of erythropoietin, its receptor, and its upstream regulator HIF2 α was decreased in CBS knockout mice; however, whether erythropoietin synthesis of in the kidney was affected is not clear.

In contrast to the role of CBS in erythropoiesis described above, CSE has been suggested to inhibit erythropoiesis. CSE knockout mice manifest polycythemia or increased numbers of red blood cells in circulation in association with elevated heme content in plasma and liver [116]. Interestingly, there was no evidence of hypoxia on arterial blood gas analysis. The investigators attributed these changes to increase in the hepatic expression of coproporphyrinogen oxidase, a mitochondrial enzyme that converts coproporphyrinogen III to protoporphyrinogen IX in the heme synthesis pathway. Using a reporter assay, they found that liver cell coproporphyrinogen oxidase gene promoter activity was increased when CSE activity was inhibited indicating that it was under H₂S regulation. Mitochondrial respiration was found to be increased in isolated mitochondria from the liver of CSE knockout mice.

Taken together these data suggest that H_2S could play an important regulatory role in erythropoiesis. Clearly, further investigation is needed to parse out the exact role of H_2S , CSE, and CBS in erythropoiesis. Additionally, it is important to explore if H_2S participates in oxygen sensing in the kidney.

CKD affects nearly every organ system with significant morbidity. CKD-associated neuropathy and bone disease are major and common complications that can cause significant morbidity. Cardiovascular complications including ischemic heart disease and congestive heart failure are the leading cause of death in CKD. Investigation is needed to elucidate the role of H_2S in these complications.

4.2 Kidney Injury in Chronic Congestive Heart Failure (CHF)

Decreased cardiac output, the hallmark of CHF, leads to reduced systemic perfusion and hypoxia

including in the kidney. This results in maladaptive responses including stimulation of reninangiotensin-aldosterone axis and the sympathetic nervous system. Inhibition of these responses forms an important strategy in the treatment of CHF. Acute or chronic CHF can result in kidney injury (types 1, 2 cardiorenal syndrome, respectively) [117]. Administration of a H_2S donor, JK-1, improved cardiac function in a mouse model of pressure overload CHF created by transverse aortic constriction, an example of type 2 cardiorenal syndrome [118]. The study was conducted over 18 weeks with the administration of JK-1 being delayed for 3 or 10 weeks after aortic constriction to mimic the clinical situation where patients seek medical attention after the onset of symptoms. H₂S administration delayed for 3 weeks still resulted in attenuation of reninangiotensin axis, catecholamines, cardiac fibrosis resulting in improved cardiac structure and function. In addition, kidney fibrosis and impairment in its function were also improved by the H₂S donor [118]. This exciting report should stimulate more work on H₂S aimed at understanding and mitigating cardiac and kidney injury in other models of type 2 cardiorenal syndrome and in acute models (type 1 cardiorenal syndrome). Additionally, AKI and CKD can also secondarily affect heart function (types 3, 4 cardiorenal syndrome); these models should also be explored for the contribution of H_2S .

4.3 Obesity and Kidney Injury

Obesity is an ever-growing problem around the world. At the present time nearly 40% of the population in the USA is obese, and projections are that this will increase to nearly 50% by 2030 [119]. Kidney injury in obesity, without contribution from hyperglycemia, manifests as enlargement of the glomerulus, glomerulosclerosis, tubulointerstitial fibrosis, and a variable degree of proteinuria [120]. Obesity increases the risk of type 2 diabetes and obese subjects are at a higher risk of CKD and proteinuria [121]. Reduced renal expression of CBS but not CSE was observed in the kidneys of mice with high fat diet-induced obesity [122]. High fat dietinduced obesity in mice was associated with matrix increase in the kidney, and indices of inflammatory molecules; these were reversed by intraperitoneal administration of NaHS [123]. Investigation of H_2S in obesity-induced kidney injury is still in its infancy. More detailed investigations are needed.

4.4 Diabetic Kidney Disease (DKD)

DKD is the single most common cause of CKD progressing to ESKD in the West. Both type 1 diabetes due to insulin lack and type 2 diabetes due to resistance to insulin actions cause clinically significant kidney injury in nearly a third of patients. The clinical course is characterized by an initial rise in GFR followed by progressively increasing proteinuria including albuminuria, hypertension, and eventually progressive loss of GFR. During this process, hypertrophy of the kidney is seen early followed by increase in the accumulation of matrix proteins leading to glomerulosclerosis and of the tubulointerstitial fibrosis. The role of H_2S in DKD has been reviewed extensively [124–127].

 H_2S has a complex role in diabetes. Streptozotocin is commonly used to induce type 1 diabetes in rodents; H₂S is implicated in streptozotocin-induced injury to insulin synthesizing β cells in the pancreatic islets of Langerhans [128]. On the other hand, there is good clinical and experimental evidence that DKD is associated with reduced synthesis of H_2S . Reduced circulatory H_2S levels have been reported in type 2 diabetes [129], and in patients with ESKD due to DKD [130]. In rodents with type 1 and 2 diabetes, kidney H₂S generation is reduced due to decreased expression of CBS and CSE, which could be due to MMP-9 [7, 131-134]. That H_2S deficiency contributes to the well-known phenotypes of DKD such as oxidative stress, fibrosis, and albuminuria is supported by their amelioration by administering H₂S releasing agents such as NaHS, GYY4137, and S-propargyl-cysteine [133–136]. H₂S protects against DKD in two ways, i.e., it can reduce

blood glucose levels, and it affects pathogenetic mechanisms.

One mechanism by which H_2S reduces hyperglycemia is by stimulating insulin receptor mediated glucose uptake in peripheral tissues as has been shown in rats with type 2 diabetes [137].

TGFβ mediates fibrogenic response of the kidney in diabetes [138, 139]. Increase in renal TGF β expression in DKD is inhibited by NaHS [133, 134]. As mentioned above, tubulointerstitial fibrosis is a major aspect of progressive CKD. In addition to the direct effects of high glucose on tubular epithelial cells and renal fibroblasts in promoting tubule-interstitial fibrosis, hyperglycemia can induce chronic ischemia due to peritubular capillary injury and rarefaction. This can be mitigated by H_2S administration [140, 141]. Pathologic remodeling of renal blood vessels has been linked to N-methyl D-aspartate (NMDA) receptor-1 being activated by MMP-9 [132]. In the setting of DKD, opening of the NMDA receptor-1 has been linked to calcium influx into the mitochondria leading to opening of the mitochondrial permeability transition pore and ROS generation; these events are inhibited by GYY4137, an H₂S donor [142].

Some understanding of the cellular actions of H₂S in the context of DKD has been gained. Increased protein synthesis is required for kidney hypertrophy, and matrix accumulation contributing to renal fibrosis. Signaling pathways, particularly, the (PI 3kinase)-Akt-mechanistic target of rapamycin complex 1 (mTORC1) pathway, are important regulators of mRNA translation, a rate limiting step in protein synthesis [143]. Increase in the activity of this signaling axis has been documented in early stages of DKD in rodents [144–149]. Inhibition of mTOR by rapamycin administration ameliorates kidney hypertrophy, and onset of laminin accumulation in mice with type 2 diabetes [149, 150]. In addition to Akt, mTOR activity and mRNA translation are under the control of AMP-activated protein kinase (AMPK) through the TSC1-TSC2-Rheb axis. Normally, AMPK keeps mTORC1 and protein synthesis in check in kidney cells. AMPK is regulated by the ratio of ATP to AMP in cells. Hyperglycemia increases

Fig. 3 Kidney H_2S regulation in Diabetes. Reduced expression of CBS and CSE leads to decreased H_2S generation. AMPK activity is reduced, whereas PI 3-kinase-Akt-mTORC1 axis is stimulated leading to increase in protein synthesis required for kidney hypertrophy and matrix protein synthesis. Administration of tadalafil, H_2S donors, and AMPK stimulators restore AMPK activity, resulting in inhibition of mTORC1, and reduction in kidney hypertrophy and matrix protein synthesis

ATP/AMP ratio and inhibits AMPK [151]. Reduction in AMPK activity removes the break on mTORC1 allowing protein synthesis to continue (Fig. 3). Akt can also inhibit AMPK by serine phosphorylation [152, 153] providing an additional mechanism for AMPK inhibition in the kidney in diabetes. Administration of AMPK stimulating agents such as metformin and AICAR at doses that do not alter hyperglycemia inhibits kidney hypertrophy [146, 154]. Interestingly, metformin increases kidney H₂S content in a dose-dependent manner in mice [155]. Whether metformin regulates expression and/or activity of CSE, CBS, or 3-MST in the kidney should be explored. It will be interesting to study if metformin of AMPK stimulation is H₂S-dependent. The salutary role of AMPK in ameliorating diabetes- and obesity-induced kidney injury has been confirmed by others [154, 156–158]. Given the desirable property of AMPK in amelioration of DKD, we examined if H₂S has a regulatory effect on AMPK. High glucose-induced protein synthesis and hypertrophy in kidney epithelial cells were blocked by NaHS [7]. This was dependent on induction of AMPK activation by its upstream regulator, calcium calmodulin kinase kinase- β and possibly, liver kinase B-1 (LKB-1). Activated AMPK inhibited mTORC1, and reactions involved in both the initiation and elongation phases of mRNA translation [7]. These data provide a signaling basis for the beneficial effect of H₂S in DKD.

Since NaHS is intolerable by humans due to its smell, we searched for an alternative. Because NO and H₂S share many properties such as vasodilation and increased blood flow, we examined if tadalafil, a phosphodiesterase 5 inhibitor, and inducer of NO could be an alternative. In vitro studies in renal glomerular epithelial cells that express podocyte markers showed that tadalafil also inhibited high glucose-induced hypertrophy, matrix protein synthesis by down regulating mTORC1 activity, and key steps in the initiation and elongation phases of mRNA translation, similar to NaHS [159]. The inhibitory effects of tadalafil on high glucose-induced mTORC1 and protein synthesis required AMPK stimulation. Tadalafil also increased H₂S generation by increased expression of CSE by regulating its mRNA translation rather than transcription. The salutary effects of tadalafil on high glucoseinduced injury required activation of guanylyl cyclase and NO generation via inducible NOS (iNOS). Since iNOS is generally associated with tissue injury, its role should be clarified in animal models of DKD. In summary, the sequential steps are as follows: tadalafil promotes NO generation, stimulates soluble guanylyl cyclase leading to induction of CSE expression and H₂S generation; in turn, H₂S stimulates AMPK to inhibit mTORC1 and synthesis of proteins including matrix proteins. Thus, under tadalafil, signaling

pathways of two gasotransmitters, NO and H_2S , are integrated. Our findings are in line with a randomized double blinded multi-center clinical trial. PF-00489791, a phosphodiesterase 5 inhibitor similar to tadalafil, reduced proteinuria in patients with DKD [160].

Multiple other pathogenic pathways are interrupted in DKD by H_2S administration, and are briefly reviewed below.

The renin-angiotensin axis is of central importance in DKD. Angiotensin II binds to angiotensin receptor type 1 (AT1) to initiate hemodynamic and cell biologic effects that contribute to glomerular hypertension, renal fibrosis, and progressive kidney failure [127]. Inhibition of this axis is widely employed in the treatment for DKD and non-diabetic CKD. Diabetes in rats was associated with increase in renal parenchymal angiotensin II and AT1 expression in the kidney; these changes were inhibited by NaHS [134]. H₂S also reduces renin generation [22]. Intrinsic cells of the nephron are capable of expressing components of this system and initiate local injury in diabetes. High glucose promotes mesangial cell synthesis of angiotensinogen, angiotensin converting enzyme, and AT1 in vitro along with that of TGF β and collagen; these effects are dependent on ROS generated by NOX and they are inhibited by H_2S [136].

Renal vascular bed is another locus of H₂S action in DKD. Employing Akita mice with type 1 diabetes, MMP-9 knockout mice, and [MMP-9 +/- Akita] mice, Kundu et al. have linked ROS generation to induction of MMP-9 leading to H₂S reduction in DKD. This leads to induction of NMDA receptor and increase in Connexins 40 and 43 resulting in renovascular remodeling [132]. Diabetes-induced changes in renal vasculature result in ischemia, which can contribute to DKD. Careful measurements of renal blood flow confirmed that correcting H₂S deficiency reduced renal blood vessel resistance and improved blood flow; this was associated with amelioration of renal dysfunction including fibrosis [161]. Improvement in renal capillary blood flow by bolus administration of NaHS has been shown in OVE26 mice with type 1 diabetes [141]. Sen's group has employed barium sulfate angiography to demonstrate reduced vessel area in the kidney in Akita mice which was restored to normal following administration of GYY4137, an H_2S donor [131].

High glucose increases the generation of ROS and induces oxidative stress in DKD. This was inhibited by NaHS in type 1 diabetic rats by recruiting Nrf-2, a transcription factor that augments expression of anti-oxidant molecules [134]. Poly (ADP ribose) polymerase-1 (PARP-1), a regulator of DNA strand repair, is increased in DKD; PARP-1 knockout mice are protected from diabetic kidney injury [162]. GYY4137 administration ameliorated the increase in ROS generation in the kidney and reduced kidney PARP-1 expression in Akita mice [131]. NADPH oxidase 4 is a major source of ROS production in the kidney and contributes to renal hypertrophy, accumulation of matrix proteins, and proteinuria [163-166]. We studied the interaction between NOX4 and H₂S in an in vitro model of high glucose-induced kidney injury employing proximal tubular epithelial cells [167]. High glucose increased the expression and activity of NOX 4 that was abolished by NaHS in an AMPK-dependent manner. Interestingly, the salutary effects of NaHS were NO-dependent demonstrating coordination between two gasotransmitters. As reviewed above, the signaling systems of NO and H₂S are also integrated in oxygen sensing operations of the carotid body, and in tadalafil effects on high glucose-induced kidney cell injury [159] (Figs. 2 and 3). Finally, it should be pointed out that the source of ROS in the kidney in DKD is a hotly debated topic. Dugan and associates have shown that mitochondria are not the source of ROS in DKD in diabetic rodents [154]. It is possible that ROS may originate from extra-mitochondrial sources in kidney cells.

Inflammatory injury is another pathway of kidney injury in DKD. Infiltration of monocytes into renal parenchyma is well documented in DKD [168]. Inflammatory injury mediated by activation of NF κ B in diabetic rodents was

suppressed by NaHS in rats with type 1 diabetes [134].

John and associates have provided further insights into regulation of matrix metabolism in DKD by H_2S [131]. As mentioned above, MMP-9 has been implicated in the reduced expression of CSE in DKD. In Akita mice with type 1 diabetes, increase in the kidney mRNA, and protein expression of MMPs-9 and 13, and types I and IV collagen was associated with reduced expression of MMP-14; these changes were reversed by GYY4137, which also reduced blood glucose level modestly [131]. Synthesis of collagen in DKD is under the regulation of HIF1 [169]. DKD in Akita mice was characterized by mRNA and protein elevation of HIF1a, and regulatory molecules involved in the synthesis and folding of collagens; these changes were also restored to normal by the administration of GYY4137 [131]. Interestingly, the kidney expression of microRNA (miR)-194, a major miR expressed in the kidney, was decreased in Akita mice and was restored by the administration of GYY4137 [131]. Using glomerular endothelial cells in culture, the authors went on to show that high glucose-induced changes in ROS generation, changes in MMPs, collagens, and regulators such as HIF1 α could all be reversed by an miR-194 mimic, suggesting a fundamental role for this miR in DKD. Taken together, these data imply that H₂S exerts inhibitory control on transcription of several important genes that have roles in ROS generation, and matrix changes; GYY4137-induced reduction in blood glucose could assist in these changes. Additionally, H_2S regulates the expression of miR-194, a major miR in the kidney. Whether there are binding sites for miR-194 in the 3' UTRs of the genes mentioned above or whether mIR-194 exerts its effects indirectly need clarification. Also, the mechanism by which H₂S affects the production of miR-194 also needs more study.

Clinical reports are appearing that lend support for a role of H_2S deficiency in DKD. We have already referred to the beneficial effect of phosphodiesterase-5 inhibitor in a clinical trial [160]. In another study, urine samples from patients enrolled in two large DKD trials (Sun-MACRO and PREVEND) were analyzed for their sulfate content, which may reflect systemic H₂S metabolism. Urinary sulfate levels inversely correlated with albuminuria and progression of DKD, implying that lower conversion of H₂S into sulfate was associated with faster progression of the disease [170]. On multivariate analysis, urinary sulfate was found to be an independent protection factor supporting the notion that higher H₂S production capacity protects against DKD. As pointed by the authors, a cautionary note is required; some of the urinary sulfate can originate in the bacteria in the gastrointestinal tract [171]. The same group of investigators have reported that urinary sulfate and not thiosulfate levels inversely correlated with all-cause mortality in the general population [172].

In summary, further exploration of H₂S role in DKD is likely to yield more insights into mechanisms of injury, and provide an opportunity to test clinical intervention. Issues in DKD that could be addressed in future could include the following. H₂S is a well-known cause vasodilation and an increase in blood flow [173]. As discussed above infusion of H₂S into renal artery increases blood flow into glomerulus and GFR [21]. Since GFR is increased in early stages of diabetes, it will be interesting to study whether H₂S mediates increased glomerular perfusion. Studies in vitro have shown that tadalafil amelioration of high glucose-induced kidney cell injury requires integration between NO and H₂S [159]. Additionally, H_2S seems to interact with CO, the third gasotransmitter. H_2S augmented hemoxygenase-1 expression in human mesangial cells and podocytes in culture implying generation of CO [174]. Thus, another area for future exploration could be the interaction between H_2S , CO, and NO in DKD.

5 Hypertension

Blood pressure is a product of cardiac output and peripheral resistance of the arterial tree. Hypertension is one of the most common disorders affecting nearly a billion people around the world [175, 176]. When the cause of hypertension is not known, as it is the case in most cases, it is called primary hypertension. The remaining subjects have secondary hypertension attributable to a disease, e.g., renovascular hypertension, disorders of hormones such as aldosterone and catecholamines, renal disease, and vascular anomalies including coarctation of the aorta. Elevated blood pressure has far reaching effects on both morbidity and mortality including atherosclerosis, coronary artery disease, heart failure, CKD, and stroke [177]. There is overwhelming evidence that control of BP mitigates many of these consequences [178].

Currently available medications to treat hypertension are fraught with the problems of intolerable side effects leading to non-compliance, and/or, inefficient blood pressure control. This has prompted a search for more novel approaches. All three gasotransmitters have extensive vascular effects including lowering of blood pressure. Thus, they are prime candidates for exploration in the development of new anti-hypertensive agents. They have additional local cell biologic effects on the target tissues such as the heart, brain, blood vessels, and the kidney that makes them even more attractive therapeutic as potential candidates. The author wishes to point out that the literature of H₂S in hypertension is vast, and only a very brief account will be given here due to space considerations. The topic of H₂S in hypertension has been deftly reviewed recently [179– 181].

The involvement of H₂S in hypertension was brought to focus by studies in CSE knockout mice that had а mixed genetic background (C57BL6 + 129Sve) [173]. The investigators concluded that H₂S deficiency was the cause of hypertension by excluding other mechanisms of hypertension, and ameliorating hypertension by the administration of NaHS [173]. It should be noted that other investigators have not observed hypertension in CSE knockout mice. In one study, investigators found that while there was no systolic hypertension at baseline by telemetrically monitored blood pressure measurement the mean and diastolic blood pressures were lower in the $CSE^{-/-}$ mice; these could be attributed to NO

as infusion of L-NAME restored the blood pressures to control levels [182]. In this study, blood pressure was measured in conscious mice and the genetic background of mice (C57BL6) was different from the previously cited study [173]. Lack of hypertension was also reported in another study; the difference could be due to genetic background (C57BL6) and the method of blood pressure measurement [183].

There is ample evidence for a role of H_2S in many commonly employed animal models of hypertension. Circulating H₂S levels are low in spontaneously hypertensive rats, and are associated with oxidative stress: these abnormalities are rectified by NaHS [184]. In salt sensitive Dahl rats, decreased H₂S production may be due to reduced CBS expression both of which could be rescued by NaHS administration resulting in restoration of blood pressure [185]. Reduced vasculature content of CBS and CSE has been reported in dexamethasone model of hypertension [186].

Renovascular hypertension is a common cause of secondary hypertension. The experimental model for studying this form of hypertension involves clipping one of the two normal kidney arteries. Interruption in blood supply augments renin generation by the perivascular interstitial cells around the afferent arteriole leading to increase in the synthesis of angiotensin II, which increases blood pressure by vasoconstriction and increasing renal Na⁺ reabsorption in the kidney. H₂S ameliorates hypertension in this model by diverse mechanisms. It decreases renin expression by inhibiting cAMP [22]. H₂S interrupts AT1 activation by angiotensin II and oxidative stress [187]. Similar amelioration of hypertension, oxidative stress, and endothelial dysfunction by H₂S also occurs in a model of hypertension caused by direct infusion of angiotensin II [188]. Similar salutary effects of H_2S were seen in the angiotensin II model following infusion of NaHS and sodium thiosulfate, a metabolite of H₂S although only NaHS was able to reduce intrarenal hypertension [189]. H₂S induced effects on hypertension have been attributed to the activation of K⁺-ATP channels [189–191].

Excessive Na⁺ retention by the kidney is an important pathogenic event in hypertension. As discussed in the Renal Physiology section, H₂S inhibits renal Na⁺ reabsorption at various sites along the nephron. H₂S reduces the activity of Na⁺-H⁺ exchanger 3 which is another major regulator of Na⁺ reabsorption in the proximal tubule [27]. inhibit $Na^+-K^+-2Cl^ H_2S$ may co-transporter, and, reduce the activity of Na⁺-K⁺ ATPase by promoting endocytosis in renal epithelial cells [21, 30]. Aldosterone-induced ENaC opening in the distal nephron is also inhibited by H₂S by stimulating PTEN and suppressing PI 3-kinase activity [29]. It will be important to explore if H₂S has a role in regulation of other contributing mechanisms in hypertension involving neurologic and endocrine systems.

An emerging theme in studies on hypertension is the dialogue between NO and H_2S . NO deficiency in the angiotensin II model of hypertension was corrected by H_2S [188]. Hypotension due to H_2S administration in normotensive rats is corrected by decreasing NO generation and vice versa [192]. This crosstalk may be model specific, e.g., these gasotransmitters may not communicate in the spontaneously hypertensive rats [192]. In contrast to the aforementioned studies, H_2S has been reported to scavenge and decrease NO in the peripheral arteries [182].

5.1 Preeclampsia

Around 2–5% of pregnant women develop hypertension and proteinuria after the 20th week of gestation in the absence of CKD and previous hypertension; they are said to have preeclampsia [193, 194]. Fetal growth can be affected due to decrease in placental perfusion from remodeling spiral arteries. Preeclampsia of the is characterized by excessive production of soluble fms-like tyrosine kinase (sFlt1), a splice variant of vascular endothelial growth factor receptor-1 (VEGFR1), and decrease in placental growth factor (PIGF). While PIGF is a vasodilator, sFlt1 is a vasoconstrictor. In preeclampsia the ratio of sFlt1

to PIGF is increased [195]. Placentae obtained from women with preeclampsia demonstrate increased expression of mitochondrial ROS, reactive nitrogen species, and sFlt1 [196]. sFlt1 overproduction results in decrease in VEGF availability, and contributes to endothelial dysfunction and impaired vascular relaxation [194]. Circulating H_2S levels and single nucleotide polymorphisms in CBS and CSE have been reported in preeclampsia patients [197, 198]. In the rat model of preeclampsia generated by an adenovirus-induced sFlt1 overproduction, administration of NaHS effectively reduced blood pressure and ameliorated proteinuria [199]. In mice CSE inhibition has been shown to increase sFlt1 production which is inhibited by NaHS [200]. This indicates that H_2S deficiency is upstream of placental sFlt1 overproduction in preeclampsia.

miRs appear to have an important regulatory role in preeclampsia. miR-20a, -20b, and -200c may be involved in reducing placental VEGF synthesis, and this can be corrected by NaHS [201]. The mechanism by which NaHS inhibits sFlt1 generation may involve miR-133b [202]. In view of mitochondrial dysfunction in preeclampsia, AP39 a mitochondrial H₂S donor has been tested in cell culture employing human primary cytotrophoblasts isolated from placenta [196]. In response to hypoxia, mimicking in vivo placental status, cytotrophoblasts showed increased expression of sFlt1 and HIF1 α , and mitochondrial ROS generation; all these changes were prevented by AP39 which also increased H₂S content in the cells [196]. Thus, H_2S deficiency appears to be a proximal event in the pathogenesis of preeclampsia. It will be important to investigate if placental deficiency of H₂S contributes to remodeling of spiral arteries leading to placental ischemia. The life time risk for hypertension and CKD appears to be higher in women with preeclampsia; intrauterine growth retardation in fetus may also result in eventual susceptibility to cardiovascular disease [203]. Thus, urgent work is needed to test the therapeutic potential of H₂S donors in preeclampsia to prevent both short-term and longterm pathology in both the mother and the fetus.

6 Renal Cell Carcinoma

Cancers of the genitourinary tract such as prostate carcinoma, urothelial malignancies affecting the bladder, pelvicalyceal compartment, ureter, and renal cell carcinoma (RCC) pose diagnostic and therapeutic challenges. They can remain undetected until the malignancy has spread beyond their anatomical confines. RCC remains asymptomatic until late in the disease, and in nearly a third of the patients it is metastatic at diagnosis [204]. Clear cell RCC (ccRCC) is the most common variety, and is commonly characterized by inactivation of Von Hippel Lindau protein resulting in persistence of HIF1 α and HIF2 α .

The role of H_2S in malignancy is controversial, and is probably, tumor-specific [205]. Invasiveness of ccRCC has been correlated with increased expression of CBS [206]. In contrast, H_2S has been suggested to induce apoptosis in RCC cells. In RCC the expression of CSE is reduced and linked to resistance to apoptosis suggesting provision of H_2S from internal or external sources may promote tumor cell death [207]. It is possible that H_2S plays a nuanced role in ccRCC. Whether HIFs regulate CBS expression in ccRCC should be of interest. The topic of H_2S role in cancer including genitourinary malignancies has been reviewed in depth recently [205].

7 Aging Kidney

The goal of gerontology is not only to understand mechanisms underlying aging-related changes and prolong life span but also to improve the quality of life, i.e., health span. Achieving health span requires structural and functional integrity of organ systems including the kidney [208]. Aging is associated with nephrosclerosis, a composite term comprising glomerulosclerosis, tubular atrophy, interstitial fibrosis, and arteriolosclerosis affecting the blood vessels. Functioning nephrons are injured during aging, and replaced by scar tissue. Vascular changes result in ischemia, and contribute to loss of functioning parenchyma. GFR loss occurs commonly in healthy aging although it universal adults is not [209, 210]. Older adults are at higher risk for AKI and CKD. In mice nephrosclerosis is associated with albuminuria and reduced GFR seen as elevation of serum cystatin C [211]. In non-human primate, the marmoset, а nephrosclerosis is associated with proteinuria but stable serum creatinine [212].

Several studies have established links between aging and H₂S metabolism. Dietary restriction (DR) is a well-established method of prolonging life span and improves functions of organ systems including that of the kidney. DR in mice resulted in preservation of GFR, and reduction in albuminuria, renal fibrosis, mitochondrial DNA damage, and oxidative stress [213]. Authors showed that aging in ad libitum fed mice inhibited kidney parenchymal Sirt-1 and stimulated PI 3-kinase-Akt pathway leading to acetylation and phosphorylation of FOXO3, inhibiting its nuclear translocation; this resulted in reduced BCL2/adenovirus 19kDA-interacting E1B protein (Bnip3), decreased autophagy, and promoted mitochondamage and oxidative stress. These drial abnormalities were prevented by DR which restored the activity of Sirt-1, inhibited PI 3-kinase-Akt axis, deacetylation, and dephosphorylation of FOXO3 promoting its nuclear translocation; this led to increased Bnip3, resulting in increased autophagy, and maintenance of mitochondrial integrity [213]. Studies employing parabiosis involving shared blood circulation between young and aged mice showed kidney injury was ameliorated that by augmenting autophagy, and inhibiting apoptosis and inflammation [214]. In these studies, the role of H₂S in autophagy impairment in kidney aging was not explored.

Hine et al have elegantly shown that the salutary effects of DR in improving resistance to ischemic injury to the kidney, and in extending life span in models across the evolutionary spectrum are dependent on H_2S generated via the trans-sulfuration pathway [54]. The aspect of DR that results in increased H_2S generation relates to dietary methionine, an essential amino acid. Dietary methionine administration reduces H_2S generation, whereas its restriction promotes it via the trans-sulfuration pathway [54]. A recent study in mice showed that the longevity extension by DR is lost when it is supplemented with essential amino acids which includes methionine [215]. Aging associated nephrosclerosis, monocyte infiltration, impaired waste clearance function, and oxidative stress were resolved by DR which was also shown to be dependent on essential amino acid restriction. DR promoted CSE expression in the kidney and generation of H₂S [215]. The renal parenchymal methionine content increased in ad libitum fed mice, and in mice on DR supplemented with essential amino acids whereas it was decreased in mice on DR alone; this established a connection between dietary methionine content, methionine metabolism in the kidney, and H₂S generation, i.e., H₂S generation is decreased with increase in renal parenchymal methionine. Mortality and kidney injury were more severe in mice given DR supplemented with essential amino acids; since there was no increase in cancer more severe kidney injury could have contributed to higher mortality. Further direct demonstration of the role of dietary methionine consisted of removing methionine from the dietary supplement of essential amino acids being added to DR; this thoughtful strategy showed that life span extension and ameliorative effect of DR on kidney injury which was lost when essential amino acids were added back could be regained by only excluding methionine [215]. Dietary methionine restriction has been shown to be effective in mitigating aging-related structural and functional changes in the Fischer 344 rats [216]. The difficulty in applying DR to humans to improve health span and life span is the difficulty in compliance over time. Additionally, whether restriction of methionine, an essential amino acid, results in pathologic effects is of concern.

Vascular aging is associated with reduced activity of NAD-Sirt1 axis; H_2S administration in the form of NaHS leads to activation of this axis and restoration of vascular health [217]. One may recollect here that Sirt-1 is also reduced in aged kidney [213].

Other mechanisms underlying kidney impairment in aging involve oxidative stress, hemodynamic changes, renin-angiotensin system activation, and growth factors [218]; however, we do not fully understand the process. In DKD and other causes of CKD activation of Akt-mTORC1 signaling pathway and renal fibrosis are prominent features in which H₂S plays an important role. The main aspect of kidney changes in aging is also fibrosis, but the role of H₂S in the process has not been thoroughly investigated. Hou et al. reported decreased H₂S generation due to reduced expression of CSE and CBS in the aged kidney [219]. This was accompanied by reduced nuclear localization of Nrf-2 leading to decreased expression of anti-oxidant factors such as superoxide dismutase-2 and hemoxygenase-1. NaHS administration decreased fibrosis and albuminuria, promoted nuclear translocation of Nrf-2 resulting in restoration of superoxide dismutase-2 and hemoxygenase-1. Reduced expression of CSE leading to decrease in H₂S and NO content in the kidney was also found in the galactose model of accelerated aging which was mitigated by NaHS [220].

We have investigated the role of H_2S in kidney aging from the perspective of signaling reactions that control protein synthesis. Increased matrix protein synthesis contributes to renal fibrosis. In aged mice the renal cortical content of CBS and CSE was decreased along with reduced generation of H_2S (Fig. 4) [221]. This occurred in association with increase in the expression of matrix proteins such as laminin and collagen type 1α . We found stimulation of insulin receptor-AktmTORC1 signaling pathway which controls protein synthesis (Fig. 4). It is important to mention here that reduced autophagy in the aged kidney is associated with stimulation of Akt-mTORC1 axis [213]. These changes resemble signaling dysregulation in the kidney injury seen in DKD [143, 144, 149, 222]. We have previously reported that AMPK inhibits mTORC1 in the kidney in normal mice, and that its activity is inhibited in DKD, which facilitates mTORC1 activation [146]. AMPK activity was decreased in the aging kidney (Fig. 4) [221]. As is widely

Fig. 4 H_2S deficiency in kidney in aging mice. Aging leads to (a) reduced expression of CSE and CBS, and (b) decreased H_2S generation. This is associated with (c) increased expression of matrix protein, laminin, (d) reduced AMPK activity as shown by reduced acetyl-CoA carboxylase (ACC) phosphorylation on ELISA, (e) stimulation of mTORC1 as demonstrated by increased phosphorylation of p70 S6 kinase (p70S6K), (f) increased Akt

recognized now, during aging a subset of cells undergo growth arrest called cell senescence; these senescent cells secrete many proteins including pro-inflammatory cytokines, which is termed senescence associated secretory phenotype (SASP) [223]. The aged kidney demonstrated SASP seen as increased expression of p21, and interleukins 1 and 6 (Fig. 4) [221].

We tested whether correction of H_2S deficiency can rectify kidney injury in aging. 18- to 19-month old mice were randomized to receive orally administered NaHS in water vs. water alone for 5 months. NaHS administration resulted in reduction in glomerulosclerosis; aspects of SASP were inhibited (Fig. 5). Signaling pathway analysis showed that NaHS activated AMPK and inhibited the insulin receptor-Akt-mTORC1 axis

activity as indicated by increased glycogen synthase kinase (GSK) 3β phosphorylation, and (g) activation of insulin receptor (IR β) as shown by greater tyrosine phosphorylation on ELISA. (h, i) increased expression of p21 and IL-1 β was seen, consistent with senescence associated secretory phenotype (SASP). Data are from Lee HJ, et al., GeroScience 40: 163, 2018. Used with permission of the American Aging Association

providing a mechanistic basis for reduced synthesis of fibrogenic matrix proteins (Fig. 5) [221]. It is likely that inhibition of mTORC1 leads to increase in autophagy which has been shown to ameliorate aging-related kidney injury [213]. Functional assays of the kidney showed that NaHS administration improved GFR, measured by the serum level of cystatin C, and reduced urinary albumin losses (Fig. 5). These data point to the therapeutic potential of H_2S in slowing the aging associated kidney impairment and increasing health span. Additionally, SASP can be a target of intervention to improve kidney function in aging. As it can be related to mTORC1 activation, inhibitors of that kinase such as rapamycin may be effective [224]. Removal of senescent cells improves

Fig. 5 H₂S administration ameliorates aging associated kidney injury deficiency in mice.18–19-month old mice were randomized to receive water alone vs. NaHS in water for 5 months. NaHS administration was associated with the following: (a) reduced glomerulosclerosis, and (b) decreased laminin content. This was associated with (c) decrease in age related increase in albuminuria, (a = p < 0.05, b = p < 0.01, c = p < 0.001 by two-way ANOVA), and (d) reduced cystatin C, indicating prevention of functional deterioration. NaHS administration resulted in the following: (e) stimulation of AMPK

kidney function [225, 226]. Currently, senolytic therapy is an area of active investigation in geroscience. Signaling events in aged kidney are schematically shown in Fig. 6.

Marmosets are non-human primates. As they are evolutionarily closer to the humans than rodents, small and easy to handle, and have a brief lifespan over which to test interventions, they can form excellent models to study mechanisms of human aging [227]. We explored

activity as shown by increased ACC phosphorylation, (**f**) inhibition of mTORC1 activity as demonstrated by decreased phosphorylation of p70S6K, (**g**) inhibition of Akt activity as indicated by decreased GSK3 β phosphorylation, and (**h**) inhibition of IR as shown by diminished tyrosine phosphorylation on ELISA. (**i**, **j**) NaHS reduced the expression of p21 and IL-1 β suggesting amelioration of SASP. Data are from Lee HJ, et al., GeroScience 40: 163, 2018. Used with permission of the American Aging Association

kidney aging in marmosets [212]. Nephrosclerosis and proteinuria were associated with reduced expression of CBS and H₂S generation in the kidney cortex of aged male marmosets. These changes were accompanied by reduced AMPK activity and stimulation of insulin-like growth factor (IGF1) receptor-Akt-mTORC1 pathway. Pro-fibrogenic TGF β -Smad3 pathway is activated in the kidney of aging mice [211]; activation of this pathway was also seen in the renal cortex of

Fig. 6 Kidney H_2S regulation in Aging. Kidney expression of CBS and CSE is reduced resulting in decreased H_2S generation. AMPK activity is reduced, whereas insulin receptor-Akt-mTORC1 axis is stimulated leading to increased matrix protein synthesis. NaHS, an H_2S donor, stimulates AMPK, and inhibits insulin receptor-Akt axis resulting in inhibition of mTORC1 and synthesis of matrix proteins

aged marmosets [212]. Aging kidney in female marmosets showed similar structural and functional injury although there were differences in signaling reactions [212]. These data show conservation of key signaling reactions in kidney aging between mice and marmosets. Marmosets can be studied to understand human kidney aging, and test interventions to ameliorate kidney injury.

 α Klotho is an aging-related hormone. Mice with α Klotho deficiency develop aging phenotypes, whereas transgenic mice age slower [228]. Klotho is expressed both in a circulating form and as a transmembrane protein. It is synthesized by the distal tubular epithelial cells in the kidney [229]. α Klotho deficiency occurs in the aged kidney, and soluble α Klotho levels inversely correlate with loss of GFR [212, 230]. Aging-related reduction in GFR has been linked to $\alpha KLOTHO$ SNPs 1818TT and 370SS in humans [231]. α Klotho has been shown to inhibit signaling by the insulin receptor and IGF1 receptor [228] suggesting that its deficiency may contribute to activation of these receptors in the kidneys of aged mice and marmosets, respectively [212, 221]. αKlotho inhibits angiotensin II-induced kidney injury [232]. Renin- angiotensin II axis has been proposed as a pathway that contributes to kidney injury in aging [218]. Since H₂S inhibits renin generation in the kidney [22] and activity of angiotensin converting enzyme [233] it is possible that α Klotho is involved in its effects [234].

αKlotho is an obligate cofactor for fibroblast growth factor 23 (FGF23) receptor; the FGF23 receptor + klotho complex augments phosphate excretion by inhibiting Na⁺-dependent phosphate transporter in the kidney [235, 236]. FGF23 also inhibits 25 hydroxy-vitamin D 1α hydroxylase enzyme critical for the synthesis of 1:25 dihydroxy vitamin D [235]; this can have far reaching effects on bone metabolism in aging and CKD. These observations indicate that interaction between H₂S and αKlotho in the aged kidney needs more exploration.

In summary, H_2S deficiency is a proximal event in the pathways that lead to aging associated kidney injury. It appears to be an evolutionarily conserved mechanism. Thus, H_2S can serve as a target for intervention to protect kidney integrity in aging.

8 Conclusion and Future Directions

Even though exploration of H_2S in kidney physiology and pathology is in its infancy, it is already apparent that it is a fundamental regulator. Similar to most biological agents the role of H_2S as a mediator vs. ameliorator of kidney injury depends on the context. We need investigation of its role in glomerulonephritis, inherited kidney diseases such as polycystic kidney disease, and in target tissue injury in CKD such as the bones and the neurologic system. More work is needed in the area of malignancies of the genitourinary tract. Most of the data to date have emerged from animal models, and there is an urgent need for exploration in the clinical setting although some progress is being made [170]. In developing interventional strategies to potentiate H₂S, dietary restriction of calories, dietary methionine restriction, and natural sources of H₂S such as diallyl sulfide are candidates. Compliance with calorie restriction is likely going to be a hurdle, and nutritional deficiency from lack of methionine will need to be explored. Development of H₂S delivering therapeutic agents has included strucmodification tural of nonsteroidal antiinflammatory agents [237]. Because nonsteroidal agents can aggravate kidney injury, particularly in the setting of AKI and CKD, toxicity of such agents could be an issue. H₂S suppressing agents are also in development for application in clinical situations in which H_2S inhibition may be of benefit [238].

Acknowledgement The author wishes to thank high school and college students, physicians-in-training, postdoctoral fellows, and collaborators without whose contributions work done in his laboratory and cited in this article would not have been possible. He also gratefully acknowledges funding support from the NIH, Veterans Research Administration Service, National Kidney Foundation, American Diabetes Association, and the Juvenile Diabetes Research Foundation over the years.

References

- Wachtershauser G (1992) Groundworks for an evolutionary biochemistry: the iron-sulphur world. Prog Biophys Mol Biol 58:85–201
- Olson KR, Straub KD (2016) The role of hydrogen sulfide in evolution and the evolution of hydrogen sulfide in metabolism and signaling. Physiology (Bethesda) 31:60–72
- Kasinath BS, Feliers D, Lee HJ (2018) Hydrogen sulfide as a regulatory factor in kidney health and disease. Biochem Pharmacol 149:29–41
- Kabil O, Vitvitsky V, Xie P, Banerjee R (2011) The quantitative significance of the transsulfuration enzymes for H2S production in murine tissues. Antioxid Redox Signal 15:363–372
- Vicente JB, Malagrino F, Arese M, Forte E, Sarti P, Giuffre A (2016) Bioenergetic relevance of hydrogen sulfide and the interplay between gasotransmitters at

human cystathionine beta-synthase. Biochim Biophys Acta 1857:1127–1138

- 6. Bos EM, Wang R, Snijder PM, Boersema M, Damman J, Fu M, Moser J, Hillebrands JL, Ploeg RJ, Yang G et al (2013) Cystathionine gamma-lyase protects against renal ischemia/reperfusion by modulating oxidative stress. J Am Soc Nephrol 24:759–770
- Lee HJ, Mariappan MM, Feliers D, Cavaglieri RC, Sataranatarajan K, Abboud HE, Choudhury GG, Kasinath BS (2012) Hydrogen sulfide inhibits high glucose-induced matrix protein synthesis by activating AMP-activated protein kinase in renal epithelial cells. J Biol Chem 287:4451–4461
- Shibuya N, Koike S, Tanaka M, Ishigami-Yuasa M, Kimura Y, Ogasawara Y, Fukui K, Nagahara N, Kimura H (2013) A novel pathway for the production of hydrogen sulfide from D-cysteine in mammalian cells. Nat Commun 4:1366
- Czyzewski BK, Wang DN (2012) Identification and characterization of a bacterial hydrosulphide ion channel. Nature 483:494–497
- 10. Perna AF, Di Nunzio A, Amoresano A, Pane F, Fontanarosa C, Pucci P, Vigorito C, Cirillo G, Zacchia M, Trepiccione F et al (2016) Divergent behavior of hydrogen sulfide pools and of the sulfur metabolite lanthionine, a novel uremic toxin, in dialysis patients. Biochimie 126:97–107
- 11. Levitt MD, Furne J, Springfield J, Suarez F, DeMaster E (1999) Detoxification of hydrogen sulfide and methanethiol in the cecal mucosa. J Clin Invest 104:1107–1114
- 12. van den Berg E, Pasch A, Westendorp WH, Navis G, Brink EJ, Gans RO, van Goor H, Bakker SJ (2014) Urinary sulfur metabolites associate with a favorable cardiovascular risk profile and survival benefit in renal transplant recipients. J Am Soc Nephrol 25:1303–1312
- Newman EV, Gilman A, Philips FS (1946) The renal clearance of thiosulfate in man. Bull Johns Hopkins Hosp 79:229–242
- Ullrich KJ, Rumrich G, Kloss S (1980) Bidirectional active transport of thiosulfate in the proximal convolution of the rat kidney. Pflugers Arch 387:127–132
- Beck L, Silve C (2001) Molecular aspects of renal tubular handling and regulation of inorganic sulfate. Kidney Int 59:835–845
- Mathai JC, Missner A, Kugler P, Saparov SM, Zeidel ML, Lee JK, Pohl P (2009) No facilitator required for membrane transport of hydrogen sulfide. Proc Natl Acad Sci USA 106:16633–16638
- Jennings ML (2013) Transport of H2S and HS(-) across the human red blood cell membrane: rapid H2S diffusion and AE1-mediated Cl(-)/HS(-) exchange. Am J Physiol Cell Physiol 305:C941– C950
- Kollert-Jons A, Wagner S, Hubner S, Appelhans H, Drenckhahn D (1993) Anion exchanger 1 in human

kidney and oncocytoma differs from erythroid AE1 in its NH2 terminus. Am J Physiol 265:F813–F821

- Jensen B, Fago A (2020) A novel possible role for met hemoglobin as carrier of hydrogen sulfide in the blood. Antioxid Redox Signal 32:258–265
- Pollak MR, Quaggin SE, Hoenig MP, Dworkin LD (2014) The glomerulus: the sphere of influence. Clin J Am Soc Nephrol 9:1461–1469
- 21. Xia M, Chen L, Muh RW, Li PL, Li N (2009) Production and actions of hydrogen sulfide, a novel gaseous bioactive substance, in the kidneys. J Pharmacol Exp Ther 329:1056–1062
- 22. Lu M, Liu YH, Goh HS, Wang JJ, Yong QC, Wang R, Bian JS (2010) Hydrogen sulfide inhibits plasma renin activity. J Am Soc Nephrol 21:993–1002
- 23. Park J, Shrestha R, Qiu C, Kondo A, Huang S, Werth M, Li M, Barasch J, Susztak K (2018) Single-cell transcriptomics of the mouse kidney reveals potential cellular targets of kidney disease. Science 360:758–763
- Curthoys NP, Moe OW (2014) Proximal tubule function and response to acidosis. Clin J Am Soc Nephrol 9:1627–1638
- 25. Hoenig MP, Zeidel ML (2014) Homeostasis, the milieu interieur, and the wisdom of the nephron. Clin J Am Soc Nephrol 9:1272–1281
- 26. Pearce D, Soundararajan R, Trimpert C, Kashlan OB, Deen PM, Kohan DE (2015) Collecting duct principal cell transport processes and their regulation. Clin J Am Soc Nephrol 10:135–146
- 27. Ge SN, Zhao MM, Wu DD, Chen Y, Wang Y, Zhu JH, Cai WJ, Zhu YZ, Zhu YC (2014) Hydrogen sulfide targets EGFR Cys797/Cys798 residues to induce Na(+)/K(+)-ATPase endocytosis and inhibition in renal tubular epithelial cells and increase sodium excretion in chronic salt-loaded rats. Antioxid Redox Signal 21:2061–2082
- 28. Yu L, Bao HF, Self JL, Eaton DC, Helms MN (2007) Aldosterone-induced increases in superoxide production counters nitric oxide inhibition of epithelial Na channel activity in A6 distal nephron cells. Am J Physiol Renal Physiol 293:F1666–F1677
- 29. Zhang J, Chen S, Liu H, Zhang B, Zhao Y, Ma K, Zhao D, Wang Q, Ma H, Zhang Z (2013a) Hydrogen sulfide prevents hydrogen peroxide-induced activation of epithelial sodium channel through a PTEN/PI (3,4,5)P3 dependent pathway. PLoS One 8:e64304
- Clausen MV, Hilbers F, Poulsen H (2017) The structure and function of the Na,K-ATPase isoforms in health and disease. Front Physiol 8:371
- Knepper MA, Kwon TH, Nielsen S (2015) Molecular physiology of water balance. N Engl J Med 373:196
- 32. Luo R, Hu S, Liu Q, Han M, Wang F, Qiu M, Li S, Li X, Yang T, Fu X et al (2019) Hydrogen sulfide upregulates renal AQP-2 protein expression and promotes urine concentration. FASEB J 33:469–483
- Davis J, Desmond M, Berk M (2018) Lithium and nephrotoxicity: a literature review of approaches to

clinical management and risk stratification. BMC Nephrol 19:305

- 34. Kurtz A (2017) Endocrine functions of the renal interstitium. Pflugers Arch 469:869–876
- Zeisberg M, Kalluri R (2015) Physiology of the renal interstitium. Clin J Am Soc Nephrol 10:1831–1840
- Kumar P, Prabhakar NR (2012) Peripheral chemoreceptors: function and plasticity of the carotid body. Compr Physiol 2:141–219
- Semenza GL, Prabhakar NR (2018) The role of hypoxia-inducible factors in carotid body (patho) physiology. J Physiol 596:2977–2983
- 38. Yuan G, Vasavda C, Peng YJ, Makarenko VV, Raghuraman G, Nanduri J, Gadalla MM, Semenza GL, Kumar GK, Snyder SH et al (2015) Protein kinase G-regulated production of H2S governs oxygen sensing. Sci Signal 8:ra37
- 39. Peng YJ, Zhang X, Gridina A, Chupikova I, McCormick DL, Thomas RJ, Scammell TE, Kim G, Vasavda C, Nanduri J et al (2017) Complementary roles of gasotransmitters CO and H2S in sleep apnea. Proc Natl Acad Sci USA 114:1413–1418
- 40. Dombkowski RA, Naylor MG, Shoemaker E, Smith M, DeLeon ER, Stoy GF, Gao Y, Olson KR (2011) Hydrogen sulfide (H(2)S) and hypoxia inhibit salmonid gastrointestinal motility: evidence for H(2) S as an oxygen sensor. J Exp Biol 214:4030–4040
- 41. Olson KR, Dombkowski RA, Russell MJ, Doellman MM, Head SK, Whitfield NL, Madden JA (2006) Hydrogen sulfide as an oxygen sensor/transducer in vertebrate hypoxic vasoconstriction and hypoxic vasodilation. J Exp Biol 209:4011–4023
- 42. Lobb I, Zhu J, Liu W, Haig A, Lan Z, Sener A (2014) Hydrogen sulfide treatment ameliorates long-term renal dysfunction resulting from prolonged warm renal ischemia-reperfusion injury. Can Urol Assoc J 8:E413–E418
- 43. Tripatara P, Patel NS, Collino M, Gallicchio M, Kieswich J, Castiglia S, Benetti E, Stewart KN, Brown PA, Yaqoob MM et al (2008) Generation of endogenous hydrogen sulfide by cystathionine gamma-lyase limits renal ischemia/reperfusion injury and dysfunction. Lab Invest 88:1038–1048
- 44. Bos EM, Leuvenink HG, Snijder PM, Kloosterhuis NJ, Hillebrands JL, Leemans JC, Florquin S, van Goor H (2009) Hydrogen sulfide-induced hypometabolism prevents renal ischemia/reperfusion injury. J Am Soc Nephrol 20:1901–1905
- 45. Lobb I, Davison M, Carter D, Liu W, Haig A, Gunaratnam L, Sener A (2015) Hydrogen sulfide treatment mitigates renal allograft ischemiareperfusion injury during cold storage and improves early transplant kidney function and survival following allogeneic renal transplantation. J Urol 194:1806–1815
- 46. Kangas J, Savolainen H (1987) Urinary thiosulphate as an indicator of exposure to hydrogen sulphide vapour. Clin Chim Acta 164:7–10

- 47. Szczesny B, Modis K, Yanagi K, Coletta C, Le Trionnaire S, Perry A, Wood ME, Whiteman M, Szabo C (2014) AP39, a novel mitochondria-targeted hydrogen sulfide donor, stimulates cellular bioenergetics, exerts cytoprotective effects and protects against the loss of mitochondrial DNA integrity in oxidatively stressed endothelial cells in vitro. Nitric Oxide 41:120–130
- 48. Ahmad A, Olah G, Szczesny B, Wood ME, Whiteman M, Szabo C (2016a) AP39, a mitochondrially targeted hydrogen sulfide donor, exerts protective effects in renal epithelial cells subjected to oxidative stress in vitro and in acute renal injury in vivo. Shock 45:88–97
- 49. Dugbartey GJ, Talaei F, Houwertjes MC, Goris M, Epema AH, Bouma HR, Henning RH (2015) Dopamine treatment attenuates acute kidney injury in a rat model of deep hypothermia and rewarming - the role of renal H2S-producing enzymes. Eur J Pharmacol 769:225–233
- 50. Dugbartey GJ, Hardenberg MC, Kok WF, Boerema AS, Carey HV, Staples JF, Henning RH, Bouma HR (2017) Renal mitochondrial response to low temperature in non-hibernating and hibernating species. Antioxid Redox Signal 27:599–617
- 51. Zancanaro C, Malatesta M, Mannello F, Vogel P, Fakan S (1999) The kidney during hibernation and arousal from hibernation. A natural model of organ preservation during cold ischaemia and reperfusion. Nephrol Dial Transplant 14:1982–1990
- 52. Revsbech IG, Shen X, Chakravarti R, Jensen FB, Thiel B, Evans AL, Kindberg J, Frobert O, Stuehr DJ, Kevil CG et al (2014) Hydrogen sulfide and nitric oxide metabolites in the blood of free-ranging brown bears and their potential roles in hibernation. Free Radic Biol Med 73:349–357
- 53. Hemelrijk SD, Dirkes MC, van Velzen MHN, Bezemer R, van Gulik TM, Heger M (2018) Exogenous hydrogen sulfide gas does not induce hypothermia in normoxic mice. Sci Rep 8:3855
- 54. Hine C, Harputlugil E, Zhang Y, Ruckenstuhl C, Lee BC, Brace L, Longchamp A, Trevino-Villarreal JH, Mejia P, Ozaki CK et al (2015) Endogenous hydrogen sulfide production is essential for dietary restriction benefits. Cell 160:132–144
- 55. Teksen Y, Kadioglu E, Kocak C, Kocak H (2019) Effect of hydrogen sulfide on kidney injury in rat model of crush syndrome. J Surg Res 235:470–478
- 56. Otunctemur A, Ozbek E, Dursun M, Sahin S, Besiroglu H, Ozsoy OD, Cekmen M, Somay A, Ozbay N (2014) Protective effect of hydrogen sulfide on gentamicin-induced renal injury. Ren Fail 36:925–931
- 57. Pedraza-Chaverri J, Gonzalez-Orozco AE, Maldonado PD, Barrera D, Medina-Campos ON, Hernandez-Pando R (2003) Diallyl disulfide ameliorates gentamicin-induced oxidative stress and nephropathy in rats. Eur J Pharmacol 473:71–78

- Pedraza-Chaverri J, Maldonado PD, Medina-Campos ON, Olivares-Corichi IM, Granados-Silvestre MA, Hernandez-Pando R, Ibarra-Rubio ME (2000) Garlic ameliorates gentamicin nephrotoxicity: relation to antioxidant enzymes. Free Radic Biol Med 29:602–611
- 59. Aziz NM, Elbassuoni EA, Kamel MY, Ahmed SM (2020) Hydrogen sulfide renal protective effects: possible link between hydrogen sulfide and endogenous carbon monoxide in a rat model of renal injury. Cell Stress Chaperones 25:211–221
- Manohar S, Leung N (2018) Cisplatin nephrotoxicity: a review of the literature. J Nephrol 31:15–25
- 61. Della Coletta Francescato H, Cunha FQ, Costa RS, Barbosa Junior F, Boim MA, Arnoni CP, da Silva CG, Coimbra TM (2011) Inhibition of hydrogen sulphide formation reduces cisplatin-induced renal damage. Nephrol Dial Transplant 26:479–488
- 62. Asimakopoulou A, Panopoulos P, Chasapis CT, Coletta C, Zhou Z, Cirino G, Giannis A, Szabo C, Spyroulias GA, Papapetropoulos A (2013) Selectivity of commonly used pharmacological inhibitors for cystathionine beta synthase (CBS) and cystathionine gamma lyase (CSE). Br J Pharmacol 169:922–932
- 63. Liu M, Jia Z, Sun Y, Zhang A, Yang T (2016) A H 2 S Donor GYY4137 exacerbates cisplatin-induced nephrotoxicity in mice. Mediators Inflamm 2016:8145785
- 64. Cao X, Xiong S, Zhou Y, Wu Z, Ding L, Zhu Y, Wood ME, Whiteman M, Moore PK, Bian JS (2018a) Renal protective effect of hydrogen sulfide in cisplatin-induced nephrotoxicity. Antioxid Redox Signal 29:455–470
- 65. Dugbartey GJ, Bouma HR, Lobb I, Sener A (2016) Hydrogen sulfide: a novel nephroprotectant against cisplatin-induced renal toxicity. Nitric Oxide 57:15–20
- 66. Kimura Y, Toyofuku Y, Koike S, Shibuya N, Nagahara N, Lefer D, Ogasawara Y, Kimura H (2015a) Identification of H2S3 and H2S produced by 3-mercaptopyruvate sulfurtransferase in the brain. Sci Rep 5:14774
- 67. Cao X, Nie X, Xiong S, Cao L, Wu Z, Moore PK, Bian JS (2018b) Renal protective effect of polysulfide in cisplatin-induced nephrotoxicity. Redox Biol 15:513–521
- Nair N, Gongora E (2017) Oxidative stress and cardiovascular aging: interaction between NRF-2 and ADMA. Curr Cardiol Rev 13:183–188
- 69. Abdollahzade Fard A, Ahangarpour A, Gharibnaseri MK, Jalali T, Rashidi I, Ahmadzadeh M (2013) Effects of hydrogen sulfide on oxidative stress, TNF-α level and kidney histological changes in cisplatin nephrotoxicity in rat. J Phys Pharm Adv 3:57–65
- Ramesh G, Reeves WB (2002) TNF-alpha mediates chemokine and cytokine expression and renal injury in cisplatin nephrotoxicity. J Clin Invest 110:835–842

- 71. Chiarandini Fiore JP, Fanelli SL, de Ferreyra EC, Castro JA (2008) Diallyl disulfide prevention of cis-Diamminedichloroplatinum-induced nephrotoxicity and leukopenia in rats: potential adjuvant effects. Nutr Cancer 60:784–791
- 72. Elkhoely A, Kamel R (2018) Diallyl sulfide alleviates cisplatin-induced nephrotoxicity in rats via suppressing NF-kappaB downstream inflammatory proteins and p53/Puma signalling pathway. Clin Exp Pharmacol Physiol 45:591–601
- 73. Zhang X, Ren X, Zhang Q, Li Z, Ma S, Bao J, Li Z, Bai X, Zheng L, Zhang Z et al (2016) PGC-1alpha/ ERR alpha-Sirt3 pathway regulates daergic neuronal death by directly deacetylating SOD2 and ATP synthase beta. Antioxid Redox Signal 24:312–328
- 74. Samant SA, Zhang HJ, Hong Z, Pillai VB, Sundaresan NR, Wolfgeher D, Archer SL, Chan DC, Gupta MP (2014) SIRT3 deacetylates and activates OPA1 to regulate mitochondrial dynamics during stress. Mol Cell Biol 34:807–819
- 75. Perico L, Morigi M, Rota C, Breno M, Mele C, Noris M, Introna M, Capelli C, Longaretti L, Rottoli D et al (2017) Human mesenchymal stromal cells transplanted into mice stimulate renal tubular cells and enhance mitochondrial function. Nat Commun 8:983
- 76. Gero D, Torregrossa R, Perry A, Waters A, Le-Trionnaire S, Whatmore JL, Wood M, Whiteman M (2016) The novel mitochondria-targeted hydrogen sulfide (H2S) donors AP123 and AP39 protect against hyperglycemic injury in microvascular endothelial cells in vitro. Pharmacol Res 113:186–198
- 77. Yuan Y, Zhu L, Li L, Liu J, Chen Y, Cheng J, Peng T, Lu Y (2019) S-sulfhydration of SIRT3 by hydrogen sulfide attenuates mitochondrial dysfunction in cisplatin-induced acute kidney injury. Antioxid Redox Signal 31:1302–1319
- Cao X, Zhang W, Moore PK, Bian J (2019) Protective smell of hydrogen sulfide and polysulfide in cisplatin-induced nephrotoxicity. Int J Mol Sci 20:313
- 79. Song K, Wang F, Li Q, Shi YB, Zheng HF, Peng H, Shen HY, Liu CF, Hu LF (2014) Hydrogen sulfide inhibits the renal fibrosis of obstructive nephropathy. Kidney Int 85:1318–1329
- Han SJ, Noh MR, Jung JM, Ishii I, Yoo J, Kim JI, Park KM (2017) Hydrogen sulfide-producing cystathionine gamma-lyase is critical in the progression of kidney fibrosis. Free Radic Biol Med 112:423–432
- 81. Lin S, Visram F, Liu W, Haig A, Jiang J, Mok A, Lian D, Wood ME, Torregrossa R, Whiteman M et al (2016) GYY4137, a slow-releasing hydrogen sulfide donor, ameliorates renal damage associated with chronic obstructive uropathy. J Urol 196:1778–1787
- 82. Guo L, Peng W, Tao J, Lan Z, Hei H, Tian L, Pan W, Wang L, Zhang X (2016) Hydrogen sulfide inhibits transforming growth factor-beta1-induced EMT via Wnt/catenin pathway. PLoS One 11:e0147018

- 83. Lin S, Juriasingani S, Sener A (2018) Is hydrogen sulfide a potential novel therapy to prevent renal damage during ureteral obstruction? Nitric Oxide 73:15–21
- 84. Ahmad A, Druzhyna N, Szabo C (2017) Cystathionine-gamma-lyase deficient mice are protected against the development of multiorgan failure and exhibit reduced inflammatory response during burn. Burns 43:1021–1033
- 85. Ahmad A, Gero D, Olah G, Szabo C (2016b) Effect of endotoxemia in mice genetically deficient in cystathionine-gamma-lyase, cystathionine-betasynthase or 3-mercaptopyruvate sulfurtransferase. Int J Mol Med 38:1683–1692
- 86. Marko L, Szijarto IA, Filipovic MR, Kassmann M, Balogh A, Park JK, Przybyl L, N'Diaye G, Kramer S, Anders J et al (2016) Role of cystathionine gammalyase in immediate renal impairment and inflammatory response in acute ischemic kidney injury. Sci Rep 6:27517
- Humphreys BD (2018) Mechanisms of renal fibrosis. Annu Rev Physiol 80:309–326
- 88. Wu H, Uchimura K, Donnelly EL, Kirita Y, Morris SA, Humphreys BD (2018) Comparative analysis and refinement of human PSC-derived kidney organoid differentiation with single-cell transcriptomics. Cell Stem Cell 23(869–881):e868
- 89. Wu H, Lai CF, Chang-Panesso M, Humphreys BD (2020) Proximal tubule translational profiling during kidney fibrosis reveals proinflammatory and long noncoding RNA expression patterns with sexual dimorphism. J Am Soc Nephrol 31:23–38
- 90. Perna AF, Luciano MG, Ingrosso D, Pulzella P, Sepe I, Lanza D, Violetti E, Capasso R, Lombardi C, De Santo NG (2009) Hydrogen sulphide-generating pathways in haemodialysis patients: a study on relevant metabolites and transcriptional regulation of genes encoding for key enzymes. Nephrol Dial Transplant 24:3756–3763
- 91. Vigorito C, Anishchenko E, Mele L, Capolongo G, Trepiccione F, Zacchia M, Lombari P, Capasso R, Ingrosso D, Perna AF (2019) Uremic toxin lanthionine interferes with the transsulfuration pathway, angiogenetic signaling and increases intracellular calcium. Int J Mol Sci 20:2269
- 92. Kuang Q, Xue N, Chen J, Shen Z, Cui X, Fang Y, Ding X (2018) Low plasma hydrogen sulfide is associated with impaired renal function and cardiac dysfunction. Am J Nephrol 47:361–371
- 93. Bibli SI, Hu J, Sigala F, Wittig I, Heidler J, Zukunft S, Tsilimigras DI, Randriamboavonjy V, Wittig J, Kojonazarov B et al (2019) Cystathionine gamma lyase sulfhydrates the RNA binding protein human antigen R to preserve endothelial cell function and delay atherogenesis. Circulation 139:101–114
- 94. Said MY, Post A, Minovic I, van Londen M, van Goor H, Postmus D, Heiner-Fokkema MR, van den Berg E, Pasch A, Navis G et al (2020) Urinary sulfate excretion and risk of late graft failure in renal

transplant recipients - a prospective cohort study. Transpl Int 33:752–761

- 95. Aminzadeh MA, Vaziri ND (2012) Downregulation of the renal and hepatic hydrogen sulfide (H2S)producing enzymes and capacity in chronic kidney disease. Nephrol Dial Transplant 27:498–504
- 96. Cooke D, Ouattara A, Ables GP (2018) Dietary methionine restriction modulates renal response and attenuates kidney injury in mice. FASEB J 32:693–702
- 97. Jager A, Kostense PJ, Nijpels G, Dekker JM, Heine RJ, Bouter LM, Donker AJ, Stehouwer CD (2001) Serum homocysteine levels are associated with the development of (micro)albuminuria: the Hoorn study. Arterioscler Thromb Vasc Biol 21:74–81
- Miller JW, Nadeau MR, Smith D, Selhub J (1994) Vitamin B-6 deficiency vs folate deficiency: comparison of responses to methionine loading in rats. Am J Clin Nutr 59:1033–1039
- 99. Wang Y, Shi S, Dong S, Wu J, Song M, Zhong X, Liu Y (2015) Sodium hydrosulfide attenuates hyperhomocysteinemia rat myocardial injury through cardiac mitochondrial protection. Mol Cell Biochem 399:189–200
- 100. Li JJ, Li Q, Du HP, Wang YL, You SJ, Wang F, Xu XS, Cheng J, Cao YJ, Liu CF et al (2015) Homocysteine triggers inflammatory responses in macrophages through inhibiting CSE-H2S signaling via DNA hypermethylation of CSE promoter. Int J Mol Sci 16:12560–12577
- 101. Kamat PK, Kalani A, Givvimani S, Sathnur PB, Tyagi SC, Tyagi N (2013) Hydrogen sulfide attenuates neurodegeneration and neurovascular dysfunction induced by intracerebral-administered homocysteine in mice. Neuroscience 252:302–319
- 102. Pushpakumar S, Kundu S, Sen U (2014) Endothelial dysfunction: the link between homocysteine and hydrogen sulfide. Curr Med Chem 21:3662–3672
- 103. Sen U, Sathnur PB, Kundu S, Givvimani S, Coley DM, Mishra PK, Qipshidze N, Tyagi N, Metreveli N, Tyagi SC (2012) Increased endogenous H2S generation by CBS, CSE, and 3MST gene therapy improves ex vivo renovascular relaxation in hyperhomocysteinemia. Am J Physiol Cell Physiol 303:C41–C51
- 104. Sen U, Basu P, Abe OA, Givvimani S, Tyagi N, Metreveli N, Shah KS, Passmore JC, Tyagi SC (2009) Hydrogen sulfide ameliorates hyperhomocysteinemia-associated chronic renal failure. Am J Physiol Renal Physiol 297:F410–F419
- 105. Sen U, Munjal C, Qipshidze N, Abe O, Gargoum R, Tyagi SC (2010) Hydrogen sulfide regulates homocysteine-mediated glomerulosclerosis. Am J Nephrol 31:442–455
- 106. Pushpakumar S, Kundu S, Sen U (2019) Hydrogen sulfide protects hyperhomocysteinemia-induced renal damage by modulation of caveolin and eNOS interaction. Sci Rep 9:2223
- 107. Pasch A, Schaffner T, Huynh-Do U, Frey BM, Frey FJ, Farese S (2008) Sodium thiosulfate prevents

vascular calcifications in uremic rats. Kidney Int 74:1444-1453

- 108. Huang Y, Zhang Z, Huang Y, Mao Z, Yang X, Nakamura Y, Sawada N, Mitsui T, Takeda M, Yao J (2018a) Induction of inactive TGF-beta1 monomer formation by hydrogen sulfide contributes to its suppressive effects on Ang II- and TGF-beta1-induced EMT in renal tubular epithelial cells. Biochem Biophys Res Commun 501:534–540
- 109. Humphreys BD, Lin SL, Kobayashi A, Hudson TE, Nowlin BT, Bonventre JV, Valerius MT, McMahon AP, Duffield JS (2010) Fate tracing reveals the pericyte and not epithelial origin of myofibroblasts in kidney fibrosis. Am J Pathol 176:85–97
- 110. Hirakawa Y, Tanaka T, Nangaku M (2017) Renal hypoxia in CKD; pathophysiology and detecting methods. Front Physiol 8:99
- 111. Leigh J, Saha MN, Mok A, Champsi O, Wang R, Lobb I, Sener A (2016) Hydrogen sulfide induced erythropoietin synthesis is regulated by HIF proteins. J Urol 196:251–260
- 112. Warnecke C, Zaborowska Z, Kurreck J, Erdmann VA, Frei U, Wiesener M, Eckardt KU (2004) Differentiating the functional role of hypoxia-inducible factor (HIF)-1alpha and HIF-2alpha (EPAS-1) by the use of RNA interference: erythropoietin is a HIF-2alpha target gene in Hep3B and Kelly cells. FASEB J 18:1462–1464
- 113. Leigh J, Juriasingani S, Akbari M, Shao P, Saha MN, Lobb I, Bachtler M, Fernandez B, Qian Z, van Goor H et al (2018) Endogenous H2S production deficiencies lead to impaired renal erythropoietin production. Can Urol Assoc J 13:210–219
- 114. Zhao P, Qian C, Chen YJ, Sheng Y, Ke Y, Qian ZM (2019) Cystathionine beta-synthase (CBS) deficiency suppresses erythropoiesis by disrupting expression of heme biosynthetic enzymes and transporter. Cell Death Dis 10:708
- 115. Zhou YF, Wu XM, Zhou G, Mu MD, Zhang FL, Li FM, Qian C, Du F, Yung WH, Qian ZM et al (2018) Cystathionine beta-synthase is required for body iron homeostasis. Hepatology 67:21–35
- 116. Modis K, Ramanujam VS, Govar AA, Lopez E, Anderson KE, Wang R, Szabo C (2019) Cystathionine-gamma-lyase (CSE) deficiency increases erythropoiesis and promotes mitochondrial electron transport via the upregulation of coproporphyrinogen III oxidase and consequent stimulation of heme biosynthesis. Biochem Pharmacol 169:113604
- 117. Rangaswami J, Bhalla V, Blair JEA, Chang TI, Costa S, Lentine KL, Lerma EV, Mezue K, Molitch M, Mullens W et al (2019) Cardiorenal syndrome: classification, pathophysiology, diagnosis, and treatment strategies: a scientific statement from the American Heart Association. Circulation 139: e840–e878
- 118. Li Z, Organ CL, Kang J, Polhemus DJ, Trivedi RK, Sharp TE 3rd, Jenkins JS, Tao YX, Xian M, Lefer DJ (2018) Hydrogen sulfide attenuates renin angiotensin

and aldosterone pathological signaling to preserve kidney function and improve exercise tolerance in heart failure. JACC Basic Transl Sci 3:796–809

- 119. Ward ZJ, Bleich SN, Cradock AL, Barrett JL, Giles CM, Flax C, Long MW, Gortmaker SL (2019) Projected U.S. state-level prevalence of adult Obesity and severe obesity. N Engl J Med 381:2440–2450
- 120. Choung HG, Bomback AS, Stokes MB, Santoriello D, Campenot ES, Batal I, Markowitz GS, D'Agati VD (2019) The spectrum of kidney biopsy findings in patients with morbid obesity. Kidney Int 95:647–654
- 121. Hashimoto Y, Tanaka M, Okada H, Senmaru T, Hamaguchi M, Asano M, Yamazaki M, Oda Y, Hasegawa G, Toda H et al (2015) Metabolically healthy obesity and risk of incident CKD. Clin J Am Soc Nephrol 10:578–583
- 122. Liu M, Deng M, Su J, Lin Y, Jia Z, Peng K, Wang F, Yang T (2018) Specific downregulation of cystathionine beta-synthase expression in the kidney during obesity. Physiol Rep 6:e13630
- 123. Wu D, Gao B, Li M, Yao L, Wang S, Chen M, Li H, Ma C, Ji A, Li Y (2016) Hydrogen sulfide mitigates kidney injury in high fat diet-induced obese mice. Oxid Med Cell Longev 2016:2715718
- 124. van den Born JC, Hammes HP, Greffrath W, van Goor H, Hillebrands JL, Complications DGIRTGDM (2016) Gasotransmitters in vascular complications of diabetes. Diabetes 65:331–345
- 125. Sen U, Pushpakumar S (2016) Mini-review: diabetic renal complications, a potential stinky remedy. Am J Physiol Renal Physiol 310:F119–F122
- 126. Dugbartey GJ (2017a) Diabetic nephropathy: a potential savior with 'rotten-egg' smell. Pharmacol Rep 69:331–339
- 127. Sun HJ, Wu ZY, Cao L, Zhu MY, Liu TT, Guo L, Lin Y, Nie XW, Bian JS (2019) Hydrogen sulfide: recent progression and perspectives for the treatment of diabetic nephropathy. Molecules 24:2857
- 128. Yang G, Tang G, Zhang L, Wu L, Wang R (2011) The pathogenic role of cystathionine gamma-lyase/ hydrogen sulfide in streptozotocin-induced diabetes in mice. Am J Pathol 179:869–879
- 129. Jain SK, Bull R, Rains JL, Bass PF, Levine SN, Reddy S, McVie R, Bocchini JA (2010) Low levels of hydrogen sulfide in the blood of diabetes patients and streptozotocin-treated rats causes vascular inflammation? Antioxid Redox Signal 12:1333–1337
- 130. Li H, Feng SJ, Zhang GZ, Wang SX (2014) Correlation of lower concentrations of hydrogen sulfide with atherosclerosis in chronic hemodialysis patients with diabetic nephropathy. Blood Purif 38:188–194
- 131. John A, Kundu S, Pushpakumar S, Fordham M, Weber G, Mukhopadhyay M, Sen U (2017) GYY4137, a hydrogen sulfide donor modulates miR194-dependent collagen realignment in diabetic kidney. Sci Rep 7:10924
- Kundu S, Pushpakumar SB, Tyagi A, Coley D, Sen U (2013) Hydrogen sulfide deficiency and diabetic

renal remodeling: role of matrix metalloproteinase-9. Am J Physiol Endocrinol Metab 304:E1365– E1378

- 133. Yuan P, Xue H, Zhou L, Qu L, Li C, Wang Z, Ni J, Yu C, Yao T, Huang Y et al (2011) Rescue of mesangial cells from high glucose-induced over-proliferation and extracellular matrix secretion by hydrogen sulfide. Nephrol Dial Transplant 26:2119–2126
- 134. Zhou X, Feng Y, Zhan Z, Chen J (2014) Hydrogen sulfide alleviates diabetic nephropathy in a streptozotocin-induced diabetic rat model. J Biol Chem 289:28827–28834
- 135. Qian X, Li X, Ma F, Luo S, Ge R, Zhu Y (2016) Novel hydrogen sulfide-releasing compound, S-propargyl-cysteine, prevents STZ-induced diabetic nephropathy. Biochem Biophys Res Commun 473:931–938
- 136. Xue H, Yuan P, Ni J, Li C, Shao D, Liu J, Shen Y, Wang Z, Zhou L, Zhang W et al (2013a) H(2)S inhibits hyperglycemia-induced intrarenal reninangiotensin system activation via attenuation of reactive oxygen species generation. PLoS One 8:e74366
- 137. Xue R, Hao DD, Sun JP, Li WW, Zhao MM, Li XH, Chen Y, Zhu JH, Ding YJ, Liu J et al (2013b) Hydrogen sulfide treatment promotes glucose uptake by increasing insulin receptor sensitivity and ameliorates kidney lesions in type 2 diabetes. Antioxid Redox Signal 19:5–23
- 138. Kanwar YS, Sun L, Xie P, Liu FY, Chen S (2011) A glimpse of various pathogenetic mechanisms of diabetic nephropathy. Annu Rev Pathol 6:395–423
- Sharma K (2014) Obesity, oxidative stress, and fibrosis in chronic kidney disease. Kidney Int 4:113–117
- 140. Kimura N, Kimura H, Takahashi N, Hamada T, Maegawa H, Mori M, Imamura Y, Kusaka Y, Yoshida H, Iwano M (2015b) Renal resistive index correlates with peritubular capillary loss and arteriosclerosis in biopsy tissues from patients with chronic kidney disease. Clin Exp Nephrol 19:1114–1119
- 141. Yamamoto J, Sato W, Kosugi T, Yamamoto T, Kimura T, Taniguchi S, Kojima H, Maruyama S, Imai E, Matsuo S et al (2013) Distribution of hydrogen sulfide (H(2)S)-producing enzymes and the roles of the H(2)S donor sodium hydrosulfide in diabetic nephropathy. Clin Exp Nephrol 17:32–40
- 142. Papu John AS, Kundu S, Pushpakumar S, Amin M, Tyagi SC, Sen U (2019) Hydrogen sulfide inhibits Ca (2+)-induced mitochondrial permeability transition pore opening in type-1 diabetes. Am J Physiol Endocrinol Metab 317:E269–E283
- 143. Kasinath BS, Feliers D, Sataranatarajan K, Ghosh Choudhury G, Lee MJ, Mariappan MM (2009) Regulation of mRNA translation in renal physiology and disease. Am J Physiol Renal Physiol 297:F1153– F1165
- 144. Feliers D, Duraisamy S, Faulkner JL, Duch J, Lee AV, Abboud HE, Choudhury GG, Kasinath BS (2001) Activation of renal signaling pathways in

db/db mice with type 2 diabetes. Kidney Int 60:495–504

- 145. Feliers D, Lee HJ, Kasinath BS (2016) Hydrogen sulfide in renal physiology and disease. Antioxid Redox Signal 25:720–731
- 146. Lee MJ, Feliers D, Mariappan MM, Sataranatarajan K, Mahimainathan L, Musi N, Foretz M, Viollet B, Weinberg JM, Choudhury GG et al (2007) A role for AMP-activated protein kinase in diabetes-induced renal hypertrophy. Am J Physiol Renal Physiol 292:F617–F627
- 147. Mariappan MM, Shetty M, Sataranatarajan K, Choudhury GG, Kasinath BS (2008) Glycogen synthase kinase 3beta is a novel regulator of high glucose- and high insulin-induced extracellular matrix protein synthesis in renal proximal tubular epithelial cells. J Biol Chem 283:30566–30575
- 148. Mariappan MM, D'Silva K, Lee MJ, Sataranatarajan K, Barnes JL, Choudhury GG, Kasinath BS (2011) Ribosomal biogenesis induction by high glucose requires activation of upstream binding factor in kidney glomerular epithelial cells. Am J Physiol Renal Physiol 300:F219–F230
- 149. Sataranatarajan K, Mariappan MM, Lee MJ, Feliers D, Choudhury GG, Barnes JL, Kasinath BS (2007) Regulation of elongation phase of mRNA translation in diabetic nephropathy: amelioration by rapamycin. Am J Pathol 171:1733–1742
- 150. Lloberas N, Cruzado JM, Franquesa M, Herrero-Fresneda I, Torras J, Alperovich G, Rama I, Vidal A, Grinyo JM (2006) Mammalian target of rapamycin pathway blockade slows progression of diabetic kidney disease in rats. J Am Soc Nephrol 17:1395–1404
- 151. Miyamoto S, Hsu CC, Hamm G, Darshi M, Diamond-Stanic M, Decleves AE, Slater L, Pennathur S, Stauber J, Dorrestein PC et al (2016) Mass spectrometry imaging reveals elevated glomerular ATP/AMP in diabetes/obesity and identifies sphingomyelin as a possible mediator. EBioMedicine 7:121–134
- 152. Hawley SA, Ross FA, Gowans GJ, Tibarewal P, Leslie NR, Hardie DG (2014) Phosphorylation by Akt within the ST loop of AMPK-alpha1 downregulates its activation in tumour cells. Biochem J 459:275–287
- 153. Valentine RJ, Coughlan KA, Ruderman NB, Saha AK (2014) Insulin inhibits AMPK activity and phosphorylates AMPK Ser(4)(8)(5)/(4)(9)(1) through Akt in hepatocytes, myotubes and incubated rat skeletal muscle. Arch Biochem Biophys 562:62–69
- 154. Dugan LL, You YH, Ali SS, Diamond-Stanic M, Miyamoto S, DeCleves AE, Andreyev A, Quach T, Ly S, Shekhtman G et al (2013) AMPK dysregulation promotes diabetes-related reduction of superoxide and mitochondrial function. J Clin Invest 123:4888–4899
- 155. Wilinski B, Wilinski J, Somogyi E, Piotrowska J, Opoka W (2013) Metformin raises hydrogen sulfide

tissue concentrations in various mouse organs. Pharmacol Rep 65:737-742

- 156. Decleves AE, Zolkipli Z, Satriano J, Wang L, Nakayama T, Rogac M, Le TP, Nortier JL, Farquhar MG, Naviaux RK et al (2014) Regulation of lipid accumulation by AMP-activated kinase [corrected] in high fat diet-induced kidney injury. Kidney Int 85:611–623
- 157. Eid AA, Ford BM, Block K, Kasinath BS, Gorin Y, Ghosh-Choudhury G, Barnes JL, Abboud HE (2010) AMP-activated protein kinase (AMPK) negatively regulates Nox4-dependent activation of p53 and epithelial cell apoptosis in diabetes. J Biol Chem 285:37503–37512
- 158. Sharma K, Ramachandrarao S, Qiu G, Usui HK, Zhu Y, Dunn SR, Ouedraogo R, Hough K, McCue P, Chan L et al (2008) Adiponectin regulates albuminuria and podocyte function in mice. J Clin Invest 118:1645–1656
- 159. Lee HJ, Feliers D, Mariappan MM, Sataranatarajan K, Choudhury GG, Gorin Y, Kasinath BS (2015) Tadalafil integrates nitric oxidehydrogen sulfide signaling to inhibit high glucoseinduced matrix protein synthesis in podocytes. J Biol Chem 290:12014–12026
- 160. Scheele W, Diamond S, Gale J, Clerin V, Tamimi N, Le V, Walley R, Grover-Paez F, Perros-Huguet C, Rolph T et al (2016) Phosphodiesterase type 5 inhibition reduces albuminuria in subjects with overt diabetic nephropathy. J Am Soc Nephrol 27:3459–3468
- 161. Kundu S, Pushpakumar S, Sen U (2015) MMP-9and NMDA receptor-mediated mechanism of diabetic renovascular remodeling and kidney dysfunction: hydrogen sulfide is a key modulator. Nitric Oxide 46:172–185
- 162. Shevalye H, Maksimchyk Y, Watcho P, Obrosova IG (2010) Poly(ADP-ribose) polymerase-1 (PARP-1) gene deficiency alleviates diabetic kidney disease. Biochim Biophys Acta 1802:1020–1027
- 163. Gorin Y, Cavaglieri RC, Khazim K, Lee DY, Bruno F, Thakur S, Fanti P, Szyndralewiez C, Barnes JL, Block K et al (2015) Targeting NADPH oxidase with a novel dual Nox1/Nox4 inhibitor attenuates renal pathology in type 1 diabetes. Am J Physiol Renal Physiol 308:F1276–F1287
- 164. Jha JC, Gray SP, Barit D, Okabe J, El-Osta A, Namikoshi T, Thallas-Bonke V, Wingler K, Szyndralewiez C, Heitz F et al (2014) Genetic targeting or pharmacologic inhibition of NADPH oxidase nox4 provides renoprotection in long-term diabetic nephropathy. J Am Soc Nephrol 25:1237–1254
- 165. Sedeek M, Gutsol A, Montezano AC, Burger D, Nguyen Dinh Cat A, Kennedy CR, Burns KD, Cooper ME, Jandeleit-Dahm K, Page P et al (2013) Renoprotective effects of a novel Nox1/4 inhibitor in a mouse model of Type 2 diabetes. Clin Sci (Lond) 124:191–202

- 166. Thallas-Bonke V, Jha JC, Gray SP, Barit D, Haller H, Schmidt HH, Coughlan MT, Cooper ME, Forbes JM, Jandeleit-Dahm KA (2014) Nox-4 deletion reduces oxidative stress and injury by PKC-alpha-associated mechanisms in diabetic nephropathy. Physiol Rep 2:12192
- 167. Lee HJ, Lee DY, Mariappan MM, Feliers D, Ghosh-Choudhury G, Abboud HE, Gorin Y, Kasinath BS (2017) Hydrogen sulfide inhibits high glucoseinduced NADPH oxidase 4 expression and matrix increase by recruiting inducible nitric oxide synthase in kidney proximal tubular epithelial cells. J Biol Chem 292:5665–5675
- 168. Tesch GH (2017) Diabetic nephropathy is this an immune disorder? Clin Sci (Lond) 131:2183–2199
- 169. Nayak BK, Shanmugasundaram K, Friedrichs WE, Cavaglierii RC, Patel M, Barnes J, Block K (2016) HIF-1 mediates renal fibrosis in OVE26 type 1 diabetic mice. Diabetes 65:1387–1397
- 170. van den Born JC, Frenay AR, Bakker SJ, Pasch A, Hillebrands JL, Lambers Heerspink HJ, van Goor H (2016) High urinary sulfate concentration is associated with reduced risk of renal disease progression in type 2 diabetes. Nitric Oxide 55:18–24
- 171. Shen X, Carlstrom M, Borniquel S, Jadert C, Kevil CG, Lundberg JO (2013) Microbial regulation of host hydrogen sulfide bioavailability and metabolism. Free Radic Biol Med 60:195–200
- 172. van den Born JC, Frenay AS, Koning AM, Bachtler M, Riphagen IJ, Minovic I, Feelisch M, Dekker MM, Bulthuis MLC, Gansevoort RT et al (2019) Urinary excretion of sulfur metabolites and risk of cardiovascular events and all-cause mortality in the general population. Antioxid Redox Signal 30:1999–2010
- 173. Yang G, Wu L, Jiang B, Yang W, Qi J, Cao K, Meng Q, Mustafa AK, Mu W, Zhang S et al (2008) H2S as a physiologic vasorelaxant: hypertension in mice with deletion of cystathionine gamma-lyase. Science 322:587–590
- 174. D'Araio E, Shaw N, Millward A, Demaine A, Whiteman M, Hodgkinson A (2014) Hydrogen sulfide induces heme oxygenase-1 in human kidney cells. Acta Diabetol 51:155–157
- 175. Go AS, Mozaffarian D, Roger VL, Benjamin EJ, Berry JD, Blaha MJ, Dai S, Ford ES, Fox CS, Franco S et al (2014) Heart disease and stroke statistics--2014 update: a report from the American Heart Association. Circulation 129:e28–e292
- 176. Kearney PM, Whelton M, Reynolds K, Muntner P, Whelton PK, He J (2005) Global burden of hypertension: analysis of worldwide data. Lancet 365:217–223
- 177. Egan BM, Li J, Hutchison FN, Ferdinand KC (2014) Hypertension in the United States, 1999 to 2012: progress toward Healthy People 2020 goals. Circulation 130:1692–1699
- 178. Group SR, Wright JT, Williamson JD, Whelton PK, Snyder JK, Sink KM, Rocco MV, Reboussin DM,

Rahman M, Oparil S et al (2015) A randomized trial of intensive versus standard blood-pressure control. N Engl J Med 373:2103–2116

- 179. Dugbartey GJ (2017b) H2S as a possible therapeutic alternative for the treatment of hypertensive kidney injury. Nitric Oxide 64:52–60
- 180. Hsu CN, Tain YL (2018) Hydrogen sulfide in hypertension and kidney disease of developmental origins. Int J Mol Sci 19:1438
- 181. van Goor H, van den Born JC, Hillebrands JL, Joles JA (2016) Hydrogen sulfide in hypertension. Curr Opin Nephrol Hypertens 25:107–113
- 182. Szijarto IA, Marko L, Filipovic MR, Miljkovic JL, Tabeling C, Tsvetkov D, Wang N, Rabelo LA, Witzenrath M, Diedrich A et al (2018) Cystathionine gamma-lyase-produced hydrogen sulfide controls endothelial NO bioavailability and blood pressure. Hypertension 71:1210–1217
- 183. Ishii I, Akahoshi N, Yamada H, Nakano S, Izumi T, Suematsu M (2010) Cystathionine gamma-Lyasedeficient mice require dietary cysteine to protect against acute lethal myopathy and oxidative injury. J Biol Chem 285:26358–26368
- 184. Ahmad FU, Sattar MA, Rathore HA, Tan YC, Akhtar S, Jin OH, Pei YP, Abdullah NA, Johns EJ (2014) Hydrogen sulphide and tempol treatments improve the blood pressure and renal excretory responses in spontaneously hypertensive rats. Ren Fail 36:598–605
- 185. Huang P, Chen S, Wang Y, Liu J, Yao Q, Huang Y, Li H, Zhu M, Wang S, Li L et al (2015) Downregulated CBS/H2S pathway is involved in highsalt-induced hypertension in Dahl rats. Nitric Oxide 46:192–203
- 186. d'Emmanuele di Villa Bianca R, Mitidieri E, Donnarumma E, Tramontano T, Brancaleone V, Cirino G, Bucci M, Sorrentino R (2015) Hydrogen sulfide is involved in dexamethasone-induced hypertension in rat. Nitric Oxide 46:80–86
- 187. Liu SY, Duan XC, Jin S, Teng X, Xiao L, Xue HM, Wu YM (2017) Hydrogen sulfide improves myocardial remodeling via downregulated angiotensin/AT1R pathway in renovascular hypertensive rats. Am J Hypertens 30:67–74
- 188. Al-Magableh MR, Kemp-Harper BK, Hart JL (2015) Hydrogen sulfide treatment reduces blood pressure and oxidative stress in angiotensin II-induced hypertensive mice. Hypertens Res 38:13–20
- 189. Snijder PM, Frenay AR, Koning AM, Bachtler M, Pasch A, Kwakernaak AJ, van den Berg E, Bos EM, Hillebrands JL, Navis G et al (2014) Sodium thiosulfate attenuates angiotensin II-induced hypertension, proteinuria and renal damage. Nitric Oxide 42:87–98
- 190. Kohn C, Dubrovska G, Huang Y, Gollasch M (2012a) Hydrogen sulfide: potent regulator of vascular tone and stimulator of angiogenesis. Int J Biomed Sci 8:81–86
- 191. Kohn C, Schleifenbaum J, Szijarto IA, Marko L, Dubrovska G, Huang Y, Gollasch M (2012b)

Differential effects of cystathionine-gamma-lyasedependent vasodilatory H2S in periadventitial vasoregulation of rat and mouse aortas. PLoS One 7:e41951

- 192. Testai L, D'Antongiovanni V, Piano I, Martelli A, Citi V, Duranti E, Virdis A, Blandizzi C, Gargini C, Breschi MC et al (2015) Different patterns of H2S/NO activity and cross-talk in the control of the coronary vascular bed under normotensive or hypertensive conditions. Nitric Oxide 47:25–33
- 193. Hernandez-Diaz S, Toh S, Cnattingius S (2009) Risk of pre-eclampsia in first and subsequent pregnancies: prospective cohort study. BMJ 338:b2255
- 194. Maynard SE, Min JY, Merchan J, Lim KH, Li J, Mondal S, Libermann TA, Morgan JP, Sellke FW, Stillman IE et al (2003) Excess placental soluble fms-like tyrosine kinase 1 (sFlt1) may contribute to endothelial dysfunction, hypertension, and proteinuria in preeclampsia. J Clin Invest 111:649–658
- 195. Zeisler H, Llurba E, Chantraine F, Vatish M, Staff AC, Sennstrom M, Olovsson M, Brennecke SP, Stepan H, Allegranza D et al (2016) Predictive value of the sFlt-1:PIGF ratio in women with suspected preeclampsia. N Engl J Med 374:13–22
- 196. Covarrubias AE, Lecarpentier E, Lo A, Salahuddin S, Gray KJ, Karumanchi SA, Zsengeller ZK (2019) AP39, a modulator of mitochondrial bioenergetics, reduces antiangiogenic response and oxidative stress in hypoxia-exposed trophoblasts: relevance for preeclampsia pathogenesis. Am J Pathol 189:104–114
- 197. Holwerda KM, Weedon-Fekjaer MS, Staff AC, Nolte IM, van Goor H, Lely AT, Faas MM (2016) The association of single nucleotide polymorphisms of the maternal cystathionine-beta-synthase gene with early-onset preeclampsia. Pregnancy Hypertens 6:60–65
- 198. Mrozikiewicz PM, Bogacz A, Omielanczyk M, Wolski H, Bartkowiak-Wieczorek J, Grzeskowiak E, Czerny B, Drews K, Seremak-Mrozikiewicz A (2015) The importance of rs1021737 and rs482843 polymorphisms of cystathionine gamma-lyase in the etiology of preeclampsia in the Caucasian population. Ginekol Pol 86:119–125
- 199. Holwerda KM, Burke SD, Faas MM, Zsengeller Z, Stillman IE, Kang PM, van Goor H, McCurley A, Jaffe IZ, Karumanchi SA et al (2014) Hydrogen sulfide attenuates sFlt1-induced hypertension and renal damage by upregulating vascular endothelial growth factor. J Am Soc Nephrol 25:717–725
- 200. Wang K, Ahmad S, Cai M, Rennie J, Fujisawa T, Crispi F, Baily J, Miller MR, Cudmore M, Hadoke PW et al (2013) Dysregulation of hydrogen sulfide producing enzyme cystathionine gamma-lyase contributes to maternal hypertension and placental abnormalities in preeclampsia. Circulation 127:2514–2522
- 201. Hu TX, Wang G, Guo XJ, Sun QQ, He P, Gu H, Huang Y, Gao L, Ni X (2016) MiR 20a,-20b and

-200c are involved in hydrogen sulfide stimulation of VEGF production in human placental trophoblasts. Placenta 39:101–110

- 202. Hu TX, Guo X, Wang G, Gao L, He P, Xia Y, Gu H, Ni X (2017) MiR133b is involved in endogenous hydrogen sulfide suppression of sFlt-1 production in human placenta. Placenta 52:33–40
- 203. Turbeville HR, Sasser JM (2020) Preeclampsia beyond pregnancy: long-term consequences for mother and child. Am J Physiol Renal Physiol 318: F1315–F1326
- 204. Rini BI, Campbell SC, Escudier B (2009) Renal cell carcinoma. Lancet 373:1119–1132
- 205. Akbari M, Sogutdelen E, Juriasingani S, Sener A (2019) Hydrogen sulfide: emerging role in bladder, kidney, and prostate malignancies. Oxid Med Cell Longev 2019:2360945
- 206. Shackelford RE, Abdulsattar J, Wei EX, Cotelingam J, Coppola D, Herrera GA (2017) Increased nicotinamide phosphoribosyltransferase and cystathionine-beta-synthase in renal oncocytomas, renal urothelial carcinoma, and renal clear cell carcinoma. Anticancer Res 37:3423–3427
- 207. Breza J Jr, Soltysova A, Hudecova S, Penesova A, Szadvari I, Babula P, Chovancova B, Lencesova L, Pos O, Breza J et al (2018) Endogenous H2S producing enzymes are involved in apoptosis induction in clear cell renal cell carcinoma. BMC Cancer 18:591
- 208. Hodes RJ, Sierra F, Austad SN, Epel E, Neigh GN, Erlandson KM, Schafer MJ, LeBrasseur NK, Wiley C, Campisi J et al (2016) Disease drivers of aging. Ann N Y Acad Sci 1386:45–68
- 209. Eriksen BO, Palsson R, Ebert N, Melsom T, van der Giet M, Gudnason V, Indridasson OS, Inker LA, Jenssen TG, Levey AS et al (2020) GFR in healthy aging: an individual participant data meta-analysis of iohexol clearance in European population-based cohorts. J Am Soc Nephrol 31:1602–1615
- 210. Lindeman RD, Tobin J, Shock NW (1985) Longitudinal studies on the rate of decline in renal function with age. J Am Geriatr Soc 33:278–285
- 211. Sataranatarajan K, Feliers D, Mariappan MM, Lee HJ, Lee MJ, Day RT, Yalamanchili HB, Choudhury GG, Barnes JL, Van Remmen H et al (2012) Molecular events in matrix protein metabolism in the aging kidney. Aging Cell 11:1065–1073
- 212. Lee HJ, Gonzalez O, Dick EJ, Donati A, Feliers D, Choudhury GG, Ross C, Venkatachalam M, Tardif SD, Kasinath BS (2019) Marmoset as a model to study kidney changes associated With aging. J Gerontol A Biol Sci Med Sci 74:315–324
- 213. Kume S, Uzu T, Horiike K, Chin-Kanasaki M, Isshiki K, Araki S, Sugimoto T, Haneda M, Kashiwagi A, Koya D (2010) Calorie restriction enhances cell adaptation to hypoxia through Sirt1dependent mitochondrial autophagy in mouse aged kidney. J Clin Invest 120:1043–1055
- 214. Huang Q, Ning Y, Liu D, Zhang Y, Li D, Zhang Y, Yin Z, Fu B, Cai G, Sun X et al (2018b) A young

blood environment decreases aging of senile mice kidneys. J Gerontol A Biol Sci Med Sci 73:421-428

- 215. Yoshida S, Yamahara K, Kume S, Koya D, Yasuda-Yamahara M, Takeda N, Osawa N, Chin-Kanasaki M, Adachi Y, Nagao K et al (2018) Role of dietary amino acid balance in diet restriction-mediated lifespan extension, renoprotection, and muscle weakness in aged mice. Aging Cell 17:e12796
- 216. Komninou D, Malloy VL, Zimmerman JA, Sinha R, Richie JP Jr (2020) Methionine restriction delays aging-related urogenital diseases in male Fischer 344 rats. Geroscience 42:287–297
- 217. Das A, Huang GX, Bonkowski MS, Longchamp A, Li C, Schultz MB, Kim LJ, Osborne B, Joshi S, Lu Y et al (2018) Impairment of an endothelial NAD(+)-H2S signaling network is a reversible cause of vascular aging. Cell 173:74–89
- Choudhury D, Levi M (2011) Kidney aging--inevitable or preventable? Nat Rev Nephrol 7:706–717
- 219. Hou CL, Wang MJ, Sun C, Huang Y, Jin S, Mu XP, Chen Y, Zhu YC (2016) Protective effects of hydrogen sulfide in the ageing kidney. Oxid Med Cell Longev 2016:7570489
- 220. Wu W, Hou CL, Mu XP, Sun C, Zhu YC, Wang MJ, Lv QZ (2017) H2S donor NaHS changes the production of endogenous H2S and NO in D-galactoseinduced accelerated ageing. Oxid Med Cell Longev 2017:5707830
- 221. Lee HJ, Feliers D, Barnes JL, Oh S, Choudhury GG, Diaz V, Galvan V, Strong R, Nelson J, Salmon A et al (2018) Hydrogen sulfide ameliorates agingassociated changes in the kidney. Geroscience 40:163–176
- 222. Mariappan MM, Feliers D, Mummidi S, Choudhury GG, Kasinath BS (2007) High glucose, high insulin, and their combination rapidly induce laminin-beta1 synthesis by regulation of mRNA translation in renal epithelial cells. Diabetes 56:476–485
- 223. Acosta JC, Banito A, Wuestefeld T, Georgilis A, Janich P, Morton JP, Athineos D, Kang TW, Lasitschka F, Andrulis M et al (2013) A complex secretory program orchestrated by the inflammasome controls paracrine senescence. Nat Cell Biol 15:978–990
- 224. Wang R, Yu Z, Sunchu B, Shoaf J, Dang I, Zhao S, Caples K, Bradley L, Beaver LM, Ho E et al (2017) Rapamycin inhibits the secretory phenotype of senescent cells by a Nrf2-independent mechanism. Aging Cell 16:564–574
- 225. Baar MP, Brandt RMC, Putavet DA, Klein JDD, Derks KWJ, Bourgeois BRM, Stryeck S, Rijksen Y, van Willigenburg H, Feijtel DA et al (2017) Targeted apoptosis of senescent cells restores tissue homeostasis in response to chemotoxicity and aging. Cell 169:132–147
- 226. Baker DJ, Childs BG, Durik M, Wijers ME, Sieben CJ, Zhong J, Saltness RA, Jeganathan KB, Verzosa GC, Pezeshki A et al (2016) Naturally occurring p16 (Ink4a)-positive cells shorten healthy lifespan. Nature 530:184–189

- 227. Ross CN, Adams J, Gonzalez O, Dick E, Giavedoni L, Hodara VL, Phillips K, Rigodanzo AD, Kasinath B, Tardif SD (2019) Cross-sectional comparison of health-span phenotypes in young versus geriatric marmosets. Am J Primatol 81:e22952
- 228. Kurosu H, Yamamoto M, Clark JD, Pastor JV, Nandi A, Gurnani P, McGuinness OP, Chikuda H, Yamaguchi M, Kawaguchi H et al (2005) Suppression of aging in mice by the hormone Klotho. Science 309:1829–1833
- 229. Kuro-o M (2013) Klotho, phosphate and FGF-23 in ageing and disturbed mineral metabolism. Nat Rev Nephrol 9:650–660
- 230. Drew DA, Katz R, Kritchevsky S, Ix J, Shlipak M, Gutierrez OM, Newman A, Hoofnagle A, Fried L, Semba RD et al (2017) Association between soluble klotho and change in kidney function: the health aging and body composition study. J Am Soc Nephrol 28:1859–1866
- 231. Pereira RMR, Freitas TQ, Franco AS, Takayama L, Caparbo VF, Domiciano DS, Machado LG, Figueiredo CP, Menezes PR, Onuchic LF et al (2020) KLOTHO polymorphisms and age-related outcomes in community-dwelling older subjects: The Sao Paulo Ageing & Health (SPAH) Study. Sci Rep 10:8574
- 232. Mitani H, Ishizaka N, Aizawa T, Ohno M, Usui S, Suzuki T, Amaki T, Mori I, Nakamura Y, Sato M et al (2002) In vivo klotho gene transfer ameliorates angiotensin II-induced renal damage. Hypertension 39:838–843
- 233. Laggner H, Hermann M, Esterbauer H, Muellner MK, Exner M, Gmeiner BM, Kapiotis S (2007) The novel gaseous vasorelaxant hydrogen sulfide inhibits angiotensin-converting enzyme activity of endothelial cells. J Hypertens 25:2100–2104
- 234. Zhang Y, Tang ZH, Ren Z, Qu SL, Liu MH, Liu LS, Jiang ZS (2013b) Hydrogen sulfide, the next potent preventive and therapeutic agent in aging and age-associated diseases. Mol Cell Biol 33:1104–1113
- 235. Shimada T, Hasegawa H, Yamazaki Y, Muto T, Hino R, Takeuchi Y, Fujita T, Nakahara K, Fukumoto S, Yamashita T (2004) FGF-23 is a potent regulator of vitamin D metabolism and phosphate homeostasis. J Bone Miner Res 19:429–435
- 236. Urakawa I, Yamazaki Y, Shimada T, Iijima K, Hasegawa H, Okawa K, Fujita T, Fukumoto S, Yamashita T (2006) Klotho converts canonical FGF receptor into a specific receptor for FGF23. Nature 444:770–774
- 237. Li H, Xu F, Gao G, Gao X, Wu B, Zheng C, Wang P, Li Z, Hua H, Li D (2020) Hydrogen sulfide and its donors: Novel antitumor and antimetastatic therapies for triple-negative breast cancer. Redox Biol 34:101564
- 238. Szabo C (2016) Gasotransmitters in cancer: from pathophysiology to experimental therapy. Nat Rev Drug Discov 15:185–203

The Role of H₂S in the Metabolism of Glucose and Lipids

Hai-Jian Sun, Zhi-Yuan Wu, Xiao-Wei Nie, and Jin-Song Bian

1 Introduction

Glucose and lipids are the major sources of energy for human body [1]. The normal metabolism of glucose and lipids is strictly modulated in healthy individuals [2]. One of the most abundant lipids, cholesterol, is a key component of cell membranes in mammals [2]. The blood glucose is precisely regulated in the physiological range of 70–110 mg/dL under healthy conditions, which is orchestrated by a complicated network of numerous hormones from several metabolic organs/tissues including the livers, pancreas, brain, intestine tissue, and adipose as well as skeletal muscle (Fig. 1) [3–5]. Defects in glucose and lipid metabolism may result in severe

National University of Singapore (Suzhou) Research Institute, Suzhou, China e-mail: phcbjs@nus.edu.sg diseases including metabolic syndrome, cardiovascular diseases, diabetes, and obesity [2]. Notably, the prevalence of obesity and diabetes and their complications as well as the healthcare cost remain major socioeconomic problems [6, 7]. Thereafter, it is urgent to elucidate the underlying mechanisms of glucose/lipid dysfunction for the evolution of novel therapeutic approaches for glycolipid metabolism disorder-related diseases.

Hydrogen sulfide (H2S) has long been regarded as a toxic environment pollutant with a rotten egg smelling [8, 9]. However, mounting evidence indicates the physiological significance of H₂S because of its role in a wide range of physiological and pathological activities in mammal systems [10], especially in the cardiovascular system [11, 12], central nervous system [13–15], and other systems [5, 16-18]. As such, H₂S has gained recognition as the third gaseous signaling molecule along with nitric oxide (NO) and carbon monoxide (CO) [19]. It has been reviewed that endogenous H₂S is produced by both enzymatic and non-enzymatic pathways in mammal tissues. The former pathway requires the actions of three enzymes: cystathione β-synthase (CBS), cystathione γ-lyase (CSE), and 3-mercaptopyruvate sulfurtransferase (3-MST) [20-22]. Emerging evidence suggests that H_2S also actively regulates the metabolism of glucose and lipids, and its dysregulation is implicated in glycometabolic disorders [23]. Specifically, H₂S promotes glucose generation via activation of

© Springer Nature Singapore Pte Ltd. 2021

H.-J. Sun · Z.-Y. Wu

Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore

X.-W. Nie

Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore

Center of Clinical Research, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, China

J.-S. Bian (\boxtimes)

Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore

Y.-C. Zhu (ed.), *Advances in Hydrogen Sulfide Biology*, Advances in Experimental Medicine and Biology 1315, https://doi.org/10.1007/978-981-16-0991-6_3

gluconeogenesis and glycogenolysis in the livers [24], but prevents lipolysis in adipocytes [25]. The glucose uptake into adipocytes and skeletal muscle is stimulated by H_2S [26, 27], but the glucose uptake into hepatocytes is inhibited by H₂S [24]. Moreover, H₂S is found to sensitize insulin signaling in the liver tissues, adipose tissues, and skeletal muscle [28, 29], yet blocks insulin secretion from pancreatic β cells [30]. These observations indicate a sophisticated role of H₂S in glucose/lipid metabolism in health and diseases. In this chapter, we will outline the published studies regarding the roles of H₂S in glucose/lipid metabolism, and continue to describe the molecular mechanisms and physiological/pathological significance of H₂S on organs and tissues that are required for homeostatic maintenance of circulating glucose/lipid levels. Future directions highlighting the H₂S-mediated monitoring of glucose/lipid metabolism under physiological and pathophysiological conditions are also discussed.

2 H₂S and Glucose Metabolism

Glucose is an indispensable substrate for mammalian cells, affecting various physiological

functions, such as protein and nucleic acid synthesis, cell growth, and fatty acid synthesis [31]. The metabolism homeostasis of glucose is crucial for maintaining normal body function, whereas disturbances in glucose metabolism might lead to abnormal blood glucose levels or energy supply barrier [32]. Needless to say, the most glucose metabolism disorder is diabetes. Diabetes and its complications represent major socioeconomic issues worldwide [33]. Therefore, it is of utmost importance to understand the precise mechanisms that regulate glucose homeostasis and their dysregulation in the pathophysiology of diabetes. In 1990, the first experiment was performed to examine the roles of H₂S in glucose homeostasis [34], the authors showed that inhalation of low dose of H₂S elevated the circulating blood glucose in postpartum rats [34]. By contrast, animal studies have shown that supplementation with L-cysteine, a precursor for H₂S biosynthesis, or a diet containing L-cysteine improves insulin resistance by ameliorating glucose metabolism [35-39]. However, the underlying mechanisms of H₂S or L-cysteine in glucose modulation are not elucidated in these studies. As research continues to deepen, the mechanistic studies regarding the roles of H₂S in glucose homeostasis have come to light through the examination of insulin synthesis and secretion. Moreover, the actions of H_2S on glucose metabolism-target tissues, including the livers, adipose tissue, and skeletal tissue, are also gradually clarified [5, 27, 40]. It is believed that the investigations of the involvement of H_2S in glucose metabolism are of great interests in the prevention and treatment of diabetes. Next, the roles of H_2S in metabolic hormone secretion and the downstream signaling pathways in target organs/ tissues will be described.

3 H₂S and Insulin Secretion

There is no doubt that the pancreas plays a foremost role in glucose metabolism through the release of pancreatic hormones, such as insulin and glucagon [41]. Insulin is a well-known metabolic hormone that decreases blood glucose, thus the therapeutic strategies aiming at improving insulin secretion and sensitivity are a major research focus for diabetes [42]. Both CSE and CBS are abundantly expressed in pancreatic islets; however, the CSE mRNA levels are higher in pancreatic islets than those of CBS [43, 44]. The production of H_2S is significantly downregulated in CSE knockout (KO) mice, and a CSE inhibitor PPG (DL-propargylglycine) obviously reduces H₂S generation in normal pancreatic islets from mice [45]. It is documented that the expressions of CSE and CBS in the pancreas are remarkably augmented in streptozotocin diabetic (STZ)-induced rats, whereas the decreased enzymes are rescued by exogenous insulin treatment [46]. Intriguingly, the production of H₂S is inhibited in high glucose-treated INS-1E cells and rat pancreatic islets, this effect may be mediated by SP1 and p38 mitogen-activated protein kinase (MAPK) phosphorylation [47]. These observations suggest a delicate interplay between H₂S and insulin release. Actually, pancreatic H₂S levels are greater in Zucker diabetic rats, and inhibition of pancreatic H₂S production with PPG increases serum insulin level and lowers hyperglycemia [43]. It is likely that insulin release is reduced in diabetic rats because of high pancreatic production of H_2S . Downregulation of the higher H_2S system in pancreatic tissues seemingly benefits diabetic prevention and treatment.

Accumulating evidence shows that H₂S may be an endogenous inhibitor of insulin secretion from pancreatic β cells [45, 48]. Generally, H₂S could affect the functions of pancreatic β cells via preventing the release of insulin [30, 44], and influencing the cellular apoptosis induced by various stimuli [49, 50]. Mechanistically, the suppressive actions of H₂S on insulin secretion may be mediated by opening K_{ATP} channels in insulin secreting cells [51], inhibiting L-type voltagedependent Ca²⁺ channels [30], and inducing pancreatic β cell apoptosis [52]. In terms of pancreatic β cell apoptosis, another group has demonstrated that H₂S prevents high glucoseinduced pancreatic β cell apoptosis through increased total glutathione levels [53]. The discrepancies about the effects of H₂S on pancreatic β cell apoptosis may be caused by different treatments used in those experiments. It should be noted that the effects of exogenous and endogenous H_2S on pancreatic β cell survival may be significantly different. As such, a comparison of endogenous H₂S levels with exogenous H₂S levels may be difficult because of the uncertain physiological range of H_2S in pancreatic β cells.

Given the inhibitory effects of H₂S on insulin release, it is natural to consider that H₂S may be detrimental in the context of diabetes. As a matter of fact, endogenous H₂S does not always serve as a foe. For instance, increased H₂S production with L-cysteine could attenuate oxidative stressinduced apoptosis in pancreatic β cells [53]. The persistently elevated inflammatory response is a driving force for islet cell damage and diabetic complications, thus anti-inflammation in pancreatic β cells may be a very useful approach to treat diabetes [54]. Intriguingly, H₂S donor sodium hydrosulfide (NaHS) could attenuate inflammatory factors-evoked injury in primary cultured pancreatic β cells or MIN6 cells [55]. Moreover, knockout of CSE aggravates oxidation-related insults in islets from mice fed a high-fat diet (HFD), affecting neither insulin secretion nor blood glucose levels in HFD-induced diabetic mice [50]. It is likely that CSE-produced H_2S protects pancreatic β cell from glucotoxicity, and thus it may prevent the onset/development of type 2 diabetes induced by HFD [50].

Based on the above observations, the biphasic effects of H_2S on insulin secretion may be associated with different stages during diabetic development (Fig. 2). It may be hypothesized that hyperglycemia-induced upregulations of CSE/H₂S may be an adaptive response at the early stage, and the augmented H_2S production

may confer anti-oxidative and anti-inflammatory activities, thereby protecting pancreatic β cells against hyperglycemia. With the progression of diabetes, the further increased H₂S generation will then prevent insulin secretion through reducing ATP production, and opening KATP channels in insulin secreting cells [51], as well as inhibiting L-type voltage-dependent Ca²⁺ channels [30]. Finally, if the hyperglycemia state exits for a long period, the endogenous H₂S may exceed its threshold, thus inducing endoplasmic

Fig. 2 A proposed sketch showing H₂S-mediated effects on insulin secretion from pancreatic β cells. (**a**) Under normal conditions, glucose enters the pancreatic β cells via GLUT-2 and then is subject to glucose metabolism, accompanied by the increased ATP/ADP ratio. This might induce the closure of KATP channels and depolarization of β cells. After that, the voltage-gated Ca²⁺ channel is open and allowing Ca²⁺ to enter the cells. The increased intracellular Ca²⁺ concentration stimulates insulin exocytosis and releases from β cells. (**b**) In the early stage of diabetes, hyperglycemia may upregulated CSE-derived H₂S levels (low H₂S levels), thus serving as a protective

mechanism by neutralizing oxidative/nitrosative stress and autoimmune attack. When H₂S levels continue to increase, the intra-islet H₂S production leads to decreased insulin generation through stimulating KATP channels, inactivating voltage-gated Ca²⁺ channel, and inhibiting glucose metabolism. Eventually, the persistently increased glucose may lead to β cell toxicity, resulting in lower circulating insulin levels and higher hyperglycemia. ADP, adenosine-diphosphate; ATP, adenosinetriphosphate; GLUT, glucose transporter; KATP. ATP-sensitive potassium channel; RNS, reactive nitrogen species; ROS, reactive oxygen species

reticulum stress-induced apoptosis in pancreatic β cells [52]. Overall, therapeutic strategies for diabetes can be achieved by administration of H₂S at the early stage of diabetes or blocking endogenous H₂S generation from pancreatic tissues at its late stage.

4 H₂S-Mediated Glucose Metabolism in the Livers

The livers are important glucose-producing organs, and it is also a necessary location for the control of blood glucose homeostasis through regulating glycogen synthesis (glycogenolysis) and de novo glucose synthesis (gluconeogenesis) [56]. Hepatic malfunction of gluconeogenesis and glycogenolysis may induce aberrant glucose metabolism and even diabetic development [57]. The livers are also chief H₂S-producing organs as the H₂S-generating enzymes CBS, CSE, and 3-MST are extensively expressed in

the livers, and they are responsible for liver H_2S generation to distinct extents [58].

Importantly, the expression levels of CSE are upregulated in the livers of diabetic rats and HepG2 cells with insulin resistance [24, 46, 59]. It is reported that gene deficiency of CSE exhibits a significantly decreased gluconeogenic system in the livers [60]. As an important gluconeogenic regulator, peroxisome proliferator-activated receptor-c coactivator-1a (PGC-1 α) is a critical transcription factor that upregulates the gluconeogenic rate-limiting enzymes, such as glucose 6-phosphatase (G6Pase), fructose 1,6-bisphosphatase (FBPase), phosphoenolpyruvate and carboxykinase (PEPCK) [61]. Therefore, H₂S-stimulated glucose production in hepatocytes requires the increased protein expressions and activity of hepatic PGC-1a G6Pase, FBPase, and PEPCK (Fig. 3) [24, 60]. Furthermore, the enhanced glucose production by H₂S in the livers is partially ascribed to activation of the cyclic adenosine

Fig. 3 Role of H_2S in hepatic gluconeogenesis. The stimulatory effects of H_2S on hepatic gluconeogenesis are dependent on the following several mechanisms: (1) activating the cAMP/PKA signaling pathway to upregulate PGC-1 α protein expression as well as induction of PGC-1 α S-sulfhydration; (2) promoting the PGC-1a and PEPCK protein expression and inactivation of AMPK through glucocorticoid receptor pathway; (3) upregulating the activity of ETC via complex II and ATPase synthase S-sulfhydration; (4) upregulations of

both protein levels and activities (by S-sulfhydration) of PC, PEPCK, FBPase, G6Pase, and PPRC. AMPK AMP-activated protein kinase, *cAMP* cyclic adenosine monophosphate, *ETC* electron transport chain, *FBPase* fructose 1,6-bisphosphatase, *G6Pase* glucose 6-phosphatase, *PC* pyruvate carboxylase, *PEPCK* phosphoenolpyruvate carboxykinase, *PGC-1a* peroxisome proliferator-activated receptor-coactivator-1 α , *PKA* protein kinase A, *PPRC* peroxisome proliferator-activated receptor-coactivator-related protein

monophosphate (cAMP)/protein kinase A (PKA) and glucocorticoid signaling pathways [60]. Exogenous H_2S donor NaHS also stimulates gluconeogenesis and glycogen breakdown through PEPCK in the livers [60, 62]. Additionally, H_2S can inhibit glucose uptake and glycogen storage in HepG2 hepatocytes via reduced glucokinase activity [24].

The ability of H_2S to inhibit glucose uptake and utilization in HepG2 cells and primary hepatocytes is also attributed to AMP-activated protein kinase (AMPK) de-phosphorylation and inactivation [24]. In fact, activation of AMPK stimulates uptake and utilization of glucose in hepatocytes as well as reducing hepatic glycogenolysis and gluconeogenesis [63]. As a consequence, the lower AMPK activity is likely responsible for the higher hepatic glycogen content observed in the livers from CSE knockout mice under the fed state. Very recently, inactivation of the AMPK signaling pathway by CSE deficiency promotes hepatic gluconeogenesis, thus contributing to obesity-related insulin resistance [29]. These phenomena could be reversed by supplementation with NaHS. Nevertheless, NaHS treatment ameliorates HFD-induced obesity and metabolism disorders in wild-type mice, suggesting that H₂S is a critical player in obesityassociated insulin resistance. These findings reveal a double-edged sword effects of the CSE/H₂S system in obesity associated with insulin resistance. Targeting the CSE/H₂S system may serve as a valuable therapeutic strategy for insulin resistance in obesity.

5 H₂S-Mediated Glucose Metabolism in the Adipose Tissue

Adipose is one of the most plenteous tissues in the human body [64]. Within the adipose system, adipocytes, a class of extremely specialized cells, are capable to take up a large amount of triglycerides in response to excessive energy and to mobilize them during the period of energy shortages [65, 66]. Apart from lipid regulation, the adipose tissue is also considered to be an endocrine organ to regulate glucose homeostasis [67]. The adipose tissue turns the extra glucose into fat when blood glucose increases, and in turn, the stored fat within the adipose tissue could be utilized for energy when blood glucose decreases [67]. It is well accepted that adiposity is implicated in insulin resistance, whereby lipid moieties from white adipose tissue interfere with insulin signaling [5]. It has been found that the circulating H₂S levels are downregulated in obese population [68]. However, it is still unclear whether the changed circulating H₂S levels affected glucose metabolism in the adipose tissue. As a result, the underlying mechanisms by which dysregulated circulating H₂S level is a driving force in adipose metabolic disorder are not investigated.

It is established that the CSE/H₂S system is observed in both rat adipocytes and preadipocytes, and H₂S may be involved in insulin resistance in adipocytes [69]. The authors have shown that H_2S (10–1000 μ M) diminishes insulininduced glucose uptake into adipocytes, whereas inhibition of CSE enhances this effect [69]. Additionally, H₂S also participates in TNF-α-induced insulin resistance in adipocytes [70]. These studies suggest the involvement of H₂S in the pathophysiology of adipose insulin resistance. However, this notion is challenged by the contradictory actions of H₂S on glucose metabolism in the adipose tissues. In other words, H₂S may, in fact, play a beneficial role in glucose regulation in the adipose tissue. For example, H_2S is essential for maintenance of glucose metabolism in the adipose tissues as H₂S promotes glucose uptake and utilization in 3T3L1 adipocytes through GLUT4 translocation to cell surface and its activation [71, 72]. In an in vivo study, H_2S donor is established to increase glucose uptake in both myotubes and adipocytes, thus decreasing blood glucose, and improving insulin sensitivity in Goto-Kakizaki (GK) diabetic rats [27]. Upon exposure to high glucose, the CSE expressions at both protein and mRNA levels are significantly downregulated, paralleled with increased monocyte chemotactic protein 1 (MCP-1) production in 3 T3-L1 adipocytes [73]. These effects are counteracted by overexpression of CSE or a

of source exogenous H_2S , NaHS [73]. Sulfhydration of peroxisome proliferatoractivated receptor γ (PPAR γ) in the adipose tissues is required for H₂S to improve insulin resistance in HFD-fed mice [26]. These findings suggest that activation of PPARy or inhibition of inflammation by H₂S may improve insulin resistance in adipocytes. Similar to PPARy activation, phosphatidylinositol the cellular 3,4,5trisphosphate (PIP3), a positive regulator of phospholated Akt, is activated by H₂S, this may be responsible for H₂S-mediated glucose metabolism and utilization in 3 T3-L1 adipocytes [71]. Likewise, supplementation of H_2S triggers the phosphorylation of insulin receptor (IR), PI3K, and Akt, which synergistically promotes glucose intake in 3 T3-L1 adipocyte [27]. From this collection of evidence, H₂S plays a regulatory role in glucose metabolism and insulin signaling in adipocytes. It is clear that the effects of H_2S on glucose metabolism in the adipose tissue are sophisticated and even contradictory. The reason for this discrepancy might be attributed to the different dose and treatment time period of H₂S, experimental models, and the distinct stage of diabetic development. Certainly, H₂S-based strategies that aim at increasing glucose uptake and utilization in the adipose tissue may be a cornerstone of diabetic research.

6 H₂S-Mediated Glucose Metabolism in the Skeletal Muscle

Skeletal muscle is also an insulin-sensitive organ, which is responsible for roughly 85% of glucose uptake in the whole body by itself or via a crosstalk with the livers and adipose tissue [74, 75]. To be sure, a significant amount of CBS and CSE proteins are detected in human skeletal muscle [76]. All three H₂S-producing enzymes, including CBS, CSE, and 3-MST, are present in rat skeletal muscle [27, 77, 78]. Surprisingly, all known H₂S-generating enzymes are undetectable in mouse skeletal muscle [76, 79].

As of yet, the roles of H_2S in the skeletal muscle-mediated glucose metabolism is still

limited. Human studies have found that acute H₂S inhalation induces the shift from aerobic to anaerobic metabolism, coupled with accumulation of lactate in the circulation [80]. This metabolic shift may be relied on the downregulated citrate synthase enzyme level in the skeletal muscle during exercise [80]. It is undefined whether any changes occur in blood glucose level after H₂S inhalation in this study. Xue and colleagues have illustrated that knockdown of CSE decreases glucose uptake in rat L6 myotubes [27]. The same group has also shown that exogenous H₂S promotes the absorption of glucose in L6 myotubes in the presence of insulin [27]. It appears that H₂S sensitizes the skeletal muscle to insulin signaling, resulting in increased glucose uptake in the skeletal muscle tissue from type 2 diabetes. Although the H₂S-generating enzymes are absent in the mouse skeletal muscles, it is reasonable that the mouse skeletal muscles may be biologically influenced by circulating H_2S level. As H₂S acts as an insulin sensitizer in the rat skeletal muscles [27], it should be the same in the murine skeletal muscle. Unfortunately, there is still a lack of evidence that H₂S plays a functional role in mouse skeletal muscle glucose metabolism under both physiological and pathophysiological conditions. As the current understanding of H₂S biology/pharmacology rapidly evolving, it is highly possible that the roles and precise mechanisms of H₂S in the skeletal muscle glucose metabolism will be progressively identified.

7 H₂S-Mediated Glucose Metabolism in the Gastrointestinal Tract

In recent years, evidence has emerged to recognize H_2S as a mediator of several functions of the gastrointestinal tract [81]. It is well known that the required nutrients are first processed by the hormones from the gastrointestinal tract, and these hormones play a crucial role in the modulation of glucose or lipid homeostasis [82]. As an incretin hormone from intestinal L cells upon food intake, glucagon-like peptide-1 (GLP-1) is established to enhance glucose-provoked insulin secretion from pancreatic β cells [83]. Moreover, GLP-1 may be a stimulator for pancreatic β cell proliferation and proinsulin gene expressions [84]. Peptide YY (PYY), an energy-regulating hormone secreted from gastrointestinal tract is a potential appetite-suppressing hormone, which is co-localized with GLP-1 in intestinal L cells [85]. Studies have shown that H_2S inhibits the production of GLP-1 and PYY from a murine enteroendocrine cell line [86]. The authors have found that both endogenous and exogenous H₂S inhibit oleic acid-induced GLP-1 and PYY release, and this effect is completely abolished by PPG, suggesting a key role of CSE in GLP-1 and PYY generation from the gastrointestinal tract. The aforementioned studies indicate that the endogenous generation of H_2S in the gut wall likely plays a central role in the modulation of gastrointestinal tract functions and subsequent glucose metabolism under both physiological and pathophysiological circumstances [33].

8 H₂S and Lipid Metabolism

Similar to diabetes, obesity is also a major global health burden with high prevalence worldwide. Over-nutrition leads to expanding the adipose tissue loading, together with ectopic deposition of lipid in the muscle, livers, and insulinproducing pancreatic islets [87, 88]. The excessive lipid deposition might trigger a lipotoxic stress that elicits inflammation response and insulin resistance in the adipose tissue, livers, and muscle, followed by a disruption of glucose/ lipid homeostasis [89]. Specifically, exceeding lipid synthesis and transport in the livers is a critical step for driving lipogenesis and lipoprotein profiles that ultimately lead to atherosclerosis [90]. In the following sections, we will outline the involvement of H₂S in pathologies of lipid metabolism disturbance in the context of obesity, metabolic syndrome, or diabetes, especially lipid regulation by H₂S in the livers and adipose tissue.

H₂S-Mediated Lipid Metabolism in the Adipose Tissue

9

In the process of obesity, of central interest is the formation of adipocytes, which is also known as adipogenesis [91]. Impaired adipogenesis in the adipose tissue is thought to be a primary player in obesity and its associated metabolic complications [92]. As a consequence, a comprehensive understanding of molecular the mechanisms of adipogenesis may be helpful to develop more efficient strategies for the management of obesity and metabolic disorders [93]. The CSE/H₂S system is a potent adipogenesis regulator as it promotes the differentiation of 3 T3-L1 preadipocytes into mature 3 T3-L1 adipocytes [73], a finding later confirmed by other research groups [26, 94]. During the course of 3 T3-L1 adipocyte differentiation, the expression levels of CBS, CSE, and 3-MST are raised in a timedependent manner [94]. Exogenous H₂S treatment upregulates the levels of genes associated with adipogenesis-related genes, such as fatty acids binding protein 4 (FABP4/aP2), peroxisome proliferator-activated receptor γ (PPAR γ), CCAAT/enhancer-binding and protein а T3-L1-derived (CEBPa) in 3 adipocytes [94]. These observations are consistent with the findings that the lower body weight and adipose tissue accumulation are present in both CSE knockout mice and CBS knockout mice [95, 96].

By contrast, diallyl trisulfide (DATS), a potential stimulator for H_2S release in biological systems, is reported to suppress adipogenesis in 3 T3-L1 cells [97, 98]. Blockade of extracellular signal regulated kinases (ERK) by its specific inhibitor PD98059 abolishes the suppressive effects of DATS on the process of adipogenesis [98]. These findings suggest that DATS prevents adipogenesis in an ERK-dependent fashion. Despite the opposite results, whether the inhibitory effects of polysulfides on adipogenesis are directly mediated by released H_2S remains questionable. Anyway, it is obvious that H_2S plays a critical role in adipogenesis, thus impacting lipid metabolism homeostasis. Notably, the roles of H_2S in the development of obesity-related adipogenesis is not yet clear and more research on the H_2S system in the adipose tissue needs to be conducted in the future.

Lipolysis is defined as the breakdown of fats and other lipids by hydrolysis to release fatty acids and glycerol into the circulation when energetically desirable [99]. The appropriate regulation of lipolysis is widely accepted as an alternative therapeutic avenue in the management of obesity and metabolic diseases [100]. Unraveling the underlying mechanisms of lipolysis may open up novel therapeutic targets against metabolic disorders and obesity. The first experiment to test the involvement of H₂S in lipolysis was carried out by Geng et al. [25]. Geng and colleagues have found that inhibition of the endogenous H_2S system stimulates lipolysis in a protein kinase A/perilipin/hormone-sensitive lipase-dependent pathway [25]. Accordingly, inhibition of lipolysis by H_2S may blunt the increased fat mass in obese mice [25]. This viewpoint is further confirmed by a later finding that treatment with GYY4137 (a slow-releasing H₂S donor) or NaHS remarkably enhances the generation of lipid droplets and also mitigates adrenergic receptor-stimulated lipolysis in 3 T3-L1 cells [94]. Recently, it is found that perilipin-1 sulfhydration is a major direct target for H₂S-mediated inhibition of lipolysis since gene deletion of perilipin-1 eliminates the inhibitory effects of H₂S on lipolysis [101]. Totally, H_2S may function as a lipolysis suppressor, and inhibition of lipolysis by H₂S may promote and sensitize insulin response in adipocytes. These speculations still await further in-depth research.

However, the functional roles of H_2S in the manipulation of adipose lipolysis are still controversial. Using the microdialysis method, H_2S donor sodium sulfide (Na₂S) provokes dose-dependent stimulation of glycerol formation in fat cells, even though its effect is less than that of isoproterenol [64]. The effects of Na₂S on lipolysis may be associated with cAMP release, since Na₂S-mediated effects on lipolysis are

prevented by a PKA inhibitor, KT5720 [64]. Furthermore, it has been shown that H₂S release is remarkably higher in rats fed by a HFD [64]. These preliminary results suggested that the cAMP/PKA pathway mediated H₂S-induced adipose tissue lipolysis. It is likely that upregulation of the CSE/H₂S system in the adipose tissue might lead to increased lipolysis in obese animals. Based on the above results, H₂S might grant a dual role in adipose lipolysis, and more studies are indispensable to test the exact effects of H₂S on adipose lipolysis in both health and diseases. However, it is well recognized that deficiency of H₂S may result in adipose inflammatory response in obesity and metabolic syndrome [28, 102–104]. Hence, the link between the H₂S deficiency-mediated adipose inflammation and lipid metabolism in the adipose tissue deserves further studies.

10 H₂S-Mediated Lipid Metabolism in the Livers

The livers play a critical role in the metabolism of nutrient and lipid [105]. Dysregulated lipid metabolism may be a possible mechanism for liver lipotoxicity [106]. In health, the lipid metabolism in the livers is orchestrated by hormones, transcription factors, nuclear receptors, and other intracellular signaling pathways [107]. The overproduction of lipids in the livers disrupts the hepatic function and leads to many hepatic diseases, such as non-alcoholic fatty liver disease (NAFLD), liver cirrhosis, and liver cancer [108]. A better understanding of the molecular mechanisms of hepatic lipid metabolism will facilitate the development of novel therapeutic targets for hepatic metabolic disorders [109]. NAFLD is a broad spectrum hepatic lipid metabolism disorder without an alcohol abuse history [110–112]. The prevalence of NAFLD is sharply increasing and its pathological mechanisms are complicated and incompletely understood.

Moreover, the livers are important organs for the production and clearance of H_2S [113]. Studies have shown that CBS, CSE, and 3-MST are abundantly expressed in the liver tissues, and they are responsible for H₂S generation to distinct extents in the livers [58]. Hepatic H₂S system participates in insulin sensitivity, glycolipid metabolism, mitochondrial biogenesis, and bioenergetics [33, 58, 62, 114]. The circulating H₂S levels are relevant to the severity of NAFLD patients [115, 116]. Deficiency of CBS elevates endogenous homocysteine levels [117], and hyperhomocysteinemia, in turn, could promote fatty liver through impaired lipid metabolism and oxidative injury [118–120]. As expected, it has been revealed that CBS-deficient mice spontaneously develop hepatic steatosis in rodents [121]. Under HFD condition, hepatic lipid accumulation is exacerbated in mice with CSE deficiency, as evidenced by higher total cholesterol and aggravated liver dysfunction [29, 122]. Notably, this effect could be rescued by exogenous H₂S treatment, confirming that hepatic lipid metabolism disorder is caused by deficiency of CSE-derived H_2S [29, 122]. In line with CSE knockout mice, 3-MST-deficient mice exhibit normal liver functions upon a normal diet, but with increased anxiety-like behaviors [123]. However, hepatic 3-MST protein expression is obviously augmented in mice and patients with NAFLD, and partial knockdown of 3-MST significantly ameliorates hepatic steatosis in HFD-fed mice [124]. The mechanisms involving in the detrimental role of 3-MST in NAFLD may be mediated by inhibiting the CSE/H₂S pathway [124]. These observations suggest that 3-MST may be a crucial stimulator for accelerating the development of NAFLD. In the progression of NAFLD, the contradictory result of 3-MST with CSE and CBS may be derived from the unique catalytic activities of 3-MST. It is demonstrated that reaction of 3-MST with 3-mercaptopyruvate produces persulfide-containing intermediates, leading to liver damage [125]. In summary, the above results provide ample evidence that the H₂S system is a critical regulator for lipid metabolism in the livers, and recovery of the H₂S system may be an important strategy for the treatment of fatty liver disease.

Studies have shown that the expression levels of CBS and CSE are upregulated in the livers from HFD mice [126]. In agreement with this, supplementation with tyrosol upregulates hepatic CSE and CBS expression as well as H₂S formation in HFD mice [127], this observation is related with the prevention of HFD-elicited hepatic lipid peroxidation [127]. NaHS is revealed to decrease the deposition of cholesterol and triglyceride via downregulated fatty acid synthase and upregulated carnitine palmitoyltransferase-1 in the livers from obese mice [128]. A substrate for endogenous H₂S production, S-Propargyl-cysteine (SPRC) is able to reduce lipid accumulation in the livers of mice with NAFLD [129]. Exogenous H_2S is found to mitigate the fatty liver through ameliorating lipid metabolism and antioxidant properties [128]. Treatment with NaHS markedly reduces hypertriglyceridemia and ameliorates NAFLD in HFD mice by amplifying the AMP-activated pro-AMPK/mammalian tein kinase target of rapamycin (mTOR) pathway [130]. A recent study further demonstrates that H₂S donor GYY4137 effectively mitigates liver lipid deposition in STZ- and HFD-induced mice, and the therapeutic benefit of H₂S is dependent on Keap1 S-sulfhydration-mediated Nrf2 activation. [131]. These published papers suggest that H_2S might be a therapeutic candidate against NAFLD through restoring the lipid metabolism homeostasis.

It is worthwhile to note that H_2S treatment enhances adipocyte numbers but improves hepatic insulin resistance in mice fed by a HFD [26, 132]. Actually, H_2S is is an inducer of adipogenesis in adipose tissue, while it serves as an inhibitor of lipid production and storage in the liver. These studies suggested that H_2S may confer a biphasic effect in the fat tissues and liver tissues. Moreover, the direct regulatory roles and potential mechanisms of H_2S in hepatic lipid accumulation, storage, and depletion are still in its infancy. In this regard, future research is necessary to elucidate the effects of H_2S on the molecular mechanisms related with lipogenesis, lipolysis, and lipoprotein secretion during the development of NAFLD.

11 Conclusions and Further Directions

In this chapter, we aimed to highlight the importance of H₂S in glucose/lipid metabolism under physiological and pathophysiological conditions. We apologize to many scientists who contributed greatly to the field of H2S-mediated glucose/lipid metabolism if their works are not appropriately mentioned. The roles of H₂S in obesity, metabolic syndrome, and diabetes will be an expanding research area. As mentioned above, exogenous administration of H₂S restrains glucose-induced insulin release from pancreatic β cells, yet increases glucose production in the livers. It appears that H₂S sensitizes adipocytes and skeletal muscle, yet desensitizes hepatocytes to insulin signaling pathway. These results suggest that H₂S may grant differential signaling transduction systems in different tissues with regard to the insulin signaling pathway. The contradicting reports about the roles of H₂S in diabetes and insulin resistance may be owned to the lack of standardized methodology and variation in models and study designs. H₂S supplementation can be beneficial or deleterious dependent on the early or late stage of insulin resistance. In other words, H₂S-derived therapeutics for diabetes should aim at decreasing H₂S level in the pancreas at the late stage as H₂S inhibits insulin release from pancreatic β cells and overproduction of H_2S may induce pancreatic β cell apoptosis. However, most research focus on the protective effects H_2S of in diabetic complications, such as diabetic nephropathy, cardiomyopathy, encephalopathy, and endothelial dysfunction-related diseases. To sum up, our current knowledge of H₂S-mediated effects on glucose homeostasis in the livers, adipose tissue, and skeletal muscle is still deficient. More human and animal studies are required to comprehensively understand the physiological and pathophysiological roles of H_2S in glucose metabolism. A

full understanding of the impacts of H_2S on glucose metabolic parameters would be considerably informative.

In the context of lipid metabolism, the involvement of H₂S in both adipose tissues and liver tissues seems to be a general phenomenon. However, H₂S-mediated specific ways in which lipids accumulate/decomposition in both adipose tissues and liver tissues under various experimental conditions are largely unknown. Thus, evaluating these characteristics and molecular mechanisms of lipid metabolism would undoubtedly advance our knowledge of the importance of H₂S in systematical lipid metabolism. H₂S production from the adipose tissues and liver tissues is critically involved in lipid metabolism. Despite that a significant advance has been achieved in this field over the last several decades, more original work is still necessary. In particular, several effects of H₂S on insulin sensitivity and lipolysis in the adipose tissues are controversial. The underlying mechanisms whereby H₂S regulates lipid metabolism are fully uncharacterized. Because of these discrepancies, the use of H₂S donors for the treatment of metabolic pathologies must be treated with caution. Most importantly, the H₂S system that links the interactions between lipid and glucose metabolism in health and disease may be of utmost importance for therapy of metabolic diseases.

Taken together, a complicated relationship between H₂S and glucose/lipid metabolism in the body's homeostasis is becoming to be unraveled. Despite that the potential mechanisms that underlie these processes are not fully clarified. Their significant importance to body health indicates clinical implications for future preclinical clinical transformation or of H₂S. There is no doubt that H₂S will be a prominent node in a complex interaction network for regulating glucose/lipid metabolism under both physiological and pathophysiological conditions.

Acknowledgements This work was supported by Ministry of Education of Singapore Tier 2 Research grant (MOE2017-T2-2-029), and China Jiangsu Nature Science Foundation (BK20181185).

Conflict of Interest The authors have declared no conflict of interest.

References

- Rui L (2014) Energy metabolism in the liver. Compr Physiol 4:177–197
- Chen L, Chen XW, Huang X, Song BL, Wang Y, Wang Y (2019) Regulation of glucose and lipid metabolism in health and disease. Sci China Life Sci 62:1420–1458
- Selph S, Dana T, Blazina I, Bougatsos C, Patel H, Chou R (2015) Screening for type 2 diabetes mellitus: a systematic review for the U.S. preventive services task force. Ann Intern Med 162:765–776
- Standards of Medical Care in Diabetes (2017) Summary of revisions. Diabetes Care 2017 40:S4–s5
- Untereiner A, Wu L (2018) Hydrogen sulfide and glucose homeostasis: a tale of sweet and the stink. Antioxid Redox Signal 28:1463–1482
- Roomi MA, Mohammadnezhad M (2019) Prevalence of metabolic syndrome among apparently healthy workforce. J Ayub Med Coll Abbottabad 31:252–254
- Samouda H, Ruiz-Castell M, Karimi M, Bocquet V, Kuemmerle A, Chioti A, Dadoun F, Stranges S (2019) Metabolically healthy and unhealthy weight statuses, health issues and related costs: findings from the 2013-2015 European health examination survey in Luxembourg. Diabetes Metab 45:140–151
- Ng PC, Hendry-Hofer TB, Witeof AE, Brenner M, Mahon SB, Boss GR, Haouzi P, Bebarta VS (2019) Hydrogen sulfide toxicity: mechanism of action, clinical presentation, and countermeasure development. J Med Toxicol 15:287–294
- 9. Smith RP, Gosselin RE (1979) Hydrogen sulfide poisoning. J Occup Med 21:93–97
- Paul BD, Snyder SH (2018) Gasotransmitter hydrogen sulfide signaling in neuronal health and disease. Biochem Pharmacol 149:101–109
- Liu YH, Lu M, Hu LF, Wong PT, Webb GD, Bian JS (2012) Hydrogen sulfide in the mammalian cardiovascular system. Antioxid Redox Signal 17:141–185
- Nagpure BV, Bian JS (2016) Interaction of hydrogen sulfide with nitric oxide in the cardiovascular system. Oxidative Med Cell Longev 2016:6904327
- Gong QH, Shi XR, Hong ZY, Pan LL, Liu XH, Zhu YZ (2011) A new hope for neurodegeneration: possible role of hydrogen sulfide. J Alzheimers Dis 24 (Suppl 2):173–182
- Hu LF, Lu M, Hon Wong PT, Bian JS (2011) Hydrogen sulfide: neurophysiology and neuropathology. Antioxid Redox Signal 15:405–419
- Nagpure BV, Bian JS (2015) Brain learning, and memory: role of H₂S in neurodegenerative diseases. Handb Exp Pharmacol 230:193–215
- Cao X, Ding L, Xie ZZ, Yang Y, Whiteman M, Moore PK, Bian JS (2019) A review of hydrogen

sulfide synthesis, metabolism, and measurement: is modulation of hydrogen sulfide a novel therapeutic for cancer? Antioxid Redox Signal 31:1–38

- Gambari L, Grigolo B, Grassi F (2019) Hydrogen sulfide in bone tissue regeneration and repair: state of the art and new perspectives. Int J Mol Sci 20: e5231
- Sun HJ, Wu ZY, Cao L, Zhu MY, Liu TT, Guo L, Lin Y, Nie XW, Bian JS (2019) Hydrogen sulfide: recent progression and perspectives for the treatment of diabetic nephropathy. Molecules 2019:24
- Cao X, Bian JS (2016) The role of hydrogen sulfide in renal system. Front Pharmacol 7:385
- Das UN (2018) Ageing: is there a role for arachidonic acid and other bioactive lipids? A review. J Adv Res 11:67–79
- Olas B (2015) Hydrogen sulfide in signaling pathways. Clin Chim Acta 439:212–218
- 22. Zhang S, Pan C, Zhou F, Yuan Z, Wang H, Cui W, Zhang G (2015) Hydrogen sulfide as a potential therapeutic target in fibrosis. Oxidative Med Cell Longev 2015:593407
- 23. Yang CT, Chen L, Xu S, Day JJ, Li X, Xian M (2017) Recent development of hydrogen sulfide releasing/ stimulating reagents and their potential applications in cancer and glycometabolic disorders. Front Pharmacol 8:664
- 24. Zhang L, Yang G, Untereiner A, Ju Y, Wu L, Wang R (2013) Hydrogen sulfide impairs glucose utilization and increases gluconeogenesis in hepatocytes. Endocrinology 154:114–126
- 25. Geng B, Cai B, Liao F, Zheng Y, Zeng Q, Fan X, Gong Y, Yang J, Cui QH, Tang C, Xu GH (2013) Increase or decrease hydrogen sulfide exert opposite lipolysis, but reduce global insulin resistance in high fatty diet induced obese mice. PLoS One 8:e73892
- 26. Cai J, Shi X, Wang H, Fan J, Feng Y, Lin X, Yang J, Cui Q, Tang C, Xu G, Geng B (2016) Cystathionine gamma lyase-hydrogen sulfide increases peroxisome proliferator-activated receptor gamma activity by sulfhydration at C139 site thereby promoting glucose uptake and lipid storage in adipocytes. Biochim Biophys Acta 1861:419–429
- 27. Xue R, Hao DD, Sun JP, Li WW, Zhao MM, Li XH, Chen Y, Zhu JH, Ding YJ, Liu J, Zhu YC (2013) Hydrogen sulfide treatment promotes glucose uptake by increasing insulin receptor sensitivity and ameliorates kidney lesions in type 2 diabetes. Antioxid Redox Signal 19:5–23
- 28. Beltowski J, Wojcicka G, Jamroz-Wisniewska A (2018) Hydrogen sulfide in the regulation of insulin secretion and insulin sensitivity: implications for the pathogenesis and treatment of diabetes mellitus. Biochem Pharmacol 149:60–76
- 29. Guo W, Li D, You Y, Li W, Hu B, Zhang S, Miao L, Xian M, Zhu Y, Shen X (2019) Cystathionine gamma-lyase deficiency aggravates obesity-related insulin resistance via FoxO1-dependent hepatic gluconeogenesis. FASEB J 33:4212–4224

- 30. Tang G, Zhang L, Yang G, Wu L, Wang R (2013) Hydrogen sulfide-induced inhibition of L-type Ca²⁺ channels and insulin secretion in mouse pancreatic beta cells. Diabetologia 56:533–541
- Rosado JA, Diez-Bello R, Salido GM, Jardin I (2019) Fine-tuning of microRNAs in type 2 diabetes mellitus. Curr Med Chem 26:4102–4118
- 32. Martinez-Outschoorn UE, Peiris-Pages M, Pestell RG, Sotgia F, Lisanti MP (2017) Cancer metabolism: a therapeutic perspective. Nat Rev Clin Oncol 14:11–31
- Pichette J, Gagnon J (2016) Implications of hydrogen sulfide in glucose regulation: how H₂S can alter glucose homeostasis through metabolic. Hormones 2016:3285074
- 34. Hayden LJ, Goeden H, Roth SH (1990) Exposure to low levels of hydrogen sulfide elevates circulating glucose in maternal rats. J Toxicol Environ Health 31:45–52
- 35. Blouet C, Mariotti F, Azzout-Marniche D, Mathe V, Mikogami T, Tome D, Huneau JF (2007a) Dietary cysteine alleviates sucrose-induced oxidative stress and insulin resistance. Free Radic Biol Med 42:1089–1097
- Blouet C, Mariotti F, Mikogami T, Tome D, Huneau JF (2007b) Meal cysteine improves postprandial glucose control in rats fed a high-sucrose meal. J Nutr Biochem 18:519–524
- Hsu CC, Yen HF, Yin MC, Tsai CM, Hsieh CH (2004) Five cysteine-containing compounds delay diabetic deterioration in Balb/cA mice. J Nutr 134:3245–3249
- 38. Jain SK, Velusamy T, Croad JL, Rains JL, Bull R (2009) L-cysteine supplementation lowers blood glucose, glycated hemoglobin, CRP, MCP-1, and oxidative stress and inhibits NF-kappaB activation in the livers of Zucker diabetic rats. Free Radic Biol Med 46:1633–1638
- Song D, Hutchings S, Pang CC (2005) Chronic N-acetylcysteine prevents fructose-induced insulin resistance and hypertension in rats. Eur J Pharmacol 508:205–210
- Wallace JL, Wang R (2015) Hydrogen sulfide-based therapeutics: exploiting a unique but ubiquitous gasotransmitter. Nat Rev Drug Discov 14:329–345
- Roder PV, Wu B, Liu Y, Han W (2016) Pancreatic regulation of glucose homeostasis. Exp Mol Med 48: e219
- 42. Yang H, Yang L (2016) Targeting cAMP/PKA pathway for glycemic control and type 2 diabetes therapy. J Mol Endocrinol 57:R93–r108
- 43. Wu L, Yang W, Jia X, Yang G, Duridanova D, Cao K, Wang R (2009) Pancreatic islet overproduction of H₂S and suppressed insulin release in Zucker diabetic rats. Lab Investig 89:59–67
- 44. Yang W, Yang G, Jia X, Wu L, Wang R (2005) Activation of KATP channels by H₂S in rat insulinsecreting cells and the underlying mechanisms. J Physiol 569:519–531

- 45. Yang G, Tang G, Zhang L, Wu L, Wang R (2011) The pathogenic role of cystathionine gamma-lyase/ hydrogen sulfide in streptozotocin-induced diabetes in mice. Am J Pathol 179:869–879
- 46. Yusuf M, Kwong Huat BT, Hsu A, Whiteman M, Bhatia M, Moore PK (2005) Streptozotocin-induced diabetes in the rat is associated with enhanced tissue hydrogen sulfide biosynthesis. Biochem Biophys Res Commun 333:1146–1152
- Zhang L, Yang G, Tang G, Wu L, Wang R (2011) Rat pancreatic level of cystathionine gamma-lyase is regulated by glucose level via specificity protein 1 (SP1) phosphorylation. Diabetologia 54:2615–2625
- 48. Ali MY, Whiteman M, Low CM, Moore PK (2007) Hydrogen sulphide reduces insulin secretion from HIT-T15 cells by a KATP channel-dependent pathway. J Endocrinol 195:105–112
- Lipson KL, Fonseca SG, Urano F (2006) Endoplasmic reticulum stress-induced apoptosis and autoimmunity in diabetes. Curr Mol Med 6:71–77
- 50. Okamoto M, Yamaoka M, Takei M, Ando T, Taniguchi S, Ishii I, Tohya K, Ishizaki T, Niki I, Kimura T (2013) Endogenous hydrogen sulfide protects pancreatic beta-cells from a high-fat dietinduced glucotoxicity and prevents the development of type 2 diabetes. Biochem Biophys Res Commun 442:227–233
- 51. Kaneko Y, Kimura Y, Kimura H, Niki I (2006) L-cysteine inhibits insulin release from the pancreatic beta-cell: possible involvement of metabolic production of hydrogen sulfide, a novel gasotransmitter. Diabetes 55:1391–1397
- 52. Yang G, Yang W, Wu L, Wang R (2007) H₂S, endoplasmic reticulum stress, and apoptosis of insulin-secreting beta cells. J Biol Chem 282:16567–16576
- 53. Kaneko Y, Kimura T, Taniguchi S, Souma M, Kojima Y, Kimura Y, Kimura H, Niki I (2009) Glucose-induced production of hydrogen sulfide may protect the pancreatic beta-cells from apoptotic cell death by high glucose. FEBS Lett 583:377–382
- 54. Esser N, Paquot N, Scheen AJ (2015) Antiinflammatory agents to treat or prevent type 2 diabetes, metabolic syndrome and cardiovascular disease. Expert Opin Investig Drugs 24:283–307
- 55. Taniguchi S, Niki I (2011) Significance of hydrogen sulfide production in the pancreatic beta-cell. J Pharmacol Sci 116:1–5
- 56. Wu C, Okar DA, Kang J, Lange AJ (2005) Reduction of hepatic glucose production as a therapeutic target in the treatment of diabetes. Curr Drug Targets Immune Endocr Metabol Disord 5:51–59
- 57. Rines AK, Sharabi K, Tavares CD, Puigserver P (2016) Targeting hepatic glucose metabolism in the treatment of type 2 diabetes. Nat Rev Drug Discov 15:786–804
- Mani S, Cao W, Wu L, Wang R (2014) Hydrogen sulfide and the liver. Nitric Oxide 41:62–71
- 59. Hargrove JL, Trotter JF, Ashline HC, Krishnamurti PV (1989) Experimental diabetes increases the formation of sulfane by transsulfuration and inactivation of tyrosine aminotransferase in cytosols from rat liver. Metabolism 38:666–672
- 60. Untereiner AA, Wang R, Ju Y, Wu L (2016a) Decreased gluconeogenesis in the absence of cystathionine gamma-Lyase and the underlying mechanisms. Antioxid Redox Signal 24:129–140
- Finck BN, Kelly DP (2006) PGC-1 coactivators: inducible regulators of energy metabolism in health and disease. J Clin Invest 116:615–622
- 62. Ju Y, Untereiner A, Wu L, Yang G (2015) H2S-induced S-sulfhydration of pyruvate carboxylase contributes to gluconeogenesis in liver cells. Biochim Biophys Acta 1850:2293–2303
- 63. Winnick JJ, An Z, Ramnanan CJ, Smith M, Irimia JM, Neal DW, Moore MC, Roach PJ, Cherrington AD (2011) Hepatic glycogen supercompensation activates AMP-activated protein kinase, impairs insulin signaling, and reduces glycogen deposition in the liver. Diabetes 60:398–407
- 64. Beltowski J, Jamroz-Wisniewska A (2016) Hydrogen sulfide in the adipose tissue-physiology, pathology and a target for pharmacotherapy. Molecules 22:e63
- 65. Lee P, Swarbrick MM, Ho KK (2013) Brown adipose tissue in adult humans: a metabolic renaissance. Endocr Rev 34:413–438
- 66. Tchernof A, Despres JP (2013) Pathophysiology of human visceral obesity: an update. Physiol Rev 93:359–404
- 67. Saltiel AR, Kahn CR (2001) Insulin signalling and the regulation of glucose and lipid metabolism. Nature 414:799–806
- Whiteman M, Gooding KM, Whatmore JL, Ball CI, Mawson D, Skinner K, Tooke JE, Shore AC (2010) Adiposity is a major determinant of plasma levels of the novel vasodilator hydrogen sulphide. Diabetologia 53:1722–1726
- 69. Feng X, Chen Y, Zhao J, Tang C, Jiang Z, Geng B (2009) Hydrogen sulfide from adipose tissue is a novel insulin resistance regulator. Biochem Biophys Res Commun 380:153–159
- 70. Huang CY, Yao WF, Wu WG, Lu YL, Wan H, Wang W, Endogenous CSE (2013) H2 S system mediates TNF-alpha-induced insulin resistance in 3T3-L1 adipocytes. Cell Biochem Funct 31:468–475
- 71. Manna P, Jain SK (2011) Hydrogen sulfide and L-cysteine increase phosphatidylinositol 3,4,5trisphosphate (PIP3) and glucose utilization by inhibiting phosphatase and tensin homolog (PTEN) protein and activating phosphoinositide 3-kinase (PI3K)/serine/threonine protein kinase (AKT)/protein kinase Czeta/lambda (PKCzeta/lambda) in 3T311 adipocytes. J Biol Chem 286:39848–39859
- Manna P, Jain SK (2012) Vitamin D up-regulates glucose transporter 4 (GLUT4) translocation and glucose utilization mediated by cystathionine-gamma-

lyase (CSE) activation and H2S formation in 3T3L1 adipocytes. J Biol Chem 287:42324–42332

- 73. Pan Z, Wang H, Liu Y, Yu C, Zhang Y, Chen J, Wang X, Guan Q (2014) Involvement of CSE/H2S in high glucose induced aberrant secretion of adipokines in 3T3-L1 adipocytes. Lipids Health Dis 13:155
- 74. Carnagarin R, Dharmarajan AM, Dass CR (2015) Molecular aspects of glucose homeostasis in skeletal muscle—a focus on the molecular mechanisms of insulin resistance. Mol Cell Endocrinol 417:52–62
- DeFronzo RA, Tripathy D (2009) Skeletal muscle insulin resistance is the primary defect in type 2 diabetes. Diabetes Care 32(Suppl 2):S157–S163
- 76. Chen NC, Yang F, Capecci LM, Gu Z, Schafer AI, Durante W, Yang XF, Wang H (2010) Regulation of homocysteine metabolism and methylation in human and mouse tissues. FASEB J 24:2804–2817
- 77. Du JT, Li W, Yang JY, Tang CS, Li Q, Jin HF (2013) Hydrogen sulfide is endogenously generated in rat skeletal muscle and exerts a protective effect against oxidative stress. Chin Med J 126:930–936
- 78. Liu Q, Xu WG, Luo Y, Han FF, Yao XH, Yang TY, Zhang Y, Pi WF, Guo XJ (2011) Cigarette smokeinduced skeletal muscle atrophy is associated with up-regulation of USP-19 via p38 and ERK MAPKs. J Cell Biochem 112:2307–2316
- 79. Veeranki S, Tyagi SC (2015) Mechanisms of hyperhomocysteinemia induced skeletal muscle myopathy after ischemia in the CBS-/+ mouse model. Int J Mol Sci 16:1252–1265
- 80. Bhambhani Y, Burnham R, Snydmiller G, MacLean I, Martin T (1996) Effects of 5 ppm hydrogen sulfide inhalation on biochemical properties of skeletal muscle in exercising men and women. Am Ind Hyg Assoc J 57:464–468
- Fiorucci S, Distrutti E, Cirino G, Wallace JL (2006) The emerging roles of hydrogen sulfide in the gastrointestinal tract and liver. Gastroenterology 131:259–271
- 82. Stanley S, Wynne K, McGowan B, Bloom S (2005) Hormonal regulation of food intake. Physiol Rev 85:1131–1158
- 83. Nauck MA, Heimesaat MM, Orskov C, Holst JJ, Ebert R, Creutzfeldt W (1993) Preserved incretin activity of glucagon-like peptide 1 [7-36 amide] but not of synthetic human gastric inhibitory polypeptide in patients with type-2 diabetes mellitus. J Clin Invest 91:301–307
- 84. Buteau J, Foisy S, Joly E, Prentki M (2003) Glucagon-like peptide 1 induces pancreatic beta-cell proliferation via transactivation of the epidermal growth factor receptor. Diabetes 52:124–132
- Holzer P, Reichmann F, Farzi A (2012) Neuropeptide Y, peptide YY and pancreatic polypeptide in the gut-brain axis. Neuropeptides 46:261–274
- 86. Bala V, Rajagopal S, Kumar DP, Nalli AD, Mahavadi S, Sanyal AJ, Grider JR, Murthy KS (2014) Release of GLP-1 and PYY in response to the activation of G protein-coupled bile acid receptor

TGR5 is mediated by Epac/PLC-epsilon pathway and modulated by endogenous H_2S . Front Physiol 5:420

- Boren J, Taskinen MR, Olofsson SO, Levin M (2013) Ectopic lipid storage and insulin resistance: a harmful relationship. J Intern Med 274:25–40
- Schaffer JE (2003) Lipotoxicity: when tissues overeat. Curr Opin Lipidol 14:281–287
- Weinberg JM (2006) Lipotoxicity. Kidney Int 70:1560–1566
- Taskinen MR, Boren J (2015) New insights into the pathophysiology of dyslipidemia in type 2 diabetes. Atherosclerosis 239:483–495
- 91. Fei W, Du X, Yang H (2011) Seipin, adipogenesis and lipid droplets. Trends Endocrinol Metab 22:204–210
- 92. Hammarstedt A, Gogg S, Hedjazifar S, Nerstedt A, Smith U (2018) Impaired adipogenesis and dysfunctional adipose tissue in human hypertrophic obesity. Physiol Rev 98:1911–1941
- Lefterova MI, Lazar MA (2009) New developments in adipogenesis. Trends Endocrinol Metab 20:107–114
- 94. Tsai CY, Peh MT, Feng W, Dymock BW, Moore PK (2015) Hydrogen sulfide promotes adipogenesis in 3T3L1 cells. PLoS One 10:e0119511
- Gupta S, Kruger WD (2011) Cystathionine betasynthase deficiency causes fat loss in mice. PLoS One 6:e27598
- 96. Mani S, Yang G, Wang R (2011) A critical lifesupporting role for cystathionine gamma-lyase in the absence of dietary cysteine supply. Free Radic Biol Med 50:1280–1287
- 97. Ambati S, Yang JY, Rayalam S, Park HJ, Della-Fera MA, Baile CA (2009) Ajoene exerts potent effects in 3T3-L1 adipocytes by inhibiting adipogenesis and inducing apoptosis. Phytother Res 23:513–518
- Lii CK, Huang CY, Chen HW, Chow MY, Lin YR, Huang CS, Tsai CW (2012) Diallyl trisulfide suppresses the adipogenesis of 3T3-L1 preadipocytes through ERK activation. Food Chem Toxicol 50:478–484
- 99. Langin D (2006) Adipose tissue lipolysis as a metabolic pathway to define pharmacological strategies against obesity and the metabolic syndrome. Pharmacol Res 53:482–491
- 100. Kolditz CI, Langin D (2010) Adipose tissue lipolysis. Curr Opin Clin Nutr Metab Care 13:377–381
- 101. Ding Y, Wang H, Geng B, Xu G (2020) Sulfhydration of perilipin 1 is involved in the inhibitory effects of cystathionine gamma lyase/hydrogen sulfide on adipocyte lipolysis. Biochem Biophys Res Commun 521:786–790
- 102. Candela J, Wang R, White C (2017) Microvascular endothelial dysfunction in obesity is driven by macrophage-dependent hydrogen sulfide depletion. Arterioscler Thromb Vasc Biol 37:889–899
- 103. Velmurugan GV, Huang H, Sun H, Candela J, Jaiswal MK, Beaman KD, Yamashita M, Prakriya M, White C (2015) Depletion of H₂S during

obesity enhances store-operated Ca²⁺ entry in adipose tissue macrophages to increase cytokine production. Sci Signal **8**:ra128

- 104. Xia N, Li H (2017) The role of perivascular adipose tissue in obesity-induced vascular dysfunction. Br J Pharmacol 174:3425–3442
- 105. Han J, Kaufman RJ (2016) The role of ER stress in lipid metabolism and lipotoxicity. J Lipid Res 57:1329–1338
- 106. Zhou H, Liu R (2014) ER stress and hepatic lipid metabolism. Front Genet 5:112
- 107. Bechmann LP, Hannivoort RA, Gerken G, Hotamisligil GS, Trauner M, Canbay A (2012) The interaction of hepatic lipid and glucose metabolism in liver diseases. J Hepatol 56:952–964
- Jump DB (2011) Fatty acid regulation of hepatic lipid metabolism. Curr Opin Clin Nutr Metab Care 14:115–120
- 109. Fu S, Watkins SM, Hotamisligil GS (2012) The role of endoplasmic reticulum in hepatic lipid homeostasis and stress signaling. Cell Metab 15:623–634
- 110. Brouwers M, Simons N, Stehouwer CDA, Isaacs A (2020) Non-alcoholic fatty liver disease and cardiovascular disease: assessing the evidence for causality. Diabetologia 63:253–260
- 111. Svegliati-Baroni G, Pierantonelli I, Torquato P, Marinelli R, Ferreri C, Chatgilialoglu C, Bartolini D, Galli F (2019) Lipidomic biomarkers and mechanisms of lipotoxicity in non-alcoholic fatty liver disease. Free Radic Biol Med 144:293–309
- 112. Wong VWS, Adams LA (2019) Fibroblast growth factor 21 for non-alcoholic steatohepatitis. Lancet 392:2658–2660
- 113. Norris EJ, Culberson CR, Narasimhan S, Clemens MG (2011) The liver as a central regulator of hydrogen sulfide. Shock 36:242–250
- 114. Untereiner AA, Fu M, Modis K, Wang R, Ju Y, Wu L (2016b) Stimulatory effect of CSE-generated H2S on hepatic mitochondrial biogenesis and the underlying mechanisms. Nitric Oxide 58:67–76
- 115. Gulsen M, Yesilova Z, Bagci S, Uygun A, Ozcan A, Ercin CN, Erdil A, Sanisoglu SY, Cakir E, Ates Y, Erbil MK, Karaeren N, Dagalp K (2005) Elevated plasma homocysteine concentrations as a predictor of steatohepatitis in patients with non-alcoholic fatty liver disease. J Gastroenterol Hepatol 20:1448–1455
- 116. Polyzos SA, Kountouras J, Patsiaoura K, Katsiki E, Zafeiriadou E, Deretzi G, Zavos C, Gavalas E, Katsinelos P, Mane V, Slavakis A (2012) Serum homocysteine levels in patients with nonalcoholic fatty liver disease. Ann Hepatol 11:68–76
- 117. Watanabe M, Osada J, Aratani Y, Kluckman K, Reddick R, Malinow MR, Maeda N (1995) Mice deficient in cystathionine beta-synthase: animal models for mild and severe homocyst(e)inemia. Proc Natl Acad Sci USA 92:1585–1589
- 118. Woo CW, Siow YL, Pierce GN, Choy PC, Minuk GY, Mymin D (2005) Hyperhomocysteinemia induces hepatic cholesterol biosynthesis and lipid

accumulation via activation of transcription factors. Am J Physiol Endocrinol Metab 288:E1002–E1010

- 119. Woo CW, Prathapasinghe GA, Siow YL (2006) Hyperhomocysteinemia induces liver injury in rat: protective effect of folic acid supplementation. Biochim Biophys Acta 1762:656–665
- 120. Wu N, Sarna LK, Siow YL (2011) Regulation of hepatic cholesterol biosynthesis by berberine during hyperhomocysteinemia. Am J Physiol Regul Integr Comp Physiol 300:R635–R643
- 121. Robert K, Nehme J, Bourdon E, Pivert G, Friguet B, Delcayre C, Delabar JM, Janel N (2005) Cystathionine beta synthase deficiency promotes oxidative stress, fibrosis, and steatosis in mice liver. Gastroenterology 128:1405–1415
- 122. Loiselle JJ, Yang G (2020) Hydrogen sulfide and hepatic lipid metabolism—a critical pairing for liver health. Br J Pharmacol 177:757–768
- 123. Nagahara N, Nagano M, Ito T, Shimamura K, Akimoto T, Suzuki H (2013) Antioxidant enzyme, 3-mercaptopyruvate sulfurtransferase-knockout mice exhibit increased anxiety-like behaviors: a model for human mercaptolactate-cysteine disulfiduria. Sci Rep 3:1986
- 124. Li M, Xu C, Shi J, Ding J, Wan X, Chen D, Gao J, Li C, Zhang J, Lin Y, Tu Z, Kong X, Li Y, Yu C (2018) Fatty acids promote fatty liver disease via the dysregulation of 3-mercaptopyruvate sulfurtransferase/hydrogen sulfide pathway. Gut 67:2169–2180
- 125. Nagahara N, Koike S, Nirasawa T, Kimura H, Ogasawara Y (2018) Alternative pathway of H2S and polysulfides production from sulfurated catalytic-cysteine of reaction intermediates of 3-mercaptopyruvate sulfurtransferase. Biochem Biophys Res Commun 496:648–653
- 126. Hwang SY, Sarna LK, Siow YL (2013) High-fat diet stimulates hepatic cystathionine beta-synthase and

cystathionine gamma-lyase expression. Can J Physiol Pharmacol 91:913–919

- 127. Sarna LK, Sid V, Wang P, Siow YL, House JD (2016) Tyrosol attenuates high fat diet-induced hepatic oxidative stress: potential involvement of cystathionine beta-synthase and cystathionine gamma-lyase. Lipids 51:583–590
- 128. Wu D, Zheng N, Qi K, Cheng H, Sun Z, Gao B, Zhang Y, Pang W, Huangfu C, Ji S, Xue M, Ji A, Li Y (2015) Exogenous hydrogen sulfide mitigates the fatty liver in obese mice through improving lipid metabolism and antioxidant potential. Med Gas Res 5:1
- 129. Li W, Ma F, Zhang L, Huang Y, Li X, Zhang A, Hou C, Zhu Y, Zhu Y (2016) S-Propargyl-cysteine exerts a novel protective effect on methionine and choline deficient diet-induced fatty liver via Akt/ Nrf2/HO-1 pathway. Oxidative Med Cell Longev 2016:4690857
- 130. Sun L, Zhang S, Yu C, Pan Z, Liu Y, Zhao J, Wang X, Yun F, Zhao H, Yan S, Yuan Y, Wang D, Ding X, Liu G, Li W, Zhao X, Liu Z, Li Y (2015) Hydrogen sulfide reduces serum triglyceride by activating liver autophagy via the AMPK-mTOR pathway. Am J Physiol Endocrinol Metab 309: E925–E935
- 131. Zhao S, Song T, Gu Y, Zhang Y, Cao S, Miao Q, Zhang X, Chen H, Gao Y, Zhang L, Han Y, Wang H, Pu J, Xie L, Ji Y (2020) Hydrogen sulfide alleviates liver injury via S-sulfhydrated-Keap1/Nrf2/LRP1 pathway. Hepatology 73:282–302
- 132. Yang G, Ju Y, Fu M, Zhang Y, Pei Y, Racine M, Baath S, Merritt TJS, Wang R, Wu L (1863) Cystathionine gamma-lyase/hydrogen sulfide system is essential for adipogenesis and fat mass accumulation in mice. Biochim Biophys Acta Mol Cell Biol Lipids 2018:165–176

The Role of H₂S in the Gastrointestinal Tract and Microbiota

Ailin Xiao, Chuanyong Liu, and Jingxin Li

Abbreviation

3-MP	3-Mercaptopyruvate
3-MST	3-Mercaptopyruvate
	sulfurtransferase
AC	Adenylate cyclase
AOAA	Amino-oxyacetic acid
Apr	Adenosine-5'-phosphosulfate
	reductase
APS	Adenosine-phosphosulphate
BCA	β-cyano-L-alanine
CAT	Cysteine aminotransferase
CBS	Cystathionine β -synthase
CD	Crohn's disease
CRC	Colorectal cancer
CRD	Colorectal distension
CSE	Cystathionine γ-lyase
СТ	Cholera toxin
CVH	Chronic visceral hyperalgesia
DADS	Diallyl disulfide
DAO	D-amino acid oxidase
DRG	Dorsal root ganglia
Dsr	Dissimilatory sulfite reductase
DSS	Dextran sodium sulfate
FD	Functional dyspepsia
FGID	Functional gastrointestinal diseases
H_2S	Hydrogen sulfide

A. Xiao

Department of Physiology, Hubei College of Chinese Medicine, Jingzhou, China

C. Liu · J. Li (🖂)

Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China e-mail: ljingxin@sdu.edu.cn HAEC Congenital megacolon-associated enterocolitis HSCR Congenital hirschsprung disease IBS Irritable bowel syndrome Interstitial cells of Cajal ICCs IJP Inhibitory junction potential **ISCs** Intestinal stem cells LDHA Lactate dehydrogenase A L-NAME N(G)-Nitro-L-Arginine Methyl Ester **MDSCs** Marrow-derived suppressor cells MLCP Myosin light chain phosphatase MP Myenteric plexus NANC Noncholinergic and nonadrenergic NCI Neonatal colitis NMD Neonatal maternal deprivation NOS Nitric oxide synthase Non-steroidal anti-**NSAID** inflammatory drugs PAG dl-propargylglycine SMP Submuscular plexus SOR Sulfide quinone oxidoreductase SRB Sulfate-reducing bacteria TEA Tetraethylamine TLR Toll-like receptor TRPA1 Transient receptor potential ankyrin 1 channel TRPV1 Transient receptor potential vanilloid 1 Ulcerative colitis UC

1 Introduction

Hydrogen sulfide (H_2S) is a gas with a pungent odor. Twenty years ago, it was discovered as a physiological mediator. Later, H_2S -producing

© Springer Nature Singapore Pte Ltd. 2021

Y.-C. Zhu (ed.), *Advances in Hydrogen Sulfide Biology*, Advances in Experimental Medicine and Biology 1315, https://doi.org/10.1007/978-981-16-0991-6_4

including cystathionine β -synthase enzymes, (CBS), cystathionine γ-lyase (CSE), 3-mercaptopyruvate sulfurtransferase (3-MST), etc., have been found in the brain, angiocarpy, kidney, gastrointestinal tract, and many other tissues and organs of mammals. These enzymes are involved in the endogenous production of H₂S in the body. But among these tissues and organs, the gastrointestinal tract is special because there are a variety of commensal microorganisms in the gastrointestinal tract of humans and other animals, and some of them can also produce H₂S by using sulfides produced in human food catabolism as raw materials. We call them microbial-derived H_2S (Fig. 1). In recent years, targeting the source and mechanism of H₂S in the gastrointestinal tract, a lot of research and progress has been made on the physiological regulation of H₂S on the intestine and the interaction between H₂S, intestinal microorganisms, and their hosts. Closely related to clinical practice, some of these studies have provided credible evidence and new theoretical foundations for more comprehensively and deeply revealing the occurrence, development process, and mechanism of diseases.

2 H₂S Production and Mechanisms in the Gastrointestinal Tract

2.1 H₂S Produced by Gastrointestinal Tissues

As is already known, the endogenous H_2S is produced from L-cysteine by two pyridoxal 5-'-phosphate (PLP)-dependent enzymes, cystathionine β-synthase (CBS), and γ-lyase (CSE) cystathionine and PLP-independent 3-mercaptopyruvate sulfurtransferase (3-MST) [1, 2]. Shibuya, N et al. reported a pathway involved in the production of H₂S by 3-MST and D-amino acid oxidase (DAO) in the mammalian cerebellum and kidney cells [3]. It is currently known that H_2S can be synthesized in many tissues of several mammals including the gastrointestinal tract. It has a wide range of effects on different target organs and tissues. So far, protein expressions of CBS and CSE have been observed in human gastric [4] and colon [5] tissues, and in the entire gastrointestinal tract (stomach, duodenum, jejunum, ileum, colon) of rats [5]. In addition, mRNA and protein expressions of 3-MST have been observed in rat stomach [6], and DAO expression in rat jejunum [7]. Protein expressions of CBS and CSE have been observed in the stomach [4], jejunum [8], ileum [9], and colon [10] of mice. Additionally, D-cysteine and DAO-dependent H₂S production pathway has been observed in the stomach of mice [11]; mRNAs of CBS, CSE, and 3-MST have also been found in chicken intestinal tissues [12] (shown in Table 1).

It was found in our previous studies that the protein expressions of CBS and CSE were present in the gastroscopy biopsies of normal healthy volunteers and patients with functional dyspepsia (FD), and the CBS content of FD patients was significantly lower than that of normal controls [4]. It is suggested that there may be a correlation between the abnormality of the H₂S production pathway and the pathogenesis of FD. Whether the abnormal H₂S synthesis is involved in the pathogenesis of FD or FD causes the disorder of H₂S synthesis requires further research. This evidence suggests that the H₂S-producing enzymes CBS, CSE, 3-MST, and DAO are structurally expressed in the gastrointestinal tract, but their expression is highly species-specific and tissue-specific.

In mammals and some other animals, the methionine contained in their food is partly converted into homocysteine through the methionine cycle. The latter is an important intermediate product in methionine metabolism. CBS and CSE then catalyze homocysteine to cystathionine and release H₂S through two different pathways. The first pathway is to link homocysteine with serine [13], and the second with cysteine [14]. Cystathionine is catalyzed by CSE in an α , γ -elimination reaction to produce cysteine, which, together with α -ketobutyrate, produces 3-mercaptopyruvate (3-MP) under the action of cysteine aminotransferase (CAT). Then the sulfur atom is transferred to the receptor under the action of 3-MST before H_2S is released [15]. In the

Fig. 1 H₂S production in the gastrointestinal tract. There are two main sources of hydrogen sulfide in the gastrointestinal tract: H₂S-producing enzymes in the gastrointestinal tract, including cystathionine β -synthase (CBS), cystathionine γ -lyase (CSE), 3-mercaptopyruvate sulfurtransferase (3-MST), D-amino acid oxidase (DAO)

whole process, the roles of CBS and CSE are diverse. They catalyze various reactions starting from cystine and cysteine with the release of H₂S [16, 17], including catalyzing homocysteine to homomethionine form by γ-replacement, catalyzing homocysteine to form α -Ketobutyrate by α , γ -elimination, catalyzing cysteine to form serine or lanthionine by β -replacement, catalyzing cysteine and cystine to form pyruvate by α , β -elimination. H₂S entering the mitochondrial matrix is further metabolized into sulfate and thiosulfate through sulfide quinone

synthesize H_2S with L-cysteine or D-cysteine as substrate; another part of gastrointestinal H_2S is derived from the fermentation and metabolic processes of intestinal sulfatereducing bacteria (SRB) on the inorganic sulfate and sulfite in unabsorbed food residues

oxidoreductase (SQR), persulfide dioxygenase (ETHE1), sulfite oxidase, and rhodanese [18].

It has been reported that CBS and CSE are mainly distributed in the cytoplasm, and some studies have shown that CBS post-translationally modified by the small ubiquitin-like modifier-1 can be shuttled into the nucleus where it associates with the nuclear scaffold [19]. 3-MST is distributed in the cytoplasm and mitochondria. Since the concentration of cysteine in mitochondria is significantly higher than that in the cytoplasm, the catalytic process of 3-MST

Species and intestinal tract	CBS	CSE	3-MST	DAO	References
Human stomach	Yes	Yes	Unknown	Unknown	[4]
Human duodenum	Unknown	Unknown	Unknown	Unknown	
Human jejunum	Unknown	Unknown	Unknown	Unknown	
Human ileum	Unknown	Unknown	Unknown	Unknown	
Human colon	Yes	Yes	Unknown	Unknown	[5]
Rat stomach	Yes	Yes	Yes	Unknown	[5, 6]
Rat duodenum	Yes	Yes	Unknown	Unknown	[5]
Rat jejunum	Yes	Yes	Unknown	Yes	[5, 7]
Rat ileum	Yes	Yes	Unknown	Unknown	[5]
Rat colon	Yes	Yes	Unknown	Unknown	[5]
Mouse stomach	Yes	Yes	Unknown	Yes	[4, 11]
Mouse duodenum	Unknown	Unknown	Unknown	Unknown	
Mouse jejunum	Yes	Yes	Unknown	Unknown	[8]
Mouse ileum	Yes	Yes	Unknown	Unknown	[9]
Mouse colon	Yes	Yes	Unknown	Unknown	[10]
Chicken small intestine	Yes	Yes	Yes	Unknown	[12]

Table 1 Expression of CBS, CSE, 3-MST, DAO in gastrointestinal tract of different species

may mostly occur in mitochondria [20]. The oxidative metabolism of sulfide occurs in the mitochondria of mammals, and the oxidation pathway is highly sensitive to H_2S concentration [21]. DAO that catalyzes D-cysteine to produce 3-MP is present in the peroxisome [22], and 3-MST is mainly located in the mitochondria [15]. Mitochondria and peroxisomes exchange multiple metabolites through a special form of vesicle trafficking [23], which makes it possible for the two enzymes, DAO and 3-MST, to produce H_2S through the interaction of these two organelles (Fig. 2).

2.2 Gastrointestinal Microorganisms-Derived H₂S

Another part of gastrointestinal H_2S is derived from the fermentation and metabolic processes of intestinal sulfate-reducing bacteria (SRB) on the inorganic sulfate and sulfite in unabsorbed food residues.

The digestion methods currently known in mammals include physical digestion, chemical digestion, and microbial digestion. One of the main functions of the human intestinal microbiota is to help obtain nutrients and energy from our diet. This is one of the important foundations for how we can live in harmony with them. Food residues unabsorbed by the proximal intestine are transported to the distal intestine, where they undergo primary fermentation to produce shortchain fatty acids (such as acetate, propionate, and butyrate) and gases (such as H₂ and CO₂). These fermentation products not only are the source of carbon, nitrogen, and energy for the microorganisms but also affect the host. In addition to maintaining the redox balance as much as possible during the fermentation process, it is also necessary to maximize the energy produced [24]. In the human intestine, H_2 -consuming microorganisms include methanogens, acetogens, and SRB, which produce methane, acetate, and H_2S , respectively [25].

SRB, a type of anaerobic microorganisms including bacteria and archaea, uses sulfate as the electron acceptor of the respiratory chain terminal to oxidize organic matter and hydrogen to obtain energy. They are widely distributed in the digestive tract of humans and animals. Most of the SRBs currently found belong to the Deltaproteobacteria, and the main species of intestinal SRBs belong to the Desulfovibrionaceae family, Deltaproteobacteria class. Up to now, isolated from intestinal samples and identified by PCR technology, they are comprised of Desulfovibrio desulfuricans and Desulfovibrio intestinalis,

oxidoreductase (SQR), persulfide dioxygenase (ETHE1), sulfite oxidase, and rhodanese Desulfovibrio fairfieldensis, Desulfomonas pigra, Desulfovibrio Vulgaris. Among them, Desulfovibrio desulfuricans, Desulfovibrio fairfieldensis, Desulfomonas pigra are isolated from the human intestine and distributed in the colon and rectum of healthy people and patients with colitis [26–29].

SRB, also called dissimilatory sulfatereducing prokaryotes, basically features the reduction of sulfate to sulfur ions employing dissimilatory reduction, that is, using sulfate as the terminal electron acceptor of the respiratory chain. Although the mechanism of sulfate reduction has not been fully elucidated, what has been observed is that it follows at least three steps: sulfate first binds ATP to form adenosinephosphosulphate (APS), and then forms sulfite under adenosine-5the catalysis of '-phosphosulfate reductase (Apr), and lastly forms sulfur ion through a series of electron transfer processes under the catalysis of dissimilatory sulfite reductase (Dsr) [30].

SRB has a wide range of electron donors, among which short-chain fatty acids are commonly seen. For example, lactic acid, butyric acid, malic acid, propionic acid, fumaric acid, etc. Amino acids, ethanol, and hydrogen can also be used as respiratory electron donors for SRB [31]. Many Desulfovibrio can use hydrogen as the only energy source, indicating that the oxidation of hydrogen with sulfite as the terminal electron acceptor is an energy-saving mechanism [32].

In addition to SRB, other bacterial species in the colon cavity can convert cysteine to H_2S [33]. Many bacterial groups, including Clostridium, Escherichia, Salmonella, Klebsiella, Streptococcus, and Enterobacter convert cysteine to H_2S , pyruvate, and ammonia by activating cysteine desulfurase [34].

Recent studies have shown that Bilophila Wadsworth, the anaerobic opportunistic pathogen in the human intestinal microorganism, can convert taurine (2-aminoethanesulfoniate), a microbial substrate rich in the intestine, into H_2S . A key enzyme in this pathway is isethionate sulfite-lyase, a member of the glycyl radical enzyme family. This enzyme catalyzes a new, radical-

based C-S bond-rupture reaction to convert isethionate (2-hydroxyethanesulfonate) to sulfite and acetaldehyde [35].

3 Physiological Effects of H₂S on the Gastrointestinal Tract

3.1 H₂S Regulation Over Gastrointestinal Motility

3.1.1 H₂S Regulatory Targets for Gastrointestinal Motility

Regarding the role of H_2S in regulating gastrointestinal motility, in some reports, it can promote contraction of the gastrointestinal tract [36, 37], but in more reports, it promotes relaxation instead. The targets of H_2S may include gastrointestinal smooth muscle, interstitial cells of Cajal (ICCs), and enteric inhibitory neurons.

H₂S of physiological concentrations can inhibit the spontaneous contraction of gastric and jejunal smooth muscle in rats, reduce the frequency and amplitude of smooth muscle contraction [38]. ACh-mediated contraction of the guinea-pig ileum circular muscle can be concentration-dependently relaxed by sodium hydrosulfide (NaHS), a donor of H_2S [2]. NaHS can also exert an inhibitory effect on smooth muscles (human, rat, and mouse colons) and jejunum (mouse) [39]. NaHS reduces the contraction of the circular muscle strips of the mouse gastric fundus and distal colon caused by $PGF_{2\alpha}$ in a concentration-dependent manner; potassium channel blockers such as glibenclamide, apamin, and scorpion venom cannot affect this effect of NaHS [40]. In one of our studies, it was found that NaSH or L-cysteine could relax muscle strips in the gastric body or fundus of mice. In the in vivo experiments, the mouse gastric fundus pretreated with L-cysteine (1 mM) intraperitoneal injection showed a significant increase in compliance with dilation stimuli, and the CBS inhibitor aminooxy acetic acid (AOAA) rather than CSE inhibitor dl-propargylglycine (PAG) can reverse this effect. At the same time, we found that the expression of CBS proteins in gastric fundus tissues showed a change of first increase and then decrease with the extension of feeding time (0-30 min) after fasting, suggesting that H₂S as a gas transmitter participates in the regulation of gastric diastolic function [4].

In the gastrointestinal tract, smooth muscle function can be indirectly regulated by ICCs, which can generate electrical signals that are transmitted to smooth muscle cells through gap junctions. There is a discrepancy in whether CBS and CSE are expressed on ICCs. There are reports on the presence of CSE immunohistochemical staining in ICCs of guinea-pig colon [41], and also no presence of mRNAs of CBS or CSE in ICCs of mouse colon. However, NaHS can indeed affect ICCs, no matter whether ICCs can release H_2S or not [39]. NaHS (0.1–0.3 mM) can depolarize ICCs and non-selectively activate cation channels, thereby activating pacemaker cells and slightly increasing spontaneous calcium waves; while NaHS (1 mM) can activate K_{ATP} channels, and increase mitochondrial calcium uptake, thereby inhibiting ICCs. None of the above effects can be blocked by adenylate cyclase (AC) inhibitor ODQ or nitric oxide synthase (NOS) inhibitor N(G)-Nitro-L-Arginine Methyl Ester (L-NAME) [42]. Electrophysiological experiments and intracellular calcium analysis show that high-concentration NaHS (0.5-1 mM) can inhibit the pacing current in ICCs isolated and cultured from the small intestine of mice [42]. However. in the presence of low-concentration NO, low-concentration NaHS will enhance the inhibitory effect of NO on the pacemaker system, indicating that there may be interactions between these two gas transmitters [43]. H_2S also has different effects on intestinal motility patterns. The video recordings revealed two rat colon motor patterns: low-frequency highamplitude propulsive ripples and high-frequency low-amplitude non-propulsive ripples. Propulsive ripples drain the contents to the distal end of the colon, while non-propulsive ripples may participate in mixed and segmented motor patterns to promote intestinal absorption. These two motor patterns may be related to pacemaker cells in the submuscular plexus (ICC-SMP) and the

myenteric plexus (ICC-MP) of the colon wall [44]. The administration of 1 mM NaHS on the serosa side does not alter the amplitude, duration, or frequency of slow-wave activity produced by ICC-SMP in full thickness rat colon specimens, but can inhibit the rhythmic propulsive motor complexes produced by ICC-MP in the colon [45].

In rats, cyclic depolarizations and slow waves generate myogenic contractions of low frequency and high frequency, respectively. ICCs located near the submuscular plexus (SMP) generate slow waves. Inhibitory junction potential (IJP) consists of a fast purinergic inhibitory junction potential (IJPf) followed by a slow nitrergic inhibitory junction potential (IJPs) component leading to relaxation. According to the study of electric field stimulation of different programs, it is found that for tissues devoid of ICC-SMP, single pulse protocols increase purinergic and nitrergic IJP amplitude in a voltage-dependent manner. In tissues with intact ICC-SMP, nitrergic and purinergic responses are reduced and slow waves maintain their intrinsic frequency and increase their amplitude under nerve-mediated hyperpolarization, indicating that inhibitory neurons modulate colonic spontaneous motility and the principles determining post-junctional responses are the frequency of firing that determines the neurotransmitter/receptor involved, the transwell gradient and the origin and of each myogenic nature activity [46]. Motor neurons in the intestinal wall can spontaneously release the inhibitory neurotransmitter NO in vitro, so when intestinal plexus blocker tetrodotoxin (TTX) is added to the incubation solution, the frequency, and amplitude of smooth muscle contraction increase because TTX blocks the release of inhibitory transmitters [47]. Incubated with PAG and AOAA, human colonic smooth muscle samples can undergo depolarization. In the presence of TTX, NaHS can decrease the spontaneous contraction of smooth muscle in a concentration-dependent manner and block nerve-mediated increased frequency and amplitude of cholinergic and

tachykinin contractions reversibly [48]. These results suggest that H_2S can regulate intestinal mobility by promoting the function of enteric inhibitory neurons.

3.1.2 Regulatory Mechanism of H₂S on Gastrointestinal Motility

Regulation of H_2S over gastrointestinal motility involves a variety of intracellular mechanisms, including concentration changes in cyclic guanosine monophosphate (cGMP), cyclic adenosine monophosphate (cAMP), and cell membrane hyperpolarization caused by direct or indirect activation of K⁺ channels [49].

NaHS (10–100 μ M) reverses the vasodilation caused by isoproterenol and salbutamol in a concentration-dependent manner, and significantly reduces the accumulation of cAMP in vascular smooth muscle cells induced by forskolin. However, in the presence of NOS inhibitor L-NAME (100 μ M), or the aortic ring endothelial vasoconstriction exfoliation, NaHS-induced weaken, Glibenclamide (10 µM) cannot reduce the blood vessel contraction caused by NaHS, proving that the vasoconstriction effect of H₂S involves the AC/cAMP pathway [50], and also suggesting that there is an interaction between H₂S and NO in the regulation of vascular smooth muscle cell contraction.

When aortic tissues are exposed to CSE inhibitor PAG or β -cyano-L-alanine (BCA), the cGMP content decrease, and when CSE expression is silenced by siRNA transfection, intracellular cGMP content also decrease, confirming that endogenous H₂S promotes cGMP accumulation, and the non-selective phosphodiesterase inhibitor 3-isobutyl-1-methylxanthine greatly reduces this effect of H₂S. These findings provide evidence for H₂S as an inhibitor of phosphodiesterase (PDE) activity [51]. In colonic smooth muscle from rabbit, mouse, and human, endogenous and exogenous H₂S inhibits PDE5 activity and increases the level of phosphorylation of cGMP and inositol triphosphate (IP3) receptor. In turn, cGMP/PKG pathway the can increase CSE-derived H₂S and the level of NO-induced cGMP suggesting a new model of interaction

between NO and H_2S in colonic smooth muscle cells [52].

The action of H₂S on different ion channels in the cell membrane is also one of its important mechanisms for regulating gastrointestinal motility. NaHS has a dual effect on the spontaneous contraction of guinea-pig gastric antrum muscle strips: the excitatory effect mediated by inhibiting the K_V channel, and the inhibitory effect mediated by activating the KATP channel [53]. H₂S dose-dependently inhibits contraction of rat jejunal circular muscles, in part through the KATP channel and myosin light chain phosphatase (MLCP) rather than the exogenous or enteric nervous system, visceral afferent nerve, NO, K_{Ca} channel [54]. In our previous research, it was found that H₂S can induce biphasic effects on rat duodenal intestinal motility: the transient excitatory effect might be mediated by activation of transient receptor potential vanilloid 1 (TRPV1) channels in sensory nerve terminals with the consequent release of substance P. The long-lasting inhibitory effect might be mediated by the activation of KATP channels in the smooth muscle cells [55]. H₂S regulates the contractile activity of the colonic smooth muscle, potentially by modifying the sulfhydryl groups of L-type calcium channels [56]. In addition, the ionic mechanism of H₂S also involves K_{ATP} and small conductance calcium-activated potassium channels ($K_{Ca}2.2/K_{Ca}2.3$; SKCa) [39, 45], Nav1.5 voltage-dependent Na⁺ channels [57], TRPV1, TRPA1 cation channels [41, 55, 58], and large conducting calcium-activated potassium channels BKCa [59].

However, inconsistent with the negative regulatory effect of H_2S on gastrointestinal motility reported by most studies, there are also reports claiming that exogenous H_2S sulfide Kv4.3 can depolarize cell membranes of gastric antrum smooth muscle, thereby increasing its basic tension [36]. Low-concentration H_2S depolarizes the cell membrane by inhibiting the Kv current, resulting in an increase in L-type Ca²⁺ current, intracellular calcium ions, and the tension of the gastric fundus smooth muscle cells in mice [37].

Smooth muscle contraction is calmodulindependent because of the activation of myosin light chain kinase and inhibition of MLCP. NaHS can relax the contraction of mouse gastric fundus muscle strips caused by $PGF_{2\alpha}$ in a concentrationdependent manner, and the MLCP inhibitor calyculin A reduces NaHS-induced relaxation, suggesting that H₂S at least in part causes gastric fundus relaxation in mice by activating MLCP [40]. Exogenous (NaHS) and endogenous (L-cysteine) H_2S reduce the contraction induced by carbachol in isolated rabbit gastric smooth muscle cells. The reason is that the dephosphorylation of the myosin light chain caused by the activation of MLCP and the inhibition of Rho kinase and PKC activity [60]. H_2S induces the sulfur hydration reaction of RhoA, which is related to the inhibition of RhoA activity. It is speculated that the sulfidation of RhoA by H₂S results in the inhibition of RhoA and Rho kinase activity and muscle relaxation [60, 61].

The sulfhydrylation of proteins that regulate different functions and the production of polysulfides may to some extent reveals the reason for the diverse mechanisms of action of H_2S [62, 63]. Not only that, noncholinergic and nonadrenergic (NANC) inhibitory neurotransmitters released by the enteric nerve include H_2S , NO, ATP, vasoactive intestinal peptide (VIP), CO, and so on. In several physiological digestive reflexes that cause smooth muscle relaxation in the gastrointestinal tract, it is common that multiple NANC transmitters work in concert [49].

3.2 Regulation of H₂S Over Gastrointestinal Sensation

The sensation produced by the afferent impulse of the visceral receptor is called visceral sensation. The suitable stimulus of the visceral receptor is the natural one in the body. The afferent impulse of the visceral receptor, which causes a variety of reflex activities, plays an important role in the regulation of visceral function. Visceral afferent impulses are relatively vague, diffuse, difficult to accurately locate, and generally does not produce consciousness. The number of sensory nerve fibers in the viscera, mixed in sympathetic and parasympathetic nerves, is less than that on the general surface. Afferent impulses enter the spinal cord along the nerves or the brain stem along the cranial nerves, causing corresponding reflex activities. Visceral pain is present in almost all parts of the body. These parts, though sensitive to tension and pressure, show no reaction to incised wounds.

Given the above characteristics of visceral sensation, many studies on H₂S have focused on its role in visceral nociceptive sensation. According to different animal models and ways of administration, H₂S has been reported to exert either pronociceptive or antinociceptive effects in the gastrointestinal tract [64]. It produces analgesic effects in rodent visceral pain models by activating KATP channels and causes transactivation and internalization of the mu-opioid receptor (MOR) in neuron-like cells through a mechanism that requires phosphorylation of protein kinase B (AKT), suggesting that the analgesic effect of H₂S involves opioid receptors [65]. Our recent research has revealed that H_2S downregulates colonic afferent nerve impulses in mice through a neuronal nitric oxide synthase (nNOS)-dependent mechanism. NaHS can significantly reduce the autonomous discharge of the colonic afferent nerves. The non-specific K⁺ channel inhibitor tetraethylamine (TEA) can reduce the relaxing effect of NaHS on intestinal smooth muscle, but it does not block its inhibition of afferent neural activity. The inhibitory effect of NaHS on the intestinal afferent nerve can be eliminated by NOS inhibitor L-NAME (1 mM), specific nNOS inhibitor NPLA (1µM), or N-type Ca^{2+} channel blocker ω -conotoxin GVAS (1 μ M). Compared with wild-type mice, CBS +/- mice are more sensitive to colorectal distension (CRD) [66].

Many of the currently known studies are about the role and mechanism of H_2S in promoting visceral nociception. In the mouse colon, the role of luminal H_2S in promoting visceral nociception may be related to activation or sensitization of T-type Ca²⁺ channels in primary afferent neurons [67]. In an irritable bowel syndrome (IBS)-like rat model with chronic visceral hyperalgesia (CVH), CBS expression was significantly increased in colon dorsal root ganglia (DRGs), and CBS inhibitors markedly attenuated the abdominal withdrawal reflex scores in response to colorectal distension in rats with CVH [68]. The rapid phosphorylation of extracellular signal-regulated kinase (ERK) in the spinal dorsal horn is often used as a marker for spinal neurons after somatic and colonic nociception [69]. By giving mibefradil, a strict T-type Ca²⁺ channel blocker, the colonic pain, and hyperalgesia in mice caused by H₂S can be eliminated ZnCl₂ can inhibit Cav3.2, but not Cav3.1 and Cav3.3. When two Zn²⁺ chelators of TPEN and diisoglyceric acid are administered intracolonally, the pain-inducing effect induced by NaHS can be mimicked, suggesting that H₂S and other Zn^{2+} chelators can clear Zn^{2+} on the cavity surface and cause colonic pain by activating T-type Ca²⁺ Channel, which is likely to be Cav3.2 subtype [70]. In the rat colon, luminal H₂S can activate the upregulated Cav3.2 channel in early colitis and cause excitement of sensory nerves, resulting in protective effects on colonic mucosal cells [71]. Studies have also reported that NaHS/H2S-induced mechanical hyperalgesia in mice requires both Cav3.2 channels and activation of transient receptor potential ankyrin 1 channel (TRPA1) [72]. Neuropathic pain induced by anticancer drug paclitaxel may also be related to the activation of T-type Ca²⁺ channels and increased CSE activity, rather than upregulation of protein levels [73]. In the CVH model caused by neonatal maternal deprivation (NMD), the expression of CBS in colonassociated DRGs was significantly increased, and its change was quite consistent with the process of enhanced visceral movement caused by CRD. The CBS inhibitor AOAA produces antinociceptive effects in a dose-dependent manner. The P65 content in the nucleus of NMD rats is increased. Intrathecal injection of the P65 inhibitor PDTC can significantly reduce the expression of CBS and the nociceptive response produced by CRD [74]. The sensitization of Na⁺ channels on colon-associated DRG neurons in NMD and neonatal colitis (NCI) rat models may also be mediated by CBS/H₂S [75-77]. In addition, the activation of adrenergic signals and Tolllike receptor 4 (TLR4) and NF-kappaB are also involved in the role of H_2S in visceral hypersensitivity [78, 79]. Recent studies have shown that NaHS can increase the spontaneous excitatory postsynaptic currents of spinal glia neurons through a presynaptic mechanism, thereby regulating the transmission of pain signals [80].

3.3 Effects of H₂S on Gastrointestinal Secretion and Absorption

There are currently some disputes over the role of H_2S in regulating gastrointestinal secretion. Some scholars have suggested that gastrointestinal epithelial cells may defend and eliminate the potential harm of bacterial-derived H₂S by utilizing their electrolytes and fluid transport mechanisms [81]. Krueger et al. studied the effect of NaHS on the secretion of guinea pigs and human colon with Using Chamber and found that TRPV1 blocker: capsazepine, AMG9801, SB705498, BCTC; LY294002 (PI3K inhibitor); SKF96365 (store operated calcium channel blocker); 2-APB (inositol triphosphate blocker) and atropine can significantly reduce NaHS-induced secretion. Neurokinin-1, -3 receptor blockers can inhibit the effect of NaHS in the guinea-pig colon, while neurokinin-1, -2 receptor blockers can restrain NaHS response in the human colon. NaHS and capsaicin show cross-desensitization. NaHS induces capsazepine and LY294002 sensitive afferent discharge. These results suggest that exogenous H₂S evokes mucosal secretion by targeting TRPV1 expressing afferent nerves which activate cholinergic secretomotor neurons in a species dependent manner via neurokinin-1,-2,or-3 receptors [82]. It has also been reported that NaHS mucosal perfusion increases gastric HCO_3^- secretion, which is mediated by capsaicin-sensitive afferent neurons. This process relies on NO and prostaglandins, not KATP channels [83]. Interestingly, intraperitoneal injection of NaHS can significantly reduce gastric juice pH; KATP channel blocker glibenclamide and AC inhibitor SQ22536 can eliminate its effects: indicating that NaHS can act on the KATP channel and activate the AC/cAMP

pathway to promote gastric acid secretion [84]. Endogenous and exogenous H_2S can reduce intestinal fluid secretion and Cl-loss caused by cholera toxin (CT). The CSE inhibitor PAG reverses the effect of L-cysteine but cannot reverse that of AC inhibitor SQ22536, cAMP inhibitor bupivacaine, PKA inhibitor KT-5720, and AMPK inhibitor AICAR, suggesting that the anti-CT-induced diarrhea mechanism of H_2S in mice may not include the AC/cAMP/PKA pathway and AMPK [85].

It has been reported that H₂S can activate K⁺ channels to exert its physiological role. A previous study of ours tried to find out whether H₂S acts on the K⁺ channels on the basal surface of jejunal epithelial cells to hyperpolarize the cell membrane and then regulates the Na⁺ coupled nutrient transport on the mucosal side [8]. In order to test our hypothesis, we performed Western Blot and immunohistochemistry experiments and detected the expression of CBS and CSE protein levels in rat jejunum with serosa and muscularis removed. In the immunohistochemical specimens of rat jejunum, CBS and CSE localization showed certain specificity: CBS was localized in the jejunal villus tip and crypt cells, while CSE mainly in crypt cells (Fig. 3a, b) [8]. Lcysteine (10 mM) can significantly increase the amount of H₂S production in rat jejunal mucosal homogenate, and this effect can be dosedependently attenuated by the CBS inhibitor AOAA rather than the CSE inhibitor PAG (Fig. 3c-f) [8].

Through Using Chamber, we recorded the basal short-circuit current (Isc) of the rat jejunal mucosa and compared the short-circuit current after L-alanine and glucose were added with the basic ones. It was found that L-cysteine can significantly increase Isc (the change of which represents the combined transpithelial transport of Na⁺ and L-alanine). The effect of L-cysteine is largely suppressed by the CBS inhibitor AOAA, rather than the CSE inhibitor PAG, which is similar to what we previously observed in the H₂S generation experiments (Fig. 4a-f) [8]. The non-selective K⁺ channel blocker glibenclamide can block the effect of L-cysteine (Fig. 4g) [8]. AOAA, PAG, L-serine does not affect L-alanine transport (Fig. 3h-k) [8]. L-cysteine also enhances glucose transport by jejunal epithelium, and the combined application of AOAA and PAG can significantly inhibit its effect (Fig. 5) [8]. In a rat oral glucose tolerance test (OGTT), intraperitoneal injection of L-cysteine can significantly increase blood glucose in the tail and hepatic portal veins of mice after oral glucose administration for 30 min. AOAA can significantly inhibit this effect of L-cysteine and reduce blood glucose at 30 min after oral glucose administration (Fig. 6) [8]. Our results show that L-cysteine may activate basal K⁺ channels through CBS-derived H₂S pathways to promote jejunal nutrient absorption. Based on these findings, we believe that the therapeutic modification of H₂S signals may be an attractive approach for the treatment of future nutrition-related diseases.

3.4 Regulation of H₂S on Gastrointestinal Endocrine Cells

In the past ten years, gastrointestinal microbes have become potential regulators of the body metabolism, partly due to the endocrine cells and hormones that are of considerable species and quantity in the gastrointestinal tract. Some of these hormones are distributed in both the gastrointestinal tract and the central nervous system. The intestinal microbiota and its fermentation products can intervene in the enteroendocrine during colonization. For example, system short-chain fatty acids significantly increase glucagon-like peptide 1 (GLP-1) in human and mouse postprandial plasma [86, 87], and indole stimulates GLP-1 secretion in acute treatment in vitro [88].

As mentioned earlier, H_2S as a bacterial metabolite is produced by SRB and some other bacteria. Whether H_2S can regulate the metabolism of the body through intestinal hormones is currently a question of great concern for researchers, because this may provide a very attractive treatment option for the increasing people suffering from metabolic diseases in the world.

By supplementing the diet with prebiotic chondroitin sulfate for 4 weeks, it was found

Fig. 3 Existence of an H₂S-generating pathway in intestinal epithelium. (**a**) Representative results of Western blot analysis for cystathionine-b-synthase (CBS) and cystathionine-c-lyase (CSE) in the intestinal epithelium. Jej, jejunum; Co, colon; L, liver. (**b**) Immunochemistry results for CBS and CSE in the rat jejunum, showing that CBS was detected in absorptive cells near the tips of the villi and in crypt cells of the jejunum. Immunoreactivity for CSE was primarily localized to crypt cells of the jejunum. The results shown are from a single experiment and are representative of three different specimens. Scale,100µm. Inset: $200 \times$. (**c**–**f**) Under basal (control)

condition, H₂S was generated by the homogenate of rat jejuna mucosa. Incubation of the homogenate with 10 mmol/L L-cysteine (L-Cys) significantly increased H₂S production compared with basal values. Amino-oxyacetic acid (AOA), but not D,L-propargylglycine (PAG), significantly inhibited the L-Cys-induced increase in H₂S production. Data represent the mean SEM (n = 6 or 8 rats). *P < 0.05; **P < 0.01; ***P < 0.001 compared with control (From Fig. 1 in Clin Exp Pharmacol Physiol. 2016;43 (5):562–568)

that mice treated with chondroitin sulfate had elevated Desulfovibrio higher levels in the feces and increased colonic and fecal H_2S concentration, enhanced GLP-1 and insulin secretion, improved oral glucose tolerance, and reduced food consumption. H_2S donors (NaHS and GYY4137) directly stimulate GLP-1 secretion in murine L-cells (GLUTag) through the p38 mitogen-activated protein kinase (p38-MAPK) pathway [89]. It was also found that GYY4137 can partially inhibit the secretion of ghrelin in rat primary gastric culture cells through the AKT pathway. CSE immunofluorescence was found throughout the stomach primary culture

Fig. 4 L-cysteine (L-Cys), from which H_2S can be generated, enhances L-alanine transport in the rat jejunum. (a) L-alanine (2×10^{-2} mol/L) induced an increase in the short-circuit current (I_{sc}). The change in I_{sc} represents sodium ion transport coupled with L-alanine transport across the epithelium. (b, f) Serosal administration of L-Cys (10^{-3} mol/L) enhanced the L-alanine-induced increase in I_{sc} . (c–f) The effects of L-Cys were largely attenuated by amino-oxyacetic acid (AOA), but not D, L-propargylglycine (PAG). (g) Glibenclamide blocked

the effects of L-Cys on Na⁺–L-alanine cotransport. (**h**, **i**, **k**) Neither AOA nor PAG had any effect on the response to L-alanine. (**j**, **k**) The amino acid L-serine (10⁻³ mol/L) did not exert any L-Cys-like effects on L-alanine-induced increase in I_{sc.} Data are the mean standard error of the mean (SEM). ***P < 0.001 compared with control; "P < 0.05, "#P < 0.01 compared with L-Cys (From Fig. 2 in Clin Exp Pharmacol Physiol. 2016;43 (5):562–568)

preparation. Expression was not restricted to ghrelin producing cells; however, all ghrelin producing cells were positive for CSE. Inhibition of CSE stimulated ghrelin secretion in primary gastric culture. In mice, GYY4137 treatment prolonged the postprandial drop of circulating ghrelin and caused reduced food consumption up to 4 h after treatment. These results suggest

Fig. 5 L-Cysteine (L-Cys), from which H₂S can be generated, augments glucose transport in the rat jejunum. (a) Glucose $(2 \times 10^{-2} \text{ mol/L})$ increased the short-circuit current (I_{sc}). (b) The effects of glucose on I_{sc} were enhanced by L-Cys (n = 9), but the effects of L-Cys were attenuated by the administration of (c) amino-oxyacetic

acid (AOA) and (d) D, L-propargylglycine (PAG; n = 5). Data are the mean standard error of the mean (SEM). **P < 0.01 compared with control; ^{##}P < 0.01 compared with L-Cys (From Fig. 3 in Clin Exp Pharmacol Physiol. 2016;43 (5):562–568)

that the stomach possesses the ability to generate H_2S , and that ghrelin producing cells may be regulated by this gas in both an autocrine and paracrine manner [90].

3.5 H₂S Regulation Over Gastrointestinal Stem Cells

As H_2S is an ancient gas involved in the origin of life on the earth, it is naturally speculated whether there is a special relationship between it and stem cells as the origin of cells, such as whether H_2S participates in regulating the proliferation and differentiation of stem cells or affects other functions of stem cells.

The current research on the effects of H_2S on stem cells mainly involves mesenchymal stem

cells (MSCs) distributed in different tissues. MSCs as progenitor cells can self-renew and also exhibit multilineage differentiation. They can maintain tissue homeostasis by orchestrating several cell types (such as osteoblasts, chondrocytes, muscle cells, and adipocytes).

The results show that endogenous H_2S regulates MSCs through several possible mechanisms. It controls the proliferation and differentiation of neural stem cells by activating ERK1/2 and enhances the proliferation and survival of human-induced pluripotent stem cell-derived MSCs by activating the PI3K/Akt pathway [91].

MSC can produce H_2S , and endogenous H_2S plays a vital role in maintaining MSC function to ensure bone homeostasis [92]. In CBS knockout mice, osteoblast differentiation and proliferation

Fig. 6 L-Cysteine(L-Cys) elevates postprandial blood glucose levels in vivo. (**a**) Int4raperitoneal injection of L-Cys (100 mg/kg) significantly increased blood glucose concentration 30 min after oral administration of glucose. This effect was completely inhibited by simultaneous injection of amino-oxyacetic acid (AOA; n = 5). AOA alone also decreased blood glucose concentrations 30 min after glucose administration. (**b**) The relative change of blood

glucose is calculated with the ratio of the change of portal vein blood glucose after co-administration of glucose and drugs/basal change of portal vein blood glucose after oral administration of glucose. Data are the mean standard error of the mean (n = 6). *P < 0.05; **P < 0.01 compared with control; ##P < 0.01 compared with L-Cys (From Fig. 4 in Clin Exp Pharmacol Physiol. 2016;43 (5):562–568)

are impaired [93, 94]. Some of the involving mechanisms are abnormal intracellular Ca²⁺ influx caused by decreased sulfhydrylation of the Ca²⁺ transient receptor potential channels (TRPV3, TRPV6, and TRPM4), and impaired Wnt/ β -catenin signaling [93]. NaHS, when not reaching the toxic threshold, can reduce human osteoclast differentiation in a dose-dependent manner. The inhibition of human osteoclast differentiation is related to the downregulation of RANKL-dependent intracellular ROS in human osteoclasts [95].

Under ischemic conditions, H_2S has protective effects on MSCs and mature adipocytes, which are mediated by increased expression of antiapoptotic genes such as Bcl2 [96]. MSCs have the potential to promote heart repair after acute myocardial infarction. However, MSC treatment is limited by stem cell apoptosis after transplantation. It has been shown that hypoxia and serum deficiency can significantly induce MSC apoptosis. CSE overexpression, which enhances the endogenous H_2S level, protects MSCs from apoptosis via attenuation of the mitochondrial injury pathway, inhibition of endoplasmic reticulum stress, and activation of the PI3K/Akt signaling pathway [97]. These findings suggest that the regulation of the CSE/H₂S system may be a therapeutic approach to promote the viability of transplanted MSCs.

Studies on the direct effects of H₂S on gastrointestinal stem cells are currently rare, but we can learn a few facts from several recent studies. In mammalian intestines, stem/progenitor cells are located in intestinal crypts, and many enteric microbial metabolites may be involved in regulating stem/progenitor cell activity. Butyric acid is an important bacterial metabolite that effectively inhibits intestinal stem/progenitor cell proliferation at physiological concentrations. Under normal homeostasis, mucus and colonic epithelium formed barrier is likely to prevent butyric acid from reaching the stem/progenitor cells in the crypt. But when the intestine is acutely injured or damaged by inflammatory bowel disease, the stem/progenitor cells in the body may be exposed to butyrate, leading to inhibited proliferation and delayed wound repair. The mechanism of action of butyric acid depends on the transcription factor Foxo3. These results indicate that mammalian crypt structure protects stem/ progenitors cell proliferation to some extent by consuming butyrate formed a metabolic barrier with differentiated colonic cells [98].

Like butyric acid, H_2S is also one of the metabolites of intestinal microorganisms, and it can pass freely through the cell membrane. Further research needs to be done to learn whether it can reach colonic crypts more easily than butyric acid. Our previous immunohistochemistry confirms that, compared with CBS that is mainly located in the villi, CSE is more likely to be located in the crypt (Fig. 2b). This may provoke us to consider whether both enzyme-derived and microbial-derived H_2S , having the opportunity to contact stem/progenitor cells in the intestinal tract, can further regulate them anyway.

Adjacent to Paneth cells, intestinal stem cells (ISCs) are located at the bottom of the intestinal crypts. They reshape the intestinal epithelium based on dietary signals. A recent study indicates that short-term fasting enhances the organoidforming ability of ISC alone or when co-cultured with Paneth cells. Gene set enrichment analysis was used to detect nuclear receptor peroxisome proliferator-activated receptor (PPAR) family targets, which contain genes related to fatty acid oxidation (FAO). Researchers have confirmed mRNA and protein expression of selective PPAR targets Pdk4, Cpt1a, and Hmgcs2 in ISCs and crypts, and mRNA levels of Pdk4, Cpt1a, and Hmgcs2 in fasted mice were found to be much higher than those in mice fed ad libitum. Untreated intestinal organoids from fasting mice have a greater ability to self-renew, and the use of the irreversible Cpt1a inhibitor etomoxir can eliminate the promoting effect of fasting on organoid production. There is no difference in the number of primary organoids in each crypt is between wild-type mice and Cpt1a knockout mice fed ad libitum, but there are significant differences between fasted wild mice and Cpt1a knockout mice, indicating that fasting increased stem cell activity in an FAO-dependent manner [99]. However, the effect of short-term fasting on intestinal H₂S and whether H₂S is involved in

increased ISC activity caused by fasting remains unknown.

In addition to the above mentioned, H_2S also participates in the regulation of other physiological and pathophysiological functions of the gastrointestinal tract, such as immunity and inflammation. However, because of the source, the form of action, and the complexity of the mechanism of H_2S , it is not appropriate to discuss H₂S alone in separation from intestinal microorganisms and the host gastrointestinal mucosal barrier. So in the next part, we will focus on the interaction between H₂S, intestinal microorganisms, and the host, as well as the correlation between the disrupted dynamic balance between the three and some clinical gastrointestinal diseases.

Interaction Among H₂S, Gastrointestinal Microorganisms, and the Host

4.1 Effect of H₂S on Gastrointestinal Microorganisms

At present, we know that the human microbiome is mainly composed of bacteria, fungi, and viruses. They participate in the processing of nutrients and the metabolism of the human body and building the body's protective barrier in cooperation with the immune system. There are more than 160 types of symbiotic bacteria in the human gastrointestinal tract [100]. In nature, bacteria can form biofilms to reduce exposure to drugs and immunity. The gastrointestinal microbes of healthy individuals are mainly derived from four kinds of bacteria: Bacteroides, Trichoderma, Proteus and Actinomycetes [101]. As mentioned earlier, the SRB colonized in the intestinal tract obtains energy by oxidation of organic compounds and reduces sulfate to H₂S.

Intestinal bacteria or host cells produced endogenous or exogenous H_2S , by affecting the intestinal flora in a variety of ways, reduces gastrointestinal inflammation and damage and promotes repair. H_2S can positively affect many aspects of bacterial-epithelial interactions. There is evidence that H₂S donors may favorably regulate the intestinal flora and promote biofilm formation and integrity, especially in the improvement treatment of diseases such as ulcerative colitis (UC) and Crohn's disease (CD) [102].

To understand the changes in bacterial biofilms in experimental colitis and the effects of endogenous and exogenous H₂S on these changes, researchers used fluorescence in situ hybridization to examine the flora. The results show that in normal mice and rats, the intestinal microbiota is sandwiched between the sterile mucus layer and the feces in a linear structure. In mice and rats with colitis, the bacterial biofilm is severely damaged and the microbiota is chaotic. The biofilm fragments of these pathogenic microorganisms closely adhere to the host tissue and enter the lamina propria, and the depletion of mucus particles in the epithelial cells is also obvious. In CSE knockout mice, the mucus layer is thin, showing mild colitis, and bacteria are in close contact with epithelium. In rats treated with CSE inhibitors, depletion of epithelial mucus particles is more pronounced than that in the control group. After being treated with garlicderived H₂S donor diallyl disulfide (DADS) for 1 week, the inflammation of the colon subsided, the recovery of biofilm tissue accelerated, and bacteria displacement reduced in rats with colitis. This suggests that CSE-derived H₂S contributes significantly to the formation and stability of colonic microbiota biofilms and helps to enhance epithelial integrity and mucus barrier function [103].

Studies have shown that exogenous H_2S can inhibit the growth of pathogenic bacteria in the cecum of rats with back burns, promote the growth of bifidobacteria and lactic acid bacteria, and help maintain the integrity of the intestinal biological barrier in burned rats [104].

Higher doses of DADS (30 mM/kg) can reduce gastric damage caused by non-steroidal anti-inflammatory drugs (NSAID) [105]. While causing ileal ulcers in rats, NSAID leads to an increase of Escherichia coli, Klebsiella, Proteus, Bacillus, and other Gram-negative bacteria in the intestine by 37.3% [106], and promotes intestinal damage through tumor necrosis factor (TNF- α) and TLR4-mediated pathways [107]. But when given ATB-346, a derivative of naproxen (a traditional NSAID), that can release H₂S, the displacement of intestinal microorganisms reduces [108].

4.2 Effects of H₂S on the Gastrointestinal Tract of the Host

Evidence from experimental models indicates that concentration changes in bacterial metabolites in the large intestine cavity, such as H_2S and butyric acid, may exert an important beneficial or harmful effect on colonocyte metabolism and physiology in aspects of mitochondrial energy metabolism, reactive oxygen production, gene expression, DNA integrity, proliferation, and vitality [109].

There is no clear and consistent evidence on the effect of H_2S on epithelial cell integrity [110]. No damage to the gastrointestinal tract tissue is found after H₂S donors are given to dogs or rodents for 2 weeks. No gastrointestinal epithelial damage and inflammation is observed visually or histologically, even when high doses of DADS (60 mM/kg) are given twice daily for 5 consecutive days [108]. However, the administration of H₂S can maintain the normal structure of mucus and microbiota and the integrity of the mucus barrier [103]. GYY4137 can attenuate the increased permeability of colonic monolayer cells induced by lipopolysaccharide or TNF-a/IFN-g in vitro. Besides, for in vivo models of endotoxemia, intraperitoneal injection of GYY4137 has protective effects on intestinal barrier dysfunction [111]. On the other hand, inhibition of endogenous H₂S production will increase the sensitivity of the mucosa to injury, delay the healing, increase the expression of proinflammatory cytokines, reduce the synthesis of COX-2 and related prostaglandins, and increase the number of mucosal granulocytes [103, 112–114]. H_2S has protective effects on post-cardiac arrest cardiopulmonary resuscitation (CA/CPR)-induced intestinal mucosal damage in rabbits, and its mechanism may be related to up-regulated tight junction protein ZO-1, alleviated oxidative stress, reduced inflammation, and inhibited apoptosis and autophagy [115]. H₂S has a protective effect on TNF- α /IFN- γ induced Caco-2 monolayer intestinal epithelial barrier impairment, which may be achieved through inhibition of NF-kB P65-mediated myosin light chain phosphorylation signaling pathway [116].

The epithelium and the mucus layer together form the intestinal barrier, serving as the first line of defense against multiple toxic compounds from the intestinal lumen [117]. Mucus is composed of a highly glycosylated polymer network of mucin, which is connected to the intestinal epithelium by disulfide bonds produced by goblet cells. The pore size of this hydrated gel-like structure in the inner mucus layer does not allow bacteria to penetrate. Some studies have reported an increase in SRB content in the intestinal mucosa flora and feces of patients with inflammatory bowel disease (IBD) [118, 119], or compared with controls, specific types of SRB increase [27]. Compared with healthy controls, patients with ulcerative colitis (UC) have increased intestinal SRB-produced sulfide [120]. A recent study shows that sulfide can effectively reduce disulfide bonds, and promote mucin degeneration and entry of microorganisms to the mucus layer [121]. These results suggest that intestinal SRB-produced sulfide will drive mucin degeneration, thereby promoting microorganisms to enter intestinal epithelium. Enhanced microbial pathways lead to bacterial penetration and translocation, which triggers an immune response and helps the initiation and/or development of IBD [122].

The different effects of H_2S on the intestinal epithelium may be partly attributed to the supply and demand relationship between it and the host cell mitochondria. In the presence of sulfide and succinate or L- α -glycerophosphate, colonocyte mitochondria obtain maximum respiratory rates, and this oxidation is accompanied by mitochondrial energization. In contrast, other cell types not naturally exposed to a high concentration of sulfide showed much lower oxidation rates. Mitochondria showed a very high affinity for sulfide that permits its use as an energetic substrate at low micromolar concentrations, hence, below the toxic level. However, if the supply of sulfide exceeds the oxidation rate, poisoning renders mitochondria inefficient [123]. NaHS (20 mM-40 mM) can transiently increase the oxygen consumption of colonic cells through the SQR pathway, but at concentrations higher than 65 mM, NaHS can reduce oxygen consumption by inhibiting mitochondrial cytochrome oxidase C. In rat models fed with high protein, H₂S production in rat colon increases, and correspondingly, the expression of the SQR gene also increases [124]. This indicates that within a certain range, an increase in H₂S in the intestine can promote the function of the H₂S as a detoxifying enzyme system in colonocyte.

4.3 Effects of Microorganisms on the Gastrointestinal Tract of the Host

Decreasing the proportion of protective bacteria like butyrate-producing and other short-chain fatty acid bacteria, and increasing the abundance of pathogenic bacteria, will increase the body's exposure to antigens, thereby inducing the body's immune response, which might be one of the main pathogenesis of gastrointestinal inflammatory or immune diseases [125].

By characterizing the microbial community at the colonic mucosa-lumen interface of newlyonset children with Crohn's disease (CD), it has been found that there is no change in the microbial diversity, but the relative abundance of Enterobacteriaceae. Veillonella, Clostridium. Neisseria, and Haemophilus increases. One-quarter of these bacteria can produce H₂S by fermenting sulfur-containing amino acids, and the relative abundance of these H₂S producers is positively correlated with the severity of inflammation. Characterization of the host proteome shows that mitochondrial proteins involved in H₂S oxidation, such as Eth1, thiosulfate sulfurtransferase (TST), and mitochondrial respiratory complexes III-IV, are the major proteins downregulated in CD. The significant downregulation of these proteins has been linked to the depletion of butyrate producers and a large number of pathogenic bacteria, many of which are known to be effective H_2S producers. These results indicate that mitochondria are regulated, as well as disturbed, by H_2S -producing microbiota in patients with CD [126].

Chronic inflammatory diseases are generally thought to arise from interactions between susceptible host genes and environmental factors. Genetic defects in TLR1 promote acute enteric infection of Yersinia enterocolitica, and changes in the cellular immune response are also present in this model. By promoting the recruitment of neutrophils, Yersinia's metabolism of the respiratory electron receptor tetrathionate is increased. These events lead to permanent changes in the anti-immune family, microbiome composition, and chronic inflammation, which persist long after the Yersinia clearance. Therefore, acute infection of intestinal pathogenic microorganisms can lead to long-term changes in the immunity and microbiota of genetically susceptible individuals, leading to chronic inflammatory diseases [127].

The causal relationship between SRB and chronic inflammation is still elusive, and more prospective experiments may be needed for proof. Lactobacillus treatment can reduce SRB in the human intestine [128]. A putative prebiotic, Glycomacropeptide reduces Desulfovibrio in the cecum and feces of mice, which is related to the anti-inflammatory effects of spleen cells and reduced plasma concentrations of the proinflammatory cytokines TNF- α , IL-1β, IFN- γ , and IL-12 [129]. Vitro studies have shown that active SRB can interact with human intestinal epithelial cells and form biofilms on them, leading to apoptosis of epithelial cells [130]. When a combination of D. indonesiensis and SRB with anaerobic bacteria in patients with colitis is intragastrically given to sterile mice with colitis, SRB contributes to the mucosal immune response in the steady state and facilitates recruitment of lamina propria cells and phagocytic cells, and T lymphocytes in the mesentery. On the other hand, the increase in intestinal SRB after gavage aggravates chemical colitis, which may be achieved by inducing Th17 cytokines, IL-6, and IL-17A [131]. SRB has been observed to make direct contact with the epithelial barrier in the colon tissue of patients with UC, indicating that disorder of mucosal epithelial barrier contributes to SRB invasion of the mucosal epithelium under inflammatory conditions [130].

4.4 Effects of Host Gastrointestinal Epithelium and Diet on H₂S and Intestinal Microorganisms

 H_2S is an important metabolic fuel for the gastrointestinal epithelium. Colon epithelial cells produce ATP during the process of oxidizing H_2S . The epithelium is both a physical barrier that prevents potentially harmful substances in the intestine from entering the basal side and a metabolic barrier that oxidizes H_2S produced by microorganisms. Defects in epithelial barrier function may cause H_2S in the intestinal cavity to enter the lamina propria and affect the normal function of the gastrointestinal tract [109, 123, 132].

Bacterial metabolites can affect the pH value of the colonic lumen. In turn, changes in the luminal pH may influent the absorption of intestinal lumen produced compounds by colonic cells [109]. PH value of mucosa side depends on the acid-base concentration of complex formed by intestinal secretions and bacterial metabolites, among which hydrogen and bicarbonate secreted by the colonic mucosa are important determinants [133]. Short-chain fatty acids and other microorganisms-derived acidic metabolites such as branched-chain fatty acids, organic acids, and H₂S are also involved. Ammonia intervenes in the lumen pH as a weak base. At low pH, the H₂S/ HS⁻ ratio in the large intestine will increase, it will be easy for H_2S to penetrate the biofilm, and a lower pH will increase the H₂S concentration entering the basal side from the intestine, to amplify its inhibitory effect on colonocyte mitochondria at high concentrations [132].

It has been increasingly recognized that the composition and metabolic activity of the intestinal microbiota can be regulated by dietary proteins, which in turn affects health. Regulation between the microbiome and dietary proteins can be bidirectional. In response to changes in dietary protein components, significant changes occur in microbial metabolites, including short-chain fatty acids, sulfides, and methane, which are toxins associated with the development of colon cancer and inflammatory bowel disease. Providing a high-protein diet may increase the risk of diseases associated with protein-fermenting pathogens and bacteria. These changes in the microbiota can affect the intestinal barrier and the immune system by regulating gene expression in related signaling pathways and the secretion of metabolites [134].

4.5 Gastrointestinal Diseases Related to H₂S and H₂S-Producing Gastrointestinal Microorganism

4.5.1 Inflammatory Bowel Disease (IBD)

With the changes in people's life and diet habits in the past few decades, the incidence of immunerelated gastrointestinal diseases such as IBD has increased significantly, attracting the attention of clinical medical workers and researchers. Although its pathogenesis is unclear, many factors that are involved in its pathogenesis and development, including the effect of H_2S and H_2S -producing microorganisms in the gastrointestinal tract on IBD, have been extensively studied.

Although the role of H_2S in IBD is still controversial, to elucidate the complex role of H_2S in the colon and understand the exact nature of its interaction with the colon still helps make the pharmacological regulation of H_2S production and metabolism potential targets for future treatment of multiple colon diseases [135].

A large number of studies have shown that the destruction of the mucus barrier plays an important role in the worsening of IBD, especially the change of the mucus barrier in ulcerative colitis that has been supported by public data and widely accepted. The application of fluorescence in situ hybridization reveals the importance of the mucus barrier in maintaining the symbiotic relationship between the host and the bacteria. Studies have shown that the use of H_2S , short-chain fatty acids, prebiotics and probiotics, neutrophil elastase inhibitors, and other drugs can regulate the function of the mucus barrier and provide potential treatment options for this disease [136].

In the three tested models, diet-induced homocysteinemia (Hhcy) significantly aggregates colitis. None of the three colitis models show an increase in colonic H₂S synthesis after colitis induction. Injecting H₂S into Hhcy rats can significantly reduce the severity of colitis. Compared with wild-type mice, interleukin-10 (IL-10) -deficient mice have reduced H₂S synthesis in the colon, and 40% increased serum homocysteine. By injection of IL-10 into IL-10-deficient mice, colonic H₂S synthesis can be recovered, and serum homocysteine levels are significantly reduced. These results indicate that the exacerbation of Hhcy colitis is partly due to impaired colonic H₂S synthesis. In addition, IL-10 has a new role in promoting H₂S production and homocysteine metabolism [137].

Diallyl sulfide (DAS) and DADS, two garlicderived sulfur compounds, reduce inflammation and damage induced by dinitrobenzene sulfonic acid in the body. In IFN- γ stimulated intestinal epithelial cells, DADS reduced IP-10 and IL-6 levels, while DAS inhibited NO production and STAT-1 expression, confirming the protective effect of DAS and DADS on experimental IBD [138].

In vitro model, GYY4137 reverses the significantly increased permeability of Caco-2 cells and downregulates the expression of tight junction proteins (ZO-1, couldin4, and occludin) caused by dextran sodium sulfate (DSS). In the in vivo model, CBS silencing caused by siRNA transfection further proves that the endogenous H₂S system is involved in DSS-induced inflammatory responses and mediates barrier functions. GYY4137 reduces intestinal permeability and up-regulates tight junctions, reduces inflammatory responses, and improves the function of the intestinal barrier [139].

Exogenous H_2S donors such as diallyl trisulfide (DATS) have been used as anti-inflammatory mediators. This exogenous H_2S spreads through the plasma membrane to achieve its biological functions, including inhibiting the excessive production of proinflammatory cytokines, inhibiting cell adhesion macrophages from acting on vascular endothelium, and repairing colonic inflammatory tissue [140].

In DSS-induced colitis mice, there is no significant change in colonic CSE (related to H_2S production) activity and protein levels, and repeated use of CSE inhibitors did not or only slightly reduce the symptoms of colitis. In contrast, colonic rhodanase (related to H_2S detoxification) activity, protein, and mRNA levels are significantly reduced. Consistent with the onset of colitis, it is followed by an increase in rhodanase activity in red blood cells. These data suggest that IBD may be related to the impaired detoxification of H_2S resulted from downregulated or inhibited colonic rhodanase, and the delayed enhancement of rhodanase activity in red blood cells may be a compensatory event for IBD [141].

Congenital megacolon-associated enterocolitis (HAEC) is the most common cause and cause of death for congenital Hirschsprung disease (HSCR). Compared with the control group, the expression of CBS and CSE significantly reduces in ganglia and ganglion-free intestines of the HSCR group (p < 0.003). Confocal microscopy shows the expression of CBS and CSE in smooth muscle, ICCs, platelet-derived growth factoralpha receptor-positive cells, intestinal neurons, colonic epithelium in the HSCR group is significantly lower than that in the control group. This indicates that decreased expression of CBS and CSE in HSCR patients may affect mucosal integrity and colonic contractility, thereby making HSCR patients more prone to HAEC [142].

On the other side of the shield, there are also a lot of researches supporting the negative impact of H_2S in IBD. Studies on the volatile organic compounds in the breath of IBD patients show that compared with healthy controls, the concentrations of H_2S , acetic acid, propionic acid, and butyric acid in the breath of IBD patients are higher and relative concentrations of pentane and other volatile organic compounds are weakly correlated with simple clinical activity indicators. It is speculated that H_2S and these carboxylic acids may be exhaled biomarkers for intestinal bacteria overgrowth [143].

Patients with IBD have an increased risk of developing colorectal cancer (CRC). Tumor immune evasion is a major problem for colorectal cancer. Preclinical and clinical evidence indicates that marrow-derived suppressor cells (MDSCs) promote tumor growth and development by suppressing T cells and regulating the innate immune response. Marrow mesenchymal stem cells consist of two different subtypes of immature myeloid cells: CD11b + Ly6G + Ly6C (low) with granulocyte phenotype (G-MDSCs) and CD11b + Ly6G (-Ly6C) with monocyte phenotype (M-MDSCs). To better clarify the role of the H₂S pathway in innate immune-mediated IBD, the researchers use a model of innate immunemediated IBD that is induced by hepatic bacilli (Hh) infection. G-MDSCs and M-MDSCs in the colon and spleen of Hh-infected mice show a significant time-dependent increase. Long-term oral administration of H₂S donor DATS can reduce colon inflammation by limiting the recruitment of colonic G-MDSCs of Hh-infected mice. It is concluded that the L-cysteine/H₂S pathway may be a new participant in the immunosuppressive mechanism and is responsible for promoting the development of colitis-related cancer [144].

Changes in microbial populations and metabolism during intestinal inflammation are key events related to intestinal homeostasis and disrupted immune tolerance. There is a serious imbalance between the number of intestinal bacteria and their relationship with the host in patients with IBD, which is considered to be part of the complex mechanism that triggers and develops intestinal inflammation. A large number of SRB has been found in the intestine of IBD patients. SRB not only directly interacts with intestinal epithelial cells during intestinal inflammation, but also may promote intestinal damage by generating high levels of H₂S [145].

A mixed culture of SRB communities obtained from healthy mice and colitis mice shows differences in the distribution of sulfate-reducing microorganism communities. The amount of H₂S produced in the mixed culture of ulcerative colitis mice was 1.39 times that in healthy mice. Metaanalysis is used to observe the occurrence of SRB and its metabolic process in healthy people and IBD patients, suggesting the important role of Desulfovibrio in small bowel diseases [146].

Researchers have suggested using the term "the microflora core of gut metabolism" to describe key microbial flora, which more accurately reflects the functional importance of metabolically active microbial flora. The microflora core includes functional groups of microorganisms with similar metabolic functions: butyric acid-producing bacteria, propionic acidproducing bacteria, acetic acid-producing bacteria (glycogen), hydrogenated microorganisms (reducing acetone, sulfate-reducing bacteria, methanogenic bacteria), bacteria that produce and use lactic acid, bacteria involved in bile acid metabolism, bacteria that metabolize proteins and amino acids, vitamin-producing microorganisms, oxalic acid-degrading bacteria, and so on. Disorders of microbial metabolism may be the root cause of many human diseases. The main clinical variants of metabolic disorders are due to disrupted microbial synthesis of shortchain fatty acids (mainly butyric and propionic acid) and increased production of H₂S, ammonia, and secondary bile acids (especially deoxycholate) by bacteria. This metabolic disorder eventually leads to IBD or CRC and contributes to the onset of the chronic liver, kidney, and cardiovascular diseases [147].

4.5.2 Colorectal Cancer (CRC)

Many studies have demonstrated the promoting role of H_2S in cancer biology. CBS, CSE, 3-MST are highly expressed in a variety of cancers. The effect of inhibiting CBS has shown anti-tumor activity, especially in colon, ovarian, and breast cancers, while the results of inhibiting CSE or 3-MST have not been found in cancer cells. Interestingly, high-dose or prolonged H_2S treatment in vivo induces apoptosis of cancer cells while retaining non-cancer fibroblasts. Therefore, a bell-shaped model is proposed to explain the role of H_2S in cancer development. To be specific, endogenous H_2S or relatively low levels of exogenous H_2S may exhibit cancer-promoting effects, while high-dose or prolonged exposure to H_2S may cause the death of cancer cells. An in-depth understanding of the role and mechanism of H_2S in cancer can provide new strategies for cancer treatment [148].

CBS is upregulated in biopsies of the precancerous adenomatous polyp. Increased expression of CBS in adenomatoid colonic epithelial cell line induces the characteristics of metabolism and gene expression profiles of CRC cells, with more than 350 differentially expressed genes. These genes overlap significantly with glycolysis, hypoxia, and colon cancer cell phenotype-related gene sets, including genes regulated by NF-kappaB, KRAS, p53, and Wnt signaling, downregulated genes after E-cadherin knockout, and genes related to the increased outer matrix, cell adhesion, and epithelial-mesenchymal transition. Differentially expressed metabolites involve intermediates of the glycolytic pathway, the nucleotide sugars, and the pentose phosphate pathway. Compared with wild mice, CBS heterozygous mice (CBS (+/-)) have a reduced number of colonic crypt abnormalities caused by mutagens, proving that the activation of the CBS/H₂S axis promotes the occurrence of colon cancer [149].

CBS promotes the growth of colon and ovarian cancer in preclinical models. Conversely, its tumor-suppressive effect has also been reported in other cancer types, suggesting that the role of CBS in tumor growth and development is related to the environment [150].

In many cancer lesions, 3-MST is upregulated compared to that in surrounding normal tissue. In vitro studies have revealed that 3-MST upregulation is particularly prominent in cancer cells that recover from oxidative damage and/or develop into a multi-drug resistant phenotype, and 3-MST drug inhibitors and the use of 3-MST silencing methods can inhibit cancer cell proliferation [151].

GYY4137 of low concentration enhances mitochondrial function and glycolysis in HCT116 cells. siRNA-mediated transient silencing of lactate dehydrogenase A (LDHA) attenuates the stimulation of GYY4137 to mitochondrial respiration but fails to inhibit glycolysis. H_2S induces sulfur hydration of Cys163 in recombinant LDHA and stimulates LDHA activity. Studies have confirmed that LDHA is involved in the stimulation of H_2S on mitochondrial respiration of colon cancer cells [152].

The inhibition of H_2S synthesis can significantly increase the sensitivity of colon cancer cells to 5-FU. miRNA sequencing reveals that miR-215-5p is one of the miRNAs with the most significant change in expression level after CBS knockout. Epidermal growth factor (EREG) and thymidine synthetase (TYMS) are expected to be potential targets for miR-215-5p. Reducing H_2S synthesis can significantly reduce the expression of EREG and TYMS. These results suggest that inhibition of H_2S synthesis can reverse the acquired resistance of colon cancer cells to 5-FU, which may be mediated by EREG and TYMS [153].

Using in situ responses of cuprous oxide (Cu_2O) and high concentrations of endogenous H_2S in colon cancer sites, researchers have developed a new drug for the diagnosis and treatment of colon cancer and confirmed its advantages in photoacoustic imaging and photothermal therapy in the in vitro and in vivo experiments [154].

The S-arylthio oxime functionalized amphiphilic block copolymer micelles prepared by the researchers can slowly release H_2S . Compared with Na₂S and GYY4137, this new type of H_2S -releasing micelles can significantly reduce the survival rate of HCT116 colon cancer cells, indicating that H_2S release kinetics may determine the selective toxicity of H_2S to tumor cells [155].

Colonocytes are adapted to exposure to higher concentrations of H_2S because they have a potent mitochondrial H_2S oxidation pathway. SQR is present in the apex of the human colonic crypt, but in CRC epithelium, this gradient localization from the apex to the crypt disappears. Mitochondrial H_2S oxidation changes the bioenergetics of the cell, leading to the reduction of NAD⁺/NADH redox pairs. The resulting lack of electron receptors leads to a lack of uridine and aspartate and enhances glutamine-dependent reductive carboxylation. The metabolic characteristics of the H_2S -induced stress response are partially mapped to redox-sensitive nodes in central carbon metabolism, suggesting that CRC tissues and cell lines counteract the anti-tumor growth effect of H_2S through driving mitochondrial metabolic reprogramming [156].

Collecting multi-component data and building genomic-scale microbial metabolism models enable researchers to examine microbial communities, community functions, and interactions in a new way, for example, to evaluate H₂S production in CRC based on fecal, mucosal, and tissue samples collected from the same individual inside and outside the tumor site, and then use 16 s rRNA microbial community and abundance data to screen and validate metabolic models. Using the open-source platform MICOM, the metabolic flux of H_2S is tracked through a defined microbial community, which can represent the sample community inside or outside the tumor [157].

Sulfur metabolizing microorganisms are related to the occurrence of CRC. The researchers investigate its relationship with the risk of developing CRC using data from a large prospective study of men. By collecting follow-up data of 51,529 male health professionals since 1986, the relationship between sulfur metabolizing bacteria in stool and the risk of CRC is analyzed in 26 years. The results indicate that factors related to high-sulfur microbial diet scores include increased consumption of processed meat and low-calorie beverages and reduced consumption of vegetables and beans. Increased sulfur microbial diet scores are associated with a risk of the distal colon and rectal cancer [158].

African Americans (AAs) have a higher incidence of CRC than non-Hispanic whites (NHWs). It is hypothesized that sulfur-induced bacterial abundance in the colonic mucosa may be an environmental risk factor of CRC that distinguishes AA and NHW, so the researchers compared the sulfite bacterial abundance in the uninvolved colon mucosa of AAs and NHWs patients with CRC and the normal controls and investigated correlations between bacterial indicators, race, disease status, and dietary intake. Regardless of disease status, AAs harbor more sulfite bacteria than NHWs. Compared with the control group, the F. falciparum-specific dsrA is more abundant in the AAs group. Linear discriminant analysis of the 16 s rRNA gene sequence reveals that 5 sulfite gene genuses were more abundant in AAs cases. The intake of fat and protein and the daily meat consumption in AAs is significantly higher than that in NHWs, and a variety of dietary components are associated with higher sulfite bacteria abundance. These results suggest that sulfur pathogens are a potential environmental risk factor for CRC in AAs [159].

The link between CRC and intestinal flora has been established, but the specific microbial species and their role in canceration are still an active area for research. The researchers collected specimens of colorectal tumors and normal adjacent tissues and mucosal from 83 patients with colon cancer undergoing partial or total colectomy. The status of mismatch repair (MMR) in each tumor sample is determined and divided into defective MMR (dMMR) or proficient MMR (pMMR) tumor subtypes. Using genomics and metabolomics research methods, it is found that H₂S-producing amino acid metabolites are increased in dMMR-CRC. The combination of tumor biology and microbial ecology highlights the unique microbial, metabolic, and ecological characteristics of dMMR and pMMR-CRC [160].

4.5.3 Functional Gastrointestinal Disease (FGID)

Traditionally, functional gastrointestinal diseases (FGID), such as irritable bowel syndrome (IBS) and functional dyspepsia (FD), refer to diseases defined by specific symptoms but lacking evidence of changes in tissue structure or biochemical indicators that cause these symptoms. But this definition is now being overturned by more and more evidence. The low-grade inflammation of the gastrointestinal tract, the activation of the immune system, and the disorder of gastrointestinal flora have been confirmed to be involved in the occurrence of FGID.

There is evidence that acute gastrointestinal infections often occur before IBS [161, 162]. Results of questionnaires and colon biopsies based on gastrointestinal symptoms show that the prevalence of IBS is 3.6 times greater in patients with colon spirochetosis than that in patients not infected [163].

With appropriate testing, some patients with FD or IBS will be found to be suffering from low-grade inflammation [164]. In addition to gastrointestinal mucosal inflammation, increased cytokines appear in these patients, suggesting activation of the immune system [165–167]. The reason for the changes in the immune system may partially depend on the defect of the intestinal mucosal barrier [168–170], and we have already mentioned the damage to the barrier by H₂S and H₂S-producing intestinal microorganisms [121, 122].

The density of bacteria colonized in the gastrointestinal mucosa plays a key role in the intensity of meal-related symptoms in FD patients and is closely related to impaired quality of life [171]. In the in vitro starch fermentation experiments, the gut microbiota of IBS patients produces more sulfide than healthy controls, but less butyrate [172].

Visceral pain is regarded as one of the most common symptoms of FGID, but since many mechanisms are involved in the production and maintenance of this pain, satisfactory results are often not obtained in the treatment of FGID. Earlier we mentioned the role of H₂S in visceral nociceptive sensation, which has a dual effect of promoting pain and analgesia. Recently, it has been suggested that intestinal microorganisms may be new hope for treating visceral pain [173]. Studies using germ-free mice have shown that the presence of intestinal commensal bacteria is necessary for the development of pain sensitivity, and the absence of microorganisms causes the inactivated response to stimuli in germ-free mice [174]. Transplanting feces from patients with IBS into the intestines of mice can reproduce their symptoms to a certain extent [175]. Therefore, microorganisms may become new targets for the treatment of FGID. Some people have proposed the use of probiotics and prebiotics to improve visceral pain and reduce visceral hypersensitivity [176]. However, the type and number of microorganisms, the role of metabolites of microorganisms in FGID, and the mechanism of action need to be further explored.

Acknowledgments This work was supported by Liang Fan (Obstetrics and Gynecology Hospital of Fudan University) in sketch drawing.

Competing Interests The authors declare no potential conflicts of interest.

References

- Abe K, Kimura H (1996) The possible role of hydrogen sulfide as an endogenous neuromodulator. J Neurosci 16(3):1066–1071
- Hosoki R, Matsuki N, Kimura H (1997) The possible role of hydrogen sulfide as an endogenous smooth muscle relaxant in synergy with nitric oxide. Biochem Biophys Res Commun 237(3):527–531
- Shibuya N, Koike S, Tanaka M, Ishigami-Yuasa M, Kimura Y, Ogasawara Y, Fukui K, Nagahara N, Kimura H (2013) A novel pathway for the production of hydrogen sulfide from D-cysteine in mammalian cells. Nat Commun 4:1366
- 4. Xiao A, Wang H, Lu X, Zhu J, Huang D, Xu T, Guo J, Liu C, Li J (2015) H2S, a novel gasotransmitter, involves in gastric accommodation. Sci Rep 5:16086
- Martin GR, McKnight GW, Dicay MS, Coffin CS, Ferraz JG, Wallace JL (2010) Hydrogen sulphide synthesis in the rat and mouse gastrointestinal tract. Dig Liver Dis 42(2):103–109
- Magierowski M, Magierowska K, Szmyd J, Surmiak M, Sliwowski Z, Kwiecien S, Brzozowski T (2016) Hydrogen sulfide and carbon monoxide protect gastric mucosa compromised by mild stress against alendronate injury. Dig Dis Sci 61 (11):3176–3189
- Tang S, Huang D, An N, Chen D, Zhao D (2016) A novel pathway for the production of H2 S by DAO in rat jejunum. Neurogastroenterol Motil 28 (5):687–692
- Xiao A, Li J, Liu T, Liu Z, Wei C, Xu X, Li Q, Li J (2016) L-Cysteine enhances nutrient absorption via a cystathionine-beta-synthase-derived H2 S pathway in rodent jejunum. Clin Exp Pharmacol Physiol 43 (5):562–568
- Guo X, Huang X, Wu YS, Liu DH, Lu HL, Kim YC, Xu WX (2012) Down-regulation of hydrogen sulfide biosynthesis accompanies murine interstitial cells of Cajal dysfunction in partial ileal obstruction. PLoS One 7(11):e48249
- Hirata I, Naito Y, Takagi T, Mizushima K, Suzuki T, Omatsu T, Handa O, Ichikawa H, Ueda H, Yoshikawa T (2011) Endogenous hydrogen sulfide is an anti-inflammatory molecule in dextran sodium

sulfate-induced colitis in mice. Dig Dis Sci 56 (5):1379–1386

- 11. Souza LK, Araujo TS, Sousa NA, Sousa FB, Nogueira KM, Nicolau LA, Medeiros JV (2017) Evidence that d-cysteine protects mice from gastric damage via hydrogen sulfide produced by d-amino acid oxidase. Nitric Oxide 64:1–6
- Wu C, Xu Z, Huang K (2016) Effects of dietary selenium on inflammation and hydrogen sulfide in the gastrointestinal tract in chickens. Biol Trace Elem Res 174(2):428–435
- Stipanuk MH (1986) Metabolism of sulfurcontaining amino acids. Annu Rev Nutr 6:179–209
- Chen X, Jhee KH, Kruger WD (2004) Production of the neuromodulator H2S by cystathionine betasynthase via the condensation of cysteine and homocysteine. J Biol Chem 279(50):52082–52086
- Shibuya N, Tanaka M, Yoshida M, Ogasawara Y, Togawa T, Ishii K, Kimura H (2009)
 3-Mercaptopyruvate sulfurtransferase produces hydrogen sulfide and bound sulfane sulfur in the brain. Antioxid Redox Signal 11(4):703–714
- 16. Chiku T, Padovani D, Zhu W, Singh S, Vitvitsky V, Banerjee R (2009) H2S biogenesis by human cystathionine gamma-lyase leads to the novel sulfur metabolites lanthionine and homolanthionine and is responsive to the grade of hyperhomocysteinemia. J Biol Chem 284(17):11601–11612
- Singh S, Padovani D, Leslie RA, Chiku T, Banerjee R (2009) Relative contributions of cystathionine beta-synthase and gamma-cystathionase to H2S biogenesis via alternative trans-sulfuration reactions. J Biol Chem 284(33):22457–22466
- Hildebrandt TM, Grieshaber MK (2008) Three enzymatic activities catalyze the oxidation of sulfide to thiosulfate in mammalian and invertebrate mitochondria. FEBS J 275(13):3352–3361
- Kabil O, Zhou Y, Banerjee R (2006) Human cystathionine beta-synthase is a target for sumoylation. Biochemistry 45(45):13528–13536
- 20. Nagahara N, Ito T, Kitamura H, Nishino T (1998) Tissue and subcellular distribution of mercaptopyruvate sulfurtransferase in the rat: confocal laser fluorescence and immunoelectron microscopic studies combined with biochemical analysis. Histochem Cell Biol 110(3):243–250
- Bouillaud F, Blachier F (2011) Mitochondria and sulfide: a very old story of poisoning, feeding, and signaling? Antioxid Redox Signal 15(2):379–391
- Gould SJ, Keller GA, Subramani S (1988) Identification of peroxisomal targeting signals located at the carboxy terminus of four peroxisomal proteins. J Cell Biol 107(3):897–905
- Schumann U, Subramani S (2008) Special delivery from mitochondria to peroxisomes. Trends Cell Biol 18(6):253–256
- 24. Fischbach MA, Sonnenburg JL (2011) Eating for two: how metabolism establishes interspecies

interactions in the gut. Cell Host Microbe 10 (4):336-347

- Stams AJ, Plugge CM (2009) Electron transfer in syntrophic communities of anaerobic bacteria and archaea. Nat Rev Microbiol 7(8):568–577
- 26. Frohlich J, Sass H, Babenzien HD, Kuhnigk T, Varma A, Saxena S, Nalepa C, Pfeiffer P, Konig H (1999) Isolation of Desulfovibrio intestinalis sp. nov. from the hindgut' of the lower termite Mastotermes darwiniensis. Can J Microbiol 45(2):145–152
- Loubinoux J, Bronowicki JP, Pereira IA, Mougenel JL, Faou AE (2002) Sulfate-reducing bacteria in human feces and their association with inflammatory bowel diseases. FEMS Microbiol Ecol 40 (2):107–112
- 28. Nava GM, Carbonero F, Croix JA, Greenberg E, Gaskins HR (2012) Abundance and diversity of mucosa-associated hydrogenotrophic microbes in the healthy human colon. ISME J 6(1):57–70
- Zinkevich VV, Beech IB (2000) Screening of sulfatereducing bacteria in colonoscopy samples from healthy and colitic human gut mucosa. FEMS Microbiol Ecol 34(2):147–155
- Peck HD Jr, LeGall J (1982) Biochemistry of dissimilatory sulphate reduction. Philos Trans R Soc Lond Ser B Biol Sci 298(1093):443–466
- Willis CL, Cummings JH, Neale G, Gibson GR (1997) Nutritional aspects of dissimilatory sulfate reduction in the human large intestine. Curr Microbiol 35(5):294–298
- 32. Agostinho M, Oliveira S, Broco M, Liu MY, LeGall J, Rodrigues-Pousada C (2000) Molecular cloning of the gene encoding flavoredoxin, a flavoprotein from Desulfovibrio gigas. Biochem Biophys Res Commun 272(3):653–656
- Guo FF, Yu TC, Hong J, Fang JY (2016) Emerging roles of hydrogen sulfide in inflammatory and neoplastic colonic diseases. Front Physiol 7:156
- 34. Barton LL, Ritz NL, Fauque GD, Lin HC (2017) Sulfur cycling and the intestinal microbiome. Dig Dis Sci 62(9):2241–2257
- 35. Peck SC, Denger K, Burrichter A, Irwin SM, Balskus EP, Schleheck D (2019) A glycyl radical enzyme enables hydrogen sulfide production by the human intestinal bacterium Bilophila wadsworthia. Proc Natl Acad Sci USA 116(8):3171–3176
- 36. Liu DH, Huang X, Meng XM, Zhang CM, Lu HL, Kim YC, Xu WX (2014a) Exogenous H2 S enhances mice gastric smooth muscle tension through S-sulfhydration of KV 4.3, mediating the inhibition of the voltage-dependent potassium current. Neurogastroenterol Motil 26(12):1705–1716
- 37. Meng XM, Huang X, Zhang CM, Liu DH, Lu HL, Kim YC, Xu WX (2015) Hydrogen sulfide-induced enhancement of gastric fundus smooth muscle tone is mediated by voltage-dependent potassium and calcium channels in mice. World J Gastroenterol 21 (16):4840–4851

- Shafigullin MY, Zefirov RA, Sabirullina GI, Zefirov AL, Sitdikova GF (2014) Effects of a hydrogen sulfide donor on spontaneous contractile activity of rat stomach and jejunum. Bull Exp Biol Med 157 (3):302–306
- 39. Gallego D, Clave P, Donovan J, Rahmati R, Grundy D, Jimenez M, Beyak MJ (2008) The gaseous mediator, hydrogen sulphide, inhibits in vitro motor patterns in the human, rat and mouse colon and jejunum. Neurogastroenterol Motil 20 (12):1306–1316
- 40. Dhaese I, Lefebvre RA (2009) Myosin light chain phosphatase activation is involved in the hydrogen sulfide-induced relaxation in mouse gastric fundus. Eur J Pharmacol 606(1–3):180–186
- 41. Schicho R, Krueger D, Zeller F, Von Weyhern CW, Frieling T, Kimura H, Ishii I, De Giorgio R, Campi B, Schemann M (2006) Hydrogen sulfide is a novel prosecretory neuromodulator in the Guinea-pig and human colon. Gastroenterology 131(5):1542–1552
- 42. Parajuli SP, Choi S, Lee J, Kim YD, Park CG, Kim MY, Kim HI, Yeum CH, Jun JY (2010) The inhibitory effects of hydrogen sulfide on pacemaker activity of interstitial cells of cajal from mouse small intestine. Korean J Physiol Pharmacol 14(2):83–89
- 43. Yoon PJ, Parajuli SP, Zuo DC, Shahi PK, Oh HJ, Shin HR, Lee MJ, Yeum CH, Choi S, Jun JY (2011) Interplay of hydrogen sulfide and nitric oxide on the pacemaker activity of interstitial cells of cajal from mouse small intestine. Chonnam Med J 47(2):72–79
- 44. Huizinga JD, Martz S, Gil V, Wang XY, Jimenez M, Parsons S (2011) Two independent networks of interstitial cells of cajal work cooperatively with the enteric nervous system to create colonic motor patterns. Front Neurosci 5:93
- 45. Gil V, Parsons S, Gallego D, Huizinga J, Jimenez M (2013) Effects of hydrogen sulphide on motility patterns in the rat colon. Br J Pharmacol 169 (1):34–50
- 46. Mane N, Gil V, Martinez-Cutillas M, Martin MT, Gallego D, Jimenez M (2014) Dynamics of inhibitory co-transmission, membrane potential and pacemaker activity determine neuromyogenic function in the rat colon. Pflugers Arch 466(12):2305–2321
- 47. Gil V, Gallego D, Grasa L, Martin MT, Jimenez M (2010) Purinergic and nitrergic neuromuscular transmission mediates spontaneous neuronal activity in the rat colon. Am J Physiol Gastrointest Liver Physiol 299(1):G158–G169
- 48. Martinez-Cutillas M, Gil V, Mane N, Clave P, Gallego D, Martin MT, Jimenez M (2015) Potential role of the gaseous mediator hydrogen sulphide (H2S) in inhibition of human colonic contractility. Pharmacol Res 93:52–63
- Matsuda NM, Miller SM (2010) Non-adrenergic non-cholinergic inhibition of gastrointestinal smooth muscle and its intracellular mechanism(s). Fundam Clin Pharmacol 24(3):261–268

- Lim JJ, Liu YH, Khin ES, Bian JS (2008) Vasoconstrictive effect of hydrogen sulfide involves downregulation of cAMP in vascular smooth muscle cells. Am J Physiol Cell Physiol 295(5):C1261– C1270
- Bucci M, Papapetropoulos A, Vellecco V, Zhou Z, Pyriochou A, Roussos C, Roviezzo F, Brancaleone V, Cirino G (2010) Hydrogen sulfide is an endogenous inhibitor of phosphodiesterase activity. Arterioscler Thromb Vasc Biol 30 (10):1998–2004
- 52. Nalli AD, Bhattacharya S, Wang H, Kendig DM, Grider JR, Murthy KS (2017a) Augmentation of cGMP/PKG pathway and colonic motility by hydrogen sulfide. Am J Physiol Gastrointest Liver Physiol 313(4):G330–g341
- 53. Zhao P, Huang X, Wang ZY, Qiu ZX, Han YF, Lu HL, Kim YC, Xu WX (2009) Dual effect of exogenous hydrogen sulfide on the spontaneous contraction of gastric smooth muscle in guinea-pig. Eur J Pharmacol 616(1–3):223–228
- 54. Nagao M, Duenes JA, Sarr MG (2012) Role of hydrogen sulfide as a gasotransmitter in modulating contractile activity of circular muscle of rat jejunum. J Gastrointest Surg 16(2):334–343
- 55. Lu W, Li J, Gong L, Xu X, Han T, Ye Y, Che T, Luo Y, Li J, Zhan R, Yao W, Liu K, Cui S, Liu C (2014) H2 S modulates duodenal motility in male rats via activating TRPV1 and K(ATP) channels. Br J Pharmacol 171(6):1534–1550
- 56. Tang Q, Quan X, Yan L, Ren H, Chen W, Xia H, Luo H (2018) Mechanism of sodium hydrosulfide modulation of L-type calcium channels in rat colonic smooth muscle cells. Eur J Pharmacol 818:356–363
- 57. Strege PR, Bernard CE, Kraichely RE, Mazzone A, Sha L, Beyder A, Gibbons SJ, Linden DR, Kendrick ML, Sarr MG, Szurszewski JH, Farrugia G (2011) Hydrogen sulfide is a partially redox-independent activator of the human jejunum Na+ channel, Nav1.5. Am J Physiol Gastrointest Liver Physiol 300(6):G1105–G1114
- Macpherson LJ, Dubin AE, Evans MJ, Marr F, Schultz PG, Cravatt BF, Patapoutian A (2007) Noxious compounds activate TRPA1 ion channels through covalent modification of cysteines. Nature 445(7127):541–545
- 59. Quan X, Luo H, Liu Y, Xia H, Chen W, Tang Q (2015) Hydrogen sulfide regulates the colonic motility by inhibiting both L-type calcium channels and BKCa channels in smooth muscle cells of rat colon. PLoS One 10(3):e0121331
- 60. Nalli AD, Rajagopal S, Mahavadi S, Grider JR, Murthy KS (2015) Inhibition of RhoA-dependent pathway and contraction by endogenous hydrogen sulfide in rabbit gastric smooth muscle cells. Am J Physiol Cell Physiol 308(6):C485–C495
- Nalli AD, Wang H, Bhattacharya S, Blakeney BA, Murthy KS (2017b) Inhibition of RhoA/Rho kinase

pathway and smooth muscle contraction by hydrogen sulfide. Pharmacol Res Perspect 5:5

- Kimura H (2019) Signaling molecules hydrogen sulfide (H2S), polysulfides (H2Sn), and sulfite (H2SO3). Nihon Yakurigaku Zasshi 154(3):115–120
- 63. Mustafa AK, Gadalla MM, Sen N, Kim S, Mu W, Gazi SK, Barrow RK, Yang G, Wang R, Snyder SH (2009) H2S signals through protein S-sulfhydration. Sci Signal 2(96):ra72
- 64. Distrutti E (2011) Hydrogen sulphide and pain. Inflamm Allergy Drug Targets 10(2):123–132
- 65. Distrutti E, Cipriani S, Renga B, Mencarelli A, Migliorati M, Cianetti S, Fiorucci S (2010) Hydrogen sulphide induces micro opioid receptor-dependent analgesia in a rodent model of visceral pain. Mol Pain 6:36
- 66. Xu X, Li S, Shi Y, Tang Y, Lu W, Han T, Xue B, Li J, Liu C (2019) Hydrogen sulfide downregulates colonic afferent sensitivity by a nitric oxide synthase-dependent mechanism in mice. Neurogastroenterol Motil 31(1):e13471
- 67. Matsunami M, Tarui T, Mitani K, Nagasawa K, Fukushima O, Okubo K, Yoshida S, Takemura M, Kawabata A (2009) Luminal hydrogen sulfide plays a pronociceptive role in mouse colon. Gut 58 (6):751–761
- 68. Xu GY, Winston JH, Shenoy M, Zhou S, Chen JD, Pasricha PJ (2009) The endogenous hydrogen sulfide producing enzyme cystathionine-beta synthase contributes to visceral hypersensitivity in a rat model of irritable bowel syndrome. Mol Pain 5:44
- 69. Fukushima O, Nishimura S, Matsunami M, Aoki Y, Nishikawa H, Ishikura H, Kawabata A (2010) Phosphorylation of ERK in the spinal dorsal horn following pancreatic pronociceptive stimuli with proteinase-activated receptor-2 agonists and hydrogen sulfide in rats: evidence for involvement of distinct mechanisms. J Neurosci Res 88(14):3198–3205
- Matsunami M, Kirishi S, Okui T, Kawabata A (2011) Chelating luminal zinc mimics hydrogen sulfideevoked colonic pain in mice: possible involvement of T-type calcium channels. Neuroscience 181:257–264
- Matsunami M, Kirishi S, Okui T, Kawabata A (2012) Hydrogen sulfide-induced colonic mucosal cytoprotection involves T-type calcium channeldependent neuronal excitation in rats. J Physiol Pharmacol 63(1):61–68
- 72. Okubo K, Matsumura M, Kawaishi Y, Aoki Y, Matsunami M, Okawa Y, Sekiguchi F, Kawabata A (2012) Hydrogen sulfide-induced mechanical hyperalgesia and allodynia require activation of both Cav3.2 and TRPA1 channels in mice. Br J Pharmacol 166(5):1738–1743
- 73. Okubo K, Takahashi T, Sekiguchi F, Kanaoka D, Matsunami M, Ohkubo T, Yamazaki J, Fukushima N, Yoshida S, Kawabata A (2011) Inhibition of T-type calcium channels and hydrogen sulfide-forming enzyme reverses paclitaxel-evoked

neuropathic hyperalgesia in rats. Neuroscience 188:148-156

- 74. Li L, Xie R, Hu S, Wang Y, Yu T, Xiao Y, Jiang X, Gu J, Hu CY (2012) Xu GY. Upregulation of cystathionine beta-synthetase expression by nuclear factor-kappa B activation contributes to visceral hypersensitivity in adult rats with neonatal maternal deprivation. Mol Pain 8:89
- 75. Hu S, Xu W, Miao X, Gao Y, Zhu L, Zhou Y, Xiao Y, Xu GY (2013) Sensitization of sodium channels by cystathionine beta-synthetase activation in colon sensory neurons in adult rats with neonatal maternal deprivation. Exp Neurol 248:275–285
- 76. Qi F, Zhou Y, Xiao Y, Tao J, Gu J, Jiang X, Xu GY (2013) Promoter demethylation of cystathioninebeta-synthetase gene contributes to inflammatory pain in rats. Pain 154(1):34–45
- 77. Qu R, Tao J, Wang Y, Zhou Y, Wu G, Xiao Y, Hu CY, Jiang X, Xu GY (2013) Neonatal colonic inflammation sensitizes voltage-gated Na(+) channels via upregulation of cystathionine beta-synthetase expression in rat primary sensory neurons. Am J Physiol Gastrointest Liver Physiol 304(9):G763–G772
- 78. Yuan B, Tang WH, Lu LJ, Zhou Y, Zhu HY, Zhou YL, Zhang HH, Hu CY, Xu GY (2015) TLR4 upregulates CBS expression through NF-kappaB activation in a rat model of irritable bowel syndrome with chronic visceral hypersensitivity. World J Gastroenterol 21(28):8615–8628
- 79. Zhu L, Zhao L, Qu R, Zhu HY, Wang Y, Jiang X, Xu GY (2015) Adrenergic stimulation sensitizes TRPV1 through upregulation of cystathionine betasynthetase in a rat model of visceral hypersensitivity. Sci Rep 5:16109
- 80. Zhao L, Xiao Y, Weng RX, Liu X, Zhang PA, Hu CY, Yu SP, Neonatal Colonic XGY (2017) Inflammation increases spinal transmission and cystathionine beta-synthetase expression in spinal dorsal horn of rats with visceral hypersensitivity. Front Pharmacol 8:696
- Pouokam E, Althaus M (2016) Epithelial electrolyte transport physiology and the gasotransmitter hydrogen sulfide. Oxidative Med Cell Longev 2016:4723416
- Krueger D, Foerster M, Mueller K, Zeller F, Slotta-Huspenina J, Donovan J, Grundy D, Schemann M (2010) Signaling mechanisms involved in the intestinal pro-secretory actions of hydrogen sulfide. Neurogastroenterol Motil 22(11):1224–1231. e1319-1220
- 83. Takeuchi K, Ise F, Takahashi K, Aihara E, Hayashi S (2015) H2S-induced HCO3- secretion in the rat stomach--involvement of nitric oxide, prostaglandins, and capsaicin-sensitive sensory neurons. Nitric Oxide 46:157–164
- 84. Sun H, Zhang J, Shi Y, Gao Y, Shi G, Wang X, Guo P, Huang Y, Ren Y, Zheng S (2016a) Effect of exogenous hydrogen sulfide on gastric acid secretion. J Gastroenterol Hepatol 31(7):1280–1283

- 85. Sousa FBM, Souza LKM, Sousa NA, Araujo TSL, de Araujo S, Pacifico DM, Silva IS, Silva RO, Nicolau LAD, Souza FM, Filgueiras MC, Oliveira JS, Souza M, Medeiros JVR (2018) H2S is a key antisecretory molecule against cholera toxin-induced diarrhoea in mice: Evidence for non-involvement of the AC/cAMP/PKA pathway and AMPK. Nitric Oxide 76:152–163
- 86. Kasubuchi M, Hasegawa S, Hiramatsu T, Ichimura A, Kimura I (2015) Dietary gut microbial metabolites, short-chain fatty acids, and host metabolic regulation. Nutrients 7(4):2839–2849
- 87. Lin HV, Frassetto A, Kowalik EJ Jr, Nawrocki AR, Lu MM, Kosinski JR, Hubert JA, Szeto D, Yao X, Forrest G, Marsh DJ (2012) Butyrate and propionate protect against diet-induced obesity and regulate gut hormones via free fatty acid receptor 3-independent mechanisms. PLoS One 7(4):e35240
- Chimerel C, Emery E, Summers DK, Keyser U, Gribble FM, Reimann F (2014) Bacterial metabolite indole modulates incretin secretion from intestinal enteroendocrine L cells. Cell Rep 9(4):1202–1208
- Pichette J, Fynn-Sackey N, Gagnon J (2017) Hydrogen sulfide and sulfate prebiotic stimulates the secretion of GLP-1 and improves glycemia in male mice. Endocrinology 158(10):3416–3425
- 90. Slade E, Williams L, Gagnon J (2018) Hydrogen sulfide suppresses ghrelin secretion in vitro and delays postprandial ghrelin secretion while reducing appetite in mice. Physiol Rep 6(19):e13870
- 91. Chan WS, Sideris A, Sutachan JJ, Montoya GJ, Blanck TJ, Recio-Pinto E (2013) Differential regulation of proliferation and neuronal differentiation in adult rat spinal cord neural stem/progenitors by ERK1/2, Akt, and PLCgamma. Front Mol Neurosci 6:23
- 92. Li C, Guo Z, Guo B, Xie Y, Yang J, Wang A (2014) Inhibition of the endogenous CSE/H(2)S system contributes to hypoxia and serum deprivationinduced apoptosis in mesenchymal stem cells. Mol Med Rep 9(6):2467–2472
- 93. Liu Y, Yang R, Liu X, Zhou Y, Qu C, Kikuiri T, Wang S, Zandi E, Du J, Ambudkar IS, Shi S (2014b) Hydrogen sulfide maintains mesenchymal stem cell function and bone homeostasis via regulation of Ca (2+) channel sulfhydration. Cell Stem Cell 15 (1):66–78
- 94. Wang J, Wang CD, Zhang N, Tong WX, Zhang YF, Shan SZ, Zhang XL, Li QF (2016) Mechanical stimulation orchestrates the osteogenic differentiation of human bone marrow stromal cells by regulating HDAC1. Cell Death Dis 7:e2221
- 95. Gambari L, Lisignoli G, Cattini L, Manferdini C, Facchini A, Grassi F (2014) Sodium hydrosulfide inhibits the differentiation of osteoclast progenitor cells via NRF2-dependent mechanism. Pharmacol Res 87:99–112
- 96. Aykan A, Ozturk S, Sahin I, Avcu F, Sagkan RI, Isik S (2015) The effects of hydrogen sulfide on adipocyte

viability in human adipocyte and adipocyte-derived mesenchymal stem cell cultures under ischemic conditions. Ann Plast Surg 75(6):657–665

- 97. Guo Z, Li CS, Wang CM, Xie YJ, Wang ALCSE (2015) H2S system protects mesenchymal stem cells from hypoxia and serum deprivationinduced apoptosis via mitochondrial injury, endoplasmic reticulum stress and PI3K/Akt activation pathways. Mol Med Rep 12(2):2128–2134
- Kaiko GE, Ryu SH, Koues OI, Collins PL, Solnica-Krezel L, Pearce EJ, Pearce EL, Oltz EM, Stappenbeck TS (2016) The colonic crypt protects stem cells from microbiota-derived metabolites. Cell 165(7):1708–1720
- 99. Mihaylova MM, Cheng CW, Cao AQ, Tripathi S, Mana MD, Bauer-Rowe KE, Abu-Remaileh M, Clavain L, Erdemir A, Lewis CA, Freinkman E, Dickey AS, La Spada AR, Huang Y, Bell GW, Deshpande V, Carmeliet P, Katajisto P, Sabatini DM, Yilmaz OH (2018) Fasting activates fatty acid oxidation to enhance intestinal stem cell function during homeostasis and aging. Cell Stem Cell 22 (5):769–778. e764
- 100. Qin J, Li R, Raes J, Arumugam M, Burgdorf KS, Manichanh C, Nielsen T, Pons N, Levenez F, Yamada T, Mende DR, Li J, Xu J, Li S, Li D, Cao J, Wang B, Liang H, Zheng H, Xie Y, Tap J, Lepage P, Bertalan M, Batto JM, Hansen T, Le Paslier D, Linneberg A, Nielsen HB, Pelletier E, Renault P, Sicheritz-Ponten T, Turner K, Zhu H, Yu C, Li S, Jian M, Zhou Y, Li Y, Zhang X, Li S, Qin N, Yang H, Wang J, Brunak S, Dore J, Guarner F, Kristiansen K, Pedersen O, Parkhill J, Weissenbach J, Meta HITC, Bork P, Ehrlich SD, Wang J (2010) A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464(7285):59–65
- 101. Sartor RB (2008) Microbial influences in inflammatory bowel diseases. Gastroenterology 134 (2):577–594
- 102. Wallace JL, Motta JP, Buret AG (2018) Hydrogen sulfide: an agent of stability at the microbiomemucosa interface. Am J Physiol Gastrointest Liver Physiol 314(2):G143–g149
- 103. Motta JP, Flannigan KL, Agbor TA, Beatty JK, Blackler RW, Workentine ML, Da Silva GJ, Wang R, Buret AG, Wallace JL (2015) Hydrogen sulfide protects from colitis and restores intestinal microbiota biofilm and mucus production. Inflamm Bowel Dis 21(5):1006–1017
- 104. Li Y, Wang H, Wu X, Wang L (2015) Influence of hydrogen sulfide on the intestinal biological barrier of rats with severe burn injury. Zhonghua Shao Shang Za Zhi 31(1):37–41
- 105. Kashfi K, Olson KR (2013) Biology and therapeutic potential of hydrogen sulfide and hydrogen sulfidereleasing chimeras. Biochem Pharmacol 85 (5):689–703

- 106. Uejima M, Kinouchi T, Kataoka K, Hiraoka I, Ohnishi Y (1996) Role of intestinal bacteria in ileal ulcer formation in rats treated with a nonsteroidal antiinflammatory drug. Microbiol Immunol 40 (8):553–560
- 107. Watanabe T, Higuchi K, Kobata A, Nishio H, Tanigawa T, Shiba M, Tominaga K, Fujiwara Y, Oshitani N, Asahara T, Nomoto K, Takeuchi K, Arakawa T (2008) Non-steroidal anti-inflammatory drug-induced small intestinal damage is Toll-like receptor 4 dependent. Gut 57(2):181–187
- 108. Blackler RW, De Palma G, Manko A, Da Silva GJ, Flannigan KL, Bercik P, Surette MG, Buret AG, Wallace JL (2015a) Deciphering the pathogenesis of NSAID enteropathy using proton pump inhibitors and a hydrogen sulfide-releasing NSAID. Am J Physiol Gastrointest Liver Physiol 308 (12):994–1003
- 109. Blachier F, Beaumont M, Andriamihaja M, Davila AM, Lan A, Grauso M, Armand L, Benamouzig R, Tome D (2017) Changes in the luminal environment of the colonic epithelial cells and physiopathological consequences. Am J Pathol 187(3):476–486
- Linden DR (2014) Hydrogen sulfide signaling in the gastrointestinal tract. Antioxid Redox Signal 20 (5):818–830
- 111. Chen S, Bu D, Ma Y, Zhu J, Sun L, Zuo S, Ma J, Li T, Chen Z, Zheng Y, Wang X, Pan Y, Wang P, Liu Y (2016) GYY4137 ameliorates intestinal barrier injury in a mouse model of endotoxemia. Biochem Pharmacol 118:59–67
- 112. Blackler RW, Motta JP, Manko A, Workentine M, Bercik P, Surette MG, Wallace JL (2015b) Hydrogen sulphide protects against NSAID-enteropathy through modulation of bile and the microbiota. Br J Pharmacol 172(4):992–1004
- 113. Flannigan KL, Ferraz JG, Wang R, Wallace JL (2013) Enhanced synthesis and diminished degradation of hydrogen sulfide in experimental colitis: a site-specific, pro-resolution mechanism. PLoS One 8(8):e71962
- 114. Wallace JL, Vong L, McKnight W, Dicay M, Martin GR (2009) Endogenous and exogenous hydrogen sulfide promotes resolution of colitis in rats. Gastroenterology 137(2):569–578
- 115. Gong R, Xue Y, Xu H, Gao L, Lu G, Zhou J, Zhang M (2018) Effects of exogenous hydrogen sulfide on intestinal function in rabbits after cardiopulmonary resuscitation. Zhonghua Wei Zhong Bing Ji Jiu Yi Xue 30(12):1178–1183
- 116. Chen SW, Zhu J, Zuo S, Zhang JL, Chen ZY, Chen GW, Wang X, Pan YS, Liu YC, Wang PY (2015) Protective effect of hydrogen sulfide on TNF-alpha and IFN-gamma-induced injury of intestinal epithelial barrier function in Caco-2 monolayers. Inflamm Res 64(10):789–797
- 117. Johansson ME, Phillipson M, Petersson J, Velcich A, Holm L, Hansson GC (2008) The inner of the two Muc2 mucin-dependent mucus layers in colon is

devoid of bacteria. Proc Natl Acad Sci USA 105 (39):15064–15069

- 118. Mills DJ, Tuohy KM, Booth J, Buck M, Crabbe MJ, Gibson GR, Ames JM (2008) Dietary glycated protein modulates the colonic microbiota towards a more detrimental composition in ulcerative colitis patients and non-ulcerative colitis subjects. J Appl Microbiol 105(3):706–714
- 119. Verma R, Verma AK, Ahuja V, Paul J (2010) Realtime analysis of mucosal flora in patients with inflammatory bowel disease in India. J Clin Microbiol 48 (11):4279–4282
- 120. Levine J, Ellis CJ, Furne JK, Springfield J, Levitt MD (1998) Fecal hydrogen sulfide production in ulcerative colitis. Am J Gastroenterol 93(1):83–87
- 121. Ijssennagger N, Belzer C, Hooiveld GJ, Dekker J, van Mil SW, Muller M, Kleerebezem M, van der Meer R (2015) Gut microbiota facilitates dietary heme-induced epithelial hyperproliferation by opening the mucus barrier in colon. Proc Natl Acad Sci USA 112(32):10038–10043
- 122. Ijssennagger N, van der Meer R, van Mil SWC (2016) Sulfide as a mucus barrier-breaker in inflammatory bowel disease? Trends Mol Med 22 (3):190–199
- 123. Goubern M, Andriamihaja M, Nubel T, Blachier F, Bouillaud F (2007) Sulfide, the first inorganic substrate for human cells. FASEB J 21(8):1699–1706
- 124. Beaumont M, Andriamihaja M, Lan A, Khodorova N, Audebert M, Blouin JM, Grauso M, Lancha L, Benetti PH, Benamouzig R, Tome D, Bouillaud F, Davila AM, Blachier F (2016) Detrimental effects for colonocytes of an increased exposure to luminal hydrogen sulfide: the adaptive response. Free Radic Biol Med 93:155–164
- 125. Swidsinski A, Ladhoff A, Pernthaler A, Swidsinski S, Loening-Baucke V, Ortner M, Weber J, Hoffmann U, Schreiber S, Dietel M, Lochs H (2002) Mucosal flora in inflammatory bowel disease. Gastroenterology 122 (1):44–54
- 126. Mottawea W, Chiang CK, Muhlbauer M, Starr AE, Butcher J, Abujamel T, Deeke SA, Brandel A, Zhou H, Shokralla S, Hajibabaei M, Singleton R, Benchimol EI, Jobin C, Mack DR, Figeys D, Stintzi A (2016) Altered intestinal microbiota-host mitochondria crosstalk in new onset Crohn's disease. Nat Commun 7:13419
- 127. Kamdar K, Khakpour S, Chen J, Leone V, Brulc J, Mangatu T, Antonopoulos DA, Chang EB, Kahn SA, Kirschner BS, Young G, DePaolo RW (2016) Genetic and metabolic signals during acute enteric bacterial infection alter the microbiota and drive progression to chronic inflammatory disease. Cell Host Microbe 19(1):21–31
- 128. Wang L, Zhang J, Guo Z, Kwok L, Ma C, Zhang W, Lv Q, Huang W, Zhang H (2014) Effect of oral consumption of probiotic Lactobacillus planatarum P-8 on fecal microbiota, SIgA, SCFAs, and TBAs

of adults of different ages. Nutrition 30 (7–8):776–783. e771

- 129. Sawin EA, De Wolfe TJ, Aktas B, Stroup BM, Murali SG, Steele JL, Ney DM (2015) Glycomacropeptide is a prebiotic that reduces Desulfovibrio bacteria, increases cecal short-chain fatty acids, and is anti-inflammatory in mice. Am J Physiol Gastrointest Liver Physiol 309(7):G590– G601
- 130. Coutinho C, Coutinho-Silva R, Zinkevich V, Pearce CB, Ojcius DM, Beech I (2017) Sulphate-reducing bacteria from ulcerative colitis patients induce apoptosis of gastrointestinal epithelial cells. Microb Pathog 112:126–134
- 131. Figliuolo VR, Dos Santos LM, Abalo A, Nanini H, Santos A, Brittes NM, Bernardazzi C, de Souza HSP, Vieira LQ, Coutinho-Silva R, Coutinho C (2017) Sulfate-reducing bacteria stimulate gut immune responses and contribute to inflammation in experimental colitis. Life Sci 189:29–38
- 132. Mimoun S, Andriamihaja M, Chaumontet C, Atanasiu C, Benamouzig R, Blouin JM, Tome D, Bouillaud F, Blachier F (2012) Detoxification of H (2)S by differentiated colonic epithelial cells: implication of the sulfide oxidizing unit and of the cell respiratory capacity. Antioxid Redox Signal 17 (1):1–10
- 133. Nugent SG, Kumar D, Rampton DS, Evans DF (2001) Intestinal luminal pH in inflammatory bowel disease: possible determinants and implications for therapy with aminosalicylates and other drugs. Gut 48(4):571–577
- 134. Ma N, Tian Y, Wu Y, Ma X (2017) Contributions of the interaction between dietary protein and gut microbiota to intestinal health. Curr Protein Pept Sci 18(8):795–808
- 135. Medani M, Collins D, Docherty NG, Baird AW, O'Connell PR, Winter DC (2011) Emerging role of hydrogen sulfide in colonic physiology and pathophysiology. Inflamm Bowel Dis 17(7):1620–1625
- 136. Sun J, Shen X, Li Y, Guo Z, Zhu W, Zuo L, Zhao J, Gu L, Gong J, Li J (2016b) Therapeutic potential to modify the mucus barrier in inflammatory bowel disease. Nutrients 8:1
- 137. Flannigan KL, Agbor TA, Blackler RW, Kim JJ, Khan WI, Verdu EF, Ferraz JG, Wallace JL (2014) Impaired hydrogen sulfide synthesis and IL-10 signaling underlie hyperhomocysteinemia-associated exacerbation of colitis. Proc Natl Acad Sci USA 111(37):13559–13564
- 138. Fasolino I, Izzo AA, Clavel T, Romano B, Haller D, Borrelli F (2015) Orally administered allyl sulfides from garlic ameliorate murine colitis. Mol Nutr Food Res 59(3):434–442
- 139. Zhao H, Yan R, Zhou X, Ji F, Zhang B (2016) Hydrogen sulfide improves colonic barrier integrity in DSS-induced inflammation in Caco-2 cells and mice. Int Immunopharmacol 39:121–127

- 140. Lin WC, Pan WY, Liu CK, Huang WX, Song HL, Chang KS, Li MJ, Sung HW (2018) In situ self-spray coating system that can uniformly disperse a poorly water-soluble H2S donor on the colorectal surface to treat inflammatory bowel diseases. Biomaterials 182:289–298
- 141. Taniguchi E, Matsunami M, Kimura T, Yonezawa D, Ishiki T, Sekiguchi F, Nishikawa H, Maeda Y, Ishikura H, Kawabata A (2009) Rhodanese, but not cystathionine-gamma-lyase, is associated with dextran sulfate sodium-evoked colitis in mice: a sign of impaired colonic sulfide detoxification? Toxicology 264(1–2):96–103
- 142. Tomuschat C, O'Donnell AM, Coyle D, Puri P (2018) Reduction of hydrogen sulfide synthesis enzymes cystathionine-beta-synthase and cystathioninegamma-lyase in the colon of patients with Hirschsprungs disease. J Pediatr Surg 53(3):525–530
- 143. Dryahina K, Smith D, Bortlik M, Machkova N, Lukas M, Spanel P (2017) Pentane and other volatile organic compounds, including carboxylic acids, in the exhaled breath of patients with Crohn's disease and ulcerative colitis. J Breath Res 12(1):016002
- 144. De Cicco P, Sanders T, Cirino G, Maloy KJ, Ianaro A (2018) Hydrogen sulfide reduces myeloid-derived suppressor cell-mediated inflammatory response in a model of Helicobacter hepaticus-induced colitis. Front Immunol 9:499
- 145. Figliuolo VR, Coutinho-Silva R, Coutinho C (2018) Contribution of sulfate-reducing bacteria to homeostasis disruption during intestinal inflammation. Life Sci 215:145–151
- 146. Kushkevych I, Lescanova O, Dordevic D, Jancikova S, Hosek J, Vitezova M, Bunkova L, Drago L (2019) The sulfate-reducing microbial communities and meta-analysis of their occurrence during diseases of small-large intestine axis. J Clin Med 8:10
- 147. Sitkin SI, Tkachenko EI, Vakhitov TY (2016) Metabolic dysbiosis of the gut microbiota and its biomarkers. Eksp Klin Gastroenterol 12(12):6–29
- 148. Cao X, Ding L, Xie ZZ, Yang Y, Whiteman M, Moore PK, Bian JS (2019) A review of hydrogen sulfide synthesis, metabolism, and measurement: is modulation of hydrogen sulfide a novel therapeutic for cancer? Antioxid Redox Signal 31(1):1–38
- 149. Phillips CM, Zatarain JR, Nicholls ME, Porter C, Widen SG, Thanki K, Johnson P, Jawad MU, Moyer MP, Randall JW, Hellmich JL, Maskey M, Qiu S, Wood TG, Druzhyna N, Szczesny B, Modis K, Szabo C, Chao C, Hellmich MR (2017) Upregulation of cystathionine-beta-synthase in colonic epithelia reprograms metabolism and promotes carcinogenesis. Cancer Res 77 (21):5741–5754
- 150. Zhu H, Blake S, Chan KT, Pearson RB, Kang J (2018) Cystathionine beta-synthase in physiology and cancer. Biomed Res Int 2018:3205125

- 151. Augsburger F, Szabo C (2018) Potential role of the 3-mercaptopyruvate sulfurtransferase (3-MST)hydrogen sulfide (H2S) pathway in cancer cells. Pharmacol Res 154:104083
- 152. Untereiner AA, Olah G, Modis K, Hellmich MR, Szabo C (2017) H2S-induced S-sulfhydration of lactate dehydrogenase a (LDHA) stimulates cellular bioenergetics in HCT116 colon cancer cells. Biochem Pharmacol 136:86–98
- 153. Chen S, Yue T, Huang Z, Zhu J, Bu D, Wang X, Pan Y, Liu Y, Wang P (2019) Inhibition of hydrogen sulfide synthesis reverses acquired resistance to 5-FU through miR-215-5p-EREG/TYMS axis in colon cancer cells. Cancer Lett 466:49–60
- 154. An L, Wang X, Rui X, Lin J, Yang H, Tian Q, Tao C, Yang S (2018) The in situ sulfidation of Cu2 O by endogenous H2S for colon cancer theranostics. Angew Chem Int Ed Engl 57(48):15782–15786
- 155. Foster JC, Radzinski SC, Zou X, Finkielstein CV, Matson JB (2017) H2S-releasing polymer micelles for studying selective cell toxicity. Mol Pharm 14 (4):1300–1306
- 156. Libiad M, Vitvitsky V, Bostelaar T, Bak DW, Lee HJ, Sakamoto N, Fearon E, Lyssiotis CA, Weerapana E, Banerjee R (2019) Hydrogen sulfide perturbs mitochondrial bioenergetics and triggers metabolic reprogramming in colon cells. J Biol Chem 294(32):12077–12090
- 157. Hale VL, Jeraldo P, Mundy M, Yao J, Keeney G, Scott N, Cheek EH, Davidson J, Greene M, Martinez C, Lehman J, Pettry C, Reed E, Lyke K, White BA, Diener C, Resendis-Antonio O, Gransee J, Dutta T, Petterson XM, Boardman L, Larson D, Nelson H, Chia N (2018a) Synthesis of multi-omic data and community metabolic models reveals insights into the role of hydrogen sulfide in colon cancer. Methods 149:59–68
- 158. Nguyen LH, Ma W, Wang DD, Cao Y, Mallick H, Gerbaba TK, Lloyd-Price J, Abu-Ali G, Hall AB, Sikavi D, Drew DA, Mehta RS, Arze C, Joshi AD, Yan Y, Branck T, DuLong C, Ivey KL, Ogino S, Rimm EB, Song M, Garrett WS, Izard J, Huttenhower C, Chan AT (2020) Association between sulfur-metabolizing bacterial communities in stool and risk of distal colorectal cancer in men. Gastroenterology 158:1313
- 159. Yazici C, Wolf PG, Kim H, Cross TL, Vermillion K, Carroll T, Augustus GJ, Mutlu E, Tussing-Humphreys L, Braunschweig C, Xicola RM, Jung B, Llor X, Ellis NA, Gaskins HR (2017) Racedependent association of sulfidogenic bacteria with colorectal cancer. Gut 66(11):1983–1994
- 160. Hale VL, Jeraldo P, Chen J, Mundy M, Yao J, Priya S, Keeney G, Lyke K, Ridlon J, White BA, French AJ, Thibodeau SN, Diener C, Resendis-Antonio O, Gransee J, Dutta T, Petterson XM, Sung J, Blekhman R, Boardman L, Larson D, Nelson H, Chia N (2018b) Distinct microbes, metabolites, and ecologies define the microbiome in

deficient and proficient mismatch repair colorectal cancers. Genome Med 10(1):78

- 161. Ford AC, Thabane M, Collins SM, Moayyedi P, Garg AX, Clark WF, Marshall JK (2010) Prevalence of uninvestigated dyspepsia 8 years after a large waterborne outbreak of bacterial dysentery: a cohort study. Gastroenterology 138(5):1727–1736
- 162. Marshall JK, Thabane M, Garg AX, Clark WF, Moayyedi P, Collins SM (2010) Walkerton health study I. Eight year prognosis of postinfectious irritable bowel syndrome following waterborne bacterial dysentery. Gut 59(5):605–611
- 163. Walker MM, Talley NJ, Inganas L, Engstrand L, Jones MP, Nyhlin H, Agreus L, Kjellstrom L, Ost A, Andreasson A (2015) Colonic spirochetosis is associated with colonic eosinophilia and irritable bowel syndrome in a general population in Sweden. Hum Pathol 46(2):277–283
- 164. Walker MM, Talley NJ (2014) Review article: bacteria and pathogenesis of disease in the upper gastrointestinal tract--beyond the era of Helicobacter pylori. Aliment Pharmacol Ther 39(8):767–779
- 165. Coeffier M, Gloro R, Boukhettala N, Aziz M, Lecleire S, Vandaele N, Antonietti M, Savoye G, Bole-Feysot C, Dechelotte P, Reimund JM, Ducrotte P (2010) Increased proteasome-mediated degradation of occludin in irritable bowel syndrome. Am J Gastroenterol 105(5):1181–1188
- 166. Liebregts T, Adam B, Bredack C, Roth A, Heinzel S, Lester S, Downie-Doyle S, Smith E, Drew P, Talley NJ, Holtmann G (2007) Immune activation in patients with irritable bowel syndrome. Gastroenterology 132(3):913–920
- 167. Liebregts T, Adam B, Bredack C, Gururatsakul M, Pilkington KR, Brierley SM, Blackshaw LA, Gerken G, Talley NJ, Holtmann G (2011) Small bowel homing T cells are associated with symptoms and delayed gastric emptying in functional dyspepsia. Am J Gastroenterol 106(6):1089–1098
- 168. Marshall JK, Thabane M, Garg AX, Clark W, Meddings J, Collins SM, Investigators WEL (2004) Intestinal permeability in patients with irritable bowel syndrome after a waterborne outbreak of acute

gastroenteritis in Walkerton, Ontario. Aliment Pharmacol Ther 20(11–12):1317–1322

- 169. Shulman RJ, Jarrett ME, Cain KC, Broussard EK, Heitkemper MM (2014) Associations among gut permeability, inflammatory markers, and symptoms in patients with irritable bowel syndrome. J Gastroenterol 49(11):1467–1476
- 170. Vazquez-Roque MI, Camilleri M, Smyrk T, Murray JA, O'Neill J, Carlson P, Lamsam J, Eckert D, Janzow D, Burton D, Ryks M, Rhoten D, Zinsmeister AR (2012) Association of HLA-DQ gene with bowel transit, barrier function, and inflammation in irritable bowel syndrome with diarrhea. Am J Physiol Gastrointest Liver Physiol 303(11):G1262–G1269
- 171. Zhong L, Shanahan ER, Raj A, Koloski NA, Fletcher L, Morrison M, Walker MM, Talley NJ, Holtmann G (2017) Dyspepsia and the microbiome: time to focus on the small intestine. Gut 66 (6):1168–1169
- 172. Chassard C, Dapoigny M, Scott KP, Crouzet L, Del'homme C, Marquet P, Martin JC, Pickering G, Ardid D, Eschalier A, Dubray C, Flint HJ, Bernalier-Donadille A (2012) Functional dysbiosis within the gut microbiota of patients with constipated-irritable bowel syndrome. Aliment Pharmacol Ther 35 (7):828–838
- 173. Pusceddu MM, Gareau MG (2018) Visceral pain: gut microbiota, a new hope? J Biomed Sci 25(1):73
- 174. Chichlowski M, Rudolph C (2015) Visceral pain and gastrointestinal microbiome. J Neurogastroenterol Motil 21(2):172–181
- 175. Crouzet L, Gaultier E, Del'Homme C, Cartier C, Delmas E, Dapoigny M, Fioramonti J, Bernalier-Donadille A (2013) The hypersensitivity to colonic distension of IBS patients can be transferred to rats through their fecal microbiota. Neurogastroenterol Motil 25(4):e272–e282
- 176. Ford AC, Quigley EM, Lacy BE, Lembo AJ, Saito YA, Schiller LR, Soffer EE, Spiegel BM, Moayyedi P (2014) Efficacy of prebiotics, probiotics, and synbiotics in irritable bowel syndrome and chronic idiopathic constipation: systematic review and metaanalysis. Am J Gastroenterol 109(10):1547–1561

Hydrogen Sulfide and the Immune System

Peter Rose, Yi-Zhun Zhu, and Philip K. Moore

1 Introduction

Hydrogen sulfide (H₂S) is now accepted as the third gaseous mediator identified in mammals alongside NO and CO. This simple molecule is synthesized by a range of cells and tissues whereby it functions as a signalling molecule [1, 2]. At the molecular level H₂S reportedly alters the activities of transcription factors important in inflammatory signalling like nuclear factor kappa beta (NF- κ B), and nuclear factor erythroid 2-related factor 2 (Nrf-2). More widely, this same molecule can activate several kinases such as p38 mitogen-activated protein kinase (p38 MAPK), c-JunNH₂-terminal kinase (JNK), extracellular signal-regulated kinase (ERK), phosphoinositide 3-kinase – protein kinase B (PI-3 K-Akt), AMP-activated protein kinase and protein kinase C (PKC). Furthermore, other proteins including

Y.-Z. Zhu

p53, proliferator-activated receptor γ, NAD-dependent deacetylase sirtuin-1 (SIRT1), SIRT3, and mechanistic target of rapamycin (mTOR) may also play important roles in the inflammatory properties of H₂S (reviewed in, [3–6]). Collectively, this body of work points to a spectrum of complex molecular networks that influence the response of cells to H₂S, many of which have distinct roles in cytoprotection ([7], vascular function [8-10], neurological systems [11–13], tissue repair and healing [14, 15], apoptosis and the cell cycle [16], in aging [17, 18], mitochondrial function and energy metabolism and biogenesis [19, 20], and in inflammation [21, 22]. In these networks, H₂S functions at multiple levels, acting as an antioxidant and interactions with other signalling molecules like nitric oxide to form biologically active nitrosothiols and related species [23, 24]. The interplay between H₂S and these pathways contributes to the effects of H₂S in the immune system.

In tissues and cells the biosynthesis and catabolism of H₂S are governed by the interplay between the biosynthetic enzymes cystathionine β synthase (CBS, EC 4.2.1.22), cystathionine- γ -lyase (CSE, EC 4.4.1.1), and 3-mercaptopyruvate sulfurtransferase (3-MST, EC 2.8.1.2), with enzymes involved in H₂S detoxification, namely Ethylmalonic encephalopathy protein 1 (Ethe1, EC: 1.13.11.18) and mitochondrial sulfide quinone oxidoreductase (SQR1, EC 1.8.5.4), (Fig. 1a) also important. Much has been reported on these two

P. Rose (🖂)

School of Biosciences, University of Nottingham, Loughborough, Leicestershire, UK

State Key Laboratory of Quality Research in Chinese Medicine and School of Pharmacy, Macau University of Science and Technology, Macau, China e-mail: Peter.Rose@nottingham.ac.uk

State Key Laboratory of Quality Research in Chinese Medicine and School of Pharmacy, Macau University of Science and Technology, Macau, China

P. K. Moore

Life Science Institute and Department of Pharmacology, National University of Singapore, Singapore, Singapore

[©] Springer Nature Singapore Pte Ltd. 2021

Y.-C. Zhu (ed.), *Advances in Hydrogen Sulfide Biology*, Advances in Experimental Medicine and Biology 1315, https://doi.org/10.1007/978-981-16-0991-6_5

Fig. 1 Hydrogen sulfide biosynthesis in mammalian cells is governed by the expression and activities of three key metabolic enzymes namely cystathionine gamma lyase (CSE), cystathionine beta synthase (CBS), and 3-mercaptopyruvate sulfotransferase (3-MST), respectively. These enzymes are responsible for the majority of H_2S produced in cells and tissues and their expression and activities respond to inflammatory stimulation. The H_2S

produced can either function as a signalling molecule or alternatively be detoxified by the enzymes sulfide quinone oxidoreductase (SQR1) or ethylmalonic encephalopathy protein 1 (Ethe1), (A). (B) Additional sources of H_2S are potentially derived from the metabolism of exogeneous sulfur compounds like diallyl trisulfide in reactions with cellular thiol molecules like glutathione

opposing groups of enzyme, and how they influence tissue H₂S levels covered in greater detail in [25, 26]. In general, cellular pools of H_2S are governed by the rates of catabolism of cysteine by the enzymes CBS, and CSE, and by the activity of 3-MST towards the substrate, 3-mercaptopyruvate. CBS and CSE are the major H₂S generating enzymatic systems in mammalian tissues; with CBS prominently expressed in the brain, nervous system, liver, and kidney. In contrast, CSE is largely expressed in the liver and in vascular and non-vascular tissues. The enzyme 3-MST produces H_2S in a coupled reaction with the enzyme cysteine aminotransferase. In addition, it is worth noting that pools of H₂S may also be generated following the ingestion of dietary sulfur compounds including the allium derived compound diallyl trisulfide. However, these routes of H₂S production are beyond the scope of the current

work (Fig. 1b; see reviews by [27, 28] for further details).

The detoxification of H₂S in cells and tissues can occur via chemical as well as enzymatic routes involving sulfide quinone oxidoreductase (SQR; E.C. 1.8.5.4) and tethylmalonic encephalopathy 1 (Ethe1; E.C. 1.13.11.18) systems are [29, 30]. Interestingly, loss of function of Ethel promotes H₂S mediated toxicity in humans, and is a recognized metabolic disorder. In addition to enzymatic routes of elimination, chemical processes are also important in mediating the loss for this molecule. These processes occurring following the oxidation of H₂S in chemical reactions driven by O₂, myoglobin and/or transition metals to generate thiosulphate and other oxidation products. Importantly, dysregulation in endogenous H₂S production, coordinated by either one or the other of these enzymatic pathways, will influence the severity, progression, and rates of recovery from episodes of disease where H₂S is important. Interestingly, many of the pathophysiological conditions known to be affected by H₂S, often show signs of dysregulation in the immune response and in inflammatory signalling networks, viz. diabetes, cancer(s), and arthritis. Critically, loss in the capacity of tissues to produce H₂S via reduction in the activities and expression of CSE, CBS, 3-MST often correlates with these observed changes, and points to a role of this molecule in these conditions. This has led many researchers to question what function H_2S plays in inflammation, and has led to the testing of several H₂S donor compounds in multiple inflammatory models. While much of this research is still ongoing, this work will hopefully help to unravel the biological significance of H₂S in the immune system.

2 H₂S and Inflammation

In mammalian cells and tissues the inflammatory process is tightly coordinated in tissue specific responses to infection and stress. Inflammatory networks in turn initiate cellular cascades involving leukocytes and lymphocytes that once activated initiate inflammatory networks. These processes involving, (1) the mobilization of inflammatory cells like macrophages to the site of infection and, (2) the biosynthesis and release of inflammatory molecules like prostaglandins (PG), various cytokines (CK), leukotrienes (LK), and other molecules including the gaseous mediators, NO, CO, and H_2S [31]. The latter molecules are important, since they are involved in coordinating cell signalling responses needed to activate gene expression, and the synthesis of proteins that play important roles in the inflammatory response. Combined, these networks exist to allow for the removal of invading pathogen, viz. bacteria, viruses, foreign bodies, and fungi. In recent times, it become has clear that dysregulation in inflammatory signalling networks occurs during aging and in many common diseases including some cancer(s), arthritis, diabetes, and other conditions that fall under the

umbrella of "metabolic syndrome" [32, 33]. In many of these pathophysiological conditions the over production of pro-inflammatory mediators leads to altered cellular proliferation and damage to tissue. Consequently, researchers have begun to define the role of gaseous mediators in inflammatory processes and whether loss of production of these molecules is important in altered immune responses. With regard to H₂S, the advent of newer research tools, viz. H₂S donor molecules, novel inhibitors of H₂S biosynthesis enzymes, and gene knockout technologies, has allowed researchers to gain a better picture of how gaseous signalling molecules function in the immune system [34]. Indeed, in our laboratory and that of others, it has been shown that H_2S is an important mediator of inflammation and evidence from this research will be covered in the current chapter.

The part played by H_2S in the immune system is complicated, and researchers are only now gaining a picture of the role of this molecule in various inflammatory conditions. Importantly, H₂S can have both pro-and anti-inflammatory effects in mammalian cells and tissues. One of the earliest reports of the part played by H₂S in inflammation was by Li and colleagues [35]. In a of endotoxin-induced inflammation, model E. coli lipopolysaccharide (LPS) was used to mimic septic shock in mice. Findings from this research revealed that the administration of LPS increased plasma H₂S concentrations and the rates of synthesis of this molecule in liver and kidney tissues. Concomitantly, the increased production of H₂S correlated with the accumulation of myeloperoxidase (MPO; a marker of tissue neutrophil infiltration and inflammation) in the lung, liver, and kidney tissues of animals. This research was the first to provide evidence that H₂S can be pro-inflammatory in mammalian systems. Using sodium hydrosulfide (NaHS), a fast H₂S releasing donor molecule to manipulate tissue H₂S levels, the released H₂S caused a marked increase in lung inflammation, lung, and liver MPO activity, and raising of plasma tumor necrosis factor alpha (TNF- α) concentrations. Critically, these pro-inflammatory markers were reduced using the H₂S biosynthetic enzyme inhibitor, DL-propargylglycine (PAG). Findings from this work showing that the manipulation of H₂S homeostatic systems influences the inflammatory response in various animal models. Further research, using a murine model of cecal ligation and puncture-induced sepsis, also confirm the pro-inflammatory nature of H₂S. In this instance, treatment with NaHS induces the production of pro-inflammatory mediators, driven largely by the activation of NF-kB signalling pathway [36]. In addition, in human fibroblast the addition of NaHS increases the production of TNF alpha, and IL-8, and drives an increase in gene expression and protein levels of cyclooxygenase II (COX-2) and IL-8. In the chicken, H₂S is pro-inflammatory by causing the production of NO, TNF- α , and IL-1 β , increasing hydrogen peroxide (H₂O₂), the lipid peroxidation product malondialdehyde (MDA), and elevated inducible nitric oxide synthase (iNOS) activity in the spleen of animals. In contrast, the levels or activities of the cellular antioxidant glutathione (GSH), catalase, and superoxide dismutase were found to be diminished. Collectively, these events leading to necroptosis via the induction of mitogen-activated protein kinase (MAPK) and the activation of NF- κ B [37]. Atmospheric H₂S gas is also reported to activate the LR4/Myd88/ NF- κ B signalling pathway and to initiate the formation of the NLRP3 Inflammasome in broiler thymus tissues [38]. In this instance, H_2S increased IL-1β, IL-4, and IL-10 levels, and downregulated IL-12 and IFN-y production; this finding going someway in explaining the immunotoxic effects of H₂S. H₂S treatment also initiates the phosphorylation of Src family kinases (SFKs) to promote inflammation in mouse pancreatic acinar cells [39]. In addition, in a murine polymicrobial sepsis model, H₂S treatment stimulated the induction of COX-2 and the production of prostaglandin E metabolite (PGEM) to promote inflammation [40]. Wang et al. have shown that CSE expression is important in driving the rates of H₂S mediated persulfidation (widely known as sulfhydration), on cysteine-38 of the NF-kB p65 subunit and the nuclear translocation of NF-kB in bonemetastatic PC3 cells. This resulting in an increase in IL-1 β expression and the promotion of cell invasion [41]. Clearly, further studies are needed to define the regulatory effects of H_2S on NF- κB signalling systems under differing inflammatory stimuli and disease models. These findings indicate that the administered of non-physiological levels of H_2S can be pro-inflammatory in mammals.

In other studies evidence points to H₂S having anti-inflammatory effects in isolated cells and in various animal tissues. Indeed, in human osteoarthritis chondrocytes, exposure of isolated cells to low concentrations of H₂S has an antiinflammatory effect, suppressing IL-8, COX-2, inducible nitric oxide (iNOS), and matrix metalloproteinase-13 (MMP13) protein expression. This finding correlates with significant reductions in the synthesis of pro-inflammatory mediators like prostaglandin E2 (PGE2) and NO [42]. Similarly, in C28/12 chondrocyte cells, exposure of cells to low concentrations of NaHS inhibits IL-1β, interleukin 6 (IL-6), and IL-8 expression and reduces leucocyte adhesion [43]. This finding supporting an antiinflammatory role for H₂S. The non-steroid antiinflammatory drug (NSAID), S-diclofenac, a H₂S-releasing derivative of diclofenac, appears to be anti-inflammatory in animal models [44, 45]. These anti-inflammatory properties are more pronounced with the H₂S releasing derivative than that of the parental molecule, diclofenac. Other H₂S releasing NSAIDs like ADT-OH, a derivative of anethole dithiolethione (ADT), is a slow release hydrogen sulfide (H₂S) donor and also exhibits anti-inflammatory activity [44]. As such, lots of evidence now points to a likely role of H_2S in the immune system, and that this molecule exhibits both pro- and antiinflammatory effects that are dependent on the time, duration of exposure and relative tissue concentrations.

2.1 H₂S and Inflammatory Signalling; Impacts on NF-kB Systems

The inflammatory response is mediated by the activation of cell signalling systems that regulates

the expression of genes and proteins involved in the production of both pro- and anti-inflammatory molecules. These mediators have the capacity to drive inflammation both in surrounding tissues and at distal sites, and are key players in orchestrating the recruitment of inflammatory cells found in the general circulation such as leukocytes. In mammalian systems, one important component of the inflammatory signalling systems is that of the transcription factor Nuclear factor Kappa beta (NF-kB). NF-kB is representative of one of the most widely characterized cell signalling networks and plays a pivotal role in driving inflammatory cascades in response to tissues injury and stress. NF-kB is also important in other cellular processes including cellular development, maturation, survival, and proliferation [46, 47]. The molecular mechanisms responsible for NF-kB action are now widely known and have led to the characterization of a canonical and non-conical pathway. The conical system is composed of Rel and p50 proteins and the protein complex is localized to the cytoplasm of cells as an inactive form, and bound to the inhibitory protein Ικβα. Following an inflammatory stimulus like for example the exposure of cells to lipopolysaccharide, IkB kinase (IKK) is activated leading that phosphorylates the I $\kappa\beta\alpha$ protein. This leads to the ubiquitination of $I\kappa\beta\alpha$ and drives its degradation by the proteasome (the classic canonical pathway). Consequently, once IkB has been degradation the active NF-kB complex can translocate to the nucleus, and binds to its respective promoter sequence and driving gene transcription [48, 49]. When NF-kB is activated it causes the biosynthesis of pro-inflammatory cytokines such as members of the interleukin family, interleukin (IL)-1 β , IL-6, various prostaglandins PGE and PGE2, and other widely recognized inflammatory mediators like tumor necrosis factor alpha (TNF- α). Interestingly, molecules like TNF alpha can then activate other kinases and in turn drive other signalling events such as programmed cell death cascades [50]. In the non-canonical NF- κ B pathway, the p100 subunit of the transcription factor is phosphorylated by IKKa kinase following exposure to various ligands, and once activated NF-kB translocates to the nucleus, binds to DNA, and drives the expression of inflammatory genes. Importantly, dysregulation in NF-kB signalling systems have been observed across a spectrum of separate inflammatory conditions like inflammatory bowel disease, arthritis, and asthma as well as several cancers including lymphoma, liver cancer, lung cancer, and breast cancer.

Regarding a potential role of H₂S and its impact on NF-kB signalling, Oh et al. showed that non-cytotoxic concentrations of H₂S are able to inhibit NO production and reduced the expression of inducible NO synthase (iNOS), in lipopolysaccharide stimulated RAW264.7 macrophages [51]. Reductions in the production and expression of these inflammatory markers correlated with the prevention of NF-KB activation in cells pre-treated with H₂S. Similarly, in the rat, H_2S inhibits NF- κB activation following LPS injected [44]. Further research in this area has confirmed the inhibitory action of H₂S on the NF-kB signalling system, and its ability to temper the production of pro-inflammatory molecules like IL-1 β , IL-6, TNF- α , PGE-2; by virtue of reducing the expression of proteins such as COX-2 and iNOS in various cell types and animal tissues [52-54]. Consequently, it is now widely reported that H₂S treatment suppress NF-kB activity in mouse and rat models of heart ischemic reperfusion injury, neuroinflammation [55, 56], and oxidized low-density lipoprotein-(ox-LDL) induced macrophage inflammation. Interestingly, recent work points to the fact that H₂S drives persulfidation of the p65 unit of NF-kB that consequently causes the retention of NF- κ B in the cytosol of cells, reduces NF-kB DNA binding, and inhibits the production of inflammatory molecules [57]. Persulfidation of the p65 unit of NF-kB also appears to be important in regulating the expression of anti-apoptotic proteins that are important in conferring cytoprotective [58]. In view of the ability of H₂S to mitigate inflammatory signalling, researchers have taken inspiration from this earlier work and focused their efforts on the development of novel H_2S releasing molecules. As mentioned, H₂S-releasing derivatives of diclofenac (c.f. diclofenac alone) have been developed and shown to exhibit

enhanced anti-inflammatory activity [44, 59]. Other H_2S releasing drug entities, including H₂S-releasing mesalamine reduces colitis-associated leukocyte infiltration and expression of several pro-inflammatory cytokines [60], others enhance ulcer healing [59], and inhibit aspirin-induced leucocyte adherence in mesenteric venules, and reduces leukocyte infiltration in an air pouch model and decreasing carrageenan-induced hind paw edema [61]. The anti-inflammatory properties of a selection of H₂S releasing donor molecules are summarized in Table 1. Based on the available research many H₂S donor molecules are anti-inflammatory, and have the capacity to inhibit the NF-kB signalling pathway, this property seems to be an important mechanism of action for these compounds. By way of illustrating this fact, the allyl cysteine analogue, S-propargyl-cysteine (SPRC), has been used to preserves tissue levels of H₂S in the rat hippocampus in animals subjected to LPS treatment. Furthermore, SPRC afforded beneficial actions by inhibiting TNF- α production and TNF- α receptor 1 (TNFR1) and amyloid- $\beta(A\beta)$ generation. These effects correlated with the inhibition of LPS driven IkBa degradation and the activation of NF-kB p65 [55]. Similarly, Pan et al. showed that SPRC exerted its inhibitory effect on TNF-α-stimulated inflammation in endothelial cells through scavenging ROS, inhibiting JNK1/ 2/NF-кВ pathways, and attenuating the expression of adhesion molecules [70]. The main impacts of H₂S on NF-kB signalling system are summarized in Fig. 2.

2.2 Role of H₂S in Inflammatory Conditions

In the last two decades many research groups from around the world have collectively explored the functional role of H_2S and its impact on inflammation in numerous cell and animal models. A large body of this work has focused on conditions in which inflammation is a significant contributor to the development and severity of the ailment and includes studies focused on tissue injury, joint disease, viz. arthritis, sepsis, and the inflammatory role of H_2S in the respiratory tract and cardiovascular system. Findings from this body of work are expansive, and some of these studies will be described below.

2.3 H₂S and Tissue Injury

Burns can cause significant tissue injury and based on the severity of the damage are often associated with high morbidity and mortality rates. In recent times researchers have begun to unpick the function of H₂S and its association with the severity of tissue injury (reviewed in [71]). Findings from several burn injury models indicate that H₂S is a critical component of the inflammatory response associated with tissue damage. Indeed, in mice, H_2S is protective in burn and smoke-induced lung injury and decreases mortality and increases median survival rates in animals. H₂S inhibits IL-1B levels and increases the concentration of the anti-inflammatory cytokine IL-10 in the lung. Histological evaluation of lung tissues showed that H₂S diminished protein oxidation and improved the condition of the lung [72]. In other research, burn injuries decrease plasma H₂S levels and increased levels of tumor necrosis factor (TNF)- α , interleukin (IL)-6 and IL-8 and decreasing IL-10 levels. However, the replenishment of tissue H₂S using NaHS reduced the inflammatory response induced by burn damage [73]. More recently, Ahmad and Szabo reported on a complex association between the benefits of inhibiting H₂S biosynthesis (using aminooxyacetic acid; AOAA) and the replenishment of tissue H₂S levels using the mitochondrially targeted H₂S donor [10-oxo-10-[4-(3-thioxo-3H-1,2-dithiol-5-yl) phenoxy]decyl]triphenyl-phosphonium (AP39). In this example, burn injury caused an increase in the markers, alkaline phosphatase (ALP) and alanine aminotransferase (ALT), amylase and creatinine. In contrast, treatment with either AOAA or AP39 reduced the levels of ALP, ALT, amylase, and creatinine, and suppressed inflammatory mediator production and multi-organ injury [74]. Furthermore, in CSE-/- deficient mice, burn injury stimulates the accumulation of myeloperoxidase and lipid peroxidation in heart,

Compound	Model	Effect	References
Sodium	Endotoxin-induced	Pro-inflammatory effect: Increased lung and liver	Li et al. [35]
hydrosulfide	inflammation in the mouse	MPO activity, and raised plasma TNF alpha concentration	
GYY4137	Endotoxin-induced inflammation in the rat	Inhibition of LPS-induced rise in plasma TNF-α, IL-1beta, IL-6, nitrite/nitrate, C-reactive protein, and L-selectin post-administration (2 h). In RAW 264.7 macrophages reduces LPS-mediated NF-kB activation, iNOS and COX2 expression, and the production of PGE(2) and nitrate/nitrite	Li et al. [62]
H ₂ S-releasing naproxen derivative, ATB-346	Ligature induced periodontitis in rats	Inhibition of bone defect and histological markers of damage like flatness of the gingival epithelium, chronic inflammatory cell infiltration and loss of connective tissue in the gingival papillae. Naproxen and ATB-346 inhibited the increase of gingival IL-1 β and IL-6 secondary to periodontitis, but IL-10 was unaffected	Herrera et al. [63]
pH-controlled H ₂ S donor (JK-1)	Mouse model of aspirin elicited gastric lesions	JK-1 promoted reductions in aspirin-induced gastric lesion area and the tissue levels and content of Il-6, TNF- α , and COX-2 protein expression. Inhibition of oxidative stress markers for lipid peroxidation and restored glutathione content in animal tissues.	Yang et al. [64]
FW1256	LPS-treated mice	Concentration dependently decreased TNF α , IL-6, PGE2 and NO generation in LPS-stimulated RAW264.7 macrophages and BMDMs. FW1256 also significantly reduced IL-1 β , COX-2 and iNOS mRNA and protein in LPS-stimulated RAW264.7 macrophages. In vivo, FW1256 administration also reduced IL-1 β , TNF α , nitrate/nitrite and PGE2 levels in LPS-treated mice	Huang et al. [65]
S-diclofenac	Carrageenan-evoked hindpaw oedema in the rat	Reduced hindpaw swelling and carrageenan- evoked rise in hindpaw myeloperoxidase activity reflecting tissue neutrophil infiltration and levels in hindpaw PGE(2), nitrite/nitrate content.	Sidhapuriwala et al. [45]
ADT-OH	LPS-induced in vivo neuroinflammation model	ADT-OH promoted M2 polarization of BV2 cells and in vivo suppressed M1 and promoted M2 gene expression	Zhou et al. [66]
Thiol-activated gem-dithiol-based H ₂ S donors (TAGDDs)	Respiratory syncytial virus infection mouse model.	Reduction in neutrophils recruited to the airways. Decreased the production of the pro-inflammatory cytokines IL-1 α , IL-1 β , IL-6, TNF- α , granulocyte-macrophage colony- stimulating factor (GM-CSF), and granulocyte- colony stimulating factor (G-CSF) in RSV-infected mice	Bazhanov et al. [67]
AP-39	Murine model of combined hemorrhagic shock and blunt chest trauma	High dose AP39 attenuated systemic inflammation and reduced the expression of iNOS and $I\kappa B\alpha$ expression in lung tissue	Welper et al. [68]
SPRC	Acute LPS model and chronic turpentine model in mice	SPRC reduced serum hepcidin, improves transferrin saturation, and maintained erythrocyte membrane integrity. Reduces hepatic JAK2/ STAT3 activation and decreased serum IL-6 content and hepatic II-6 mRNA	Wang et al. [69]

Table 1	Example studies	testing the effects	s of H_2S releasing	donor molecules in	models of inflammation
---------	-----------------	---------------------	-----------------------	--------------------	------------------------

Fig. 2 Hydrogen sulfide can reduce inflammatory signalling systems by driving cellular rates of persulfidation of the transcription factor NF-kB, by acting as an antioxidant to scavenge reactive oxygen species or by stimulating

heme oxygenase 1 expression. Reduced NF-kB signalling tempers the rates of production of pro-inflammatory molecules including TNF- β and PGE-2

lung, liver, and kidney tissues of wildtype mice but the levels are significantly reduced in CSE knockout animals. In parallel the levels of inflammatory mediators including TNF- α , IL-1 β , IL-4, IL-6, IL-10, and IL-12 are significantly lower in the plasma of $CSE_{-/-}$ animals [75]. In other knockout animals, viz. 3-MST, similar patterns of protection are also reported [76]. Collectively, these studies pointing to the fact that the inhibition of H₂S biosynthetic enzymes appears protective in some burn models. Clearly, further work is needed to determine the molecular mechanisms of action for these protective effects. In other research studies burn injury significantly increases plasma H₂S levels in the liver, and lung tissues of mice, and that this correlates with increased CSE mRNA expression in tissues. In this instance, increased H₂S/CSE pathway expression was associated with systemic inflammation, and increased MPO activity and organ damage. Endogenous H₂S synthesis therefore appeared to contribute to inflammatory damage following burn injury [77]. Interestingly, roles for neuropeptide substance P as a critical mediator of burn-induced acute injury have been postulated [78].

2.4 H₂S and Joint Disease

Dysregulation in H_2S biosynthesis occurs in the osteoarthritic (OA) joint, in rheumatoid arthritis (RA), and in gout [52, 79–81]. The manipulation of H_2S levels and the testing of several H_2S releasing donor molecules have long been reported to be beneficial when used in animal models of arthritic diseases [82–84]. The molecular mechanisms of action ascribed to the therapeutic action of these molecules are linked to the known anti-inflammatory properties of H_2S [42, 52, 85–87], the inhibitory effects of this

molecule on cartilage destruction via reduced expression of matrix metalloproteinases at sites of damage [84, 88] and to reduce gonarthrosis [89]. Other important mechanisms of action include the induction of cytoprotective systems in the joint [82, 90], and reductions in the production of pro-inflammatory mediators [91]. Not surprisingly, in the last two decades, researchers have tried to characterize the molecular mechanisms attributed to the functional roles of H₂S in joint diseases. Short-term treatment with NaHS to fibroblast-like synoviocytes (FLSs) isolated from rheumatoid arthritis patients downregulates IL-1beta expression and inhibits p44/42 MAPK (ERK1/2) activation in cells; long-term exposure rates have apposing effects and appear to activate p38 MAPK and ERK1/ 2 and to upregulation of IL-6 expression [87]. Other cellular studies show H_2S treatment reduces NO, PGE-2, IL-6, and MMP13 released from isolated human chondrocytes cells stimulated with IL-1β. Moreover, CSE expression and its activity is induced by treatment of cells with IL-1 β , TNF- α , IL-6 or LPS [92]. Research using the prototypic H₂S donor drug GYY4137 (a slow-releasing H₂S molecule), reduces lipopolysaccharide (LPS) evoked release of inflammatory mediators in isolated human synoviocytes (HFLS) and articular chondrocytes (HAC). Moreover, in vivo GYY4137 reduced acute joint inflammation in a complete Freund's adjuvant (CFA) model of acute joint inflammation in the mouse. In this instance, GYY4137 reduces synovial fluid myeloperoxidase (MPO) and N-acetyl-β-D-glucosaminidase (NAG) activity. In turn, GYY4137 decreases TNF- α , IL-1 β , IL-6, and IL-8 production [93]. Similarly, the H_2S releasing naproxen derivative ATB-346 inhibits carrageenan-induced synovitis in the rat [94]. In other mechanistic work, Wu et al. recently demonstrated a link between H₂S production and jumonji domain containing protein 3 (JMJD3). In synovial fibroblasts (SFs) from RA patients and in the joints of arthritic mice, both CSE and JMJD3 are upregulated. Overexpression CSE was reported to inhibit JMJD3 expression and was accompanied by reduced inflammation in IL-1\beta-treated SFs [95, 96]. Similarly, in C57bl/6 mice, the H_2S donor, sodium sulfide (Na₂S) reduces leukocyte trafficking in kaolin/carrageenan induce joint inflammation but appears to offer no observable effect on joint pain [97]. Lastly, roles for other H₂S generating enzymes have come to light. Roles for the H₂S producing enzyme 3-MST in cartilage calcification and OA development have been reported. 3-MST expression in human cartilage is negatively correlated with calcification and the severity of OA. Moreover, in 3-MST-/knockout mice joint calcification and OA severity is reported to increase as compared to wildtype animals. The inhibition of 3-MST appears to enhance mineralization and IL-6 secretion in chondrocytes [83].

2.5 H₂S and Sepsis

Sepsis is caused by a severe systemic infection leading to a systemic inflammatory response. Severe sepsis and septic shock are one of the leading causes of mortality among intensive care units and postoperative care patients [98, 99]. In recent times, the importance of this condition has fuelled several discoveries relating to the role of H_2S in sepsis, however, much still remains to be discovered. To date, researchers have explored the influence of H₂S in conditions linked to sepsis and some scientists suggest that this molecule could be a useful biomarker linked to the severity of this condition [100–102]. Current evidence from studies in animal models indicates a complex role of H_2S in this condition. For instance, in male Wistar rats subjected to acute endotoxemia (treated with Escherichia coli lipopolysaccharide (LPS), circulatory failure (hypotension and tachycardia) and an increase in ALT, AST (markers for hepatic injury), lipase (indicator of pancreatic injury), and creatine kinase (indicator of neuromuscular injury) are reported. These observations correlate with an increase in myeloperoxidase (MPO) activity, and in the expression and activities of H₂S synthesizing enzymes CSE and CBS. Importantly, inhibition of H₂S biosynthesis reduces hepatocellular, pancreatic, and neuromuscular injury but not circulatory failure

[103]. H₂S also acts as an important mediator of inflammation in models of cecal ligation and puncture (CLP) induced sepsis. In this model the expression of CSE mRNA is elevated in the liver of animals and plasma H₂S levels are increased. This indicating that the H₂S biosynthetic pathway is responsive to CLP. Interestingly, treatment with PAG significantly reduced sepsis-associated systemic inflammation, as evidenced by increased mortality, and decreased MPO activity and histological changes in lung and liver. Further assessment of the anti-inflammatory effects of PAG showed that this inhibitor could significantly reduce the mRNA and protein levels of IL-1 β , IL-6, TNF- α , monocyte chemotactic protein-1 (MCP-1), and macrophage inflammatory protein-2 (MIP-2) in lung and liver tissues. These changes were coupled with a committed decreased in the nuclear translocation and activation of NF-kB. In contrast, replenishment of tissue H₂S levels using the fast donor molecule NaHS provokes an increase in sepsis-associated systemic inflammation by virtue of increased NF-kB activation. Again, these experimental observations are indicative of а pro-inflammatory role for H₂S in sepsis and associated organ injury in this model [36]. Additional confirmation of these early studies have now been reported by several additional researchers. Indeed, the inhibition of CSE activity techniques in using siRNA monocytes/ macrophages attenuates inflammation in cecal ligation and puncture-induced sepsis in the mouse [104]. In other research, H_2S has been shown to upregulate substance P in models of polymicrobial sepsis-associated lung injury [36], and neurokinin-1 receptor (NK-1R) levels [105], and to drive tissue damage in acute lung injury in mice [106], and to promote liver damage in endotoxemic rats [107]. In addition, H₂S restores hepatic l-arginine levels and asymmetric dimethylarginine (ADMA) handling in endotoxemia [108], and is important in the regulation of hypothermic state induced by endotoxic shock [109]. A link between H_2S as an important regulator of cholecystokinin-octapeptide (CCK-8) alleviated acute lung injury in animals has also been proposed [110]. Common to sepsis

is the increased production of free radical species and associated oxidative damage. Interestingly, H₂S reduces the levels of oxidative and nitrosative stress along with inflammation in some sepsis models. Elevations in NO, a key contributor to mitochondrial oxidative stress during endotoxemia can be inhibited using the H₂S donor, GYY4137 [111]. These studies painting a complex picture relating to H₂S and its role in sepsis related conditions. Other antiinflammatory effects attributed to H₂S include improved regional blood flow in models of (CLP) induced septic shock. In this instance, delayed treatment with NaHS, and reduced inflammatory signalling caused reductions in plasma levels of IL-1 β , IL-5, IL-6, TNF- α , and levels of high-mobility group protein 1 (HMGB1) [112]. In the heart, H_2S has a protective role towards sepsis-induced damage in a mechanism involving the phosphatidylinositol-3-kinase (PI3K)/protein kinase B (Akt) signalling pathway [113]. Exogenous H_2S reduces serum myocardial enzyme levels, decreased the levels of the inflammatory factors tumor necrosis factor (TNF)-a and interleukin (IL)-6, and increased the level of antiinflammatory IL-10. Moreover, induction of PI3K/Akt signalling corresponded with increased phosphorylation status of total PI3K and Akt levels. H₂S treatment was also reported to reduce the levels of pro-apoptotic proteins, Bcl-2-associated X protein (Bax), and caspase levels [113]. The slow release H_2S donor, GYY4137 attenuates LPS or TNF-a/IFN-y induced Caco-2 monolayer permeability by decreasing the expression of tight junction proteins, and reduces TNF- α /IFN- γ levels in plasma. Moreover, GYY4137 is cytoprotective in colon epithelial cells in mice with endotoxemia [114]. Similarly, GYY4137 reduces LPS-mediated pulmonary injury and neutrophil infiltration, and inhibits LPS evoked production of pro-inflammatory cytokines, in a mechanism involving heme oxygenase-1 (HO-1), [115]. The induction of these protective systems are important in the protection against damage induced during sepsis. Additional studies using pig models have shown that sepsis reduces CSE expression and that this property has been

proposed to contribute to sepsis-associated cardiac dysfunction [116]. However, similar studies using GYY4137 report no effect in a pig model of resuscitated septic shock in which cardiac and kidney function or systemic inflammatory response are assessed [117]. In other models of sepsis, namely urinary derived sepsis and associated systemic inflammatory response syndrome (SIRS), H_2S appears to be antiinflammatory. Indeed, Chen et al. found that in a rabbit model of sepsis the levels of TNF- α , IL-10, and NF-kB are increased while in NaHS treated animals TNF- α and NF- κ B levels are reduced and IL-10 levels elevated [118]. Furthermore, the relationship between NF- κ B and H₂S in sepsisinduced myocardial injury has also gained some interest. In a recent study by Li et al. H₂S was reported to downregulate the NF-kB subunit p65 and TNF- α levels while increasing IL-10 levels in the rat model [119]. Importantly, the antiinflammatory properties of H₂S correlated with significant reduction in the mortality rates in H₂S treated animals and reduction in pathological scores of cardiac tissue damage in animals. Similarly, in CBS knockout heterozygous (CBS+/-) mice mitochondrial mediated apoptosis in the adrenal gland and adrenal insufficiency is increased. However, GYY4137 treatment function restored adrenal and eliminated mitochondria mediated via apoptosis persulfidation of the target protein ATP Synthase F1 Subunit Alpha (ATP5A1) in male mice [120]. In other knockout systems, the loss of CSE amplifies the inflammatory response in a cascade involving the NADPH oxidase 4 (Nox4) ROS signalling system in septic mice and macrophages [120]. Similarly, in rabbits the inhibition of endogenous H₂S production using PAG exacerbates the inflammatory response during urine-derived sepsis-induced kidney injury [102].

Few investigations have assessed H_2S levels in patients suffering from sepsis. However, early research by Goslar et al. indicated that the plasma levels of sulfide are elevated during shock [121], and increased plasma sulfide concentrations are inversely correlated with blood pressure and cardiac function. Indeed, ICU patients with higher total plasma sulfide levels have higher mortality compared to patients with lower levels [101]. Furthermore, Chen et al. recently compared sepsisassociated acute kidney injury (SA-AKI), in AKI patients and healthy controls [122]. In AKI patients, levels of creatinine (Cre), urea nitrogen (BUN), tumor necrosis factor- α TNF- α and IL-1 β , and myeloperoxidase (MPO) activity, as well as concentrations of MDA and H_2O_2 , were significantly increased. In contrast, plasma level of H₂S was reduced in the same group of patients. Using an AKI mouse model (receiving an intraperitoneal LPS injection), Chen et al. found that diminished levels of H₂S correlated with a decline of 3-MST activity and expression. Moreover, replenishment of H₂S preserved kidney function in animals, and reduced markers of inflammation, oxidative stress and the expression of TLR4, NLRP3, and caspase-1 [122].

2.6 H₂S and the Respiratory Tract; Overview of H₂S, Chronic Obstructive Pulmonary Disease (COPD) and Asthma

H₂S is recognized as playing important roles in the respiratory tract (RT), and is involved in the regulation of airway tone, inflammation, fibrosis, pulmonary circulation, as well as in tempering oxidative stress, and in controlling rates of cellular proliferation and apoptosis. Altered levels of H₂S are found in several respiratory diseases such chronic obstructive pulmonary disease as (COPD), asthma, and some viral infections [123, 124]. Changes in the levels of H_2S in sputum from patients with cystic fibrosis (CF) are inversely correlate with the amount of sputum produced [125]. Moreover, in allergic rhinitis (AR) higher levels of H_2S , CSE, and CBS mRNA and protein expression are found in patients suffering this condition [126]. However, the significance of these findings requires further exploration.

The pathophysiological links between the development of chronic obstructive pulmonary disease (COPD) and H_2S have yet to be fully elucidated. COPD is a debilitating disease associated with inflammation and structural

remodelling in the lung. Researchers have shown that serum H₂S concentration increase in patients with stable COPD and are decreased in patients with acute exacerbation of COPD (AECOPD) [127]. In addition, in AECOPD patients with low serum H₂S levels, increased neutrophil proportion and lower lymphocyte proportion in sputum are found. This finding points to a potential association with H₂S and inflammation in the lungs of COPD patients [128]. Additional studies have shown that exhaled levels of H₂S in patients suffering from COPD correlates with that of nitric oxide (NO). At present, the biological significance of this interplay between these two molecules has yet to be addressed, however, it is feasible that measures of these two molecules could be useful in the development of non-invasive biomarker of airway inflammation in pulmonary diseases [129, 130]. In peripheral lung tissue CSE mRNA is increased but CBS mRNA decreased in COPD patients [131]. Similarly, H₂S can be detected in the exhaled breath of COPD patients suffering from lower respiratory tract infections [132]. A key question from these human studies is whether dysregulation in H₂S has a functional role in these respiratory conditions. Studies using animal models suggest this may be the case since treatment of C57/BL6 mice with NaHS prevents ozone induce lung injury by partially reducing Nod-like receptor pyrin domain containing 3 (NLRP3)-caspase-1 activation, and p38 mitogen-activated protein kinase phosphorylation and decreased Akt phosphorylation [133]. Furthermore, H_2S can inhibit cigarette smoke-induced endoplasmic reticulum stress (ERS) and apoptosis in bronchial epithelial cells [134], and reduces the expression of ERS markers including glucose-regulated protein-78 (GRP78), and C/EBP homologous protein (CHOP), and caspase-12 in pulmonary artery endothelial cells (PAECs) [135]. Other research indicates that H₂S inhibits fetal calf serum stimulated phosphorylation of ERK-1/2 and p38 mitogen-activated protein kinases (MAPKs) in airway smooth muscle cells (ASM) isolated from non-smoker and smoker but not that of COPD patients. Importantly, H₂S could repressed ASM proliferation and cytokine release in cells

[136]. In the work of Guan et al. NaHS could prevent cigarette smoke (CS) induced airway remodelling, epithelial-mesenchymal transition (EMT), and collagen deposition in mouse lungs [17]. Mechanistically, H_2S reduced cigarette smoke extract (CSE) induced collagen deposition and oxidative stress in human bronchial epithelial 16HBE cells. This observation corresponded with the upregulation of SIRT1 expression, and the inhibition of the TGF-β1/Smad3 signalling pathway in vivo and in vitro [137]. The same group has also reported that NaHS increases the expressions of tight junction proteins zonula occludens-1 (ZO-1), occludin, and claudin-1, and has the capacity to reduce apoptosis and the secretion of pro-inflammatory cytokines including TNF- α , IL-6, and IL-1 β in CS-exposed mouse lungs and in A549 cells via suppression of the PHD2/HIF-1α/MAPK signalling pathway [138]. Findings from this work indicating that H₂S inhibits CS-induced inflammation, injury, and apoptosis in alveolar epithelial cells by attenuating mitochondrial dysfunction, in a mechanism involving sirtuin 1 [17].

In other respiratory conditions such as asthma, dysregulation in the levels of H₂S are also reported, and are linked to altered function in lung tissues [123]. For example, in ovalbumin (OVA) treated rats, a standard approach to induce eosinophilic asthma through Th2 mediated inflammatory response, H₂S levels are diminished in pulmonary tissues. Moreover, serum H₂S levels positively correlate with the levels of H₂S in lung tissues and peak expiratory flow. In addition, using the same animal model, H_2S is reported to negatively correlates with the proportion of eosinophils and neutrophils in bronchoalveolar lavage fluid (BALF), and the infiltration of inflammatory cells in airway, along with goblet cell and airway smooth muscle hyperplasia [139]. This has led some researchers to suggest H₂S is a potential biomarker of asthma [140]. In mice, the lack of CSE expression increases airway hyperresponsiveness (AHR) and lung inflammation [141]. While other studies report that the lower abundance of CSE expression and H₂S production enhances type-2immunoreaction and renders a higher incidence of allergic asthma at a young age in mice [142]. Mechanistically, NaHS seems to be protective in epithelium cells by virtue of its ability to reduce airway inflammatory cell infiltration, by inhibiting the production of IL-4, IL-5, and IL-25, and to lessen the activation of caspase 3 and FasL following OVA challenge in mice [143].

2.7 H₂S and the Cardiovascular System

The manipulation H₂S levels in the cardiovascular system either via altered biosynthetic enzyme expression or delivery of H_2S via donor molecules markedly attenuates myocardial injury and improves cardiac function. Indeed, a whole spectrum of evidence shows H₂S has beneficial effects in numerous cardiovascular disorders, including atherosclerosis, ischemic, and heart diseases, with some of these effects likely due to the immunomodulatory properties of this molecule. As described in the current chapter, H_2S is important in the regulation of immune cell functions, i.e. T-cell activation and proliferation, monocyte and polymorphonuclear cell apoptosis, leukocyte adhesion and infiltration, and inflammatory cytokine release by immune cells. Research shows that H₂S and associated donors are anti-inflammatory in models of cardiovascular diseases [10, 144]. In conditions such as atherosclerosis, a major cause of death in developed and developing countries, dysregulation in inflammation is a key driver of this disease. Typically, over many years, vascular inflammation, vascular smooth muscle cell proliferation and migration, elevated rates of oxidative stress, thrombus formation, monocyte infiltration and differentiation, and lesion-resident macrophage are converted into foam cells. Collectively, these processes drive the severity and rates of atherosclerosis and damage in the cardiovascular system. Endogenous and exogenous sources of H2S reduced ROS levels and temper the production of cytokines, and is seen as cytoprotective [7, 145, 146]. Indeed, in genetic mouse models of atherosclerosis, viz. ApoE-/- CSE-/- mice, H₂S inhibits the progression of atherosclerosis [147, 148]. Part of these protective effects stem from the preservation of endothelial function that prevents increased ROS production, and the expression of various proteins like the adhesion molecules, intercellular adhesion molecule 1 (ICAM-1), and vascular cell adhesion protein 1 (VCAM-1), [149]. These effects are a consequence of diminished endothelial inflammation via reduced NF-kB signalling. Other research shows H₂S impacts on inflammatory cell function that is known to be important in the cardiovascular system, viz. macrophages. Indeed, several studies show H₂S can inhibit foam cell formation, and macrophage lipid metabolism [150–154], and the recruitment of immune cells to the cardiovascular system [155]. At the molecular level, H_2S suppresses the expression of the C-C chemokine receptor type 2 (CCR2)-monocyte chemotactic protein-1 (CCL2), CX3CR1-CX3CL1, and CCR5-CCL5 [156], and reduces macrophage infiltration and promotes plaque stability. H₂S also alters the function of other immune cells including T-helper (Th) cells; cells that play a critical role in mediating adaptive immunity. Naive CD4 + T cells may differentiate into different lineages of Th cells, including Th1, Th2, Th17, and Treg cells; Treg cells can be recruited to atherosclerotic plaques and are found to limit lesion progression in experimental models by downregulating inflammatory responses [157]. In the work of Yang et al. reduced H_2S levels impaired CD4 + Foxp3+ Treg cell differentiation and function. Treatment with H₂S rescued Treg-cell-deficient phenotypes in CBS-/mice and partially rescue autoimmunity in CBS-/- mice [158]. Taken together, H₂S donor molecules may offer a novel therapeutic approach for the treatment of chronic immuneinflammatory responses in atherosclerosis.

Functional roles of H_2S in heart failure are also recognized. Heart failure is an inability of the heart to adequately meet the metabolic needs of the body. Heart failure results from conditions like atherosclerosis, and other comorbidities such as diabetes and obesity, with each condition having an inflammatory component that precedes tissue injury. Acute MI is largely determined by the extent of myocardial tissue loss, however, it is now known that inflammation also plays a role in cardiac remodelling following MI. Kondo et al. reported that circulating H₂S levels are reduced in experimental models of heart failure. Importantly, CSE deficient mice exhibit greater cardiac dilatation and dysfunction compared to wildtype mice after transverse aortic constriction [159]. Often accompanying these changes is the gradual increases in inflammation including leukocyte activation and release of inflammatory mediators, with the progression of ventricular dysfunction. Indeed, several inflammatory biomarkers including C-reactive protein, and various inflammatory cytokines like TNF- α and IL-6 are increased in heart failure, and leukocytosis is associated with disease progression [160]. To date, the molecular mechanisms of H₂S action in heart failure are attributed to this molecule causing a decrease in Nox4/ROS/ERK1/2 signalling and increased HO-1 expression [161], reduced recruitment of CD11b + Gr-1+ cells in infarct myocardium and peripheral blood, and to attenuate cardiac dilation in chronic ischemia-mediated infarcted myocardium in mice [162]. Consequently, H_2S is widely reported to be able to upregulate a spectrum of endogenous antioxidants molecules and proteins like glutathione peroxidase (GPx1) and HO-1, and improves cardiac function after heart failure via stimulating angiogenesis [22, 163–166].

Another area of research gaining attention is the part played by H₂S in myocardial infarction (MI). MI is the leading cause of death worldwide and is caused reductions the by in oxygen-carrying capacity of blood, combined with nutrient starvation, cardiomyocytes become insensitive to oxygen, leading to MI. Reducing rates of inflammation and the recruitment of inflammatory cells to sites of damage has been suggested as a promising therapeutic approach for treating MI and reperfusion injury [167, 168]. MI and reperfusion injury trigger a complex inflammatory response in the injured myocardium, leading to leukocyte infiltration and the release of cytokines including IL-6, IL-8, and TNF-a. In mammals, decreased levels of H₂S in plasma are linked with increased infarct size and mortality. Moreover, the administration of NaHS and other H₂S donor molecules, viz. SPCR and GYY4137,

can decrease infarct size of the left ventricle and improve MI-associated mortality in animals [169, 170]. Based on the available studies, the cardioprotective mechanism of H₂S appear to be associated with the ability of this molecule to promote vasodilation, to act as an antioxidation, reduce levels of apoptosis in damaged cells, and to reduce the production of pro-inflammatory molecules [70]. Indeed, exogenous H₂S administration or overexpression of the H₂S-producing enzyme CSE reduces leukocytes and neutrophil infiltration within the ischemic zone and reduces myocardial inflammatory cytokine production. H₂S treatment can also improve post-MI cardiac remodelling and dysfunction in wildtype and CSE deficient mice, by reducing infarct size and mortality, and stimulating M2 polarization of macrophages at the early stage of MI [164]. Researchers have also shown that H_2S suppresses myocardial inflammatory responses by inhibition of NLRP3 inflammasome activation a mechanism dependent on microRNA-21 [171]. Furthermore, some H₂S donors like Spropargyl-cysteine (SPRC, a novel endogenous H₂S modulator) can prevent LPS-induced TNF- α , ICAM-1, and iNOS expression in cardiomyocytes via altering CSE expression and H₂S production. Increased H₂S levels inhibits the NF- κ B signalling pathway, and the induction of PI3K/Akt signalling [149]. Consequently, many studies have now confirmed a beneficial role of H₂S in the myocardium and this is partly attributed to the anti-inflammatory properties of this molecule [113, 172–175].

3 Alternate Mechanisms of Action Linked to the Anti-Inflammatory Effects of H₂S

In recent years, there has been considerable interest aimed at developing therapeutics that take advantage of the anti-inflammatory properties of H_2S and has led to the identification of several novel cellular targets. These will be addressed below.

3.1 Alternate Signalling Pathways and Epigenetic Mechanisms

 H_2S has the capacity to mitigating the inflammatory response in mammalian cells and tissues via several additional signalling systems. In recent years, H₂S has been reported to induce Sirtuin signalling in various mammalian cell lines [12, 176–181] and in various animal models [155, 182–185]. Xin et al. recently showed that H₂S reduces hepcidin expression in Huh7 cells and in mouse tissues via reduction in IL-6 secretion and following deacetylation of sirtuin-1 (SIRT1); SIRT1 a protein that mediates signal transducer and activator of transcription 3 (STAT3), [186]. Several H₂S donor molecules and/or the manipulation of the expression levels of H₂S biosynthetic enzymes can alter STAT3 activity, and has been shown to be important in ischemic post-conditioning [187], cancer cell proliferation [188], anemia of inflammation [69]. Regarding inflammatory signalling, NaHS inhibits exogenous ATP-stimulated inflammatory responses and A_{β1-42} production in both BV-2 and primary cultured microglial cells causing a reduction of pro-inflammatory cytokines, ROS and the activation of nuclear factor- κB (NF- κB) pathway via suppression of the STAT3 system [189]. Other H_2S donor molecules including SPRC reduced serum hepcidin, improved transferrin saturation, and maintained erythrocyte membrane integrity likely due to reduced hepatic JAK2/STAT3 activation [69]. Furthermore, in CSE-/mice, H_2S deficiency increases indoleamine 2, 3-dioxygenase 1 (IDO1) expression and activity and stimulates the NF-kB and the STAT3 pathways. Additionally, H₂S donors including GYY4137 and NaHS effectively restricted tumor development H22 in HCC-bearing mice via downregulating IDO1 expression and inducing T-effector cells [190]. Other researchers indicate that exogenous H₂S minimized liver injury and decreased the expression of STAT3 in liver tissue of Methotrexate (MTX) challenged rats, an anticancer and immunosuppressive agent with occasional hepatotoxic effects [191].

Epigenetic mechanisms linked to H₂S treatment have also received consideration in recent times, and appear to be important in explaining some of the known inflammatory effects of H₂S. Importantly, H₂S acts as an inhibitor of histone H3 acetylation, leading to the suppression of chromatin opening, and decreased gene transcription of the pro-inflammatory cytokines IL-6 and TNF- α . In addition, H₂S can inhibit angiotensin II induced downregulation of microRNA precursor 129 (miR-129), CBS, CSE, and IL-10 while increasing IL-17A and DNA (cytosine-5)methyltransferase 3A (DNMT3a) in the hypertensive kidney [192]. In CBS deficient mice the activity of histone deacetylase 3 (HDAC3) is reduced, and treatment with NaHS can activate HDAC3, and downregulated inflammatory signalling, via runt-related transcription factor 2 (RUNX2) persulfidation. Moreover, in the study by Lin et al. H₂S attenuated oxidative stress induced mitochondrial reactive oxygen species (mtROS) production and NLRP3 inflammasome activation via persulfidation of c-Jun at position cys269 in macrophage cells [177]. Persulfidation of c-Jun enhanced its transcriptional activity.

3.2 H₂S and the Inflammasome

While researchers have reported much on the influence of H₂S on NF-kB signalling systems it is only now that we are beginning to understand how this molecule impacts on other components of the inflammatory process. One area that has gained interest in the last decade is how H₂S influences the formation of protein complexes called inflammasomes. To date, a number of inflammasomes have been characterized, viz. NLRP1, NLPR3, NLRC4, and AIM2 inflammasomes [193]. Of interest here, is the NLRP3 inflammasome since this protein complex has received the most focus in the field of H₂S research. This protein complex is formed by the NLRP3 sensor molecule, the adaptor protein ASC, and the effector caspase-1. NLRP3 is activated by a spectrum of stimuli including pathogen-associated molecular patterns

(PAMPs) and damage-associated molecular patterns (DAMPs) that induce signalling events that cause the upregulation of NLRP3 and pro-IL-1 β transcription/translation [194]. In turn, NLRP3 assembly activates caspase-1 and pro-IL-1β formed into converts any its active form IL-1 β [195]. Dysregulation in inflammasome activation is associated with autoimmune and autoinflammatory diseases. The part played by H_2S in inflammasome formation and activation is only now coming to light (Fig. 3). Huang et al. reported that some of the known cardioprotective effects of H₂S via the suppression of cardiomyocyte inflammation and apoptosis via the inhibition of the TLR4/NF-kB pathway, and downstream activation of the NLRP3 inflammasome in high glucose mediated cytotoxicity in h9c2 cardiac cells [196]. Similarly, in collagenase-induced intracerebral hemorrhage in the rat, H₂S production is decreased in the brain and correlates with reductions in CBS expression. Administration of S-adenosyl-Lmethionine (SAM), a CBS-specific agonist, or NaHS, reportedly restores brain and plasma H₂S levels and reduces brain edema, microglial accumulation, and neurological deficits. Part of the mechanism for these beneficial effects was the inhibition of the P2X7R/NLRP3 inflammasome cascade [197]. Some H₂S donor molecules are also reported to influence the activation and formation of inflammasomes. For example, in isolated murine and human macrophages, sodium can thiosulfate and GYY4137 inhibit monosodium urate crystal induced IL-1ß secretion, XO/caspase-1 activities, mitochondrial reactive oxygen species (ROS) production, and ASC oligomerization [198]. Consequently, H₂S has now been reported to prevent inflammasome activation in mammalian cells induced by free fatty acids in Raw 264.7 cells [199], and oxidative stress induced inflammasome formation and activity [177]. In addition, H₂S reduces lipopolysaccharide (LPS) + Adenosine Triphosphate (ATP)-induced inflammation by inhibiting nucleotide-binding oligomerization domain-like receptor 3 (NLRP3) inflammasome activation and promoting autophagy in L02 cells [200], and tempers NLRP3 in dextran sulfate sodium (DSS)-induced colitis [201]. Other researchers have reported that the inhibition of inflammasome

formation and inflammation by H_2S in spontaneous hypertensive rats preserves endothelial function [202], that H_2S reduces high glucose induced retinal and adipocyte mediated inflammation [41, 203], renal injury and fibrosis [204], diabetes-accelerated atherosclerosis [205], and liver injury [206, 207]. Collectively, in most of these studies, H_2S appears to attenuate cellular damage, apoptosis, and reduces the expression of NLRP3, ASC, pro-caspase-1, caspase-1, IL-1 β , IL-18, and caspase-3, respectively.

3.3 Antioxidant Properties of H₂S

Free radicals are ubiquitous to life and serve a number of important roles in biological systems [208]. Dysregulation in the production of these molecules occurs in a number of pathophysiological conditions whereby the oxidation of proteins, carbohydrates, and nucleotide bases present in DNA and RNA is believed to contribute to disease severity. Free radical production originates from organelles such as mitochondria, and via the activities of enzymes like xanthine oxidase (EC 1.17.3.2), and NADPH oxidase (EC 1.6.3.1). It is common to find elevated levels of reactive oxygen species (ROS), comprising of superoxide $(O_2, -)$ and hydroxyl (OH) radicals and the non-radicals hydrogen peroxide (H₂O₂), during episodes of cellular stress. In addition, reactive nitrogen and chlorine species like peroxynitrite (ONOO-) and hypochlorous acid (HOCl) are also produced. In a healthy individual basal free radical production is important in normal cellular processes particularly in immune defences. However, elevated rates of production leads to oxidative stress; a term indicative of increased rates of tissue damage mediated by free radical species. Increased free radical production occurs in arthritis, sepsis, cardiovascular disease, COPD, and many other common disorders and in the aging process [209]. In these conditions, ROS can damage lipids, proteins, cellular membranes, and DNA promoting cellular damage, or the activation of signalling cascades linked to cell proliferation, apoptosis, and inflammation or cells of the immune system

[210, 211]. Normally, these damaging effects can be mitigated by the induction of cellular antioxidant defences comprising of enzymes like catalase (EC 1.11.1.21), superoxide dismutase (EC 1.15.1.1), and various repair enzymes. Allied to this induction is the increased synthesis of small molecular weight antioxidants such as glutathione (GSH), and the activation of Nrf2, a key transcription factor involved in the regulation of cytoprotective enzymes. Interestingly, H₂S acts as a one-electron chemical reductant (a nucleophile) that can scavenge free radicals via single electron or hydrogen atom transfer processes. Indeed, at physiological pH (pH 7.4), and a temperature of 37 °C, approximately 80% of the H₂S molecules dissociate forming HS⁻ (hydrosulfide anion). HS⁻ anions act as one-electron chemical reductants with the capacity to quench free radical species via hydrogen atom transfer or by single electron transfer [212]. The reactivity of the HS⁻ anion with oxygen is enhanced by the presence of divalent metal ions and can facilitate the release of NO in reactions with S-nitrosothiols [213, 214]. Other noted reactions of the HS⁻ anions can occur in the presence of hypochlorous acid and hydrogen peroxide to yield hydrogen disulfide (H_2S_2) ; this molecule in turn can be a source of H₂S in reactions with thiols [215]. It is now widely accepted that H₂S can scavenge reactive oxygen, nitrogen, and chlorine species, viz. superoxide [216], hydrogen peroxide [217, 218]. peroxynitrite [219], and hypochlorous acid [220] (reviewed by [221]). In addition, H_2S seems to be important in the radical generating and scavenging properties of the tetracycline antibiotics Doxycycline [222]. H₂S treatment is widely reported to reduce the damaging effects of free radical in cells by preventing free radical generation and by inducing cytoprotective systems. Indeed, H₂S can inhibit ROS generating enzymes like NADPH Oxidase [161, 188, 223]. Moreover, at the cellular level, Sun et al. showed that pre-treating rat neonatal cardiomyocytes with NaHS reduced the levels of ROS during hypoxia/reoxygenation (H/R). The mechanisms for these protective effects seem to correlate with the ability of H₂S to inhibit mitochondrial complex IV activity and to increase the activities of superoxide dismutases (SODs), including Mn-SOD and CuZn-SOD [224]. Interestingly, other researchers have shown that H₂S can be oxidized by SOD in the presence of oxygen to produce polysulfides (mainly H₂S₂, and to a lesser extent H₂S₃ and H₂S₅), [225]. Importantly, some polysulfide compounds act as potential sources of H₂S and possess antioxidant like properties themselves. Using electron paramagnetic resonance (EPR) spin trapping techniques, Misak and colleagues found that the polysulfide (Na_2S_4) was a potent scavenger of the O₂- and cPTIO radicals as compared to H₂S [226]. Additional studies of other antioxidant enzymes indicate that the enzyme catalase is also important in the metabolism of H₂S. In this instance, catalase can function as either a sulfide oxidase or sulfide reductase; roles that are important in the metabolism of a range of sulfur species and that are dependent on relative oxygen levels [227]. In addition, evidence now points to a role of cellular antioxidant systems as important sites in the production and metabolism of H₂S and polysulfide species in cells [228]. Canonical inhibitors of ROS antioxidant pathways alter reactive sulfur species in HEK293 cells independent of ROS levels. Decreasing intracellular glutathione (GSH) with 1-buthionine-sulfoximine (BSO) or using diethyl maleate (DEM) reduced H₂S production but does not impact on polysulfide levels (H_2S_n) in cells. Treatment of cells with auranofin, a glutathione reductase inhibitor, decreases H₂S and H_2S_n but after 2 days H_2S_n levels recover. The inhibition of peroxiredoxins with conoidin A decreased H₂S and increased H₂Sn. The inhibition of glutathione peroxidase using tiopronin increases H₂S levels in cells. Clearly additional research is needed to understand the impact of these systems on tissue H₂S levels but this new body of work points to a complex system of biochemical processes that can influence sulfur metabolism. Critically, in the last few years polysulfides have been recognized as important molecules possessing a range of bioactive properties in mammalian cells. It is likely that these molecules are of great importance in biological systems and various physiological processes, however, more work is needed in this area (reviewed by [5, 229]).

3.4 H₂S and Nrf-2

In addition to the synthesis of intracellular antioxidants during episodes of stress, mammalian cells also rely on enzymatic systems that protect cellular constituents from the damaging effects of exogeneous and endogenous molecules such as ROS. These antioxidant enzymes detoxify a whole spectrum of molecules to less harmful forms. In relation to the immune system, ROS production can occur via respiration, and various enzymatic systems including NADPH oxidases enzymes (NOX), [230]. NOX enzyme is widely expressed in cells and tissues of mammals including many immune cell types and play important roles in immune defence and cell signalling systems such as in the cardiovascular system [231], the central nervous system [232], and in rheumatic diseases [233]. To prevent ROS mediated cellular damage, a counter response is initiated that involves increased expression and activities of cytoprotective enzymes. The expression of these proteins is mediated by the transcription factor, Nrf-2, [234]. Nrf-2 is a basic leucine-zipper protein, and a master regulator involved in combating oxidative stress and cellular damage induced endogenous and exogenous molecules. Gene expression occurs via the binding of Nrf-2 to the antioxidant responsive element (ARE) located in the promote regions of a spectrum of enzymes needed to combat the damaging effects of toxic molecules. During episodes of stress, Nrf-2 is liberated from its cytoplasmic anchor, Kelch-like ECH-associated protein (Keap 1), releasing Nrf-2, and allowing for its translocation to the nucleus of cells. Here, Nrf-2 can drive transcription of cytoprotective genes that provides protection against the damaging effects of a whole spectrum of separate compounds. Several researchers have shown that H₂S can induces the Nrf-2 signalling pathway in various disease models including hemorrhagic shock [235], lung injury [236], hyperoxiainduced acute lung injury [237], ischemia-

Fig. 4 During episodes of inflammation, reactive oxygen species and other reactive molecules are generated, and these can damage cellular components like proteins, lipids, and DNA. To mitigate the damaging effects of these molecules the transcription factor Nrf2 upregulates the

expression of a spectrum of enzymes critical for detoxification and cellular protection. Hydrogen sulfide is a recognized inducer of this cytoprotective system in mammalian cells

reperfusion injury [238], galactosamine/lipopolysaccharide induced acute liver failure [239], human osteoclast differentiation and function [240], and diabetic nephropathy [66]. Additional research point to the protective role of H₂S in models of diabetic cardiomyopathy [241], left ventricular remodelling in smoking rats [242], and critical Limb Ischemia [243], that is mediated by Nrf-2 signalling. The ability of H_2S to drive Nrf2 networks appear to be critically important in describing some of the known protective and antioxidant effects of this molecule (Fig. 4). Indeed, in more recent times, research has shown that H_2S induced Nrf-2 signalling is important in the immune system and likely contributes to the anti-inflammatory effects ascribed to this molecule. In macrophages H₂S mediates the inhibition of NF-kB and the secretion of the pro-inflammatory cytokines like tumor necrosis factor- α (TNF- α) and interleukin-6 (IL-6), but induces the antioxidant Nrf-2/HO-1 pathway in cells [244]. The novel H_2S modulator, S-propargyl-cysteine (also known as ZYZ-802), can induces HO-1 expression and Nrf-2 activation in a model of rheumatoid arthritis [90]. H_2S has been found to induce Nrf-2 signalling in models of mycoplasma mediated inflammation [245], in dextran sulfate sodium (DSS)-induced colitis [201], to ameliorate endothelial dysfunction with hypertension and NLRP3 inflammasome formation [202], induce Nrf-2 signalling in Mycoplasma pneumoniae infected human mononuclear THP-1 cells [246], and in a model of paraquat-Induced acute liver injury [206]. It is now clear that H_2S induces the Nrf-2 system in a range of disease models and this has led some investigators to speculate that a common mechanism of action may be responsible. Interestingly, H₂S plays an important role in protein persulfidation a recently characterized posttranslational modification that occurs to reactive cysteine residues. Persulfidation of protein induced by H_2S is important in the regulation of several signalling pathways [4, 5]. To date, several studies have shown that persulfidation appears to be important in H₂S mediated Nrf-2 signalling. Indeed, persulfidation of Keap1 at cysteine-151, cysteine-226, and cysteine-613 residues drives dissociation of the Nrf-2/Keap1 complex leading to increased expression of antioxidant genes and protection against cellular senescence [247]. This post-translational modification appears to be important in preventing ischemia-reperfusion induced oxidative stress and inflammatory responses in cells. Treatment with NaHS increases in GSH levels, and decreases lipid peroxidation products, reactive oxygen species generation and the levels of NO, IL-6 and TNF- α [248]. Persulfidation has been reported in additional studies and shown to be important in reducing oxidative stress, inflammation, and cellular damage. To date, H₂S mediated persulfidation of Nrf-2 has been observed in models of high-salt diet-induced renal oxidative stress and kidney injury [65], diabetes-accelerated atherosclerosis [249], sulfur mustard induced lung injury [250], oxidative stress induced hepatocyte damage [251], and paraquat poisoning [206].

4 Conclusions

Over the last two decades, H_2S has now gained interest from the academic community and is recognized as an important gasotransmitter that has roles in various physiological and biochemical processes including the immune system. It is now widely reported that dysregulation in the production of this molecule is found in pathophysiological conditions spanning most organ systems, viz. heart, kidney, and brain. Moreover, loss in the capacity to maintain tissue H_2S occurs in several diseases and is generally linked to altered immune function. While new targets sensitive to changes in H_2S will likely be identified in the near future, our understanding of this molecule in the immune system has progressed steadily over the last few years. Importantly, this has led to the development of a range of H_2S donor molecules that can be used to manipulate immune signalling systems in various diseases. Consequently, these molecules will provide new tools to explore the function of H_2S in the immune system and drive new breakthroughs in the area.

References

- Fukuto JM, Vega VS, Works C, Lin J (2020) The chemical biology of hydrogen sulfide and related hydropersulfides: interactions with biologically relevant metals and metalloproteins. Curr Opin Chem Biol 55:52–58
- Yang N, Liu Y, Li T, Tuo Q (2020) Role of hydrogen sulfide in chronic diseases. DNA Cell Biol 39:187–196
- Bełtowski J (2019) Synthesis, metabolism, and signaling mechanisms of hydrogen sulfide: An overview. Methods Mol Biol 2007:1–8
- Filipovic MR, Zivanovic J, Alvarez B, Banerjee R (2018) Chemical biology of H₂S Signalling through Persulfidation. Chem Rev 118:1253–1337
- Kimura H (2020) Signalling by hydrogen sulfide and polysulfides via protein S-sulfuration. Br J Pharmacol 177:720–733
- Li L, Rose P, Moore PK (2011) Hydrogen sulfide and cell signalling. Annu Rev Pharmacol Toxicol 51:169–187
- Zhang J, Shi C, Wang H, Gao C, Chang P, Chen X, Shan H, Zhang M, Tao L (2019) Hydrogen sulfide protects against cell damage through modulation of PI3K/Akt/Nrf2 signalling. Int J Biochem Cell Biol 117:105636
- Abd Allah ESH, Ahmed MA, Makboul R, Abd El-Rahman MA (2020) Effects of hydrogen sulphide on oxidative stress, inflammatory cytokines, and vascular remodelling in l-NAME-induced hypertension. Clin Exp Pharmacol Physiol 47:650–659
- Mys LA, Strutynska NA, Goshovska YV, Sagach VF (2019) Stimulation of the endogenous hydrogen sulfide synthesis suppresses oxidative-nitrosative stress and restores endothelial-dependent vasorelaxation in old rats. Can J Physiol Pharmacol 98(5):275–281
- Pan LL, Qin M, Liu XH, Zhu YZ (2017) The role of hydrogen sulfide on cardiovascular homeostasis: An overview with update on immunomodulation. Front Pharmacol 8:686
- He JT, Li H, Yang L, Cheng KL (2019) Involvement of Endothelin-1, H₂S and Nrf2 in beneficial effects of remote ischemic preconditioning in global cerebral ischemia-induced vascular dementia in mice. Cell Mol Neurobiol 39:671–686

- 12. Li X, Zhang KY, Zhang P, Chen LX, Wang L, Xie M, Wang CY, Tang XQ (2014) Hydrogen sulfide inhibits formaldehyde-induced endoplasmic reticulum stress in PC12 cells by upregulation of SIRT-1. PLoS One 9:e89856
- 13. Li X, Zhuang YY, Wu L, Xie M, Gu HF, Wang B, Tang XQ (2020) Hydrogen sulfide ameliorates cognitive dysfunction in formaldehyde-exposed rats: involvement in the Upregulation of brain-derived Neurotrophic factor. Neuropsychobiology 79:119–130
- 14. Goren I, Köhler Y, Aglan A, Pfeilschifter J, Beck KF, Frank S (2019) Increase of cystathionine-γ-lyase (CSE) during late wound repair: hydrogen sulfide triggers cytokeratin 10 expression in keratinocytes. Nitric Oxide 87:31–42
- 15. Xu M, Hua Y, Qi Y, Meng G, Yang S (2019) Exogenous hydrogen sulphide supplement accelerates skin wound healing via oxidative stress inhibition and vascular endothelial growth factor enhancement. Exp Dermatol 28:776–785
- 16. Gelaude A, Slaby S, Cailliau K, Marin M, Lescuyer-Rousseau A, Molinaro C, Nevoral J, Kučerová-Chrpová V, Sedmikova M, Petr J, Martoriati A, Bodart JF (2020) Hydrogen sulfide impairs meiosis resumption in Xenopus laevis oocytes. Cells 9:E237
- 17. Guan R, Cai Z, Wang J, Ding M, Li Z, Xu J, Li Y, Li J, Yao H, Liu W, Qian J, Deng B, Tang C, Sun D, Lu W (2019) Hydrogen sulfide attenuates mitochondrial dysfunction-induced cellular senescence and apoptosis in alveolar epithelial cells by upregulating sirtuin 1. Aging (Albany NY) 11:11844–11864
- 18. Zivanovic J, Kouroussis E, Kohl JB, Adhikari B, Bursac B, Schott-Roux S, Petrovic D, Miljkovic JL, Thomas-Lopez D, Jung Y, Miler M, Mitchell S, Milosevic V, Gomes JE, Benhar M, Gonzalez-Zorn B, Ivanovic-Burmazovic I, Torregrossa R, Mitchell JR, Whiteman M, Schwarz G, Snyder SH, Paul BD, Carroll KS, Filipovic MR (2019) Selective Persulfide detection reveals evolutionarily conserved Antiaging effects of S-Sulfhydration. Cell Metab 30:1152–1170
- Libiad M, Vitvitsky V, Bostelaar T, Bak DW, Lee HJ, Sakamoto N, Fearon E, Lyssiotis CA, Weerapana E, Banerjee R (2019) Hydrogen sulfide perturbs mitochondrial bioenergetics and triggers metabolic reprogramming in colon cells. J Biol Chem 294:12077–12090
- 20. Maassen H, Hendriks KDW, Venema LH, Henning RH, Hofker SH, van Goor H, Leuvenink HGD, Coester AM (2019) Hydrogen sulphide-induced hypometabolism in human-sized porcine kidneys. PLoS One 14:e0225152
- Shen F, Zhao CS, Shen MF, Wang Z, Chen G (2019) The role of hydrogen sulfide in gastric mucosal damage. Med Gas Res 9:88–92
- 22. Sun H, Wu Z, Nie X, Bian JS (2020b) Role of endothelial dysfunction in cardiovascular diseases: the link between inflammation and hydrogen sulfide. Front Pharmacol 10:1568

- Hancock J, Neill S (2019) Nitric oxide: its generation and interactions with other reactive signaling compounds. Plants (Basel) 8:41
- Marozkina N, Gaston B (2020) An update on Thiol signaling: S-Nitrosothiols, hydrogen sulfide and a putative role for thionitrous acid. Antioxidants 9: E225
- 25. Kabil O, Banerjee R (2014) Enzymology of H₂S biogenesis, decay and signaling. Antioxid Redox Signal 20:770–782
- 26. Wang R (2002) Two's company, three's a crowd: can H₂S be the third endogenous gaseous transmitter? FASEB J 16(13):1792–1798
- Rose P, Moore PK, Whiteman M, Zhu YZ (2019) An appraisal of developments in allium sulfur chemistry: expanding the pharmacopeia of garlic. Molecules 24: E4006
- Rose P, Moore PK, Zhu YZ (2018) Garlic and gaseous mediators. Trends Pharmacol Sci 39:624–663
- 29. Kabil O, Banerjee R (2012) Characterization of patient mutations in human persulfide dioxygenase (ETHE1) involved in H₂S catabolism. J Biol Chem 287:44561–44567
- Landry AP, Ballou DP, Banerjee R (2018) Modulation of catalytic promiscuity during hydrogen sulfide oxidation. ACS Chem Biol 13:1651–1658
- 31. Fagone P, Mazzon E, Bramanti P, Bendtzen K, Nicoletti F (2018) Gasotransmitters and the immune system: mode of action and novel therapeutic targets. Eur J Pharmacol 834:92–102
- Brostjan C, Oehler R (2020) The role of neutrophil death in chronic inflammation and cancer. Cell Death Discov 6:26
- Sendama W (2020) The effect of ageing on the resolution of inflammation. Ageing Res Rev 57:101000. https://doi.org/10.1016/j.arr.2019.101000
- Rose P, Moore PK, Zhu YZ (2017) H₂S biosynthesis and catabolism: new insights from molecular studies. Cell Mol Life Sci 74:1391–1412
- 35. Li L, Bhatia M, Zhu YZ, Zhu YC, Ramnath RD, Wang ZJ, Anuar FB, Whiteman M, Salto-Tellez M, Moore PK (2005) Hydrogen sulfide is a novel mediator of lipopolysaccharide-induced inflammation in the mouse. FASEB J 19:1196–1198
- 36. Zhang H, Zhi L, Moochhala S, Moore PK, Bhatia M (2007) Hydrogen sulfide acts as an inflammatory mediator in cecal ligation and puncture-induced sepsis in mice by upregulating the production of cytokines and chemokines via NF-kappaB. Am J Physiol Lung Cell Mol Physiol 292:L960–L971
- 37. Chi Q, Wang D, Hu X, Li S, Li S (2019) Hydrogen sulfide gas exposure induces Necroptosis and promotes inflammation through the MAPK/NF-κB pathway in broiler spleen. Oxidative Med Cell Longev 2019:8061823
- 38. Hu X, Chi Q, Liu Q, Wang D, Zhang Y, Li S (2019) Atmospheric H₂S triggers immune damage by activating the TLR-7/MyD88/NF-kappaB pathway and NLRP3 inflammasome in broiler thymus. Chemosphere 237:124427

- 39. Tamizhselvi R, Moore P, Bhatia M (2008) Inhibition of hydrogen sulfide synthesis attenuates chemokine production and protects mice against acute pancreatitis and associated lung injury. Pancreas 36:e24–e31
- 40. Ang SF, Sio SW, Moochhala SM, MacAry PA, Bhatia M (2011) Hydrogen sulfide upregulates cyclooxygenase-2 and prostaglandin E metabolite in sepsis-evoked acute lung injury via transient receptor potential vanilloid type 1 channel activation. J Immunol 187:4778–4787
- 41. Wang P, Chen F, Wang W, Zhang X (2019b) Hydrogen sulfide attenuates high glucose-induced human retinal pigment epithelial cell inflammation by inhibiting ROS formation and NLRP3 Inflammasome activation. Mediat Inflamm 2019:8908960
- 42. Ha C, Tian S, Sun K, Wang D, Lv J, Wang Y (2015) Hydrogen sulfide attenuates IL-1β-induced inflammatory signaling and dysfunction of osteoarthritic chondrocytes. Int J Mol Med 35:1657–1666
- 43. Kloesch B, Liszt M, Steiner G, Broll J (2012) Inhibitors of p38 and ERK1/2 MAPkinase and hydrogen sulphide block constitutive and IL-1beta-induced IL-6 and IL-8 expression in the human chondrocyte cell line C-28/I2. Rheumatol Int 32:729–736
- 44. Li L, Rossoni G, Sparatore A, Lee LC, Del Soldato P, Moore PK (2007) Anti-inflammatory and gastrointestinal effects of a novel diclofenac derivative. Free Radic Biol Med 42:706–719
- 45. Sidhapuriwala J, Li L, Sparatore A, Bhatia M, Moore PK (2007) Effect of S-diclofenac, a novel hydrogen sulfide releasing derivative, on carrageenan-induced hindpaw oedema formation in the rat. Eur J Pharmacol 569:149–154
- 46. Mulero MC, Huxford T, Ghosh G (2019a) NF-κB, IκB, and IKK: integral components of immune system signaling. Adv Exp Med Biol 1172:207–226
- Mulero MC, Wang VY, Huxford T, Ghosh G (2019b) Genome reading by the NF-κB transcription factors. Nucleic Acids Res 47:9967–9989
- 48. Bergqvist S, Alverdi V, Mengel B, Hoffmann A, Ghosh G, Komives EA (2009) Kinetic enhancement of NF-kappaBxDNA dissociation by IkappaBalpha. Proc Natl Acad Sci U S A 106:19328–19333
- 49. Fusco AJ, Huang DB, Miller D, Wang VY, Vu D, Ghosh G (2009) NF-kappaB p52:RelB heterodimer recognizes two classes of kappaB sites with two distinct modes. EMBO Rep 10:152–159
- 50. Oeckinghaus A, Ghosh S (2009) The NF-kappaB family of transcription factors and its regulation. Cold Spring Harb Perspect Biol 1:a000034
- 51. Oh GS, Pae HO, Lee BS, Kim BN, Kim JM, Kim HR, Jeon SB, Jeon WK, Chae HJ, Chung HT (2006) Hydrogen sulfide inhibits nitric oxide production and nuclear factor-kappaB via heme oxygenase-1 expression in RAW264.7 macrophages stimulated with lipopolysaccharide. Free Radic Biol Med 41:106–119
- 52. Whiteman M, Li L, Rose P, Tan CH, Parkinson DB, Moore PK (2010) The effect of hydrogen sulfide

donors on lipopolysaccharide-induced formation of inflammatory mediators in macrophages. Antioxid Redox Signal 12:1147–1154

- 53. Xu W, Chen J, Lin J, Liu D, Mo L, Pan W, Feng J, Wu W, Zheng D (2015) Exogenous H₂S protects H9c2 cardiac cells against high glucose-induced injury and inflammation by inhibiting the activation of the NF-kappaB and IL-1beta pathways. Int J Mol Med 35:177–186
- 54. Zhang G, Lu D, Duan SF, Gao YR, Liu SY, Hong Y, Dong PZ, Chen YG, Li T, Wang DY, Cheng XS, He F, Wei JS, Li GY, Zhang QY, Wu DD, Ji XY (2018a) Hydrogen sulfide alleviates lipopolysaccharide-induced diaphragm dysfunction in rats by reducing apoptosis and inflammation through ROS/MAPK and TLR4/NF-kappaB signaling pathways. Oxidative Med Cell Longev 2018:9647809
- 55. Gong QH, Wang Q, Pan LL, Liu XH, Xin H, Zhu YZ (2011) S-propargyl-cysteine, a novel hydrogen sulfide-modulated agent, attenuates lipopolysaccharide-induced spatial learning and memory impairment: involvement of TNF signaling and NF-kappaB pathway in rats. Brain Behav Immun 25:110–119
- 56. Tao L, Yu Q, Zhao P, Yang Q, Wang B, Yang Y, Kuai J, Ding Q (2019) Preconditioning with hydrogen sulfide ameliorates cerebral ischemia/reperfusion injury in a mouse model of transient middle cerebral artery occlusion. Chem Biol Interact 310:108738
- 57. Sen N, Paul BD, Gadalla MM, Mustafa AK, Sen T, Xu R, Kim S, Snyder SH (2012) Hydrogen sulfide-linked sulfhydration of NF-kappaB mediates its antiapoptotic actions. Mol Cell 45:13–24
- 58. Kakinohana M, Marutani E, Tokuda K, Kida K, Kosugi S, Kasamatsu S, Magliocca A, Ikeda K, Kai S, Sakaguchi M, Hirai S, Xian M, Kaneki M, Ichinose F (2019) Breathing hydrogen sulfide prevents delayed paraplegia in mice. Free Radic Biol Med 131:243–250
- Wallace JL, Dicay M, McKnight W, Martin GR (2007) Hydrogen sulfide enhances ulcer healing in rats. FASEB J 21:4070–4076
- 60. Fiorucci S, Orlandi S, Mencarelli A, Caliendo G, Santagada V, Distrutti E, Santucci L, Cirino G, Wallace J (2007) Enhanced activity of a hydrogen Sulphide-releasing derivative of Mesalamine (ATB-429) in a mouse model of colitis. Br J Pharmacol 150:996–1002
- 61. Zanardo RC, Brancaleone V, Distrutti E, Fiorucci S, Cirino G, Wallace JL (2006) Hydrogen sulfide is an endogenous modulator of leukocyte-mediated inflammation. FASEB J 20:2118–2120
- 62. Li L, Whiteman M, Guan YY, Neo KL, Cheng Y, Lee SW, Zhao Y, Baskar R, Tan CH, Moore PK (2009) Characterization of a novel, water-soluble hydrogen sulfide-releasing molecule (GYY4137): new insights into the biology of hydrogen sulfide. Circulation 117:2351–2360

- 63. Herrera B, Coimbra L, Ribeiro da Silva A, Teixeira S, Costa S, Wallace J, Spolidorio L, Muscara M (2015) The H₂S-releasing naproxen derivative, ATB-346, inhibits alveolar bone loss and inflammation in rats with ligature-induced periodontitis. Med Gas Res. 5:4
- 64. Yang CT, Lai ZZ, Zheng ZH, Kang JM, Xian M, Wang RY, Shi K, Meng FH, Li X, Chen L, Zhang H (2017) J Cell Mol Med 21:2441–2451
- 65. Huang C, Feng W, Peh M, Peh K, Dymock B, Moore P (2016b) A novel slow-releasing hydrogen sulfide donor, FW1256, exerts anti-inflammatory effects in mouse macrophages and in vivo. Pharmacol Res 113 (Pt A):533–546
- 66. Zhou X, Feng Y, Zhan Z, Chen J (2014a) Hydrogen sulfide alleviates diabetic nephropathy in a streptozotocin-induced diabetic rat model. J Biol Chem 289:28827–28834
- 67. Bazhanov N, Ivanciuc T, Wu H, Garofalo M, Kang J, Xian M, Casola A (2018) Thiol-activated hydrogen sulfide donors antiviral and anti-inflammatory activity in respiratory syncytial virus infection. Viruses 10:249
- 68. Wepler M, Merz T, Wachter U, Vogt J, Calzia E, Scheuerle A, Möller P, Gröger M, Kress S, Fink M, Lukaschewski B, Rumm G, Stahl B, Georgieff M, Huber-Lang M, Torregrossa R, Whiteman M, McCook O, Radermacher P, Hartmann C (2019) The mitochondria-targeted H₂S-donor AP39 in a murine model of combined hemorrhagic shock and blunt chest trauma. Shock 52:230–239
- 69. Wang M, Tang W, Xin H, Zhu YZ (2016) S-Propargyl-cysteine, a novel hydrogen sulfide donor, inhibits inflammatory Hepcidin and relieves Anemia of inflammation by inhibiting IL-6/STAT3 pathway. PLoS One 11(9):e0163289
- 70. Pan L, Liu XH, Zheng HM, Yang HB, Gong QH, Zhu YZ (2012) S-propargyl-cysteine, a novel hydrogen sulfide-modulated agent, attenuated tumor necrosis factor-alpha-induced inflammatory signaling and dysfunction in endothelial cells. Int J Cardiol 155:327–332
- Akter F (2016) The role of hydrogen sulfide in burns. Burns 42:519–525
- 72. Esechie A, Kiss L, Olah G, Horváth EM, Hawkins H, Szabo C, Traber DL (2008) Protective effect of hydrogen sulfide in a murine model of acute lung injury induced by combined burn and smoke inhalation. Clin Sci (Lond) 115:91–97
- Zeng J, Lin X, Fan H, Li C (2013) Hydrogen sulfide attenuates the inflammatory response in a mouse burn injury model. Mol Med Rep 8:1204–1208
- 74. Ahmad A, Szabo C (2016) Both the H₂S biosynthesis inhibitor aminooxyacetic acid and the mitochondrially targeted H₂S donor AP39 exert protective effects in a mouse model of burn injury. Pharmacol Res 113(Pt A):348–355
- 75. Ahmad A, Druzhyna N, Szabo C (2017) Cystathionine-gamma-lyase deficient mice are protected against the development of multiorgan

failure and exhibit reduced inflammatory response during burn. Burns 43:1021–1033

- 76. Ahmad A, Druzhyna N, Szabo C (2019) Effect of 3-mercaptopyruvate sulfurtransferase deficiency on the development of multiorgan failure, inflammation, and wound healing in mice subjected to burn injury. J Burn Care Res 40:148–156
- 77. Zhang J, Sio SW, Moochhala S, Bhatia M (2010) Role of hydrogen sulfide in severe burn injuryinduced inflammation in mice. Mol Med 16:417–424
- Sio S, Puthia M, Lu J, Moochhala S, Bhatia M (2008) The neuropeptide substance P is a critical mediator of burn-induced acute lung injury. J Immunol 180:8333–8341
- 79. Burguera EF, Vela-Anero Á, Gato-Calvo L, Vaamonde-García C, Meijide-Faílde R, Blanco FJ (2019) Hydrogen sulfide biosynthesis is impaired in the osteoarthritic joint. Int J Biometeorol 64:997–1010. https://doi.org/10.1007/s00484-019-01823-w
- Muniraj N, Stamp LK, Badiei A, Hegde A, Cameron V, Bhatia M (2017) Hydrogen sulfide acts as a pro-inflammatory mediator in rheumatic disease. Int J Rheum Dis 20:182–189
- Sunzini F, De Stefano S, Chimenti M, Melino S (2020) Hydrogen sulfide as potential regulatory gasotransmitter in arthritic diseases. Int J Mol Sci 21:E1180
- 82. Dief AE, Mostafa DK, Sharara GM, Zeitoun TH (2015) Hydrogen sulfide releasing naproxen offers better anti-inflammatory and chondroprotective effect relative to naproxen in a rat model of zymosan induced arthritis. Eur Rev Med Pharmacol Sci 19:1537–1546
- 83. Nasi S, Ehirchiou D, Chatzianastasiou A, Nagahara N, Papapetropoulos A, Bertrand J, Cirino G, So A, Busso N (2020) The protective role of the 3-mercaptopyruvate sulfurtransferase (3-MST)-hydrogen sulfide (H₂S) pathway against experimental osteoarthritis. Arthritis Res Ther 22:49
- 84. Pan LP, Cao YP, Wen LC, Chai WB, DU JB, Jin HF, Liu J, Yang X, Meng ZC, Liu H, Cui YP, Wang R, Wu H, Zhou XT, Li X, Li ZY, Talatibaike M (2016) Hydrogen sulfide in cartilage and its inhibitory effect on matrix metalloproteinase 13 expression in chondrocytes induced by interlukin-1β. Beijing Da Xue Xue Bao 48:194–202
- 85. Burguera EF, Vela-Anero A, Magalhães J, Meijide-Faílde R, Blanco FJ (2014) Effect of hydrogen sulfide sources on inflammation and catabolic markers on interleukin 1β-stimulated human articular chondrocytes. Osteoarthr Cartil 22:1026–1035
- Kaur S, Schwartz AL, Miller TW, Roberts DD (2015) CD47-dependent regulation of H₂S biosynthesis and signaling in T cells. Methods Enzymol 555:145–168
- Kloesch B, Liszt M, Broell J (2010) H₂S transiently blocks IL-6 expression in rheumatoid arthritic fibroblast-like synoviocytes and deactivates p44/42 mitogen-activated protein kinase. Cell Biol Int 34:477–484

- 88. Vela-Anero Á, Hermida-Gómez T, Gato-Calvo L, Vaamonde-García C, Díaz-Prado S, Meijide-Faílde R, Blanco F, Burguera E (2017) Long-term effects of hydrogen sulfide on the anabolic-catabolic balance of articular cartilage in vitro. Nitric Oxide 70:42–50
- Aytekin K, Erhan S, Erişgin Z, Esenyel CZ, Takar S (2019) Intra-articular injection of hydrogen sulfide decreased the progression of gonarthrosis. Can J Physiol Pharmacol 97:47–54
- 90. Wu WJ, Jia WW, Liu XH, Pan LL, Zhang QY, Yang D, Shen XY, Liu L, Zhu YZ (2016) Spropargyl-cysteine attenuates inflammatory response in rheumatoid arthritis by modulating the Nrf2-ARE signaling pathway. Redox Biol 10:157–167
- 91. Sieghart D, Liszt M, Wanivenhaus A, Bröll H, Kiener H, Klösch B, Steiner G (2015) Hydrogen sulphide decreases IL-1β-induced activation of fibroblast-like synoviocytes from patients with osteoarthritis. J Cell Mol Med 19:187–197
- 92. Fox B, Schantz JT, Haigh R, Wood ME, Moore PK, Viner N, Spencer JP, Winyard PG, Whiteman M (2012) Inducible hydrogen sulfide synthesis in chondrocytes and mesenchymal progenitor cells: is H₂S a novel cytoprotective mediator in the inflamed joint? J Cell Mol Med 16:896–910
- 93. Li L, Fox B, Keeble J, Salto-Tellez M, Winyard PG, Wood ME, Moore PK, Whiteman M (2013b) The complex effects of the slow-releasing hydrogen sulfide donor GYY4137 in a model of acute joint inflammation and in human cartilage cells. J Cell Mol Med 17:365–376
- 94. Ekundi-Valentim E, Mesquita FP, Santos KT, de Paula MA, Florenzano J, Zanoni CI, Rodrigues L, de Nucci G, Teixeira SA, Ferreira HH, Wallace JL, Costa SK, Muscará MN (2013) A comparative study on the anti-inflammatory effects of single oral doses of naproxen and its hydrogen sulfide (H₂S)-releasing derivative ATB-346 in rats with carrageenan-induced synovitis. Med Gas Res. 3:24
- 95. Wu D, Zhong P, Wang J, Wang H (2019a) Exogenous hydrogen sulfide mitigates LPS + ATP-induced inflammation by inhibiting NLRP3 inflammasome activation and promoting autophagy in L02 cells. Mol Cell Biochem 457(1–2):145–156
- 96. Wu W, Qin M, Jia W, Huang Z, Li Z, Yang D, Huang M, Xiao C, Long F, Mao J, Moore PK, Liu X, Zhu YZ (2018) Cystathionine-gamma-lyase ameliorates the histone demethylase JMJD3mediated autoimmune response in rheumatoid arthritis. Cell Mol Immunol 2018:694–705
- Andruski B, McCafferty DM, Ignacy T, Millen B, McDougall JJ (2008) Leukocyte trafficking and pain behavioral responses to a hydrogen sulfide donor in acute monoarthritis. Am J Physiol Regul Integr Comp Physiol 295:R814–R820
- Cecconi M, Evans L, Levy M, Rhodes A (2018) Sepsis and septic shock. Lancet 392:75–87
- Rhee C, Klompas M (2020) Sepsis trends: increasing incidence and decreasing mortality, or changing denominator? J Thorac Dis 12(Suppl 1):S89–S100

- 100. Bee N, White R, Petros AJ (2017) Hydrogen sulfide in exhaled gases from ventilated septic neonates and children: a preliminary report. Pediatr Crit Care Med 18:e327–e332
- 101. Košir M, Podbregar M (2017) Advances in the diagnosis of Sepsis: hydrogen sulfide as a prognostic marker of septic shock severity. EJIFCC 28:134–141
- 102. Qiu H, Chen X, Luo Z, Zhao L, Zhang T, Yang N, Long X, Xie H, Liu J, Xu W (2018a) Inhibition of endogenous hydrogen sulfide production exacerbates the inflammatory response during urine-derived sepsis-induced kidney injury. Exp Ther Med 16:2851–2858
- 103. Collin M, Anuar FB, Murch O, Bhatia M, Moore PK, Thiemermann C (2005) Inhibition of endogenous hydrogen sulfide formation reduces the organ injury caused by endotoxemia. Br J Pharmacol 146:498–505
- 104. Badiei A, Chambers ST, Gaddam RR, Bhatia M (2016) Cystathionine-γ-lyase gene silencing with siRNA in monocytes/macrophages attenuates inflammation in cecal ligation and puncture-induced sepsis in the mouse. J Biosci 41:87–95
- 105. Gaddam RR, Chambers S, Fraser R, Cogger VC, Le Couteur DG, Ishii I, Bhatia M (2019) Cystathionine-Gamma-Lyase-derived hydrogen sulfide-regulated substance p modulates liver sieve fenestrations in caecal ligation and puncture-induced sepsis. Int J Mol Sci 20:E3191
- 106. Faller S, Zimmermann KK, Strosing KM, Engelstaedter H, Buerkle H, Schmidt R, Spassov SG, Hoetzel A (2012) Inhaled hydrogen sulfide protects against lipopolysaccharide-induced acute lung injury in mice. Med Gas Res 2:26
- 107. Yan Y, Chen C, Zhou H, Gao H, Chen L, Chen L, Gao L, Zhao R, Sun Y (2013) Endogenous hydrogen sulfide formation mediates the liver damage in endotoxemic rats. Res Vet Sci 94:590–595
- 108. Bekpinar S, Develi-Is S, Unlucerci Y, Kusku-Kiraz Z, Uysal M, Gurdol F (2013) Modulation of arginine and asymmetric dimethylarginine concentrations in liver and plasma by exogenous hydrogen sulfide in LPS-induced endotoxemia. Can J Physiol Pharmacol 91:1071–1075
- 109. Fernández RA, Soriano RN, Francescato HD, Sabino JP, Coimbra TM, Branco LG (2016) Cryogenic role of central endogenous hydrogen sulfide in the rat model of endotoxic shock. Brain Res 1650:218–223
- 110. Tian F, Ling Y, Chen Y, Wang Z (2017) Effects of CCK-8 and Cystathionine γ-Lyase/hydrogen sulfide system on acute lung injury in rats. Inflammation 40:174–183
- 111. Wang C, Duan GL, Liu YJ, Yu Q, Tang XL, Zhao W, Li XH, Zhu XY, Ni X (2015) Overproduction of nitric oxide by endothelial cells and macrophages contributes to mitochondrial oxidative stress in adrenocortical cells and adrenal insufficiency during endotoxemia. Free Radic Biol Med 83:31–34
- 112. Ahmad A, Druzhyna N, Szabo C (2016) Delayed treatment with sodium hydrosulfide improves regional blood flow and alleviates cecal ligation and

puncture (CLP)-induced septic shock. Shock 46:183–193

- 113. Liu J, Li J, Tian P, Guli B, Weng G, Li L, Cheng Q (2019) H₂S attenuates sepsis-induced cardiac dysfunction via a PI3K/Akt-dependent mechanism. Exp Ther Med 17:4064–4072
- 114. Chen S, Bu D, Ma Y, Zhu J, Sun L, Zuo S, Ma J, Li T, Chen Z, Zheng Y, Wang X, Pan Y, Wang P, Liu Y (2016) GYY4137 ameliorates intestinal barrier injury in a mouse model of endotoxemia. Biochem Pharmacol 118:59–56
- 115. Jiang L, Jiang Q, Yang S, Huang S, Han X, Duan J, Pan S, Zhao M, Guo S (2019) GYY4137 attenuates LPS-induced acute lung injury via heme oxygenase-1 modulation. Pulm Pharmacol Ther 54:77–86
- 116. Merz T, Stenzel T, Nußbaum B, Wepler M, Szabo C, Wang R, Radermacher P, McCook O (2017) Cardiovascular disease and resuscitated septic shock lead to the downregulation of the H₂S-producing enzyme cystathionine-γ-lyase in the porcine coronary artery. Intensive Care Med Exp 5:17
- 117. Nubaum BL, Vogt J, Wachter U, McCook O, Wepler M, Matallo J, Calzia E, Gröger M, Georgieff M, Wood ME, Whiteman M, Radermacher P, Hafner S (2017) Metabolic, cardiac, and renal effects of the slow hydrogen sulfidereleasing molecule GYY4137 during resuscitated septic shock in swine with pre-existing coronary artery disease. Shock 48:175–184
- 118. Chen X, Xu W, Wang Y, Luo H, Quan S, Zhou J, Yang N, Zhang T, Wu L, Liu J, Long X, Zhu N, Xie H, Luo Z (2014) Hydrogen sulfide reduces kidney injury due to urinary-derived sepsis by inhibiting NF-κB expression, decreasing TNF-α levels and increasing IL-10 levels. Exp Ther Med 8:464–470
- 119. Li X, Cheng Q, Li J, He Y, Tian P, Xu C (2017) Significance of hydrogen sulfide in sepsis-induced myocardial injury in rats. Exp Ther Med 14:2153–2161
- 120. Wang C, Du J, Du S, Liu Y, Li D, Zhu X, Ni X (2018) Endogenous H₂S resists mitochondriamediated apoptosis in the adrenal glands via ATP5A1 S-sulfhydration in male mice. Mol Cell Endocrinol 474:65–73
- 121. Goslar T, Marš T, Podbregar M (2011) Total plasma sulfide as a marker of shock severity in nonsurgical adult patients. Shock 36:350–355
- 122. Chen Y, Jin S, Teng X, Hu Z, Zhang Z, Qiu X, Tian D, Wu Y (2018) Hydrogen sulfide attenuates LPS-induced acute kidney injury by inhibiting inflammation and oxidative stress. Oxidative Med Cell Longev 2018:6717212
- 123. Bazhanov N, Ansar M, Ivanciuc T, Garofalo RP, Casola A (2017) Hydrogen sulfide: a novel player in airway development, pathophysiology of respiratory diseases, and antiviral defenses. Am J Respir Cell Mol Biol 57:403–410
- 124. Fuschillo S, Palomba L, Capparelli R, Motta A, Maniscalco M (2020) Nitric oxide and hydrogen

sulfide: a nice pair in the respiratory system. Curr Med Chem 27(42):7136–7148. https://doi.org/10. 2174/0929867327666200310120550

- 125. Cowley ES, Kopf SH, LaRiviere A, Ziebis W, Newman DK (2015) Pediatric cystic fibrosis sputum can be chemically dynamic, anoxic, and extremely reduced due to hydrogen sulfide formation. mBio 6: e00767
- 126. Park SJ, Kim TH, Lee SH, Ryu HY, Hong KH, Jung JY, Hwang GH, Lee SH (2013) Expression levels of endogenous hydrogen sulfide are altered in patients with allergic rhinitis. Laryngoscope 123:557–563
- 127. Chen YH, Yao WZ, Geng B, Ding YL, Lu M, Zhao MW, Tang CS (2005) Endogenous hydrogen sulfide in patients with COPD. Chest 128:3205–3211
- 128. He Y, Liu S, Zhang Z, Liao C, Lin F, Yao W, Chen Y (2017) Imbalance of endogenous hydrogen sulfide and Homocysteine in chronic obstructive pulmonary disease combined with cardiovascular disease. Front Pharmacol 8:624
- 129. Sun Y, Wang X, Chen Y, Zhu R, Liao C (2013) Exhaled hydrogen sulfide in patients with chronic obstructive pulmonary disease and its correlation with exhaled nitric oxide. Chin Med J 126:3240–3244
- 130. Zhang J, Wang X, Chen Y, Yao W (2015) Exhaled hydrogen sulfide predicts airway inflammation phenotype in COPD. Respir Care 60:251–258
- 131. Sun Y, Wang K, Li M, He W, Chang J, Liao CC, Lin F, Qi Y, Wang R, Chen Y (2015) Metabolic changes of H₂S in smokers and patients of COPD which might involve in inflammation, oxidative stress and steroid sensitivity. Sci Rep 5:14971
- 132. Chen YH, Yao WZ, Gao JZ, Geng B, Wang PP, Tang CS (2009a) Serum hydrogen sulfide as a novel marker predicting bacterial involvement in patients with community-acquired lower respiratory tract infections. Respirology 14:746–752
- 133. Li F, Zhang P, Zhang M, Liang L, Sun X, Li M, Tang Y, Bao A, Gong J, Zhang J, Adcock I, Chung KF, Zhou X (2016a) Hydrogen sulfide prevents and partially reverses ozone-induced features of lung inflammation and emphysema in mice. Am J Respir Cell Mol Biol 55:72–81
- 134. Lin F, Liao C, Sun Y, Zhang J, Lu W, Bai Y, Liao Y, Li M, Ni X, Hou Y, Qi Y, Chen Y (2017) Hydrogen sulfide inhibits cigarette smoke-induced endoplasmic reticulum stress and apoptosis in bronchial epithelial cells. Front Pharmacol 8:675
- 135. Ding HB, Liu K, Huang JF, Wu DW, Chen JY, Chen QS (2018) Protective effect of exogenous hydrogen sulfide on pulmonary artery endothelial cells by suppressing endoplasmic reticulum stress in a rat model of chronic obstructive pulmonary disease. Biomed Pharmacother 105:734–741
- 136. Perry MM, Tildy B, Papi A, Casolari P, Caramori G, Rempel KL, Halayko AJ, Adcock I, Chung KF (2018) The anti-proliferative and anti-inflammatory response of COPD airway smooth muscle cells to hydrogen sulfide. Respir Res 19:85

- 137. Guan R, Wang J, Cai Z, Li Z, Wang L, Li Y, Xu J, Li D, Yao H, Liu W, Deng B, Lu W (2020a) Hydrogen sulfide attenuates cigarette smoke-induced airway remodeling by upregulating SIRT1 signaling pathway. Redox Biol 28:101356
- 138. Guan R, Wang J, Li D, Li Z, Liu H, Ding M, Cai Z, Liang X, Yang Q, Long Z, Chen L, Liu W, Sun D, Yao H, Lu W (2020b) Hydrogen sulfide inhibits cigarette smoke-induced inflammation and injury in alveolar epithelial cells by suppressing PHD2/HIF-1α/MAPK signaling pathway. Int Immunopharmacol 81:105979
- 139. Chen YH, Wu R, Geng B, Qi YF, Wang PP, Yao WZ, Tang CS (2009b) Endogenous hydrogen sulfide reduces airway inflammation and remodeling in a rat model of asthma. Cytokine 45:117–123
- 140. Chung KF (2014) Hydrogen sulfide as a potential biomarker of asthma. Expert Rev Respir Med 8:5–13
- 141. Zhang G, Wang P, Yang G, Cao Q, Wang R (2013) The inhibitory role of hydrogen sulfide in airway hyperresponsiveness and inflammation in a mouse model of asthma. Am J Pathol 182:1188–1195
- 142. Wang C, Zou W, Liang XY, Jiang ZS, Li X, Wei HJ, Tang YY, Zhang P, Tang XQ (2017a) Hydrogen sulfide prevents homocysteine-induced endoplasmic reticulum stress in PC12 cells by upregulating SIRT-1. Mol Med Rep 16:3587–3593
- 143. Mendes JA, Ribeiro MC, Reis Filho GJMV, Rocha T, Muscará MN, Costa SKP, Ferreira HHA (2019) Hydrogen sulfide inhibits apoptosis and protects the bronchial epithelium in an allergic inflammation mice model. Int Immunopharmacol 73:435–441
- 144. Li Z, Polhemus DJ, Lefer DJ (2018) Evolution of hydrogen sulfide therapeutics to treat cardiovascular disease. Circ Res 123(5):590–600
- 145. Donnarumma E, Trivedi RK, Lefer DJ (2017) Protective actions of H₂S in acute myocardial infarction and heart failure. Compr Physiol 7:583–602
- 146. Yurinskaya MM, Krasnov GS, Kulikova DA, Zatsepina OG, Vinokurov MG, Chuvakova LN, Rezvykh AP, Funikov SY, Morozov AV, Evgen'ev MB (2020) H₂S counteracts proinflammatory effects of LPS through modulation of multiple pathways in human cells. Inflamm Res 69:481–495
- 147. Mani S, Li H, Untereiner A, Wu L, Yang G, Austin RC, Dickhout JG, Lhoták Š, Meng QH, Wang R (2013) Decreased endogenous production of hydrogen sulfide accelerates atherosclerosis. Circulation 127:2523–2534
- 148. Wang Q, Liu H, Mu Q, Rose P, Zhu YZ (2009b) Spropargyl-cysteine protects both adult rat hearts and neonatal cardiomyocytes from ischemia/hypoxia injury: the contribution of the hydrogen sulfide-mediated pathway. J Cardiovasc Pharmacol 54:139–146
- 149. Pan L, Liu XH, Gong QH, Zhu YZ (2011) S-Propargyl-cysteine (SPRC) attenuated lipopolysaccharide-induced inflammatory response

in H9c2 cells involved in a hydrogen sulfidedependent mechanism. Amino Acids 41:205–215

- 150. Feng S, Chen S, Yu W, Zhang D, Zhang C, Tang C, Du J, Jin H (2017) H2S inhibits pulmonary arterial endothelial cell inflammation in rats with monocrotaline-induced pulmonary hypertension. Lab Investig 97:268–278
- 151. Gong D, Cheng HP, Xie W, Zhang M, Liu D, Lan G, Huang C, Zhao ZW, Chen LY, Yao F, Tan YL, Li L, Xia XD, Zheng XL, Wang ZB, Tang CK (2016) Cystathionine γ-lyase(CSE)/hydrogen sulfide system is regulated by miR-216a and influences cholesterol efflux in macrophages via the PI3K/AKT/ABCA1 pathway. Biochem Biophys Res Commun 470:107–116
- Moore KJ, Tabas I (2011) Macrophages in the pathogenesis of atherosclerosis. Cell 145:341–355
- 153. Wang X, Wang F, You SJ, Cao Y, Cao LD, Han Q, Liu C, Hu L (2013) Dysregulation of cystathionine γ-lyase (CSE)/hydrogen sulfide pathway contributes to ox-LDL-induced inflammation in macrophage. Cell Signal 25:2255–2262
- 154. Yao Y, Zhang X, Chen HP, Li L, Xie W, Lan G, Zhao ZW, Zheng XL, Wang ZB, Tang CK (2016) MicroRNA-186 promotes macrophage lipid accumulation and secretion of pro-inflammatory cytokines by targeting cystathionine γ-lyase in THP-1 macrophages. Atherosclerosis 250:122–132
- 155. Du J, Huang Y, Yan H, Zhang Q, Zhao M, Zhu M, Liu J, Chen SX, Bu D, Tang C, Jin H (2014) Hydrogen sulfide suppresses oxidized low-density lipoprotein (ox-LDL)-stimulated monocyte chemoattractant protein 1 generation from macrophages via the nuclear factor κB (NF-κB) pathway. J Biol Chem 289:9741–9753
- 156. Gao L, Xu Z, Yin Z, Chen K, Wang C, Zhang H (2015) Association of hydrogen sulfide with alterations of monocyte chemokine receptors, CCR2 and CX3CR1 in patients with coronary artery disease. Inflamm Res 64:627–635
- 157. Libby P (2013) Mechanisms of acute coronary syndromes. N Engl J Med 369:883–884
- 158. Yang R, Qu C, Zhou Y, Konkel JE, Shi S, Liu Y, Chen C, Liu S, Liu D, Chen Y, Zandi E, Chen W, Zhou Y, Shi S (2015) Hydrogen sulfide promotes Tet1- and Tet2-mediated Foxp3 Demethylation to drive regulatory T cell differentiation and maintain immune homeostasis. Immunity 43:251–263
- 159. Kondo K, Bhushan S, King AL, Prabhu SD, Hamid T, Koenig S, Murohara T, Predmore BL, Gojon G Sr, Gojon G Jr, Wang R, Karusula N, Nicholson CK, Calvert JW, Lefer DJ (2013) H₂S protects against pressure overload-induced heart failure via upregulation of endothelial nitric oxide synthase. Circulation 127:1116–1127
- 160. Shirazi LF, Bissett J, Romeo F, Mehta JL (2017) Role of inflammation in heart failure. Curr Atheroscler Rep 19:2

- 161. Pan L, Liu XH, Shen YQ, Wang NZ, Xu J, Wu D, Xiong QH, Deng HY, Huang GY, Zhu YZ (2013) Inhibition of NADPH oxidase 4-related signaling by sodium hydrosulfide attenuates myocardial fibrotic response. Int J Cardiol 168:3770–3778
- 162. Wu T, Li H, Wu B, Zhang L, Wu SW, Wang JN, Zhang YE (2017) Hydrogen sulfide reduces recruitment of CD11b+gr-1+ cells in mice with myocardial infarction. Cell Transplant 26:753–764
- 163. Kolluru GK, Bir SC, Yuan S, Shen X, Pardue S, Wang R, Kevil CG (2015) Cystathionine γ-lyase regulates arteriogenesis through NO-dependent monocyte recruitment. Cardiovasc Res 107:590–600
- 164. Miao L, Xin X, Xin H, Shen X, Zhu YZ (2016) Hydrogen sulfide recruits macrophage migration by integrin β1-Src-FAK/Pyk2-Rac pathway in myocardial infarction. Sci Rep 6:22363
- 165. Mishra PK, Tyagi N, Sen U, Givvimani S, Tyagi SC (2010) H₂S ameliorates oxidative and proteolytic stresses and protects the heart against adverse remodeling in chronic heart failure. Am J Physiol Heart Circ Physiol 298:H451–H456
- 166. Polhemus D, Kondo K, Bhushan S, Bir SC, Kevil CG, Murohara T, Lefer DJ, Calvert JW (2013) Hydrogen sulfide attenuates cardiac dysfunction after heart failure via induction of angiogenesis. Circ Heart Fail 6:1077–1086
- 167. Coggins M, Rosenzweig A (2012) The fire within: cardiac inflammatory signaling in health and disease. Circ Res 110:116–125
- Hausenloy DJ, Yellon DM (2016) Ischaemic conditioning and reperfusion injury. Nat Rev Cardiol 13:193–209
- 169. Qiu Y, Wu Y, Meng M, Luo M, Zhao H, Sun H, Gao S (2018b) GYY4137 protects against myocardial ischemia/reperfusion injury via activation of the PHLPP-1/Akt/Nrf2 signaling pathway in diabetic mice. J Surg Res 225:29–39
- 170. Wang Y, Zhao X, Jin H, Wei H, Li W, Bu D, Tang X, Ren Y, Tang C, Du J (2009a) Role of hydrogen sulfide in the development of atherosclerotic lesions in apolipoprotein E knockout mice. Arterioscler Thromb Vasc Biol 29:173–179
- 171. Toldo S, Das A, Mezzaroma E, Chau VQ, Marchetti C, Durrant D, Samidurai A, Van Tassell B, Yin C, Ockaili R, Vigneshwar N, Mukhopadhyay N, Kukreja R, Abbate A, Salloum F (2014) Induction of microRNA-21 with exogenous hydrogen sulfide attenuates myocardial ischemic and inflammatory injury in mice. Circ Cardiovasc Genet 7:311–320
- 172. Bai YD, Yang YR, Mu XP, Lin G, Wang YP, Jin S, Chen Y, Wang MJ, Zhu YC (2018) Hydrogen sulfide alleviates acute myocardial ischemia injury by modulating autophagy and inflammation response under oxidative stress. Oxidative Med Cell Longev 2018:3402809
- 173. Jeddi S, Gheibi S, Kashfi K, Carlström M, Ghasemi A (2020) Dose-dependent effects of long-term administration of hydrogen sulfide on myocardial ischemia-reperfusion injury in male wistar rats:

modulation of RKIP, NF- κ B, and oxidative stress. Int J Mol Sci 21:E1415

- 174. Zhang J, Yu J, Chen Y, Liu L, Xu M, Sun L, Luo H, Wang Y, Meng G (2018b) Exogenous hydrogen sulfide supplement attenuates isoproterenol-induced myocardial hypertrophy in a Sirtuin 3-dependent manner. Oxidative Med Cell Longev 2018:9396089
- 175. Zhao HL, Wu BQ, Luo Y, Zhang WY, Hao YL, Liang JJ, Fang F, Liu W, Chen XH (2018) Exogenous hydrogen sulfide ameliorates high glucoseinduced myocardial injury & inflammation via the CIRP-MAPK signaling pathway in H9c2 cardiac cells. Life Sci 208:315–324
- 176. Hu Y, Li R, Yang H, Luo H, Chen Z (2015) Sirtuin 6 is essential for sodium sulfide-mediated cytoprotective effect in ischemia/reperfusionstimulated brain endothelial cells. J Stroke Cerebrovasc Dis 24:601–609
- 177. Lin Z, Altaf N, Li C, Chen M, Pan L, Wang D, Xie L, Zheng Y, Fu H, Han Y, Ji Y (2018) Hydrogen sulfide attenuates oxidative stress-induced NLRP3 inflammasome activation via S-sulfhydrating c-Jun at Cys269 in macrophages. Biochim Biophys Acta Mol basis Dis 1864(9 Pt B):2890–2900
- 178. Sanokawa-Akakura R, Akakura S, Tabibzadeh S (2016) Replicative senescence in human fibroblasts Is delayed by hydrogen sulfide in a NAMPT/SIRT1 dependent manner. PLoS One 11:e0164710
- 179. Suo R, Zhao Z, Tang Z, Ren Z, Liu X, Liu LS, Wang Z, Tang CK, Wei DH, Jiang Z (2013) Hydrogen sulfide prevents H₂O₂-induced senescence in human umbilical vein endothelial cells through SIRT1 activation. Mol Med Rep 7:1865–1870
- 180. Wang P, Wu L, Ju Y, Fu M, Shuang T, Qian Z, Wang R (2017b) Age-dependent allergic asthma development and Cystathionine gamma-Lyase deficiency. Antioxid Redox Signal 27:931–944
- 181. Xie L, Gu Y, Wen M, Zhao S, Wang W, Ma Y, Meng G, Han Y, Wang Y, Liu G, Moore PK, Wang X, Wang H, Zhang Z, Yu Y, Ferro A, Huang Z, Ji Y (2016b) Hydrogen sulfide induces Keap1 S-sulfhydration and suppresses diabetesaccelerated atherosclerosis via Nrf2 activation. Diabetes 65:3171–3184
- 182. Ahmed HH, Taha FM, Omar HS, Elwi HM, Abdelnasser M (2019) Hydrogen sulfide modulates SIRT1 and suppresses oxidative stress in diabetic nephropathy. Mol Cell Biochem 457:1–9
- 183. Hou CL, Wang MJ, Sun C, Huang Y, Jin S, Mu XP, Chen Y, Zhu YC (2016) Protective effects of hydrogen sulfide in the ageing kidney. Oxidative Med Cell Longev 2016:7570489
- 184. Hu MZ, Zhou B, Mao HY, Sheng Q, Du B, Chen JL, Pang QF, Ji Y (2016) Exogenous hydrogen sulfide Postconditioning protects isolated rat hearts from ischemia/reperfusion injury through Sirt1/PGC-1α signaling pathway. Int Heart J 57:477–482
- 185. Sun Y, Tian Z, Liu N, Zhang L, Gao Z, Sun X, Yu M, Wu J, Yang F, Zhao Y, Ren H, Chen H, Zhao D, Wang Y, Dong S, Xu C, Lu F, Zhang W (2018)

Exogenous H_2S switches cardiac energy substrate metabolism by regulating SIRT3 expression in db/db mice. J Mol Med (Berl) 96:281–299

- 186. Xin H, Wang M, Tang W, Shen Z, Miao L, Wu W, Li C, Wang X, Xin X, Zhu YZ (2016) Hydrogen sulfide attenuates inflammatory Hepcidin by reducing IL-6 secretion and promoting SIRT1-mediated STAT3 Deacetylation. Antioxid Redox Signal 24:70–83
- 187. Li L, Li M, Li Y, Sun W, Wang Y, Bai S, Li H, Wu B, Yang G, Wang R, Wu L, Li H, Xu C (2016b) Exogenous H₂S contributes to recovery of ischemic postconditioning-induced cardioprotection by decrease of ROS level via down-regulation of NF-κB and JAK2-STAT3 pathways in the aging cardiomyocytes. Cell Biosci 6:26
- 188. You J, Shi X, Liang H, Ye J, Wang L, Han H, Fang H, Kang H, Wang T (2017) Cystathionineγ-Lyase promotes process of breast cancer in association with STAT3 signaling pathway. Oncotarget 8:65677–65686
- 189. Cao L, Cao X, Zhou Y, Nagpure BV, Wu ZY, Hu LF, Yang Y, Sethi G, Moore PK, Bian JS (2018) Hydrogen sulfide inhibits ATP-induced neuroinflammation and Aβ1-42 synthesis by suppressing the activation of STAT3 and cathepsin S. Brain Behav Immun 73:603–614
- 190. Yang D, Li T, Li Y, Zhang S, Li W, Liang H, Xing Z, Du L, He J, Kuang C, Yang Q (2019) H₂S suppresses indoleamine 2, 3-dioxygenase 1 and exhibits immunotherapeutic efficacy in murine hepatocellular carcinoma. J Exp Clin Cancer Res 38:88
- 191. Fouad AA, Hafez HM, Hamouda A (2020) Hydrogen sulfide modulates IL-6/STAT3 pathway and inhibits oxidative stress, inflammation, and apoptosis in rat model of methotrexate hepatotoxicity. Hum Exp Toxicol 39:77–85
- 192. Weber G, Pushpakumar S, Sen U (2017) Hydrogen sulfide alleviates hypertensive kidney dysfunction through an epigenetic mechanism. Am J Physiol Heart Circ Physiol 312:H874–H885
- 193. Christgen S, Kanneganti TD (2020) Inflammasomes and the fine line between defense and disease. Curr Opin Immunol 62:39–44
- 194. Kelley N, Jeltema D, Duan Y, He Y (2019) The NLRP3 Inflammasome: an overview of mechanisms of activation and regulation. Int J Mol Sci 20:E3328
- 195. Grebe A, Hoss F, Latz E (2018) NLRP3 Inflammasome and the IL-1 pathway in atherosclerosis. Circ Res 122:1722–1740
- 196. Huang Z, Zhuang X, Xie C, Hu X, Dong X, Guo Y, Li S, Liao X (2016a) Exogenous hydrogen sulfide attenuates high glucose-induced Cardiotoxicity by inhibiting NLRP3 Inflammasome activation by suppressing TLR4/NF-κB pathway in H9c2 cells. Cell Physiol Biochem 40:1578–1590
- 197. Zhao H, Pan P, Yang Y, Ge H, Chen W, Qu J, Shi J, Cui G, Liu X, Feng H, Chen Y (2017) Endogenous hydrogen sulphide attenuates NLRP3 inflammasome-mediated neuroinflammation by suppressing the P2X7 receptor after intracerebral haemorrhage in rats. J Neuroinflammation 14:163

- 198. Castelblanco M, Lugrin J, Ehirchiou D, Nasi S, Ishii I, So A, Martinon F, Busso N (2018) Hydrogen sulfide inhibits NLRP3 inflammasome activation and reduces cytokine production both in vitro and in a mouse model of inflammation. J Biol Chem 293:2546–2557
- 199. Luo ZL, Ren JD, Huang Z, Wang T, Xiang K, Cheng L, Tang LJ (2017) The role of exogenous hydrogen sulfide in free fatty acids induced inflammation in macrophages. Cell Physiol Biochem 42:1635–1644
- 200. Wu W, Qin M, Jia W, Huang Z, Li Z, Yang D, Huang M, Xiao C, Long F, Mao J, Moore PK, Liu X, Zhu YZ (2019b) Cystathionine-γ-lyase ameliorates the histone demethylase JMJD3mediated autoimmune response in rheumatoid arthritis. Cell Mol Immunol 16:694–705
- 201. Qin M, Long F, Wu W, Yang D, Huang M, Xiao C, Chen X, Liu X, Zhu YZ (2019) Hydrogen sulfide protects against DSS-induced colitis by inhibiting NLRP3 inflammasome. Free Radic Biol Med 137:99–109
- 202. Li J, Teng X, Jin S, Dong J, Guo Q, Tian D, Wu Y (2019) Hydrogen sulfide improves endothelial dysfunction by inhibiting the vicious cycle of NLRP3 inflammasome and oxidative stress in spontaneously hypertensive rats. J Hypertens 37:1633–1643
- 203. Hu TX, Zhang NN, Ruan Y, Tan QY, Wang J (2020a) Hydrogen sulfide modulates high glucoseinduced NLRP3 inflammasome activation in 3T3-L1 adipocytes. Exp Ther Med 19:771–776
- 204. Zhou Y, Zhu X, Wang X, Peng Y, Du J, Yin H, Yang H, Ni X, Zhang W (2020) H₂S alleviates renal injury and fibrosis in response to unilateral ureteral obstruction by regulating macrophage infiltration via inhibition of NLRP3 signalling. Exp Cell Res 387:111779
- 205. Zheng Q, Pan L, Ji Y (2019) H2S protects against diabetes-accelerated atherosclerosis by preventing the activation of NLRP3 inflammasome. J Biomed Res 34:94–102
- 206. Liu Z, Wang X, Li L, Wei G, Zhao M (2020) Hydrogen sulfide protects against Paraquat-induced acute liver injury in rats by regulating oxidative stress, mitochondrial function, and inflammation. Oxidative Med Cell Longev 2020:6325378
- 207. Wang Y, Li J, Qin Y, Liu Q, Liao Z, Xiao X (2020) Exogenous hydrogen sulfide alleviates-induced intracellular inflammation in HepG2 cells. Exp Clin Endocrinol Diabetes 128:137–143
- 208. Sies H, Jones DP (2020) Reactive oxygen species (ROS) as pleiotropic physiological signalling agents. Nat Rev Mol Cell Biol 21(7):363–383. https://doi. org/10.1038/s41580-020-0230-3
- 209. Bolduc JA, Collins JA, Loeser RF (2019) Reactive oxygen species, aging and articular cartilage homeostasis. Free Radic Biol Med 132:73–82
- 210. Franchina DG, Dostert C, Brenner D (2018) Reactive oxygen species: involvement in T cell signalling and metabolism. Trends Immunol 39:489–502

- 211. Rendra E, Riabov V, Mossel DM, Sevastyanova T, Harmsen MC, Kzhyshkowska J (2019) Reactive oxygen species (ROS) in macrophage activation and function in diabetes. Immunobiology 224:242–253
- 212. Predmore BL, Lefer DJ, Gojon G (2012) Hydrogen sulfide in biochemistry and medicine. Antioxid Redox Signal 17:119–140
- 213. Grman M, Misak A, Jacob C, Tomaskova Z, Bertova A, Burkholz T, Docolomansky P, Habala L, Ondrias K (2013) Low molecular thiols, pH and O₂ modulate H₂S-induced S-nitrosoglutathione decomposition - •NO release. Gen Physiol Biophys 32:429–441
- 214. Tomaskova Z, Cacanyiova S, Benco A, Kristek F, Dugovicova L, Hrbac J, Ondrias K (2009) Lipids modulate H(2)S/HS(-) induced NO release from S-nitrosoglutathione. Biochem Biophys Res Commun 390:1241–1244
- 215. Nagy P, Winterbourn CC (2010) Rapid reaction of hydrogen sulfide with the neutrophil oxidant hypochlorous acid to generate polysulfides. Chem Res Toxicol 23:1541–1543
- 216. Al-Magableh MR, Kemp-Harper BK, Ng HH, Miller AA, Hart JL (2014) Hydrogen sulfide protects endothelial nitric oxide function under conditions of acute oxidative stress in vitro. Naunyn Schmiedeberg's Arch Pharmacol 387:67–74
- 217. Hoffmann H (1977) Kinetics and mechanism of oxidation of hydrogen sulfide by hydrogen peroxide in acidic solution. Environ Sci Technol 11:61–66
- 218. Lu M, Hua LF, Hu G, Bian JS (2008) Hydrogen sulfide protects astrocytes against H₂O₂-induced neural injury via enhancing glutamate uptake. Free Rad Biol Med 45:1705–1713
- 219. Whiteman M, Armstrong JS, Chu SH, Jia-Ling S, Wong BS, Cheung NS, Halliwell B, Moore PK (2004) The novel neuromodulator hydrogen sulfide: an endogenous peroxynitrite 'scavenger'? J Neurochem 90:765–768
- 220. Whiteman M, Cheung NS, Zhu YZ, Chu SH, Siau JL, Wong BS, Armstrong JS, Moore PK (2005) Hydrogen sulphide: a novel inhibitor of hypochlorous acidmediated oxidative damage in the brain? Biochem Biophys Res Commun 326:794–798
- 221. Olas B (2017) Hydrogen sulfide as a "double-faced" compound: one with pro- and antioxidant effect. Adv Clin Chem 78:187–196
- 222. Misak A, Kurakova L, Goffa E, Brezova V, Grman M, Ondriasova E, Chovanec M, Ondrias K (2019) Sulfide (Na₂S) and polysulfide (Na₂S₂) interacting with doxycycline produce/scavenge superoxide and hydroxyl radicals and induce/inhibit DNA cleavage. Molecules 24:E1148
- 223. Lee H, Lee D, Mariappan M, Feliers D, Ghosh-Choudhury G, Abboud H, Gorin Y, Kasinath S (2017) Hydrogen sulfide inhibits high glucoseinduced NADPH oxidase 4 expression and matrix increase by recruiting inducible nitric oxide synthase in kidney proximal tubular epithelial cells. J Biol Chem 292:5665–5675

- 224. Sun W, Liu F, Chen Y, Zhu YC (2012) Hydrogen sulfide decreases the levels of ROS by inhibiting mitochondrial complex IV and increasing SOD activities in cardiomyocytes under ischemia/reperfusion. Biochem Biophys Res Commun 421:164–169
- 225. Olson KR (2018) H₂S and polysulfide metabolism: conventional and unconventional pathways. Biochem Pharmacol 149:77–90
- 226. Misak A, Grman M, Bacova Z, Rezuchova I, Hudecova S, Ondriasova E, Krizanova O, Brezova V, Chovanec M, Ondrias K (2018) Polysulfides and products of H₂S/S-nitrosoglutathione in comparison to H₂S, glutathione and antioxidant Trolox are potent scavengers of superoxide anion radical and produce hydroxyl radical by decomposition of H2O2. Nitric Oxide 76:136–151
- 227. Olson KR, Gao Y, DeLeon ER, Arif M, Arif F, Arora N, Straub KD (2017) Catalase as a sulfidesulfur oxido-reductase: An ancient (and modern?) regulator of reactive sulfur species (RSS). Redox Biol 12:325–339
- 228. Olson KR, Gao Y (2019) Effects of inhibiting antioxidant pathways on cellular hydrogen sulfide and polysulfide metabolism. Free Radic Biol Med 135:1–14
- 229. Olson KR, Gao Y, Arif F, Arora K, Patel S, DeLeon ER, Sutton TR, Feelisch M, Cortese-Krott MM, Straub KD (2018) Metabolism of hydrogen sulfide (H₂S) and production of reactive sulfur species (RSS) by superoxide dismutase. Redox Biol 15:74–85
- 230. Panday A, Sahoo MK, Osorio D, Batra S (2015) NADPH oxidases: an overview from structure to innate immunity-associated pathologies. Cell Mol Immunol 12(1):5–23
- 231. Wenzel P, Kossmann S, Münzel T, Daiber A (2017) Redox regulation of cardiovascular inflammation -Immunomodulatory function of mitochondrial and Nox-derived reactive oxygen and nitrogen species. Free Radic Biol Med 109:48–60
- 232. Von Leden R, Yauger Y, Khayrullina G, Byrnes K (2017) Central nervous system injury and Nicotinamide adenine dinucleotide phosphate oxidase: oxidative stress and therapeutic targets. J Neurotrauma 34:755–764
- 233. Smallwood M, Nissim A, Knight A, Whiteman M, Haigh R, Winyard P (2018) Oxidative stress in autoimmune rheumatic diseases. Free Radic Biol Med 125:3–14
- 234. Baird L, Yamamoto M (2020) The molecular mechanisms regulating the KEAP1-NRF2 pathway. Mol Cell Biol 40(13):e00099. https://doi.org/10. 1128/MCB.00099-20
- 235. Ganster F, Burban M, de la Bourdonnaye M, Fizanne L, Douay O, Loufrani L, Mercat A, Calès P, Radermacher P, Henrion D, Asfar P, Meziani F (2010) Effects of hydrogen sulfide on hemodynamics, inflammatory response and oxidative stress during resuscitated hemorrhagic shock in rats. Crit Care 14:R165. https://doi.org/10.1186/cc9257

- 236. Francis RC, Vaporidi K, Bloch KD, Ichinose F, Zapol WM (2011) Protective and detrimental effects of sodium sulfide and hydrogen sulfide in murine ventilator-induced lung injury. Anesthesiology 115 (5):1012–1021
- 237. Li H, Zhang ZR, Zhang QX, Qin ZC, He DM, Chen JS (2013a) Treatment with exogenous hydrogen sulfide attenuates hyperoxia-induced acute lung injury in mice. Eur J Appl Physiol 113:1555–1563
- 238. Peake BF, Nicholson CK, Lambert JP, Hood RL, Amin H, Amin S, Calvert JW (2013) Hydrogen sulfide preconditions the db/db diabetic mouse heart against ischemia-reperfusion injury by activating Nrf2 signaling in an Erk-dependent manner. Am J Physiol Heart Circ Physiol 304:H1215–H1224
- 239. Shirozu K, Tokuda K, Marutani E, Lefer D, Wang R, Ichinose F (2014) Cystathionine γ-lyase deficiency protects mice from galactosamine/lipopolysaccharide-induced acute liver failure. Antioxid Redox Signal 20:204–216
- 240. Gambari L, Lisignoli G, Cattini L, Manferdini C, Facchini A, Grassi F (2014) Sodium hydrosulfide inhibits the differentiation of osteoclast progenitor cells via NRF2-dependent mechanism. Pharmacol Res 87:99–112
- 241. Zhou X, An G, Lu X (2015b) Hydrogen sulfide attenuates the development of diabetic cardiomyopathy. Clin Sci 128(5):325–335
- 242. Zhou X, Zhao L, Mao J, Huang J, Chen J (2015a) Antioxidant effects of hydrogen sulfide on left ventricular remodeling in smoking rats are mediated via PI3K/Akt-dependent activation of Nrf2. Toxicol Sci 144:197–203
- 243. Islam KN, Polhemus DJ, Donnarumma E, Brewster LP, Lefer DJ (2015) Hydrogen sulfide levels and nuclear factor-Erythroid 2-related factor 2 (NRF2) activity are attenuated in the setting of critical limb ischemia (CLI). J Am Heart Assoc 4(5):e001986
- 244. Lohninger L, Tomasova L, Praschberger M, Hintersteininger M, Erker T, Gmeiner BM, Laggner

H (2015) Hydrogen sulphide induces HIF-1 α and Nrf2 in THP-1 macrophages. Biochimie 112:187–195

- 245. Benedetti F, Curreli S, Krishnan S, Davinelli S, Cocchi F, Scapagnini G, Gallo RC, Zella D (2017) Anti-inflammatory effects of H₂S during acute bacterial infection: a review. J Transl Med 15:100
- 246. Hu X, Zeng W, You X, Ding W, Liu P, Chen L, Zeng Y, Zhu C (2020b) Exogenous hydrogen sulfide regulates *Mycoplasma pneumoniae* lipid-associated membrane proteins to induce expression of Heme Oxygenase-1 and Proinflammatory cytokines. Inflammation 43(3):847–856. https://doi.org/10. 1007/s10753-019-01170-3
- 247. Yang G, Zhao K, Ju Y, Mani S, Cao Q, Puukila S, Khaper N, Wu L, Wang R (2013) Hydrogen sulfide protects against cellular senescence via S-sulfhydration of Keap1 and activation of Nrf2. Antioxid Redox Signal 18:1906–1919
- 248. Guo C, Liang F, Shah Masood W, Yan X (2014) Hydrogen sulfide protected gastric epithelial cell from ischemia/reperfusion injury by Keap1 s-sulfhydration, MAPK dependent anti-apoptosis and NF-κB dependent anti-inflammation pathway. Eur J Pharmacol 725:70–78
- 249. Xie L, Feng H, Li S, Meng G, Liu S, Tang X, Ma Y, Han Y, Xiao Y, Gu Y, Shao Y, Park CM, Xian M, Huang Y, Ferro A, Wang R, Moore PK, Wang H, Ji Y (2016a) SIRT3 mediates the antioxidant effect of hydrogen sulfide in endothelial cells. Antioxid Redox Signal 24(6):329–343
- 250. Meng W, Pei Z, Feng Y, Zhao J, Chen Y, Shi W, Xu Q, Lin F, Sun M, Xiao K (2017) Neglected role of hydrogen sulfide in sulfur mustard poisoning: Keap1 S-sulfhydration and subsequent Nrf2 pathway activation. Sci Rep 7:9433
- 251. Tocmo R, Parkin K (2019) S-1-propenylmercaptocysteine protects murine hepatocytes against oxidative stress via persulfidation of Keap1 and activation of Nrf2. Free Radic Biol Med 143:164–175

Hydrogen Sulfide and its Interaction with Other Players in Inflammation

Sumeet Manandhar, Priyanka Sinha, Grace Ejiwale, and Madhav Bhatia

1 Introduction

Inflammation is a protective response of vascularized tissue to invading pathogens or endogenous signals, resulting in tissue destruction or injury. In broader context, inflammation is a host response to damaged cells or tissue injury to clear injurious stimuli and begin a healing process. Redness (rubor), swelling (tumor), pain (dolor), heat (calor) that result in loss of function (functio laesa) are the clinical ("cardinal") signs of inflammation [1, 2]. There is often a spontaneous and rapid host response to an injurious factor which is caused by elevated blood flow into damaged tissues, mainly from arteriolar (vascular) dilatation and opening of capillary beds. There is also an increase in the migration of leukocytes with increased adhesion of leukocytes to the vascular endothelium cells via adhesion molecules. Once at the site of injury/ infection, leukocytes ingest and attempt to destroy the pathogens, leading to the release of toxic residues and possibly tissue injury. These activities result in a series of biochemical mediators such as vasoactive amines and arachidonic acid [3]. In addition, ROS are activated in inflammation, including the release of proteases to fight against invading pathogens.

However, the activity of ROS and proteases has a deleterious effect on the surrounding tissue. A complex arrangement of chemokines and cytokines is released by both vascular endothelium and inflammatory cells, resulting in the regulation of lymphocyte function via activating (e.g., IL-4, IFN β , IL-2, and IFN α) or inhibiting (e.g., TGF- β and IL-10) the immune response. Additionally, there is activation of inflammatory cells or stimulation of hematopoiesis and leukocyte growth and differentiation by cytokines [3]. Physiological gaseous transmitters such as nitric oxide (NO), carbon monoxide (CO), and hydrogen sulfide (H₂S) have been proposed to be involved in these inflammatory processes [4].

Over many years, hydrogen sulfide (H₂S) has only been viewed as a poisonous gas, despite its existence in the atmosphere at low concentrations. According to Occupational Safety and Health Administration, its exposure limit is 20 parts per million (ppm) [5]. If exposure to H_2S is greater than 700 ppm, it can result in sudden death [5]. Numerous deaths and accidents caused by the exposure of high concentrations of H₂S have been reported. Various reports have identified cardiovascular, respiratory, metabolic, neurological outcomes as a result of high H₂S exposure. Crude petroleum, putrefying water, sewage plants, and hot springs are found to be the common sources of H₂S. Despite its lethal activity for centuries, H₂S can be synthesized endogenously to regulate both physiological and pathophysiological states in living organisms

S. Manandhar · P. Sinha · G. Ejiwale · M. Bhatia (⊠) Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand e-mail: madhav.bhatia@otago.ac.nz

[©] Springer Nature Singapore Pte Ltd. 2021

Y.-C. Zhu (ed.), *Advances in Hydrogen Sulfide Biology*, Advances in Experimental Medicine and Biology 1315, https://doi.org/10.1007/978-981-16-0991-6_6

than inflammation, it is also involved in oxidative stress, gut motility, ulcer healing, vascular tone, cryoprotection, neuromodulator, memory loss hormone secretion, apoptosis, and pancreatic β -cells (insulin secretion) [7, 8].

This review summarizes studies illustrating the importance of H_2S in inflammatory diseases (Fig. 1), the characteristics of H_2S , its activities with other inflammatory mediators, and interrelationship with other gasotransmitters. The evidence collected in recent years has clearly shown H₂S as an inflammatory mediator. However, according to some investigators, the specific activity of H₂S in inflammation is still ambiguous. We will also be illustrating brief insights about the ambiguous nature of H₂S according to different studies.

2 H₂S in Inflammatory Diseases

2.1 Sepsis

Sepsis is a life threatening and pathophysiological condition accompanied by systemic inflammatory response syndrome (SIRS) which is caused by a dysregulated host response to infection. Sepsis when followed by a minimum of one organ damage is identified as severe sepsis. Septic shock is the progressive condition of patients with sepsis which results in the underlying circulatory, metabolic and cellular abnormalities that are associated with higher mortality risk than sepsis alone [9–12]. As per the recommendations of the Society of Critical Care Medicine and the European Society of Intensive Care Medicine, the definitions of sepsis and septic shock have been updated [11]. Based on their recommendation, organ malfunction/dysfunction during sepsis can be categorized by the Sequential [Sepsisrelated] Organ Failure Assessment (SOFA) Score [13]. Despite advances in health care, sepsis remains a major health problem worldwide,

with reports on incidences rising. This is likely to reflect the aging population, increased rate of comorbidities that elevate susceptibility to infection, and growing numbers of immunocompromised patients like those suffering from malignancies, organ transplant, or HIV infection. Based on the survey data in the USA, sepsis incidence in 2003 was reported to be 359 per 100,000 population, which transforms into annual number of 535 cases per 100,000 population in 2009 (49% increase), with valuation costing above \$20 billion and 5.2% of the overall United States hospital expense in 2011 [13, 261]. Even though the correct statistics of the incidence is still unknown, conservative estimates reflect that sepsis is a major factor for mortality and critical illness worldwide and in-hospital mortality rate continues to be high at 25-30% [13]. Sepsis and its eventful progressive condition are the systemic response to infection caused by various inflammatory mediators, such as chemokines and cytokines.

H₂S has been proposed to promote inflammation in animal models of sepsis, such as that induced by cecal ligation puncture model (CLP) or lipopolysaccharide (LPS) in mice or rats. LPS-induced endotoxemia was employed in early studies to investigate the role of H₂S in sepsis. The significant elevation of H₂S plasma concentration, cystathionine y-lyase (CSE) activity, and CSE mRNA levels in kidney and liver tissue involved in elevated inflammatory response and multiple organ damage demonstrated excess production of endogenous H₂S [254]. CSE is predominant enzyme responsible the for H₂S-synthesis in the peripheral organs and vascular system [216]. The detailed biosynthesis of H₂S will be discussed in the biosynthesis section. Administration of sodium hydrogen sulfide (NaHS) aggravated endotoxemia, leading to multiple organ damage [254]. However, pretreatment with the CSE inhibitor DL-propargylglycine (PAG) resulted in inhibition of these symptoms. These results highlight that H_2S has pro-inflammatory activity in LPS-induced endotoxemia. Conversely, other studies have

reported anti-inflammatory roles of H_2S . Studies using slow H_2S -releasing donors GYY4137 (morpholin-4-ium-4-methoxyphenyl

Lawesson's (morpholino)phosphinodithioate), reagent, and S-diclofenac reportedly reduced leukocyte infiltration, cytokine and eicosanoid production, and NF-kB activation in an LPS-induced endotoxemia model [255, 259, 260]. To avoid the limitations of LPS-induced endotoxemia (it does not reflect the cytokine profile or hemodynamic alterations of human sepsis), another comprehensive mice model which portrays the clinical condition of sepsis has been used to study the inflammatory role of H_2S [14]. Various studies have used CLP-induced sepsis to demonstrate significant elevation in the expression of CSE and H₂S levels which are involved in leukocyte infiltration and organ injury. Liver H₂S synthesis and plasma levels were significantly elevated after 8 h in CLP-induced sepsis compared to sham operation. This model also showed significant increase in liver CSE mRNA expression. When used prophylactically and therapeutically, PAG significantly decreased sepsis-induced systemic inflammation, as reflected by reduced MPO activity and histological changes in liver and lungs, reducing mortality in CLP-induced sepsis. However, the administration of NaHS, an H₂S donor, resulted in the exacerbation of sepsis-

associated systemic inflammation. Attenuation of H₂S formation and administration of NaHS reveals that H₂S plays an important role in pro-inflammation to regulate the severity of sepsis and associated organ injury [14]. The mechanism of the involvement of H₂S in sepsis has been highlighted in several studies . For instance [15], PAG used as both a prophylactic and therapeutic agent showed significantly reduced mRNA and protein expression levels of IL-1 β , IL-6, TNF- α , MCP-1, and MIP-2 in liver and lungs, with declined nuclear translocation and activation of NF-kB. Furthermore, PAG caused significant reduction of lung permeability along with plasma alanine aminotransferase activity. However, administration of NaHS resulted in increased NF-κB activation and significant exacerbation of sepsis-associated systemic inflammation. In addition, BAY11-7082 (an inhibitor of NF-KB) also attenuated H₂S-induced inflammation in lungs. These studies reflect the role of H₂S in the increased production of pro-inflammatory mediators and aggravation of systemic inflammation in sepsis through a pathway involving NF-KB activation.

Another study [16] demonstrated H_2S -mediated inflammatory response through the regulation of extracellular signal related kinases (ERK) pathway in CLP-induced sepsis.

The silencing of CSE in macrophages via siRNA in CLP-induced sepsis revealed the activity of H₂S and macrophages in sepsis. Administration of siRNA inhibited inflammation in both liver and lungs in CLP-induced sepsis mice, as supported by the significant decrease in MPO activity, and expression of cytokine and chemokine levels. These findings demonstrated pro-inflammatory activity of H₂S synthesized via CSE in macrophages in sepsis and highlighted CSE gene silencing via siRNA as a novel therapeutic approach for sepsis. Furthermore [17], we have used CSE knockout mice to study CSE/H2S activity in sepsis-induced liver, lung injury, and inflammation. In this study, wild type CLP-induced mice demonstrated an increase in CSE expression, H₂S synthesis, MPO activity, and cytokines/chemokines levels, through activation of ERK1/2-NF-kB p65. However, in the CSE knockout mice, these were reversed, demonstrating the inhibition of inflammation. In a more recent study [18], we demonstrated the presence of LSEC damage in CLP-induced sepsis, as supported by the elevation in defenestration and gap formation. Several studies have highlighted LSEC defenestration formations as the key characteristic or even an early phenome non in the development of liver infection or inflammation. LSECs have been demonstrated to influence the pathogenesis of inflammatory disease by inducing recruitment of leukocytes through chemokines adhesion and molecules [262]. CSE knockout mice demonstrated reduced defenestration and gaps formation even in sepsis, suggesting that CSE/H₂S signaling plays a role in the regulation of the LSEC [18].

In contrast, studies have reported a protective effect of H_2S in CLP-induced sepsis. For example, the administration of H_2S donors (NaHS and Lawesson's reagent) has been shown to improve neutrophil migration and survival rate via a mechanism involving the activation of K_{ATP} channels in CLP-induced sepsis [19]. Furthermore, the administration of NaHS increased survival rates in mice by attenuation of the C/EBP homologous 10 (CHOP) in CLP-induced sepsis [20]. Depending on the model used, H₂S can play both pro-inflammatory and anti-inflammatory roles. In the CLP-induced sepsis mice model, gene deletion and pharmacological inhibition of H₂S has shown the pro-inflammatory effects of H₂S [48]. In contrast, models which have used the slow-release H₂S donors show anti-inflammatory effects of H₂S. H₂S has a bell-shaped biphasic dose response curve in which low and high concentrations show opposing effects. Low concentrations/slow H₂S releasing compounds are associated with antiinflammatory properties, whereas high concentrations show pro-inflammatory properties.

2.2 Acute Pancreatitis

Acute pancreatitis is an inflammatory disease with acute inflammation at a local site in the pancreas and is in some cases followed by systemic inflammatory response syndrome (SIRS) which leads to multiple organ failure. It is often secondary to excess alcohol consumption, biliary disease, or viral infections, with increasing incidence. In severe cases, the mortality rate can be up to 30–50% [21, 22]. There is auto-digestion of the pancreas, failure of microcirculation, and increase of free oxygen radicals secreted from the injured cells. The pathophysiology of acute pancreatitis is characterized by acinar cell injury and release of pro-inflammatory chemokines, cytokines, substance P. and gaseous transmitters [23].

 H_2S plays an important role in the pathophysiology of acute pancreatitis as evident with in vitro and preclinical studies [23–26]. Pancreatic acinar cells highly express both CBS and CSE [25] and pancreatic homogenates demonstrate H_2S synthesizing activity [27]. Endogenous H_2S has been shown to mediate the inflammatory response [27]. Mouse pancreas expresses CSE mRNA and plasma levels of H_2S increase upon induction of acute pancreatitis in mice [27]. When mice were treated with DL-propargylglycine (PAG), an irreversible inhibitor of CSE, the H_2S synthesizing activity of mouse pancreatic homogenates was attenuated [27]. Furthermore, prophylactic or therapeutic treatment of mice with PAG reduced disease severity [26]. This was evident from decreased acinar cell injury, myeloperoxidase (MPO) activity, and histological evidence [27].

Severe acute pancreatitis is associated with lung injury with increase in acinar cell injury and MPO activity [27]. This lung injury is mediated by accumulation of neutrophils. PAG treatment also protected mice against lung injury in severe acute pancreatitis [26]. CBS also plays an important role in acute pancreatitis pathogenesis and lung injury. Mice treated with caerulein produced H₂S and NH₃ in the pancreas and lungs [28]. Treatment of mice with aminooxyacetate, a reversible CBS inhibitor, reduced the synthesis of H_2S and NH_3 in the pancreas [28]. Thus, results from both pancreatic acinar cells and mice show that acute pancreatitis is associated with increased H₂S synthesis and inhibition of H₂S synthesis provides protection against the disease severity. The increase in H_2S synthesis is followed by release of pro-inflammatory cytokines TNF- α , IL-1 β , and IL-6, among others. Macrophage response in primary pancreatic acinar cells showed that several macrophage proteins, monocyte chemoattractant protein (MCP1), macrophage inflammatory protein MIP-1a and MIP-2 were increased upon exposure to caerulein [26]. Furthermore, PAG treatment reduced the CSE mRNA expression along with MCP-1, MIP-1a, and MIP2.

 H_2S acts through the activation of the transcriptional factor NF-κB and downstream pathways to induce a cascade of inflammatory genes [29]. In this study, H_2S activated the NF-κB pathway and increased phosphorylation of Src-family kinases in caerulein-treated pancreatic acinar cells [29]. Severe acute pancreatitis is associated with pancreatic acinar cell death which can be mediated through either apoptosis or necrosis [30]. Necrosis has been shown to positively correlate with the severity of acute pancreatitis [31]. Acute necrotizing pancreatitis is the most severe form with coagulation necrosis of the glandular cells and fat tissue. High mortality rate up to 20% has been seen in patients with pancreatic necrosis [32]. A necrosis–apoptosis imbalance has been proposed in acute pancreatitis and shifting this imbalance in favor of apoptosis could ameliorate the disease severity.

Necrosis is "accidental" cell death which is accompanied by a strong inflammatory response. Necrosis leads to the release of cellular contents which induces inflammation through the activation and infiltration of neutrophils. In a study of severe acute pancreatitis mice model treated with either exogenous H₂S (NaHS) or PAG, administration of exogenous H₂S worsened necrosis [32]. H_2S regulates the expression of apoptotic proteins to reduce apoptosis. H₂S increased the expression of Bcl-2 which inhibits apoptosis and reduced the expression of Bax protein which stimulates apoptosis. PAG, however, reduced the expression of Bcl-2 and increased the expression of Bax to promote apoptosis. Thus, inhibition of H₂S synthesis with PAG reduced necrosis and increased apoptosis, reducing the disease severity.

Another mechanism for the action of H_2S in the inflammatory response is through the autophagy pathway by activation of AMPK and inhibition of mTOR [33]. Impaired autophagy is a pathological response in acute pancreatitis [34]. There is accumulation of autophagic vacuoles and pre-mature activation of trypsinogen [35]. Autophagy in acini proceeds with the initiation of autophagosome and fusion of autophagosome with lysosome [36, 37]. The impairment in autophagy is worsened with the exogenous H_2S donor NaHS [33]. Mice with gene deletion of Atg5, involved in autophagic vesicle formation, is resistant to caeruleininduced acute pancreatitis [35]. This shows that the autophagy pathway is involved in the pathophysiology of acute pancreatitis and exogenous H_2S worsens it. This suggests that the toxic effects of H₂S are mediated through the autophagy pathway [38].

 H_2S is involved in regulation of intracellular energy metabolism [39]. Levels of HIF-1 α increase after 8-12 hours post-acute pancreatitis induction in mice [40]. HIF-1 α provides relief against the metabolic stress and promotes apoptosis over necrosis by reducing the translocation of NF-κB to nuclei. It prevents the increase in concentration of calcium and decreases the mitochondrial membrane potential which suppresses the glycolysis pathway. Most of the studies reveal the pro-inflammatory role of H₂S in acute pancreatitis; however, some studies suggest that H₂S also has anti-inflammatory effects in acute pancreatitis [41, 42]. These studies show that H₂S inhibits the NF-κB expression and decreases the pro-inflammatory cytokines, chemokines, and adhesion molecules production [43, 44]. It inhibits the synthesis of TNF-α in hemorrhagic shock-induced rats [45]. It also shows antiapoptotic activity [46, 47].

2.3 Lung Inflammation

 H_2S reportedly plays varying roles in different lung inflammatory diseases, including asthma and chronic obstructive pulmonary disease (COPD). The effect of the gasotransmitter differs depending on several factors: whether exposure is acute or long-term, and if endogenous or exogenous H_2S is being studied.

COPD is an inflammatory disease that is characterized by (partially reversible) progressive airflow and inflamed obstructed airways [49]. Although cigarette smoking is the main risk factor associated with COPD, other causes been identified have also [50]. While investigating the role of long-term (3–64 years) ambient exposure to H₂S on lung function, asthma, and COPD in Rotorua, a city located on a geothermal field in the Taupo Geothermal Zone of New Zealand, Bates et al. (2015) discovered no evidence of lung function decrement or increased asthma or COPD risk [51]. The results of the cross-sectional study differ from previous ecological studies which elucidated that there may be health risks associated with H₂S exposure in the city which is surrounded and filled with geysers, boiling water, and boiling mud pools. Previously, patients with stable COPD showed higher H₂S serum levels than healthy controls and those with acute exacerbation of COPD [50]. In contrast, CSE expression is decreased in the lung tissue of smokers (without COPD) and patients

with COPD compared to healthy patients. Although protein expression is lower, CSE mRNA expression is higher in patients who have COPD and patients who are smokers compared to healthy counterparts, even though there is no significant difference in H_2S levels in lung tissue in each group [52].

Cigarette smoke induces endoplasmic reticulum stress and endoplasmic reticulum stressinduced apoptosis [53], but exogenous H₂S inhibits this in bronchial epithelial cells and consequently prevents lung tissue damage in rat lung [54, 55]. While investigating the role of H_2S on the anti-inflammatory activity of theophylline, a non-selective phosphodiesterase inhibitor that is used to treat COPD, Chen et al. (2006) found no significant change in H₂S levels between patients treated with theophylline and those that were not, although theophylline-treated patients showed improved symptoms and reduced sputum neutrophils. Further studies are needed to elucidate the effect of H₂S on treatments for COPD and other lung diseases.

2.4 Joint Inflammation

Arthritis, the inflammation of one or more joints, is typically characterized by swelling due to fluid accumulation in the tissue surrounding the affected joints. There are different types of inflammatory arthritis; rheumatoid arthritis (RA), psoriatic arthritis (PsA), systemic lupus erythematosus (SLE, lupus), gout, and ankylosing spondylitis (AS). The role of H₂S has been studied in the different types of joint inflammation. Patients with RA and gout, two common forms of inflammatory arthritis, had significantly elevated levels of H₂S in the synovial fluid, compared to plasma H₂S levels, although plasma H₂S levels in patients with RA and gout were not significantly different to plasma levels in healthy counterparts [56]. This indicates an elevation in H₂S levels at the inflammatory site, the joint, but not systemically. This may be important therapeutically, as H₂S could be targeted specifically to mediate local inflammation. Furthermore, no correlation was found between H₂S plasma levels and disease activity in patients with RA and gout. However, a correlation was identified between synovial fluid H_2S levels and disease activity in RA patients [56].

In an older study [57], carrageenan was administered via intra-plantar (i.p) injection to rats to trigger inflammatory hind-paw edema formation. This caused an increase in the H_2S synthesizing enzyme activity, but pretreatment with DL-propargylglycine (PAG), a CSE irreversible inhibitor, significantly reduced inflammation in a dose-dependent manner. Although this study was able to show that H_2S is involved in intra-plantar carrageenan-induced hind-paw edema, the underlying molecular mechanism has not yet been established.

Other studies looking at the role of H_2S in inflamed joints have indicated conflicting results, with some implicating H_2S as an antiinflammatory molecule [58, 59] and another confirming its pro-inflammatory activity [60].

2.5 Cardiovascular Inflammation

Cardiovascular (or heart) diseases are the leading cause of mortality and morbidity worldwide. They are typically multifaceted and are caused by varying disorders of the heart and its circulation, which results in immense health and economic burden. H₂S has pathogenic significance in several cardiovascular diseases including myocardial ischemia/reperfusion injury and atherosclerosis. Inflammation was shown to be a prominent hallmark of these cardiovascular diseases [64, 75].

Myocardial ischemia/reperfusion injury is a major cause of tissue destruction that often results in heart failure [61]. Ischemia, insufficient blood flow to an organ or area of the body, particularly heart muscles, is prevalent in heart diseases like myocardial infarction [62]. Re-establishing coronary blood flow using reperfusion techniques is critical to save viable myocardium [63]. While reperfusion relieves ischemia, it involves complex inflammatory processes and oxidative damage that can injure ischemic myocardial tissue and cause cardiomyocyte death, hence the term "reperfusion injury" [64]. H_2S has been demonstrated to play a role in myocardial ischemia/reperfusion injury.

Pre-conditioning (administration of H_2S before the onset of ischemia) [65-67] and postconditioning (administration of H₂S during reperfusion) [68, 69] have been investigated, and H_2S has been shown to play a role in reducing infarct size in myocardial ischemia/reperfusion injury [70, 71]. Administration of H₂S before reperfusion in a rat hemorrhagic shock model was found to protect against the effects of hemorrhage induced ischemia/reperfusion by reducing inflammatory cytokines and the expression of iNOS as well as by upregulating the Akt/eNOS pathway [72]. This same effect was not observed when H₂S was given post-perfusion, indicating that the timing of administration of exogenous H₂S is important [72]. Furthermore, regulating endogenous H₂S by cardiac-specific overexpression of CSE reduced the extent of injury [73].

Atherosclerosis is an inflammatory condition that is crucial in the underlying pathology of cardiovascular diseases such as coronary artery disease and ischemic gangrene, as well as heart failure and stroke [74, 75]. The presence of plaques and lesions is linked to the morbidity mortality the and related to condition [76]. These lesions are termed complicated when they are infiltrated with red blood cells which lyse and release hemoglobin [75]. Hemoglobin can react with plaque lipids to form covalently cross-linked, oxidized hemoglobin species that exert varying pro-oxidant and pro-inflammatory effects from sensitizing vascular endothelial cells to lipid peroxidation [77-79]. Sulfide prevents oxidative formation of hemoglobin cross-links demonstrates and cytoprotective effects by mediating the reduction of ferrylHb (an oxidized hemoglobin species) [80]. Chemically, H_2S is a reductant that is capable of reducing lipid hydroperoxide in complicated lesions with hemorrhage [81]. Elevated CSE expression is proposed to have a atheroprotective effect; the subsequent H₂S produced inhibits the creation of pro-oxidant and pro-inflammatory lipid mediators, cross-linked
hemoglobin species, and downstream endothelial response [80].

The expression of chemokines (CCL2, CX3CL1, and CCL5) and their receptors (CCR2, CX3CR1, and CCR5) have been shown to be crucial in the development of atherosclerotic lesions [82, 83]. H_2S can protect against the formation of atherosclerotic lesions in mice and prestimulated vent CX3CR1 expression on macrophages via peroxisome proliferatorsactivated receptor-y pathway as well as CX3CL1 downregulate expression by suppressing NF- κ B activation [84].

2.6 Hemorrhagic Shock

Hemorrhagic shock describes the process of the body shutting down due to excessive blood loss. Reduced tissue perfusion results in insufficient delivery of oxygen and other essential nutrients that are essential for cellular function. Hemorrhagic shock is considered the second leading cause of death in trauma patients. Van de Louw and Haouzi (2012) [85] used a urethane anesthetized rat model (a lethal model) to determine whether H₂S increases during hemorrhagic shock associated with O₂ deficit and found that blood H₂S did not increase in untreated hemorrhagic shock. However, when treated with hydroxocobalamin (cobalt), there was no improvement in survival observed, even though cobalt was able to increase the ability of blood and kidneys to oxidize exogenous H₂S in vitro. The authors suggest that this could imply that blood levels of H₂S cannot be used as a marker for hemorrhagic shock.

Alternatively, a trauma-hemorrhagic shock and resuscitation model revealed that intraperitoneal administration of exogenous H_2S (NaHS) preserved organs by maintaining intracellular balance and improved survival rate. A significant decrease was also seen in oxidative stress in the rats treated with NaHS, suggesting H_2S may have oxidative effects in hemorrhagic shock [86].

Finally, inhibitors of CSE preventing the synthesis of H_2S partially restored mean arterial blood pressure and heart rate after hemorrhagic shock in anesthetized rats, indicating that endogenous H_2S plays a role in hypotension observed in hemorrhagic shock [87]. As this effect was only seen 60 minutes after blood withdrawal, the effect of H_2S may not be immediate, but H_2S may be involved in the later stages of hemorrhagic shock.

2.7 Intestinal Inflammation

Contrasting evidence is available regarding the role of H_2S in intestinal inflammation. It shows either pro-inflammatory or anti-inflammatory effects based on the model used, endogenous vs exogenous source of H_2S , slow-release vs fast H_2S donors for the bioavailability, and the route of administration [88].

 H_2S is synthesized in the colonic tissue mainly by CBS and CSE enzymes. CSE is mainly expressed in the stomach, whereas CBS is expressed in colon [89]. H₂S causes vasodilation of ileum smooth muscles to increase colonic secretion [90, 91] and has been shown to protect rats from ischemia-reperfusion injury [92]. High levels of H₂S have been found in inflammatory bowel disease and colorectal cancer [93]. NaHS, a fast-release H₂S donor, showed concentrationdependent cell proliferation up to 200 µM, whereas higher levels of 1000µM showed opposite effects and inhibited cellular proliferation in HCT116 and SW480 cells [94]. This effect of H₂S is ascribed to its bell-shaped biphasic dose response curve. Whether H₂S will produce a stimulatory or inhibitory effect depends on the rate of H₂S synthesis, slow vs fast-release donors used, and concentration of the donor relative to the endogenous H_2S production [93]. It has been suggested that H₂S donors with different rates of H₂S production can have a both quantitative and qualitative variance in effects.

Ulcerative colitis is mucosal inflammation of the colon with extensive damage to the epithelium layer. Neutrophils and eosinophils accumulate at the site of inflammation with crypt abscesses. H_2S has been suggested to play a role in etiology of ulcerative colitis. Increased fecal H_2S levels have been seen in patients and therapeutic reduction of sulfide levels provided relief from ulcerative colitis [95, 96]. Sulfatereducing bacteria (SRB) in the colon uses shortchain fatty acids, alcohols, and hydrogen as substrates to reduce sulfur-containing amino acids. These gram-negative obligate are anaerobes that colonize the gastrointestinal tract. Some studies show that SRB can be genotoxic to gut epithelium [97], whereas other studies report the cytoprotective effects of SRB [98, 99]. SRB is responsible for the endogenous H₂S production in colonic tissues.

Intestinal inflammation is characterized by disruption of the intestinal homeostasis and immune tolerance [100]. Mice models of colitis and human studies show chronic intestinal inflammation [101]. When the intestinal epithelial gets damaged, the immune cells are exposed to high levels of microbes and their metabolites. Increased populations of SRB have been reported in the intestines of patients with ulcerative colitis and inflammatory bowel disease [95, 96, 100]. SRB interacts with the intestinal epithelial cells and synthesizes high levels of H₂S to damage the epithelium [100]. SRB form a biofilm on the mucosal epithelium and the high levels of H_2S cause mucolysis and mucus layer degradation, followed by apoptosis and inflammation.

2.8 Burn Injuries

Burn injuries are associated with a heightened inflammatory response. Activation and infiltration of neutrophils and polymorphonuclear cell trafficking lead to the tissue injury associated with burns [102]. Depending upon the percentage of burns, studies have shown either antiinflammatory or pro-inflammatory effects of H_2S . In early stages of burn injury, H_2S shows pro-inflammatory effects, whereas later stages of burn injury are associated with anti-inflammatory and wound-healing effects [103]. Both CBS and CSE gene deletion show a beneficial effect in mice models with burn injury. In both mice and patients with burn injury, circulating plasma levels of H_2S were increased. Severe burns, with more than 25% of full body burn injury, are associated with SIRS, sepsis, and multi-organ failure [103]. Severe burns are associated with increase in liver H₂S synthesizing activity, CSE mRNA expression in liver and lungs, and increased MPO activity showing lung injury [104]. PAG treatment reduced the plasma H₂S levels and CSE mRNA expression in the liver and lungs. Administration of exogenous NaHS at induction of burn injury worsens the severity of burn injury. NaHS activates NF- κ B expression in the liver and lungs which heightens the inflammatory response. This suggests that H₂S plays an important role in the pathogenesis of burn injury.

 H_2S can also activate the MAPK pathway in the cultured skin macrophages of burned rats [105]. The mRNA and protein levels of ERK1/ 2, p38, and JNK1/2 were increased. Application of a topical MAPK inhibitor reduced the inflammation in burn injury [106]. An optimum effect was achieved with immediate application with reduction in plasma levels of IL-6 and MIP-2 and dermal expression of IL-6, MIP-2, and IL-1 β .

2.9 Neuroinflammation

Several studies have reported that H₂S can protect against neuroinflammation. Physiological levels of H₂S induce hippocampal long-term potentiation through NMDA-receptor mediated increase in K_{ATP} channel currents [107–109]. It also regulates the synaptic activity of neurons and glia by increase of intracellular Ca²⁺ ion concentration [110]. H_2S has been shown to be associated with cognitive processes such as learning and memory in humans and mice models. A decrease in the expression of CBS in the hippocampus of rats resulted in learning and memory defects [111]. It has been suggested that H₂S deficits could be associated with memory impairment in Schizophrenia patients [112]. Furthermore, decreased CBS activity and reduced H₂S synthesis in Alzheimer's disease patients may be responsible for the cognitive decline. Reduced plasma levels of H₂S were observed in patients with cerebrovascular disease, vascular dementia, and Alzheimer's disease [113]. Administration of NaHS could ameliorate the learning and memory deficits in rats by decreasing apoptosis in hippocampal CA1 region [114].

Studies using cultured microglia and astrocytes show that H₂S has an endogenous anti-inflammatory role [115, 116]. The NLRP3 inflammasome is activated in response to intracerats rebral hemorrhage in which can downregulate endogenous H₂S generation in brain [117]. Treatment with H_2S donors or CBS-specific antagonist attenuated this response by suppressing the P2X7 receptor. Methamphetamine-induced inflammation in rats resulted in oxidative stress through free radical generation and apoptotic cascades and an increase in pro-inflammatory cytokines such as TNF- α , IL-1b, and IL-6 [118]. In this model, hippocampal neurons were protected against neurotoxicity by H₂S through inhibition of apoptosis and neuroinflammation. Regulation of several signaling pathways such as the MAPK pathway, PI3k/ Akt signaling, and NF-kB pathway has been proposed to mediate the mechanism of action of H₂S in neuroinflammation [119].

3 H₂S in Vasodilation

Although vasodilation in inflammation has been under-studied, it is considered to have an important part in the progression of acute inflammation, as local blood flow influences the amount of exudate produced [120, 121]. Several mediators, such as histamine, and various eicosanoids, have been shown to regulate blood flow. However, the mechanisms involved are not well understood [121]. Critical drop in blood pressure also has a role in the failure and dysfunction of vital organs, leading to systemic inflammatory response such as sepsis and endotoxemia. In addition, reports have indicated that gasotransmitters, mainly H_2S , have vasodilating properties that can be biochemically associated with the alteration of several ion channels. H₂S directly targets ATP-sensitive potassium, resulting in a H₂S-dependent activation [122] (Fig. 2). This role of H_2S in K_{ATP} channels has been shown in the nervous,

cardiovascular, respiratory, and gastrointestinal systems [123-128]. The stimulation of KATP channels by H₂S can result in cysteine alteration of several channels' subunits like the sulfonylurea receptor 1, sulfonylurea receptor 2B, and the pore-forming protein, Kir6.1. Furthermore, it results in the elevation of channel amplitude and current eventually causing overall channel activation and hyperpolarization of membrane. In terms of Kir6.1 cysteine was clearly demonstrated to form a persulfide under H₂S influence which mediates its activity [129]. The use of biotin switch technique has suggested the persulfide formation of SUR2B [130]; however, the specific residue by H₂S has not been recognized till now [131]. This method involves the utilization of methanethiosulfonate (MMTS) to inhibit thiols before synthesis of persulfides. However MMTS also inhibits hydropersulfides and may cause an issue with the outcome of this experimental setting [132]. The cysteine position at Cys6 and Cys26 of SUR1 is affected by H_2S [133]. It is probable that these cysteines are converted to persulfides, but until now it has not been experimentally proven. Apart from KATP channels, small and intermediate -conductance K_{Ca} channels (IK_{Ca}, SK_{Ca}) are stimulated by H₂S [134] and in terms of IK_{Ca} a formation of persulfide has been exhibited. Even though the direct effect of H_2S on SK_{Ca} channels has not been assured so far, the expression of SK_{ca} 2.3 was increased by H₂S and inhibited by the deletion of the CSE gene. This highlights the strong influence of H_2S in channel activity, showing H_2S is highly influential in the endothelium derived hyperpolarizing factor (EDHF) [129].

Further regulation of channel activity of H_2S has been demonstrated for Cav1.2 L-type and CAV3.2 T-type voltage dependent calcium channels [135–138] even though the activity seemed to be cell or tissue type specific as shown by opposing results. Recent studies also directed channel activity alterations in dependence of H_2S regarding BK_{Ca} channels [94, 139, 140], TRPA1 [141] and TRPV1 [142], voltage-gated sodium (Na_V1.5) channels, and chloride channels. In addition, H_2S has also been seen to mediate vasorelaxation through the

activation of TRPV 4 induced Ca^{2+} influx and eBK channel activation within EC [143]. Even though H₂S has been shown to act in the persulfide formation, detailed investigations have not been done; therefore, more studies should be performed to answer this question. Furthermore, H₂S non-selectively attenuates phosphodiesterases as demonstrated by Bucci et al. and others [144, 145] resulting in elevated cGMP levels and vasodilation (Fig. 2).

4 H₂S and Reactive Oxidant Species (ROS)

ROS are generally characterized as partially reduced metabolites of oxygen which have

powerful oxidizing capabilities. These are harmful to cells at higher concentrations but mediate signaling pathways at lower concentrations. ROS oxidize proteins and lipids which alter cellular composition and damage DNA. At physiological concentrations, ROS act as signaling molecules which regulate cell growth, differentiation, apoptosis, and senescence. Chronic ROS production is associated with the progression of inflammatory disease [258].

 H_2S acts as an antioxidant in neuroblastoma SH-SY5Y cells by blocking peroxynitriteinduced tyrosine nitration and cytotoxicity along with hypochlorous acid protein oxidation [146, 147]. In addition, H_2S reduces homocysteine resulting in lipid peroxidation [148] in plasma and kidneys and myocardial ischemia reperfusion injury [149, 150]. This demonstrates the protective effects against ROS and reactive nitrogen species (RNS)-mediated damage of proteins and membranes. It is an unusual mechanism for H₂S to directly scavenge for oxidants. Although H₂S can react directly with ROS with the reaction kinetic [151], its endogenous concentration is very low, enabling H₂S to function as an antioxi-[152–154]. dant However, H_2S has а cytoprotective effect at the cellular level by increasing glutathione (GSH) production through activation of cystine/cysteine transporters and GSH redistribution to mitochondria [155–158] (Fig. 3). H_2S also elevates the expression of nuclear transcription factor Nrf2, resulting in increased expression of GSH-producing genes, GSH synthesis and distribution [159, 160] (Fig. 3a). Furthermore, H_2S inhibits the catabolism of GSH to normalize intracellular GSH [6]. As GSH influences many inflammatory diseases such as chronic kidney disease [161], sepsis [158], and chronic obstructive pulmonary disease [162] it suggests that the antiinflammatory effects of H₂S are mediated through regulation of cellular GSH.

Apart from the antioxidant effects of H₂S, its role as a pro-oxidant has also been reported. H₂S can induce ROS production and result in cell death [162, 163]. Cytochrome P450 inhibitors such as cimetidine and benzylimidazole have been shown to reduce the production of H_2S -induced ROS (Fig. 3b). In another study, the antioxidant activity of GSH was depleted by NaHS in isolated hepatocytes (Fig. 3b) which could be prevented with antioxidant enzymes and ferric chelators [164]. H₂S also inhibits catalase activity by heme binding [165]. The exposure of the H₂S to non-transformed intestinal epithelial cells (IEC-18) increased the NADPH/ NADP ratio, decreased intracellular redox environment, and suppressed mitochondrial respiratory activity [166]. The increased oxidative stress by H₂S caused genomic DNA damage in HT29-Cl.16E cells and Chinese hamster ovaries [167-169] (Fig. 3b).

5 The Role of Adhesion Molecules and Leukocyte Infiltration

Inflammation is predominantly influenced by adhesion molecules like selectin, integrin, and immunoglobulins which are important in mediating the infiltration of leukocytes from the bloodstream to the inflammatory site. Following endothelial cell activation, the expression of these cell adhesion molecules is upregulated by various chemokines and cytokines. This activation promotes the interaction of endothelial cells with leukocytes. Selectins are involved in the initial interaction of activated endothelial cells and leukocytes, while integrin and IG superfamily CAM are involved in the firm adhesion of the cells and subsequent steps [170]. Several studies have highlighted the role of H₂S as the amplification precursor for these processes. In caeruleintreated pancreatic acinar cells, H₂S elevated the expression of intercellular adhesion molecules ICAM-1 and neutrophil adhesion via nuclear factor (NF-kB) and SRC-family kinase pathway. In this study, H₂S increased the expression of ICAM-1 in caerulein-stimulated pancreatic acini via SFK family phosphorylation. Attenuation of SFKs inhibited H₂S-induced ICAM-1 expression, via the inhibition of NF-kB activation. This effect of SFK attenuation on NF-kB activation happens simultaneously with $I\kappa B\alpha$ degradation [29]. Furthermore, H₂S-treated acinar cells showed increased neutrophil attachment, and inhibition of SFK reduced the neutrophil attachment [29]. In sepsis model, endogenous H_2S elevated leukocyte rolling and attachment in mesenteric venules with increase in mRNA and protein expression of adhesion molecules (ICAM-1, E-selectin, and P-selectin) in the liver and lungs and PAG treatment attenuated these activities. Similarly, exogenous H₂S increased leukocyte rolling and adherence, including the tissue level expression of adhesion molecules [16]. Administration of NaHS in normal mice led to lung inflammation, increasing the expression of adhesion molecules and neutrophil uptake in the lungs. These changes were inhibited by

Fig. 3 H_2S role in reactive oxygen species. A) H_2S protects cells by increasing the role of cysteine/cysteine transporters resulting in increased GSH synthesis. In addition, H_2S elevates the expression of nuclear transcription factor Nrf2, resulting in increased expression of

pretreatment with BAY 11-7082, a NF- κ B inhibitor. Furthermore, chemokine CXCR2 was upregulated in neutrophils in mice treated with H₂S with increased MIP-2-induced translocation of neutrophils. Therefore, H₂S regulates the infiltration of leukocyte by modulating the expression level of adhesion molecules during the inflammatory response [16] (Fig. 4).

On the contrary, H₂S inhibited leukocyteendothelial adhesion in rat models when treated with H₂S donors and non-selective inhibitors of CBS and CSE [171]. H_2S downregulated the ICAM-1 expression in endothelial cells exposed to high glucose induced vascular damage. Wang et al. showed H₂S mediated attenuation of ICAM-1 expression in both in vivo and in vitro models, exerting its antiatherogenic effect. In another study, S-propargyl-cysteine (hydrogen sulfide donor) inhibited the activity of TNF- α in endothelial cells inhibiting JNK12/NF-κB activation and adhesion molecules expression. Similarly, H₂S attenuated expression of ICAM-1 and VCAM-1 (Fig. 4) via the upregulation of heme oxygenase 1 and inhibition of NF-κB pathway [172, 173]. In atherosclerosis mouse model, H_2S

glutathione producing genes and elevated glutathione synthesis. B) H_2S donor NaHS reduces the antioxidant activity of glutathione. Furthermore, H_2S enhances oxidative stress causing DNA damage. In addition, CYP45-inhibitor (red sphere) inhibits H_2S induced ROS formation

demonstrated protection of vascular tissues from atherogenic damage by reducing vessel intimal proliferation and attenuating adhesion molecule expression. Another pivotal anti-inflammatory protein that is involved in the reduction of leukocyte adherence is annexin A1 (AnxA1). It is synthesized and released via neutrophils to induce the termination of the inflammatory response. A study showed a possible relationship between H₂S and AnxA1 wherein Anxa1 wild type mice administered with NaHS showed decreased leukocyte adhesion and migration in inflamed microcirculation, which was not detected in AnaA1 KO mice [174].

6 H₂S and Neurogenic Inflammation

Substance P is a large protein that is synthesized in the ribosome and is widely distributed in the central and peripheral nervous system of vertebrates [175]. In mammals, the preprotachykinin-A (PPT-A) gene encodes substance P. Substance P exerts its biological activity

Fig.4 Hydrogen sulfide role in the activity of adhesion molecules and leucocyte recruitment. H₂S induces both increased and reduced expression of adhesion molecules,

via neurokinin G protein-coupled receptors, neurokinin receptor namely 1 (NK-1R), neurokinin 2 receptor (NK-2R), and neurokinin 3 receptor (NK-3R) [176]. Transient receptor potential vanilloid 1 (TRPV1) is a non-selective cation channel that participates in pain and neurogenic inflammation. Its activation results in the release of neuropeptides, such as substance P from both peripheral and central neuron terminals. Substance P regulates behavioral activity, neural degeneration and survival, respiratory and cardiovascular functions, as well as triggering the emetic reflex [175]. In the central nervous system, substance P acts as a neurotransmitter of pain information and regulates autonomic reflexes. The pathophysiological role in inflammation was demonstrated by abnormal levels of substance P, substance P-nerve fibers, and NK-1R in the inflammatory diseases. This is supported by the positive effect of NK-1R-/- and NK-1R antagonists in inflammatory animal models [177]. Although there is numerous evidence that substance P has a neuropeptide origin, animal studies have shown its production via inflammatory cells, namely lymphocytes, eosinophils,

which are responsible for migration of leukocytes through the sub-endothelial space

macrophages, and dendritic cells [178–181]. Substance P facilitates the release of oxygen radicals, cytokines, arachidonic acid derivatives, and histamine which cause tissue damage. This is followed by leukocyte infiltration, thereby elevating the inflammatory response [182]. Substance P also evokes local vasodilation, which affects vascular permeability, resulting in the translocation and aggregation of leukocytes to tissue [183]. Substance P elicits an influx of eosinophils and neutrophils in the human dermis which upregulates both P-selectin and E-selectin [184].

H₂S has been demonstrated to influence substance P in various inflammatory diseases. The interrelationship of H₂S and substance P was examined in a study where pre- or post-treatment of PAG significantly reduced PPT-A gene expression, subsequently decreasing substance P synthesis in the lungs. However, exposure to NaHS led to further elevation of substance P in sepsis. PPT-A gene silencing and pretreatment of NK-1R antagonist L703606 inhibited H_2S from exacerbating lung inflammation. Furthermore, septic mice with PPT-A gene deletion or that were pretreated with L703606 did not show further elevation in lung permeability after exposure to NaHS [185]. Therefore, this study highlighted that H_2S upregulates the production of substance P, which aggravates lung injury and lung inflammation through NK-1R pathway activation.

In another study, H_2S was involved in systemic inflammation and consequently caused multiple organ damage, a feature of sepsis, through TRPV1-induced neurogenic inflammation [186]. Administration of TRPV1 antagonist, capsazepine, 30 minutes before CLP procedure significantly inhibited systemic inflammation and multiple organ damage caused by sepsis, as demonstrated by decreased liver and lung MPO activation and histological data supporting reduced pulmonary and hepatic injury. In addition, capsazepine reduced sepsis-mediated mortality. Subcutaneous injection of NaHS enhanced aggravation of CLP-induced mortality but capsazepine reversed these detrimental effects. In the presence of PAG, capsazepine had no significant effect on hepatic CSE activity and plasma H₂S level when compared with PAG-induced inhibition of systemic inflammation and multiple organ damage in sepsis. This suggested that capsazepine is not involved in endogenous H₂S production, implying that H₂S is an upstream pathway for the TRPV1 activation and can have a major role in controlling the production and release of neuropeptides in sepsis (Fig. 5). This result was the first report of H₂S-mediated systemic inflammation and multiple organ damage via TRPV1-induced neurogenic inflammation during sepsis [186]. Similarly, in another study [187], SP was generated by H_2S -mediated neurogenic inflammation during sepsis via TRPV1 activation. The capsazepine-treated group showed significant inhibition of pulmonary and circulating levels of substance P in a CLP sepsis mouse model. Capsazepine also attenuated NaHS-induced substance P activation, but there was no significant effect of PAG on substance P levels in both lung and plasma. In addition, capsazepine significantly inhibited the levels of H₂S-mediated inflammatory chemokines, cytokines, and adhesion molecules and protected against liver and lung injury in sepsis. However, in the absence of H₂S, capsazepine had no significant effect on the PAG-induced inhibition of sepsis-related inflammatory response. In addition, capsazepine strongly attenuated phosphorylation of IkBa and ERK1/2 and inhibition of NF-kB signaling, even in the presence of NaHS. Concapsazepine not influence versely, did PAG-induced attenuation in the sepsis model. As a whole, this study directed that H₂S activates the TRPV1 channel, causing an increase in substance P production and inducing ERK-NF-kB signaling in neurogenic inflammation (Fig. 5). H₂S has been shown to stimulate prostaglandin E metabolite and cyclooxygenase-2 in sepsisinduced acute lung injury through TRPV-1 channel activation. In this study, NaHS treatment in the CLP mouse model resulted in the significant overproduction of COX-2 and PGEM in the lungs [187]. The administration of NaHS as an exogenous H_2S donor, as well as the attenuation of endogenous H_2S production with PAG demonstrated the significance of H₂S in the overproduction of COX-2 and PGEM in sepsis. Capsazepine treatment showed the effect of H₂S in COX-2 and PGEM upregulation in sepsis via TRPV1 channel [188]. Inhibition of TRPV1 with capsazepine resulted in the inhibition of H₂S-induced COX-2 and PGEM production. However, no significant change was observed with PAG-induced inhibition in both inflammatory agents in septic lungs, indicating that H₂S regulates the sensory neurogenic agents during sepsis in a complementary manner with TRPV1. Overall, this demonstrates that H₂S increases the expression of COX-2 and PGEM which regulate the neurogenic inflammatory response through activation of TRPV1, resulting in lung inflammation and injury in CLP-induced polymicrobial sepsis [188].

As in sepsis, substance P plays a key role in inflammation in acute pancreatitis [189–199]. Substance P induced chemokine production in pancreatic acini cells by stimulating the inflammatory response [200–202]. Substance P also enhanced chemokine production in neutrophils and macrophages, key inflammatory mediators [203–206].

Fig.5 H_2S interrelationship with substance P. Substance P is activated by the H_2S upregulation via TRPV1 channel. Substance P induced via NK-1R plays a vital role in inflammation. Substance P/NK-1R induces increase in

Both prophylactic and therapeutic use of PAG in caerulein-mediated acute pancreatitis showed significant attenuation in substance P levels in plasma, lung, and pancreas [207]. A significant decrease was observed in the PPT-A mRNA level and NK-1R mRNA level in both the lung and pancreas, which has been demonstrated to protect against acute pancreatitis and associated lung injury. The elevated production of SP and increased expression of NK-1R in both the pancreas and lungs aggravated inflammation and tissue damage in both organs as supported by myeloperoxidase activity, hyperamylasemia, and histological analysis of the tissue injury. Although no evidence of increased pulmonary

chemokines/cytokines and adhesion molecules expression depends on the activation of ERK1/2 mediated NF- κ B signaling

H₂S synthesizing activity was observed in the caerulein group in an acute pancreatitis model, increased pancreatic H₂S synthesizing activity resulted in increased plasma H₂S which can increase both PPT-A and NK-1R mRNA expression and eventually increase substance P production. in the lung [207]. These results demonstrated the influence of H₂S in the inflammatory response regulated via SP/NK-1R pathway during acute pancreatitis. Similarly, in another study, the inhibition of endogenous H₂S synthesis with PAG significantly attenuated caerulein-mediated elevation of substance P production and expression of PPT-A and NK-1R expression in isolated pancreatic acini cells [25]. To show the direct influence of H_2S -mediated inflammation in acinar cells, NaHS treatment significantly upregulated substance P synthesis, PPT-A expression, and NK-1R expression. Furthermore, knockdown of the PPT-A gene and inhibition of H₂S production have resulted in decreased expression of TLR4 in acute pancreatitis, which may imply the interaction between SP/H₂S is via TLR4 and NF-κB signaling pathways. Recently, H₂S and SP levels were studied in patients with sepsis [208]. This study demonstrated that both circulating levels of H₂S and substance P were significantly increased in septic patients. The increase in H₂S subsequently regulated SP levels, demonstrating that H₂S is involved upstream of SP in the pathological process of inflammatory diseases in animal models [208] (Fig. 5).

The interrelation of CSE/H₂S with SP and NK-1R in modulating LSEC fenestrations in CLP-induced sepsis has been investigated. CSE knockout (KO) mice reversed liver sieve defenestration and gap formation in LSECs by decreasing SP/NK-1R signaling in CLP-induced sepsis [209]. CLP-induced sepsis elevated liver CSE and H₂S production and plasma H₂S levels, which increased SP levels in the liver, lungs, and plasma, and also increased NK-1R levels in both liver and lungs. In contrast, CSE KO mice resulted in decreased sepsis-induced SP production and NK-1R levels in the liver, lung, and plasma, demonstrating H₂S synthesized via CSE regulates the SP/NK-1R signaling pathway in sepsis. In addition, PPT-A KO mice prevented defenestration and gap formation in LSECs induced by sepsis, as suggested by the preservation of the fenestration and small number of gaps [209].

7 H_2S , NO, and CO.

7.1 Biosynthesis

Recent studies suggest that H_2S , NO, and CO work synergistically and are equally important. There is significant evidence that the gasotransmitters interact in ways that affect each other's biosynthesis, activity, and biological response [210]. The biosynthesis and interrelationship of the three gases in inflammation will be further discussed.

Endogenous H₂S is synthesized via enzymatic pathways and non-enzymatic (labile) sources. Cystathionine-γ-lyase (CSE), cystathionine- β -synthase (CBS), and 3-mercaptopyruvate sulfurtransferase (3-MST) are the three mammalian enzymes known to generate hydrogen sulfide from sulfur amino acids, namely homocysteine and L-cysteine [4]. The tissue distribution and expression levels of these enzymes varies between locations, particularly where the enzymes are jointly expressed [211]. For example, while it is known that the kidney and liver express all three at high levels, there is 60-fold expression of CSE compared to 20-fold expression of CBS [212]. While both CSE and CBS are cytosolic and widely expressed in cells and tissues, CSE functions primarily in peripheral organs and the vascular system, while CBS acts predominantly in the central nervous system [213]. The activity of these enzymes is reliant on the presence of the coenzyme pyridoxal-5-'-phosphate (PLP) (the active form of vitamin B6) [214]. CSE majorly catalyzes H₂S synthesis via the α,β -elimination of cysteine [215]. Alternatively, CBS condenses cysteine and homocysteine to generate H₂S. Once synthesized, H₂S functions in a negative feedback mechanism to reduce the activity of CBS and CSE [216].

 H_2S is also reportedly generated from D-cysteine by D-amino acid oxidase (DAO) and 3-MST in the cerebellum and kidney [217]. More commonly, 3-MST is involved in the catalysis of 3-mecaptopyruvate to pyruvate, forming a 3-MST persulfide. Thioredoxin and dihydrolipoic acid reduce the persulfide to produce H_2S [218]. Although the activity of 3-MST has been reported in certain tissues, CSE and CBS are regarded as the major contributing enzymes in the production of endogenous H_2S [212].

Endogenous H_2S is also produced via non-enzymatic pathways, albeit at lower and less significant concentrations. Acid-labile sulfur and bound sulfane-sulfur are stored in cells and released as H_2S under acidic conditions or in the presence of reducing agents, respectively [219].

NO is an inorganic molecule that is synthesized from L-arginine by a family of enzymes called nitric oxide synthase (NOS) [220] (Fig. 6). Three major NOS isoforms have evolved: neuronal (nNOS), inducible (iNOS), and endothelial (eNOS) [221]. nNOS is primarily expressed in neurons to regulate cardiac catecholamines, while iNOS is produced in macrophages during early immune defense response [222]. eNOS is found in platelets and it is involved in diastolic relaxation and reduction of oxygen consumption in cardiac muscles via pancreas-synthesized NO [223].

CO is generated in the human body by the metabolism of haem to produce CO, iron, and biliverdin via heme oxygenase (HO) [4] (Fig. 6). Similar to NOS, HO has three isoforms: inducible HO-1, HO-2, and HO-3 (the latter two being constitutive forms) [224].

8 Interrelationship between H₂S with NO and CO in Inflammation

Like H₂S, other gasotransmitters are also likely to be involved in inflammation. iNOS and HO-1 pathways involved in the biosynthesis of NO and CO have been markedly demonstrated to be involved in the inflammatory progression and production of large quantities of NO and CO, respectively [225]. If these gases are exposed simultaneously during inflammation, the three could interplay with one another in various ways, influencing each other's biosynthesis and biological reactivity. The NO/iNOS signaling pathway has been demonstrated to increase HO-1 expression in different kinds of cells [225, 226]. This increased expression of HO-1 via NO is independent of cyclic guanosine monophosphate (cGMP) synthesis, as exogenous cGMP does not exert any effect, and engages in the regulations of transcription factors, mainly nuclear factor-erythroid 2 related factor-2 (Nrf2) [226]. CO has been demonstrated to have influence in the NO/iNOS system. CO is capable of binding to the hemoprotein of iNOS and deactivating iNOS, thereby inhibiting NO synthesis [227] (Fig. 6). Also, the CO/HO-1 system may be responsible for attenuating NO synthesis via inhibition of iNOS expression [228], highlighting the possibility of interaction between CO/HO-1 and NO/iNOS pathway in inflammatory regulation.

Ashino and colleagues [229] conducted a time-dependent experiment to show the expression level of HO-1 and iNOS in LPS-treated macrophages. They observed a 6 hour delay between iNOS and HO-1 expression, as the expression of HO-1 reached its maximum level 6 hrs after LPS treatment, while iNOS reached its maximum level after 12 hrs. When treated with LPS, iNOS knockdown macrophages did not show HO-1 expression, demonstrating the involvement of NO/iNOS in the expression of HO-1. Furthermore, this study also stimulated Nrf2 knockdown macrophages with LPS, to investigate its effects in iNOS and HO-1 expression. LPS significantly increased iNOS expression, but did not affect HO-1 expression, indicating CO/HO-1 attenuates iNOS expression. This evidence indicates that there may be an interaction between NO and CO.

There are also studies suggesting the interrelationship of H_2S and NO, including CO. A study performed by Anuar et al. [230] demonstrated that NO decreases the production of H_2S in LPS-treated rats. Using nitroflurbiprofen as a NO donor, the effects of NO release were compared with the parent drug flurbiprofen. The results showed the attenuation of LPS-mediated elevation of kidney and liver H_2S synthesis and CSE mRNA, which was induced via inhibition of NF- κ B. However, no effects were observed by the treatment of flurbiprofen in animals.

Oh et al. (2006) reported that H_2S was able to attenuate NO synthesis and iNOS expression through HO-1 expression in LPS-treated RAW264.7 macrophages. Additionally, H_2S mediated HO-1 expression via ERK activation, which resulted in the decrease of iNOS expression that was further reduced by L-cysteine treatment. Additionally, the pre-incubation of H_2S with LPS-treated macrophages diminished

Fig. 6 Possible interrelation of $H_2S/CSE/CBS$, NO/iNOS, and CO/HO-1 pathways in inflammation. Inflammatory mediators (e.g., LPS) regulate iNOS expression, leading to elevated NO synthesis which excites inflammatory pathways to eradicate pathogens. However, significantly increased production of NO can be harmful to the host. HO-1 expression level is mediated in response to high levels of NO, leading to elevated CO synthesis that blocks both NO/iNOS and inflammatory signaling

NF-κB activation. Interestingly the same activity was demonstrated by CO in the same treatment condition [231]. This showed that all three gasotransmitters are interlinked in inflammation. Overall, the activity of H₂S was responsible for diminishing NF-κB that is involved in the activation of HO-1/CO pathway, highlighting the probability of the H₂S/CSE system interaction with HO-1/CO system [228] (Fig. 6).

After investigating the role of different H_2S donors in LPS-treated macrophages, Whitman

pathways. Pathogenic mediators also regulate CSE/CBS expression, consequently causing elevated H₂S synthesis that might excite inflammatory signaling pathways. H₂S synthesized immensely from CSE/CBS enzymes could block NO/iNOS pathway, likely through excitation of CO/HO-1 pathway in macrophages. Other studies have reported anti-inflammatory roles of slow H₂S-releasing donors

et al. (2010) reported similar results with Oh et al. The main focus was on the activity of GYY4137, a slow-releasing H₂S donor, on LPS-induced synthesis/expression of inflammatory mediators. They demonstrated the dosedependent inhibition of GYY4137 on the release of pro-inflammatory mediators IL-6, IL-β, and TNF- α as well as the inhibition of NO synthesis, likely through NF-kB inactivation. However, the mentioned authors also NaHS as а pro-inflammatory mediator with a biphasic nature; at higher concentrations, NaHS elevated the production of IL-1 β , IL-6, NO, PGE2, and TNF- α [232]. Overall, this study illustrated the complexity of H₂S in the inflammatory process, demonstrating that the inflammatory process is not only dependent on H₂S concentration, but also on the rate of H₂S production.

Furthermore, an intriguing study by Hua et al. (2013) [233] demonstrated that the administration of NaSH inhibited inflammatory cell infiltration in injured tissue, alleviated cardiac edema, and limited myocardial lesions, supporting the evidence for inflammation reduction in a mouse model of myocarditis. In contrast, PAG administration reversed this, verifying H₂S as an antiinflammatory molecule. Administration of NaSH reduced the expression of iNOS mRNA, which was highly expressed in the disease model, while HO-1 mRNA was elevated. Therefore, the authors concluded that H₂S maintains its cardioprotective activity via inhibiting overproduction of NO in inflammation and by increasing the levels of HO-1 [233]. The author also mentioned the overexpression of iNOS in the myocarditis model and the attenuation of H₂S synthesis resulted in aggravated inflammation. As described previously, inducible nitric oxide synthase (iNOS) and heme oxygenase-1 (HO-1) are the main enzymes involved in the synthesis of NO and CO, respectively; therefore, this shows that H₂S interplays with NO and CO in inflammation (Fig. 6).

Recently, a similar study supporting Oh et al. was performed in the lungs of endotoxemic mice [234]. GYY4137 restored the histopathological changes caused by LPS in the lungs. Administration of NG-nitro-L-arginine methyl ester (L-NAME), NOS inhibitor, increased antioxidant biomarkers (total antioxidant capacity(T-AOC), and superoxide dismutase catalase (CAT), (SOD)), but reduced expression of 3-nitrotyrosine (3-NT), a marker of peroxynitrite (ONOO-) action in the endotoxemic lung. L-NAME treatment also inhibited inflammation by reducing pulmonary expression of IL-6, IL-8, and myeloperoxidase (MPO) and increasing expression of anti-inflammatory cytokine IL-10. GYY4137 administration demonstrated the reverse activity of endotoxin-induced oxidative/ nitrative stress, as supported by reduced levels of malondialdehyde (MDA), hydrogen peroxide (H_2O_2) and 3-NT and increased levels of antioxidant biomarkers, resulting in inhibition of endotoxin-induced acute lung inflammation. Besides this, GYY4137 also attenuated the expression of iNOS and synthesis of NO in the endotoxemic lung [234].

The effect of pretreated H_2S (0.06-1.5 mM), with or without IL-1β, on cultured human (osteoarthritis) OA chondrocytes was analyzed in an in vitro model of cartilage inflammation. In this study, H₂S treatment attenuated IL-1B-induced inflammation, as evidenced by the reduced secretion of H_2S which suppressed the secretion of NO, PGE2, and MMP-13 in OA chondrocytes [235]. Furthermore, the genetic expression of iNOS, COX-2, and MMP-13 was analyzed by reverse transcription quantitative polymerase chain reaction (RT-qPCR), while the analysis of the expression of signaling molecules associated with MAPKs and NF-kB was performed by western blot. These revealed that H₂S significantly reduced the gene expression of iNOS, MMP-13, and COX-2 and also inhibited the activation of NF-κB pathway, demonstrating the reversal effect of IL-1 β on cultured human OA chondrocytes. This study demonstrates H₂S downregulates the NO/iNOS pathway while simultaneously attenuating the inflammatory response induced IL-1β cultured human by on OA chondrocytes [235].

Additionally, the effects of another slowreleasing H₂S donor, FW1256, have been studied in LPS-induced macrophage cells as well as in LPS-treated mouse model [236]. This H_2S donor showed a concentration-dependent reduction of TNF, IL-6, PGE2, and NO synthesis in LPS-induced macrophage cell lines. In addition, FW1256 markedly decreased IL-1, COX-2, and iNOS mRNA and protein expression in LPS-induced RAW macrophages. In а LPS-induced sepsis mice model, FW1256 administration resulted in the inhibition of IL-1, nitrate/ nitrite, TNF, and PGE2 expression [236] (Fig. 6).

H₂S and CO have been demonstrated to act as important endogenous mediators of

gasoprotection in acute gastric mucosal damage. Acetylsalicylic acid is mainly recognized as antiinflammatory drugs. However, there is the occurrence of the adverse effect of acute gastric mucosal damage caused by its dose-effect response. These adverse effects of acetylsalicylic acid result in significantly decreased gastric blood flow (GBF), H₂S synthesis, CO level, mRNA and protein levels of CSE, 3-MST, and HO-2 but elevates mRNA and protein expression for CBS, HO-1, Nrf-2, HIT-1 α , IL-1 β , iNOS, COX2 in gastric mucosa, and COHb level in blood [237]. Pretreatment with CORM-2 (CO donor) or NaHS, without PAG, reduced ASA-damage and elevated GBF. CORM-2 increased CO concentration, mRNA or protein expression of HO-1, and Nrf-2 and reduced the levels of CBS, COX-2, HIF-1 α , IL-1 β , iNOS, and H₂S synthesis in gastric mucosa and COHb level in the blood. NaHS treatment resulted in increased mRNA and protein expression of CSE, COX-1 and reduced mRNA level of IL-1 β and COHb concentration in blood. Furthermore, both of these molecules acted via sGC/cGMP pathway and showed anti-inflammatory activity by reducing the expression levels of gastric mucosal pro-inflammatory markers and preventing COHb blood level increase. CO ameliorated hypoxia and also regulated Nrf expression, but H₂S did not show these activities. Interestingly, this study demonstrated the involvement of H₂S in gasoprotection mediated via the activation of CO. However, the beneficial role of CO in the gastric mucosa appears to be independent of H₂S in the ASA-injured stomach [237].

A study reported an increase in the acute lung injury during endotoxic shock when treated with H_2S , which results in reduced eNOS activity, but increased iNOS activity, consequently leading to an increase in the synthesis of NO. In addition, H_2S also activated the HO-1/CO system in lung tissue during endotoxic shock [238] (Fig. 6).

9 Is H₂S Biphasic in Nature?

As described above, H_2S has the potential to function directly and indirectly as a pro- and

anti-inflammatory mediator. Literature has demonstrated the biphasic nature of H₂S in multiple models of different inflammatory diseases in animals. Studies related to endogenous and exogenous H₂S have demonstrated conflicting results of pro- [14, 23, 32, 104, 239, 240] and anti-[19, 171, 241–244] inflammatory effects in various inflammatory diseases. H₂S has also been found to have a dichotomous role (activatory and inhibitory) in relation to adhesion molecules, leukocyte infiltration [16, 29, 170-174], and ROS [146, 147, 152–154, 162–164] activity in inflammation. These conflicting outcomes may be due to the different animal models used, which leads to altered pathogenesis and subsequent induction of the inflammatory response. Therefore, the activity of H₂S in different animal models may have led to different outcomes in the pathogenesis of various diseases.

However, similar models have also been reported to have different outcomes as described earlier, which may be due to inconsistencies in the dosage, source of drug, route and time of administration. These conflicting differences make it challenging to directly compare different studies, suggesting extra attention is required while interpreting the role of H₂S in inflammation via the use of exogenous H₂S donors. During the production of free radicals, higher concentrations of H₂S have resulted in the deletion of glutathione, release of intercellular iron and pro-apoptotic activity, resulting in cell toxicity [245-247]. In fact, higher concentrations of sulfide and H₂S synthesized by the inflammatory cells as non-specific protection against LPS have been demonstrated to injure host tissue [248, 249]. Although lower concentrations of H_2S may demonstrate anti-inflammatory [228], cytoprotective [73, 250], and antioxidant effects and physiological concentration may have some beneficial effects [251], apoptotic effects have also been observed [252, 253]. The role of H_2S in neurogenic-inflammation and vasodilation in inflammatory conditions imply that H₂S can function as a pro-inflammation mediator.

Besides sulfide salts such as NaHS and Na₂S which are renowned for large, quick bolus release of H₂S, slow-releasing donors also exist

that facilitate controlled, low concentration release of H₂S, including GYY4137 [234], FW1256 [236], and s-diclofenac [41]. The controlled, slow-releasing H₂S donors have been highlighted to show anti-inflammatory activity in various inflammatory disease models where NaHS was previously reported to be a pro-inflammatory mediator, as demonstrated in pancreatitis [41], LPS-induced endotoxemia [254, 255], and LPS-stimulated macrophages [232]. Also, in other animals models such as carrageenan-induced hind-paw edema [171], acute knee joint inflammation [256], and myocardial ischemia-reperfusion injury [257] slow-releasing H₂S donors have demonstrated an anti-inflammatory effect. Furthermore, slowreleasing H₂S donors limit the release and antiinflammatory effects of other gasotransmitters such as NO and CO [231, 233]. It is interesting that till date, there are no reports of slow-releasing H₂S donors as pro-inflammatory mediators. This clearly states inflammatory activity is not only dependent on H₂S concentration, but also on the rate of H₂S production/release. This has opened the new horizon for scientists to study the antiinflammatory potential of these donors.

10 Conclusion

Studies on the role of H_2S in inflammatory diseases and its interaction with the other players in the inflammatory pathway reveal a key role of H_2S in inflammatory pathway reveal a key role of H_2S in inflammatory mediator, and some studies suggest its anti-inflammatory effects. A number of contradicting issues still remain, such as dosage, source of drug, route and time of administration. Work with appropriate animal models of disease has led to the translational studies on the role of H_2S in the clinic. Definite studies of the molecular mechanism of H_2S -mediated signaling in biological systems can lead to the development of new therapeutic strategies or solutions for the treatment of inflammatory diseases.

Acknowledgements The author's (MB) laboratory is supported by research grants from Maurice and Phyllis

Paykel Trust and University of Otago (Vice-Chancellor's Strategic Development Fund).

References

- Netea MG, Balkwill F, Chonchol M, Cominelli F, Donath MY, Giamarellos-Bourboulis EJ et al (2017) A guiding map for inflammation. Nat Immunol 18 (8):826–831
- Tracy RP (2006) The five cardinal signs of inflammation: Calor, dolor, Rubor, tumor ... and Penuria (apologies to Aulus Cornelius Celsus, De medicina, c. a.D. 25). J Gerontol A Biol Sci Med Sci 61 (10):1051–1052
- Winyard P, Willougby D (eds) (2003) Key stages in the acute inflammatory response and their relevance as therapeutic targets. Humana Press, Totowa, NJ
- 4. Li L, Hsu A, Moore PK (2009a) Actions and interactions of nitric oxide, carbon monoxide and hydrogen sulphide in the cardiovascular system and in inflammation--a tale of three gases! Pharmacol Ther 123(3):386–400
- Hydrogen Sulfide Acute Exposure Guideline (2010). Available from: https://www.ncbi.nlm.nih.gov/ books/NBK208170/
- Wang R (2012) Physiological implications of hydrogen sulfide: a whiff exploration that blossomed. Physiol Rev 92(2):791–896
- Moore PK, Bhatia M, Moochhala S (2003) Hydrogen sulfide: from the smell of the past to the mediator of the future? Trends Pharmacol Sci 24(12):609–611
- Zaichko NV, Melnik AV, Yoltukhivskyy MM, Olhovskiy AS, Palamarchuk IV (2014) Hydrogen sulfide: metabolism, biological and medical role. Ukr Biochem J 86(5):5–25
- Devi Ramnath R, Weing S, He M, Sun J, Zhang H, Singh Bawa M et al (2006) Inflammatory mediators in sepsis: cytokines, chemokines, adhesion molecules and gases. J Organ Dysfunct 2(2):80–92
- Martin GS, Mannino DM, Eaton S, Moss M (2003) The epidemiology of sepsis in the United States from 1979 through 2000. N Engl J Med 348 (16):1546–1554
- 11. Levy MM, Dellinger RP, Townsend SR, Linde-Zwirble WT, Marshall JC, Bion J et al (2010) The surviving Sepsis campaign: results of an international guideline-based performance improvement program targeting severe sepsis. Crit Care Med 38(2):367–374
- Bhatia M, He M, Zhang H, Moochhala S (2009) Sepsis as a model of SIRS. Front Biosci 14:4703–4711
- Singer M, Deutschman CS, Seymour CW, Shankar-Hari M, Annane D, Bauer M et al (2016) The third international consensus definitions for Sepsis and septic shock (Sepsis-3). JAMA 315(8):801–810
- Zhang H, Zhi L, Moore PK, Bhatia M (2006) Role of hydrogen sulfide in cecal ligation and puncture-

induced sepsis in the mouse. Am J Physiol Lung Cell Mol Physiol 290(6):L1193–L1201

- 15. Zhang H, Zhi L, Moochhala S, Moore PK, Bhatia M (2007a) Hydrogen sulfide acts as an inflammatory mediator in cecal ligation and puncture-induced sepsis in mice by upregulating the production of cytokines and chemokines via NF-κB. Am J Phys Lung Cell Mol Phys 292(4):L960–LL71
- Zhang H, Zhi L, Moochhala SM, Moore PK, Bhatia M (2007b) Endogenous hydrogen sulfide regulates leukocyte trafficking in cecal ligation and punctureinduced sepsis. J Leukoc Biol 82(4):894–905
- Zhang H, Moochhala SM, Bhatia M (2008) Endogenous hydrogen sulfide regulates inflammatory response by activating the ERK pathway in Polymicrobial Sepsis. J Immunol 181(6):4320–4331
- Gaddam RR, Fraser R, Badiei A, Chambers S, Cogger VC, Le Couteur DG et al (2016) Cystathionine-gamma-Lyase gene deletion protects mice against inflammation and liver sieve injury following Polymicrobial Sepsis. PLoS One 11(8): e0160521
- Spiller F, Orrico MI, Nascimento DC, Czaikoski PG, Souto FO, Alves-Filho JC et al (2010) Hydrogen sulfide improves neutrophil migration and survival in sepsis via K+ATP channel activation. Am J Respir Crit Care Med 182(3):360–368
- 20. Ferlito M, Wang Q, Fulton WB, Colombani PM, Marchionni L, Fox-Talbot K et al (2014) Hydrogen sulfide [corrected] increases survival during sepsis: protective effect of CHOP inhibition. J Immunol 192 (4):1806–1814
- Al Mofleh IA (2008) Severe acute pancreatitis: pathogenetic aspects and prognostic factors. World J Gastroenterol 14(5):675–684
- Bhatia M (2012) Role of hydrogen sulfide in the pathology of inflammation. Scientifica 2012:159680
- Bhatia M, Wong FL, Cao Y, Lau HY, Huang J, Puneet P et al (2005a) Pathophysiology of acute pancreatitis. Pancreatology 5(2-3):132–144
- Bhatia M (2015) H2S and inflammation: an overview. Handb Exp Pharmacol 230:165–180
- 25. Tamizhselvi R, Moore PK, Bhatia M (2007) Hydrogen sulfide acts as a mediator of inflammation in acute pancreatitis: in vitro studies using isolated mouse pancreatic acinar cells. J Cell Mol Med 11 (2):315–326
- 26. Tamizhselvi R, Moore PK, Bhatia M (2008) Inhibition of hydrogen sulfide synthesis attenuates chemokine production and protects mice against acute pancreatitis and associated lung injury. Pancreas 36 (4):e24–e31
- Bhatia M, Wong FL, Fu D, Lau HY, Moochhala SM, Moore PK (2005b) Role of hydrogen sulfide in acute pancreatitis and associated lung injury. FASEB J 19 (6):623–625
- Muthu K, Zhang J, Bhatia M (2009) Aminooxyacetate inhibits hydrogen sulfide and

ammonium synthesis and protects mice in acute pancreatitis. Int J Integr Biol 8:7-14

- 29. Tamizhselvi R, Koh YH, Sun J, Zhang H, Bhatia M (2010) Hydrogen sulfide induces ICAM-1 expression and neutrophil adhesion to caerulein-treated pancreatic acinar cells through NF-kappaB and Src-family kinases pathway. Exp Cell Res 316(9):1625–1636
- 30. Escobar J, Pereda J, Arduini A, Sandoval J, Sabater L, Aparisi L et al (2010) Role of redox signaling, protein phosphatases and histone acetylation in the inflammatory cascade in acute pancreatitis. Therapeutic implications. Inflamm Allergy Drug Targets 9(2):97–108
- Mareninova OA, Sung KF, Hong P, Lugea A, Pandol SJ, Gukovsky I et al (2006) Cell death in pancreatitis: caspases protect from necrotizing pancreatitis. J Biol Chem 281(6):3370–3381
- 32. Wang G, Han B, Zhou H, Wu L, Wang Y, Jia G et al (2013) Inhibition of hydrogen sulfide synthesis provides protection for severe acute pancreatitis rats via apoptosis pathway. Apoptosis 18(1):28–42
- 33. Ji L, Li L, Qu F, Zhang G, Wang Y, Bai X et al (2016) Hydrogen sulphide exacerbates acute pancreatitis by over-activating autophagy via AMPK/ mTOR pathway. J Cell Mol Med 20(12):2349–2361
- Ohmuraya M, Yamamura K (2008) Autophagy and acute pancreatitis: a novel autophagy theory for trypsinogen activation. Autophagy 4(8):1060–1062
- 35. Hashimoto D, Ohmuraya M, Hirota M, Yamamoto A, Suyama K, Ida S et al (2008) Involvement of autophagy in trypsinogen activation within the pancreatic acinar cells. J Cell Biol 181 (7):1065–1072
- 36. Zhu H, Yu X, Zhu S, Li X, Lu B, Li Z et al (2015) The fusion of autophagosome with lysosome is impaired in L-arginine-induced acute pancreatitis. Int J Clin Exp Pathol 8(9):11164–11170
- Fortunato F, Kroemer G (2009) Impaired autophagosome-lysosome fusion in the pathogenesis of pancreatitis. Autophagy 5(6):850–853
- 38. Feng D, Park O, Radaeva S, Wang H, Yin S, Kong X et al (2012) Interleukin-22 ameliorates ceruleininduced pancreatitis in mice by inhibiting the autophagic pathway. Int J Biol Sci 8(2):249–257
- 39. Fu M, Zhang W, Wu L, Yang G, Li H, Wang R (2012) Hydrogen sulfide (H₂S) metabolism in mitochondria and its regulatory role in energy production. Proc Natl Acad Sci U S A 109 (8):2943–2948
- 40. Ji L, Guo X, Lv J, Xiao F, Zhang W, Li J et al (2019) Hypoxia-inducible factor-1alpha knockdown plus glutamine supplementation attenuates the predominance of necrosis over apoptosis by relieving cellular energy stress in acute pancreatitis. Oxidative Med Cell Longev 2019:4363672
- Bhatia M, Sidhapuriwala JN, Sparatore A, Moore PK (2008a) Treatment with H₂S-releasing diclofenac protects mice against acute pancreatitis-associated lung injury. Shock 29(1):84–88

- 42. Sidhapuriwala J, Li L, Sparatore A, Bhatia M, Moore PK (2007) Effect of S-diclofenac, a novel hydrogen sulfide releasing derivative, on carrageenan-induced hindpaw oedema formation in the rat. Eur J Pharmacol 569(1-2):149–154
- 43. Benedetti F, Curreli S, Krishnan S, Davinelli S, Cocchi F, Scapagnini G et al (2017) Antiinflammatory effects of H₂S during acute bacterial infection: a review. J Transl Med 15(1):100
- 44. Oh G-S, Pae H-O, Lee B-S, Kim B-N, Kim J-M, Kim H-R et al (2006a) Hydrogen sulfide inhibits nitric oxide production and nuclear factor-κB via heme oxygenase-1 expression in RAW264.7 macrophages stimulated with lipopolysaccharide. Free Radic Biol Med 41(1):106–119
- 45. Xu D-q, Gao C, Niu W, Li Y, Wang Y-x, Gao C-j et al (2013) Sodium hydrosulfide alleviates lung inflammation and cell apoptosis following resuscitated hemorrhagic shock in rats. Acta Pharmacol Sin 34(12):1515–1525
- 46. Sivarajah A, Collino M, Yasin M, Benetti E, Gallicchio M, Mazzon E et al (2009a) Anti-apoptotic and anti-inflammatory effects of hydrogen sulfide in a rat model of regional myocardial I/R. Shock 31 (3):267–274
- 47. Corsello T, Komaravelli N, Casola A (2018) Role of hydrogen sulfide in NRF2- and sirtuin-dependent maintenance of cellular redox balance. Antioxidants 7(10):129
- 48. Ang AD, Rivers-Auty J, Hegde A, Ishii I, Bhatia M (2013) The effect of CSE gene deletion in caeruleininduced acute pancreatitis in the mouse. Am J Physiol Gastrointestinal Liver Physiol 305(10):G712–GG21
- Spurzem JR, Rennard SI (2005) Pathogenesis of COPD. Semin Respir Crit Care Med 26(2):142–153
- 50. Chen YH, Yao WZ, Geng B, Ding YL, Lu M, Zhao MW et al (2005) Endogenous hydrogen sulfide in patients with COPD. Chest 128(5):3205–3211
- 51. Bates MN, Crane J, Balmes JR, Garrett N (2015) Investigation of hydrogen sulfide exposure and lung function, asthma and chronic obstructive pulmonary disease in a geothermal area of New Zealand. PLoS One 10(3):e0122062
- 52. Sun Y, Wang K, Li MX, He W, Chang JR, Liao CC et al (2015) Metabolic changes of H₂S in smokers and patients of COPD which might involve in inflammation, oxidative stress and steroid sensitivity. Sci Rep 5:14971
- 53. Somborac-Bacura A, van der Toorn M, Franciosi L, Slebos DJ, Zanic-Grubisic T, Bischoff R et al (2013) Cigarette smoke induces endoplasmic reticulum stress response and proteasomal dysfunction in human alveolar epithelial cells. Exp Physiol 98 (1):316–325
- 54. Lin F, Liao C, Sun Y, Zhang J, Lu W, Bai Y et al (2017) Hydrogen sulfide inhibits cigarette smokeinduced endoplasmic reticulum stress and apoptosis in bronchial epithelial cells. Front Pharmacol 8:675
- 55. Ding HB, Liu KX, Huang JF, Wu DW, Chen JY, Chen QS (2018) Protective effect of exogenous hydrogen sulfide on pulmonary artery endothelial

cells by suppressing endoplasmic reticulum stress in a rat model of chronic obstructive pulmonary disease. Biomed Pharmacother 105:734–741

- 56. Muniraj N, Stamp LK, Badiei A, Hegde A, Cameron V, Bhatia M (2017) Hydrogen sulfide acts as a pro-inflammatory mediator in rheumatic disease. Int J Rheum Dis 20(2):182–189
- 57. Bhatia M, Sidhapuriwala J, Moochhala SM, Moore PK (2005c) Hydrogen sulphide is a mediator of carrageenan-induced hindpaw oedema in the rat. Br J Pharmacol 145(2):141–144
- 58. Fox B, Schantz JT, Haigh R, Wood ME, Moore PK, Viner N et al (2012) Inducible hydrogen sulfide synthesis in chondrocytes and mesenchymal progenitor cells: is H2S a novel cytoprotective mediator in the inflamed joint? J Cell Mol Med 16(4):896–910
- 59. Sieghart D, Liszt M, Wanivenhaus A, Bröll H, Kiener H, Klösch B et al (2015) Hydrogen sulphide decreases IL-1β-induced activation of fibroblast-like synoviocytes from patients with osteoarthritis. J Cell Mol Med 19(1):187–197
- 60. Kloesch B, Liszt M, Krehan D, Broell J, Kiener H, Steiner G (2012) High concentrations of hydrogen sulphide elevate the expression of a series of pro-inflammatory genes in fibroblast-like synoviocytes derived from rheumatoid and osteoarthritis patients. Immunol Lett 141(2):197–203
- 61. Luan HF, Zhao ZB, Zhao QH, Zhu P, Xiu MY, Ji Y (2012) Hydrogen sulfide postconditioning protects isolated rat hearts against ischemia and reperfusion injury mediated by the JAK2/STAT3 survival pathway. Braz J Med Biol Res 45(10):898–905
- 62. Sivarajah A, Collino M, Yasin M, Benetti E, Gallicchio M, Mazzon E et al (2009b) Anti-apoptotic and anti-inflammatory effects of hydrogen sulfide in a rat model of regional myocardial I/R. Shock 31 (3):267–274
- 63. Wu D, Wang J, Li H, Xue M, Ji A, Li Y (2015) Role of hydrogen sulfide in ischemia-reperfusion injury. Oxidative Med Cell Longev 2015:186908
- 64. Dirksen MT, Laarman GJ, Simoons ML, Duncker DJ (2007) Reperfusion injury in humans: a review of clinical trials on reperfusion injury inhibitory strategies. Cardiovasc Res 74(3):343–355
- 65. Pan TT, Feng ZN, Lee SW, Moore PK, Bian JS (2006) Endogenous hydrogen sulfide contributes to the cardioprotection by metabolic inhibition preconditioning in the rat ventricular myocytes. J Mol Cell Cardiol 40(1):119–130
- 66. Yao X, Tan G, He C, Gao Y, Pan S, Jiang H et al (2012) Hydrogen sulfide protects cardiomyocytes from myocardial ischemia-reperfusion injury by enhancing phosphorylation of apoptosis repressor with caspase recruitment domain. Tohoku J Exp Med 226(4):275–285
- 67. Bian JS, Yong QC, Pan TT, Feng ZN, Ali MY, Zhou S et al (2006) Role of hydrogen sulfide in the cardioprotection caused by ischemic preconditioning in the rat heart and cardiac myocytes. J Pharmacol Exp Ther 316(2):670–678

- 68. Yong QC, Lee SW, Foo CS, Neo KL, Chen X, Bian JS (2008) Endogenous hydrogen sulphide mediates the cardioprotection induced by ischemic postconditioning. Am J Physiol Heart Circ Physiol 295(3):H1330–H1H40
- 69. Huang J, Wang D, Zheng J, Huang X, Jin H (2012) Hydrogen sulfide attenuates cardiac hypertrophy and fibrosis induced by abdominal aortic coarctation in rats. Mol Med Rep 5(4):923–928
- 70. Andreadou I, Iliodromitis EK, Rassaf T, Schulz R, Papapetropoulos A, Ferdinandy P (2015) The role of gasotransmitters NO, H₂S and CO in myocardial ischaemia/reperfusion injury and cardioprotection by preconditioning, postconditioning and remote conditioning. Br J Pharmacol 172(6):1587–1606
- 71. Karwi QG, Bice JS, Baxter GF (2018) Pre- and postconditioning the heart with hydrogen sulfide (H2S) against ischemia/reperfusion injury in vivo: a systematic review and meta-analysis. Basic Res Cardiol 113(1):6
- 72. Issa K, Kimmoun A, Collin S, Ganster F, Fremont-Orlowski S, Asfar P et al (2013) Compared effects of inhibition and exogenous administration of hydrogen sulphide in ischaemia-reperfusion injury. Crit Care 17(4):R129
- 73. Elrod JW, Calvert JW, Morrison J, Doeller JE, Kraus DW, Tao L et al (2007) Hydrogen sulfide attenuates myocardial ischemia-reperfusion injury by preservation of mitochondrial function. Proc Natl Acad Sci U S A 104(39):15560–15565
- 74. Barger AC, Beeuwkes R 3rd, Lainey LL, Silverman KJ (1984) Hypothesis: vasa vasorum and neovascularization of human coronary arteries. A possible role in the pathophysiology of atherosclerosis. N Engl J Med 310(3):175–177
- 75. Stary HC, Chandler AB, Dinsmore RE, Fuster V, Glagov S, Insull W Jr et al (1995) A definition of advanced types of atherosclerotic lesions and a histological classification of atherosclerosis. A report from the committee on vascular lesions of the council on arteriosclerosis, American Heart Association. Arterioscler Thromb Vasc Biol 15(9):1512–1531
- 76. Kolodgie FD, Gold HK, Burke AP, Fowler DR, Kruth HS, Weber DK et al (2003) Intraplaque hemorrhage and progression of coronary atheroma. N Engl J Med 349(24):2316–2325
- 77. Nagy E, Eaton JW, Jeney V, Soares MP, Varga Z, Galajda Z et al (2010) Red cells, hemoglobin, heme, iron, and atherogenesis. Arterioscler Thromb Vasc Biol 30(7):1347–1353
- 78. Potor L, Banyai E, Becs G, Soares MP, Balla G, Balla J et al (2013) Atherogenesis may involve the prooxidant and proinflammatory effects of ferryl hemoglobin. Oxidative Med Cell Longev 2013:676425
- 79. Jeney V, Balla G, Balla J (2014) Red blood cell, hemoglobin and heme in the progression of atherosclerosis. Front Physiol 5:379
- Potor L, Nagy P, Mehes G, Hendrik Z, Jeney V, Petho D et al (2018) Hydrogen sulfide abrogates

hemoglobin-lipid interaction in atherosclerotic lesion. Oxidative Med Cell Longev 2018:3812568

- Muellner MK, Schreier SM, Laggner H, Hermann M, Esterbauer H, Exner M et al (2009) Hydrogen sulfide destroys lipid hydroperoxides in oxidized LDL. Biochem J 420(2):277–281
- Zernecke A, Shagdarsuren E, Weber C (2008) Chemokines in atherosclerosis: an update. Arterioscler Thromb Vasc Biol 28(11):1897–1908
- 83. Tacke F, Alvarez D, Kaplan TJ, Jakubzick C, Spanbroek R, Llodra J et al (2007) Monocyte subsets differentially employ CCR2, CCR5, and CX3CR1 to accumulate within atherosclerotic plaques. J Clin Invest 117(1):185–194
- 84. Zhang H, Guo C, Wu D, Zhang A, Gu T, Wang L et al (2012a) Hydrogen sulfide inhibits the development of atherosclerosis with suppressing CX3CR1 and CX3CL1 expression. PLoS One 7(7):e41147
- 85. Van de Louw A, Haouzi P (2012) Oxygen deficit and H2S in hemorrhagic shock in rats. Crit Care 16(5): R178
- 86. Chai W, Wang Y, Lin JY, Sun XD, Yao LN, Yang YH et al (2012) Exogenous hydrogen sulfide protects against traumatic hemorrhagic shock via attenuation of oxidative stress. J Surg Res 176(1):210–219
- 87. Mok YY, Atan MS, Yoke Ping C, Zhong Jing W, Bhatia M, Moochhala S et al (2004) Role of hydrogen sulphide in haemorrhagic shock in the rat: protective effect of inhibitors of hydrogen sulphide biosynthesis. Br J Pharmacol 143(7):881–889
- Singh S, Lin H (2015) Hydrogen sulfide in physiology and diseases of the digestive tract. Microorganisms 3(4):866–889
- Wallace JL, Vong L, McKnight W, Dicay M, Martin GR (2009a) Endogenous and exogenous hydrogen sulfide promotes resolution of colitis in rats. Gastroenterology 137(2):569–578
- 90. Gallego D, Clavé P, Donovan J, Rahmati R, Grundy D, Jiménez M et al (2008) The gaseous mediator, hydrogen sulphide, inhibitsin vitromotor patterns in the human, rat and mouse colon and jejunum. Neurogastroenterol Motility 20 (12):1306–1316
- Matsunami M, Tarui T, Mitani K, Nagasawa K, Fukushima O, Okubo K et al (2008) Luminal hydrogen sulfide plays a pronociceptive role in mouse colon. Gut 58(6):751–761
- Liu H, Bai X-B, Shi S, Cao Y-X (2009) Hydrogen sulfide protects from intestinal ischaemia-reperfusion injury in rats. J Pharm Pharmacol 61(2):207–212
- Guo F-F, Yu T-C, Hong J, Fang J-Y (2016) Emerging roles of hydrogen sulfide in inflammatory and neoplastic colonic diseases. Front Physiol 7:156
- 94. Cai WJ, Wang MJ, Ju LH, Wang C, Zhu YC (2010) Hydrogen sulfide induces human colon cancer cell proliferation: role of Akt, ERK and p21. Cell Biol Int 34(6):565–572
- 95. Pitcher MC, Beatty ER, Cummings JH (2000) The contribution of sulphate reducing bacteria and 5-aminosalicylic acid to faecal sulphide in patients with ulcerative colitis. Gut 46(1):64–72

- 96. Levine J, Ellis CJ, Furne JK, Springfield J, Levitt MD (1998) Fecal hydrogen sulfide production in ulcerative colitis. Am J Gastroenterol 93(1):83–87
- 97. Attene-Ramos MS (2006) Evidence that hydrogen sulfide is a Genotoxic agent. Mol Cancer Res 4 (1):9–14
- 98. Calvert JW, Coetzee WA, Lefer DJ (2010a) Novel insights into hydrogen sulfide-mediated Cytoprotection. Antioxid Redox Signal 12 (10):1203–1217
- Linden DR (2014) Hydrogen sulfide signaling in the gastrointestinal tract. Antioxid Redox Signal 20 (5):818–830
- 100. Figliuolo VR, Coutinho-Silva R, Coutinho C (2018) Contribution of sulfate-reducing bacteria to homeostasis disruption during intestinal inflammation. Life Sci 215:145–151
- 101. Chassaing B, Darfeuille-Michaud A (2011) The commensal microbiota and enteropathogens in the pathogenesis of inflammatory bowel diseases. Gastroenterology 140(6):1720–1728
- 102. Bhatia M (2010) Hydrogen sulfide and substance P in inflammation. Antioxid Redox Signal 12 (10):1191–1202
- Akter F (2016) The role of hydrogen sulfide in burns. Burns 42(3):519–525
- 104. Zhang J, Sio SW, Moochhala S, Bhatia M (2010) Role of hydrogen sulfide in severe burn injuryinduced inflammation in mice. Mol Med 16 (9–10):417–424
- 105. Li Y, Wang H-J, Wang X-Z, Li X-L, Zhang X, Liu H (2020) Effect of hydrogen sulfide on the mitogenactivated protein kinase signaling pathway in cultured skin macrophages of burned rats. J Surg Res 245:467–474
- 106. Carter D, Warsen A, Mandell K, Cuschieri J, Maier RV, Arbabi S (2014) Delayed topical p38 MAPK inhibition attenuates full-thickness burn wound inflammatory signaling. J Burn Care Res 35(2):e83– e92
- 107. Abe K, Kimura H (1996) The possible role of hydrogen sulfide as an endogenous neuromodulator. J Neurosci 16(3):1066–1071
- 108. Guo W, Kan JT, Cheng ZY, Chen JF, Shen YQ, Xu J et al (2012) Hydrogen sulfide as an endogenous modulator in mitochondria and mitochondria dysfunction. Oxid Med Cell Longev 2012:1–9
- 109. Kimura H (2002) Hydrogen sulfide as a neuromodulator. Mol Neurobiol 26(1):13–19
- 110. Kimura H, Nagai Y, Umemura K, Kimura Y (2005) Physiological roles of hydrogen sulfide: synaptic modulation, neuroprotection, and smooth muscle relaxation. Antioxid Redox Signal 7(5–6):795–803
- 111. Tang X-Q, Zhuang Y-Y, Zhang P, Fang H-R, Zhou C-F, Gu H-F et al (2012) Formaldehyde impairs learning and memory involving the disturbance of hydrogen sulfide generation in the Hippocampus of rats. J Mol Neurosci 49(1):140–149
- 112. J-w X, Wei B, Y-k L, J-q Z, S-z J, H-b C et al (2018) Decreased plasma levels of gasotransmitter hydrogen sulfide in patients with schizophrenia: correlation

with psychopathology and cognition. Psychopharmacology 235(8):2267–2274

- 113. Liu XQ, Liu XQ, Jiang P, Huang H, Yan Y (2008) Plasma levels of endogenous hydrogen sulfide and homocysteine in patients with Alzheimer's disease and vascular dementia and the significance thereof. Zhonghua Yi Xue Za Zhi 88(32):2246–2249
- 114. Xuan A, Long D, Li J, Ji W, Zhang M, Hong L et al (2012) Hydrogen sulfide attenuates spatial memory impairment and hippocampal neuroinflammation in beta-amyloid rat model of Alzheimer's disease. J Neuroinflammation 9(1):202
- 115. Lee M, Schwab C, Yu S, McGeer E, McGeer PL (2009) Astrocytes produce the antiinflammatory and neuroprotective agent hydrogen sulfide. Neurobiol Aging 30(10):1523–1534
- 116. Hu L-F, Wong PTH, Moore PK, Bian J-S (2007) Hydrogen sulfide attenuates lipopolysaccharideinduced inflammation by inhibition of p38 mitogenactivated protein kinase in microglia. J Neurochem 100(4):1121–1128
- 117. Castelblanco M, Lugrin J, Ehirchiou D, Nasi S, Ishii I, So A et al (2018) Hydrogen sulfide inhibits NLRP3 inflammasome activation and reduces cytokine production both in vitro and in a mouse model of inflammation. J Biol Chem 293(7):2546–2557
- 118. Ghanbari F, Khaksari M, Vaezi G, Hojati V, Shiravi A (2018) Hydrogen sulfide protects hippocampal neurons against methamphetamine neurotoxicity via inhibition of apoptosis and Neuroinflammation. J Mol Neurosci 67(1):133–141
- 119. He J-T, Li H, Yang L, Mao C-Y (2019) Role of hydrogen sulfide in cognitive deficits: evidences and mechanisms. Eur J Pharmacol 849:146–153
- 120. Pober JS, Sessa WC (2014) Inflammation and the blood microvascular system. Cold Spring Harb Perspect Biol 7(1):a016345
- 121. Pober JS, Sessa WC (2007) Evolving functions of endothelial cells in inflammation. Nat Rev Immunol 7(10):803–815
- 122. Zhao W, Zhang J, Lu Y, Wang R (2001) The vasorelaxant effect of H(2)S as a novel endogenous gaseous K(ATP) channel opener. EMBO J 20 (21):6008–6016
- 123. Tang G, Wu L, Liang W, Wang R (2005) Direct stimulation of K(ATP) channels by exogenous and endogenous hydrogen sulfide in vascular smooth muscle cells. Mol Pharmacol 68(6):1757–1764
- 124. Dawe GS, Han SP, Bian JS, Moore PK (2008) Hydrogen sulphide in the hypothalamus causes an ATP-sensitive K+ channel-dependent decrease in blood pressure in freely moving rats. Neuroscience 152(1):169–177
- 125. Kimura Y, Dargusch R, Schubert D, Kimura H (2006) Hydrogen sulfide protects HT22 neuronal cells from oxidative stress. Antioxid Redox Signal 8 (3-4):661–670
- 126. Fitzgerald R, DeSantiago B, Lee DY, Yang G, Kim JY, Foster DB et al (2014) H₂S relaxes isolated human airway smooth muscle cells via the

sarcolemmal K(ATP) channel. Biochem Biophys Res Commun 446(1):393–398

- 127. Distrutti E, Sediari L, Mencarelli A, Renga B, Orlandi S, Antonelli E et al (2006) Evidence that hydrogen sulfide exerts antinociceptive effects in the gastrointestinal tract by activating KATP channels. J Pharmacol Exp Ther 316(1):325–335
- 128. Medeiros JV, Bezerra VH, Lucetti LT, Lima-Junior RC, Barbosa AL, Tavares BM et al (2012) Role of KATP channels and TRPV1 receptors in hydrogen sulfide-enhanced gastric emptying of liquid in awake mice. Eur J Pharmacol 693(1-3):57–63
- 129. Mustafa AK, Sikka G, Gazi SK, Steppan J, Jung SM, Bhunia AK et al (2011) Hydrogen sulfide as endothelium-derived hyperpolarizing factor sulfhydrates potassium channels. Circ Res 109 (11):1259–1268
- 130. Mustafa AK, Gadalla MM, Sen N, Kim S, Mu W, Gazi SK et al (2009) H₂S signals through protein S-sulfhydration. Sci Signal 2(96):ra72
- 131. Gade AR, Kang M, Akbarali HI (2013) Hydrogen sulfide as an allosteric modulator of ATP-sensitive potassium channels in colonic inflammation. Mol Pharmacol 83(1):294–306
- Pan J, Carroll KS (2013) Persulfide reactivity in the detection of protein s-sulfhydration. ACS Chem Biol 8(6):1110–1116
- 133. Jiang B, Tang G, Cao K, Wu L, Wang R (2010) Molecular mechanism for H(2)S-induced activation of K(ATP) channels. Antioxid Redox Signal 12 (10):1167–1178
- 134. Tang G, Yang G, Jiang B, Ju Y, Wu L, Wang R (2013a) H(2)S is an endothelium-derived hyperpolarizing factor. Antioxid Redox Signal 19 (14):1634–1646
- 135. Tang G, Zhang L, Yang G, Wu L, Wang R (2013b) Hydrogen sulfide-induced inhibition of L-type Ca2+ channels and insulin secretion in mouse pancreatic beta cells. Diabetologia 56(3):533–541
- 136. Zhang R, Sun Y, Tsai H, Tang C, Jin H, Du J (2012b) Hydrogen sulfide inhibits L-type calcium currents depending upon the protein sulfhydryl state in rat cardiomyocytes. PLoS One 7(5):e37073
- 137. Okubo K, Takahashi T, Sekiguchi F, Kanaoka D, Matsunami M, Ohkubo T et al (2011) Inhibition of T-type calcium channels and hydrogen sulfideforming enzyme reverses paclitaxel-evoked neuropathic hyperalgesia in rats. Neuroscience 188:148–156
- 138. Maeda Y, Aoki Y, Sekiguchi F, Matsunami M, Takahashi T, Nishikawa H et al (2009) Hyperalgesia induced by spinal and peripheral hydrogen sulfide: evidence for involvement of Cav3.2 T-type calcium channels. Pain 142(1-2):127–132
- 139. Telezhkin V, Brazier SP, Cayzac S, Muller CT, Riccardi D, Kemp PJ (2009) Hydrogen sulfide inhibits human BK(Ca) channels. Adv Exp Med Biol 648:65–72

- 140. Sitdikova GF, Weiger TM, Hermann A (2010) Hydrogen sulfide increases calcium-activated potassium (BK) channel activity of rat pituitary tumor cells. Pflugers Archiv: Eur J Physiol 459(3):389–397
- 141. Streng T, Axelsson HE, Hedlund P, Andersson DA, Jordt SE, Bevan S et al (2008) Distribution and function of the hydrogen sulfide-sensitive TRPA1 ion channel in rat urinary bladder. Eur Urol 53 (2):391–399
- 142. Patacchini R, Santicioli P, Giuliani S, Maggi CA (2004) Hydrogen sulfide (H₂S) stimulates capsaicinsensitive primary afferent neurons in the rat urinary bladder. Br J Pharmacol 142(1):31–34
- 143. Naik JS, Osmond JM, Walker BR, Kanagy NL (2016) Hydrogen sulfide-induced vasodilation mediated by endothelial TRPV4 channels. Am J Physiol Heart Circ Physiol 311(6):H1437–H1h44
- 144. Bucci M, Papapetropoulos A, Vellecco V, Zhou Z, Pyriochou A, Roussos C et al (2010) Hydrogen sulfide is an endogenous inhibitor of phosphodiesterase activity. Arterioscler Thromb Vasc Biol 30 (10):1998–2004
- 145. Coletta C, Papapetropoulos A, Erdelyi K, Olah G, Modis K, Panopoulos P et al (2012) Hydrogen sulfide and nitric oxide are mutually dependent in the regulation of angiogenesis and endothelium-dependent vasorelaxation. Proc Natl Acad Sci U S A 109 (23):9161–9166
- 146. Whiteman M, Armstrong JS, Chu SH, Jia-Ling S, Wong BS, Cheung NS et al (2004) The novel neuromodulator hydrogen sulfide: an endogenous peroxynitrite 'scavenger'? J Neurochem 90 (3):765–768
- 147. Whiteman M, Cheung NS, Zhu YZ, Chu SH, Siau JL, Wong BS et al (2005) Hydrogen sulphide: a novel inhibitor of hypochlorous acid-mediated oxidative damage in the brain? Biochem Biophys Res Commun 326(4):794–798
- 148. Olas B, Kontek B (2015) Hydrogen sulfide decreases the plasma lipid peroxidation induced by homocysteine and its thiolactone. Mol Cell Biochem 404 (1–2):39–43
- 149. Gao Y, Yao X, Zhang Y, Li W, Kang K, Sun L et al (2011) The protective role of hydrogen sulfide in myocardial ischemia-reperfusion-induced injury in diabetic rats. Int J Cardiol 152(2):177–183
- 150. Xu Z, Prathapasinghe G, Wu N, Hwang SY, Siow YL (2009) O K. ischemia-reperfusion reduces cystathionine-beta-synthase-mediated hydrogen sulfide generation in the kidney. Am J Physiol Renal Physiol 297(1):F27–F35
- 151. Carballal S, Trujillo M, Cuevasanta E, Bartesaghi S, Moller MN, Folkes LK et al (2011) Reactivity of hydrogen sulfide with peroxynitrite and other oxidants of biological interest. Free Radic Biol Med 50(1):196–205
- 152. Whiteman M, Winyard PG (2011) Hydrogen sulfide and inflammation: the good, the bad, the ugly and the promising. Expert Rev Clin Pharmacol 4(1):13–32

- 153. Furne J, Saeed A, Levitt MD (2008) Whole tissue hydrogen sulfide concentrations are orders of magnitude lower than presently accepted values. Am J Physiol Regul Integr Comp Physiol 295(5):R1479– R1485
- 154. Ubuka T, Abe T, Kajikawa R, Morino K (2001) Determination of hydrogen sulfide and acid-labile sulfur in animal tissues by gas chromatography and ion chromatography. J Chromatogr B Biomed Sci Appl 757(1):31–37
- 155. Kimura Y, Goto Y, Kimura H (2010) Hydrogen sulfide increases glutathione production and suppresses oxidative stress in mitochondria. Antioxid Redox Signal 12(1):1–13
- 156. Kimura Y, Kimura H (2004) Hydrogen sulfide protects neurons from oxidative stress. FASEB J 18 (10):1165–1167
- 157. Lee ZW, Low YL, Huang S, Wang T, Deng LW (2014) The cystathionine gamma-lyase/hydrogen sulfide system maintains cellular glutathione status. Biochem J 460(3):425–435
- 158. Villa P, Saccani A, Sica A, Ghezzi P (2002) Glutathione protects mice from lethal sepsis by limiting inflammation and potentiating host defense. J Infect Dis 185(8):1115–1120
- 159. Calvert JW, Elston M, Nicholson CK, Gundewar S, Jha S, Elrod JW et al (2010b) Genetic and pharmacologic hydrogen sulfide therapy attenuates ischemiainduced heart failure in mice. Circulation 122 (1):11–19
- 160. Han W, Dong Z, Dimitropoulou C, Su Y (2011) Hydrogen sulfide ameliorates tobacco smokeinduced oxidative stress and emphysema in mice. Antioxid Redox Signal 15(8):2121–2134
- 161. Santangelo F, Witko-Sarsat V, Drueke T, Descamps-Latscha B (2004) Restoring glutathione as a therapeutic strategy in chronic kidney disease. Nephrol Dial Transplant 19(8):1951–1955
- 162. Eghbal MA, Pennefather PS, O'Brien PJ (2004) H2S cytotoxicity mechanism involves reactive oxygen species formation and mitochondrial depolarisation. Toxicology 203(1-3):69–76
- 163. Caro AA, Thompson S, Tackett J (2011) Increased oxidative stress and cytotoxicity by hydrogen sulfide in HepG2 cells overexpressing cytochrome P450 2E1. Cell Biol Toxicol 27(6):439–453
- 164. Truong DH, Eghbal MA, Hindmarsh W, Roth SH, O'Brien PJ (2006) Molecular mechanisms of hydrogen sulfide toxicity. Drug Metab Rev 38(4):733–744
- 165. Nicholls P (1961) The formation and properties of sulphmyoglobin and sulphcatalase. Biochem J 81:374–383
- 166. Deplancke B, Gaskins HR (2003) Hydrogen sulfide induces serum-independent cell cycle entry in nontransformed rat intestinal epithelial cells. FASEB J 17(10):1310–1312
- 167. Attene-Ramos MS, Wagner ED, Plewa MJ, Gaskins HR (2006) Evidence that hydrogen sulfide is a genotoxic agent. Mol Cancer Res 4(1):9–14
- Attene-Ramos MS, Wagner ED, Gaskins HR, Plewa MJ (2007) Hydrogen sulfide induces direct radical-

associated DNA damage. Mol Cancer Res 5 (5):455-459

- 169. Attene-Ramos MS, Nava GM, Muellner MG, Wagner ED, Plewa MJ, Gaskins HR (2010) DNA damage and toxicogenomic analyses of hydrogen sulfide in human intestinal epithelial FHs 74 Int cells. Environ Mol Mutagen 51(4):304–314
- 170. Gonzalez-Amaro R, Diaz-Gonzalez F, Sanchez-Madrid F (1998) Adhesion molecules in inflammatory diseases. Drugs 56(6):977–988
- 171. Zanardo RC, Brancaleone V, Distrutti E, Fiorucci S, Cirino G, Wallace JL (2006) Hydrogen sulfide is an endogenous modulator of leukocyte-mediated inflammation. FASEB J 20(12):2118–2120
- 172. Pan LL, Liu XH, Gong QH, Wu D, Zhu YZ (2011) Hydrogen sulfide attenuated tumor necrosis factoralpha-induced inflammatory signaling and dysfunction in vascular endothelial cells. PLoS One 6(5): e19766
- 173. Wang M, Tang W, Xin H, Zhu YZ (2016) S-Propargyl-cysteine, a novel hydrogen sulfide donor, inhibits inflammatory Hepcidin and relieves Anemia of inflammation by inhibiting IL-6/STAT3 pathway. PLoS One 11(9):e0163289
- 174. Brancaleone V, Mitidieri E, Flower RJ, Cirino G, Perretti M (2014) Annexin A1 mediates hydrogen sulfide properties in the control of inflammation. J Pharmacol Exp Ther 351(1):96–104
- 175. Maggi CA (2000) Principles of tachykininergic co-transmission in the peripheral and enteric nervous system. Regul Pept 93(1-3):53–64
- 176. Yokota Y, Sasai Y, Tanaka K, Fujiwara T, Tsuchida K, Shigemoto R et al (1989) Molecular characterization of a functional cDNA for rat substance P receptor. J Biol Chem 264 (30):17649–17652
- 177. Kraneveld AD, Nijkamp FP (2001) Tachykinins and neuro-immune interactions in asthma. Int Immunopharmacol 1(9–10):1629–1650
- 178. Weinstock JV, Blum A, Walder J, Walder R (1988) Eosinophils from granulomas in murine schistosomiasis mansoni produce substance P. J Immunol 141 (3):961–966
- 179. Bost KL, Breeding SA, Pascual DW (1992) Modulation of the mRNAs encoding substance P and its receptor in rat macrophages by LPS. Reg Immunol 4(2):105–112
- 180. Killingsworth CR, Shore SA, Alessandrini F, Dey RD, Paulauskis JD (1997) Rat alveolar macrophages express preprotachykinin gene-I mRNA-encoding tachykinins. Am J Phys 273(5):L1073–L1081
- 181. Joos GF, Germonpre PR, Pauwels RA (2000) Role of tachykinins in asthma. Allergy 55(4):321–337
- 182. Holzer P, Holzer-Petsche U (1997) Tachykinins in the gut. Part II. Roles in neural excitation, secretion and inflammation. Pharmacol Ther 73(3):219–263
- 183. Pernow B (1983) Substance P. Pharmacol Rev 35 (2):85–141
- 184. Smith CH, Barker JN, Morris RW, MacDonald DM, Lee TH (1993) Neuropeptides induce rapid expression of endothelial cell adhesion molecules and elicit

granulocytic infiltration in human skin. J Immunol 151(6):3274–3282

- 185. Zhang H, Hegde A, Ng SW, Adhikari S, Moochhala SM, Bhatia M (2007c) Hydrogen sulfide up-regulates substance P in polymicrobial sepsis-associated lung injury. J Immunol 179(6):4153–4160
- 186. Ang SF, Moochhala SM, Bhatia M (2010) Hydrogen sulfide promotes transient receptor potential vanilloid 1-mediated neurogenic inflammation in polymicrobial sepsis. Crit Care Med 38(2):619–628
- 187. Ang SF, Moochhala SM, MacAry PA, Bhatia M (2011a) Hydrogen sulfide and neurogenic inflammation in polymicrobial sepsis: involvement of substance P and ERK-NF-kappaB signaling. PLoS One 6(9):e24535
- 188. Ang SF, Sio SW, Moochhala SM, MacAry PA, Bhatia M (2011b) Hydrogen sulfide upregulates cyclooxygenase-2 and prostaglandin E metabolite in sepsis-evoked acute lung injury via transient receptor potential vanilloid type 1 channel activation. J Immunol 187(9):4778–4787
- 189. Bhatia M, Saluja AK, Hofbauer B, Frossard JL, Lee HS, Castagliuolo I et al (1998) Role of substance P and the neurokinin 1 receptor in acute pancreatitis and pancreatitis-associated lung injury. Proc Natl Acad Sci U S A 95(8):4760–4765
- 190. Bhatia M, Slavin J, Cao Y, Basbaum AI, Neoptolemos JP (2003) Preprotachykinin-a gene deletion protects mice against acute pancreatitis and associated lung injury. Am J Physiol Gastrointest Liver Physiol 284(5):G830–G836
- 191. Lau HY, Wong FL, Bhatia M (2005) A key role of neurokinin 1 receptors in acute pancreatitis and associated lung injury. Biochem Biophys Res Commun 327(2):509–515
- 192. Sun J, Bhatia M (2007) Blockade of neurokinin-1 receptor attenuates CC and CXC chemokine production in experimental acute pancreatitis and associated lung injury. Am J Physiol Gastrointest Liver Physiol 292(1):G143–G153
- 193. Lau HY, Bhatia M (2006) The effect of CP96,345 on the expression of tachykinins and neurokinin receptors in acute pancreatitis. J Pathol 208 (3):364–371
- 194. Lau HY, Bhatia M (2007) Effect of CP-96,345 on the expression of adhesion molecules in acute pancreatitis in mice. Am J Physiol Gastrointest Liver Physiol 292(5):G1283–G1292
- 195. Koh YH, Moochhala S, Bhatia M (2011) The role of neutral endopeptidase in caerulein-induced acute pancreatitis. J Immunol 187(10):5429–5439
- 196. Grady EF, Yoshimi SK, Maa J, Valeroso D, Vartanian RK, Rahim S et al (2000) Substance P mediates inflammatory oedema in acute pancreatitis via activation of the neurokinin-1 receptor in rats and mice. Br J Pharmacol 130(3):505–512
- 197. Maa J, Grady EF, Yoshimi SK, Drasin TE, Kim EH, Hutter MM et al (2000) Substance P is a determinant of lethality in diet-induced hemorrhagic pancreatitis in mice. Surgery 128(2):232–239

- 198. He ZJ, Winston JH, Yusuf TE, Micci MA, Elfert A, Xiao SY et al (2003) Intraductal administration of an NK1 receptor antagonist attenuates the inflammatory response to retrograde infusion of radiological contrast in rats: implications for the pathogenesis and prevention of ERCP-induced pancreatitis. Pancreas 27(1):e13–e17
- 199. Ramnath RD, Bhatia M (2006) Substance P treatment stimulates chemokine synthesis in pancreatic acinar cells via the activation of NF-kappaB. Am J Physiol Gastrointest Liver Physiol 291(6):G1113–G1119
- 200. Ramnath RD, Sun J, Adhikari S, Zhi L, Bhatia M (2008a) Role of PKC-delta on substance P-induced chemokine synthesis in pancreatic acinar cells. Am J Physiol Cell Physiol 294(3):C683–C692
- 201. Ramnath RD, Sun J, Adhikari S, Bhatia M (2007) Effect of mitogen-activated protein kinases on chemokine synthesis induced by substance P in mouse pancreatic acinar cells. J Cell Mol Med 11 (6):1326–1341
- 202. Ramnath RD, Sun J, Bhatia M (2008b) Role of calcium in substance P-induced chemokine synthesis in mouse pancreatic acinar cells. Br J Pharmacol 154 (6):1339–1348
- 203. Sun J, Ramnath RD, Tamizhselvi R, Bhatia M (2009) Role of protein kinase C and phosphoinositide 3-kinase-Akt in substance P-induced proinflammatory pathways in mouse macrophages. FASEB J 23(4):997–1010
- 204. Sun J, Ramnath RD, Bhatia M (2007) Neuropeptide substance P upregulates chemokine and chemokine receptor expression in primary mouse neutrophils. Am J Physiol Cell Physiol 293(2):C696–C704
- 205. Sun J, Ramnath RD, Zhi L, Tamizhselvi R, Bhatia M (2008a) Substance P enhances NF-kappaB transactivation and chemokine response in murine macrophages via ERK1/2 and p38 MAPK signaling pathways. Am J Physiol Cell Physiol 294(6):C1586– C1596
- 206. Sun J, Ramnath RD, Tamizhselvi R, Bhatia M (2008b) Neurokinin a engages neurokinin-1 receptor to induce NF-kappaB-dependent gene expression in murine macrophages: implications of ERK1/2 and PI 3-kinase/Akt pathways. Am J Physiol Cell Physiol 295(3):C679–C691
- 207. Bhatia M, Sidhapuriwala JN, Ng SW, Tamizhselvi R, Moochhala SM (2008b) Pro-inflammatory effects of hydrogen sulphide on substance P in caeruleininduced acute pancreatitis. J Cell Mol Med 12 (2):580–590
- 208. Tamizhselvi R, Shrivastava P, Koh YH, Zhang H, Bhatia M (2011) Preprotachykinin-a gene deletion regulates hydrogen sulfide-induced toll-like receptor 4 signaling pathway in cerulein-treated pancreatic acinar cells. Pancreas 40(3):444–452
- 209. Gaddam RR, Chambers S, Fraser R, Cogger VC, Le Couteur DG, Ishii I et al (2019) Cystathioninegamma-lyase-derived hydrogen sulfide-regulated substance P modulates liver sieve fenestrations in caecal ligation and puncture-induced sepsis. Int J Mol Sci 20(13):3191

- 210. Li L, Moore PK (2007) An overview of the biological significance of endogenous gases: new roles for old molecules. Biochem Soc Trans 35(Pt 5):1138–1141
- 211. Wang R (2014) Gasotransmitters: growing pains and joys. Trends Biochem Sci 39(5):227–232
- 212. Kabil O, Vitvitsky V, Xie P, Banerjee R (2011) The quantitative significance of the transsulfuration enzymes for H₂S production in murine tissues. Antioxid Redox Signal 15(2):363–372
- 213. Bao L, Vlcek C, Paces V, Kraus JP (1998) Identification and tissue distribution of human cystathionine beta-synthase mRNA isoforms. Arch Biochem Biophys 350(1):95–103
- 214. Gori AM, Sofi F, Marcucci R, Giusti B, Franco Gensini G, Abbate R (2007) Association between homocysteine, vitamin B(6) concentrations and inflammation. Clin Chem Lab Med 45 (12):1728–1736
- 215. Chiku T, Padovani D, Zhu W, Singh S, Vitvitsky V, Banerjee R (2009) H2S biogenesis by human cystathionine gamma-lyase leads to the novel sulfur metabolites lanthionine and homolanthionine and is responsive to the grade of hyperhomocysteinemia. J Biol Chem 284(17):11601–11612
- 216. Singh S, Padovani D, Leslie RA, Chiku T, Banerjee R (2009) Relative contributions of cystathionine beta-synthase and gamma-cystathionase to H₂S biogenesis via alternative trans-sulfuration reactions. J Biol Chem 284(33):22457–22466
- 217. Shibuya N, Kimura H (2013) Production of hydrogen sulfide from d-cysteine and its therapeutic potential. Front Endocrinol 4:87
- 218. Mikami Y, Shibuya N, Kimura Y, Nagahara N, Ogasawara Y, Kimura H (2011) Thioredoxin and dihydrolipoic acid are required for 3-mercaptopyruvate sulfurtransferase to produce hydrogen sulfide. Biochem J 439(3):479–485
- 219. Ogasawara Y, Isoda S, Tanabe S (1994) Tissue and subcellular distribution of bound and acid-labile sulfur, and the enzymic capacity for sulfide production in the rat. Biol Pharm Bull 17(12):1535–1542
- 220. Stuehr DJ (2004) Enzymes of the L-arginine to nitric oxide pathway. J Nutr 134(10 Suppl):2748S–2751S
- 221. Arzumanian V, Stankevicius E, Laukeviciene A, Kevelaitis E (2003) Mechanisms of nitric oxide synthesis and action in cells. Medicina 39(6):535–541
- 222. Danylovych GV, Bohach TV, Danylovych YV (2018) The biosynthesis of nitric oxide from L-arginine. nitric oxide formation features and its functional role in mitochondria. Ukr Biochem J 2018:3–24
- 223. Cannon RO 3rd. (1998) Role of nitric oxide in cardiovascular disease: focus on the endothelium. Clin Chem 44(8 Pt 2):1809–1819
- 224. Wu L, Wang R (2005) Carbon monoxide: endogenous production, physiological functions, and pharmacological applications. Pharmacol Rev 57 (4):585–630
- 225. Pae HO, Chung HT (2009) Heme oxygenase-1: its therapeutic roles in inflammatory diseases. Immune Network 9(1):12–19

- 226. Pae HO, Lee YC, Chung HT (2008) Heme oxygenase-1 and carbon monoxide: emerging therapeutic targets in inflammation and allergy. Recent Patents Inflamm Allergy Drug Discov 2(3):159–165
- 227. Pae HO, Son Y, Kim NH, Jeong HJ, Chang KC, Chung HT (2010) Role of heme oxygenase in preserving vascular bioactive NO. Nitric Oxide Biol Chem 23(4):251–257
- 228. Pae HO, Lee YC, Jo EK, Chung HT (2009) Subtle interplay of endogenous bioactive gases (NO, CO and H(2)S) in inflammation. Arch Pharm Res 32 (8):1155–1162
- 229. Ashino T, Yamanaka R, Yamamoto M, Shimokawa H, Sekikawa K, Iwakura Y et al (2008) Negative feedback regulation of lipopolysaccharideinduced inducible nitric oxide synthase gene expression by heme oxygenase-1 induction in macrophages. Mol Immunol 45(7):2106–2115
- 230. Anuar F, Whiteman M, Siau JL, Kwong SE, Bhatia M, Moore PK (2006) Nitric oxide-releasing flurbiprofen reduces formation of proinflammatory hydrogen sulfide in lipopolysaccharide-treated rat. Br J Pharmacol 147(8):966–974
- 231. Oh GS, Pae HO, Lee BS, Kim BN, Kim JM, Kim HR et al (2006b) Hydrogen sulfide inhibits nitric oxide production and nuclear factor-kappaB via heme oxygenase-1 expression in RAW264.7 macrophages stimulated with lipopolysaccharide. Free Radic Biol Med 41(1):106–119
- 232. Whiteman M, Li L, Rose P, Tan CH, Parkinson DB, Moore PK (2010) The effect of hydrogen sulfide donors on lipopolysaccharide-induced formation of inflammatory mediators in macrophages. Antioxid Redox Signal 12(10):1147–1154
- 233. Hua W, Chen Q, Gong F, Xie C, Zhou S, Gao L (2013) Cardioprotection of H₂S by downregulating iNOS and upregulating HO-1 expression in mice with CVB3-induced myocarditis. Life Sci 93(24):949–954
- 234. Zhang HX, Liu SJ, Tang XL, Duan GL, Ni X, Zhu XY et al (2016) H2S attenuates LPS-induced acute lung injury by reducing oxidative/Nitrative stress and inflammation. Cell Physiol Biochem 40 (6):1603–1612
- 235. Ha C, Tian S, Sun K, Wang D, Lv J, Wang Y (2015) Hydrogen sulfide attenuates IL-1beta-induced inflammatory signaling and dysfunction of osteoarthritic chondrocytes. Int J Mol Med 35 (6):1657–1666
- 236. Huang CW, Feng W, Peh MT, Peh K, Dymock BW, Moore PK (2016) A novel slow-releasing hydrogen sulfide donor, FW1256, exerts anti-inflammatory effects in mouse macrophages and in vivo. Pharmacol Res 113(Pt A):533–546
- 237. Magierowski M, Magierowska K, Hubalewska-Mazgaj M, Adamski J, Bakalarz D, Sliwowski Z et al (2016) Interaction between endogenous carbon monoxide and hydrogen sulfide in the mechanism of gastroprotection against acute aspirin-induced gastric damage. Pharmacol Res 114:235–250
- 238. Huang XL, Zhou XH, Wei P, Xian XH, Ling YL (2008) The role of hydrogen sulfide in acute lung

injury during endotoxic shock and its relationship with nitric oxide and carbon monoxide. Zhonghua Yi Xue Za Zhi 88(32):2240–2245

- 239. Dal-Secco D, Cunha TM, Freitas A, Alves-Filho JC, Souto FO, Fukada SY et al (2008) Hydrogen sulfide augments neutrophil migration through enhancement of adhesion molecule expression and prevention of CXCR2 internalization: role of ATP-sensitive potassium channels. J Immunol 181(6):4287–4298
- 240. Dam VP, Scott JL, Ross A, Kinobe RT (2012) Inhibition of cystathionine gamma-lyase and the biosynthesis of endogenous hydrogen sulphide ameliorates gentamicin-induced nephrotoxicity. Eur J Pharmacol 685(1–3):165–173
- 241. Wallace JL, Vong L, McKnight W, Dicay M, Martin GR (2009b) Endogenous and exogenous hydrogen sulfide promotes resolution of colitis in rats. Gastroenterology 137(2):569–578
- 242. Tan G, Pan S, Li J, Dong X, Kang K, Zhao M et al (2011) Hydrogen sulfide attenuates carbon tetrachloride-induced hepatotoxicity, liver cirrhosis and portal hypertension in rats. PLoS One 6(10): e25943
- 243. Esechie A, Kiss L, Olah G, Horvath EM, Hawkins H, Szabo C et al (2008) Protective effect of hydrogen sulfide in a murine model of acute lung injury induced by combined burn and smoke inhalation. Clin Sci 115(3):91–97
- 244. Zeng J, Lin X, Fan H, Li C (2013) Hydrogen sulfide attenuates the inflammatory response in a mouse burn injury model. Mol Med Rep 8(4):1204–1208
- 245. Elsey DJ, Fowkes RC, Baxter GF (2010) Regulation of cardiovascular cell function by hydrogen sulfide (H(2)S). Cell Biochem Funct 28(2):95–106
- 246. Cheung NS, Peng ZF, Chen MJ, Moore PK, Whiteman M (2007) Hydrogen sulfide induced neuronal death occurs via glutamate receptor and is associated with calpain activation and lysosomal rupture in mouse primary cortical neurons. Neuropharmacology 53(4):505–514
- 247. Yang G, Yang W, Wu L, Wang R (2007) H2S, endoplasmic reticulum stress, and apoptosis of insulin-secreting beta cells. J Biol Chem 282 (22):16567–16576
- 248. Lowicka E, Beltowski J (2007) Hydrogen sulfide (H₂S) - the third gas of interest for pharmacologists. Pharmacol Rep 59(1):4–24
- 249. Mitsuhashi H, Yamashita S, Ikeuchi H, Kuroiwa T, Kaneko Y, Hiromura K et al (2005) Oxidative stressdependent conversion of hydrogen sulfide to sulfite by activated neutrophils. Shock 24(6):529–534
- 250. Rose P, Moore PK, Ming SH, Nam OC, Armstrong JS, Whiteman M (2005) Hydrogen sulfide protects colon cancer cells from chemopreventative agent

beta-phenylethyl isothiocyanate induced apoptosis. World J Gastroenterol 11(26):3990–3997

- 251. Fiorucci S, Orlandi S, Mencarelli A, Caliendo G, Santagada V, Distrutti E et al (2007) Enhanced activity of a hydrogen sulphide-releasing derivative of mesalamine (ATB-429) in a mouse model of colitis. Br J Pharmacol 150(8):996–1002
- 252. Baskar R, Li L, Moore PK (2007) Hydrogen sulfideinduces DNA damage and changes in apoptotic gene expression in human lung fibroblast cells. FASEB J 21(1):247–255
- 253. Adhikari S, Bhatia M (2008) H₂S-induced pancreatic acinar cell apoptosis is mediated via JNK and p38 MAP kinase. J Cell Mol Med 12(4):1374–1383
- 254. Li L, Bhatia M, Zhu YZ, Zhu YC, Ramnath RD, Wang ZJ et al (2005) Hydrogen sulfide is a novel mediator of lipopolysaccharide-induced inflammation in the mouse. FASEB J 19(9):1196–1198
- 255. Li L, Salto-Tellez M, Tan CH, Whiteman M, Moore PK (2009b) GYY4137, a novel hydrogen sulfidereleasing molecule, protects against endotoxic shock in the rat. Free Radic Biol Med 47(1):103–113
- 256. Li L, Fox B, Keeble J, Salto-Tellez M, Winyard PG, Wood ME et al (2013) The complex effects of the slow-releasing hydrogen sulfide donor GYY4137 in a model of acute joint inflammation and in human cartilage cells. J Cell Mol Med 17(3):365–376
- 257. Rossoni G, Sparatore A, Tazzari V, Manfredi B, Del Soldato P, Berti F (2008) The hydrogen sulphidereleasing derivative of diclofenac protects against ischaemia-reperfusion injury in the isolated rabbit heart. Br J Pharmacol 153(1):100–109
- 258. Mittal M, Siddiqui MR, Tran K, Reddy SP, Malik AB (2014) Reactive oxygen species in inflammation and tissue injury. Antioxid Redox Signal 20 (7):1126–1167
- 259. Dal-Secco D, Cunha TM, Freitas A, Alves-Filho JC, Souto FO, Fukada SY et al (2008) Hydrogen sulfide augments neutrophil migration through enhancement of adhesion molecule expression and prevention of CXCR2 internalization: role of ATP-sensitive potassium channels. J Immunol 181(6):4287–4298
- 260. Li L, Rossoni G, Sparatore A, Lee LC, Del Soldato P, Moore PK (2007) Anti-inflammatory and gastrointestinal effects of a novel diclofenac derivative. Free Radic Biol Med 42(5):706–719
- 261. Fleischmann C, Scherag A, Adhikari NK, Hartog CS, Tsaganos T, Schlattmann P et al (2016) Assessment of global incidence and mortality of hospital-treated sepsis. Current estimates and limitations. Am J Respir Crit Care Med 193(3):259–272
- 262. Shetty S, Lalor PF, Adams DH (2018) Liver sinusoidal endothelial cells - gatekeepers of hepatic immunity. Nat Rev Gastroenterol Hepatol 15(9):555–567

Hydrogen Sulfide: a Novel Immunoinflammatory Regulator in Rheumatoid Arthritis

M. Li, Jian-Chun Mao, and Yi-Zhun Zhu

1 Introduction

 H_2S is now regarded as a third gaseous signaling transmitter, next to nitric oxide (NO) and carbon monoxide (CO). H_2S is characterized by a smell of rotten egg which can be endogenously produced in several mammalian tissues, such as the brain, cardiovascular system, liver, lung, and kidney [1]. Recent theories have raised the question that life may originate from the heat generated by the process of hydrothermal circulation which provides energy mainly from H_2S [2].

Bernardino Ramazzini, an Italian physician, is probably the first one to describe the toxicity of

e-mail: yzzhu@must.edu.mo; mjczyczx@shutcm.edu.cn

 H_2S in 1713, which is the earliest study on H_2S [3]. After that, the toxic effects of H_2S on mammals have been known over the centuries. Until 1996, Abe and Kimura suggested the role of endogenous H_2S as a neuromodulator, starting a new era of H_2S research in biology and medicine [4].

Over the past two decades, the concept of H₂S has evolved from a toxic gas to a tiny signaling molecule with potential clinical relevance [5, 6]. H₂S is a small lipophilic molecule that can penetrate cell membranes without the requirement for any specific transporter [7]. It diffuses rapidly into the cytoplasm, exerting multiple biological effects on various targets [8]. The biological effects of H₂S are multiple and sometimes opposite, depending on its concentration. In 2002, Zhao W. and Wang R. firstly found that H₂S showed a biological effect in the vascular system, which was able to induce the relaxation of vascular smooth muscle [9]. H_2S has widely been demonstrated to have cardio-protective [10-14] and pro-angiogenic effects [15, 16] in vivo and in vitro, as well as inhibitory effect on platelet aggregation [17] and macrophage migration [18], cytoprotective effect [19], anti-oxidant effect [20], and anti-apoptotic activity [21]. However, the frequently reported role of H₂S is antiinflammation [22–28]. The potential effects of H₂S were also discussed in several review articles [29-32]. In summary, we depicted the roles of H_2S in Fig. 1. This review addresses the relevance of H₂S in the research area of RA.

M. Li

State Key Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau, China

J.-C. Mao

Department of Rheumatology, Longhua Hospital, Shanghai University of Chinese Medicine, Shanghai, China

Y.-Z. Zhu (🖂)

State Key Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau, China

School of Pharmacy, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau, China

Shanghai Key Laboratory of Bioactive Small Molecules, Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China

[©] Springer Nature Singapore Pte Ltd. 2021

Y.-C. Zhu (ed.), *Advances in Hydrogen Sulfide Biology*, Advances in Experimental Medicine and Biology 1315, https://doi.org/10.1007/978-981-16-0991-6_7

Increase KATP channel current

Fig. 1 General description of pharmacological effects of H_2S . The anti-inflammatory effect of H_2S is due to its ability to inhibit NF- κ B signaling pathway. It improves angiogenesis through KATP channel/MAPK pathway activation. On the other hand, it avoids the adhesion of leukocytes to endothelial cells via intercellular cell adhesion molecule-1 (ICAM-1) and further inhibits the production of inflammatory cytokines. Moreover, H_2S have pro-

2 Hydrogen Sulfide

2.1 Physicochemical Properties of H₂S

 H_2S is a colorless and flammable gas. The fate of H₂S after generation is unique compared with NO and CO because it dissociates to HS^- and S^{2-} in solution. Due to the volatile nature of H₂S, it can be easily predicted that the equilibrium will constantly shift, resulting in the formation of H₂S and quick releasing from the solution (H₂S \leftrightarrow H⁺ + $HS^-, HS^- \leftrightarrow H^+ + S^{2-}$). Some reports showed that half of H₂S could escape from the medium in 5 min and even shorter time [33-35]. This may partially contribute to the dramatic variations on the reported concentrations of H₂S in tissues, plasma, and certain experiments [36-38]. Otherwise, there are limits of measurement techniques and the quantification of biologic H₂S levels is under debate [39–41].

Free sulfide is a weak acid that dissociates in the body fluids with pH 7.4 to yield $\sim 20\%$ of H₂S

or anti-apoptotic effects depending on the cell type and its concentration. Interestingly, it is also able to show an antioxidant property as a reductant to activate Keap1/Nrf2 pathway. In myocardial infarction (MI), H_2S suppressed macrophages migration and promotes the mitochondrial biogenesis in macrophages, resulting in the conversion of M1 to M2 macrophages

and ~ 80% of HS⁻ and negligible amounts of S²⁻ as its pKa1 = 6.8 and pKa2 > 12 at 37 °C [42]. Although the physiological pH is about ~7, different organelles range from pH 4.7 to 8, which means the ratio of S²⁻/HS⁻/H₂S is variable [43]. The cell membranes allow rapid diffusion of H₂S through the lipid bilayer [7]. However, HS⁻ is not permeable and requires specific transporter to enter the cell [44, 45]. Therefore, the existing form of H₂S is pH-dependent and affects its membrane permeability.

 H_2S is often considered as a reductant since the sulfur atom is at -2 oxidation state, which is the same with GSH and cysteine. However, the respective reduction potential of S⁰/H₂S, GSSG/ GSH, and cystine/cysteine is -0.23, -0.24, and -0.34 V [46]. Additionally, the physiological level of H₂S is much lower than that of GSH or cysteine. For example, in plasma samples, free H₂S level is in the pmol/mg protein range, but GSH and cysteine concentrations are in the nmol/ mg protein range [39, 47]. Hence, free H₂S is less likely to be an effective reductant under normal physiological conditions. However, H_2S undergoes complex oxidation processes and generates thiosulfate, elemental sulfur, sulfenic acids, persulfides, polysulfides, sulfite, and sulfate. These oxidative products of H_2S can be involved in protein post-translational modification (PTM) and low molecular thiol interaction. Low molecular thiols or cysteine residues of proteins can be modified via S-sulfhydration, a special PTM of protein cysteine residues, in which the -SH from a sulfhydryl donor is transferred to cysteine sulfhydryls to form a covalent persulfide (-SSH) in the target proteins [48].

2.2 Endogenous Synthesis of H₂S

H₂S is produced in mammalian organisms by enzymatic and non-enzymatic pathways. In

enzymatic pathways, H₂S is generated in the tissues by three cysteine metabolizing enzymes: cystathionine- β -synthase (CBS, EC 4.2.1.22), cystathionine- γ -lyase (CSE or CTH, EC 4.4.1.1) 3-mercaptopyruvate sulfurtransferase and (3-MST or MPST, EC 2.8.1.2) [30, 49, 50]. As shown in Fig. 2A, CBS represents the main H_2S -generating enzyme in the brain, whereas CSE dominates in the cardiovascular system [51, 52]. The activity of 3-MST seems to be highest in the adrenal cortex [53]. The expression of the enzyme was also reported in the brain and erythrocytes [54, 55]. As research progressed, all enzymes can be found in the lungs, liver, kidneys, and gastrointestinal tract [56–58]. CBS and CSE are exclusively cytosolic enzymes, while 3-MST is found mainly in the mitochondria of cells [59].

CBS and CSE are two pyridoxal 5'-phosphate-(PLP) dependent enzymes which are a part of the

Fig. 2 The histological distribution of H_2S producing enzymes/bacteria (a) and endogenous metabolic pathways (b). In fact, CBS, CSE and 3-MST exist in various organs and cell types. However, CBS in the brain, CSE in the cardiovascular system and 3-MST in the kidney are mostly reported and studied. CBS and CSE produce H_2S from homocysteine and Lcysteine. In addition, CSE catalyzes

the breakdown of cystathionine to L-cysteine which supplies more H S sources. In mitochondria, CAT utilizes L-cysteine to produce mercaptopyruvate which is the substrate of 3-MST, and DAO resolves D-cysteine to produce mercaptopyruvate. Therefore, 3-MST transfers the thiol from mercaptopyruvate and release H_2S

reverse transsulfuration pathway. As depicted in Fig. 2B, in the presence of L-cysteine, CBS generates H_2S via a β -replacement reaction along with the production of L-serine. When L-homocysteine is available, the rate of H₂S generation can be accelerated by 23-fold compared with that from L-cysteine alone [60]. Additionally, CBS catalyzes the condensation of homocysteine and L-serine which results in the formation of L-cystathionine and H₂O [61]. This reaction is a critical step for the biosynthesis of L-cysteine which can be further used as an H₂S producing substrate. CSE catalyzes the α ,- γ -elimination of cystathionine to cysteine, α -ketobutyrate, and NH₃. H₂S is produced by CSE either by the breakdown of cysteine to pyruvate, H₂S, and NH₃ or by the use of homocysteine and cysteine to produce cystathionine and H₂S [62, 63]. However, 3-MST does not play a role in the transsulfuration pathway. Cysteine aminotransferase (CAT) utilizes L-cysteine to produce mercaptopyruvate, the substrate of 3-MST. Also, D-amino acid oxidase (DAO) resolves D-cysteine to produce mercaptopyruvate [64-66]. 3-MST transfers the thiol from mercaptopyruvate to itself. In the presence of ambient reductants, 3-MST-bound persulfide is removed to release H_2S [67, 68]. In essence, 3-MST acts as a sulfur carrier, rather than an H₂S producer, as the sequential reactions catalyzed by CAT and 3-MST generate sulfane sulfur [69].

In the non-enzymatic pathway, sulfatereducing bacteria (SRB) produce H_2S resides in the gastrointestinal (GI) tract (Fig. 2A). Although the bacterial source of H_2S has been known for centuries, it was considered as only a by-product of sulfur metabolism. As reviewed by Shatalin et al. analysis of bacterial genomes had revealed that most bacteria had orthologs of mammalian CBS, CSE, or 3-MST [70]. SRB use sulfate as an electron acceptor in the process of dissimilatory sulfate reduction and finally produce H_2S [71]. In a study of healthy adults in the USA, SRB colonized approximately 50% of their gut, and *Desulfovibrio piger* was the primary H_2S producer [72].

H₂S and Rheumatoid Arthritis

3

RA is a common autoimmune disease that is associated with progressive disability, systemic complications, and early death [73]. In RA, T cells, B cells, and macrophages infiltrate into the synovium and sometimes organize into discrete lymphoid aggregates with germinal centers (Fig. 3) [74]. As reported in increasing papers, H_2S shows a protective effect in RA via targeting innate immune cells (macrophages) [34] and adaptive effector (FLS) [75].

3.1 Pathogenesis of RA

3.1.1 Immune-Related Cellular Disorders

At the cellular level, the synovium in RA contains abundant myeloid cells and plasmacytoid dendritic cells which express cytokines (IL-12, 15, 18, and 23), human leukocyte antigen (HLA) class II molecules, and co-stimulatory molecules that are necessary for antigen presentation and T-cell activation [76, 77]. Although RA is usually considered as a disease mediated by type 1 helper T (Th1) cells [78], attention has increasingly focused on the role of Th17 cells which produce IL-17A, 17F, 21, 22, and TNF- α [79, 80]. Transforming growth factor β (TGF- β), IL-1 β , 6, 21, and 23, derived from macrophages and dendritic cells, provide a milieu that supports the differentiation of Th17 cells and suppresses the differentiation of Treg cells, thus shifting T-cell homeostasis toward inflammation. IL-17A, which synergizes with TNF- α to promote the activation of fibroblasts and chondrocytes, is currently being targeted in clinical trials [81]. In a CIA model, administration of peritoneal cells (PCs) reduced Th17 cells, induced Treg cells, and ameliorated the severity of CIA [82].

Humoral adaptive immunity also takes a part in RA driven by T helper cells [83]. B cells infiltrate into the synovia and mainly aggregate with T cells, which is closely related to the expression of factors such as a proliferation-

Fig. 3 Immune-related pathogenesis of RA in the knee joint. A step-wise progression can begin with the activation of innate immunity by stimulating dendritic cells in the presence of some environmental or gene factors. Then, dendritic cells recruit and activate T lymphocytes, which stimulate B cells, macrophages, synoviocytes, chondrocytes and osteoclasts in succession accompanied

with the secretions of pro-inflammatory and bone destructive cytokines (i.e. IL-1 β , IL-6, TNF- α , and MMPs). Therefore, in the synovial membrane and adjacent bone marrow, adaptive and innate immune pathways integrate to promote tissue remodeling and damage, driving the chronic phase in RA

inducing ligand (APRIL), B-lymphocyte stimulator (BLyS), and CC and CXC chemokines (e.g., CC chemokine ligand 21 and CXC chemokine ligand 14) [84, 85]. B lymphocytes play a pathologic role in the development and propagation of the disease, as B lymphocytes are recruited to the synovial fluid, where they contribute to local inflammation through the secretion of pro-inflammatory mediators (cytokines, chemokines, micro-RNAs) and present antigens to T cells [86]. Besides, activated Fc Receptorlike 4 (FcRL4) positive B cells are a component of the local autoimmune response, and express

receptor activator of nuclear factor kappa-B ligand (RANKL) to contribute to joint destruction [87]. A pathogenic role for a cluster of differentiation (CD) 20^+ B cells was confirmed by the efficacy of rituximab in RA patients, indicating that the treatment anti-CD20 B cells might be of importance in the therapy of RA [88].

Additionally, increased numbers of dendritic cells (DCs) are present in the synovium and synovial fluid of inflamed joints in RA patients compared with OA patients [89]. In RA, they trigger differentiation and activation of the auto-reactive T cells as well as innate immune effector

functions via presenting self-peptides [90]. Many application methods to achieve antigen-specific therapy were reviewed recently [91]. In the context of inflammation, DCs play a role as antigenpresenting cells (APCs) and a producer of pro-inflammatory cytokines (i.e., IL-23 and IL-12), which induce the differentiation of Th17 cells and Th1 subsets, relevant in joint inflammation [92].

Furthermore, macrophages act as an active role in the pathogenesis of RA because of the high expression of pro-inflammatory cytokines and matrix metalloproteinases (MMPs), and they are APCs for T cells and B cells, representing a source of osteoclast precursors in an inflammatory context [93]. In particular, the number of macrophages increases dramatically and they are central to the pathophysiology of RA. They constitute the main source of pro-inflammatory cytokines and chemokines to activate a wide range of immune and non-immune cells and secrete diverse tissue degrading enzymes that drive chronic inflammation, tissue destruction, and pain responses in RA [94]. Macrophages act through the release of cytokines (e.g., TNF- α , 12, 23), reactive oxygen IL-1, 6, 10, intermediates, nitrogen intermediates, production of prostanoids, and matrix-degrading enzymes, phagocytosis, and antigen presentation [95]. Therefore, macrophages are central effectors of RA and can be used to predict the possible efficacy of anti-rheumatic treatment [96]. Macrophages can be divided into two extreme subsets, classical activation (M1), and alternatively activation (M2) [97]. The symptoms and signs of RA are exacerbated with the increase of M1 which is the main part of macrophages, while M2 secrete anti-inflammatory cytokine (e.g., IL-10) to improve RA [98]. In a recent study, macrophage depletion with clodronatecontaining liposomes (Clo-lip) could ameliorate the incidence and development of RA [99]. Macrophages from sirtuin 1 (SIRT1) transgenic (Tg)-mice exhibited enhanced polarization of M2 phenotype macrophages and reduced polarization of M1 phenotype macrophages. In line with these observations, SIRT1-Tg mice showed less histological signs of arthritis [100]. Eventually, macrophages induce FLS hypertrophy by TNF- α and IL-1 β , which perpetuates the inflammation, generating a chronic loop [74]. In RA, FLS is hyperproliferative in the presence of inflammatory macrophages and produces cytokines and proteases, apart from acquiring an aggressive, tumor-like phenotype due to transcriptional mechanisms of imprinting and epigenetic changes, which lead to cartilage destruction and drive joint inflammation [101]. RA-FLS also secretes many pro-angiogenic factors like fibroblast growth factor, vascular endothelial growth factor (VEGF), hypoxia-inducible factors (HIFs), and IL-18, which promote new blood vessel formation, pannus growth, and inflammation [102]. Therefore, FLS is another key target in RA therapy.

3.1.2 Key Signaling Pathways

At the molecular level, some pathogenic signaling pathways involved in RA are concluded in Fig. 4. Nuclear factor κB (NF- κB) is abundantly activated in the synovium of RA patients and regulates multiple genes that contribute to inflammatory and immune responses, such as IL-6, IL-8, TNF-α, iNOS, and COX-2 [103, 104]. Animal models of inflammatory arthritis support the concept that NF- κ B plays a very active role in the development and progression of arthritis [105, 106]. NF- κ B activation prior to the onset of clinical manifestations of arthritis has been found in both murine CIA and rat AIA models [107, 108]. Targeting NF- κ B is an effective therapeutic strategy in many animal models of arthritis [109–113].

Highly expressed receptor activator of nuclear factor- κ B (RANK) and its ligand RANKL are indispensable regulators of bone erosion in RA [114]. RANKL is highly expressed in the synovial tissue of RA patients with active disease [115]. After binding with RANK, RANKL triggers the recruitment of an adaptor molecule TNF receptor-associated factor 6 (TRAF6), resulting in the activation of NF- κ B, Protein kinase B (PKB/AKT), mitogen-activated protein kinase (MAPKs) (i.e., extracellular regulated kinase (JNK), c-Jun N-terminal kinase (JNK),

Fig. 4 Pathogenic signaling pathways and H₂S-related targets in RA. After binding with RANK, RANKL recruits TRAF-6 and activates NF-κB pathway, as well as NADPH oxidase to produce ROS. Consequently, ROS stimulates p38 and JNK, which can also be activated by TNF- α . Pro-inflammatory (i.e. IL-6 and TNF- α) and bone destructive (i.e. MMPs and collagenases) cytokines are highly expressed after the activation of NF-κB and MAPK pathways. However, Keap1/Nrf2 pathway plays a protective role in RA as it promotes the production of HO-1 and

other antioxidant enzymes to ameliorate the oxidative stress in the cavity. Firstly, as a reductant, H₂S can scavenge ROS directly. On the other hand, H₂S can also S-sulfhydrates the Cys226/613 of Keap1 to release Nrf2. Secondly, H₂S suppresses the phosphorylation of IkB α and NF- κ B, and increases the S-sulfhydration of NF- κ B (p65) at Cys38, resulting in the inhibition of NF- κ B pathway. Thirdly, H₂S decreases the phosphorylation of Erk/p38/JNK to inhibit MAPK pathway

and p38), and nuclear factor of activated T cells c1 (NFATc1) [116]. Hence, the RANKL/RANK signaling pathway is a complementary therapeutic target in RA. Denosumab (RANKL-specific human monoclonal antibody) is currently used for treating osteoporosis, osteosarcoma, multiple myeloma, and bone metastasis [117].

The MAPKs are also key pro-RA regulators that stimulate the production of cytokines and MMPs in RA [118, 119]. All three kinase families (ERK, JNK, and p38) are highly expressed in rheumatoid synovial tissue [120] and closely related to NF- κ B [121]. All are constitutively expressed in cultured synoviocytes and will be

rapidly phosphorylated in the presence of pro-inflammatory cytokines. The MAPKs have attracted considerable attention as potential therapeutic targets in RA. Preclinical studies showed that p38 inhibitors were effective in murine CIA model and rat AIA model [122–124]. A selective JNK inhibitor, IQ-1S, inhibited MMP 1 and MMP3 gene expressions induced by IL-1 β in human FLS and significantly attenuated the development of CIA [125]. Upstream kinases that activate the MAPKs, for example, mitogenactivated protein kinase kinase 3 (MKK3), MKK4, MKK6, and MKK7, are also activated in RA synovium and can form signaling

complexes that integrate external environmental stresses to generate an appropriate cellular response [126, 127].

In RA, excessive reactive oxygen/nitrogen species (ROS/RNS) arise from the activation of NADPH oxidase (NOX) 2 and iNOS which may modulate inflammation-related cell signaling pathways [128]. Kelch-like ECH-associated protein 1 (Keap1) is bound to the inactivated form of nuclear factor erythroid 2-related factor 2 (Nrf2), suppressing antioxidant enzymes. Dissociation from Keap1 stabilizes Nrf2, while binding to Keap1 promotes the degradation of Nrf2 [129]. In the nucleus, Nrf2 binds to the promoter regions of antioxidant genes via the antioxidant response element (ARE) [130]. Anti-oxidative proteins, such as hemeoxygenase-1 (HO-1), are then transcribed by ARE [131]. In RA, Nrf2 deficiency promotes increased cytokine production and ROS following infection by bacteria or lipopolysaccharide (LPS) [132]. In Nrf2 knockout mice, cartilage damage was more severe and there was more oxidative damage during antibody-induced arthritis [133]. This suggests that these mice have an impaired ability to neutralize ROS resulting in increased susceptibility to oxidative stress.

3.2 Anti-RA Effect of H₂S

In RA, there is no doubt that immune responses cause inflammation and inflammatory cytokines stimulate immune cells as well as FLS, chondrocytes, and osteoclasts [73]. Here, we introduce the anti-inflammatory potential of H_2S in RA therapy via different targets (Fig. 4).

The effect of H₂S on joint inflammation was investigated in the past due to its antiinflammatory effect. The beneficial effect of H₂S seems to be dose-dependent as different studies demonstrated opposite results [134-137]. Between the inflammatory cells involved in RA, macrophages play a key role [98, 138, 139], which can polarize into different phenotypes and mediate the immune/inflammatory reactions. In murine macrophages stimulated with LPS, low concentration of H₂S inhibited the activation and synthesis of several pro-inflammatory mediators such as TNF- α , NF- κ B, IL-6, and IL-1 β [140]. However, at higher concentrations, H₂S stimulated the production of pro-inflammatory molecules by macrophages and human FLS [30, 75]. Kloesch et al. demonstrated the dual effect of H₂S on RA FLS in two different experiments, showing that short-term exposure to H₂S induced IL-6 expression, while long-term exposure had the opposite effect [141, 142].

In the last decade, the molecular mechanisms of H₂S on anti-inflammation were widely investigated in macrophages and FLS. Inhibitor of κB (I κB)/NF- κB is an important signaling pathway in inflammation and the key target of H₂S. Oh et al. demonstrated for the first time that H_2S inhibited NF-κB signaling in RAW264.7 cells stimulated with LPS [143]. Subsequently, in human FLS isolated from RA patients, DATS significantly attenuated the production of key inflammatory cytokines due to its inhibitory effect on the NF-kB pathway [144]. H₂S-dependent persulfide formation at Cys38 of p65 retained NF-kB in the cytosol and inhibited its DNA binding activity, resulting in reduced inflammation [145]. Additionally, other studies confirmed that H₂S inhibited the NF-κB expression of pro-inflammatory dependent cytokines (e.g., IL-1β, IL-6, TNF-α, COX-2, and iNOS) in macrophages, cardiac cell line, chondrocytes, and myoblast cell line [140, 146-148].

Although targeting NF- κ B is closely related to the anti-RA effect of H₂S, other mechanisms are also involved. NaHS partially blocked IL-1β-induced IL-6 and IL-8 expression by regulating p38 and ERK1/2 MAPK in chondrocyte cell line C-28/I2 [149]. Similarly, Kloesch et al. showed that in FLS isolated from RA patients, administration of NaHS transiently decreased IL-1- β -induced synthesis of IL-6, which was independent of NF-kB activation but dependent on p44/42 (ERK1/2) MAPK deactivation [141]. SPRC, also named as ZYZ-802, is known as an endogenous H₂S modulator which activates the Nrf2 signaling pathway by S-sulfhydrating Keap1 to play a role in antioxidant stress in the AIA rat model [150]. In another research, the author reported the specific S-sulfhydration locus that H₂S targeted Keap1 at cys226 and cys613, leading to its dissociation from Nrf2, consequently enhancing Nrf2 nuclear translocation and further activation of related genes [151]. Furthermore, NaHS up-regulated Nrf2 protein expression, its nuclear translocation, and the transcription of the two key downstream antioxidant genes peroxiredoxin-1 and NAD(P)H dehydrogenase quinone 1 in CD11b⁺ human monocytes (osteoclasts precursors), inhibiting human osteoclast differentiation [152]. Similarly, in the dextran sulfate sodium (DSS)-induced mouse colitis, NaHS inhibited the activation of NOD-, LRR- and pyrin domain-containing protein 3 (NLRP3) inflammasome and activated Nrf2 [153]. It suggested that H_2S shows a potential therapeutical role in erosive diseases of bone by activating a sustained antioxidant response. In the CIA mouse model, over-expression of CSE elevated H₂S production and inhibited Jumonji domain-containing protein 3 (JMJD3, a histone H3K27 demethylase) expression via the transcription factor Sp-1, which was accompanied by reduced inflammation in IL-1\beta-treated synovial fibroblasts [154]. Moreover, NaHS treatment activated another epigenetic enzyme histone deacetylase 3 (HDAC3), down-regulated inflammatory signaling, and maintained runt-related transcription factor 2 (RUNX2) sulfhydration, eventually ameliorating osteoclastogenesis [155].

On the other hand, H₂S donors may be used as biochemical factors able to induce cartilage and bone repair in the context of arthritis as the chronic inflammatory process leads to the irreversible disruption of the cartilage. Mesenchymal stem cells (MSCs) can express chondrogenic potential and improve the repair of cartilage [156–158]. Recently, it was reported that the pre-treatment of MSCs with NaHS protected MSCs upon hypoxia-ischemic injury via Akt and ERK1/2 pathways [159]. Furthermore, NaHS promoted the success of MSC therapy in rats with isoprenaline-induced heart failure [160]. A sponge H_2S -releasing silk fibroin loaded with GYY4137 was able to support MSCs adhesion, proliferation, and viability, and induce a significant increase in differentiation to mature osteoblasts [161].

3.3 H₂S-Donors as Potential Anti-RA Drugs

Numerous studies that investigate the biological roles of H_2S in vivo or in vitro use fast-dissolving salts, such as NaHS, Na₂S, or Lawesson's reagent (LR), to generate H_2S in a few seconds or minutes. This rapid burst of H_2S is not likely a good mimic for in vivo physiologic H_2S release, which occurs in smaller quantities [162] and much more slowly [163]. Here we introduce several promising exogenous H_2S donors in the anti-inflammation area including (RA).

3.3.1 ATB-346

ATB-346 (Fig. 5A), developed by Antibe Therapeutics, is an H₂S-releasing derivative of naproxen that progressed most into clinical development (with phase 2 trials completed). The first scientific literature of ATB-346 was published in 2010 [164]. Naproxen is considered the most cardiovascular-safe drug among these nonsteroidal anti-inflammatory drugs (NSAIDs) [165]. It exhibited comparable or even superior antiinflammatory activity to equimolar doses of naproxen in adjuvant-induced arthritis (AIA) rat model, but with substantially reduced gastrointestinal toxicity [164]. In zymosan-induced arthritis (ZIA) rats, ATB-346 was more effective than naproxen in terms of various nociceptive responses and multiple inflammatory cellulars and biochemical parameters [166]. However, in the rat model of carrageenan arthritis, ATB-346 and naproxen were found to be comparably effective [167]. A phase 2a clinical trial was performed in which a low dose of ATB-346 (250 mg once daily) was evaluated for its pain-relieving properties in patients with osteoarthritis (OA). In this trial, a once-daily dose of ATB-346 produced a 4.3 units' reduction of the Western Ontario-McMaster University Arthritis Index (WOMAC) pain score on day 4, with a further decrease to 7.6 units on day 10, at a very high level of

statistical significance in comparison to baseline pain (P < 0.001).

3.3.2 GYY4137

In 2008, GYY4137 (morpholin-4-ium-4methoxyphenyl (morpholino) phosphinodithioate) (Fig. 5B) was reported as a new type of H₂S-releasing compound [168]. GYY4137 can slowly produce H₂S both in vitro and in vivo. In an endotoxic shock rat model, GYY4137 was administered to conscious rats 1 or 2 h prior to LPS stimulation, and suppressed the rise of pro-inflammatory cytokines (e.g., tumor necrosis factor α (TNF- α), interleukin (IL)-1 β and IL-6) and lung myeloperoxidase (MPO) activity in plasma, while plasma concentration of the antiinflammatory cytokine IL-10 was increased [169]. GYY4137 also significantly inhibited LPS-induced release of pro-inflammatory mediators such as IL-1 β , IL-6, TNF- α , NO, and PGE2 in RAW264.7 macrophages, as well as inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) in human fibroblastsynoviocyte like (FLS) and articular chondrocytes [170, 171]. In a mouse complete Freund's adjuvant (CFA) model of acute joint

Fig. 5 Chemical structures of ATB-346 (a), GYY4137 (b), DAS/DADS/DATS (c), and SAC/SPRC (d) inflammation, GYY4137 decreased TNF- α , IL-1 β , IL-6, and IL-8 concentrations to protect the knee joints [170].

3.3.3 Diallyl Sulfide (DAS), Diallyl Disulfide (DADS), and Diallyl Trisulfide (DATS)

Multiple lines of evidence support that DAS, DADS, and DATS (Fig. 5C), both oil-soluble sulfur ingredients in garlic which supply H₂S in cell and animal models, exert anti-inflammatory and antioxidant effects. DAS prevents IL-1ß and monosodium urate (MSU) crystal-induced COX-2 up-regulation in synovial cells and chondrocytes and ameliorates crystal-induced synovitis potentially through a mechanism involving nuclear factor-kappa B (NF-κB) [172]. In the CFA-induced arthritic rat model, the treatment with DADS provoked significant reductions in paw volume, edema formation, arthritic score, and organ indices, together with significant improvement in body weight and decreased the expression of pro-inflammatory cytokines [173]. Moreover, Liang et al. confirmed that DATS could decrease cell viability and introduce apoptosis in RA-FLS [144]. DATS signifiattenuated the production of key cantly inflammatory cytokines induced by RA-FLS cells following treatment with TNF- α due to its inhibitory effect on the NF-kB and Wnt signaling pathways. Additionally, DATS regulated the immune function by restoring the balance between type 17 helper T (Th17) cells and regulatory T (Treg) cells in the collagen-induced arthritis (CIA) mouse model, which are two important cell types in the pathogenesis of RA.

3.3.4 S-Propargyl-Cysteine (SPRC)

SPRC (also named as ZYZ-802, Fig. 5D) is a structural analog of S-allylcysteine (SAC) (Fig. 5D), which is a garlic-derived organosulfur-containing amino acid. SPRC, originally innovated by Zhu's lab, has been studied extensively in preclinical studies as a H_2S donor reviewed by Wen and Zhu [174] as well as the recent update by Rose et al. [175]. In in vivo studies, SPRC, at a dose of 50 mg/kg, induced only a slight, although statistically significant, the

of H_2S elevation circulating levels [176, 177]. The molecular and biochemical pathways associated with the effects of SPRC are multiple. They include the up-regulation of CSE, stimulation of Akt phosphorylation, inhibition of NF-kB activation, VEGF receptor activation followed by STAT3 activation, elevation of intracellular glutathione levels, reduction of cellular ROS levels, and improvement of cellular calcium handling [11, 177–181]. In the AIA rat model, SPRC suppressed joint swelling and down-regulated the production of multiple inflammatory mediators in the knee joints [150]. It showed an anti-arthritis effect via up-regulating the Nrf2/ARE signaling pathway. A recent study also reported in vivo efficacy with a controlled release form of the compound termed CR-SPRC (produced by solid dispersion technique with Eudragit RS30D as a carrier) in acute and chronic myocardial ischemia models [11, 13]. Considering this, SPRC may be developed into an H₂S slow-releasing compound for cardiovascular and RA study.

These compounds are novel and useful for investigating the impact of H_2S on the inflammatory joint disease, possibly offering new therapeutic approaches. Finally, we should mention that the pharmacological addition of H_2S -forming reagents is not the only way to supply H_2S exogenously. Beneficial anti-inflammatory and antioxidant effects on patients with chronic lung disease, chronic rhinosinusitis, and rheumatologic diseases were exhibited when H_2S was administered in the form of sulfurous mineral water [182–186].

4 Conclusions and Perspectives

Currently, the interest in the therapeutic role of H_2S in inflammatory diseases especially in RA is growing. Meanwhile, the evidences of the antiinflammatory property of H_2S increased rapidly. H_2S shows inhibitory effect on the production of inflammatory cytokines in innate immune cells, as well as fibroblasts and chondrocytes. Moreover, H_2S plays a role as a radical scavenger in hypoxic condition which is usually associated with RA. Interestingly, pre-treatment with H_2S protects MSCs and enhances its capacity of cartilage repair. Therefore, as an immuno-inflammatory regulator in RA, investigations of H_2S may produce useful information for clinical research and even anti-RA drug development.

Additionally, challenges in H₂S application definitely exist in current studies. First of all, we should concern about H2S-related toxicity caused by high dose and quick release. Thus, slowreleasing H₂S pro-drug is a better way to solve the problem. Secondly, in order to exert a specific effect in specified tissue, H₂S should be directed by designed dosage form or conjugated with other clinical drugs as it can freely penetrate cell membrane, which may cause side effects via targeting other organs or tissues. Thirdly, there is a growing need to accurately monitor the concentration of H₂S in vivo and balance the efficacy and toxicity well. Further work is clearly required to substantiate the anti-RA effect of H₂S as it possibly offers a new therapeutic option for RA treatment.

Acknowledgments This work was supported by the Science and Technology Development Fund (FDCT) of Macau (067/2018/A2, 033/2017/AMJ and 0007/2019/AKP).

Conflict of Interest The authors declare no conflict of interest.

Author Contributions Original draft and preparation - M. Li,

Clinical aspect of rheumatology - JC Mao, PI, review and editing - Y.Z. Zhu.

References

- Doeller JE, Isbell TS, Benavides G, Koenitzer J, Patel H, Patel RP, Lancaster JR Jr, Darley-Usmar VM, Kraus DW (2005) Polarographic measurement of hydrogen sulfide production and consumption by mammalian tissues. Anal Biochem 341:40–51
- Olson KR, Straub KD (2016) The role of hydrogen sulfide in evolution and the evolution of hydrogen sulfide in metabolism and signaling. Physiology 31:60–72
- Ramazzini B (2001) De morbis artificum diatriba [diseases of workers]. 1713. Am J Public Health 91:1380–1382

- Abe K, Kimura H (1996) The possible role of hydrogen sulfide as an endogenous neuromodulator. J Neurosci Official J Soc Neurosci 16:1066–1071
- 5. Wang R (2002) Two's company, three's a crowd: can H2S be the third endogenous gaseous transmitter? Faseb J 16:1792–1798
- 6. Wang R (2010) Hydrogen sulfide: the third gasotransmitter in biology and medicine. Antioxid Redox Signal 12:1061–1064
- Mathai JC, Missner A, Kügler P, Saparov SM, Zeidel ML, Lee JK, Pohl P (2009) No facilitator required for membrane transport of hydrogen sulfide. Proc Natl Acad Sci U S A 106(39):16633–16638
- Benedetti F, Curreli S, Krishnan S, Davinelli S, Cocchi F, Scapagnini G, Gallo RC, Zella D (2017) Anti-inflammatory effects of H2S during acute bacterial infection: a review. J Transl Med 15:100
- Zhao W, Wang R (2002) H(2)S-induced vasorelaxation and underlying cellular and molecular mechanisms. Am J Physiol Heart Circul Physiol 283: H474–H480
- 10. Bian JS, Yong QC, Pan TT, Feng ZN, Ali MY, Zhou S, Moore PK (2006) Role of hydrogen sulfide in the cardioprotection caused by ischemic preconditioning in the rat heart and cardiac myocytes. J Pharmacol Exp Ther 316:670–678
- 11. Huang C, Kan J, Liu X, Ma F, Tran BH, Zou Y, Wang S, Zhu YZ (2013) Cardioprotective effects of a novel hydrogen sulfide agent-controlled release formulation of S-propargyl-cysteine on heart failure rats and molecular mechanisms. PLoS One 8:e69205
- 12. Miao L, Shen X, Whiteman M, Xin H, Shen Y, Xin X, Moore PK, Zhu YZ (2016a) Hydrogen sulfide mitigates myocardial infarction via promotion of mitochondrial biogenesis-dependent M2 polarization of macrophages. Antioxid Redox Signal 25:268–281
- 13. Tran BH, Huang C, Zhang Q, Liu X, Lin S, Liu H, Wang S, Zhu YZ (2015) Cardioprotective effects and pharmacokinetic properties of a controlled release formulation of a novel hydrogen sulfide donor in rats with acute myocardial infarction. Biosci Rep 35 (3):e00216
- 14. Wu J, Guo W, Lin SZ, Wang ZJ, Kan JT, Chen SY, Zhu YZ (2016a) Gp130-mediated STAT3 activation by S-propargyl-cysteine, an endogenous hydrogen sulfide initiator, prevents doxorubicin-induced cardiotoxicity. Cell Death Dis 7:e2339
- Cai WJ, Wang MJ, Moore PK, Jin HM, Yao T, Zhu YC (2007) The novel proangiogenic effect of hydrogen sulfide is dependent on Akt phosphorylation. Cardiovasc Res 76:29–40
- 16. Papapetropoulos A, Pyriochou A, Altaany Z, Yang G, Marazioti A, Zhou Z, Jeschke MG, Branski LK, Herndon DN, Wang R, Szabo C (2009) Hydrogen sulfide is an endogenous stimulator of angiogenesis. Proc Natl Acad Sci U S A 106:21972–21,977
- Grambow E, Mueller-Graf F, Delyagina E, Frank M, Kuhla A, Vollmar B (2014) Effect of the hydrogen sulfide donor GYY4137 on platelet activation and
microvascular thrombus formation in mice. Platelets 25:166–174

- Miao L, Xin X, Xin H, Shen X, Zhu YZ (2016b) Hydrogen Sulfide Recruits Macrophage Migration by Integrin beta1-Src-FAK/Pyk2-Rac Pathway in Myocardial Infarction. Sci Rep 6:22363
- Fox B, Schantz JT, Haigh R, Wood ME, Moore PK, Viner N, Spencer JP, Winyard PG, Whiteman M (2012) Inducible hydrogen sulfide synthesis in chondrocytes and mesenchymal progenitor cells: is H2S a novel cytoprotective mediator in the inflamed joint? J Cell Mol Med 16:896–910
- Kida K, Ichinose F (2015) Hydrogen Sulfide and Neuroinflammation. Handb Exp Pharmacol 230:181–189
- 21. Mirandola P, Gobbi G, Sponzilli I, Pambianco M, Malinverno C, Cacchioli A, De Panfilis G, Vitale M (2007) Exogenous hydrogen sulfide induces functional inhibition and cell death of cytotoxic lymphocytes subsets. J Cell Physiol 213:826–833
- 22. Bhatia M (2015) H2S and inflammation: an overview. Handb Exp Pharmacol 230:165–180
- Coavoy-Sanchez SA, Costa SKP, Muscara MN (2019) Hydrogen sulfide and dermatological diseases. Br J Pharmacol 177:857–865
- Coletta C, Szabo C (2013) Potential role of hydrogen sulfide in the pathogenesis of vascular dysfunction in septic shock. Curr Vascular Pharmacol 11:208–221
- Sen N (2017) Functional and Molecular Insights of Hydrogen Sulfide Signaling and Protein Sulfhydration. J Mol Biol 429:543–561
- 26. Sun HJ, Wu ZY, Cao L, Zhu MY, Liu TT, Guo L, Lin Y, Nie XW, Bian JS (2019) Hydrogen sulfide: recent progression and perspectives for the treatment of diabetic nephropathy. Molecules 24:2857
- Szabo C (2018) A timeline of hydrogen sulfide (H2S) research: from environmental toxin to biological mediator. Biochem Pharmacol 149:5–19
- Wallace JL, Ianaro A, Flannigan KL, Cirino G (2015) Gaseous mediators in resolution of inflammation. Sem Immunol 27:227–233
- Ahmad A, Sattar MA, Rathore HA et al (2015) A critical review of pharmacological significance of Hydrogen Sulfide in hypertension. Indian J Pharmacol 47:243–247
- Burguera EF, Meijide-Failde R, Blanco FJ (2017) Hydrogen sulfide and inflammatory joint diseases. Curr Drug Targets 18:1641–1652
- Predmore BL, Lefer DJ, Gojon G (2012) Hydrogen sulfide in biochemistry and medicine. Antioxid Redox Signal 17:119–140
- 32. Wang R, Szabo C, Ichinose F, Ahmed A, Whiteman M, Papapetropoulos A (2015) The role of H2S bioavailability in endothelial dysfunction. Trends Pharmacol Sci 36:568–578
- Eric R, Leon D, Stoy GF, Olson KR (2012) Passive loss of hydrogen sulfide in biological experiments. Anal Biochem 421:203–207

- 34. Gi-Su O, Pae H-O, Lee B-S et al (2006) Hydrogen sulfide inhibits nitric oxide production and nuclear factor-kappaB via heme oxygenase-1 expression in RAW264.7 macrophages stimulated with lipopolysaccharide. Free Rad Biol Med 41:106–119
- He F, Cui X, Ren J (2008) A novel QCM-based biosensor for detection of microorganisms producing hydrogen sulfide. Anal Lett 41:2697–2709
- 36. Furne J, Saeed A, Levitt MD (2008) Whole tissue hydrogen sulfide concentrations are orders of magnitude lower than presently accepted values. Regul Integr Comp Phys 295:R1479–R1485
- 37. Nathan L (2008) Whitfield, Edward L Kreimier, Francys C Verdial, Nini Skovgaard, Kenneth R Olson. Reappraisal of H2S/sulfide concentration in vertebrate blood and its potential significance in ischemic preconditioning and vascular signaling. American journal of physiology. Regul Integr Comp Phys 294:R1930–R1937
- 38. Shen X, Pattillo CB, Pardue S, Bir SC, Wang R, Kevil CG (2011) Measurement of plasma hydrogen sulfide in vivo and in vitro. Free Radic Biol Med 50:1021–1031
- 39. Shen X, Chakraborty S, Dugas TR, Kevil CG (2014) Hydrogen sulfide measurement using sulfide dibimane: critical evaluation with electrospray ion trap mass spectrometry. Nitric Oxide 41:97–104
- 40. Tian X, Li Z, Lau C, Lu J (2015) Visualization of in Vivo Hydrogen Sulfide Production by a Bioluminescence Probe in Cancer Cells and Nude Mice. Anal Chem 87:11325–11,331
- 41. Varlet V, Giuliani N, Palmiere C, Maujean G, Augsburger M (2015) Hydrogen sulfide measurement by headspace-gas chromatography-mass spectrometry (HS-GC-MS): application to gaseous samples and gas dissolved in muscle. J Anal Toxicol 39:52–57
- 42. Hughes MN, Centelles MN, Moore KP (2009) Making and working with hydrogen sulfide: The chemistry and generation of hydrogen sulfide in vitro and its measurement in vivo: a review. Free Rad Biol Med 47:1346–1353
- Casey JR, Grinstein S, Orlowski J (2010) Sensors and regulators of intracellular pH. Nat Rev Mol Cell Biol 11:50–61
- 44. Czyzewski BK, Wang D-N (2012) Identification and characterization of a bacterial hydrosulphide ion channel. Nature 483:494–497
- 45. Michael L (2013) Jennings. Transport of H2S and HS (-) across the human red blood cell membrane: rapid H2S diffusion and AE1-mediated Cl(-)/HS(-) exchange. Cell Physiol 305:C941–C950
- 46. Li Q, Lancaster JR Jr (2013) Chemical foundations of hydrogen sulfide biology. Nitric Oxide: Biol Chem 35:21–34
- Bridgeman M M, Marsden M, MacNee W, Flenley DC, Ryle AP (1991) Cysteine and glutathione concentrations in plasma and bronchoalveolar lavage

fluid after treatment with N-acetylcysteine. Thorax 46:39-42

- 48. Mustafa AK, Sikka G, Gazi SK, Steppan J, Jung SM, Bhunia AK, Barodka VM, Gazi FK, Barrow RK, Wang R, Amzel LM, Berkowitz DE, Snyder SH (2011) Hydrogen sulfide as endothelium-derived hyperpolarizing factor sulfhydrates potassium channels. Circ Res 109:1259–1268
- Rose P, Moore PK, Zhu YZ (2017) H(2)S biosynthesis and catabolism: new insights from molecular studies. Cell Mol Life Sci 74:1391–1412
- Zhu YZ (2018) Chapter 3: Production of H2S The l-cysteine/CSE-CBS-MST/H2S System. Macmillan Publishers, New York, pp 44–58
- Bao L, Vlcek C, Paces V, Kraus JP (1998) Identification and tissue distribution of human cystathionine beta-synthase mRNA isoforms. Arch Biochem Biophys 350:95–103
- 52. Yang G, Wu L, Jiang B, Yang W et al (2008) H2S as a physiologic vasorelaxant: hypertension in mice with deletion of cystathionine gamma-lyase. Science 322:587–590
- Taniguchi T, Kimura T (1974) Role of 3-mercaptopyruvate sulfurtransferase in the formation of the iron-sulfur chromophore of adrenal ferredoxin. Biochim Biophys Acta 364:284–295
- Shibuya N, Tanaka M, Yoshida M, Ogasawara Y, Togawa T, Ishii K, Kimura H (2008)
 3-Mercaptopyruvate Sulfurtransferase produces hydrogen sulfide and bound sulfane sulfur in the brain. Antioxidants Redox Signal 11:703–714
- 55. Vitvitsky V, Yadav PK, Kurthen A, Banerjee R (2015) Sulfide oxidation by a noncanonical pathway in red blood cells generates thiosulfate and polysulfides. J Biol Chem 290:8310–8320
- 56. Kabil O, Vitvitsky V, Xie P, Banerjee R (2011) The quantitative significance of the transsulfuration enzymes for H2S production in murine tissues. Antioxidants Redox Signal 15:363–372
- Linden DR, Sha L, Mazzone A, Stoltz GJ et al (2008) Production of the gaseous signal molecule hydrogen sulfide in mouse tissues. J Neurochem 106:1577–1585
- 58. Ramasamy S, Singh S, Taniere P, Langman MJS (2006) M C Eggo. Sulfide-detoxifying enzymes in the human colon are decreased in cancer and upregulated in differentiation. American journal of physiology. Gastrointest Liver Physiol 291:G288– G296
- Kamoun P (2004) Endogenous production of hydrogen sulfide in mammals. Amino Acids 26:243–254
- 60. Singh S, Padovani D, Leslie RA, Chiku T, Banerjee R (2009a) Relative contributions of cystathionine beta-synthase and gamma-cystathionase to H2S biogenesis via alternative trans-sulfuration reactions. J Biol Chem 284:22457–22466
- Jhee K-H, Kruger WD (2005) The role of cystathionine beta-synthase in homocysteine metabolism. Antioxidants Redox Signal 7:813–822

- 62. Singh S, Banerjee R (2011) PLP-dependent H(2)S biogenesis. Biochim Biophys Acta 1814:1518–1527
- 63. Singh S, Padovani D, Leslie RA, Chiku T, Banerjee R (2009b) Relative contributions of cystathionine beta-synthase and gamma-cystathionase to H2S biogenesis via alternative trans-sulfuration reactions. J Biol Chem 284:22457–22466
- 64. Shibuya N, Koike S, Tanaka M, Ishigami-Yuasa M, Kimura Y, Ogasawara Y, Fukui K, Nagahara N, Kimura H (2013) A novel pathway for the production of hydrogen sulfide from D-cysteine in mammalian cells. Nat Commun 4:1366
- 65. Stipanuk MH (2004) Sulfur amino acid metabolism: pathways for production and removal of homocysteine and cysteine. Annu Rev Nutr 24:539–577
- 66. Stipanuk MH, Dominy JE Jr, Lee JI, Coloso RM (2006) Mammalian cysteine metabolism: new insights into regulation of cysteine metabolism. J Nutr 136:1652s–1659s
- 67. Mikami Y, Shibuya N, Kimura Y, Nagahara N, Ogasawara Y, Kimura H (2011) Thioredoxin and dihydrolipoic acid are required for 3-mercaptopyruvate sulfurtransferase to produce hydrogen sulfide. Biochem J 439:479–485
- 68. Yadav PK, Yamada K, Chiku T, Koutmos M, Banerjee R (2013) Structure and kinetic analysis of H2S production by human mercaptopyruvate sulfurtransferase. J Biol Chem 288:20002–20013
- Wallace JL, Wang R (2015) Hydrogen sulfide-based therapeutics: exploiting a unique but ubiquitous gasotransmitter. Nat Rev Drug Discov 14:329–345
- Shatalin K, Shatalina E, Mironov A, Nudler E (2011) H2S: a universal defense against antibiotics in bacteria. Science 334:986–990
- 71. Carbonero F, Benefiel AC, Gaskins HR (2012) Contributions of the microbial hydrogen economy to colonic homeostasis. Nat Rev Gastroenterol Hepatol 9:504–518
- Rey FE, Gonzalez MD, Cheng J, Wu M, Ahern PP, Gordon JI (2013) Metabolic niche of a prominent sulfate-reducing human gut bacterium. Proc Natl Acad Sci U S A 110:13582–13587
- McInnes IB (2011) F.R.C.P., Ph.D., and Georg Schett, M.D. The pathogenesis of rheumatoid arthritis. N Engl J Med 365:2205–2219
- Firestein GS (2003) Evolving concepts of rheumatoid arthritis. Nature 423:356–361
- 75. Stuhlmeier KM, Broll J, Iliev B (2009) NF-kappaB independent activation of a series of proinflammatory genes by hydrogen sulfide. Exp Biol Med 234:1327–1338
- 76. Cristina M (2008) Lebre, Sarah L Jongbloed, Sander W Tas, Tom J M Smeets, Iain B McInnes, Paul P Tak. Rheumatoid arthritis synovium contains two subsets of CD83-DC-LAMP- dendritic cells with distinct cytokine profiles. Am J Pathol 172:940–950
- 77. Schröder AE, Greiner A, Seyfert C, Berek C (1996) Differentiation of B cells in the nonlymphoid tissue

of the synovial membrane of patients with rheumatoid arthritis. Proc Natl Acad Sci U S A 93:221–225

- 78. Tuncel J, Haag S, Holmdahl R (2017) MHC class II alleles associated with Th1 rather than Th17 type immunity drive the onset of early arthritis in a rat model of rheumatoid arthritis. Eur J Immunol 47:563–574
- 79. M Chabaud F, Fossiez JL, Taupin P (1998) Miossec. Enhancing effect of IL-17 on IL-1-induced IL-6 and leukemia inhibitory factor production by rheumatoid arthritis synoviocytes and its regulation by Th2 cytokines. J Immunol 1950(161):409–414
- Miossec P, Korn T, Kuchroo VK (2009) Interleukin-17 and type 17 helper T cells. N Engl J Med 361:888–898
- 81. Genovese MC, Van den Bosch F, Roberson SA, Bojin S, Biagini IM, Ryan P, Sloan-Lancaster J (2010) LY2439821, a humanized anti-interleukin-17 monoclonal antibody, in the treatment of patients with rheumatoid arthritis: A phase I randomized, double-blind, placebo-controlled, proof-of-concept study. Arthritis Rheum 62:929–939
- Liu T, Chang L, Jiang Y-M (2020) Remission of collagen-induced arthritis by adoptive transfer of peritoneal cells. Clin Exp Rheumatol 38 (6):1161–1169
- 83. Rao DA, Gurish MF, Marshall JL, Slowikowski K, Fonseka CY, Liu Y, Donlin LT, Henderson LA, Wei K, Mizoguchi F, Teslovich NC, Weinblatt ME, Massarotti EM, Coblyn JS, Helfgott SM, Lee YC, Todd DJ, Bykerk VP, Goodman SM, Pernis AB, Ivashkiv LB, Karlson EW, Nigrovic PA, Filer A, Buckley CD, Lederer JA, Raychaudhuri S, Brenner MB (2017) Pathologically expanded peripheral T helper cell subset drives B cells in rheumatoid arthritis. Nature 542:110–114
- 84. Chen X, Zhao Q, Hou Y, Jiang J, Zhong W, Wang W, Yao X, Lin L, Fang J, Zhang F, Hu P (2016) Pharmacokinetics, pharmacodynamics, short term efficacy and safety of RCT-18, a novel BLyS/APRIL fusion protein, in patients with rheumatoid arthritis. Br J Clin Pharmacol 82:41–52
- Ohata J, Zvaifler NJ, Nishio M, Boyle DL, Kalled SL, Carson DA, Kipps TJ (2005) Fibroblast-like synoviocytes of mesenchymal origin express functional B cell-activating factor of the TNF family in response to proinflammatory cytokines. J Immunol 1950(174):864–870
- 86. Pala O, Diaz A, Blomberg BB, Frasca D (2018) Lymphocytes in rheumatoid arthritis and the effects of anti-TNF-α agents on B lymphocytes: a review of the literature. Clinical therapeutics 40:1034–1045
- 87. Amara K, Clay E, Yeo L et al (2017) B cells expressing the IgA receptor FcRL4 participate in the autoimmune response in patients with rheumatoid arthritis. J Autoimmun 81:34–43
- 88. Kormelink TG, Tekstra J, Thurlings RM et al (2010) Decrease in immunoglobulin free light chains in patients with rheumatoid arthritis upon rituximab

(anti-CD20) treatment correlates with decrease in disease activity. Ann Rheum Dis 69:2137–2144

- Lande R, Giacomini E, Serafini B (2004) Characterization and recruitment of plasmacytoid dendritic cells in synovial fluid and tissue of patients with chronic inflammatory arthritis. J Immunol 1950 (173):2815–2824
- Wehr P, Purvis H, Law S-C, Thomas R (2019) Dendritic cells, T cells and their interaction in rheumatoid arthritis. Clin Exp Immunol 196:12–27
- Shakya AK, Nandakumar KS (2018) Antigen-Specific Tolerization and Targeted Delivery as Therapeutic Strategies for Autoimmune Diseases. Trends Biotechnol 36:686–699
- Ning Q, Xu M, Mizoguchi I et al (2013) Pivotal roles of T-helper 17-related cytokines, IL-17, IL-22, and IL-23, in inflammatory diseases. Clin Dev Immunol 2013:968549
- Kurowska-Stolarska M, Alivernini S (2017) Synovial tissue macrophages: friend or foe? RMD Open 3: e000527
- 94. Siouti E, Andreakos E (2019) The many facets of macrophages in rheumatoid arthritis. Biochem Pharmacol 165:152–169
- Liew FY, McInnes IB (2002) The role of innate mediators in inflammatory response. Mol Immunol 38:887–890
- 96. Haringman JJ, Gerlag DM, Zwinderman AH et al (2005) Synovial tissue macrophages: a sensitive biomarker for response to treatment in patients with rheumatoid arthritis. Annal Rheumat Dis 64:834–838
- Yang W, Han C-C, Cui D et al (2017) Is macrophage polarization important in rheumatoid arthritis? Int Immunopharmacol 50:345–352
- Tardito S, Martinelli G, Soldano S et al (2019) Macrophage M1/M2 polarization and rheumatoid arthritis: a systematic review. Autoimmun Rev 18:102397
- 99. Zhang Q, Yuan R, Li C et al (2019) Macrophage depletion with clodronate-containing liposomes affects the incidence and development of rheumatoid arthritis. Z Rheumatol 78:996–1003
- 100. Park SY, Lee SW, Lee SY et al (2017) SIRT1/adenosine monophosphate-activated protein kinase α signaling enhances macrophage polarization to an antiinflammatory phenotype in rheumatoid arthritis. Front Immunol 8:1135
- 101. Bartok B, Firestein GS (2010) Fibroblast-like synoviocytes: key effector cells in rheumatoid arthritis. Immunol Rev 233:233–255
- 102. Wang C-H, Yao H, Chen L-N et al (1818–1827) CD147 induces angiogenesis through a vascular endothelial growth factor and hypoxia-inducible transcription factor 1α-mediated pathway in rheumatoid arthritis. Arthritis Rheumatism 64:2012
- 103. Nishimura R, Hata K, Takahata Y (2020) Role of signal transduction pathways and transcription factors in cartilage and joint diseases. Int J Mol Sci 21(4):1340

- 104. Sun S-C, Chang J-H, Jin J (2013) Regulation of nuclear factor-κB in autoimmunity. Trends Immunol 34:282–289
- 105. Makarov S S (2001) NF-kappa B in rheumatoid arthritis: a pivotal regulator of inflammation, hyperplasia, and tissue destruction. Arthritis Res 3:200–206
- 106. Mor A, Abramson SB, Pillinger MH (2005) The fibroblast-like synovial cell in rheumatoid arthritis: a key player in inflammation and joint destruction. Clin Immunol 115:118–128
- 107. Eguchi J, Koshino T, Takagi T, Hayashi T, Saito T (2002) NF-kappa B and I-kappa B overexpression in articular chondrocytes with progression of type II collagen-induced arthritis in DBA/1 mouse knees. Clin Exp Rheumatol 20:647–652
- 108. Tsao PW, Suzuki T, Totsuka R et al (1997) The effect of dexamethasone on the expression of activated NF-kappa B in adjuvant arthritis. Clin Immunol Immunopathol 83:173–178
- 109. Arjumand S, Shahzad M, Shabbir A, Yousaf MZ (2019) Thymoquinone attenuates rheumatoid arthritis by downregulating TLR2, TLR4, TNF-α, IL-1, and NFκB expression levels. Biomed Pharmacother 111:958–963
- 110. Doss HM, Ganesan R, Rasool M (2016) Trikatu, an herbal compound ameliorates rheumatoid arthritis by the suppression of inflammatory immune responses in rats with adjuvant-induced arthritis and on cultured fibroblast like synoviocytes via the inhibition of the NFκB signaling pathway. Chem Biol Interact 258:175–186
- 111. Li J, Li J, Chen R, Cai G (2015) Targeting NF-κB and TNF-α activation by electroacupuncture to suppress collagen-induced rheumatoid arthritis in model rats. Alternat Therapies Health Med 21:26–34
- 112. Li N, Xu Q, Liu Q et al (2017a) Leonurine attenuates fibroblast-like synoviocyte-mediated synovial inflammation and joint destruction in rheumatoid arthritis. Rheumatology 56:1417–1427
- 113. Liu Y-R, Yan X, Yu H-X et al (2017) NLRC5 promotes cell proliferation via regulating the NF-κB signaling pathway in Rheumatoid arthritis. Molecular Immunol 91:24–34
- 114. Intemann J, De Gorter DJJ, Naylor AJ, Dankbar B, Wehmeyer C (2020) Importance of osteocytemediated regulation of bone remodelling in inflammatory bone disease. Swiss Med Wkly 150:w20187
- 115. Haynes DR, Barg E, Crotti TN et al (2003) Osteoprotegerin expression in synovial tissue from patients with rheumatoid arthritis, spondyloarthropathies and osteoarthritis and normal controls. Rheumatology 42:123–134
- 116. Han Z, Boyle DL, Chang L, Bennett B, Karin M, Yang L, Manning AM, Firestein GS (2001) c-Jun N-terminal kinase is required for metalloproteinase expression and joint destruction in inflammatory arthritis. J Clin Invest 108:73–81

- 117. Raje N, Terpos E, Willenbacher W et al (2018) Denosumab versus zoledronic acid in bone disease treatment of newly diagnosed multiple myeloma: an international, double-blind, double-dummy, randomised, controlled, phase 3 study. The Lancet 19:370–381
- 118. Li Z-Z, Tan J-P, Wang L-L, Li Q-H (2017b) Andrographolide benefits rheumatoid arthritis via inhibiting MAPK pathways. Inflammation 40:1599–1605
- 119. Zou Q-F, Li L, Han Q-R, Wang Y-J, Wang X-B (2019) Abatacept alleviates rheumatoid arthritis development by inhibiting migration of fibroblastlike synoviocytes via MAPK pathway. Eur Rev Med Pharmacol Sci 23:3105–3111
- 120. Schett G, Tohidast-Akrad M, Smolen JS et al (2000) Activation, differential localization, and regulation of the stress-activated protein kinases, extracellular signal-regulated kinase, c-JUN N-terminal kinase, and p38 mitogen-activated protein kinase, in synovial tissue and cells in rheumatoid arthritis. Arthritis Rheum 43:2501–2512
- 121. Kanbe K, Chiba J, Nakamura A (2014) Inhibition of JNK in synovium by treatment with golimumab in rheumatoid arthritis. Rheumatol Int 34:125–130
- 122. Balagué C, Pont M, Prats N, Godessart N (2012) Profiling of dihydroorotate dehydrogenase, p38 and JAK inhibitors in the rat adjuvant-induced arthritis model: a translational study. Br J Pharmacol 166:1320–1332
- 123. Koch DA, Silva RBM, de Souza AH et al (2014) Efficacy and gastrointestinal tolerability of ML3403, a selective inhibitor of p38 MAP kinase and CBS-3595, a dual inhibitor of p38 MAP kinase and phosphodiesterase 4 in CFA-induced arthritis in rats. Rheumatology 53:425–432
- 124. Mihara K, Almansa C, Smeets RL et al (2008) A potent and selective p38 inhibitor protects against bone damage in murine collagen-induced arthritis: a comparison with neutralization of mouse TNFalpha. Br J Pharmacol 154:153–164
- 125. Schepetkin IA, Kirpotina LN, Hammaker D et al (2015) Anti-inflammatory effects and joint protection in collagen-induced arthritis after treatment with IQ-1S, a selective c-Jun N-terminal kinase inhibitor. J Pharmacol Exp Therap 353:505–516
- 126. Guma M, Hammaker D, Topolewski K et al (2012) Antiinflammatory functions of p38 in mouse models of rheumatoid arthritis: advantages of targeting upstream kinases MKK-3 or MKK-6. Arthritis Rheum 64:2887–2895
- 127. Sundarrajan M, Boyle DL, Chabaud-Riou M, Hammaker D, Firestein GS (2003) Expression of the MAPK kinases MKK-4 and MKK-7 in rheumatoid arthritis and their role as key regulators of JNK. Arthritis Rheum 48:2450–2460
- 128. Smallwood MJ, Nissim A, Knight AR, Whiteman M, Haigh R, Winyard PG (2018) Oxidative stress in

autoimmune rheumatic diseases. Free Radic Biol Med 125:3–14

- 129. Lee J, Koh K, Kim Y-E, Ahn J-H, Kim S (2013) Upregulation of Nrf2 expression by human cytomegalovirus infection protects host cells from oxidative stress. J Gen Virol 94:1658–1668
- 130. Park SY, Lee SW, Shin HK et al (2010) Cilostazol enhances apoptosis of synovial cells from rheumatoid arthritis patients with inhibition of cytokine formation via Nrf2-linked heme oxygenase 1 induction. Arthritis Rheum 62:732–741
- 131. Alcaraz MJ, Ferrándiz ML (2019) Relevance of Nrf2 and heme oxygenase-1 in articular diseases. Free Rad Biol Med 157:83–93
- 132. Maicas N, Ferrándiz ML, Brines R et al (2011) Deficiency of Nrf2 accelerates the effector phase of arthritis and aggravates joint disease. Antioxid Redox Signal 15:889–901
- 133. Onodera Y, Teramura T, Takehara T, Fukuda K (2015) Hyaluronic acid regulates a key redox control factor Nrf2 via phosphorylation of Akt in bovine articular chondrocytes. FEBS Open Bio 5:476–484
- 134. Chan SJ, Wong PT (2017) Hydrogen sulfide in stroke: protective or deleterious? Neurochem Int 105:1–10
- 135. Kloesch B, Liszt M, Krehan D, Broell J, Kiener H, Steiner G (2012a) High concentrations of hydrogen sulphide elevate the expression of a series of pro-inflammatory genes in fibroblast-like synoviocytes derived from rheumatoid and osteoarthritis patients. Immunol Lett 141:197–203
- 136. Kloesch B, Liszt M, Steiner G, Broll J (2012b) Inhibitors of p38 and ERK1/2 MAPkinase and hydrogen sulphide block constitutive and IL-1beta-induced IL-6 and IL-8 expression in the human chondrocyte cell line C-28/I2. Rheumatol Int 32:729–736
- 137. Whiteman M, Winyard PG (2011) Hydrogen sulfide and inflammation: the good, the bad, the ugly and the promising. Expert Rev Clin Pharmacol 4:13–32
- Kennedy A, Fearon U, Veale DJ, Godson C (2011) Macrophages in synovial inflammation. Front Immunol 2:52
- Udalova IA, Mantovani A, Feldmann M (2016) Macrophage heterogeneity in the context of rheumatoid arthritis. Nat Rev Rheumatol 12:472–485
- 140. Whiteman M, Li L, Rose P, Tan C-H et al (2010a) The effect of hydrogen sulfide donors on lipopolysaccharide-induced formation of inflammatory mediators in macrophages. Antioxid Redox Signal 12:1147–1154
- 141. Kloesch B, Liszt M, Broell J (2010) H2S transiently blocks IL-6 expression in rheumatoid arthritic fibroblast-like synoviocytes and deactivates p44/42 mitogen-activated protein kinase. Cell Biol Int 34:477–484
- 142. Kloesch B, Liszt M, Krehan D et al (2012c) High concentrations of hydrogen sulphide elevate the expression of a series of pro-inflammatory genes in fibroblast-like synoviocytes derived from rheumatoid

and osteoarthritis patients. Immunol Lett 141:197-203

- 143. Oh GS, Pae HO, Lee BS, Kim BN, Kim JM, Kim HR, Jeon SB, Jeon WK, Chae HJ, Chung HT (2006) Hydrogen sulfide inhibits nitric oxide production and nuclear factor-kappaB via heme oxygenase-1 expression in RAW264.7 macrophages stimulated with lipopolysaccharide. Free Radic Biol Med 41:106–119
- 144. Liang JJ, Li HR, Chen Y et al (2019) Diallyl Trisulfide can induce fibroblast-like synovial apoptosis and has a therapeutic effect on collagen-induced arthritis in mice via blocking NF-κB and Wnt pathways. Int Immunopharmacol 71:132–138
- 145. Du J, Huang Y, Yan H, Zhang Q, Zhao M, Zhu M, Liu J, Chen SX, Bu D, Tang C, Jin H (2014) Hydrogen sulfide suppresses oxidized low-density lipoprotein (ox-LDL)-stimulated monocyte chemoattractant protein 1 generation from macrophages via the nuclear factor kappaB (NF-kappaB) pathway. J Biol Chem 289:9741–9753
- 146. Burguera EF, Vela-Anero A, Magalhaes J, Meijide-Failde R, Blanco FJ (2014) Effect of hydrogen sulfide sources on inflammation and catabolic markers on interleukin 1beta-stimulated human articular chondrocytes. Osteoarthr Cartil 22:1026–1035
- 147. Xu W, Chen J, Lin J, Liu D, Mo L, Pan W, Feng J, Wu W, Zheng D (2015) Exogenous H2S protects H9c2 cardiac cells against high glucose-induced injury and inflammation by inhibiting the activation of the NF-kappaB and IL-1beta pathways. Int J Mol Med 35:177–186
- 148. Zhang GY, Lu D, Duan SF, Gao YR, Liu SY, Hong Y, Dong PZ, Chen YG, Li T, Wang DY, Cheng XS, He F, Wei JS, Li GY, Zhang QY, Wu DD, Ji XY (2018) Hydrogen sulfide alleviates lipopolysaccharide-induced diaphragm dysfunction in rats by reducing apoptosis and inflammation through ROS/MAPK and TLR4/NF-kappaB signaling pathways. Oxid Med Cell Longev 2018:9647809
- 149. Kloesch B, Liszt M, Steiner G, Bröll J (2012d) Inhibitors of p38 and ERK1/2 MAPkinase and hydrogen sulphide block constitutive and IL-1β-induced IL-6 and IL-8 expression in the human chondrocyte cell line C-28/I2. Rheumatol Int 32:729–736
- 150. Wu WJ, Jia WW, Liu XH, Pan LL, Zhang QY, Yang D, Shen XY, Liu L, Zhu YZ (2016b) Spropargyl-cysteine attenuates inflammatory response in rheumatoid arthritis by modulating the Nrf2-ARE signaling pathway. Redox Biol 10:157–167
- 151. Hourihan JM, Kenna JG, Hayes JD (2013) The gasotransmitter hydrogen sulfide induces nrf2-target genes by inactivating the keap1 ubiquitin ligase substrate adaptor through formation of a disulfide bond between cys-226 and cys-613. Antioxid Redox Signal 19:465–481
- 152. Gambari L, Lisignoli G, Cattini L, Manferdini C, Facchini A, Grassi F (2014) Sodium hydrosulfide inhibits the differentiation of osteoclast progenitor

cells via NRF2-dependent mechanism. Pharmacol Res 87:99–112

- 153. Qin M, Long F, Wu W, Yang D, Huang M, Xiao C, Chen X, Liu X, Zhu YZ (2019) Hydrogen sulfide protects against DSS-induced colitis by inhibiting NLRP3 inflammasome. Free Radic Biol Med 137:99–109
- 154. Wu W, Qin M, Jia W, Huang Z, Li Z, Yang D, Huang M, Xiao C, Long F, Mao J, Moore PK, Liu X, Zhu YZ (2018) Cystathionine-gamma-lyase ameliorates the histone demethylase JMJD3mediated autoimmune response in rheumatoid arthritis. Cell Mol Immunol 18:694–705
- 155. Behera J, Kelly KE, Voor MJ, Metreveli N, Tyagi SC, Tyagi N (2018) Hydrogen sulfide promotes bone homeostasis by balancing inflammatory cytokine signaling in CBS-deficient mice through an epigenetic mechanism. Sci Rep 8:15226
- 156. Choi JR, Yong KW, Choi JY (2018) Effects of mechanical loading on human mesenchymal stem cells for cartilage tissue engineering. J Cell Physiol 233:1913–1928
- 157. Dao TT-T, Vu NB, Pham LH et al (2019) In vitro production of cartilage tissue from rabbit bone marrow-derived mesenchymal stem cells and polycaprolactone scaffold. Adv Exp Med Biol 1084:45–60
- 158. Szychlinska MA, D'Amora U, Ravalli S et al (2019) Functional Biomolecule Delivery Systems and Bioengineering in Cartilage Regeneration. Curr Pharm Biotechnol 20:32–46
- 159. Zhang Q, Liu S, Li T et al (2016) Preconditioning of bone marrow mesenchymal stem cells with hydrogen sulfide improves their therapeutic potential. Oncotarget 7:58089–58,104
- 160. Abdelmonem M, Shahin NN, Rashed LA et al (2019) Hydrogen sulfide enhances the effectiveness of mesenchymal stem cell therapy in rats with heart failure: In vitro preconditioning versus in vivo co-delivery. Biomed Pharmacother 112:108584
- 161. Gambari L, Amore E, Raggio R et al (2019) Hydrogen sulfide-releasing silk fibroin scaffold for bone tissue engineering. Mater Sci Eng. C, Mater Biol Appl 102:471–482
- 162. Tan B, Jin S, Sun J, Gu Z, Sun X, Zhu Y, Huo K, Cao Z, Yang P, Xin X, Liu X, Pan L, Qiu F, Jiang J, Jia Y, Ye F, Xie Y, Zhu YZ (2017) New method for quantification of gasotransmitter hydrogen sulfide in biological matrices by LC-MS/MS. Sci Rep 7:46278
- 163. Peng B, Liu C, Li Z et al (2017) Slow generation of hydrogen sulfide from sulfane sulfurs and NADH models. Bioorgan Med Chem Lett 27:542–545
- 164. Wallace JL, Caliendo G, Santagada V, Cirino G (2010) Markedly reduced toxicity of a hydrogen sulphide-releasing derivative of naproxen (ATB-346). Br J Pharmacol 159:1236–1246
- 165. Kearney PM, Baigent C, Godwin J, Halls H, Emberson JR, Patrono C (2006) Do selective cyclooxygenase-2 inhibitors and traditional non-steroidal

anti-inflammatory drugs increase the risk of atherothrombosis? meta-analysis of randomised trials. BMJ 332:1302–1308

- 166. Dief AE, Mostafa DK, Sharara GM, Zeitoun TH (2015) Hydrogen sulfide releasing naproxen offers better anti-inflammatory and chondroprotective effect relative to naproxen in a rat model of zymosan induced arthritis. Eur Rev Med Pharmacol Sci 19:1537–1546
- 167. Ekundi-Valentim E, Santos KT, Camargo EA, Denadai-Souza A, Teixeira SA, Zanoni CI, Grant AD, Wallace J, Muscara MN, Costa SK (2010) Differing effects of exogenous and endogenous hydrogen sulphide in carrageenan-induced knee joint synovitis in the rat. Br J Pharmacol 159:1463–1474
- 168. Li L, Whiteman M (2008) Yan Yi Guan, et al. Characterization of a novel, water-soluble hydrogen sulfide-releasing molecule (GYY4137): new insights into the biology of hydrogen sulfide. Circulation 117:2351–2360
- 169. Li L, Salto-Tellez M, Tan C-H et al (2009) GYY4137, a novel hydrogen sulfide-releasing molecule, protects against endotoxic shock in the rat. Free Rad Biol Med 47:103–113
- 170. Li L, Fox B, Keeble J et al (2013) The complex effects of the slow-releasing hydrogen sulfide donor GYY4137 in a model of acute joint inflammation and in human cartilage cells. J Cell Mol Med 17:365–376
- 171. Whiteman M, Li L, Rose P, Tan CH, Parkinson DB, Moore PK (2010b) The effect of hydrogen sulfide donors on lipopolysaccharide-induced formation of inflammatory mediators in macrophages. Antioxid Redox Signal 12:1147–1154
- 172. Lee H-S, Lee C-H, Tsai H-C, Salter DM (2009) Inhibition of cyclooxygenase 2 expression by diallyl sulfide on joint inflammation induced by urate crystal and IL-1beta. Osteoarthr Cartil 17:91–99
- 173. Chen Y, Xue R, Jin X, Tan X (2018) Antiarthritic activity of diallyl disulfide against Freund's adjuvantinduced arthritic rat model. J Environ Pathol Toxicol Oncol 37:291–303
- 174. Wen YD, Zhu YZ (2015) The pharmacological effects of S-Propargyl-Cysteine, a novel endogenous H2S-producing compound. Handb Exp Pharmacol 230:325–336
- 175. Rose P, Moore PK, Zhu YZ (2018) Garlic and gaseous mediators. Trends Pharmacol Sci 39:624–634
- 176. Wang Q, Liu HR, Mu Q, Rose P, Zhu YZ (2009) Spropargyl-cysteine protects both adult rat hearts and neonatal cardiomyocytes from ischemia/hypoxia injury: the contribution of the hydrogen sulfidemediated pathway. J Cardiovasc Pharmacol 54:139–146
- 177. Yang H, Mao Y, Tan B, Luo S, Zhu Y (2015) The protective effects of endogenous hydrogen sulfide modulator, S-propargyl-cysteine, on high glucoseinduced apoptosis in cardiomyocytes: a novel mechanism mediated by the activation of Nrf2. Eur J Pharmacol 761:135–143

- 178. Li W, Ma F, Zhang L, Huang Y, Li X, Zhang A, Hou C, Zhu Y, Zhu Y (2016) S-Propargyl-cysteine Exerts a Novel Protective Effect on methionine and choline deficient diet-induced fatty liver via Akt/ Nrf2/HO-1 pathway. Oxid Med Cell Longev 2016:4690857
- 179. Liang D, Wu H, Wong MW, Huang D (2015) Diallyl trisulfide is a fast H2S donor, but diallyl disulfide is a slow one: the reaction pathways and intermediates of glutathione with polysulfides. Org Lett 17:4196–4199
- 180. Pan LL, Liu XH, Zheng HM, Yang HB, Gong QH, Zhu YZ (2012) S-propargyl-cysteine, a novel hydrogen sulfide-modulated agent, attenuated tumor necrosis factor-alpha-induced inflammatory signaling and dysfunction in endothelial cells. Int J Cardiol 155:327–332
- 181. Wu L, Yang W, Jia X, Yang G, Duridanova D, Cao K, Wang R (2009) Pancreatic islet overproduction of H2S and suppressed insulin release in Zucker diabetic rats. Lab Invest 89:59–67

- 182. Benedetti S, Canino C, Tonti G et al (2010) Biomarkers of oxidation, inflammation and cartilage degradation in osteoarthritis patients undergoing sulfur-based spa therapies. Clin Biochem 43:973–978
- 183. Braga PC, Sambataro G, Sasso MD et al (2008) Antioxidant effect of sulphurous thermal water on human neutrophil bursts: chemiluminescence evaluation. Respiration 75:193–201
- 184. Carubbi C, Masselli E, Calabrò E (2019) Sulphurous thermal water inhalation impacts respiratory metabolic parameters in heavy smokers. Int J Biometeorol 63:1209–1216
- 185. Prandelli C, Parola C, Buizza L et al (2013) Sulphurous thermal water increases the release of the antiinflammatory cytokine IL-10 and modulates antioxidant enzyme activity. Int J Immunopathol Pharmacol 26:633–646
- 186. Salami A, Dellepiane M, Strinati F, Guastini L, Mora R (2010) Sulphurous thermal water inhalations in the treatment of chronic rhinosinusitis. Rhinology 48:71–76

The Cardiovascular Effects of Hydrogen Sulfide: The Epigenetic Mechanisms

Qian Ding and Yi-Zhun Zhu

1 Introduction

Hydrogen sulfide (H₂S) is a kind of colorless poisonous gas with the odor of rotten eggs, it was once considered as a metabolic waste in organisms, and it has now been proved to be an important biologically active gas signal molecule in the body. It has been discovered that H₂S can participate in the occurrence and development of certain cardiovascular diseases (CVD) through various mechanisms. Epigenetics is a kind of heritable gene expression changes without alteration of DNA sequence, the main mechanism of epigenetics includes DNA methylation, histone modification, and non-coding RNA mechanisms, these mechanisms work together to define genes specific expression [1]. Epigenetic links environment to genes, environmental factors act on genes through epigenetic modification, regulate specific

genes expression, produce long-term phenotype changes that eventually lead to the occurrence of diseases, and affect the phenotype of diseases [2, 3]. CVD is a complex disease, mostly caused by genetic and environmental factors. The regulation between H_2S and epigenetics may have an important influence on the occurrence and development of CVD. This chapter mainly summarizes the H_2S cardiovascular effects and epigenetic regulation of H_2S on CVD.

2 Endogenous Synthesis of H₂S and Exogenous H₂S Donor

2.1 Endogenous Synthesis of H₂S

In the nineteenth century, H₂S was shown to be enzymatically synthesized by mammalian cells. The enzymes that synthesize H₂S are cystathionine-γ-lyase (CSE), cystathionine β -synthase (CBS), and 3-mercaptopyruvate sulfurtransferase (3-MST). Among them, H₂S synthesized by CSE and CBS catalyzes L-cysteine, and these two enzymes are widely expressed in various organs and have certain organ specificity. CBS is the main synthase of H₂S in the nervous system [4]. CSE is mainly expressed in the cardiovascular system. The previous study prepared CSE gene-deficient mice by the genetic method and measured that the content of H₂S in the aorta and arterioles decreased compared with the wild-type mice, indicating that CSE is the main

Q. Ding

State Key Laboratory of Quality Research in Chinese Medicine and School of Pharmacy, Macau University of Science and Technology, Macau, China

Guizhou University of Traditional Chinese Medicine, Guiyang, China

Y.-Z. Zhu (🖂)

State Key Laboratory of Quality Research in Chinese Medicine and School of Pharmacy, Macau University of Science and Technology, Macau, China

Shanghai Key Laboratory of Bioactive Small Molecules, Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China e-mail: yzzhu@must.edu.mo

[©] Springer Nature Singapore Pte Ltd. 2021

Y.-C. Zhu (ed.), *Advances in Hydrogen Sulfide Biology*, Advances in Experimental Medicine and Biology 1315, https://doi.org/10.1007/978-981-16-0991-6_8

enzyme of H_2S in the cardiovascular system [5]. 3-MST is mainly expressed in brain tissues and vascular endothelium [6]. Like nitric oxide (NO), endogenous H_2S freely penetrates the cell membrane in a simple diffusion manner without the need of specific membrane receptors, which have extensive physiological effects on the cardiovascular and central nervous systems [4], H_2S is considered to be the third endogenous gaseous signal molecule after NO and CO.

2.2 Exogenous H₂S Donor

Researchers have tried using multiple substances as exogenous donors of H₂S (commonly used H_2S donors shown in Table 1). Among the commonly used donors, NaHS is an exogenous donor dissociates with water and releases H₂S quickly, which has been used extensively for studying the function of H₂S [7]. Diallyl disulfide (DADS) and diallyl trisulfide (DATS) are sulfur-containing organic compounds found in several allium species like garlic, onion, leek, etc. It can be used as a donor of H₂S and has anti-oxidation, anti-inflammatory, and promoting vasodilation effects [8, 9]. Donors that slowly release H₂S include GYY4137 [10], DTT [11], AP39 [12], we synthesized s-propargyl-l-cysteine (SPRC, also known as ZYZ-802) based on garlic extract and its analogs, thus contributing to the development of sulfide compounds [13]. We also synthesized an H₂S-NO donor (named ZYZ-803), a slowreleasing H_2 S-NO hybrid molecule [14], which may have more activities like regulated vascular tone through the cGMP pathway [15]. They may become H₂S in vitro supplements. Because H₂S has a short half-life period, it is different from the single high-concentration method used in the study, such as NaHS and Na₂S, and continuous low-concentration H₂S release may have more therapeutic significance, and the key scientific problem of H₂S donor drug research is how to improve the selectivity of H₂S donor molecules, release an appropriate concentration of H₂S in a certain part of the target, and limit its adverse reactions while playing a therapeutic role. In recent years, the nanomedicine-based H₂S delivery platform has made full use of the selective release of H_2S by small molecules and has made some progress [16, 17].

3 Cardiovascular Effects of H₂S

 H_2S has been shown to have a wide range of physiological effects in the cardiovascular system (Shown in Fig. 1), such as modulating blood pressure, angiogenesis, inflammation, and smooth muscle cell growth or apoptosis, anti-oxidation, and protection of myocardium.

3.1 Anti-Inflammation

Series of studies indicate that H₂S plays an important and active role in regulating immune inflammation in the process of cardioprotection, treatment of myocardial equivalent overexpression of CSE or exogenous H₂S can significantly improve the myocardial damage and neutrophil infiltration or lymphocyte adhesion to vascular endothelial cells, down-regulate the release of IL-6, IL-8, TNF- α [18, 19]. Our laboratory research also demonstrates that H₂S exhibits pro-inflammatory activity in endotoxininduced inflammation and suggests a new approach to the development of novel drugs for this condition, we further confirmed the results that the H₂S donor SPRC significantly induced CSE expression and regulated H₂S levels, thereby inhibiting LPS-induced ROS production in cardiomyocytes and NF-kB activation-mediated inflammatory factor TNF- α expression, which play a role in inhibiting cardiomyocyte inflammation, our data also reveal the inhibition of inflammatory hepcidin by SPRC and propose SPRC as a potential remedy against Anemia of inflammation (AI) [20–23].

3.2 Anti-Oxidant Stress

Oxidative stress is an intracellular metabolic process that occurs in oxygen imbalance, leading to superoxide anions generation. Many pieces of

H ₂ S donors	Туре	Release speed	References
NaHS	Classic donor	Quick	Caliendo et al. [7]
Na ₂ S	Classic donor	Quick	Caliendo et al. [7]
DADS	Sulfur-containing organic compound	Slow	Liu et al. [8]
DATS	Sulfur-containing organic compound	Slow	Benavides et al. [9]
GYY4137	Water-soluble hydrogen sulfide-releasing molecule	Slow	Li et al. [10]
DTT	Water-soluble hydrogen sulfide-releasing molecule	Slow	Powell et al. [11]
AP39	Mitochondria-targeted hydrogen sulfide donor	Slow	Szczesny et al. [12]
SPRC(ZYZ-802)	Synthesized molecule based on garlic extract	Slow	Wen et al. [13]
ZYZ-803	H ₂ S-NO hybrid molecule	Slow	Hu et al. [14]

 Table 1
 Commonly used H₂S donors

evidence suggest that reactive oxygen species (ROS) are related to the occurrence of cardiovascular diseases, such as myocardial ischemia and reperfusion (MI/R) injury, and cardiac muscle hypertrophy. The presence of ROS causes lipid peroxidation, protein oxidation, and DNA damage, thus changing normal cell functions [24]. Our research provides new evidence that H₂S donor SPRC reduces the deleterious effects of oxidative stress by regulating endogenous H₂S levels and protecting the activity of antioxidant defense enzymes such as SOD, thereby having a cardioprotection effect on myocardial infarction (MI) [25]. H_2S can protect HUVECs from mitochondrial dysfunction and oxidative stress induced by H_2O_2 [26]. Other studies have found that NaHS not only inhibits angiotensin II (AngII) -induced rat cardiac myocyte hypertrophy and mitochondrial function impairment, up-regulates the expression of FoxO3a and SOD2, but also inhibits myocardial hypertrophy and oxidative stress induced by aortic constriction, and improves the mitochondrial function, this effect depends on SIRT3. These data show that H_2S

Fig. 1 H_2S physiological effects in the cardiovascular system. H_2S hydrogen sulfide, CSE cystathionine- γ -lyase, SOD superoxide dismutase, *IL6* interleukin-6, *TNF*- α

tumor necrosis factor- α , *SA-\beta-gal* senescence-associated β -galactosidase, *VSMC* vascular smooth muscle cells, *ECM* extracellular matrix

inhibits oxidative stress during myocardial hypertrophy [27]. In aortic constriction-induced stressoverloaded heart failure mice, cardiac-specific CSE transgenes can enhance NO/cGMP signaling and mitochondrial homeostasis, reduce oxidative stress responses, and better preserve cardiac structure and function [28]. It has been reported that NaHS reduced the NADPH oxidase activity in the aorta of diabetic mice and restored its endothelial function [29]. In SD rats with β -adrenergic agonist isoproterenol-induced cardiomyopathy, NaHS inhibits oxidative stress and improves cardiac function by reducing NADPH oxidase activity and ROS production [30]. In rats with oxidative stress and myocardial hypertrophy induced by high salt, NaHS inhibits the oxidative stress response of myocardial tissues and reduces myocardial hypertrophy [31]. The above experiments show that reducing oxidative stress and mitochondrial damage plays a key role in H₂S protecting endothelial function and cardiac effects.

 H_2S antioxidant function is partly due to the direct removal of ROS or inhibits ROS generation. As reported by Geng et al. [32], isoprenaline induces myocardium damaged, H_2S by eliminating O^- and H_2O_2 to reduce lipid peroxidation. In hypoxic/reoxygenated rat cardiomyocytes, H_2S reduces ROS in cardiomyocytes by inhibiting mitochondrial complex IV activity, enhancing superoxide dismutases (SOD) activity, and reducing ROS levels to protect cardiomyocytes [33].

Mitochondria are the main source of intracellular ROS. H₂S can reduce mitochondrial ROS production [34].

3.3 Regulates Vascular Aging

 H_2S research has made great progress in the last 20 years, but there are few reports of H_2S role in aging. Vascular aging refers to vascular lumen dilation, vascular stiffness, and thickening, and one of the important changes in the body during vascular aging is the decreased number and function of vascular endothelial cells. The body and tissues rely heavily on the microvascular network

to maintain oxygen supply, exchange nutrients, and excrete metabolic waste. Vascular senescence is the leading cause of aging and aging-related diseases, and H₂S may reverse vascular aging. It has been reported that H₂S can extend the lifespan and heat resistance of C.elegans, suggesting that the H₂S gas molecule may be an endogenous source of the aging regulator [35, 36]. Previous research found that use H₂O₂ to induce HUVEC senescence significantly reduces senescenceassociated β -galactosidase (SA- β -gal) activity [37, 38].

Endothelial cell apoptosis and increased oxidative stress are the main reasons for aging to reduce angiogenesis. HUVEC treated with NaHS alone can increase SIRT1 protein expression, intracellular nicotinamide adenine dinucleotide (NAD⁺) level, endothelial cell migration ability, and budding length, and significantly reduce aortic endothelial cells and HUVEC apoptosis induced by H_2O_2 . It also cooperates with nicotinamide mononucleotide (NMN) to enhance the inhibitory effect on endothelial cell apoptosis. Treating 32-month-old mice with NaHS and NMN (NAD donor) for 4 weeks can significantly increase the density of their quadriceps capillaries and improve blood flow and tolerance to exercise [39].

3.4 Regulate Autophagy

Autophagy has been interestingly defined as cell "eat itself". When cells encountering various stresses from inside and outside, such as nutritional deficiencies, pathogen infection, hormone therapy, protein misfolding, and damage to organelles, autophagy becomes a remedy mechanism, in this process, cytoplasmic components and dysfunctional cell organs are surrounded by a double membrane, forming autophagosomes and transferred to lysosomal degradation and recycling maintain homeostasis to [40, 41]. Autophagy dysfunction can induce a variety of human diseases, and H₂S plays "double-faced" in the occurrence of autophagy.

On the one hand, it showed that cardiomyocytes autophagy happened during

hypoxia-reoxygenation injury, H₂S could activate mTOR, inhibited autophagy, and alleviated hypoxia-reoxygenation injury of cardiomyocytes [42]. On the other hand, researchers observed on aged isolated rat heart and the aging cardiomyocyte model, exogenous H2S significantly restored the protective effect of ischemic postconditioning on the myocardium, such as reducing myocardial injury, infarct size, apoptosis, improving myocardial function, and increasing myocardium cell viability and autophagy by up-regulating AMPK pathway [43].

3.5 Modulate Vascular Remolding

Vascular remodeling is an important pathological basis for heart damage, mainly manifested as smooth muscle cell proliferation, hypertrophy and migration, endothelial cell dysfunction, and extracellular matrix collagen increase.

3.5.1 Regulation of Vascular Smooth Muscle Cell Proliferation and Apoptosis

Vascular smooth muscle is involved in the process of vasoconstriction. In pathological conditions vascular smooth muscle cells (VSMCs) can migrate into the intima promoting the development of atherosclerosis. Numerous studies show that H_2S can inhibit VSMC proliferation.

It has been reported that smooth muscle cell migration and growth ability from CSE^{-/-}mice were enhanced compared with wild-type mice, and the application of NaHS could significantly inhibit the smooth muscle cell migration and growth ability, reverse carotid ligation induction in $CSE^{-/-}$ mice neointimal formation [44]. In high glucose-treated rat thoracic aortic smooth muscle cells, CSE activity and endogenous H₂S levels were reduced; NaHS administration significantly reversed VSMC proliferation induced by high glucose, animal experiments have found that calcium-sensitive receptors up-regulate endogenous H₂S production and prevent intima thickening in diabetic rats [45]. In high glucoseinduced human pulmonary aortic smooth muscle cells, NaHS can keep mitochondria still, prevent its fission, and inhibit smooth muscle cell proliferation and migration [46]. In addition to inhibiting VSMC proliferation, exogenous H₂S and CSE overexpression can induce apoptosis in human aortic smooth muscle cells, and its mechanism is related to activation of ERK and p38 MAPK, up-regulation of p21 expression, and down-regulation of Cyclin D1 expression [47].

3.5.2 Improve Vascular Endothelial Function

H₂S plays a very important role in the maintenance of vascular endothelial function. The vasodilatation effect of H₂S on blood vessels depends on intact vascular endothelium. On the one hand, the hyperpolarization of the cell membrane is caused by direct excitation of KATP channels to cause vasodilation. On the other hand, the endothelial cells increase the conductance of potassium ions to achieve vasodilation. The protective mechanism of H₂S on the function of vascular endothelial cells may function as an endogenous opener of KATP channels [48], our group study showed that H₂S can directly activate vascular endothelial growth factor receptor 2 (VEGFR2) and specific knockout of VEGFR2 can inhibit H₂S-induced human vascular endothelial cells (HUVECs) migration [49], also the hybrid molecule ZYZ-803 can slowly release H₂S and NO in vivo to regulate endothelial homeostasis [50].

 H_2S also inhibits apoptosis and the expression of endothelial inflammatory molecules, and promotes the proliferation of vascular endothelial cells [51].

3.5.3 Suppresses Extracellular Matrix Collagen Accumulation

The excessive accumulation of collagen is also the main reason for vascular remodeling.

Endogenous H_2S may be inhibited by regulating matrix metalloproteinases (MMPs)/ Tissue inhibitors of metalloproteinases (TIMPs) expression, increasing the degradation of the collagen component of the blood vessel wall, reducing the collagen content and the deposition of extracellular matrix collagen, thereby slowing down vascular remodeling [52]. Our study provides strong evidence that exogenous H_2S prevents cardiac remodeling by inhibiting the accumulation of extracellular matrix and increasing blood vessel density [53]. Another study reported that exogenous H_2S supplementation can reduce the formation of hydroxyproline and the content of type I colloid in the aorta of spontaneously hypertensive rats [54].

3.6 Regulate Blood Pressure

H₂S can temporarily reduce arterial blood pressure in SD rats and presented dose-dependent phenylephrine pre-construction in SD rats' aorta, which was dependent on the open channel of adenosine triphosphate-sensitive potassium channel (KATP). In in vitro vascular smooth muscle cells, H₂S directly increases the K_{ATP} channel current. In addition to the aorta, H₂S can also relax small resistance vessels such as the mesenteric artery [55]. Yang et al. [5] found that blood pressure in CSE^{-/-} mice was significantly reduced, indicating that H₂S was a physiological and blood pressure regulator. vasodilator H₂S-induce vasodilatation through the nonendothelium-dependent manner. However, a small part of it is through the endotheliumdependent mechanism, the non-endothelial dependent mechanism includes activation of vascular smooth muscle K⁺ channels, lowering intracellular pH, and generation suppresses [56-58]. Activated K^+ channels especially K_{ATP} channels are one of the main mechanisms of H₂S-induced vasodilation effect [55]. Acidification is another mechanism H₂S causes vasodilation. H_2S activates Cl^-/HCO_3^- exchanger, thereby reducing the intracellular pH. Lee et al. [58] reported that exogenous hydrogen sulfide sodium hydrosulfide (NaHS) reduces vascular smooth muscle intracellular pH in a dose-dependent manner, inhibition of Cl⁻/HCO₃⁻ exchangers weakened NaHS-induced intracellular acidification and attenuated NaHS-induced aortic ring diastolic effect in SD rats. Wang et al. [59] reported that intracellular acidification can activate KATP subtype Kir6.1/SUR2B channel currents in vascular

smooth muscle cells, and inhibition of K_{ATP} channel activity can reverse high-carbon acid acidosis-induced mesentery arterial relaxation. It is suggested that H₂S, K_{ATP} channels, and intracellular acidification have loops in regulating angiectasis. The endothelium-dependent mechanism is related to NO [56]. In rat aortic tissue, removing endothelial cells and blocking nitric oxide synthase can attenuate the vasodilation effect induced by H₂S [60], indicating that the vasodilation effect of H₂S partly depends on the endothelial cells and NO.

3.7 Regulate Angiogenesis

Angiogenesis is the formation of a new blood capillary growth process from the original vascular system. This process begins with the degradation of the local matrix, followed by endothelial cell proliferation, migration, and capillary germination [61].

A large amount of literature reports that H₂S can promote angiogenesis. We demonstrate the therapeutic potential of SPRC in ischemic disease through angiogenesis promotion via a novel STAT3-mediated mechanism [62]. Novel H₂S-NO donor ZYZ-803 promotes angiogenesis through the crosstalk between CaMKII and STAT3 [63]. In a mouse hindlimb ischemia promotes neovascularization model, H_2S [64]. Longchamp et al. [65] studied femoral artery ligated CSE^{-/-}mice and found that blood capillary density of ischemic tissue was low, and H₂S production was reduced; while high expression of CSE increased H₂S yield and vascular density in ischemic tissue. This effect does not depend on any other angiogenic stimuli, suggesting that CSE/H₂S can induce angiogenesis in vivo. In vitro experiments found that whether it is human umbilical vein endothelial cells (HUVEC) treated with CSE inhibitor DL-propargylglycine (PPG) or $CSE^{-/-}$ endothelial cells, the bud length is reduced, indicating that angiogenesis in vitro also depends on CSE/H2S. The angiogenesis effect of H₂S is partly through the inhibition of mitochondrial electron transport and oxidative phosphorylation, increasing glucose uptake and glycolytic ATP production. In wild-type mice injected with vascular endothelial growth factor (VEGF), the capillary density of ischemic tissue increased significantly; $CSE^{-/-}$ mice injected with VEGF did not have this effect. This indicates that CSE is involved in VEGF-induced angiogenesis.

4 H₂S and Cardiovascular Disease

In addition to regulating many physiological processes in the body, H_2S has important pathophysiological significance in the occurrence and development of diseases in the cardiovascular system (Fig. 2). Here is an introduction to the relationship between H_2S and cardiovascular system diseases.

4.1 Cardiovascular Diseases Protection

In addition to its vascular protection, H₂S also protects the heart from damage during myocardial infarction (MI), ischemia-reperfusion, heart failure, and myocardial fibrosis. Our precious works demonstrated that the endogenous H₂S was cardioprotective in the rat model of MI [66] and the H₂S may have the anti-infarct effect of MI by modulating migration of macrophage, which was achieved by activating the Src-FAK/Pyk2-Rac pathway [67], meanwhile, our study provides novel evidence that SAC (an organosulfurcontaining compound extract from garlic) is protective in myocardial infarction via an H₂S-related pathway [68].

Our newly synthesized compound SPRC exerts cardioprotective effects [69], other SPRC related compounds of our group also showed cardioprotective activities, a novel leonurine-SPRC conjugate showed that it has a strong cardioprotective effect on hypoxia-induced neonatal rat ventricular myocyte injury. Part of its mechanism is related to increased production of hydrogen sulfide, anti-oxidative stress, and antiapoptosis effects [70]. Furthermore, a controlled release formulation of SPRC (CR-SPRC) showed protective effects against myocardial infarction (MI) through the CSE/H₂S pathway and showed better cardioprotective effects than SPRC via extending the release of endogenous H₂S [71]. ZYZ-803 reduces endoplasmic reticulum (ER) necrosis stress-related after acute myocardial infarction (AMI) by down-regulating the RIP3-CaMKII signaling pathway [72], also our research suggests that H₂S may become a therapeutic agent for MI by promoting M2 macrophage polarization [73]. The new formulation of liposome ZYZ-802 improved the pharmacokinetics and optimized the concentration of H₂S in tissues and plasma. Liposome ZYZ-802 shows enhanced cardioprotection effect in vivo, it may inhibit TGF-\u03b31/Smad signaling pathway by inhibiting myocardial fibrosis [74], inhibit NADPH Oxidase 4-related Signaling by NaHS attenuates myocardial fibrotic response [75]. In the neonatal rat cardiomyocytes model of hypoxia and reoxygenation, the administration of H₂S can increase the viability of cardiomyocytes and reduce the release of lactate dehydrogenase (LDH) [42]. H_2S can protect the myocardium from hypoxia-reoxygenation damage. Exogenous H₂S pretreatment or H₂S treatment after myocardial infarction can protect myocardial cells, reduce infarct size, and improve left ventricular function. The myocardial protective effect of H₂S is related to its protection of mitochondrial structure, opening of KATP channels, inhibition of JNK, and reduction of ROS levels [61, 76]. Liu et al. [77] reported that NaHS preconditioning reduces the apoptosis of H9c2 myocardial cells induced by doxorubicin through the PI3K/Akt/ FoxO3a pathway and exerts myocardial protective effects.

4.2 H₂S and Hypertension

Numerous studies show reduced endogenous H₂S production or enzyme deficiency lack promotes the occurrence of hypertension. Chronic NaHS treatment can reduce the thickening of the myo-cardium, coronary intima, ROS productions, and interstitial fibrosis in spontaneously hypertensive

rats [78]. Yang et al. [5] reported that CSE^{-1} mice showed significantly reduced endothelialdependent vasodilation and hypertension, and their H₂S levels in serum, heart, aorta, and other tissues were significantly reduced. In saltsensitive rats, high salt induces decreased endogenous H₂S levels and hypertension, while H₂S donors can antagonize salt-sensitive hypertension and reverse aortic structural remodeling [79]. In spontaneously hypertensive rats, plasma H₂S levels are reduced and mean arterial blood pressure is significantly increased compared to wild type. The use of NaHS can reduce blood pressure and oxidative stress and improve renal hemodynamics [80]. Similar results were seen in children with essential hypertension. Compared with healthy children with normal blood pressure, plasma H₂S levels in children with essential hypertension were significantly reduced, and systolic blood pressure was negatively correlated with plasma H₂S/Hcy (hydrogen sulfide/homocysteine) ratios [81]. The above results indicate that lower plasma H₂S levels can promote the occurrence of hypertension.

4.3 H₂S and Atherosclerosis

Atherosclerosis is a disease that occurs in the walls of arteries chronic inflammatory lesions. A

large number of studies report that H_2S has important pathophysiological significance in the pathogenesis of atherosclerosis.

Our group demonstrates that H₂S has a protective effect on atherosclerosis formation at least in part by stabilizing atherosclerotic plaques in apolipoprotein E knockout mice [82]. In the Apo $E^{-/-}$ mouse atherosclerosis model, plasma H₂S levels were significantly reduced; the CSE inhibitor PPG further reduces plasma H₂S levels, increases aortic and plasma intercellular adhesion molecule-1 (ICAM-1) level, increases the area of aortic lesions; supplying NaHS increases plasma H₂S concentration, reduces aortic and plasma ICAM-1 levels, and reduces the area of aortic lesions [83]. However, the area of aortic lesions in $ApoE^{-/-}$ mice is smaller than that in Apo $E^{-/-}$ / $CSE^{-/-}$ mice [84]. This shows that CSE deficiency promotes the development of atherosclerosis, and up-regulation of H₂S levels inhibits the formation of atherosclerosis, CSE/H₂S is an important intervention target for the prevention and treatment of atherosclerosis.

In a streptozotocin (STZ) induced LDLR^{-/-} diabetic mouse model, the H₂S donor GYY4137 significantly reduced aortic atherosclerotic plaque area and aortic ROS levels. However, GYY4137 cannot reduce the area of atherosclerotic plaque in the aorta of LDLR^{-/-}/Nrf2^{-/-} double knockout mice, nor can it inhibit the formation of

enterocoelia macrophage-derived foam cells and oxidative stress in $Nrf2^{-/-}$ mice shows that H_2S inhibits diabetic atherosclerosis formation by Nrf2 [85].

In short, the mechanism of CSE/H_2S antagonizing atherosclerosis includes weakening endothelial dysfunction, anti-oxidative stress injury, regulating cell apoptosis, inhibiting the production of inflammatory factors, reducing the accumulation of macrophages at diseased sites, inhibiting foam cell formation [86], increasing the number of regulatory T cells, [87], etc.

4.4 H₂S and Myocardial Ischemia and Ischemia-Reperfusion Injury

Numerous studies have shown that exogenous H₂S can antagonize myocardial ischemiareperfusion injury. Our study showed the cardioprotective effect of H2S in ischemicreperfusion experimental rats [88]. In CSE^{-1} ⁻mice, the blood reperfusion injury is worse than that of the control group. The mechanism is associated with endothelial nitric oxide synthase (eNOS) loss activity, reduced NO levels, increased oxidative stress; exogenous H₂S restores eNOS activity and NO level in myocardium $CSE^{-/-}$ mice, it can reduce oxidative stress and myocardial injury, indicating that lack of aggravates a myocardial CSE ischemiareperfusion injury, while exogenous H₂S can antagonize myocardial ischemia-reperfusion injury [89].

 H_2S pretreatment can significantly antagonize myocardial ischemic injury, reduce the area of myocardial infarction, reduce troponin-I and oxidative stress levels. Further research found that H_2S can increase Nrf2 nuclear translocation and up-regulate PKC, and STAT-3 phosphorylation in the early pretreatment period, increase the expression of HO-1, thioredoxin 1, and heat shock protein 90 (Hsp90) in the post-treatment period, and reduce the activity of pro-apoptotic factors [90].

The treatment of H_2S during reperfusion can also significantly antagonize myocardial ischemia-reperfusion injury, reduce the area of myocardial infarction, and protect left ventricular function. Its mechanism is related to inhibiting myocarditis and protecting mitochondrial structure and function. Giving cardiac muscle-specific high expression of CSE antagonizes myocardial ischemia-reperfusion injury and reduces the area of myocardial infarction. These results indicate that myocardial ischemia-reperfusion injury can be alleviated by either exogenous H_2S administration or up-regulation of endogenous H_2S [76, 91].

It has also been reported that NaHS reduces myocardial cell Caspase-9 activity, up-regulates Bcl-2 expression, reduces p38 MAPK (p38 mitogen-activated protein kinase), and JNK (Jun N-terminal kinase) phosphorylation and NF-kB p65 (nuclear factor-kappaBp65) subunits nuclear antagonizes translocation, and myocardial ischemia-reperfusion injury [92]. Administration of H₂S donor ADT can increase AMPK activity and reduce the area of myocardial infarction after myocardial ischemia and reperfusion in rats [93]. Cardiac H_2S production and CSE expression were reduced myocardial in ischemia-reperfusion injury rats, and myocardial cell apoptosis and myocardial infarction were obvious; post-ischemic treatment increased H₂S level and CSE expression, and reduced rats cardiac ischemia-reperfusion injury; NaHS can inhibit oxidative stress, up-regulate the PI3K-Akt-GSK-3β pathway, and enhance the protective effect of ischemic post-processing on elderly hearts [94].

Diallyl trisulfide (DATS) is a polysulfide component in garlic oil that releases H_2S . After injecting DATS to ischemia-reperfusion mice, the area of myocardial infarction was reduced by increasing the H_2S level, the level of cardiac troponin I was reduced, the myocardial contractile function was improved, and myocardial ischemia-reperfusion injury was reduced. At the cellular level, DATS reduces mitochondrial respiration in a dose-dependent manner, improves mitochondrial coupling after reperfusion, and simultaneously activates eNOS, increasing NO bioavailability [95]. The above results provide an experimental basis for the application of H_2S donors to clinically antagonize myocardial ischemia-reperfusion injury.

4.5 H₂S and Heart Failure

Our group previous study showed that H₂S attenuates cardiac dysfunction in a rat model of heart failure [96], and we further use SPRC or NaHS modulate blood H₂S levels, attenuated the development of animal heart failure, SPRC mediated S-sulfhydration of CaMKII was found to inhibit CaMKII activity and maintain cardiovascular homeostasis [97]. The novel ZYZ-803 (H₂S-NO hybrid molecule) augments synergistic effects against heart failure [98]. Our study provides the evidence for SPRC's therapeutic properties in reducing doxorubicin cardiotoxicity, which can be attributed to gp130-mediated activation of STAT3 signaling, which provide a new molecular basis and treatment strategy for H₂S to treat heart failure. aortic donors In heart coarctation-induced failure models, myocardial and circulating H2S levels were significantly reduced; compared to wild-type mice, $CSE^{-/-}$ mice showed more severe heart enlargement and dysfunction after aortic coarctation. However, myocardial-specific CSE transgenic mice can maintain heart structure and function after aortic coarctation. These results indicate that H₂S levels decrease during heart failure while increasing CSE and increasing H₂S levels can protect heart function in heart failure animals [28].

It has been reported that heart structure and function of myocardial failure mice with overexpressed CSE were significantly improved compared with the control group; daily treatment of H_2S donor Na_2S during reperfusion or within 7 days after myocardial ischemia can also reducing oxidative stress and mitochondrial dysfunction, increasing AKT phosphorylation and Nrf2 nuclear translocation, inhibiting left ventricular structure and function deterioration. These data show that exogenous H_2S has a certain effect on ischemic heart failure [99].

Stress overload heart failure induced by aortic constriction model, using H₂S donor DATS can

improve left ventricular remodeling and protect left ventricular function. DATS can increase myocardial VEGF expression, decrease the expression of angiostatin, and increase myocardial blood vessel density. It shows that H_2S can promote angiogenesis to improve left ventricular remodeling and dysfunction during heart failure [100].

5 Epigenetic Mechanism of the Cardiovascular Effects of H₂S

Epigenetics is a heritable change of gene expression without alteration of DNA sequence, the main mechanism of epigenetics includes DNA methylation, histone modification, and non-coding RNA mechanisms, epigenetic alternations are reversible process, enzymes that involved in the epigenetic regulations are named "writers, readers, and erasers" targeting those enzymes will affect epigenetic modification [101], and these modifications work together to define genes specific expression. The epigenetic mechanism plays an important role in the extensive cardiovascular effects of H₂S. We summarize the epigenetic related regulation of H₂S on CVD (shown in Table 2).

5.1 DNA Methylation

DNA methylation (showed in Fig. 3) refers to the methyl group of S-adenosylmethionine (SAM) transferred to the DNA sequence under the catalysis of DNA methyltransferase (DNMT) and methylation can be erased by ten-eleven translocation (TET) enzymes [102, 103]. Generally speaking, DNA methylation of mammals mainly on the cytosine of CpG (Cytosine-phosphoric acid-guanine) island produces 5mc, CpG island is a CpG-rich region, most of them are promoter regions [104]. DNA methylation level has an important effect on gene expression, usually, active genes of the promoter region are demethylated, while the silencing gene promoter region is hypermethylated. The CpG island's

Targets	Major findings	Cells/Animals	Results	Effects	References
CSE	Hypermethylation of promoter regions	Macrophages	Reducing the CSE transcription and H ₂ S production	Contribute to the development of atherosclerosis or inflammation	Du et al. [106], Li et al. [107]
TFAM	Demethylation by H ₂ S	Smooth muscle cells and aorta tissues from mice	Maintain the normal replication mtDNA	Critical for cellular energy metabolism and mitochondrial biogenesis	Li and Yang [108]
SIRT1	Up-regulate by H ₂ S	Human umbilical vein endothelial cells	Improve endothelial cells function	Anti-aging and anti- atherosclerotic	Suo et al. [37], Zhang et al. [38]
	ZYZ-803-induce SIRT1 expression	Rats	Regulated angiogenesis through an SIRT1/ VEGF/cGMP pathway	Regulate endothelial homeostasis	Hu et al. [50]
	NaSH increase the expression of SIRT1	H9c2 cardiomyocytes	Protects against cardiomyocytes apoptosis under oxidative stress	Cardiomyocytes protection	Wu et al. [110]
	NaHS improved expression of Sirt1/ PGC-1a	Rat hearts	Protects isolated rat hearts from ischemia/ reperfusion injury	Cardioprotection	Hu et al. [111]
	Endogenous CSE/H ₂ S directly sulfhydrated SIRT1	Mice	Enhanced SIRT1 binding to zinc ion promoted its deacetylation activity	Reducing atherosclerotic plaque formation	Du et al. [112]
HDAC6	Regulate CSE and producing H ₂ S	Mice	Improve endothelial function	Attenuates hypertension and atherosclerosis	Chi et al. [113], Leucker et al. [114]
JMJD3	Regulate CSE / H ₂ S system	Mice	Regulate inflammatory response	Prevent uncontrolled inflammation	Liu et al. [115], Wu et al. [116]
miR-30	Inhibiting miR-30 can up-regulate CSE expression	Rats	Increase H ₂ S production	Antagonize myocardial ischemic injury	Shen et al. [118]
miR- 133a	Up-regulate by NaHS/Na ₂ S	Rat cardiomyocytes	Inhibit cardiomyocyte hypertrophy	Cardioprotection	Liu et al. [119], Kesherwani et al. [120]
	H ₂ S overexpress miR-133a	Cardiomyocyte	Reversed I/R- induced ER stress and cardiomyocyte apoptosis		Ren et al. [121]
miR- 186	miR-186 was identified to bind to the 3'UTR of CSE	Human THP-1 macrophages	Inhibits CSE protein and mRNA expression	Increases macrophage lipid accumulation and secretion of pro-inflammatory cytokines	Yao et al. [122]

Table 2 Epigenetic related regulation of H_2S on CVD

(continued)

Targets	Major findings	Cells/Animals	Results	Effects	References
miR- 216a	Down-regulate the CSE and ABCA1 expression	Human THP-1 macrophages	Reducing cholesterol efflux	Modulate cholesterol levels	Gong et al. [123]
miR-21	Inhibits protein expression of CSE and SP-1	Aortic smooth muscle cells	Inhibit H ₂ S production	Stimulation of smooth muscle cell proliferation	Yang et al. [124]
	Na ₂ S inducing miR-21 expression	Mice	Inhibits myocardial cell apoptosis, necrosis myocardial inflammation	Reduces infarct size after M/IR injury	Toldo et al. [125]
miR- 34a	Down-regulation of miR-34a expression can increase the expression of Nrf-2	Rats	Enhance the effect of H ₂ S	Attenuates I/R injury of aged rats	Huang et al. [126]
miR-1	H ₂ S pretreatment down-regulates miR-1	Rats	Reduces myocardial cell apoptosis	Improves cardiac muscle cell viability	Kang et al. [127]
miR-22	MiR-22/Sp-1 links estrogens with the up-regulation of CSE	Primary cultured neonatal female cardiomyocytes	Increase of anti- oxidative defense	Estrogenic cardioprotection	Wang et al. [129]
miR- 640	Down-regulate by H ₂ S	ECs	Increases the level of HIF1A through the VEGFR2- mTOR pathway	Promotes angiogenesis	Zhou et al. [130]
miR- 126-3p	Up-regulate by H ₂ S	HUVECs	Rescues high glucose-induced HUVECs migration dysfunction	Improve vascular function	Xue et al. [131]

Table 2 (continued)

CSE cystathionine- γ -lyase, *TFAM* mitochondrial transcription factor A, *mtDNA* Mitochondrial DNA; *SIRT1* sirtuin1, *VEGF* vascular endothelial growth factor, *cGMP* cyclic guanosine 5'-monophosphate, *PGC-1* peroxisome proliferatoractivated receptor γ coactivator-1, *HDAC6* histone deacetylases 6, *JMJD3* jumonji domain containing 3; *I/R* ischemiareperfusion, *ER* endoplasmic reticulum, ABCA1, ATP- binding cassette transporter A1, *MI/R* myocardial ischemia and reperfusion, *Nrf2* nuclear factor erythroid 2-related factor- 2, *SP-1* specificity protein-1, *ECs* endothelial cells; *HIF1A* hypoxia-inducible factor 1- α , *VEGFR2* vascular endothelial growth factor receptor 2, *HUVECs* human umbilical vein endothelial cells

abnormal hypermethylation will lead to gene silencing by recruiting chromatin-modifying enzymes or preventing transcription factors from binding to promoters and leading to disease [105]. Study shows that DNA hypermethylation of CSE promoters CpG rich regions may contribute to the development of atherosclerosis or inflammation by reducing the CSE transcription and H_2S production in macrophages [106, 107]. H_2S keeps mitochondrial DNA replication by demethylation of mitochondrial transcription factor A (TFAM), which maintains the normal replication of mitochondrial DNA (mtDNA), it is critical for cellular energy metabolism and mitochondrial biogenesis [108].

5.2 Histone Modification

Histone is the protein that assists DNA packaging to form nucleosomes, including the C-terminal domain and an unfolded N-terminal tail. Histone modification (showed in Fig. 4) changes the structure of chromatin. There are several histone modifications on N-terminal tails: methylation, acetylation, phosphorylation, ubiquitination, ubiquitin-like, deamidation, ADP ribosylation,

Fig. 3 *DNA methylation*. DNA methylation is the methyl group of *SAM* S-adenosylmethionine transferred to the DNA sequence under the catalysis of *DNMT* DNA methyltransferase and such methylation can be erased by *TET* ten-eleven translocation enzymes. DNA methylation

and proline isomerization, catalyzed by different enzymes, methylation and acetylation are the most widely studied modification methods [109]. Different histone modifications can activate or inhibit transcription, regulate gene expression, and guide cell differentiation.

SIRT1 is a histone deacetylase, which acetylates functional proteins, and has anti-aging and anti-atherosclerotic effects. Previous research found that H₂S can up-regulate SIRT1 activity of vascular endothelial cells and inhibit H₂O₂induced endothelial cell senescence and improve endothelial cells function, and SIRT1 inhibitors impair H₂S inhibitory effect on aging which shows that H₂S prevents vascular endothelial by up-regulating SIRT1 activity aging [37, 38]. ZYZ-803, the slow-releasing H₂S-NO hybrid molecule of our group cooperatively regulated angiogenesis through a SIRT1/VEGF/ cGMP pathway [50]. We demonstrate that H_2S

mainly on the cytosine of CpG (Cytosine-phosphoric acidguanine) island, produce 5mc; most of them are promoter regions. The CpG island's abnormal hypermethylation will lead to gene silencing by preventing transcription factors from binding to promoters

also protects H9c2 cardiomyocytes against apoptosis under oxidative stress via SIRT1 Pathway [110]. Exogenous H_2S protects isolated rat hearts from ischemia/reperfusion (IR) injury via activating Sirt1/PGC-1 α signaling pathway [111]. H₂S donor (NaHS or GY 4137) can reduce atherosclerotic plaque area in ApoE^{-/-}mice, reduce macrophage infiltration and aortic inflammation, and increase aorta and liver expression of SIRT1 mRNA; Endogenous H₂S can directly modify SIRT1 by S-sulfhydrylation, enhance its binding to zinc ions, and increase the deacetylation activity and stability of SIRT1, thereby reducing atherosclerotic plaque formation [112]. Furthermore, endothelium-specific SIRT1 gene knockdown reversed NaHS promotion of angiogenesis and improved tolerance to exercise. In 6-month-old endothelial-specific SIRT1 knockout mice, the density and number of lower limb muscle capillaries were lower than age and

Fig. 4 *Histone modification.* Histone is the protein that assists DNA packaging to form nucleosomes and further assembled into chromosomes. Histone modification on N-terminal tails including methylation, acetylation, phosphorylation, ubiquitination, ubiquitin-like, deamidation, ADP ribosylation, and proline isomerization, catalyzed by

different enzymes called "writers readers and erasers." Writers refer to the enzymes that add epigenetic modifications, readers refer to enzymes that bind to epigenetic modifications and alter gene activity and protein production, erasers refer to enzymes that remove epigenetic modifications sex-matched wild-type mice. This further suggests that the H_2S reversal of vascular aging depends on SIRT1 [39].

One study suggests that the up-regulation of cystathionine- γ -lyase (CSE) and producing H₂S through histone deacetylases6 (HDAC6) inhibition attenuate hypertension, also improve endothelial function, and prevent the development of atherosclerosis [113, 114]. Studies suggest that H₂S could suppress histone acetylation leading to a decrease in the various pro-inflammatory cytokines gene transcription. Therefore, this mechanism may contribute to prove the previously anti-inflammatory effects of endogenous and exogenous H₂S [114].

Our group's previous study shows that inflammation can enhance the biosynthesis of the CSE/H₂S system, and then reduce the inflammatory response triggered by lipopolysaccharide (LPS) via regulating the expression of JMJD3. Therefore, the CSE/H₂S system represents a modification mechanism based on epigenetics to prevent uncontrolled inflammation [115], furthermore, inhibition of JMJD3 expression by the transcription factor Sp-1 may be the cause of negatively regulated inflammatory response by CSE [116].

5.3 Effects Mediated Via miRNAs

MicroRNA (miRNA) is an RNA small non-coding molecule that is involved in posttranscriptional regulation of RNA silencing and gene expression (showed in Fig. 5). Generally speaking, miRNA genes are transcribed in the form the primary nucleus to miRNA (pri-miRNA) and then cleaved by Drosha to form precursors-miRNAs (pre-miRNAs). The pre-miRNAs are exported to the cytoplasm by Exportin 5 and followed cleaved by Dicer to form mature miRNA duplex further unwind and miRNA strand is added one into the RNA-inducing silencing complex (RISC). A combination of a miRNA with its target mRNA leads to either transcription repression or mRNA decay [117]. miRNAs are involved in many physiological and pathophysiological effects and play

an important role in the development of cardiovascular disease or related diseases such as high blood pressure, myocardial infarction, heart failure, and atherosclerosis. Recent studies show that H_2S can regulate miRNA expression during the above diseases.

Our group found that inhibiting miR-30 can up-regulate CSE expression and H₂S production in myocardial ischemia-reperfusion (I/R) rats and antagonize myocardial ischemic injury [118]. miR-133a is down-regulated in patients with diabetic heart failure. In neonatal rat cardiomyocytes, the administration of NaHS can up-regulate miR-133a and inhibit phenylephrineinduced cardiomyocyte hypertrophy [119]. Na₂S administration can increase miR-133a levels and inhibit hypertrophy of cardiac muscle cells induced hyperhomocysteinemia by [120]. miR-133a overexpression protects against I/R-induced endoplasmic reticulum stress and cardiomyocyte apoptosis and enhances cell movement [121]. Studies have shown that not only H₂S can regulate miRNA expression, but also regulate CSE expression under pathological conditions. In the human THP-1 macrophage model, miR-186 directly inhibits CSE protein and mRNA expression and increases macrophage lipid accumulation [122]; while miR-216a can down-regulate the CSE and ATP-binding cassette transporter A1 (ABCA1) expression, reducing cholesterol efflux from THP-1 macrophagederived foam cells [123]. Overexpression of miR-21 in aortic smooth muscle cells inhibits protein expression of CSE and SP-1, inhibits H_2S production, stimulates smooth muscle cell proliferation, down-regulates smooth muscle cell differentiation-related genes, and regulates CSE/H₂S of smooth muscle cell proliferation and differentiation by targeting SP-1 [124]. In the myocardial ischemia and inflammation mouse model, Na₂S inhibits myocardial cell apoptosis and necrosis by inducing miR-21 expression, inhibits myocardial inflammation, and reduces infarct size after myocardial ischemiareperfusion injury [125]. Down-regulation of miR-34a expression can increase the expression of Nrf-2 and its downstream targets, and enhance the effect of H₂S on liver I/R injury of aged rats

Fig. 5 *miRNA mechanism*. MicroRNA (miRNA) is an RNA small non-coding molecule, miRNA genes are first transcribed in the nucleus to form the *pri-miRNA* primary miRNA and then cleaved by Drosha to form *pre-miRNAs* precursors-miRNAs, which export to the cytoplasm by

[126]. Kang et al. [127] found that hypoxia and reoxygenation increased cardiac muscle cell death on neonatal rats, miR-1 expression was up-regulated, and Bcl-2 expression was decreased. H₂ S pretreatment down-regulates miR-1 expression and up-regulates Bcl-2 expression, reduces myocardial cell apoptosis and LDH release, and improves cardiac muscle cell viability. H₂S can also reduce myocardial cell apoptosis induced by ischemia-reperfusion injury in SD rats. miR-1 attenuates the protective effect of H_2S on cardiomyocytes by down-regulating Bcl-2 expression. These results indicate that inhibition of miR-1 expression may be an important mechanism for H₂S to exert myocardial protection effects. In rat ovariectomy models, myocardial miR-22 levels increased, and estrogen E2 treatment returned miR-22 expression to normal. At the same time, estrogens stimulate Sp-1 through the estrogen receptor- α mediated downregulation of miR-22 that leading to the up-regulation of CSE, which in turn results in antioxidative defense. These studies show that

Exportin 5 and followed cleaved by Dicer to form mature miRNA duplex then unwind and one miRNA strand is added into the *RISC* RNA-inducing silencing complex. Combination of a miRNA with its target mRNA leads to either transcription repression or mRNA decay

miRNAs can regulate CSE expression and H_2S production [128, 129]. miR-640 plays a key role in mediating the angiogenic effect of H_2S ; H_2S increases the level of hypoxia-inducible factor 1- α (HIF1A) through the VEGFR2-mTOR pathway by down-regulating the expression of miR-640 [130]. H_2S rescued high glucoseinduced migration dysfunction of HUVECs by up-regulating miR-126-3p [131].

5.4 H₂S and the Transcription Factors

Nuclear factor erythroid 2-related factor- 2 (Nrf2) is an important antioxidant stress transcription factor that regulates the expression of many antioxidant and cytoprotective genes. ROS is an important risk factor for cardiovascular disease, which can cause endothelial cell apoptosis, activate NF- κ B, increase the expression of adhesion molecules and cytokines, enhance monocyte adhesion, make mitochondrial dysfunction [4, 132].

H₂S can activate Nrf2 signaling to inhibit oxidative stress, thereby inhibiting diabetes-induced atherosclerosis [85]. Exogenous H₂S inhibits oxidative stress induced endothelial cell autophagy through the Nrf2-ROS-AMPK signaling pathway [133]. H_2S pretreatment can activate myocardial ischemia mice Nrf2 signaling and up-regulate the antioxidant protein HO-1 and thioredoxin 1, and reduce myocardial ischemic injury [90]. NaHS can attenuate the combination of insulin-like growth factor 1 (IGF-1) and IGF-1R, and inhibit the proliferation of VSMCs induced by IGF-1 The transcription factor specificity [134]. protein-1 (SP-1) can bind to the promoter region of CSE and promote the phenotypic change of smooth muscle cells [135]. Its antioxidant function also depends on the Nrf2 signaling pathway [90]. Nrf2 is the nuclear basic leucine transcription factor NF-E2 (factor-erythroid2) family members, genes that regulate a variety of enzymes expressions, such as hemeoxygenase-1 (HO-1), thioredoxin (Trx), thioredoxin reductase (TrxR), glutathione reductase (GR), glutathione peroxidase (GPx), and catalase [136]. It is suggested that exogenous H₂S induced translocation of cardiomyocyte Nrf2 to the nucleus during myocardial infarction and up-regulated the expression of Trx 1 and HO-1 [90].

6 Conclusions

 H_2S has a wide range of biological effects that arise in physiological processes, the gas signal molecule also has an important influence on the occurrence and development of cardiovascular diseases. H_2S and related enzymes are important and promising intervention targets for the prevention and treatment of these cardiovascular diseases. Epigenetics plays an important regulatory role in H_2S cardiovascular effects. Strengthening the basic and translational medicine research on H_2S is expected to provide a new understanding of the pathogenesis of cardiovascular disease and bring new strategies for its prevention and treatment, which has important theoretical and application value.

References

- Lorenzen JM, Martino F, Thum T (2012) Epigenetic modifications in cardiovascular disease. Basic Res Cardiol 107(2):245. https://doi.org/10.1007/s00395-012-0245-9
- Jones MJ, Goodman SJ, Kobor MS (2015) DNA methylation and healthy human aging. Aging Cell 14(6):924–932. https://doi.org/10.1111/acel.12349
- Mazzio EA, Soliman KF (2012) Basic concepts of epigenetics: impact of environmental signals on gene expression. Epigenetics 7(2):119–130. https://doi. org/10.4161/epi.7.2.18764
- Shefa U, Kim MS, Jeong NY, Jung J (2018) Antioxidant and cell-signaling functions of hydrogen sulfide in the central nervous system. Oxid Med Cell Longev 2018:1873962. https://doi.org/10.1155/2018/ 1873962
- Yang G, Wu L, Jiang B et al (2008) H₂S as a physiologic vasorelaxant: hypertension in mice with deletion of cystathionine gamma-lyase. Science 322 (5901):587–590. https://doi.org/10.1126/science. 1162667
- Shibuya N, Tanaka M, Yoshida M et al (2009) 3-Mercaptopyruvate sulfurtransferase produces hydrogen sulfide and bound sulfane sulfur in the brain. Antioxid Redox Signal 11(4):703–714. https://doi.org/10.1089/ars.2008.2253
- Caliendo G, Cirino G, Santagada V, Wallace JL (2010) Synthesis and biological effects of hydrogen sulfide (H₂S): development of H₂S-releasing drugs as pharmaceuticals. J Med Chem 53(17):6275–6286. https://doi.org/10.1021/jm901638j
- Liu LL, Yan L, Chen YH et al (2014) A role for diallyl trisulfide in mitochondrial antioxidative stress contributes to its protective effects against vascular endothelial impairment. Eur J Pharmacol 725:23–31. https://doi.org/10.1016/j.ejphar.2014.01.010
- 9. Benavides GA, Squadrito GL, Mills RW et al (2007) Hydrogen sulfide mediates the vasoactivity of garlic. Proc Natl Acad Sci U S A 104(46):17977–17982. https://doi.org/10.1073/pnas.0705710104
- Li L, Whiteman M, Guan YY et al (2008) Characterization of a novel, water-soluble hydrogen sulfidereleasing molecule (GYY4137): new insights into the biology of hydrogen sulfide. Circulation 117 (18):2351–2360. https://doi.org/10.1161/ CIRCULATIONAHA.107.753467
- Powell CR, Dillon KM, Matson JB (2018) A review of hydrogen sulfide (H₂S) donors: chemistry and potential therapeutic applications. Biochem Pharmacol 149:110–123. https://doi.org/10.1016/j. bcp.2017.11.014

- Szczesny B, Módis K, Yanagi K et al (2014) AP39, a novel mitochondria-targeted hydrogen sulfide donor, stimulates cellular bioenergetics, exerts cytoprotective effects and protects against the loss of mitochondrial DNA integrity in oxidatively stressed endothelial cells in vitro. Nitric Oxide 41:120–130. https://doi.org/10.1016/j.niox.2014.04. 008
- Wen YD, Wang H, Zhu YZ (2018) The drug developments of hydrogen sulfide on cardiovascular disease. Oxid Med Cell Longev 2018:4010395. https://doi.org/10.1155/2018/4010395
- 14. Hu Q, Wu D, Ma F et al (2016a) Novel Angiogenic activity and molecular mechanisms of ZYZ-803, a slow-releasing hydrogen sulfide-nitric oxide hybrid molecule. Antioxid Redox Signal 25(8):498–514. https://doi.org/10.1089/ars.2015.6607
- Wu D, Hu Q, Ma F, Zhu YZ (2016a) Vasorelaxant effect of a new hydrogen sulfide-nitric oxide conjugated donor in isolated rat aortic rings through cGMP pathway. Oxidative Med Cell Longev 2016:7075682. https://doi.org/10.1155/2016/7075682
- Feng S, Zhao Y, Xian M, Wang Q (2015) Biological thiols-triggered hydrogen sulfide releasing microfibers for tissue engineering applications. Acta Biomater 27:205–213. https://doi.org/10.1016/j. actbio.2015.09.010
- Wu J, Li Y, He C et al (2016b) Novel H₂S releasing Nanofibrous coating for in vivo dermal wound regeneration. ACS Appl Mater Interfaces 8 (41):27474–27481. https://doi.org/10.1021/acsami. 6b06466
- Elrod JW, Calvert JW, Morrison J et al (2007a) Hydrogen sulfide attenuates myocardial ischemiareperfusion injury by preservation of mitochondrial function. Proc Natl Acad Sci U S A 104 (39):15560–15565. https://doi.org/10.1073/pnas. 0705891104
- Sodha NR, Clements RT, Feng J et al (2009) Hydrogen sulfide therapy attenuates the inflammatory response in a porcine model of myocardial ischemia/reperfusion injury. J Thorac Cardiovasc Surg 138(4):977–984. https://doi.org/10.1016/j.jtcvs. 2008.08.074
- Li L, Bhatia M, Zhu YZ et al (2005) Hydrogen sulfide is a novel mediator of lipopolysaccharide-induced inflammation in the mouse. FASEB J 19 (9):1196–1198. https://doi.org/10.1096/fj.04-3583fje
- Pan LL, Liu XH, Gong QH, Wu D, Zhu YZ (2011b) Hydrogen sulfide attenuated tumor necrosis factor-α-induced inflammatory signaling and dysfunction in vascular endothelial cells. PLoS One 6 (5):e19766. https://doi.org/10.1371/journal.pone. 0019766
- 22. Pan LL, Liu XH, Gong QH, Zhu YZ (2011a) S-Propargyl-cysteine (SPRC) attenuated lipopolysaccharide-induced inflammatory response in H9c2 cells involved in a hydrogen sulfidedependent mechanism. Amino Acids 41

(1):205–215. https://doi.org/10.1007/s00726-011-0834-1

- 23. Wang M, Tang W, Xin H, Zhu YZ (2016a) S-Propargyl-Cysteine, a novel hydrogen sulfide donor, inhibits inflammatory hepcidin and relieves anemia of inflammation by inhibiting IL-6/STAT3 pathway. PLoS One 11(9):e0163289. https://doi.org/ 10.1371/journal.pone.0163289
- 24. Venardos KM, Perkins A, Headrick J, Kaye DM (2007) Myocardial ischemia-reperfusion injury, antioxidant enzyme systems, and selenium: a review [published correction appears in Curr med Chem. 2007;14(27):2944. Perkins, Anthony [added]; Headrick, John [added]]. Curr Med Chem 14 (14):1539–1549. https://doi.org/10.2174/ 092986707780831078
- Wang Q, Wang XL, Liu HR, Rose P, Zhu YZ (2010) Protective effects of cysteine analogues on acute myocardial ischemia: novel modulators of endogenous H(2)S production. Antioxid Redox Signal 12 (10):1155–1165. https://doi.org/10.1089/ars.2009. 2947
- 26. Wen YD, Wang H, Kho SH et al (2013) Hydrogen sulfide protects HUVECs against hydrogen peroxide induced mitochondrial dysfunction and oxidative stress. PLoS One 8(2):e53147. https://doi.org/10. 1371/journal.pone.0053147
- 27. Meng G, Liu J, Liu S et al (2018) Hydrogen sulfide pretreatment improves mitochondrial function in myocardial hypertrophy via a SIRT3-dependent manner. Br J Pharmacol 175(8):1126–1145. https://doi. org/10.1111/bph.13861
- 28. Kondo K, Bhushan S, King AL et al (2013) H₂S protects against pressure overload-induced heart failure via upregulation of endothelial nitric oxide synthase. Circulation 127(10):1116–1127. https://doi.org/10.1161/CIRCULATIONAHA.112.000855
- 29. Ng HH, Yildiz GS, Ku JM, Miller AA, Woodman OL, Hart JL (2017) Chronic NaHS treatment decreases oxidative stress and improves endothelial function in diabetic mice. Diab Vasc Dis Res 14 (3):246-253. https://doi.org/10.1177/1479164117692766
- 30. Zhang Z, Jin S, Teng X, Duan X, Chen Y, Wu Y (2017) Hydrogen sulfide attenuates cardiac injury in takotsubo cardiomyopathy by alleviating oxidative stress. Nitric Oxide 67:10–25. https://doi.org/10. 1016/j.niox.2017.04.010
- 31. Huang P, Shen Z, Yu W et al (2017) Hydrogen sulfide inhibits high-salt diet-induced myocardial oxidative stress and myocardial hypertrophy in dahl rats. Front Pharmacol 8:128. https://doi.org/10.3389/ fphar.2017.00128
- 32. Geng B, Chang L, Pan C et al (2004) Endogenous hydrogen sulfide regulation of myocardial injury induced by isoproterenol. Biochem Biophys Res Commun 318(3):756–763. https://doi.org/10.1016/j. bbrc.2004.04.094

- 33. Sun WH, Liu F, Chen Y, Zhu YC (2012) Hydrogen sulfide decreases the levels of ROS by inhibiting mitochondrial complex IV and increasing SOD activities in cardiomyocytes under ischemia/reperfusion. Biochem Biophys Res Commun 421 (2):164–169. https://doi.org/10.1016/j.bbrc.2012.03. 121
- 34. Xie ZZ, Shi MM, Xie L et al (2014) Sulfhydration of p66Shc at cysteine59 mediates the antioxidant effect of hydrogen sulfide. Antioxid Redox Signal 21 (18):2531–2542. https://doi.org/10.1089/ars.2013. 5604
- 35. Miller DL, Roth MB (2007) Hydrogen sulfide increases thermotolerance and lifespan in Caenorhabditis elegans. Proc Natl Acad Sci U S A 104(51):20618–20622. https://doi.org/10.1073/pnas. 0710191104
- 36. Qabazard B, Li L, Gruber J et al (2014) Hydrogen sulfide is an endogenous regulator of aging in Caenorhabditis elegans. Antioxid Redox Signal 20 (16):2621–2630. https://doi.org/10.1089/ars.2013. 5448
- 37. Suo R, Zhao ZZ, Tang ZH et al (2013) Hydrogen sulfide prevents H2O2-induced senescence in human umbilical vein endothelial cells through SIRT1 activation. Mol Med Rep 7(6):1865–1870. https://doi. org/10.3892/mmr.2013.1417
- 38. Zhang Y, Tang ZH, Ren Z et al (2013) Hydrogen sulfide, the next potent preventive and therapeutic agent in aging and age-associated diseases. Mol Cell Biol 33(6):1104–1113. https://doi.org/10.1128/ MCB.01215-12
- 39. Das A, Huang GX, Bonkowski MS et al (2018) Impairment of an endothelial NAD+-H₂S signaling network is a reversible cause of vascular aging [published correction appears in Cell. 2019 Feb 7;176(4):944-945]. Cell 173(1):74–89. https://doi. org/10.1016/j.cell.2018.02.008
- 40. Murrow L, Debnath J (2013) Autophagy as a stressresponse and quality-control mechanism: implications for cell injury and human disease. Annu Rev Pathol 8:105–137. https://doi.org/10. 1146/annurev-pathol-020712-163918
- Sen N (2017) Functional and molecular insights of hydrogen sulfide signaling and protein Sulfhydration. J Mol Biol 429(4):543–561. https://doi.org/10.1016/ j.jmb.2016.12.015
- 42. Xiao J, Zhu X, Kang B et al (2015) Hydrogen sulfide attenuates myocardial hypoxia-Reoxygenation injury by inhibiting autophagy via mTOR activation. Cell Physiol Biochem 37(6):2444–2453. https://doi.org/ 10.1159/000438597
- 43. Chen J, Gao J, Sun W et al (2016) Involvement of exogenous H₂S in recovery of cardioprotection from ischemic post-conditioning via increase of autophagy in the aged hearts. Int J Cardiol 220:681–692. https:// doi.org/10.1016/j.ijcard.2016.06.200
- 44. Yang G, Li H, Tang G et al (2012a) Increased neointimal formation in cystathionine gamma-lyase

deficient mice: role of hydrogen sulfide in α 5 β 1integrin and matrix metalloproteinase-2 expression in smooth muscle cells. J Mol Cell Cardiol 52 (3):677–688. https://doi.org/10.1016/j.yjmcc.2011. 12.004

- 45. Zhong X, Wang Y, Wu J et al (2015) Calcium sensing receptor regulating smooth muscle cells proliferation through initiating cystathionine-gamma-lyase/ hydrogen sulfide pathway in diabetic rat. Cell Physiol Biochem 35(4):1582–1598. https://doi.org/10.1159/ 000373973
- 46. Sun A, Wang Y, Liu J et al (2016) Exogenous H₂S modulates mitochondrial fusion-fission to inhibit vascular smooth muscle cell proliferation in a hyperglycemic state. Cell Biosci 6:36. https://doi.org/10.1186/ s13578-016-0102-x
- Yang G, Wu L, Wang R (2006) Pro-apoptotic effect of endogenous H₂S on human aorta smooth muscle cells. FASEB J 20(3):553–555. https://doi.org/10. 1096/fj.05-4712fje
- 48. Yang W, Yang G, Jia X, Wu L, Wang R (2005) Activation of K_{ATP} channels by H₂S in rat insulinsecreting cells and the underlying mechanisms. J Physiol 569(Pt 2):519–531. https://doi.org/10.1113/ jphysiol.2005.097642
- 49. Tao BB, Liu SY, Zhang CC et al (2013) VEGFR2 functions as an H₂S-targeting receptor protein kinase with its novel Cys1045-Cys1024 disulfide bond serving as a specific molecular switch for hydrogen sulfide actions in vascular endothelial cells. Antioxid Redox Signal 19(5):448–464. https://doi.org/10. 1089/ars.2012.4565
- 50. Hu Q, Wu D, Ma F et al (2016b) Novel Angiogenic activity and molecular mechanisms of ZYZ-803, a slow-releasing hydrogen sulfide-nitric oxide hybrid molecule. Antioxid Redox Signal 25(8):498–514. https://doi.org/10.1089/ars.2015.6607
- 51. Bai L, Qi Y, Chen S et al (2019) Angiotensin II downregulates vascular endothelial cell hydrogen sulfide production by enhancing cystathionine γ-lyase degradation through ROS-activated ubiquitination pathway. Biochem Biophys Res Commun 514(3):907–912. https://doi.org/10.1016/j. bbrc.2019.05.021
- 52. Li X, Jin H, Bin G, Wang L, Tang C, Du J (2009) Endogenous hydrogen sulfide regulates pulmonary artery collagen remodeling in rats with high pulmonary blood flow. Exp Biol Med 234(5):504–512. https://doi.org/10.3181/0807-RM-230
- 53. Pan LL, Wang XL, Wang XL, Zhu YZ (2014) Sodium hydrosulfide prevents myocardial dysfunction through modulation of extracellular matrix accumulation and vascular density. Int J Mol Sci 15 (12):23212–23226. https://doi.org/10.3390/ ijms151223212
- 54. Zhao X, Zhang LK, Zhang CY et al (2008) Regulatory effect of hydrogen sulfide on vascular collagen content in spontaneously hypertensive rats.

Hypertens Res 31(8):1619–1630. https://doi.org/10. 1291/hypres.31.1619

- 55. Zhao W, Zhang J, Lu Y, Wang R (2001) The vasorelaxant effect of H(2)S as a novel endogenous gaseous K(ATP) channel opener. EMBO J 20 (21):6008–6016. https://doi.org/10.1093/emboj/20. 21.6008
- 56. Gheibi S, Jeddi S, Kashfi K, Ghasemi A (2018) Regulation of vascular tone homeostasis by NO and H₂S: implications in hypertension. Biochem Pharmacol 149:42–59. https://doi.org/10.1016/j.bcp. 2018.01.017
- 57. Kiss L, Deitch EA, Szabó C (2008) Hydrogen sulfide decreases adenosine triphosphate levels in aortic rings and leads to vasorelaxation via metabolic inhibition. Life Sci 83(17–18):589–594. https://doi.org/ 10.1016/j.lfs.2008.08.006
- 58. Lee SW, Cheng Y, Moore PK, Bian JS (2007) Hydrogen sulphide regulates intracellular pH in vascular smooth muscle cells [published correction appears in Biochem Biophys res Commun. 2012 Feb 24;418(4):853]. Biochem Biophys Res Commun 358(4):1142–1147. https://doi.org/10.1016/j.bbrc. 2007.05.063
- Wang X, Wu J, Li L, Chen F, Wang R, Jiang C (2003) Hypercapnic acidosis activates K_{ATP} channels in vascular smooth muscles. Circ Res 92 (11):1225–1232. https://doi.org/10.1161/01.RES. 0000075601.95738.6D
- Zhao W, Wang R (2002) H(2)S-induced vasorelaxation and underlying cellular and molecular mechanisms. Am J Physiol Heart Circ Physiol 283 (2):H474–H480. https://doi.org/10.1152/ajpheart. 00013.2002
- Wang MJ, Cai WJ, Zhu YC (2016b) Hydrogen sulphide in cardiovascular system: cascade from interaction between sulphur atoms and signalling molecules. Life Sci 153:188–197
- 62. Kan J, Guo W, Huang C, Bao G, Zhu Y, Zhu YZ (2014) S-propargyl-cysteine, a novel water-soluble modulator of endogenous hydrogen sulfide, promotes angiogenesis through activation of signal transducer and activator of transcription 3. Antioxid Redox Signal 20(15):2303–2316. https://doi.org/10.1089/ars. 2013.5449
- 63. Xiong Y, Chang LL, Tran B et al (2020) ZYZ-803, a novel hydrogen sulfide-nitric oxide conjugated donor, promotes angiogenesis via cross-talk between STAT3 and CaMKII. Acta Pharmacol Sin 41 (2):218–228. https://doi.org/10.1038/s41401-019-0255-3
- 64. Bir SC, Kolluru GK, McCarthy P et al (2012) Hydrogen sulfide stimulates ischemic vascular remodeling through nitric oxide synthase and nitrite reduction activity regulating hypoxia-inducible factor-1α and vascular endothelial growth factor-dependent angiogenesis. J Am Heart Assoc 1(5):e004093
- 65. Longchamp A, Mirabella T, Arduini A et al (2018) Amino acid restriction triggers angiogenesis via

GCN2/ATF4 regulation of VEGF and H2 S production. Cell 173(1):117–129

- 66. Zhu YZ, Wang ZJ, Ho P et al (2007) Hydrogen sulfide and its possible roles in myocardial ischemia in experimental rats. J Appl Physiol 102(1):261–268. https://doi.org/10.1152/japplphysiol.00096.2006
- 67. Miao L, Xin X, Xin H, Shen X, Zhu YZ (2016a) Hydrogen sulfide recruits macrophage migration by Integrinβ1-Src-FAK/Pyk2-Rac pathway in myocardial infarction. Sci Rep 6:22363. https://doi. org/10.1038/srep22363
- Chuah SC, Moore PK, Zhu YZ (2007) S-allylcysteine mediates cardioprotection in an acute myocardial infarction rat model via a hydrogen sulfide-mediated pathway. Am J Physiol Heart Circ Physiol 293(5):H2693–H2701. https://doi.org/10. 1152/ajpheart.00853.2007
- 69. Wang Q, Liu HR, Mu Q, Rose P, Zhu YZ (2009a) Spropargyl-cysteine protects both adult rat hearts and neonatal cardiomyocytes from ischemia/hypoxia injury: the contribution of the hydrogen sulfidemediated pathway. J Cardiovasc Pharmacol 54 (2):139–146. https://doi.org/10.1097/FJC. 0b013e3181ac8e12
- Liu C, Gu X, Zhu YZ (2010) Synthesis and biological evaluation of novel leonurine-SPRC conjugate as cardioprotective agents. Bioorg Med Chem Lett 20 (23):6942–6946. https://doi.org/10.1016/j.bmcl. 2010.09.135
- 71. Tran BH, Huang C, Zhang Q et al (2015) Cardioprotective effects and pharmacokinetic properties of a controlled release formulation of a novel hydrogen sulfide donor in rats with acute myocardial infarction. Biosci Rep 35(3):e00216. https://doi.org/10.1042/BSR20140185
- 72. Chang L, Wang Z, Ma F et al (2019) ZYZ-803 mitigates endoplasmic reticulum stress-related necroptosis after acute myocardial infarction through downregulating the RIP3-CaMKII signaling pathway. Oxid Med Cerll Longev 2019:6173685. https://doi.org/10.1155/2019/6173685
- Miao L, Shen X, Whiteman M et al (2016b) Hydrogen sulfide mitigates myocardial infarction via promotion of mitochondrial biogenesis-dependent M2 polarization of macrophages. Antioxid Redox Signal 25(5):268–281. https://doi.org/10.1089/ars.2015. 6577
- 74. Tran BH, Yu Y, Chang L et al (2019) A novel liposomal S-Propargyl-cysteine: a sustained release of hydrogen sulfide reducing myocardial fibrosis via TGF-β1/Smad pathway. Int J Nanomed 14:10061–10077. https://doi.org/10.2147/IJN. S216667
- 75. Pan LL, Liu XH, Shen YQ et al (2013) Inhibition of NADPH oxidase 4-related signaling by sodium hydrosulfide attenuates myocardial fibrotic response. Int J Cardiol 168(4):3770–3778. https://doi.org/10. 1016/j.ijcard.2013.06.007

- 76. Elrod JW, Calvert JW, Morrison J et al (2007b) Hydrogen sulfide attenuates myocardial ischemiareperfusion injury by preservation of mitochondrial function. Proc Natl Acad Sci U S A 104 (39):15560–15565. https://doi.org/10.1073/pnas. 0705891104
- 77. Liu MH, Zhang Y, He J et al (2016a) Hydrogen sulfide protects H9c2 cardiac cells against doxorubicin-induced cytotoxicity through the PI3K/ Akt/FoxO3a pathway. Int J Mol Med 37 (6):1661–1668. https://doi.org/10.3892/ijmm.2016. 2563
- 78. Shi YX, Chen Y, Zhu YZ et al (2007) Chronic sodium hydrosulfide treatment decreases medial thickening of intramyocardial coronary arterioles, interstitial fibrosis, and ROS production in spontaneously hypertensive rats. Am J Physiol Heart Circ Physiol 293(4):H2093–H2100. https://doi.org/10. 1152/ajpheart.00088.2007
- 79. Huang P, Chen S, Wang Y et al (2015) Downregulated CBS/H₂S pathway is involved in highsalt-induced hypertension in dahl rats. Nitric Oxide 46:192–203. https://doi.org/10.1016/j.niox.2015.01. 004
- 80. Ahmad FU, Sattar MA, Rathore HA et al (2014) Hydrogen sulphide and tempol treatments improve the blood pressure and renal excretory responses in spontaneously hypertensive rats. Ren Fail 36 (4):598–605. https://doi.org/10.3109/0886022X. 2014.882218
- Chen L, Ingrid S, Ding YG et al (2007) Imbalance of endogenous homocysteine and hydrogen sulfide metabolic pathway in essential hypertensive children. Chin Med J 120(5):389–393
- 82. Xiong Q, Wang Z, Yu Y et al (2019) Hydrogen sulfide stabilizes atherosclerotic plaques in apolipoprotein E knockout mice. Pharmacol Res 144:90–98. https://doi.org/10.1016/j.phrs.2019.04.006
- Wang Y, Zhao X, Jin H et al (2009b) Role of hydrogen sulfide in the development of atherosclerotic lesions in apolipoprotein E knockout mice. Arterioscler Thromb Vasc Biol 29(2):173–179
- 84. Mani S, Li H, Untereiner A et al (2013) Decreased endogenous production of hydrogen sulfide accelerates atherosclerosis. Circulation 127 (25):2523–2534
- 85. Xie L, Gu Y, Wen M et al (2016) Hydrogen sulfide induces Keap1 S-sulfhydration and suppresses diabetes-accelerated atherosclerosis via Nrf2 activation. Diabetes 65(10):3171–3184
- Zhao ZZ, Wang Z, Li GH et al (2011) Hydrogen sulfide inhibits macro-phage-derived foam cell formation. Exp Biol Med 236(2):169–176
- 87. Pan LL, Qin M, Liu XH et al (2017) The role of hydrogen sulfide on cardiovascular homeostasis: an overview with update on immuno-modulation. Front Pharmacol 8:686
- Zhuo Y, Chen PF, Zhang AZ, Zhong H, Chen CQ, Zhu YZ (2009) Cardioprotective effect of hydrogen

sulfide in ischemic reperfusion experimental rats and its influence on expression of survivin gene. Biol Pharm Bull 32(8):1406–1410. https://doi.org/10. 1248/bpb.32.1406

- 89. King AL, Polhemus DJ, Bhushan S et al (2014) Hydrogen sulfide cytoprotective signaling is endothelial nitric oxide synthase-nitric oxide dependent. Proc Natl Acad Sci U S A 111(8):3182–3187. https://doi. org/10.1073/pnas.1321871111
- Calvert JW, Jha S, Gundewar S et al (2009) Hydrogen sulfide mediates cardioprotection through Nrf2 signaling. Circ Res 105(4):365–374. https://doi.org/ 10.1161/CIRCRESAHA.109.199919
- 91. Huang YE, Tang ZH, Xie W et al (2012) Endogenous hydrogen sulfide mediates the cardioprotection induced by ischemic postconditioning in the early reperfusion phase. Exp Ther Med 4(6):1117–1123. https://doi.org/10.3892/etm.2012.733
- 92. Sivarajah A, Collino M, Yasin M et al (2009) Antiapoptotic and anti-inflammatory effects of hydrogen sulfide in a rat model of regional myocardial I/R. Shock 31(3):267–274. https://doi.org/10.1097/ SHK.0b013e318180ff89
- 93. Xie H, Xu Q, Jia J et al (2015) Hydrogen sulfide protects against myocardial ischemia and reperfusion injury by activating AMP-activated protein kinase to restore autophagic flux. Biochem Biophys Res Commun 458(3):632–638. https://doi.org/10.1016/j. bbrc.2015.02.017
- 94. Li H, Wang Y, Wei C et al (2015a) Mediation of exogenous hydrogen sulfide in recovery of ischemic post-conditioning-induced cardioprotection via down-regulating oxidative stress and up-regulating PI3K/Akt/GSK-3β pathway in isolated aging rat hearts. Cell Biosci 5:11. https://doi.org/10.1186/ s13578-015-0003-4
- 95. Predmore BL, Kondo K, Bhushan S et al (2012) The polysulfide diallyl trisulfide protects the ischemic myocardium by preservation of endogenous hydrogen sulfide and increasing nitric oxide bioavailability. Am J Physiol Heart Circ Physiol 302(11):H2410– H2418. https://doi.org/10.1152/ajpheart.00044.2012
- 96. Wang X, Wang Q, Guo W, Zhu YZ (2011) Hydrogen sulfide attenuates cardiac dysfunction in a rat model of heart failure: a mechanism through cardiac mitochondrial protection. Biosci Rep 31(2):87–98. https:// doi.org/10.1042/BSR20100003
- 97. Wu D, Hu Q, Tan B, Rose P, Zhu D, Zhu YZ (2018a) Amelioration of mitochondrial dysfunction in heart failure through S-sulfhydration of Ca2+/calmodulindependent protein kinase II. Redox Biol 19:250–262. https://doi.org/10.1016/j.redox.2018.08.008
- 98. Wu D, Hu Q, Xiong Y, Zhu D, Mao Y, Zhu YZ (2018b) Novel H₂S-NO hybrid molecule (ZYZ-803) promoted synergistic effects against heart failure. Redox Biol 15:243–252. https://doi.org/10.1016/j. redox.2017.11.020
- Calvert JW, Elston M, Nicholson CK et al (2010) Genetic and pharmacologic hydrogen sulfide therapy

attenuates ischemia-induced heart failure in mice. Circulation 122(1):11–19. https://doi.org/10.1161/ CIRCULATIONAHA.109.920991

- 100. Polhemus D, Kondo K, Bhushan S et al (2013) Hydrogen sulfide attenuates cardiac dysfunction after heart failure via induction of angiogenesis. Circ Heart Fail 6(5):1077–1086. https://doi.org/10. 1161/CIRCHEARTFAILURE.113.000299
- 101. Ganesan A, Arimondo PB, Rots MG, Jeronimo C, Berdasco M (2019) The timeline of epigenetic drug discovery: from reality to dreams. Clin Epigenetics 11(1):174. https://doi.org/10.1186/s13148-019-0776-0
- 102. Elia L, Condorelli G (2019) The involvement of epigenetics in vascular disease development. Int J Biochem Cell Biol 107:27–31. https://doi.org/10. 1016/j.biocel.2018.12.005
- 103. Tammen SA, Friso S, Choi SW (2013) Epigenetics: the link between nature and nurture. Mol Asp Med 34 (4):753–764. https://doi.org/10.1016/j.mam.2012.07. 018
- 104. Andersen GB, Tost J (1708) A summary of the biological processes, disease-associated changes, and clinical applications of DNA methylation. Methods Mol Biol 2018:3–30. https://doi.org/10. 1007/978-1-4939-7481-8_1
- 105. Hai Z, Zuo W (2016) Aberrant DNA methylation in the pathogenesis of atherosclerosis. Clin Chim Acta 456:69–74. https://doi.org/10.1016/j.cca.2016.02. 026
- 106. Du HP, Li J, You SJ et al (2016) DNA methylation in cystathionine-γ-lyase (CSE) gene promoter induced by ox-LDL in macrophages and in apoE knockout mice. Biochem Biophys Res Commun 469 (3):776–782. https://doi.org/10.1016/j.bbrc.2015.11. 132
- 107. Li JJ, Li Q, Du HP et al (2015b) Homocysteine triggers inflammatory responses in macrophages through inhibiting CSE-H₂S signaling via DNA hypermethylation of CSE promoter. Int J Mol Sci 16(6):12560–12577. https://doi.org/10.3390/ ijms160612560
- 108. Li S, Yang G (2015) Hydrogen sulfide maintains mitochondrial DNA replication via demethylation of TFAM. Antioxid Redox Signal 23(7):630–642. https://doi.org/10.1089/ars.2014.6186
- 109. Chen QW, Zhu XY, Li YY, Meng ZQ (2014) Epigenetic regulation and cancer (review). Oncol Rep 31 (2):523–532. https://doi.org/10.3892/or.2013.2913
- 110. Wu D, Hu Q, Liu X, Pan L, Xiong Q, Zhu YZ (2015) Hydrogen sulfide protects against apoptosis under oxidative stress through SIRT1 pathway in H9c2 cardiomyocytes. Nitric Oxide 46:204–212. https:// doi.org/10.1016/j.niox.2014.11.006
- 111. Hu MZ, Zhou B, Mao HY et al (2016c) Exogenous hydrogen sulfide Postconditioning protects isolated rat hearts from ischemia/reperfusion injury through Sirt1/PGC-1α signaling pathway. Int Heart J 57 (4):477–482. https://doi.org/10.1536/ihj.15-506

- 112. Du C, Lin X, Xu W et al (2019) Sulfhydrated Sirtuin-1 increasing its deacetylation activity is an essential epigenetics mechanism of anti-Atherogenesis by hydrogen sulfide. Antioxid Redox Signal 30 (2):184–197. https://doi.org/10.1089/ars.2017.7195
- 113. Chi Z, Byeon HE, Seo E et al (2019) Histone deacetylase 6 inhibitor tubastatin a attenuates angiotensin II-induced hypertension by preventing cystathionine γ-lyase protein degradation. Pharmacol Res 146:104281. https://doi.org/10.1016/j.phrs.2019. 104281
- 114. Leucker TM, Nomura Y, Kim JH et al (2017) Cystathionine γ-lyase protects vascular endothelium: a role for inhibition of histone deacetylase 6. Am J Physiol Heart Circ Physiol 312(4):H711–H720. https://doi.org/10.1152/ajpheart.00724.2016
- 115. Liu S, Wang X, Pan L et al (2018) Endogenous hydrogen sulfide regulates histone demethylase JMJD3-mediated inflammatory response in LPS-stimulated macrophages and in a mouse model of LPS-induced septic shock. Biochem Pharmacol 149:153–162. https://doi.org/10.1016/j.bcp.2017.10. 010
- 116. Wu W, Qin M, Jia W et al (2019) Cystathionine-γ-lyase ameliorates the histone demethylase JMJD3-mediated autoimmune response in rheumatoid arthritis. Cell Mol Immunol 16(8):694–705. https://doi.org/10.1038/s41423-018-0037-8
- 117. Bernardo BC, Ooi JY, Lin RC, McMullen JR (2015) miRNA therapeutics: a new class of drugs with potential therapeutic applications in the heart. Future Med Chem 7(13):1771–1792. https://doi.org/10. 4155/fmc.15.107
- 118. Shen Y, Shen Z, Miao L et al (2015) miRNA-30 family inhibition protects against cardiac ischemic injury by regulating cystathionine-γ-lyase expression. Antioxid Redox Signal 22(3):224–240. https:// doi.org/10.1089/ars.2014.5909
- 119. Liu J, Hao DD, Zhang JS, Zhu YC (2011) Hydrogen sulphide inhibits cardiomyocyte hypertrophy by up-regulating miR-133a. Biochem Biophys Res Commun 413(2):342–347. https://doi.org/10.1016/j. bbrc.2011.08.101
- 120. Kesherwani V, Nandi SS, Sharawat SK, Shahshahan HR, Mishra PK (2015) Hydrogen sulfide mitigates homocysteine-mediated pathological remodeling by inducing miR-133a in cardiomyocytes. Mol Cell Biochem 404(1–2):241–250. https://doi.org/10. 1007/s11010-015-2383-5
- 121. Ren L, Wang Q, Chen Y, Ma Y, Wang D (2019) Involvement of MicroRNA-133a in the protective effect of hydrogen sulfide against ischemia/reperfusion-induced endoplasmic reticulum stress and cardiomyocyte apoptosis. Pharmacology 103 (1–2):1–9. https://doi.org/10.1159/000492969
- 122. Yao Y, Zhang X, Chen HP et al (2016) MicroRNA-186 promotes macrophage lipid accumulation and secretion of pro-inflammatory cytokines by targeting cystathionine γ-lyase in THP-1 macrophages.

Atherosclerosis 250:122–132. https://doi.org/10. 1016/j.atherosclerosis.2016.04.030

- 123. Gong D, Cheng HP, Xie W et al (2016) Cystathionine γ-lyase(CSE)/hydrogen sulfide system is regulated by miR-216a and influences cholesterol efflux in macrophages via the PI3K/AKT/ABCA1 pathway. Biochem Biophys Res Commun 470(1):107–116. https://doi.org/10.1016/j.bbrc.2016.01.003
- 124. Yang G, Pei Y, Cao Q, Wang R (2012b) MicroRNA-21 represses human cystathionine gamma-lyase expression by targeting at specificity protein-1 in smooth muscle cells. J Cell Physiol 227 (9):3192–3200. https://doi.org/10.1002/jcp.24006
- 125. Toldo S, Das A, Mezzaroma E et al (2014) Induction of microRNA-21 with exogenous hydrogen sulfide attenuates myocardial ischemic and inflammatory injury in mice. Circ Cardiovasc Genet 7 (3):311-320. https://doi.org/10.1161/ CIRCGENETICS.113.000381
- 126. Huang X, Gao Y, Qin J, Lu S (2014) The role of miR-34a in the hepatoprotective effect of hydrogen sulfide on ischemia/reperfusion injury in young and old rats. PLoS One 9(11):e113305. https://doi.org/10. 1371/journal.pone.0113305
- 127. Kang B, Hong J, Xiao J et al (2014) Involvement of miR-1 in the protective effect of hydrogen sulfide against cardiomyocyte apoptosis induced by ischemia/reperfusion. Mol Biol Rep 41(10):6845–6853. https://doi.org/10.1007/s11033-014-3570-2
- Hackfort BT, Mishra PK (2016) Emerging role of hydrogen sulfide-microRNA crosstalk in cardiovascular diseases. Am J Physiol Heart Circ Physiol 310 (7):H802–H812. https://doi.org/10.1152/ajpheart. 00660.2015
- 129. Wang L, Tang ZP, Zhao W et al (2015) MiR-22/Sp-1 links estrogens with the up-regulation of cystathionine γ-Lyase in myocardium, which

contributes to estrogenic Cardioprotection against oxidative stress. Endocrinology 156(6):2124–2137. https://doi.org/10.1210/en.2014-1362

- 130. Zhou Y, Li XH, Zhang CC et al (2016) Hydrogen sulfide promotes angiogenesis by downregulating miR-640 via the VEGFR2/mTOR pathway. Am J Physiol Cell Physiol 310(4):C305–C317. https://doi. org/10.1152/ajpcell.00230.2015
- 131. Xue WL, Chen RQ, Zhang QQ et al (2020) Hydrogen sulfide rescues high glucose-induced migration dysfunction in HUVECs by upregulating miR-126-3p. Am J Physiol Cell Physiol 318(5):C857–C869. https://doi.org/10.1152/ajpcell.00406.2019
- 132. Satta S, Mahmoud AM, Wilkinson FL, Yvonne Alexander M, White SJ (2017) The role of Nrf2 in cardiovascular function and disease. Oxidative Med Cell Longev 2017:9237263. https://doi.org/10.1155/ 2017/9237263
- 133. Liu J, Wu J, Sun A et al (2016b) Hydrogen sulfide decreases high glucose/palmitate-induced autophagy in endothelial cells by the Nrf2-ROS-AMPK signaling pathway. Cell Biosci 6:33. https://doi.org/10. 1186/s13578-016-0099-1
- 134. Shuang T, Fu M, Yang G, Wu L, Wang R (2018) The interaction of IGF-1/IGF-1R and hydrogen sulfide on the proliferation of mouse primary vascular smooth muscle cells. Biochem Pharmacol 149:143–152. https://doi.org/10.1016/j.bcp.2017.12.009
- 135. Yang G, Pei Y, Teng H, Cao Q, Wang R (2011) Specificity protein-1 as a critical regulator of human cystathionine gamma-lyase in smooth muscle cells. J Biol Chem 286(30):26450–26460. https://doi.org/10. 1074/jbc.M111.266643
- 136. Donnarumma E, Trivedi RK, Lefer DJ (2017) Protective actions of H₂S in acute myocardial infarction and heart failure. Compr Physiol 7(2):583–602. https://doi.org/10.1002/cphy.c160023

Interaction among Hydrogen Sulfide and Other Gasotransmitters in Mammalian Physiology and Pathophysiology

Ya-Qian Huang, Hong-Fang Jin, Heng Zhang, Chao-Shu Tang, and Jun-Bao Du

1 Introduction

Endogenous hydrogen sulfide (H_2S) plays various physiologically beneficial roles in different mammals. Together with nitric oxide (NO), carbon monoxide (CO), and sulfur dioxide (SO₂), it is a member of the "gasotransmitter" family. For centuries, they have been regarded as toxic and potentially lethal gases, and they are now considered to be important intracellular protective regulators with multiple physiological functions.

Although the gas NO was identified in the late eighteenth century, its biological effects were not discovered until 1980 [1]. NO was found to be produced endogenously and functions as a vasodilating molecule in 1987 [2]. NO is generated from guanidine nitrogen of L-arginine under the catalysis of NO synthase (NOS) which has three subtypes, namely, endothelial (eNOS), inducible (iNOS), and neuronal (nNOS) [3]. By the mid-1990s, CO was found to regulate vascular tone and hippocampal function of nervous system [4, 5]. Heme catabolism mediated by

Y.-Q. Huang \cdot H.-F. Jin (\boxtimes) \cdot J.-B. Du (\boxtimes) Department of Pediatrics, Peking University First Hospital, Beijing, China

H. Zhang

Department of Endocrinology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China

C.-S. Tang

Department of Physiology and Pathophysiology, Peking University Health Science Centre, Beijing, China heme oxygenase (HO) is the main source of endogenous CO [6]. In the late 1990s, the third gas, H₂S, was discovered to be produced by the metabolism of sulfur-containing amino acids in the body [7]. The presence of H_2S can be detected in the brain, and it is involved in the regulation of learning and memory, playing a central regulatory role similar to neurotransmitters [8]. The gradual discovery of cystathionine γ -synthase (CBS) and cystathionine γ -lyase (CSE) as key enzymes for the production of H₂S further revealed their signal transduction pathways and extensive physiological functions [9–17]. Similar to H₂S, SO₂, which has long been considered a toxic gas and air pollutant, can also be endogenously generated by transamination of aspartate aminotransferase (AAT) through the metabolic pathway of sulfurcontaining amino acids in mammals [18]. Since 2008, more studies suggest that SO₂ may act as a biologically active molecule to regulate the body's physiological activities [19–22].

As members of "gasotransmitter" family, NO, CO, H_2S , and SO_2 exhibit common characteristics as follows: (1) all of them are small gaseous molecules; (2) they can freely penetrate the cell membrane and play a biological effect through the independent way of membrane receptor; (3) they can be endogenously generated through a controllable enzymatic reaction; (4) they have specific regulatory roles in physiological state; (5) the biological effects of these molecules can be mediated by the intracellular second messenger or they can directly exert the

[©] Springer Nature Singapore Pte Ltd. 2021

Y.-C. Zhu (ed.), *Advances in Hydrogen Sulfide Biology*, Advances in Experimental Medicine and Biology 1315, https://doi.org/10.1007/978-981-16-0991-6_9

biological effects without the mediation of intracellular second messengers, but through the clear cellular or molecular targets. Although the individual biological effects and signaling pathways of H₂S and other gasotransmitters have been extensively studied, the potential interactions among H₂S and other gasotransmitters have not been fully elucidated. In 2009, researchers found the possible interplay between H₂S and NO for the first time [23]. From that moment, more and more studies have suggested that H₂S and other gasotransmitters interact in their biosynthesis and various biological effects [24]. The great treatment potential of the gasotransmitters is further investigated through multiple preclinical and clinical researches. Here, we will review the biosynthesis and metabolism of gasotransmitters in mammals, as well as the known complicated interactions among H_2S and other gasotransmitters (NO, CO, and SO₂) and their effects on various aspects of cardiovascular physiology and pathophysiology.

2 Production and Metabolism of H₂S

 H_2S is a colorless gas with the odor of rotten eggs. It is widely found in nature (volcanic eruption and hot spring), food (preserved eggs), industrial production (oil, rubber processing, etc.), and automobile exhaust. High concentration and rapid exposure can lead to lightning like death. H₂S can also be from the metabolism of bacteria in gastrointestinal tract and oral cavity. It is the main component of abnormal body odor such as halitosis. In the late 1990s, it was found that endogenous H₂S could be produced in the metabolism of sulfur-containing amino acids in mammals [7]. Later, it was found that H_2S was involved in the regulation of physiological functions of nervous system, circulatory system, digestive system, and other systems [9-17]. So far, the research on the biological effect of endogenous H_2S has become a hot issue in the field of life science and medicine.

Endogenous H_2S is produced in the metabolism of sulfur-containing amino acids in

mammals. The key enzymes for its production cystathionine-β-synthetase include (CBS), cystathionine-γ-lyase (CSE), and 3-mercaptosulfurtransferase (MPST), in which CBS and CSE take L-cysteine as the substrate, pyridoxal phosphate as the coenzyme to generate H_2S , and MPST takes β -mercaptopyruvate as the substrate to generate H₂S. CBS mainly catalyzes the condensation of homocysteine and cysteine to form cystathionine, and releases H₂S at the same time; CSE catalyzes the decomposition of cystine to generate thiocysteine, which spontaneously degrades to generate cysteine and H_2S . The expression of three enzymes is also tissue-specific [25]. Previously, it was thought that CBS was mainly distributed in nervous system, MPST was mainly distributed in brain and red blood cells, and endogenous H₂S in cardiovascular tissue was mainly formed by CSE catalysis. However, recent studies have shown that the expression of CSE and MPST can also be detected in cardiovascular tissue, and the location of CSE in vascular tissue was also expanded from the former vascular smooth muscle cell to the vascular endothelial cell and vascular smooth muscle cell. Further intracellular localization studies showed that CSE was expressed in the endoplasmic reticulum and cytoplasm, and CBS was expressed in the endoplasmic reticulum. In addition to the above-mentioned enzymatic reaction to produce H₂S, it can also be produced through the reduction of sulfur elements mediated non-enzymatic by reaction, through the corresponding reduction products produced in the glucose oxidation process [26].

H₂S has good liposolubility and water solubility and its liposolubility is about 5 times of water solubility. Thus, it is easy to pass through cell membrane freely. H₂S dissolved in water can be partially hydrated into HS⁻ and S²⁻, that is, H₂S \rightarrow H⁺ +HS⁻ \rightarrow 2H⁺ +S²⁻ [27]. There are two forms of H₂S in mammals, i.e. physical dissolved H₂S gas (about 1/3) and chemical form HS⁻ (about 2/3). Sodium hydrosulfide is the most commonly used and widely recognized tool drug for H₂S research. It can be dissociated into Na⁺ and HS⁻ in vivo. The latter combines with H⁺ in vivo to generate H₂S, forming a dynamic balance in vivo, which is beneficial to maintain the stability of H_2S content and pH value of internal environment in vivo. As for the metabolism of endogenous H_2S , most of them are oxidized in mitochondria to form thiosulfate and sulfate, and a few of them are converted into methanethiol and methanethiole by methylation metabolism in cytoplasmic solution [28]. H_2S in plasma can be removed by methemoglobin. The metabolites can be excreted through kidney, intestine, and lung within 24 h.

3 Production and Metabolism of NO

In 1998, Furchgott, Ignarro, and Murad won the Nobel Prize in medicine and physiology for their outstanding research contributions in the field of endogenous NO research in the cardiovascular field. NO was recognized as the first gasotransmitter in the body, creating a new field of gasotransmitter research. In the past 40 years, the experimental and clinical research on NO has been deepened gradually. NO is widely involved in the physiological and pathological regulation of various systems including cardiovascular, respiratory, neurological, and immune systems in the body [29–32].

NO is a kind of special small free radical molecule, which is soluble in water and fat and diffuses freely in and out of cells through membrane. Once it is produced, it disperses rapidly at the formation site and plays a role. NO has an unpaired free electron with extremely unstable chemical properties and high activity. Its halflife is only a few seconds. In the physiological solution rich in oxygen, NO can be rapidly oxidized to form nitrite and nitrate [33]. After entering the blood, it quickly combines with hemoglobin to form nitrosohemoglobin, which loses activity and prevents its function in the body. NO is stored and released in the form of S-nitrosothiol in vivo. The main metabolite in human body is nitrate, which is excreted by kidney.

Endogenous NO is produced from L-Arginine (L-Arg) by the action of nitric oxide synthase

(NOS) and its cofactors [3]. Briefly, under the catalysis of NOS, L-Arg and oxygen molecules receive electron provided by the cofactor reduced nicotinamide adenine dinucleotide phosphate (NADPH) to produce L-guanidine and NO. In addition to L-Arg, small molecule peptides containing arginine are also substances for NO synthesis. At present, it is known that endogenous NO not only comes from vascular endothelial cells and inflammatory cells, but also has a complete L-Arg/NOS/NO pathway in vascular smooth muscle cells (VSMCs). Laser confocal results reveal colocation expression of three NOS, arginase, and soluble guanylyl cyclase (sGC) in VSMCs. Moreover, L-Arg uptake by VSMCs is with the help of the cationic amino acid transporter (CAT) in the membrane. The discovery of NO from VSMCs further promotes vascular the regulatory significance of endogenous NO.

In the process of NO synthesis, NOS is an important rate limiting enzyme. The changes of NOS gene expression and activity can affect NO production. At present, there are three types of NOS subtypes: (1) NOS I (~160 kD), which belongs to the constructive ROS (cNOS), mainly exists in the central and peripheral neurons. Therefore, it is also known as the neuronal NOS (nNOS). (2) NOS II (~130 kD) is induced in a variety of inflammatory cells stimulated by a variety of inflammatory factors, which promotes the rapid production of NO. Therefore, it is also called inducible NOS (iNOS). (3) NOS III (~133 kD), also a structural NOS, mainly exists in endothelial cells. Therefore, it is also known as endothelial NOS (eNOS).

The activities of eNOS and nNOS are regulated by $Ca^{2+}/calmodulin$, while the regulation of iNOS activity is not dependent on intracellular Ca^{2+} concentration. L-Arg isomorphism can compete with L-Arg to bind to NOS catalytic sites and inhibit endogenous NO production. However, recently, it has been found that long-term application of L-NAME at low dose can promote NO production through feedback. Another important regulatory mechanism of endogenous NO production in the physiological state is that NO inhibits NOS activity through a

feedback regulation. This inhibitory effect is very fast, which makes the reaction reach equilibrium before the enzyme catalyzes the third NO molecule synthesis. The inhibitory effect of NO on its synthetase may play an important role in maintaining the stability of NO physiological concentration. In addition, the intracellular transport of L-arginine is also one of the important links in the control of endogenous NO production.

4 Production and Metabolism of CO

CO is a colorless and tasteless gaseous molecule, which is produced in the incomplete combustion process of carbon containing compounds. It competently combines with oxygen to form carboxyhemoglobin, which reduces the oxygen carrying capacity of hemoglobin and causes hypoxia in the body tissues. CO is often called "silent killer." As early as 1952, Sjostrand found that CO could be produced during the degradation of hemoglobin in vivo [34]. However, it was not until the 1990s that people began to pay attention to the biological effects of endogenous CO. Many studies have shown that almost all organs, tissues, and cells in mammals can synthesize and release endogenous CO, which plays an important regulatory role in various systems in vivo, especially in cardiovascular system [35–40].

Heme oxygenase (HO)-mediated heme catabolism is the main source of endogenous CO [6]. HO uses NADPH as a cofactor to cut heme ring from α -methylene bridge to generate biliverdin, ferrous ion, and CO (heme + NADPH + H^+ + $2O_2 \rightarrow biliverdin + Fe^{2+} + CO + NADP^+ + H_2O).$ The reaction takes place in cell microsomes. The rate and amount of CO produced by this pathway in human body are 0.4 ml/h and 16.5 µmol/L, respectively. Heme is the substrate of CO synthesis. 80-90% of heme comes from aging red blood cells and hemoglobin produced by ineffective hematopoiesis, while 10-20% comes from other heme proteins such as myoglobin, guanosine cyclase, cyclooxygenase, peroxidase, catalyst, and microsomal cytochrome. And other rare sources include membrane lipid peroxidation. CO is formed in the cell. After the biological effect is exerted, it diffuses into the blood, transports through hemoglobin, and is discharged from the lung. The other part combines with hemoglobin in the plasma to form carboxyhemoglobin. In the normal human body, the concentration of carboxyhemoglobin is 0.4–0.7%. Therefore, the endogenous CO production can be evaluated by the determination of CO removal rate and blood carboxyhemoglobin level.

The changes of endogenous CO synthesis and release are mainly regulated by HO. HO is an oxidase with multiple functions. So far, it has been proved that there are three isoenzymes in human and mammalian HO: (1) HO-1 is an inducible enzyme with a molecular weight of 32 kD, which can be induced by a variety of stimulating factors, such as hypoxia, hyperoxia, bacterial endotoxin, fever, shear stress, inflammatory factors, and some cytokines. (2) HO-2 is a structural type with a molecular weight of 36 kD. It is the main form of HO in physiological state. It is related to the function of CO as a neurotransmitter. HO-2 is usually not induced by various stimulants, but its activity is regulated by phosphorylation. (3) HO-3, with a molecular weight of 30 kD, has a weak catalytic effect on heme oxidation. It may be used as an oxygen sensor to regulate heme dependent gene expression. No HO-3 expression was found in vascular tissue. HO-1 and HO-2 mRNA can be detected in arteriovenous tissues, especially in vascular endothelial cells, smooth muscle cells, and adventitia. In basic state, HO-2 expresses more than HO-1. HO can be inhibited by synthetic and natural heme analogs, such as various metalloporphyrins. HO inducers include hemin, stannic chloride, arsenate, biological hormone, inflammatory cytokines, etc.

5 Production and Metabolism of SO₂

Similar to NO, CO, and H_2S , SO₂ is also one of the well-known air pollutants and industrial waste gas. In the past, its toxicology research has been

very thorough and extensive. However, biochemical research on amino acid metabolism has shown that the metabolic pathway of sulfurcontaining amino acids starting with methionine in the body can generate SO_2 endogenously through enzymatic reaction. In recent years, our group has found that endogenous SO_2 production pathway can be detected in cardiovascular system, and endogenous SO_2 plays an important role in cardiovascular physiology and pathophysiology regulation, suggesting that endogenous SO_2 is expected to become a new cardiovascular gasotransmitter after NO, CO, and H_2S [41].

The formation of endogenous SO₂ in vivo is as follows: cysteine is oxidized by cysteine oxidase (CDO) to generate cysteinesulfinate, which is converted to β -sulfinylpyruvate by aspartate aminotransferase (AAT), and further spontaneously decomposes into SO₂ and pyruvate [18]. In addition, the oxidation of H₂S is also one of the ways to generate endogenous SO₂. The metabolic pathway of endogenous SO₂ in vivo is that it is metabolized to sulfite in the body and further oxidized to sulfate by sulfite oxidase, which is secreted into urine and excreted in vitro.

It was found that endogenous SO₂ production could be detected in the rat plasma, myocardium, and vascular tissues [19]. The serum SO₂ content is 15.54 \pm 1.68 µmol/L. The content of SO₂ in each tissue is as follows (µmol/g protein): aorta (5.55 \pm 0.35) > pulmonary artery (3.27 \pm 0.21) > mesenteric artery (2.67 \pm 0.17) and caudal artery (2.50 \pm 0.20) > renal artery (2.23 \pm 0.19) > myocardium (1.74 \pm 0.16).

AAT that is the key enzyme of endogenous SO_2 production, also known as glutamic oxaloacetic transaminase (GOT), a pyridoxal phosphate-dependent transaminase, catalyzes the transfer of the amino group of aspartic acid to α -ketoglutarate to form oxaloacetic acid and glutamic acid and their reverse reactions. The structure of cysteinesulfinate is similar to that of aspartic acid to generate β -sulfinylpyruvate by AAT catalytic transamination, and then generate SO_2 . AAT can be divided into two subtypes: AAT1 in cytoplasm, AAT2 in mitochondria. The activity, mRNA, and protein expression of

AAT, the endogenous SO_2 producing enzyme, were also detected in the plasma, myocardium, and vascular tissues of rats. The activity of AAT in the plasma was 87 ± 18 U/L. AAT activity in each tissue was as follows (U/g protein): myocardium (4469 ± 278) > renal artery (188 ± 30) > tail artery $(143 \pm 36) >$ and mesenteric artery $(112 \pm 15) >$ pulmonary artery (96 \pm 12) and aorta (88 \pm 11). The sequence of AAT1 and AAT2 mRNA levels from high to low is myocardial tissue, renal artery, pulmonary artery, mesenteric artery, tail artery and aorta, which are consistent with AAT activity. AAT activity and AAT1 and AAT2 mRNA expression can be detected in myocardium and vascular tissues. AAT1 and AAT2 mRNA are mainly located in cardiomyocytes, vascular endothelial cells, and vascular smooth muscle cells near endothelium [42].

6 Interaction of H₂S with NO

6.1 Chemical Interaction between H₂S and NO to Form Hybrid Molecules

The addition of H₂S donor (NaHS) to different NO donors not only suppresses NO release, but also changes the effect of NO in the cell or tissue [43], indicating that crosstalk between H_2S and NO exists. There are two main forms of physically dissolved H₂S, namely, H₂S/HS⁻, which have strong reducibility and can reduce NO, its oxidation products (such as nitrate and nitrite) or S-nitrosothiols (RSNOs, refers to thiols modified by NO, NO⁺, or NO⁻) to form different intermediates [27, 44, 45]. The action mode and biological effects of these intermediates may be the same as or different from their parental molecules through triggering identical or different signal transduction [46]. The mixture of NaHS and SNP could release nitrite in a timedependent manner, suggesting a new substance named nitrosothiol generation (Fig. 1), which was further confirmed in liver tissues of rats administrated with lipopolysaccharide (LPS) and exogenous or endogenous H_2S [43]. They also

Fig. 1 Chemical reaction of H_2S with NO could generate several intermediates. And that HSNO reacts with H_2S could generate HNO, which acts on sulfhydryl group in target protein to produce RSNHOH or RS(O)NH₂ or

induce disulfide bond formation between two free sulfhydryl groups nearby, thus changing conformations and functions of target protein. Besides, SSNO⁻ can be decomposed into NO and polysulfides at pH 7.4

found that the nitrosothiol could not elevate cGMP level in a macrophage cell line RAW264.7 unless treatment with Cu²⁺ to release NO. But at that time, the characteristics of this nitrosothiol was not elucidated. Later, Filipovic et al. found that both the reaction of Na₂S with S-nitrosoglutathione (GSNO, a NO donor, belonging to RSNOs) or acidified nitrite and the reaction of NO with HS· produced thionitrous acid (HSNO) and suspected polysulfides (Fig. 1). NO⁺, NO, and NO⁻ are generated by HSNO metabolism in the cell, and each product plays different physiological roles [45].

This group also reported that HSNO is shortlived, because it is easily reduced by H_2S to form other products including H_2S_2 and nitroxyl (HNO), the latter can also be produced from the reaction of NO donor SNP with H_2S [47]. Since HNO is weakly acidic (pKa \approx 11.4), it is the main existing form other than NO⁻ under physiological condition [48]. HNO is highly reactive to metalloproteins and reactive oxygen and nitrogen species, thus regulating the metabolism of metal ions (including Fe, Cu, and Mn), and the oxidation of many biomolecules [46]. In addition, HNO acts on sulfhydryl groups in protein to produce N-hydroxysulfenamide (RSNHOH) or sulfinamides [RS(O)NH₂] [49] or induce disulfide bond formation between two sulfhydryl groups nearby (Fig. 1), thus changing the conformations and functions of many important proteins containing redox-sensitive cysteines. It has been reported that HNO plays various physiological and pathophysiological effects, such as positive inotropy and cardiovascular protection in cell and animal models. The development of donors and detection methods for HNO has attracted the attention of more and more scientists. HNO donors include Angeli's salt (Na₂N₂O₃), Piloty's acid (PhSO₂NHOH), acyl nitroso and acyloxy nitroso compounds, metal nitrosyl complexes, and so on, with the first two being the most commonly used. HNO detection methods include traditional analytical methods with low sensitivity or selectivity and new methods with higher selectivity and specificity, such as various fluorescent probes based on copper, phosphine, or TEMPOL, membrane islet mass spectrometry, and electrochemical HNO detection [50, 51].

HSNO is unstable, because it is prone to isomerization through hydrogen transfer to form four different isomers. Cortese-Krott et al. reported that the chemical interplay of H_2S donor Na_2S with NO donor (DEA/NO or
SNAP) produces nitrosopersulfide (SSNO⁻), polysulfides, and SULFI/NO at physiological pH [44] (Fig. 1). SSNO⁻ is stable and will not be decomposed by thiols and cyanides. But it can be decomposed into NO and sulfane sulfur at pH 7.4, activating Keap1/Nrf2 signal and sCG/cGMP pathway, relaxing vascular tissue and VSMCs as well as downregulating blood pressure [44, 52]. Polysulfides form quickly when H₂S is exposed to NO. It is easily degraded by reducing agents including cysteine, GSH, and DTT. Polysulfides are found to cause vasodilation through activating PKG1a, downregulate blood pressure, promote arterial compliance, and regulate synaptic activity by activating TRPA1 channels [53]. SULFI/NO promotes sulfite generation to remove NO. It is decomposed to generate N₂O. SULFI/NO has a mild effect on blood pressure, but manifests significant positive inotropic action [44].

The chemical interaction between H_2S and NO and the subsequent generation of intermediates and products which might be new signal molecules are becoming a new research field. More and more studies are conducted to clarify the exact production mechanisms and biological importance of these hybrid molecules.

6.2 Regulation of NOS by H₂S

Besides direct chemical crosstalk, H₂S and NO influence each other's generation (Fig. 2). The first view is that H₂S enhances eNOS activity and NO generation. NaHS at concentration of 50-100 µM induced eNOS phosphorylation and thereby promoted NO production in HUVECs, but did not influence eNOS protein level. CSE insufficiency suppressed, but CSE overexpression upregulated NO production [54]. Another study conducted in bovine arterial endothelial cells showed that Na₂S at concentration of 150 μ M induced NO generation [55]. H₂S upregulates eNOS activity to promote endogenous NO generation through many ways including phosphorylation of eNOS, sulfhydration to suppress its S-nitrosylated level, and upregulation of its dimeric active form. First, H₂S

phosphorylates serine 1177 at eNOS via p38 MAPK-PI3K/Akt pathway activation [54]. Secondly, H₂S induces inositol triphosphate- Ca^{2+} inside cells, mediated mobilization upregulates the activity of KATP channels and revers mode of sodium-calcium exchanger, thereby elevating [Ca²⁺], level, leading to an increase in phosphorylated eNOS (serine 1177) and a decrease in S-nitrosylated eNOS level [56, 57]. Thirdly, H_2S sulfhydrates eNOS at cysteine-443 and reduces systemic oxidative stress to increase the stability of its dimeric active form [58] (Fig. 3). Furthermore, H_2S sulfhydrates proline-rich tyrosine kinase 2 to suppress its activity, resulting in a decline in phosphorylated eNOS at tyrosine 656 and an increase in eNOS activity [59] (Fig. 3).

While, the second view is that H_2S inhibits eNOS/NO pathway in rat aortas. Geng et al. found that H₂S treatment for 2-6 h suppressed NO production and eNOS activity in rat aortic tissues [60]. H₂S treatment for 2 h inhibited phosphorylated levels of Akt and eNOS (serine 1177), but did not affect eNOS protein expression. However, H₂S treatment for 4-6 h downregulated both the mRNA and protein expression of eNOS in HUVECs. Neither iNOS activity nor protein expression of iNOS and nNOS was affected by H₂S treatment for 2-6 h in aortic tissues and HUVECs. The inhibitory effect of H₂S on vascular eNOS/NO pathway was mediated at least partly by the opening of K_{ATP} channel [60]. In addition, Liu and Bian reported that pretreatment of NaHS for 10 min downregulated NO generation in rat aortic rings through activating HCO₃⁻ anion exchanger [61]. Kubo et al. also observed that H_2S incubation for 1 h directly inhibited the activity of purified bovine eNOS protein [62]. However, H₂S treatment for 10 min or 30 min did not influence eNOS activity in porcine aortic endothelial cells, cell lysates, or purified human eNOS protein [63]. These authors found that H_2S could decrease receptor agonist-stimulated eNOS activity and NO production through inhibiting Ca²⁺ mobilization and capacitative Ca²⁺ entry in porendothelial cine aortic cells. human

Fig. 2 Overview of endogenous NO, CO, H_2S , and SO_2 generation and the complex relationships between H_2S and the other three gasotransmitters. + represents activation; – represents inhibition

Fig. 3 H_2S regulates the generation of NO, CO, and SO₂ via sulfhydration. \downarrow represents facilitate, \perp represents suppress

microvascular endothelial cells, and in smooth muscle cells from rat aorta and trachea.

Another finding showed that H₂S did not change NO generation in the basal state, but it promoted interleukin (IL)-1ß-stimulated iNOS expression and NO generation in rat VSMCs via activating ERK1/2-mediated NF-kB pathway [64]. Na₂S facilitated NO production in ischemic tissues from the mice subjected with hind-limb ischemia both through increasing iNOS and nNOS expression and promoting nitrite reduction to NO in a xanthine oxidase (XO)-dependent fashion [65]. But in 25 mM of high glucosestimulated rat VSMCs, the administration of H₂S donor NaHS or synthetic H₂S-releasing aspirin ACS14 for 24 h diminished the upregulated iNOS expression [**66**]. And in lipopolysaccharide-treated RAW264.7 macrophages, H₂S was also found to significantly downregulate iNOS expression and NO generation via promoting HO-1 expression to block NF- κ B activation [67]. We found that H₂S inhibited NF-kB activation by sulfhydrating p65 protein at cysteine 38 in RAW265.7 macrophages [68]. Administration of NaHS for 8 weeks reduced iNOS activity and expression as well as NO concentration in the myocardial tissues of streptozotocin-induced diabetic rats [69]. H₂S also reduced NO generation in LPS-stimulated microglial cells through downregulating p38-MAPK signaling [70]. Therefore, the influence of H₂S on the activities and mRNA or protein expressions of these NOS isoforms is different. H₂S is reported to elevate or reduce the activities of eNOS or iNOS, or do not change iNOS and nNOS activities. The differences partly result from the different duration of H₂S treatment. For example, the stimulation of eNOS activity by H₂S is short-lived.

6.3 Regulation of H₂S Synthetases by NO

The regulation of H_2S -generating enzymes by NO is also complicated. The first view is that NO upregulates the activity and/or expression of H_2S -generating enzymes. Treatment with NO donor promoted H₂S production in normal rat vascular tissues and upregulated CSE mRNA expression in rat VSMCs [71, 72]. Administration of NOS inhibitor L-NAME to rats significantly downregulated plasma H₂S concentration, H₂S production, and CSE activity and mRNA expression in rat thoracic aortic tissues and superior mesenteric artery tissues [73]. In a high pulmonary blood flow-induced pulmonary hypertensive rat model, L-arginine treatment elevated plasma H₂S concentration, H₂S production rate, and CSE mRNA expression in lung tissues [74]. The increased CSE mRNA was mainly located in pulmonary artery SMCs. Administration of diabetic rats with nitrite could promote serum total sulfide concentration and the mRNA expressions of CSE, CBS, and MPST in soleus muscle as well as the CBS mRNA expression in adipose tissue and liver [75]. Further study showed that NO promoted H₂S generation through upregulating cGMP pathway. There is also a hypothesis that the active cysteine of CSE is likely to be modified by S-nitrosylation to elevate its activity [76]. The second view is that NO does not affect H₂S synthases. Chen et al. found that NO had no influence on the expression of H₂S synthases and H_2S content in endothelial cells [77]. The third view is that NO suppresses the activity of purified CSE protein but has no influence on the activity of CBS protein [78]. The fourth view is that NO inhibits CBS activity through binding to ferrous heme in CBS with high affinity $(K_d \le 0.23 \ \mu M)$ to form a penta-coordinate Fe (II)-NO complex [79]. Although CBS activity is inhibited, NO actually increases the generation of H_2S in this experimental environment. The reason may be related to tissue-specific modulation of H₂S generation or NO-induced non-enzymatic release of H_2S moieties from cellular macromolecules.

6.4 Competition of H₂S and NO in Protein Post-Translational Modification

H₂S-mediated sulfhydration and NO-mediated S-nitrosylation are two types of protein

post-translational modification, both of which can act on cysteine residues to regulate the conformation and function of their target proteins. The effects of these two modifications may be different or the same. For instance, H₂S-induced sulfhydration of cysteine-150 of GAPDH promotes its activity and facilitates it to combine with Siah, an E3 ligase, and then ubiquitinates PSD95 to cause its degradation in dendrites, eventually resulting in synapse loss and memory impairment [80]. While NO-induced GAPDH S-nitrosylation at cysteine-150 inhibits its activity and promotes its translocation into the nucleus, subsequently inducing the activation of p300/ CBP and downstream p53 signal axis, which eventually leads to cell apoptosis [81]. In addition to GAPDH, NF-KB p65 can also undergo sulfhydration and S-nitrosylation. Either sulfhydration of p65 at cysteine-38 induced by H₂S or S-nitrosylation at this site induced by NO inhibits its DNA binding activity [68, 82]. Protein tyrosine phosphatases (PTPs) participate in many signaling pathways. Cysteine-215 of PTP1B could be S-nitrosylated by NO or sulfhydrated by H_2S to inhibit its catalytic activity, both of which are reversible [83]. S-nitrosylation of PTP1B blocks its irreversible inactivation caused by ROS and promotes endothelial insulin response [84, 85]. Phosphatase PTEN downregulates the content of phosphatidylinositol 3,4,5-triphosphate and the activity of PI3K/Akt pathway in cells. Low concentration of NO S-nitrosylates PTEN at cysteine-83 to inhibit its activity, thereby activating the downstream of PI3K/Akt signaling [83]. Endogenous H₂S sulfhydrates PTEN at cysteine-71 and cysteine-124 to prevent the S-nitrosylation and inactivation of PTEN caused by NO [86]. Future studies on the conformational changes of PTEN may explain why the two modifications at different cysteine residues inhibit each other. H₂S sulfhydrates eNOS at cysteine-443 to increase the stability of its dimeric form, which is the active form of eNOS catalyzing the production of NO [58] (Fig. 3). NO also S-nitrosylates eNOS at cysteine-443. NO has no effect on eNOS sulfhydration, while H_2S suppresses its S-nitrosylated level [56]. There are differences

in the local concentration of H_2S and NO, and also, there are differences in the sensitivity of certain cysteinyl residues to the two gasotransmitters, which leads to a balanced and competitive relationship between sulfhydration or S-nitrosylation of the same cysteine sulfhydryl group to make the protein function normally.

6.5 Effect of H₂S–NO Interaction on Angiogenesis

Angiogenesis, as the name suggests, refers to new vessel growth from existing vasculature, which involves endothelial cell (EC) migration and proliferation and provides oxygen and nutrients for ischemic tissue. Increasing evidence show the crucial regulatory roles of NO and H₂S in angiogenesis [87, 88]. It is reported that both H_2S and NO stimulate angiogenesis. This effect of NO is mediated by the increased expression of VEGF, FGF, and MMP [89]. The activation of Akt signaling, KATP channels, and MAPK pathway participate in the facilitation of angiogenesis by H₂S [90]. In addition, VEGFR2 is a direct target that mediates the pro-angiogenesis of H₂S. H₂S specifically breaks the cysteine-1024-S-S-cysteine1045 disulfide bond in the intracellular kinase core of VEGFR2, which transforms this kinase core into active conformation, and then directly activates VEGFR2, leading to Akt phosphorylation and promoting angiogenesis [91].

There is an interaction between H₂S and NO in the mechanism for promoting angiogenesis (Fig. 4). H₂S inhibits PDE5A to reduce cGMP degradation, whereas NO induces sGC activation to promote the generation of cGMP in cells [92]. H_2S and NO eventually elevate cGMP levels and activate PKG/VASP, subsequently activating p38 and ERK signaling and promoting angiogenesis. Sirtuin-1 (SIRT1) is a crucial regulator of endothelial cell angiogenesis. The donor ZYZ-803, which releases H₂S and NO at the same time, promotes the expression of SIRT1, thereby increasing downstream VEGF and cGMP levels, and promoting angiogenesis [93]. H₂S activates Akt to promote angiogenesis, and Akt activation promotes eNOS

Fig. 4 Effect of H_2S -NO crosstalk on angiogenesis. \downarrow represents facilitate, \perp represents suppress

phosphorylation at serine-1177 and increases the production of NO [94]. Altaany et al. found that H₂S activated p38-MAPK/Akt signaling to upregulate phosphorylated eNOS level, thereby promoting endothelial NO generation, which contributes to H₂S-stimulated endothelial cell proliferation and angiogenesis [54]. Na₂S facilitates NO production in ischemic muscle tissues from diabetic mice subjected with hindlimb ischemia both through increasing NOS expression and promoting nitrite reduction to NO in a XO-dependent fashion, thereby upregulating HIF-1 α activity and expression as well as VEGF expression, which are helpful for H₂S to promote angiogenesis, increase hind-limb blood flow, and induce vascular remodeling in chronic ischemic tissues [65]. Similarly, elevated endogenous H₂S/CSE pathway was observed in gastrocnemius muscle tissues and plasma from permanent hind-limb ischemic mice subjected with ligation of femoral artery. Endogenous H₂S/CSE stimulates arteriogenesis and angiogenesis through increasing NO bioavailability to upregulate the concentration of downstream molecules including IL-6, VEGF, and bFGF and promote mononuclear cell recruitment in ischemic tissues [95]. H₂S has no effect on angiogenesis and wound healing in eNOS knockout mice. On the contrary, eliminating H_2S production by CSE gene deficiency abolishes NO-induced angiogenesis [96]. It suggests that the angiogenic effects of H₂S and NO need each other. H₂S reacts with NO to form HNO. IPA/NO, the donor of HNO, inhibits EC proliferation and re-endothelialization to suppress neointimal hyperplasia induced by carotid artery balloon injury [97]. In addition, HNO downregulates circulating VEGF level and HIF-1a protein content in tumor cells, reduces blood vessel density in mouse tumors, and inhibits angiogenesis [98].

6.6 Effect of H₂S-NO Interaction on Vascular Tension

NO is an important member of endothelialderived relaxing factors [2]. It has a strong vasodilatory effect. The mechanisms include cGMP pathway activation, calcium-dependent potassium channel opening, protein S-nitrosylation, etc. [99]. H₂S can both relax and contract blood vessels, depending on its concentration. The concentration of NaHS greater than 100 µM (such as 200-1600 µM) causes VSMC relaxation [100]. Endogenous H₂S-elicited vasodilation contributes to maintain basal vascular tension and modulate physiological blood pressure [101]. And H₂S has a stronger relaxing effect on the aorta than on the pulmonary artery [102]. The mechanisms for mediating H_2S vasodilation include elevated KATP channel subunit expression [102, 103], K_{ATP} channels opening [71], extracellular calcium entry [104], increased calcium spark activity [105], activation of Cl^{-/} $HCO_3^$ exchanger [**106**], inhibition of mitochondria [107], reduction of cellular ATP levels [108], and the function of H₂S as a crucial adipocyte-derived relaxation factor [109]. The NaHS concentration below 100 µM reverses the endothelium/NO-mediated relaxation [100]. The literature reported that 10 ~ 100 μ M NaHS elicited vasoconstriction [100, 110]. It attributes to the reduced endothelial NOS and VSMC cAMP content, enhanced Na⁺, K⁺, 2Cl⁻ cotransport activity, and elevated calcium influx and ROS generation [88, 110].

The crosstalk between H₂S and NO in vascular tension modulation is complicated (Fig. 5). One view is that H₂S and NO cooperate to dilate blood vessels. H₂S boosted NO-caused aortic smooth muscle dilatory effect, and NO enhanced H₂S-induced thoracic aortic ring and portal vein ring relaxation [7]. In addition, H_2S and NO also have synergistic effect on the pulmonary artery relaxation [111]. The first mechanism is that H_2S and NO increase each other's production. H₂S augments eNOS activity to facilitate endogenous NO production. Using NOS inhibitor L-NAME or removing endothelium weakens H₂S-caused vasodilation [71], indicating that NO mediates the vasodilation effect of H₂S. NO upregulates H₂S production via inducing CSE/CBS expression or activation, which also contributes to the synergistic effect of NO and H₂S in relaxing blood vessels. The second mechanism is that both H₂S and NO increase cGMP content and then activate PKG/VASP. CSE deficiency reduced NO-stimulated increase in cGMP level, VASP activity, and vasodilation [96], while endogenous H₂S enhanced NO action through suppressing PDE activity to promote vasodilation [92], indicating that both H_2S and NO might target cGMP to relax blood vessels cooperatively. ZYZ-803 which simultaneously releases H_2S and NO exerts vasodilatory effect via cGMP-PKG signaling [93]. The third mechanism is that the reaction products of the interaction between H₂S and NO exert a stronger vasodilator effect. Simultaneous treatment of the pre-contracted isolated rat thoracic aortic rings or mesenteric arterial rings with GSNO and Na2S has a more rapid and stronger vasodilation than using one of them alone. The synergistic response is attributed to the generated intermediates from H₂S/NO interplay, like polysulfides, SSNO⁻, and HNO [112]. NO and polysulfides can be produced again from the degraded SSNO⁻, which is the reason that the activation of sGC signaling caused by SSNOmay still exist. HSSNO which is generated by H₂S/NO reaction is speculated to exert powerful vasodilatory effect [113]. Additionally, H₂S reacts with NO to produce HNO, which is a novel endothelial-derived relaxation and hyperpolarization factor and can be generated endogenously in blood vessels [114]. The vasodilation of HNO is mediated by various mechanisms, including the activation of sGC and neuroendocrine TRPA1-CGRP pathway [115, 116]. HNO causes disulfide bond formation between cysteine-621 and cysteine-633 and between cysteine-651 and cysteine-665 of TRPA1, thereby activating TRPA1 channel, increasing intracellular calcium, releasing CGRP and eventually eliciting local and systemic vasorelaxation [116]. Unlike NO, vasodilation induced by HNO is resistant to tolerance in human arteries and veins [115]. Therefore, these studies indicate that H₂S and NO cooperatively exert vasodilation effect. The dynamic balance of H₂S and NO is essential for maintenance of vascular tension.

There is also a view that low concentration of H₂S inactivates NO to contract blood vessels (Fig. 5). It is found that SNP had no effect on vasodilation caused by H₂S in rat aortas, whereas $60 \mu M H_2S$ suppressed vasodilation of SNP [104]. Another study also confirmed that mixing H₂S with NO produced weaker vasodilation effect than NO alone [100], suggesting that H₂S might quench NO. Of note, NaHS contracts aortic rings with intact endodermis, but has no contractile function for those without endodermis, indicating that endothelial cells are indirectly involved in the vasoconstriction of H_2S . Moreover, H_2S (10 ~ 100 μM) concentration-dependently attenuated vasodilation caused by SNP, SNAP, or Ach, which exert vasodilatory effect via NO. And H₂S-induced vasocontraction was blocked by inhibition of endogenous NO generation in endothelial cells. Kuo et al. reported that H₂S contracted coronary artery when NO is present, whereas H2S relaxed it when NO is absent [117]. H₂S is found to inhibit eNOS activity and NO production in rat aortic tissues [60]. Na₂S attenuates vasorelaxation caused by shear stress and facilitates

Fig. 5 Effect of H_2S -NO crosstalk on vascular tone regulation. \downarrow represents facilitate, \perp represents suppress. Conc, concentration

vasoconstriction through inhibiting eNOS activity and NO production in mouse coronary arteries [118]. These results suggest that H_2S exerts vasoconstriction effect through suppressing endothelial NO bioavailability directly. In addition, researchers proposed that H₂S interacted with NO to produce a new molecule, namely, nitrosothiol, which will not stimulate cGMP production unless CuCl₂ is used to release NO [43]. Treating rat aortas with copper ions decomposes nitrosothiol into nitrite and nitrate, which can cancel vasoconstriction of H₂S, but does not affect vasodilation of H₂S, thus further confirming the existence of nitrosothiol in this organ incubation system [100]. H₂S inactivates or sequesters NO in this new molecular form, which contributes to its vasoconstriction. Bian's group revealed that H₂S activated anion exchanger, which made the bicarbonate ions enter the cells and made superoxide anions excrete from the cells, thereby inactivating NO and contracting blood vessels powerfully [61]. Then outside the cell, peroxynitrite (ONOO⁻) is produced quickly from the reaction of superoxide anions and NO and is further eliminated by H₂S. And the decline of intracellular superoxide anion content could lead to the decrease of NO uptake by VSMCs [119]. Therefore, the results suggest that H₂S inactivates or sequesters NO to exert contraction effect on blood vessels.

The above conclusions suggest that in diseases related to reduced bioavailability of NO, such as ischemic heart disease, supplementation of exogenous H_2S can compensably relax the coronary arteries of patients, and benefit patients, but in individuals with normal NO bioavailability, H_2S may have the opposite effect through modulating NO [117]. Therefore, individualized use of H_2S may be needed in future clinical medication.

6.7 Effect of H₂S–NO Interaction on Heart Contractility

The regulation of NO on the basic contraction of cardiomyocytes is bidirectional. In the case of low levels (for example, 0.05μ M), it has positive inotropic effect through activating AC/cAMP/ PKA signal and thereby augmenting $[Ca^{2+}]_i$ [120, 121]. In addition, NO produced by nNOS catalysis promotes cardiac contractility through S-nitrosylating sarcoplasmic ryanodine receptors [122]. High levels of NO (\geq 10 µM) induces negative inotropic action [120]. The underlying mechanisms involve that the facilitation of cGMP signaling reduces the calcium sensitivity of myofilaments, and subsequently promotes myocardial relaxant effect [123]. And eNOS

participates in the suppressive effect of cGMP hydrolase (PDE5A) inhibitor on β -adrenergic induction of myocardial contraction [124]. And H₂S also attenuates myocardial contractility. The first mechanism is that H₂S decreases free sulfhydryl group of L-type Ca²⁺ channel to inactivate this channel and suppress its current [125, 126]. The second mechanism is that H_2S inactivates AC to suppress cAMP/PKA signaling [127]. The third is that H_2S induces the activation of KATP channel and mitochondrial membrane K_{ATP} channel [128, 129]. The fourth mechanism is that H₂S mitigates the anteroposterior load of heart through relaxing the arteries and veins and then reducing the venous reflux [128].

 H_2S weakens the negative inotropic effect of NO, which may be due to the product HNO produced by the interaction of H₂S and NO can enhance myocardial contractility. NaHS at concentration of 50 µM did not markedly affect myocyte contraction, whereas mixing it with L-arginine, SNP, or DEA/NO could attenuate the negative inotropic action of these three NO-releasing agents [130]. HNO donor mimics but thiols abolish this positive inotropic action of a blend of NO and H₂S [130, 131]. And the production of HNO from the reaction of H₂S and NO was further confirmed [132]. These results indicate that HNO is responsible for the effect of H₂S-NO crosstalk on the heart contraction. Mechanistically, HNO-facilitated cardiac contractility is not related to cAMP/PKA and cGMP/PKG signaling [130], but is blocked by the treatment with NAC, indicating that a redox mechanism is involved [133]. HNO induces formation of heterodimers in the form of intermolecular disulfide bonds between cysteine-190 in tropomyosin and cysteine-257 in actin as well as between MLC1 and MHC, and then facilitates myofilament response to calcium ions, thereby enhancing myocardial contractility [134]. In addition, HNO promotes the transformation of phospholamban monomer into oligomer via forming disulfide bond to attenuate the suppressive effect of phospholamban on SERCA2a conformational flexibility and activity, thereby facilitating calcium ions uptake in sarcoplasmic reticulum, leading to cardiac inotropic and

lusitropic action of HNO [135]. HNO could sarcoplasmic reticulum directly upregulate (SR) calcium pump activity and thiol-sensitive RyR2 function to promote calcium ions uptake and release from SR in myocytes [136]. These results suggest that myocardial contraction of HNO is closely related to redox. Moreover, a previous study showed that CGRP activation was responsible for the effect of HNO on enhancing myocardial contractility, because antagonizing CGRP receptor abolished the above-mentioned action of HNO [133]. The enhancement of cardiac contractility by CGRP had nothing to do with loading, but was only caused by the activation of cardiac sympathetic nerve, which was later found to negate the abovementioned view [137]. Anyway, the positive inotropic effect of HNO is beneficial to the failing heart, making it a promising potential drug target for clinical treatment of congestive heart failure [138].

6.8 Effect of H₂S–NO Interaction on Oxidative Stress

Disturbance of the balance between generation and removal leads to excessive ROS which is the root cause of oxidative stress. Oxidative stress can cause inflammation, cell apoptosis, and endoplasmic reticulum stress, leading to cell damage, and participating in various diseases such as hypertension, heart disease, obesity, diabetes, senescence, and cancer.

H₂S resists oxidative stress and plays endothelial protective role through directly eliminating superoxide anions and decreasing the generation of superoxide anions originated from vascular NADPH oxidase [139]. And NO could S-nitrosylate p47phox to inhibit superoxide generation in microvascular ECs [140]. The high pKa of HNO and low dissociation energy of H-NO indicate that HNO easily provides hydrogen atoms, which may contribute to the extinction of active free radical intermediates [141]. HNO may prevent membrane from oxidative stress injury through its antioxidant effect, thereby maintaining the integrity of lipid membrane [141]. HNO has a reducing property due to hydrogen atom supply. Its oxidation will result in NO release, and the latter has a strong antioxidant capacity [142]. The antagonistic effect of HNO on oxidative stress was observed in yeast, blood vessel, and hypertrophic myocardium [141, 143, 144]. Mechanistically, HNO was reported to actisGC/cGMP pathway, vate subsequently downregulating Nox2 activity and expression as well as superoxide production in cardiomyocytes. This mechanism is responsible for antihypertrophic effect of HNO [144]. However, treating cerebral arteries with HNO antagonized angiotensin II-induced oxidative stress and vasoconstriction rapidly through and directly inactivating Nox2 unrelated to sGC/cGMP pathway. In view of previous reports that HNO acted on the cysteine of a variety of proteins to cause changes in protein conformation or activity, this group also speculated that HNO inactivated Nox2 via post-translational modifying its cysteine [143]. In addition, treating cardiac cells with HNO could also enhance HO-1 expression to increase nuclear Nrf2 level, both of which belong to antioxidant protein [145].

In an oxidative stress environment, NO reacts quickly with superoxide to form peroxynitrite, which aggravates oxidative stress and uncouples eNOS, thereby promoting superoxide production, decreasing NO release, and limiting bioavailability and actions of NO [146], while HNO is not sensitive to the reaction of superoxide, which makes it easier to retain its function under oxidative stress. Therefore, in the case of oxidative stress, damage to the NO system becomes an important pathogenesis of many diseases, and the retention of HNO function suggests that HNO has a good application prospect in diseases related to NO resistance.

6.9 Effect of H₂S–NO Interaction on Cardioprotection

NO is an important endogenous cardioprotective molecule. Either eNOS inhibition or nNOS deficiency aggravates cardiac injury caused by ischemia-reperfusion (I/R) or infarction, while NO donor supplementation attenuates this cardiac injury [147–149]. Mechanistically, NO activates sGC to upregulate cGMP generation and downstream PKG signal activity [150]. In addition, NO induces mitochondrial KATP channel opening but inhibits calcium overload [150–153]. H₂S is also an important endogenous cardioprotective molecule, which inhibits myocardial I/R injury, myocardial infarction, and prevents ventricular premature beats and fatal arrhythmias [154, 155]. The mechanisms include the opening of myocardial K_{ATP} channels [156], inhibition of L-type calcium channels, blockade of the disulfide bridge between cysteine-320/cysteine-529 residues of the Kv4.2 subunit and inhibition of Ito potassium channels in epicardial myocytes [155], activation of anti-apoptotic signals and PKC pathway [157, 158], and improvement of mitochondrial function [14, 159] (Fig. 6).

H₂S exerts a cardioprotective effect by upregulating the eNOS/NO pathway (Fig. 6). H₂S elevated serum and myocardial NO content. Both in the isoprenaline-induced myocardial injury model and in the rat ventricular myocyte injury model induced by severe metabolic inhibition, the application of L-NAME abolished the myocardial protection of H₂S, indicating the importance of NOS/NO pathway in the protective myocardial effect of H_2S [160, 161]. CSE-knockout mice showed elevated myocardial oxidative stress, decreased phosphorylation of eNOS at serine-1177, reduced eNOS cofactor BH4 level, declined NO bioavailability, and inhibited cGMP content, which further aggravated myocardial and liver I/R injury [162]. While exogenous H_2S supplementation restored eNOS/NO pathway activity and rescued myocardial and liver I/R injury aggravated by CSE deficiency. In eNOS gene knockout or phosphorylated site mutation mice, H₂S could not attenuate myocardial I/R injury [162], further suggesting that the myocardial protective effect of H₂S is mediated by eNOS/NO pathway activation. In addition, H₂S alleviated L-NAMEinduced hypertensive heart damage by activating the K_{ATP}-mediated Akt/eNOS/NO pathway [163]. H₂S post-treatment activated Akt, PKC, and eNOS signals to prevent myocardial I/R

Fig. 6 Effect of H_2S –NO crosstalk on cardioprotection. \downarrow represents facilitate, \perp represents suppress. Conc, concentration; mK_{ATP}, mitochondrial K_{ATP}; PTH, phosphatase

and tensin homolog; PTP1B, protein tyrosine phosphatase 1B; I_{to}, transient outward potassium current

injury [164]. H_2S donor SG-1002 also exerted cardioprotection in pressure overload-stimulated heart failure through mitochondrial function preservation, ROS inhibition, and angiogenesis. The activation of VEGF/Akt/eNOS/NO/cGMP signaling mediated this protective effect of H_2S [165]. Na₂S increased the survival rate of mice subjected to sudden cardiac arrest due to an increase in phosphorylated eNOS level and NO content [166]. Thus, H_2S upregulates eNOS/NO pathway to exert cardioprotective effect. Conversely, NO also increases H_2S generation catalyzed by CBS and CSE [72].

Unlike eNOS, iNOS overexpression to catalyze production of large amounts of NO induces cytotoxicity and aggravates cardiac damage [167]. H_2S exerts a myocardial protective effect by inhibiting iNOS. In a mouse model of myocarditis caused by CVB3, the cardioprotection of H_2S was mediated by a decline in iNOS expression and downstream HO-1 signaling [168]. The expression of myocardial iNOS in STZ diabetic rats is positively correlated with the degree of myocardial damage [69]. H_2S prevents diabetic myocardial damage by reducing the activity and expression of iNOS [69].

In the myocardial protective effect, the interaction between H₂S and NO not only involves the regulation of each other's generating ability, but also involves the role of the newly produced molecule, HNO (Fig. 6). Pretreatment with HNO attenuated I/R-induced myocardial injury, as demonstrated by a decrease in infarct size, LDH level, and incidence of ventricular fibrillation but an increase in cardiac inotropy [169, 170]. This effect of HNO is similar to that of ischemic preconditioning, but it is more obvious than that of equimolar NO [169]. Mechanistically, HNO causes activation of mitochondrial KATP channel (mKATP), release of CGRP, and direct reaction with thiols [169, 171]. While, treatment with HNO at high concentration leads to postischemic myocardial damage, which is associated with the stimulation of neutrophil accumulation [172].

6.10 Effect of H₂S–NO Interaction on Hypertension

H₂S donor has biphasic response to the blood pressure of anesthetized rats. The pressor response was produced at a low dose of NaHS, and depressor response occurred at a high dose [100]. The pressor effect of H_2S is associated with the inhibition of eNOS activity [62] and/or extinguishment of NO [43]. Application of L-NAME could prevent the pressor response of H₂S, indicating that H₂S reacts with NO to generate a nitrosothiol-like compound and consumes NO, leading to the loss of NO-mediated vasodilation and an increase in blood pressure. H₂S prevents hypertension development and facilitates vasodilation in SHR model through increasing KATP subunits (SUR2B and Kir6.1) expression in VSMCs mediated by the activation of FXOX1 and FOXO3a [103, 173]. In this rat model, NaHS augments carotid sinus baroreceptor sensitivity through the upregulation of TRPV1 protein level and sulfhydration-mediated activation of this channel [174]. H₂S also inhibits vascular inflammation through downregulating NF-kB pathway in SHR rats [175]. The inhibitory effect H_2S of on VSMC proliferation via downregulation of MAPK pathway was also involved in the depressor effect of H_2S [176].

Some studies show that H₂S upregulates eNOS phosphorylation and NO bioavailability, thereby decreasing blood pressure [177]. Under physiological and pathophysiological conditions, H₂S coordinates the S-sulfhydration, S-nitrosylation, and phosphorylation of eNOS to fine-tune endothelial function. In endothelial cells, H₂S upregulates NO generation through calcium-mediated eNOS phosphorylation [178], Akt-dependent eNOS activation [**96**], or stabilizing eNOS activity [179]. Both L-NAMEinduced hypertensive rats [72] and carotid arterial eNOS knockout mice [180] exhibited a low level of vascular CSE and H₂S. The supplementation of H₂S increased CSE or administration of its substrate L-cysteine suppressed hypertension formation [73, 180, 181], indicating that the decreased of H₂S/CSE pathway is involved in the pathogenesis of L-NAME-induced hypertension. However, intervention of CO/HO-1 did not improve the development of hypertension in the two models [182]. In angiotensin II-induced hypertensive mice, injection with NaHS elevated NO bioavailability, improved endothelial dysfunction, reduced oxidative stress and eventually decreased blood pressure [183]. Plasma H₂S content and aortic CSE activity and expression were decreased in the SHR, while the treatment of NaHS attenuated hypertension in the SHR through upregulating renal H₂S generation and NO bioavailability but suppressing renal RAS [101, 184, 185].

On the contrary, H₂S also affects NO generation by inhibiting nNOS and iNOS activities in a NO-dependent manner [186]. H₂S sustainedrelease donor, GYY4137, caused vasodilation in vitro and reduced blood pressure in vivo. It downregulated proinflammatory cytokines (TNF- α , IL-1 β , IL-6) secretion and reduced COX-2 and iNOS expression in RAW264.7 macrophages treated with LPS [187].

HNO has been reported to reduce blood pressure in SHR model [188]. Since HNO exists in the body in a protonated form, it is not easily eliminated. Because of this, the aorta of angiotensin II-induced hypertensive mice still retains the diastolic response to HNO [189], suggesting that HNO may have a prospective effect in the treatment of hypertension.

6.11 Effect of H₂S–NO Interaction on Pulmonary Hypertension

H₂S alleviates pulmonary vascular remodeling and protects against pulmonary hypertension (PH) in the presence of hypoxia, monocrotaline (MCT), or high pulmonary blood flow [190– 192]. Mechanistically, it relaxes pulmonary artery [111], inhibits pulmonary artery SMC proliferation [193] and promotes apoptosis [194], resists oxidative stress [195], suppresses pulmonary artery EC inflammation [196], and attenuates vascular collagen deposition [197].

Treatment with L-NAME to downregulate NO level could aggravate hypoxic PH and promote

plasma H₂S content and CSE activity in lung tissues of hypoxic rats. And the treatment with PPG to downregulate H₂S level also aggravated hypoxic PH and augmented plasma NO content and eNOS expression in lung tissues [198]. These results suggest that H₂S and NO inhibit each other in the development of hypoxic PH. In high pulmonary blood flow-caused PH model, treatment with L-arginine upregulated plasma and pulmonary H₂S content as well as CSE mRNA expression in pulmonary artery SMC to alleviate PH H₂S downregulated [74]. And but PPG pulmonary upregulated NO/NOS pathway [191, 199].

6.12 Effect of H₂S-NO Interaction on Diabetes

Impaired NO or H₂S pathway is involved in the onset of diabetes. Application of nitrite to increase NO level could alleviate carbohydrate metabolic abnormalities in high fat diet-fed STZ rats, which is an obese type 2 diabetic model. While application of H₂S donor at low dose (0.28 mg/kg) had no influence. Simultaneous treatment with H₂S donor and nitrite could enhance the effect of nitrite in improving metabolic abnormalities, as demonstrated by the improved carbohydrate metabolism, low serum glucose and insulin concentration, fine glucose tolerance and liver function, high GLUT4 level and strong antioxidant capacity in these obese diabetic rats [75]. The mechanisms responsible for this effect of H₂S are to enhance the eNOS activity [58] and biologically activate nitrite. The latter is supported by the fact that H₂S promotes NO release from nitrite via activation of xanthine oxidoreductase [65] and facilitates a new NO-releasing molecule, sulfinyl nitrite generation [200]. Moreover, H_2S makes sGC exist in the form of NO activation, and reduces cGMP degradation through suppressing PDE5 [201], so that cGMP is upregulated to promote insulin secretion.

In addition, H_2S protected against diabetic nephropathy by the inhibition of oxidative stress and inflammation in rat kidney tissues, while application of L-NAME attenuated this benefic role of H_2S [202], indicating that NO might be involved in H₂S action on diabetic nephropathy. Moreover, NOX4, which mainly produces ROS, was augmented in diabetic kidney tissue. NOX4 inhibition could attenuate diabetic kidney injury [203]. H₂S inhibited NOX4 expression in kidney proximal tubular epithelial cell stimulated with high glucose by activating AMPK signaling, which was reversed by L-NAME [204], indicating that NO might participate in H₂S action. H₂S upregulated the expression of iNOS but not eNOS. Inhibition of AMPK abolished the facilitation of H₂S on iNOS expression [204]. These findings suggest that H_2S induces iNOS expression via the activation of AMPK signaling, thereby inhibiting the increase of NOX4 induced by high glucose.

6.13 Effect of H₂S–NO Interaction on Gastrointestinal Tract, Immune System, and Nervous System

Both H₂S and NO could resist gastric mucosal injury and maintain mucosal barrier integrity. H₂S was reported to induce the generation of NO and PGE₂ via the activation of capsaicinsensitive afferent neurons, thereby facilitating bicarbonate release and exerting a protective effect on the gastric mucosa [205, 206]. It indicates that H₂S has an important impact on the peripheral nervous system in the gastrointestinal tract. Considering that NSAIDs have serious gastrointestinal side effects, researchers have prepared NSAID releasing NO (NO-NSAID), releasing H₂S (HS-NSAID), and NSAID NSAID releasing both NO and H₂S in a dosedependent manner in vitro and in vivo (NOSH-NSAID) [207, 208]. Subsequently, aspirin was used as a scaffold to develop NOSH-aspirin. In carrageenan-stimulated rat paw edema model, NOSH-aspirin had the same anti-inflammatory effects as aspirin through reducing paw volume and PEG₂ concentration in paw exudates. Treating rats with ASA upregulated plasma TNF- α , while NOSH-aspirin treatment reduced

it [208]. NOSH-aspirin had dose-dependent inhibitory effect on writhing response stimulated by acetic acid and inflammatory hyperalgesia stimulated by carrageenan, Freund's adjuvant or PGE₂, and the degree of inhibition was higher than that of aspirin did at the same dose [209]. Mechanistically, NOSH-aspirin downregulated IL-1 β level and activated K_{ATP} channels to block the action of hyperalgesic mediator.

Moreover, H_2S suppressed LPS-induced NO production in microglial cells through downregulating p38-MAPK pathway [210]. It is assumed that H_2S may be a potential therapeutic target in the treatment of cerebral ischemia and neuroinflammatory diseases. Some studies showed that H_2S had a neuroprotective role in animal models of Parkinson's disease [211, 212].

7 Interaction of H₂S with CO

7.1 Regulation of H₂S Synthetases by CO

Due to the chemically inert state of CO, there are few reports on CO-mediated production of intermediates from H₂S and NO. CO inactivates CBS by combining with Fe²⁺-CBS [213], leading to the decrease of H_2S generation. Due to the of methionine changes and S-adenosylmethionine levels, CO-mediated CBS inhibition may induce methylation or demethylation of different protein targets in different durations, which are related to re-methylation cycling [214]. The binding of CO to ferrous CBS was weaker than that of NO. HO-2/CO pathway inhibited CBS activity via the heme group of CO binding to histidine sites in CBS, thus regulating H_2S content, generating 6-coordinated CO-Fe(II)-histidine complex, turning CBS into CO sensing molecule [215].

 O_2 tension is different between different tissues. CO, H₂S, and NO participate in complicated interactions with O_2 that modulates red blood cell levels and vascular tension, both of which play key roles in O_2 transport. The generation of CO and NO depends to some extent on the O_2 level in the cell [216], because molecular O_2 is necessary for the enzymatic activities of HO-2 and nNOS. Therefore, both CO produced by HO-2 and NO produced by nNOS are inhibited under hypoxic conditions that also modulate the steady-state expression of NOS at the mRNA and protein levels [217]. Under hypoxic conditions, the CO produced by HO-2 is downregulated, resulting in a decrease in the inhibitory effect of CO on CBS and an increase in H₂S contents, which subsequently promotes the carotid body sensory excitement [218]. However, under normoxic conditions, the O₂-dependent CO produced by HO-2 suppresses CSE activity, resulting in a decrease in H₂S contents and sensory activity in the carotid body [218]. Different from CBS, the CSE in the carotid body does not contain heme. Previous studies showed that inhibition of HO in VSMCs with ZnPP could upregulate CSE protein level and H_2S concentration [219], indicating that CO downregulates H₂S/CSE pathway in VSMC under physiological condition.

7.2 Regulation of HO by H₂S

H₂S also inhibits HO/CO pathway under physiological condition. Treatment of VSMC with PPG could enhance HbCO concentration and HO-1 protein level, but the treatment with NaHS inhibited them [219]. While H₂S augments the HO/CO pathway under pathophysiological condition (Fig. 3). NaHS augments both mRNA and protein expressions of HO-1 in hypoxic rat pulmonary arteries as well as plasma CO concentration, while CSE inhibitor PPG downregulates HO/CO pathway [220].

7.3 Interaction of H₂S with Transcription Factors Containing Heme

Studies have shown that gasotransmitters can regulate gene transcription through cross-talking with transcription factors containing heme as a prosthetic group. For instance, CO can activate neuronal PAS domain protein 2 (NPAS2), which is an obligate dimer chaperone of BMAL1 and participates in modulating the circadian rhythm [221]. These data indicate that there is a correlation between heme biosynthesis and its degradation. H_2S can prevent the stimulation of Brg1 expression, which is the central catalytic subunit of the ATP-dependent chromatin remodeling complex SWI-SNF, although its related mechanism is still unclear [222]. The inhibitory effect of H_2S on the proliferation of VSMCs has been shown to be closely associated with the chromatin remodeling caused by Brg1 [223].

7.4 Effect of H₂S–CO Interaction on Pulmonary Hypertension

CO prevents hypoxic PH and vascular structural remodeling associated with increased Fas-mediated pulmonary VSMC apoptosis and reduced VSMC proliferation [224]. H₂S also protects against hypoxic PH and alleviates pulmonary vascular remodeling [190].

 H_2S facilitated plasma CO concentration and HO-1 expression in hypoxic rat pulmonary artery, while the inhibition of H_2S production could downregulate HO/CO pathway [220]. Similarly, in high pulmonary flow-caused PH model, H_2S promoted but PPG reduced pulmonary CO generation and HO-1 expression [191, 199]. These results indicate that H_2S and CO play a synergistic effect in protecting against PH.

7.5 Effect of H₂S–CO Interaction on Nervous System

Liu et al. assumed that electrical acupuncture treatment prevents hypoxic injury via elevating CO level mediated by H₂S/CBS-CO/HO-1 and hypoxia inducible factor-1 α (HIF-1 α) system [225]. The results showed that electrical acupuncture treatment reduced CBS expression and upregulated the expression of HO-1 and HIF-1 α in cortical cells of perinatal rats.

Moreover, in a rat model of recurrent febrile seizures, both H_2S and CO alone could reduce

hippocampal damage. Administration of NaHS augmented plasma CO content as well as mRNA and protein expression of HO-1 in hippocampal neurons, while the inhibition of H₂S-generating enzyme CBS decreased them [226]. Administration of hemin to promote CO generation could facilitate plasma H₂S content as well as mRNA and protein expression of CBS in hippocampal neurons, while the inhibition of HO-1 inhibited them [226]. These results suggest that H₂S and CO play a synergistic role in recurrent febrile seizures development.

8 Interaction among H₂S, NO, and CO

H₂S suppresses NO production, iNOS gene expression, and NF-ĸB activation in LPS-induced macrophages through a mechanism involving the action of HO-1 and CO [67]. H₂S stimulated HO-1 expression and activation by activating ERK1/2 in RAW264.7 macrophages. H₂S suppressed iNOS protein expression and NO production LPS-treated RAW264.7 in macrophages, while application of CSE inhibitor, BCA, blocked the H₂S-inhibited NO production in LPS-treated macrophages. Inhibition of HO-1 by siRNA or inhibitor SnPP could block the H₂S-inhibited iNOS expression and NO production, while overexpression of HO-1 inhibited LPS-stimulated iNOS expression and NO generation. These findings indicated that the inhibitory effect of H₂S on iNOS/NO pathway is mediated by HO-1 expression. NO and H₂S could interact with each other. NO increases H₂S production, and H₂S suppresses NO production. H₂S suppresses NO production through inhibiting iNOS expression via upregulating HO-1/CO pathway in LPS-induced RAW264.7 macrophages. Also, H₂S inhibits LPS-induced NF-κB activity through HO–CO pathway [131].

9 Interaction of H₂S with SO₂

9.1 Regulation of AAT by H₂S

Endogenous H_2S inhibits endogenous SO_2 production. CSE knockout in endothelial cells downregulates H_2S level but upregulates SO_2 content, which are rescued by supplementation of H_2S donor. However, CSE knockdown does not affect protein expression of endogenous SO_2 producing enzyme AAT, but significantly enhances AAT activity, while supplementation of H_2S donor inhibits it. H_2S donor at concentration of 100 and 200 μ M directly inhibits purified AAT protein activity. Mechanistically, H_2S inhibits AAT activity through sulfhydrating cysteine residues of AAT protein [227] (Fig. 3).

9.2 Effect of H₂S–SO₂ Interaction on Inflammation

Endogenous SO₂, as a compensatory defense system of decreased endogenous H₂S pathway, antagonizes the inflammatory response of endothelial cells. Treatment of endothelial cells with AAT activity inhibitor β -hydroxamate (HDX) to block the SO₂ production could aggravate endothelial cell inflammation, as demonstrated by the degradation of IkB α protein and the elevated levels of inflammatory cytokines including ICAM-1, TNF- α , and IL-6 in human umbilical vein endothelial cells (HUVECs). H₂S content is decreased but SO₂ level is increased in the lung tissues of monocrotaline (MCT)-induced pulmonary hypertensive rats. Administration of H₂S donor restores the inhibitory effect of MCT on H_2S generation and downregulates the elevated endogenous SO₂/AAT pathway through the sulfhydration of AAT protein. Application of HDX to inhibit the elevated SO2 level aggravates the pulmonary vascular inflammatory response caused by the inhibited endogenous H₂S generation in MCT rats. These findings suggest that H₂S suppressed endogenous SO₂ production through decreasing AAT activity mediated by sulfenylating AAT protein. Endogenous SO₂ production was upregulated when endogenous H_2S/CSE pathway was inhibited. And endogenous SO_2 , as a back-up defense system after the damage of endogenous H_2S system, plays an important anti-inflammatory role in ECs [227].

9.3 Effect of H₂S-SO₂ Interaction on Pulmonary Hypertension

SO₂ facilitates H₂S production in lung tissues to alleviate hypoxic PH development. Compared to control group, plasma H₂S content and lung tissue H₂S production were decreased in rat model of PH and pulmonary vascular remodeling under the condition of high pulmonary flow [228]. CSE mRNA expression in pulmonary arteries and lung tissue of rats with PH was also lower than that in control group [228]. These results indicate that endogenous H₂S/CSE pathway is downregulated in PH and pulmonary vascular remodeling caused by high pulmonary blood flow. Further study showed that in this PH model, supplementation of SO₂ donor attenuated PH and reduced the muscularization of pulmonary arteries; the production of H₂S, the protein expression of CSE, and the mRNA expression of CSE, 3-MST, and CBS in rat lung tissue were elevated [42]. SO₂ content, aspartate aminotransferase (AAT) activity, and the protein and mRNA expression of AAT2 in lung tissues of PH rats were also significantly decreased [42].

While, H₂S inhibited endogenous SO₂ pathway through sulfhydrating AAT to inhibit its activity. Endogenous SO₂ production was upregulated when endogenous H₂S/CSE pathway was inhibited in the model of MCT-induced PH. The increased endogenous SO₂ as a backup defense system exerted an anti-inflammatory effect and delayed the progression of MCT-induced PH and pulmonary vascular structural remodeling [227]. Therefore, the interaction between these two gasotransmitters plays an important role in the modulation of pulmonary artery pressure and vascular remodeling.

10 Conclusions and Perspectives

In this article, we reviewed the production and metabolism of H₂S, NO, CO, and SO₂, and summarized the crosstalk among H₂S and the other three gasotransmitters and their effects on the cardiovascular, nervous, gastrointestinal, and immune system. As a member of the gasotransmitter family, H₂S has several similar biological reactivity and functions with NO, CO, and SO₂. H₂S and the other three gasotransmitters interplay with each other's synthases, thereby influencing their production. In addition, the chemical crosstalk of H₂S and NO generates new reaction products. They act as endothelialderived relaxing factors to regulate blood vessel tension. They also promote angiogenesis and prevent heart damage. The interaction between H₂S and NO also plays an important role in regulating myocardial contractility, oxidative stress, hypertension, and diabetes. Additionally, CO inhibits the activity of H₂S synthases CBS and CSE, while H₂S increases the HO/CO pathway. H₂S suppresses the activity of AAT and then the level of SO₂, and endogenous SO₂, as a back-up compensatory system when the endogenous H₂S pathway is damaged, exerts a protective effect against endothelial cell inflammation and against pulmonary hypertension.

Many studies indicated that H_2S pathway might be used to treat a variety of diseases. However, due to the lack of selectivity of CBS and CSE inhibitors, caution should be exercised in some studies using currently available CBS and CSE inhibitors. In addition, due to the lack of inhibitors, the functional research of 3-MST is also hindered. The development of more selective synthase inhibitors will greatly improve the research in this field, which will provide solid evidence for the physiological role of these synthases in the modulation of smooth muscle tension, just as NOS inhibitors have done on NO.

Due to the interaction among H_2S and other gasotransmitters (such as NO), it may be very valuable to use one or two combinations of transgene models for enzyme silencing in future research. Data on the crosstalk among H_2S and the other three gasotransmitters (NO, CO, and SO_2) have just emerged. It will be interesting to uncover the effects of incorporating CSE-knockout background into other transgenic systems such as that of iNOS [229], eNOS [230], HO-1/2 [231, 232], or AAT1/2 knockout mouse models. For instance, how does the loss of each gas change the formation and content of circulating nitrosothiols? What are the consequences of this systemically? Can bioactive persulfides compensate for the loss of nitrosothiols? The current evidence shows that gases can affect mitochondrial function, energy metabolism, and tissue homeostasis, but the functional consequences of the combined defects in H_2S and NO, CO or SO₂ generation are not clear. Do these interactions, or lack of them, support metabolic disorders like diabetes or obesity? The development of these models will also be particularly helpful in the screening of hybrid donors of H₂S/NO, H₂S/CO, or H₂S/SO₂ [93, 208, 209].

HNO is generated endogenously through the reduction of NO, the reaction of S-nitrosothiol with thiol and NOS-catalyzed reactions [130, 233, 234]. It exerts positive inotropic effect in both normal and failing hearts [235], suggesting that it may be a potentially promising target for the treatment of congestive heart failure and acute heart failure [236, 237]. But all these studies have used super-physiological concentrations of NO and H₂S or used exogenous NO donors such as SNP instead of endogenous NO. This is somewhat controversial. In fact, the concentration of endogenous NO and H₂S is very low, and SNP cannot release NO spontaneously, and therefore, it cannot simulate the reaction of endogenous NO [238]. Moreover, the products produced by the direct reaction between these exogenous donors may be different from the products produced by the biological reaction of endogenous H₂S and NO [43, 130, 239]. Therefore, the physiological relevance of HNO and other reaction products needs further research to confirm. The mechanisms responsible for the interaction among H₂S and the other three gasotransmitters (NO, CO, or SO₂), and the interaction among their molecular pathways are also urgently needed for further study.

References

- Furchgott RF, Zawadzki JV (1980) The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature 288:373–376
- Ignarro LJ, Buga GM, Wood KS, Byrns RE, Chaudhuri G (1987) Endothelium-derived relaxing factor produced and released from artery and vein is nitric oxide. Proc Natl Acad Sci U S A 84:9265–9269
- Gantner BN, LaFond KM, Bonini MG (2020) Nitric oxide in cellular adaptation and disease. Redox Biol 34:101550
- Verma A, Hirsch DJ, Glatt CE, Ronnett GV, Snyder SH (1993) Carbon monoxide: a putative neural messenger. Science 259:381–384
- Wang R, Wang Z, Wu L (1997) Carbon monoxideinduced vasorelaxation and the underlying mechanisms. Br J Pharmacol 121:927–934
- Adach W, Błaszczyk M, Olas B (2020) Carbon monoxide and its donors - chemical and biological properties. Chem Biol Interact 318:108973
- Hosoki R, Matsuki N, Kimura H (1997) The possible role of hydrogen sulfide as an endogenous smooth muscle relaxant in synergy with nitric oxide. Biochem Biophys Res Commun 237:527–531
- Abe K, Kimura H (1996) The possible role of hydrogen sulfide as an endogenous neuromodulator. J Neurosci Off J Soc Neurosci 16:1066–1071
- Zhang D, Du J, Tang C, Huang Y, Jin H (2017) H(2) S-induced Sulfhydration: biological function and detection methodology. Front Pharmacol 8:608
- Bian JS, Olson KR, Zhu YC (2016) Hydrogen sulfide: biogenesis, physiology, and pathology. Oxidative Med Cell Longev 2016:6549625
- Kimura H (2019) Signaling by hydrogen sulfide (H (2)S) and polysulfides (H(2)S(n)) in the central nervous system. Neurochem Int 126:118–125
- Wang Y, Yu R, Wu L, Yang G (2020) Hydrogen sulfide signaling in regulation of cell behaviors. Nitric Oxide 103:9–19
- Paul BD, Snyder SH (2018) Gasotransmitter hydrogen sulfide signaling in neuronal health and disease. Biochem Pharmacol 149:101–109
- Murphy B, Bhattacharya R, Mukherjee P (2019) Hydrogen sulfide signaling in mitochondria and disease. FASEB J 33:13098–13125
- Vellecco V, Armogida C, Bucci M (2018) Hydrogen sulfide pathway and skeletal muscle: an introductory review. Br J Pharmacol 175:3090–3099
- 16. Du J, Chen X, Geng B, Jiang H, Tang C (2002) Hydrogen sulfide as a messenger molecule in the cardiovascular system. J Peking Univ Health Sci 34:187
- Wang R (2002) Two's company, three's a crowd: can H₂S be the third endogenous gaseous transmitter? FASEB J 16:1792–1798
- Griffith OW (1983) Cysteinesulfinate metabolism. Altered partitioning between transamination and

decarboxylation following administration of betamethyleneaspartate. J Biol Chem 258:1591–1598

- Du SX, Jin HF, Bu DF, Zhao X, Geng B, Tang CS, Du JB (2008) Endogenously generated sulfur dioxide and its vasorelaxant effect in rats. Acta Pharmacol Sin 29:923–930
- Huang Y, Tang C, Du J, Jin H (2016) Endogenous sulfur dioxide: a new member of gasotransmitter family in the cardiovascular system. Oxidative Med Cell Longev 2016:8961951
- Yu L, Hu P, Chen Y (2018) Gas-generating nanoplatforms: material chemistry, multifunctionality, and gas therapy. Adv Mater 30:e1801964
- Bisseret P, Blanchard N (2013) Taming sulfur dioxide: a breakthrough for its wide utilization in chemistry and biology. Org Biomol Chem 11:5393–5398
- Whiteman M, Moore PK (2009) Hydrogen sulfide and the vasculature: a novel vasculoprotective entity and regulator of nitric oxide bioavailability? J Cell Mol Med 13:488–507
- Giuffrè A, Vicente JB (2018) Hydrogen sulfide biochemistry and interplay with other gaseous mediators in mammalian physiology. Oxidative Med Cell Longev 2018:6290931
- Tang C, Li X, Du J (2006) Hydrogen sulfide as a new endogenous gaseous transmitter in the cardiovascular system. Curr Vasc Pharmacol 4:17–22
- 26. Yang J, Minkler P, Grove D, Wang R, Willard B, Dweik R, Hine C (2019) Non-enzymatic hydrogen sulfide production from cysteine in blood is catalyzed by iron and vitamin B(6). Commun Biol 2:194
- Kimura H (2014) Production and physiological effects of hydrogen sulfide. Antioxid Redox Signal 20:783–793
- Liu YH, Lu M, Hu LF, Wong PT, Webb GD, Bian JS (2012) Hydrogen sulfide in the mammalian cardiovascular system. Antioxid Redox Signal 17:141–185
- Chachlaki K, Prevot V (2019) Nitric oxide signalling in the brain and its control of bodily functions. Br J Pharmacol 177(24):5437–5458
- Farah C, Michel LYM, Balligand JL (2018) Nitric oxide signalling in cardiovascular health and disease. Nat Rev Cardiol 15:292–316
- García-Ortiz A, Serrador JM (2018) Nitric oxide signaling in T cell-mediated immunity. Trends Mol Med 24:412–427
- 32. Sutton EF, Gemmel M, Powers RW (2020) Nitric oxide signaling in pregnancy and preeclampsia. Nitric Oxide Biol Chem 95:55–62
- Motterlini R, Foresti R (2017) Biological signaling by carbon monoxide and carbon monoxide-releasing molecules. Am J Physiol Cell Physiol 312:C302– c313
- 34. Sjostrand T (1952) The formation of carbon monoxide by the decomposition of haemoglobin in vivo. Acta Physiol Scand 26:338–344
- 35. Adach W, Olas B (2019) Carbon monoxide and its donors - their implications for medicine. Future Med Chem 11:61–73

- 36. Kim HH, Choi S (2018) Therapeutic aspects of carbon monoxide in cardiovascular disease. Int J Mol Sci 19(8):2381
- Yang X, de Caestecker M, Otterbein LE, Wang B (2019) Carbon monoxide: an emerging therapy for acute kidney injury. Med Res Rev 40(4):1147–1177
- Mahan VL (2020) Cardiac function dependence on carbon monoxide. Med Gas Res 10:37–46
- 39. Korbut E, Brzozowski T, Magierowski M (2020) Carbon monoxide being hydrogen sulfide and nitric oxide molecular sibling, as endogenous and exogenous modulator of oxidative stress and antioxidative mechanisms in the digestive system. Oxidative Med Cell Longev 2020:5083876
- 40. Jung E, Koh SH, Yoo M, Choi YK (2020) Regenerative potential of carbon monoxide in adult neural circuits of the central nervous system. Int J Mol Sci 21(7):2273
- 41. Liu D, Jin H, Tang C, Du J (2010) Sulfur dioxide: a novel gaseous signal in the regulation of cardiovascular functions. Mini Rev Med Chem 10:1039–1045
- 42. Luo L, Liu D, Tang C, Du J, Liu AD, Holmberg L, Jin H (2013) Sulfur dioxide upregulates the inhibited endogenous hydrogen sulfide pathway in rats with pulmonary hypertension induced by high pulmonary blood flow. Biochem Biophys Res Commun 433:519–525
- 43. Whiteman M, Li L, Kostetski I, Chu SH, Siau JL, Bhatia M, Moore PK (2006) Evidence for the formation of a novel nitrosothiol from the gaseous mediators nitric oxide and hydrogen sulphide. Biochem Biophys Res Commun 343:303–310
- 44. Cortese-Krott MM, Kuhnle GG, Dyson A, Fernandez BO, Grman M, DuMond JF, Barrow MP, McLeod G, Nakagawa H, Ondrias K, Nagy P, King SB, Saavedra JE, Keefer LK, Singer M, Kelm M, Butler AR, Feelisch M (2015) Key bioactive reaction products of the NO/H₂S interaction are S/N-hybrid species, polysulfides, and nitroxyl. Proc Natl Acad Sci U S A 112:E4651–E4660
- 45. Filipovic MR, Miljkovic J, Nauser T, Royzen M, Klos K, Shubina T, Koppenol WH, Lippard SJ, Ivanović-Burmazović I (2012) Chemical characterization of the smallest S-nitrosothiol, HSNO; cellular cross-talk of H₂S and S-nitrosothiols. J Am Chem Soc 134:12016–12027
- 46. Sun HJ, Wu ZY, Cao L, Zhu MY, Nie XW, Huang DJ, Sun MT, Bian JS (2020) Role of nitroxyl (HNO) in cardiovascular system: from biochemistry to pharmacology. Pharmacol Res 159:104961
- 47. Filipovic MR, Eberhardt M, Prokopovic V, Mijuskovic A, Orescanin-Dusic Z, Reeh P, Ivanovic-Burmazovic I (2013) Beyond H₂S and NO interplay: hydrogen sulfide and nitroprusside react directly to give nitroxyl (HNO). A new pharmacological source of HNO. J Med Chem 56:1499–1508
- 48. Ge Y, Moss RL (2012) Nitroxyl, redox switches, cardiac myofilaments, and heart failure: a prequel to novel therapeutics? Circ Res 111:954–956

- Keceli G, Moore CD, Labonte JW, Toscano JP (2013) NMR detection and study of hydrolysis of HNO-derived sulfinamides. Biochemistry 52:7387–7396
- Miao Z, King SB (2016) Recent advances in the chemical biology of nitroxyl (HNO) detection and generation. Nitric Oxide Biol Chem 57:1–14
- Sun HJ, Lee WT, Leng B, Wu ZY, Yang Y, Bian JS (2020) Nitroxyl as a potential theranostic in the cancer arena. Antioxid Redox Signal 32:331–349
- Cortese-Krott MM, Fernandez BO, Kelm M, Butler AR, Feelisch M (2015) On the chemical biology of the nitrite/sulfide interaction. Nitric Oxide Biol Chem 46:14–24
- 53. Miyamoto R, Koike S, Takano Y, Shibuya N, Kimura Y, Hanaoka K, Urano Y, Ogasawara Y, Kimura H (2017) Polysulfides (H(2)S(n)) produced from the interaction of hydrogen sulfide (H(2)S) and nitric oxide (NO) activate TRPA1 channels. Sci Rep 7:45995
- Altaany Z, Yang G, Wang R (2013) Crosstalk between hydrogen sulfide and nitric oxide in endothelial cells. J Cell Mol Med 17:879–888
- 55. Predmore BL, Julian D, Cardounel AJ (2011) Hydrogen sulfide increases nitric oxide production from endothelial cells by an akt-dependent mechanism. Front Physiol 2:104
- 56. Gheibi S, Samsonov AP, Gheibi S, Vazquez AB, Kashfi K (2020) Regulation of carbohydrate metabolism by nitric oxide and hydrogen sulfide: implications in diabetes. Biochem Pharmacol 176:113819
- 57. Moccia F, Bertoni G, Pla AF, Dragoni S, Pupo E, Merlino A, Mancardi D, Munaron L, Tanzi F (2011) Hydrogen sulfide regulates intracellular Ca²⁺ concentration in endothelial cells from excised rat aorta. Curr Pharm Biotechnol 12:1416–1426
- 58. Altaany Z, Ju Y, Yang G, Wang R (2014) The coordination of S-sulfhydration, S-nitrosylation, and phosphorylation of endothelial nitric oxide synthase by hydrogen sulfide. Sci Signal 7:ra87
- 59. Bibli SI, Szabo C, Chatzianastasiou A, Luck B, Zukunft S, Fleming I, Papapetropoulos A (2017) Hydrogen sulfide preserves endothelial nitric oxide synthase function by inhibiting proline-rich kinase 2: implications for cardiomyocyte survival and Cardioprotection. Mol Pharmacol 92:718–730
- 60. Geng B, Cui Y, Zhao J, Yu F, Zhu Y, Xu G, Zhang Z, Tang C, Du J (2007) Hydrogen sulfide downregulates the aortic L-arginine/nitric oxide pathway in rats. Am J Physiol 293:R1608–R1618
- 61. Liu YH, Bian JS (2010) Bicarbonate-dependent effect of hydrogen sulfide on vascular contractility in rat aortic rings. Am J Physiol Cell Physiol 299: C866–C872
- 62. Kubo S, Doe I, Kurokawa Y, Nishikawa H, Kawabata A (2007) Direct inhibition of endothelial nitric oxide synthase by hydrogen sulfide:

contribution to dual modulation of vascular tension. Toxicology 232:138–146

- 63. Kloesch B, Steiner G, Mayer B, Schmidt K (2016) Hydrogen sulfide inhibits endothelial nitric oxide formation and receptor ligand-mediated Ca(2+) release in endothelial and smooth muscle cells. Pharmacol Rep 68:37–43
- 64. Jeong SO, Pae HO, Oh GS, Jeong GS, Lee BS, Lee S, Kim du Y, Rhew HY, Lee KM, Chung HT (2006) Hydrogen sulfide potentiates interleukin-1betainduced nitric oxide production via enhancement of extracellular signal-regulated kinase activation in rat vascular smooth muscle cells. Biochem Biophys Res Commun 345:938–944
- 65. Bir SC, Kolluru GK, McCarthy P, Shen X, Pardue S, Pattillo CB, Kevil CG (2012) Hydrogen sulfide stimulates ischemic vascular remodeling through nitric oxide synthase and nitrite reduction activity regulating hypoxia-inducible factor-1α and vascular endothelial growth factor-dependent angiogenesis. J Am Heart Assoc 1:e004093
- 66. Huang Q, Sparatore A, Del Soldato P, Wu L, Desai K (2014) Hydrogen sulfide releasing aspirin, ACS14, attenuates high glucose-induced increased methylglyoxal and oxidative stress in cultured vascular smooth muscle cells. PLoS One 9:e97315
- 67. Oh GS, Pae HO, Lee BS, Kim BN, Kim JM, Kim HR, Jeon SB, Jeon WK, Chae HJ, Chung HT (2006) Hydrogen sulfide inhibits nitric oxide production and nuclear factor-kappaB via heme oxygenase-1 expression in RAW264.7 macrophages stimulated with lipopolysaccharide. Free Radic Biol Med 41:106–119
- 68. Du J, Huang Y, Yan H, Zhang Q, Zhao M, Zhu M, Liu J, Chen SX, Bu D, Tang C, Jin H (2014) Hydrogen sulfide suppresses oxidized low-density lipoprotein (ox-LDL)-stimulated monocyte chemoattractant protein 1 generation from macrophages via the nuclear factor κB (NF-κB) pathway. J Biol Chem 289:9741–9753
- 69. Yang R, Jia Q, Liu XF, Wang YY, Ma SF (2017) Effects of hydrogen sulfide on inducible nitric oxide synthase activity and expression of cardiomyocytes in diabetic rats. Mol Med Rep 16:5277–5284
- Shefa U, Kim MS, Jeong NY, Jung J (2018) Antioxidant and cell-signaling functions of hydrogen sulfide in the central nervous system. Oxidative Med Cell Longev 2018:1873962
- 71. Zhao W, Zhang J, Lu Y, Wang R (2001) The vasorelaxant effect of H(2)S as a novel endogenous gaseous K(ATP) channel opener. EMBO J 20:6008–6016
- 72. Zhao W, Ndisang JF, Wang R (2003) Modulation of endogenous production of H₂S in rat tissues. Can J Physiol Pharmacol 81:848–853
- 73. Zhong G, Chen F, Cheng Y, Tang C, Du J (2003) The role of hydrogen sulfide generation in the pathogenesis of hypertension in rats induced by inhibition of nitric oxide synthase. J Hypertens 21:1879–1885

- 74. Wang Y, Shi L, Du J, Tang C (2006) Impact of L-arginine on hydrogen sulfide/cystathioninegamma-lyase pathway in rats with high blood flowinduced pulmonary hypertension. Biochem Biophys Res Commun 345:851–857
- 75. Gheibi S, Jeddi S, Carlström M, Kashfi K, Ghasemi A (2019) Hydrogen sulfide potentiates the favorable metabolic effects of inorganic nitrite in type 2 diabetic rats. Nitric Oxide Biol Chem 92:60–72
- Wang R (2012) Physiological implications of hydrogen sulfide: a whiff exploration that blossomed. Physiol Rev 92:791–896
- 77. Chen PH, Fu YS, Wang YM, Yang KH, Wang DL, Huang B (2014) Hydrogen sulfide increases nitric oxide production and subsequent S-nitrosylation in endothelial cells. Sci World J 2014:480387
- 78. Asimakopoulou A, Panopoulos P, Chasapis CT, Coletta C, Zhou Z, Cirino G, Giannis A, Szabo C, Spyroulias GA, Papapetropoulos A (2013) Selectivity of commonly used pharmacological inhibitors for cystathionine β synthase (CBS) and cystathionine γ lyase (CSE). Br J Pharmacol 169:922–932
- 79. Vicente JB, Malagrinò F, Arese M, Forte E, Sarti P, Giuffrè A (2016) Bioenergetic relevance of hydrogen sulfide and the interplay between gasotransmitters at human cystathionine β-synthase. Biochim Biophys Acta 1857:1127–1138
- Mir S, Sen T, Sen N (2014) Cytokine-induced GAPDH sulfhydration affects PSD95 degradation and memory. Mol Cell 56:786–795
- 81. Sen N, Hara MR, Kornberg MD, Cascio MB, Bae BI, Shahani N, Thomas B, Dawson TM, Dawson VL, Snyder SH, Sawa A (2008) Nitric oxide-induced nuclear GAPDH activates p300/CBP and mediates apoptosis. Nat Cell Biol 10:866–873
- Sen N (2017) Functional and molecular insights of hydrogen sulfide signaling and protein sulfhydration. J Mol Biol 429:543–561
- Heneberg P (2014) Reactive nitrogen species and hydrogen sulfide as regulators of protein tyrosine phosphatase activity. Antioxid Redox Signal 20:2191–2209
- 84. Chen YY, Chu HM, Pan KT, Teng CH, Wang DL, Wang AH, Khoo KH, Meng TC (2008) Cysteine S-nitrosylation protects protein-tyrosine phosphatase 1B against oxidation-induced permanent inactivation. J Biol Chem 283:35265–35272
- 85. Hsu MF, Pan KT, Chang FY, Khoo KH, Urlaub H, Cheng CF, Chang GD, Haj FG, Meng TC (2016) S-nitrosylation of endogenous protein tyrosine phosphatases in endothelial insulin signaling. Free Radic Biol Med 99:199–213
- 86. Ohno K, Okuda K, Uehara T (2015) Endogenous S-sulfhydration of PTEN helps protect against modification by nitric oxide. Biochem Biophys Res Commun 456:245–249
- 87. Wu D, Hu Q, Zhu D (2018) An update on hydrogen sulfide and nitric oxide interactions in the

cardiovascular system. Oxidative Med Cell Longev 2018:4579140

- Nagpure BV, Bian JS (2016) Interaction of hydrogen sulfide with nitric oxide in the cardiovascular system. Oxidative Med Cell Longev 2016:6904327
- 89. Hulin JA, Gubareva EA, Jarzebska N, Rodionov RN, Mangoni AA, Tommasi S (2019) Inhibition of dimethylarginine dimethylaminohydrolase (DDAH) enzymes as an emerging therapeutic strategy to target angiogenesis and vasculogenic mimicry in cancer. Front Oncol 9:1455
- 90. Chen Y, Zhang F, Yin J, Wu S, Zhou X (2020) Protective mechanisms of hydrogen sulfide in myocardial ischemia. J Cell Physiol 235 (12):9059–9070
- 91. Tao BB, Liu SY, Zhang CC, Fu W, Cai WJ, Wang Y, Shen Q, Wang MJ, Chen Y, Zhang LJ, Zhu YZ, Zhu YC (2013) VEGFR2 functions as an H₂S-targeting receptor protein kinase with its novel Cys1045-Cys1024 disulfide bond serving as a specific molecular switch for hydrogen sulfide actions in vascular endothelial cells. Antioxid Redox Signal 19:448–464
- 92. Bucci M, Papapetropoulos A, Vellecco V, Zhou Z, Pyriochou A, Roussos C, Roviezzo F, Brancaleone V, Cirino G (2010) Hydrogen sulfide is an endogenous inhibitor of phosphodiesterase activity. Arterioscler Thromb Vasc Biol 30:1998–2004
- 93. Hu Q, Wu D, Ma F, Yang S, Tan B, Xin H, Gu X, Chen X, Chen S, Mao Y, Zhu YZ (2016) Novel Angiogenic activity and molecular mechanisms of ZYZ-803, a slow-releasing hydrogen sulfide-nitric oxide hybrid molecule. Antioxid Redox Signal 25:498–514
- 94. Dimmeler S, Fleming I, Fisslthaler B, Hermann C, Busse R, Zeiher AM (1999) Activation of nitric oxide synthase in endothelial cells by Akt-dependent phosphorylation. Nature 399:601–605
- 95. Kolluru GK, Bir SC, Yuan S, Shen X, Pardue S, Wang R, Kevil CG (2015) Cystathionine γ-lyase regulates arteriogenesis through NO-dependent monocyte recruitment. Cardiovasc Res 107:590–600
- 96. Coletta C, Papapetropoulos A, Erdelyi K, Olah G, Módis K, Panopoulos P, Asimakopoulou A, Gerö D, Sharina I, Martin E, Szabo C (2012) Hydrogen sulfide and nitric oxide are mutually dependent in the regulation of angiogenesis and endotheliumdependent vasorelaxation. Proc Natl Acad Sci U S A 109:9161–9166
- 97. Tsihlis ND, Murar J, Kapadia MR, Ahanchi SS, Oustwani CS, Saavedra JE, Keefer LK, Kibbe MR (2010) Isopropylamine NONOate (IPA/NO) moderates neointimal hyperplasia following vascular injury. J Vasc Surg 51:1248–1259
- Norris AJ, Sartippour MR, Lu M, Park T, Rao JY, Jackson MI, Fukuto JM, Brooks MN (2008) Nitroxyl inhibits breast tumor growth and angiogenesis. Int J Cancer 122:1905–1910
- 99. Gheibi S, Jeddi S, Kashfi K, Ghasemi A (2018) Regulation of vascular tone homeostasis by NO and

H(2)S: implications in hypertension. Biochem Pharmacol 149:42–59

- 100. Ali MY, Ping CY, Mok YY, Ling L, Whiteman M, Bhatia M, Moore PK (2006) Regulation of vascular nitric oxide *in vitro* and *in vivo*; a new role for endogenous hydrogen sulphide? Br J Pharmacol 149:625–634
- 101. Yan H, Du J, Tang C (2004) The possible role of hydrogen sulfide on the pathogenesis of spontaneous hypertension in rats. Biochem Biophys Res Commun 313:22–27
- 102. Sun Y, Tang CS, Jin HF, Du JB (2011) The vasorelaxing effect of hydrogen sulfide on isolated rat aortic rings versus pulmonary artery rings. Acta Pharmacol Sin 32:456–464
- 103. Sun Y, Huang Y, Zhang R, Chen Q, Chen J, Zong Y, Liu J, Feng S, Liu AD, Holmberg L, Liu D, Tang C, Du J, Jin H (2015) Hydrogen sulfide upregulates K_{ATP} channel expression in vascular smooth muscle cells of spontaneously hypertensive rats. J Mol Med 93:439–455
- 104. Zhao W, Wang R (2002) H(2)S-induced vasorelaxation and underlying cellular and molecular mechanisms. Am J Physiol Heart Circ Physiol 283: H474–H480
- 105. Jackson-Weaver O, Osmond JM, Riddle MA, Naik JS, Gonzalez Bosc LV, Walker BR, Kanagy NL (2013) Hydrogen sulfide dilates rat mesenteric arteries by activating endothelial large-conductance Ca²⁺-activated K⁺ channels and smooth muscle Ca²⁺ sparks. Am J Physiol Heart Circ Physiol 304:H1446– H1454
- 106. Lee SW, Cheng Y, Moore PK, Bian JS (2007) Hydrogen sulphide regulates intracellular pH in vascular smooth muscle cells. Biochem Biophys Res Commun 358:1142–1147
- 107. Hedegaard ER, Gouliaev A, Winther AK, Arcanjo DD, Aalling M, Renaltan NS, Wood ME, Whiteman M, Skovgaard N, Simonsen U (2016) Involvement of potassium channels and calciumindependent mechanisms in hydrogen sulfideinduced relaxation of rat mesenteric small arteries. J Pharmacol Exp Ther 356:53–63
- 108. Kiss L, Deitch EA, Szabó C (2008) Hydrogen sulfide decreases adenosine triphosphate levels in aortic rings and leads to vasorelaxation via metabolic inhibition. Life Sci 83:589–594
- 109. Fang L, Zhao J, Chen Y, Ma T, Xu G, Tang C, Liu X, Geng B (2009) Hydrogen sulfide derived from periadventitial adipose tissue is a vasodilator. J Hypertens 27:2174–2185
- 110. Orlov SN, Gusakova SV, Smaglii LV, Koltsova SV, Sidorenko SV (2017) Vasoconstriction triggered by hydrogen sulfide: evidence for Na(+),K(+),2Cl(-) cotransport and L-type ca(2+) channel-mediated pathway. Biochem Biophys Rep 12:220–227
- 111. Wang Y, Mainali P, Tang C, Shi L, Zhang C, Yan H, Liu X, Du J (2008) Effects of nitric oxide and

hydrogen sulfide on the relaxation of pulmonary arteries in rats. Chin Med J 121:420–423

- 112. Berenyiova A, Grman M, Mijuskovic A, Stasko A, Misak A, Nagy P, Ondriasova E, Cacanyiova S, Brezova V, Feelisch M, Ondrias K (2015) The reaction products of sulfide and S-nitrosoglutathione are potent vasorelaxants. Nitric Oxide Biol Chem 46:123–130
- 113. Kimura H (2016) Hydrogen polysulfide (H(2)S (n)) signaling along with hydrogen sulfide (H(2)S) and nitric oxide (NO). J Neural Transm 1996 (123):1235–1245
- 114. Andrews KL, Irvine JC, Tare M, Apostolopoulos J, Favaloro JL, Triggle CR, Kemp-Harper BK (2009) A role for nitroxyl (HNO) as an endothelium-derived relaxing and hyperpolarizing factor in resistance arteries. Br J Pharmacol 157:540–550
- 115. Andrews KL, Lumsden NG, Farry J, Jefferis AM, Kemp-Harper BK, Chin-Dusting JP (2015) Nitroxyl: a vasodilator of human vessels that is not susceptible to tolerance. Clin Sci 1979(129):179–187
- 116. Eberhardt M, Dux M, Namer B, Miljkovic J, Cordasic N, Will C, Kichko TI, de la Roche J, Fischer M, Suárez SA, Bikiel D, Dorsch K, Leffler A, Babes A, Lampert A, Lennerz JK, Jacobi J, Martí MA, Doctorovich F, Högestätt ED, Zygmunt PM, Ivanovic-Burmazovic I, Messlinger K, Reeh P, Filipovic MR (2014) H₂S and NO cooperatively regulate vascular tone by activating a neuroendocrine HNO-TRPA1-CGRP signalling pathway. Nat Commun 5:4381
- 117. Kuo MM, Kim DH, Jandu S, Bergman Y, Tan S, Wang H, Pandey DR, Abraham TP, Shoukas AA, Berkowitz DE, Santhanam L (2016) MPST but not CSE is the primary regulator of hydrogen sulfide production and function in the coronary artery. Am J Physiol Heart Circ Physiol 310:H71–H79
- 118. Chai Q, Lu T, Wang XL, Lee HC (2015) Hydrogen sulfide impairs shear stress-induced vasodilation in mouse coronary arteries. Pflugers Arch 467:329–340
- 119. Huang KT, Yin CC, Wu JH, Huang HH (2005) Superoxide determines nitric oxide uptake rate by vascular smooth muscle cells. FEBS Lett 579:4349–4354
- 120. Kojda G, Kottenberg K (1999) Regulation of basal myocardial function by NO. Cardiovasc Res 41:514–523
- 121. Vila-Petroff MG, Younes A, Egan J, Lakatta EG, Sollott SJ (1999) Activation of distinct cAMPdependent and cGMP-dependent pathways by nitric oxide in cardiac myocytes. Circ Res 84:1020–1031
- 122. Xu L, Eu JP, Meissner G, Stamler JS (1998) Activation of the cardiac calcium release channel (ryanodine receptor) by poly-S-nitrosylation. Science 279:234–237
- 123. Shah AM, Spurgeon HA, Sollott SJ, Talo A, Lakatta EG (1994) 8-bromo-cGMP reduces the myofilament response to Ca²⁺ in intact cardiac myocytes. Circ Res 74:970–978

- 124. Takimoto E, Champion HC, Belardi D, Moslehi J, Mongillo M, Mergia E, Montrose DC, Isoda T, Aufiero K, Zaccolo M, Dostmann WR, Smith CJ, Kass DA (2005) cGMP catabolism by phosphodiesterase 5A regulates cardiac adrenergic stimulation by NOS3-dependent mechanism. Circ Res 96:100–109
- 125. Sun YG, Cao YX, Wang WW, Ma SF, Yao T, Zhu YC (2008) Hydrogen sulphide is an inhibitor of L-type calcium channels and mechanical contraction in rat cardiomyocytes. Cardiovasc Res 79:632–641
- 126. Zhang R, Sun Y, Tsai H, Tang C, Jin H, Du J (2012) Hydrogen sulfide inhibits L-type calcium currents depending upon the protein sulfhydryl state in rat cardiomyocytes. PLoS One 7:e37073
- 127. Yong QC, Pan TT, Hu LF, Bian JS (2008) Negative regulation of beta-adrenergic function by hydrogen sulphide in the rat hearts. J Mol Cell Cardiol 44:701–710
- 128. Geng B, Yang J, Qi Y, Zhao J, Pang Y, Du J, Tang C (2004) H₂S generated by heart in rat and its effects on cardiac function. Biochem Biophys Res Commun 313:362–368
- 129. Sun Y, Zhang SQ, Jin HF, Tang CS, Du JB (2009) Hydrogen sulfide induce negative inotropic effect in isolated hearts via K_{ATP} channel and mitochondria membrane K_{ATP} channel. Zhonghua Xin Xue Guan Bing Za Zhi 37:161–164
- 130. Yong QC, Hu LF, Wang S, Huang D, Bian JS (2010) Hydrogen sulfide interacts with nitric oxide in the heart: possible involvement of nitroxyl. Cardiovasc Res 88:482–491
- 131. Yong QC, Cheong JL, Hua F, Deng LW, Khoo YM, Lee HS, Perry A, Wood M, Whiteman M, Bian JS (2011) Regulation of heart function by endogenous gaseous mediators-crosstalk between nitric oxide and hydrogen sulfide. Antioxid Redox Signal 14:2081–2091
- 132. Miljkovic J, Kenkel I, Ivanovic-Burmazovic I, Filipovic MR (2013) Generation of HNO and HSNO from nitrite by heme-iron-catalyzed metabolism with H₂S. Angew Chem Int Ed Engl 52:12061–12064
- 133. Paolocci N, Saavedra WF, Miranda KM, Martignani C, Isoda T, Hare JM, Espey MG, Fukuto JM, Feelisch M, Wink DA, Kass DA (2001) Nitroxyl anion exerts redox-sensitive positive cardiac inotropy in vivo by calcitonin gene-related peptide signaling. Proc Natl Acad Sci U S A 98:10463–10468
- 134. Gao WD, Murray CI, Tian Y, Zhong X, DuMond JF, Shen X, Stanley BA, Foster DB, Wink DA, King SB, Van Eyk JE, Paolocci N (2012) Nitroxyl-mediated disulfide bond formation between cardiac myofilament cysteines enhances contractile function. Circ Res 111:1002–1011
- 135. Sivakumaran V, Stanley BA, Tocchetti CG, Ballin JD, Caceres V, Zhou L, Keceli G, Rainer PP, Lee DI, Huke S, Ziolo MT, Kranias EG, Toscano JP, Wilson GM, O'Rourke B, Kass DA, Mahaney JE, Paolocci N (2013) HNO enhances SERCA2a activity and

cardiomyocyte function by promoting redoxdependent phospholamban oligomerization. Antioxid Redox Signal 19:1185–1197

- 136. Tocchetti CG, Wang W, Froehlich JP, Huke S, Aon MA, Wilson GM, Di Benedetto G, O'Rourke B, Gao WD, Wink DA, Toscano JP, Zaccolo M, Bers DM, Valdivia HH, Cheng H, Kass DA, Paolocci N (2007) Nitroxyl improves cellular heart function by directly enhancing cardiac sarcoplasmic reticulum Ca²⁺ cycling. Circ Res 100:96–104
- 137. Katori T, Hoover DB, Ardell JL, Helm RH, Belardi DF, Tocchetti CG, Forfia PR, Kass DA, Paolocci N (2005) Calcitonin gene-related peptide *in vivo* positive inotropy is attributable to regional sympathostimulation and is blunted in congestive heart failure. Circ Res 96:234–243
- 138. Tocchetti CG, Stanley BA, Murray CI, Sivakumaran V, Donzelli S, Mancardi D, Pagliaro P, Gao WD, van Eyk J, Kass DA, Wink DA, Paolocci N (2011) Playing with cardiac "redox switches": the "HNO way" to modulate cardiac function. Antioxid Redox Signal 14:1687–1698
- 139. Al-Magableh MR, Kemp-Harper BK, Ng HH, Miller AA, Hart JL (2014) Hydrogen sulfide protects endothelial nitric oxide function under conditions of acute oxidative stress *in vitro*. Naunyn Schmiedeberg's Arch Pharmacol 387:67–74
- 140. Selemidis S, Dusting GJ, Peshavariya H, Kemp-Harper BK, Drummond GR (2007) Nitric oxide suppresses NADPH oxidase-dependent superoxide production by S-nitrosylation in human endothelial cells. Cardiovasc Res 75:349–358
- 141. Lopez BE, Shinyashiki M, Han TH, Fukuto JM (2007) Antioxidant actions of nitroxyl (HNO). Free Radic Biol Med 42:482–491
- 142. Wink DA, Miranda KM, Espey MG, Pluta RM, Hewett SJ, Colton C, Vitek M, Feelisch M, Grisham MB (2001) Mechanisms of the antioxidant effects of nitric oxide. Antioxid Redox Signal 3:203–213
- 143. Miller AA, Maxwell KF, Chrissobolis S, Bullen ML, Ku JM, Michael De Silva T, Selemidis S, Hooker EU, Drummond GR, Sobey CG, Kemp-Harper BK (2013) Nitroxyl (HNO) suppresses vascular Nox2 oxidase activity. Free Radic Biol Med 60:264–271
- 144. Lin EQ, Irvine JC, Cao AH, Alexander AE, Love JE, Patel R, McMullen JR, Kaye DM, Kemp-Harper BK, Ritchie RH (2012) Nitroxyl (HNO) stimulates soluble guanylyl cyclase to suppress cardiomyocyte hypertrophy and superoxide generation. PLoS One 7:e34892
- 145. Naughton P, Hoque M, Green CJ, Foresti R, Motterlini R (2002) Interaction of heme with nitroxyl or nitric oxide amplifies heme oxygenase-1 induction: involvement of the transcription factor Nrf2. Cell Mol Biol 48:885–894
- 146. Kemp-Harper BK, Velagic A, Paolocci N, Horowitz JD, Ritchie RH (2020) Cardiovascular therapeutic potential of the redox siblings, nitric oxide (NO•) and Nitroxyl (HNO), in the setting of reactive oxygen

species dysregulation. Handb Exp Pharmacol 264:311-337

- 147. Jones SP, Girod WG, Palazzo AJ, Granger DN, Grisham MB, Jourd'Heuil D, Huang PL, Lefer DJ (1999) Myocardial ischemia-reperfusion injury is exacerbated in absence of endothelial cell nitric oxide synthase. Am J Phys 276:H1567–H1573
- 148. Roberts BW, Mitchell J, Kilgannon JH, Chansky ME, Trzeciak S (2013) Nitric oxide donor agents for the treatment of ischemia/reperfusion injury in human subjects: a systematic review. Shock 39:229–239
- 149. Saraiva RM, Minhas KM, Raju SV, Barouch LA, Pitz E, Schuleri KH, Vandegaer K, Li D, Hare JM (2005) Deficiency of neuronal nitric oxide synthase increases mortality and cardiac remodeling after myocardial infarction: role of nitroso-redox equilibrium. Circulation 112:3415–3422
- 150. Xu Z, Ji X, Boysen PG (2004) Exogenous nitric oxide generates ROS and induces cardioprotection: involvement of PKG, mitochondrial K_{ATP} channels, and ERK. Am J Physiol Heart Circ Physiol 286: H1433–H1440
- 151. Zhang DM, Chai Y, Erickson JR, Brown JH, Bers DM, Lin YF (2014) Intracellular signalling mechanism responsible for modulation of sarcolemmal ATP-sensitive potassium channels by nitric oxide in ventricular cardiomyocytes. J Physiol 592:971–990
- 152. Calderone A, Thaik CM, Takahashi N, Chang DL, Colucci WS (1998) Nitric oxide, atrial natriuretic peptide, and cyclic GMP inhibit the growthpromoting effects of norepinephrine in cardiac myocytes and fibroblasts. J Clin Invest 101:812–818
- 153. Burger DE, Lu X, Lei M, Xiang FL, Hammoud L, Jiang M, Wang H, Jones DL, Sims SM, Feng Q (2009) Neuronal nitric oxide synthase protects against myocardial infarction-induced ventricular arrhythmia and mortality in mice. Circulation 120:1345–1354
- 154. Zhu YZ, Wang ZJ, Ho P, Loke YY, Zhu YC, Huang SH, Tan CS, Whiteman M, Lu J, Moore PK (2007) Hydrogen sulfide and its possible roles in myocardial ischemia in experimental rats. J Appl Physiol 1985 (102):261–268
- 155. Ma SF, Luo Y, Ding YJ, Chen Y, Pu SX, Wu HJ, Wang ZF, Tao BB, Wang WW, Zhu YC (2015) Hydrogen sulfide targets the Cys320/Cys529 motif in Kv4.2 to inhibit the Ito potassium channels in cardiomyocytes and regularizes fatal arrhythmia in myocardial infarction. Antioxid Redox Signal 23:129–147
- 156. Zhang Z, Huang H, Liu P, Tang C, Wang J (2007) Hydrogen sulfide contributes to cardioprotection during ischemia-reperfusion injury by opening K_{ATP} channels. Can J Physiol Pharmacol 85:1248–1253
- 157. Jha S, Calvert JW, Duranski MR, Ramachandran A, Lefer DJ (2008) Hydrogen sulfide attenuates hepatic ischemia-reperfusion injury: role of antioxidant and

antiapoptotic signaling. Am J Physiol Heart Circ Physiol 295:H801-H806

- 158. Pan TT, Neo KL, Hu LF, Yong QC, Bian JS (2008) H₂S preconditioning-induced PKC activation regulates intracellular calcium handling in rat cardiomyocytes. Am J Physiol Cell Physiol 294: C169–C177
- 159. Wang X, Wang Q, Guo W, Zhu YZ (2011) Hydrogen sulfide attenuates cardiac dysfunction in a rat model of heart failure: a mechanism through cardiac mitochondrial protection. Biosci Rep 31:87–98
- 160. Pan TT, Feng ZN, Lee SW, Moore PK, Bian JS (2006) Endogenous hydrogen sulfide contributes to the cardioprotection by metabolic inhibition preconditioning in the rat ventricular myocytes. J Mol Cell Cardiol 40:119–130
- 161. Sojitra B, Bulani Y, Putcha UK, Kanwal A, Gupta P, Kuncha M, Banerjee SK (2012) Nitric oxide synthase inhibition abrogates hydrogen sulfide-induced cardioprotection in mice. Mol Cell Biochem 360:61–69
- 162. King AL, Polhemus DJ, Bhushan S, Otsuka H, Kondo K, Nicholson CK, Bradley JM, Islam KN, Calvert JW, Tao YX, Dugas TR, Kelley EE, Elrod JW, Huang PL, Wang R, Lefer DJ (2014) Hydrogen sulfide cytoprotective signaling is endothelial nitric oxide synthase-nitric oxide dependent. Proc Natl Acad Sci U S A 111:3182–3187
- 163. Jin S, Teng X, Xiao L, Xue H, Guo Q, Duan X, Chen Y, Wu Y (2017) Hydrogen sulfide ameliorated L-NAME-induced hypertensive heart disease by the Akt/eNOS/NO pathway. Exp Biol Med 242:1831–1841
- 164. Yong QC, Lee SW, Foo CS, Neo KL, Chen X, Bian JS (2008) Endogenous hydrogen sulphide mediates the cardioprotection induced by ischemic postconditioning. Am J Physiol Heart Circ Physiol 295:H1330–h1340
- 165. Kondo K, Bhushan S, King AL, Prabhu SD, Hamid T, Koenig S, Murohara T, Predmore BL, Gojon G Sr, Gojon G Jr, Wang R, Karusula N, Nicholson CK, Calvert JW, Lefer DJ (2013) H₂S protects against pressure overload-induced heart failure via upregulation of endothelial nitric oxide synthase. Circulation 127:1116–1127
- 166. Minamishima S, Bougaki M, Sips PY, Yu JD, Minamishima YA, Elrod JW, Lefer DJ, Bloch KD, Ichinose F (2009) Hydrogen sulfide improves survival after cardiac arrest and cardiopulmonary resuscitation via a nitric oxide synthase 3-dependent mechanism in mice. Circulation 120:888–896
- 167. Szalay G, Sauter M, Hald J, Weinzierl A, Kandolf R, Klingel K (2006) Sustained nitric oxide synthesis contributes to immunopathology in ongoing myocarditis attributable to interleukin-10 disorders. Am J Pathol 169:2085–2093
- 168. Hua W, Chen Q, Gong F, Xie C, Zhou S, Gao L (2013) Cardioprotection of H₂S by downregulating

iNOS and upregulating HO-1 expression in mice with CVB3-induced myocarditis. Life Sci 93:949–954

- 169. Pagliaro P, Mancardi D, Rastaldo R, Penna C, Gattullo D, Miranda KM, Feelisch M, Wink DA, Kass DA, Paolocci N (2003) Nitroxyl affords thiolsensitive myocardial protective effects akin to early preconditioning. Free Radic Biol Med 34:33–43
- 170. Chin KY, Michel L, Qin CX, Cao N, Woodman OL, Ritchie RH (2016) The HNO donor Angeli's salt offers potential haemodynamic advantages over NO or dobutamine in ischaemia-reperfusion injury in the rat heart ex vivo. Pharmacol Res 104:165–175
- 171. Queliconi BB, Wojtovich AP, Nadtochiy SM, Kowaltowski AJ, Brookes PS (2011) Redox regulation of the mitochondrial K(ATP) channel in cardioprotection. Biochim Biophys Acta 1813:1309–1315
- 172. Ma XL, Gao F, Liu GL, Lopez BL, Christopher TA, Fukuto JM, Wink DA, Feelisch M (1999) Opposite effects of nitric oxide and nitroxyl on postischemic myocardial injury. Proc Natl Acad Sci U S A 96:14617–14622
- 173. Du J, Yan H, Tang C (2003) Endogenous H_2S is involved in the development of spontaneous hypertension. J Peking Univ Health Sci 35:102
- 174. Yu W, Liao Y, Huang Y, Chen SY, Sun Y, Sun C, Wu Y, Tang C, Du J, Jin H (2017) Endogenous hydrogen sulfide enhances carotid sinus baroreceptor sensitivity by activating the transient receptor potential cation channel subfamily V member 1 (TRPV1) channel. J Am Heart Assoc 6(5):e004971
- 175. Jin HF, Sun Y, Liang JM, Tang CS, Du JB (2008) Hypotensive effects of hydrogen sulfide via attenuating vascular inflammation in spontaneously hypertensive rats. Zhonghua Xin Xue Guan Bing Za Zhi 36:541–545
- 176. Du J, Hui Y, Cheung Y, Bin G, Jiang H, Chen X, Tang C (2004) The possible role of hydrogen sulfide as a smooth muscle cell proliferation inhibitor in rat cultured cells. Heart Vessel 19:75–80
- 177. Altaany Z, Moccia F, Munaron L, Mancardi D, Wang R (2014) Hydrogen sulfide and endothelial dysfunction: relationship with nitric oxide. Curr Med Chem 21:3646–3661
- 178. Kida M, Sugiyama T, Yoshimoto T, Ogawa Y (2013) Hydrogen sulfide increases nitric oxide production with calcium-dependent activation of endothelial nitric oxide synthase in endothelial cells. Eur J Pharm Sci 48:211–215
- 179. Li XH, Xue WL, Wang MJ, Zhou Y, Zhang CC, Sun C, Zhu L, Liang K, Chen Y, Tao BB, Tan B, Yu B, Zhu YC (2017) H(2)S regulates endothelial nitric oxide synthase protein stability by promoting microRNA-455-3p expression. Sci Rep 7:44807
- 180. Ertuna E, Loot AE, Fleming I, Yetik-Anacak G (2017) The role of eNOS on the compensatory regulation of vascular tonus by H(2)S in mouse carotid arteries. Nitric Oxide Biol Chem 69:45–50

- 181. Cacanyiova S, Berenyiova A, Kristek F (2016) The role of hydrogen sulphide in blood pressure regulation. Physiol Res 65:S273–s289
- 182. Ülker SN, Koçer G, Şentürk Ü, K. (2017) Carbon monoxide does not contribute to vascular tonus improvement in exercise-trained rats with chronic nitric oxide synthase inhibition. Nitric Oxide Biol Chem 65:60–67
- 183. Al-Magableh MR, Kemp-Harper BK, Hart JL (2015) Hydrogen sulfide treatment reduces blood pressure and oxidative stress in angiotensin II-induced hypertensive mice. Hypertens Res 38:13–20
- 184. Yan H, Du JB, Tang CS (2004) Changes and significance of hydrogen sulfide/cystathionine gammalyase system in hypertension: an experimental study with rats. Zhonghua Yi Xue Za Zhi 84:1114–1117
- 185. Tain YL, Hsu CN, Lu PC (2018) Early short-term treatment with exogenous hydrogen sulfide postpones the transition from prehypertension to hypertension in spontaneously hypertensive rat. Clin Exp Hypertens 1993(40):58–64
- 186. Heine CL, Schmidt R, Geckl K, Schrammel A, Gesslbauer B, Schmidt K, Mayer B, Gorren AC (2015) Selective irreversible inhibition of neuronal and inducible nitric-oxide synthase in the combined presence of hydrogen sulfide and nitric oxide. J Biol Chem 290:24932–24944
- 187. Whiteman M, Li L, Rose P, Tan CH, Parkinson DB, Moore PK (2010) The effect of hydrogen sulfide donors on lipopolysaccharide-induced formation of inflammatory mediators in macrophages. Antioxid Redox Signal 12:1147–1154
- Irvine JC, Ravi RM, Kemp-Harper BK, Widdop RE (2013) Nitroxyl donors retain their depressor effects in hypertension. Am J Physiol Heart Circ Physiol 305:H939–H945
- 189. Wynne BM, Labazi H, Tostes RC, Webb RC (2012) Aorta from angiotensin II hypertensive mice exhibit preserved nitroxyl anion mediated relaxation responses. Pharmacol Res 65:41–47
- 190. Zhang C, Du J, Bu D, Yan H, Tang X, Tang C (2003) The regulatory effect of hydrogen sulfide on hypoxic pulmonary hypertension in rats. Biochem Biophys Res Commun 302:810–816
- 191. Li X, Du J, Bu D, Tang X, Tang C (2006) Sodium hydrosulfide alleviated pulmonary vascular structural remodeling induced by high pulmonary blood flow in rats. Acta Pharmacol Sin 27:971–980
- 192. Feng S, Chen S, Yu W, Zhang D, Zhang C, Tang C, Du J, Jin H (2017) H(2)S inhibits pulmonary arterial endothelial cell inflammation in rats with monocrotaline-induced pulmonary hypertension. Lab Invest 97:268–278
- 193. Li X, Du J, Bu D, Tang C (2006) Mechanism by which hydrogen sulfide regulates pulmonary vascular structural remodeling induced by high pulmonary blood flow in rats. Chin J Pediatr 44:941–945
- 194. Li W, Jin H, Liu D, Sun J, Jian P, Li X, Tang C, Du J (2009) Hydrogen sulfide induces apoptosis of

pulmonary artery smooth muscle cell in rats with pulmonary hypertension induced by high pulmonary blood flow. Chin Med J 122:3032–3038

- 195. Wei HL, Zhang CY, Jin HF, Tang CS, Du JB (2008) Hydrogen sulfide regulates lung tissue-oxidized glutathione and total antioxidant capacity in hypoxic pulmonary hypertensive rats. Acta Pharmacol Sin 29:670–679
- 196. Zhang D, Wang X, Chen S, Chen S, Yu W, Liu X, Yang G, Tao Y, Tang X, Bu D, Zhang H, Kong W, Tang C, Huang Y, Du J, Jin H (2019) Endogenous hydrogen sulfide sulfhydrates IKKβ at cysteine 179 to control pulmonary artery endothelial cell inflammation. Clin Sci 1979(133):2045–2059
- 197. Li X, Du J, Jin H, Geng B, Tang C (2008) Sodium hydrosulfide alleviates pulmonary artery collagen remodeling in rats with high pulmonary blood flow. Heart Vessel 23:409–419
- 198. Zhang Q, Du J, Shi L, Zhang C, Yan H, Tang C (2004) Interaction between endogenous nitric oxide and hydrogen sulfide in pathogenesis of hypoxic pulmonary hypertension. J Peking Univ Health Sci 36:52–56
- 199. Li X, Du J, Jin H, Tang X, Bu D, Tang C (2007) The regulatory effect of endogenous hydrogen sulfide on pulmonary vascular structure and gasotransmitters in rats with high pulmonary blood flow. Life Sci 81:841–849
- 200. Filipovic MR, Miljkovic J, Allgäuer A, Chaurio R, Shubina T, Herrmann M, Ivanovic-Burmazovic I (2012) Biochemical insight into physiological effects of H₂S: reaction with peroxynitrite and formation of a new nitric oxide donor, sulfinyl nitrite. Biochem J 441:609–621
- 201. Szabo C (2017) Hydrogen sulfide, an enhancer of vascular nitric oxide signaling: mechanisms and implications. Am J Physiol Cell Physiol 312:C3–c15
- 202. Anter A, Taye A, EI-Moselhy M (2018) NOS activity mediates some pathways in the protective effects of H₂S in a model of diabetic nephropathy. J Adv Biomed Pharm Sci 1:26–32
- 203. Jha JC, Gray SP, Barit D, Okabe J, El-Osta A, Namikoshi T, Thallas-Bonke V, Wingler K, Szyndralewiez C, Heitz F, Touyz RM, Cooper ME, Schmidt HH, Jandeleit-Dahm KA (2014) Genetic targeting or pharmacologic inhibition of NADPH oxidase nox4 provides renoprotection in long-term diabetic nephropathy. J Am Soc Nephrol 25:1237–1254
- 204. Lee HJ, Lee DY, Mariappan MM, Feliers D, Ghosh-Choudhury G, Abboud HE, Gorin Y, Kasinath BS (2017) Hydrogen sulfide inhibits high glucose-induced NADPH oxidase 4 expression and matrix increase by recruiting inducible nitric oxide synthase in kidney proximal tubular epithelial cells. J Biol Chem 292:5665–5675
- 205. Ise F, Takasuka H, Hayashi S, Takahashi K, Koyama M, Aihara E, Takeuchi K (2011) Stimulation of duodenal HCO₂⁻ secretion by hydrogen

sulphide in rats: relation to prostaglandins, nitric oxide and sensory neurones. Acta Physiol 201:117-126

- 206. Takeuchi K, Ise F, Takahashi K, Aihara E, Hayashi S (2015) H₂S-induced HCO₃⁻ secretion in the rat stomach--involvement of nitric oxide, prostaglandins, and capsaicin-sensitive sensory neurons. Nitric Oxide Biol Chem 46:157–164
- 207. Chattopadhyay M, Kodela R, Olson KR, Kashfi K (2012) NOSH-aspirin (NBS-1120), a novel nitric oxide- and hydrogen sulfide-releasing hybrid is a potent inhibitor of colon cancer cell growth in vitro and in a xenograft mouse model. Biochem Biophys Res Commun 419:523–528
- 208. Kodela R, Chattopadhyay M, Kashfi K (2012) NOSH-aspirin: a novel nitric oxide-hydrogen sulfide-releasing hybrid: a new class of antiinflammatory pharmaceuticals. ACS Med Chem Lett 3:257–262
- 209. Fonseca MD, Cunha FQ, Kashfi K, Cunha TM (2015) NOSH-aspirin (NBS-1120), a dual nitric oxide and hydrogen sulfide-releasing hybrid, reduces inflammatory pain. Pharmacol Res Perspect 3:e00133
- 210. Hu LF, Wong PT, Moore PK, Bian JS (2007) Hydrogen sulfide attenuates lipopolysaccharide-induced inflammation by inhibition of p 38 mitogen-activated protein kinase in microglia. J Neurochem 100:1121–1128
- 211. Kida K, Yamada M, Tokuda K, Marutani E, Kakinohana M, Kaneki M, Ichinose F (2011) Inhaled hydrogen sulfide prevents neurodegeneration and movement disorder in a mouse model of Parkinson's disease. Antioxid Redox Signal 15:343–352
- 212. Xue X, Bian JS (2015) Neuroprotective effects of hydrogen sulfide in Parkinson's disease animal models: methods and protocols. Methods Enzymol 554:169–186
- 213. Puranik M, Weeks CL, Lahaye D, Kabil O, Taoka S, Nielsen SB, Groves JT, Banerjee R, Spiro TG (2006) Dynamics of carbon monoxide binding to cystathionine beta-synthase. J Biol Chem 281:13433–13438
- 214. Yamamoto T, Takano N, Ishiwata K, Suematsu M (2011) Carbon monoxide stimulates global protein methylation via its inhibitory action on cystathionine β-synthase. J Clin Biochem Nutr 48:96–100
- 215. Vicente JB, Colaço HG, Mendes MI, Sarti P, Leandro P, Giuffrè A (2014) NO* binds human cystathionine β -synthase quickly and tightly. J Biol Chem 289:8579–8587
- 216. Kolluru GK, Prasai PK, Kaskas AM, Letchuman V, Pattillo CB (2016) Oxygen tension, H₂S, and NO bioavailability: is there an interaction? J Appl Physiol 1985(120):263–270
- 217. Ho JJ, Man HS, Marsden PA (2012) Nitric oxide signaling in hypoxia. J Mol Med 90:217–231
- 218. Prabhakar NR, Semenza GL (2012) Gaseous messengers in oxygen sensing. J Mol Med 90:265–272

- 219. Jin HF, Du JB, Li XH, Wang YF, Liang YF, Tang CS (2006) Interaction between hydrogen sulfide/ cystathionine gamma-lyase and carbon monoxide/ heme oxygenase pathways in aortic smooth muscle cells. Acta Pharmacol Sin 27:1561–1566
- 220. Zhang Q, Du J, Zhou W, Yan H, Tang C, Zhang C (2004) Impact of hydrogen sulfide on carbon monoxide/heme oxygenase pathway in the pathogenesis of hypoxic pulmonary hypertension. Biochem Biophys Res Commun 317:30–37
- 221. Dioum EM, Rutter J, Tuckerman JR, Gonzalez G, Gilles-Gonzalez MA, McKnight SL (2002) NPAS2: a gas-responsive transcription factor. Science 298:2385–2387
- 222. Alexander SP, Benson HE, Faccenda E, Pawson AJ, Sharman JL, Catterall WA, Spedding M, Peters JA, Harmar AJ (2013) The concise guide to pharmacology 2013/14: ion channels. Br J Pharmacol 170:1607–1651
- 223. Li L, Liu D, Bu D, Chen S, Wu J, Tang C, Du J, Jin H (2013) Brg1-dependent epigenetic control of vascular smooth muscle cell proliferation by hydrogen sulfide. Biochim Biophys Acta 1833:1347–1355
- 224. Yun S, Junbao D, Limin G, Chaomei Z, Xiuying T, Chaoshu T (2003) The regulating effect of heme oxygenase/carbon monoxide on hypoxic pulmonary vascular structural remodeling. Biochem Biophys Res Commun 306:523–529
- 225. Liu Y, Li Z, Shi X, Liu Y, Li W, Duan G, Li H, Yang X, Zhang C, Zou L (2014) Neuroprotection of up-regulated carbon monoxide by electrical acupuncture on perinatal hypoxic-ischemic brain damage in rats. Neurochem Res 39:1724–1732
- 226. Han Y, Qin J, Chang X, Yang Z, Du J (2006) Hydrogen sulfide and carbon monoxide are in synergy with each other in the pathogenesis of recurrent febrile seizures. Cell Mol Neurobiol 26:101–107
- 227. Zhang D, Wang X, Tian X, Zhang L, Yang G, Tao Y, Liang C, Li K, Yu X, Tang X, Tang C, Zhou J, Kong W, Du J, Huang Y, Jin H (2018) The increased endogenous sulfur dioxide acts as a compensatory mechanism for the downregulated endogenous hydrogen sulfide pathway in the endothelial cell inflammation. Front Immunol 9:882
- 228. Li X, Du J, Shi L, Li J, Tang X, Qi J, Wei B, Jin H, Tang C (2005) Down-regulation of endogenous hydrogen sulfide pathway in pulmonary hypertension and pulmonary vascular structural remodeling induced by high pulmonary blood flow in rats. Circ J 69:1418–1424
- 229. Laubach VE, Shesely EG, Smithies O, Sherman PA (1995) Mice lacking inducible nitric oxide synthase are not resistant to lipopolysaccharide-induced death. Proc Natl Acad Sci U S A 92:10688–10692
- 230. Duplain H, Burcelin R, Sartori C, Cook S, Egli M, Lepori M, Vollenweider P, Pedrazzini T, Nicod P, Thorens B, Scherrer U (2001) Insulin resistance, hyperlipidemia, and hypertension in mice lacking

endothelial nitric oxide synthase. Circulation 104:342–345

- 231. Zhou Z, Ma D, Liu P, Wang P, Wei D, Yu K, Li P, Fang Q, Wang J (2019) Deletion of HO-1 blocks development of B lymphocytes in mice. Cell Signal 63:109378
- 232. Nath KA, Garovic VD, Grande JP, Croatt AJ, Ackerman AW, Farrugia G, Katusic ZS, Belcher JD, Vercellotti GM (2019) Heme oxygenase-2protects against ischemic acute kidney injury: influence of age and sex. Am J Physiol Renal Physiol 317: F695–f704
- 233. Saleem M, Ohshima H (2004) Xanthine oxidase converts nitric oxide to nitroxyl that inactivates the enzyme. Biochem Biophys Res Commun 315:455–462
- 234. Wong PS, Hyun J, Fukuto JM, Shirota FN, DeMaster EG, Shoeman DW, Nagasawa HT (1998) Reaction between S-nitrosothiols and thiols: generation of

nitroxyl (HNO) and subsequent chemistry. Biochemistry 37:5362-5371

- 235. Paolocci N, Katori T, Champion HC, St John ME, Miranda KM, Fukuto JM, Wink DA, Kass DA (2003) Positive inotropic and lusitropic effects of HNO/NOin failing hearts: independence from beta-adrenergic signaling. Proc Natl Acad Sci U S A 100:5537–5542
- 236. Fukuto JM, Carrington SJ (2011) HNO signaling mechanisms. Antioxid Redox Signal 14:1649–1657
- 237. Sabbah HN, Tocchetti CG, Wang M, Daya S, Gupta RC, Tunin RS, Mazhari R, Takimoto E, Paolocci N, Cowart D, Colucci WS, Kass DA (2013) Nitroxyl (HNO): a novel approach for the acute treatment of heart failure. Circ Heart Fail 6:1250–1258
- 238. Butler AR, Glidewell C (1987) Recent chemical studies of sodium nitroprusside relevant to its hypotensive action. Chem Soc Rev 16:361–380
- 239. Bruce King S (2013) Potential biological chemistry of hydrogen sulfide (H_2S) with the nitrogen oxides. Free Radic Biol Med 55:1–7