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Abstract This paper analyzes the instability of a gravity field in a double-diffusive
convective motion in horizontal porous matrix, heated from below uniformly with
the inclusion of the Soret parameter. The critical Rayleigh numbers for the onset
of stationary and oscillatory modes have been calculated by using the higher-order
Gelerkin technique. We addressed four separate cases of linear and nonlinear gravity
variation: (1) H(z) = −z (2) H(z) = −z2 (3) H(z) = −z3 and (4) H(z) =
−(ez − 1). The gravity parameters Soret parameter and solute Rayleigh number
on stationary and oscillatory convection and heat and mass transfer are graphically
illustrated.

Keywords Soret effect · Steady instability · Oscillatory motion · Gravity field

1 Introduction

The heat andmass transfer and convectivemotion in a porousmedia (Nield andBejan
[1] and the references therein) with primarily concerned with Soret convection in
porous matrix have been a subject of significant interest in the past as it is now, due
to the various applications in astrophysics, geophysics, industrial processes, crustal
structures, Earth’s crust, and since the gravity field’s inhibitory effect on the initiation
of convection is used, for example, in binary alloy directional solidification. There is
a wide range of the literature on various aspects of porous convection. In particular,
Bidin and Rees [2] considered convective motion in a horizontal porous matrix of an
unstable thermal boundary layer; Barletta and Celli [3] were performed in a double-
diffusive flow with open upper boundary linear stability of a uniform parallel flow;
Braga et al. [4] analyzed thermal instability on the boundary walls with two different
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boundary conditions. Chamkha [5] initiated penetrative double-diffusive convective
motion with absorption effects. Capone and De Luca [6] carried out convective
motion in a horizontal porous matrix with a magnetic field effect, in which the effect
of the inertia term in the Darcy equation was included by Capone and De Luca [7].
Recently, Storesletten and Rees [8] analyzed thermal convection with heat source
strength in an inclined anisotropic porous matrix.

It is known that the gravity field of the earth varies in a significant amount of
the wide-ranging convection situation in the atmosphere with elevation from its
surfaces, the earth’s mantle or the sea (Pradhan and Samal [9] and Rionero and
Straughan [10]). As the gravity field varies with the measurement, the fluid layer
will undergo distinctive buoyancy forces at various points. In this way, it becomes
imperative to investigate convective motion with gravity variance with height. The
effect of gravity field on a porous matrix was investigated by Pradhan and Samal [9].
Alex and Patil [11, 12] made an extension to the anisotropic porous matrix with heat
source and inclined temperature gradient. Rionero and Straughan [10] investigated
the penetrative convection with gravity field effects on convective motion in a porous
matrix. Three separate types of depth variations in the gravity field were considered:
linear, parabolic and exponential. Harfash [13] has researched the impact of gravity
fluctuations and magnetic field on the porous matrix flow.

However, the study of variable gravity double-diffusive convection is very limited.
Alex and Patil [14] andHarfash andAlshara [15] used theGalerkinmethod to analyze
effect of Soret parameter and gravity variance on the onset of convective motion in a
porous matrix. Shi et al. [16] made an extension to nonlinear variation of the gravity
field. In this paper, in the presence of the four cases of linear and nonlinear gravity
fields, wewish to study amodel of double-diffusive convectivemovement in a porous
matrix.

2 Conceptual Model

Figure 1 illustrates the physical configuration of the present study. The physical
model under consideration is a horizontal porous bed bounded between planes at
z = 0 and z = d with constant upward through flow of vertical velocity W0 and
changeable gravity g(z). We assume that the gravity vector −→g is,

u lT T

d          porous  layer

lT

g

Fig.1 Physical configuration
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−→g = −g0(1 + λ H(z)) k̂

where λis the variable gravity coefficient.

3 Mathematical Formulation

The porous layer governing equations are:

∇ · −→
V = 0 (1)

ρ0

φ

∂ �V
∂t

= −∇ p − μ

K
�V + ρ0[1 − β(T − T0)] �g(z) (2)

∂T

∂t
+

(−→
V · ∇

)
T = ∇2T (3)

∂S

∂t
+

(−→
V · ∇

)
S = τ ∇2S + D̃ ∇2T (4)

In these equations, �V denotes the velocity vector, κ is the thermal diffusivity, A is
the ratio of heat capacities,ρ0 is the reference fluid density, and T is the temperature.

The basic steady-state solution is of the form

(u, v, w, p, T ) = (0, 0, 0, pb(z), Tb(z), Sb(z)) (5)

Basic state is slightly perturbed using the relation given by

�V = �V ′, p = pb(z) + p′ , T = Tb(z) + θ (6)

Small disturbance analysis.
We assume that the solution is of the form.

(w, T ) = [W (z),
(z)] ei(lx+my) (7)

The linearized equations governing the perturbation are [17, 18]

(
D2 − a2

)
W − a2(−RTθ + RSS)(1 + η H(z)) = 0 (8)

(
D2 − a2 + i σ

)
θ + W = 0 (9)

(
D2 − a2 + i

σ

τ

)
S +

(
Sr RT

RS

) (
D2 − a2

)
θ + W

τ
= 0 (10)
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The boundary conditions take the form

W (z) = θ(z) = S(z) = 0 at z = 0, 1. (11)

where RT is the thermal Rayleigh number, W is the vertical velocity, Sr is the
Soret parameter, and RS solute Rayleigh number.

4 Technique of Solution

Equations (8) and (10) along with the boundary conditions given by Eq. (11) consti-
tute an eigenvalue problem with R as the eigenvalue. Accordingly,W, 
 and S are
written as

W =
n∑

i=1

Ai Wi , 
 =
n∑

i=1

Bi 
i S =
n∑

i=1

Ci Si (12)

Let the trial functions be

W = W0 sin(π z) , S = S0 sin(π z) &
 = 
0 sin(π z) (13)

Substituting solution (12) into Eqs. (8)–(10), integrating each equation from 0
and 1, we get the following matrix equations,

⎡
⎢⎢⎢⎢⎢⎢⎣

−1

2

(
a2 + π2) 1

4
a2RT(2 − η)

1

4
a2RS(2 − η)

1

2

1

2

(
a2 + π2 + σ

)
0

1

2τ

Sr
(
a2 + π2

)
RT

2RS

σ + (
a2 + π2

)
τ

2τ

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

W0


0

S0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

On solving the above matrix, we get a non-trivial solution

RT = −
(
a2 + π2 + σ

)(
2a2Rs − a2Rsη + 2a2σ + 2a2π + 2

(
a2 + π2

)2
τ
)

a2(−2 + η)
(
σ + (1 + Sr)

(
a2 + π2

)
τ
) (14)

where the growth parameter is a complex number such that σ = σr + i σi the
system is stable for Re(σ ) < 0 , unstable for Re(σ ) > 0 and neutrally stable for
Re(σ ) = 0.
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4.1 Marginal Stationary State

For stationary convection σ = 0, Eq. (14) reduces

RST = −2a2Rs − a2Rsη + 2
(
a2 + π2

)2
τ

a2(1 + Sr)(−2 + η)τ
(15)

which has the critical value RST = 4π2. The minimum Rayleigh number RST

occurs, at the critical wave number ac = π2 when Rs = 0 obtained by Horton and
Rogers [19] and Lapwood [20].

4.2 Oscillatory Convection

For oscillatory convection, we have σ �= 0, thus obtained critical Rayleigh number
is

Rosc = δ4τ
(
a2SrRs(−2 + η) + Sr

(
δ2

) + 4a2π2τ 2
)

(
a2(−2 + η)S2r δ

2τ 2 + +a2Rsηδ2
) (16)

5 Outcomes and Discussion

The binary fluid flow in a porous matrix in the presence of Soret effect with different
gravity field variations: (1) H(z) = −z, (2) H(z) = −z2, (3) H(z) = −z3 and
(4) H(z) = −(ez − 1) are studied analytically using linear analyses. The neutral
stability curves in the Rc − a plane for steady convection (Eq. (15)) and oscillatory
convection (Eq. (16)) have been presented graphically in Figs. 2, 3, 4, 5, 6, 7, 8 and
9.

The effect of variable gravity parameters on the neutral stability curves is depicted
in Figs. 2, 3, 4 and 5. From these figure, we find that the effect of rising the variable
gravity parameter λ for all four cases of gravity field is to increase the value of the
Rc with and without Soret parameter for stationary modes and the corresponding
wave number. Thus, the variable gravity parameter λ in a porous matrix bed has a
stabilizing effect on the binary convection. Further, it noted that for gravity field case
(4) H(z) = −(ez − 1) changes the system to become more stable, while for gravity
field case (3) F(z) = −z3 causes the system become more unstable.

Figures 6, 7, 8 and 9 give a visual representation of Rc − ac for various values λ.
These figures demonstrate that the minimum value of the Rc corresponding to −ac
for both oscillatory and stationary modes increases with improvement in the value
of the variable gravity parameter λ for all four cases of gravity field, and clearly, it
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Fig. 2 Rc
ST versus ac with τ = 0.01, RS = 0.1 for different values of η with linear gravity field

H(z) = −z a Sr = 200, b Sr = 0
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Fig. 3 Rc
ST versus ac with τ = 0.01, RS = 0.1 for different values of η with linear gravity field

H(z) = −z2 a Sr = 200, b Sr = 0

0.3

0.4

0.5

0.6

0.7

0.8

0,0.2,0.4,0.6,0.8,1

ca

TR

2 4 6 8 2 4 6 8

60

90

120

150

TR

ca

0,0.2,0.4,0.6,0.8,1

(a)
(b)

Fig. 4 Rc
ST versus ac with τ = 0.01, RS = 0.1 for different values of η with linear gravity field

H(z) = −z3 a Sr = 200, b Sr = 0
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Fig. 5 Rc
ST versus ac with τ = 0.01, RS = 0.1 for different values of η with linear gravity field

H(z) = −(ez − 1) a Sr = 200, b Sr = 0

Fig. 6 Rc versus ac with
τ = 0.01, RS = 0.1 for
different values of η with
linear gravity field
H(z) = −z for Sr = 10
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Fig. 7 Rc versus ac with
τ = 0.01, RS = 0.1 for
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linear gravity field
H(z) = −z2 for Sr = 10
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Fig. 8 Rc versus ac with
τ = 0.01, RS = 0.1 for
different values of η with
linear gravity field
H(z) = −z3 for Sr = 10
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Fig. 9 Rc versus ac with
τ = 0.01, RS = 0.1 for
different values of η with
linear gravity field
H(z) = −(ez − 1) for
Sr = 10

8642

50

100

150

200

250

300

350

ca

0,0.5,1
ST

OS

R
R

OSC

.............. STAT

demonstrate that the effect of the gravity field parameter is to stabilize the system.
We also found that for case (4) gravity field (i.e. H(z) = −(ez − 1)), the system is
more stable, while for case (3) gravity field

(
i.e. H(z) = −z3

)
, the system is more

unstable.

6 Conclusions

The binary fluid flow in a porous matrix, the impact of Soret effect with the presence
of different gravity field variations: (1) H(z) = −z (2) H(z) = −z2 (3) H(z) = −z3

and (4) H(z) = −(ez − 1) is studied analytically using linear analyses. For both case
convective motion (oscillatory and stationary modes), it is noted that increasing the
values of variable gravity parameter λ is to stabilize the system. The increases in
the values of Sr decrease the marginal curves for the stationary mode, and there
is a marginal effect of Sr on the oscillatory mode. We also found that for case (4)
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gravity field (i.e. H(z) = −(ez − 1)), the system is more stable, while for case (3)
gravity field

(
i.e. H(z) = −z3

)
, the system is more unstable.
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