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Abstract The rhizosphere is a composite ecosystem which supports multiple bac-
terial populations that nourishes the terrestrial biosphere and plays a crucial role in
the continuous recycling of minerals, nutrients, and organic matter through the soil.
Diverse varieties of molecular tools based on immediate isolation and analysis of
various compounds from environmental samples such as lipids, nucleic acids, and
peptides have been discovered which have provided structural and functional data
about microbial communities present in rhizospheric soil. With the advent of next-
generation sequencing technologies (NGS), it has become possible to delve deeper
into the rhizosphere microbiome to understand the unknown aspects of it. This has
resulted in a shift from traditional approaches to the modern omics-based approach
based on NGS sequencing technologies for discovering and distinguishing the vast
microbial diversity to understand their interactions with different environmental
factors. The major objective of this chapter is to provide insights on structural and
functional rhizospheric microbial diversity analysis by the application of cutting-
edge biotechnological tools. We have first glanced through the basic concepts of
rhizosphere and its importance in plant system, the common rhizospheric microbial
population, and looked at the plant—-microbe interactions which are of prime impor-
tance in the rhizosphere ecosystem. Next, we come to the molecular tools used for
rhizospheric microscopic diversity analysis—a detailed view into a few of the
traditional approaches used for diversity approaches before proceeding to the rapidly
emerging and more popular omics-based approaches used for rhizosphere microbial
diversity analysis. We have also identified the merits and demerits, future opportu-
nities of omics-based approaches in rhizosphere microbiology.
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9.1 Introduction

Plant-associated microbes have been known to function as nitrogen fixers, zinc
solubilizers, phosphorous solubilizers, potassium solubilizers, absorbers, accumula-
tors, conversion of essential nutrients into a form that the plant can uptake, source of
antibiotic and antifungal agents, source of commercially viable enzymes, inducer for
production of plant hormones, the key to developing a tolerance for biotic and
abiotic stress such as salinity, acidity, alkalinity, excess soil moisture, drought
conditions, and extremely high or extremely low temperatures (Ali et al. 2018;
Tanim et al. 2019). These microbes influence plant growth, and the growth of the
plant and environmental stressors influence the structural and functional dynamics of
such microbial niches. Majority of the plant-associated microbe population is
formed by the microbiota colonizing the rhizosphere of the plant. The microbes
show enforced as an ecological consequence of the influence of root exudates on
which they thrive. This microbiota is extremely influential and diverse has immense
applications in the field of biotechnology with significant agricultural and commer-
cial importance.

The multiform microbiome carries out and regulates a variety of processes
occurring in the rhizosphere of the plant that are relevant to plant proliferation.
Betaproteobacteria act as nitrogen fixers by denitrification and nitrate reduction.
Acinetobacter is known for the bioremediation of xenobiotic compounds.
Gammaproteobacteria adapt for suitable growth in a rhizospheric environment
requiring resistance to metal toxicity and metal reduction to get rid of the contam-
inant for bioremediation and enriching the soil to make it fertile. Pseudomonas and
Bacillus species are known to act as heavy metal detoxifiers and participate in
phosphorous solubilization. Clostridia exhibits the ability to reduce heavy metals
through hydrogen metabolism and fermentation (Ghosh et al. 2019).

The increase in industrial activities over the past few decades and the intensive
agricultural activities undertaken to meet heightened demand for crop production has
resulted in pertinent inorganic and organic pollution. Metal pollution has led to
excessive degradation of soil quality and adversely affected plant health as well as
microbial population composition (Benidire et al. 2020). As a consequence of this,
the use of biofertilizers involving the application of the rhizosphere-associated
biome for assisting its growth by improving soil conditions to benefit the environ-
ment has been championed as an alternative for chemical fertilizers. Certain bacterial
colonies in the plant roots act as bio-inoculants increasing the fertility of the soil via
their metabolism and can be isolated for bioremediation purposes. The application of
biofertilizers is also encouraged owing to the increasing popularity of organic
farming. Some plant species are hyperaccumulators, with the rhizospheric commu-
nities regulating the uptake of metal ions contaminating the soil. Microbial diversity
analysis is essential for determining the contaminant degradation ability of the
various species in a microbial population. Microbial diversity can also help under-
stand the biological impacts of certain farming practices on crop production (Wang
et al. 2019), verify the presence of antibiotic and antifungal agent producing strains
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(Ali et al. 2018), or to isolate any other strain from the concerning rhizosphere
responsible for the production of specific enzyme or metabolite.

Many molecular tools have been developed such as the traditionally employed
techniques Amplified Ribosomal DNA Restriction Analysis (ARDRA) and Dena-
turing Gradient Gel Electrophoresis (DGGE) for microbial diversity analysis to
facilitate understanding of the community dynamics and the microbial metabolic
processes that occur in the rhizosphere. Both cultivation-based approach and
DNA-based approach have been employed for this purpose. With the recent
advancements in technological high-throughput sequencing tools with a reduced
expense, time consumption, and hassle have been developed. These sequencing
tools are next-generation sequencers that are utilized in the study of the entire genetic
material present in a microbial community referred to as metagenomics. The
sequencing tools are also employed in metatranscriptomics which is the study of
gene expression and interaction, metaproteomics which refers to the characterization
analysis of the protein expressed in the microbial, and metabolomics which refers to
the study of the significant metabolites and exudates present in an ecological system.
Metagenomics, metatranscriptomics, metaproteomics, and metabolomics studies can
be and have been applied in numerous plant-related researches to understand and
define the rhizospheric microbiota of the given plant and the specificity of the plant—
microbe interactions. The significance of the rhizospheric biota for plant prolifera-
tion has been well acknowledged and analyzing their microbial diversity is important
for characterizing their relevant functional traits (Singh et al. 2020).

9.2 What is Rhizosphere?

The rhizosphere is the region of the soil that can be defined as the zone that is
immediately surrounding the root of a plant that houses a diverse range of microbial
colonies (Ali et al. 2018). Different plant species have complex and unique micro-
flora associated with them. This microflora may compose of bacteria, fungi, viruses,
and archaea. Along with the host plant, these microbes form a delicately balanced
ecosystem, and they may or may not benefit from the presence of these microbes that
are found on their leaves, flowers, stems, and roots. The rhizosphere is inhabited by
the root-associated microbes which maintain either a symbiotic or non-symbiotic
relationship with the plant. These microbes thrive on the root exudates of the host
plant and therefore the rhizosphere forms an agreeable niche for the microbial
population. These microbes, being present at the soil-root interface of the plant
exerts a significant influence over the rhizospheric processes that take place (de los
Reyes et al. 2020). These microbial interactions are very distinctive based upon the
microbial species. The evolution of the soil microflora of an individual plant has
occurred simultaneously with the evolution of the plant itself over time (Ghosh et al.
2019). Therefore, the microbiome of the rhizosphere is unique to the specific host
plant.
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9.3 Rhizospheric Diversity

Any soil sample when taken and analyzed for microbial diversity shows the soil
biota representing a huge number of microbial species. The diversity which is shown
by a microbial community heavily depends upon the physicochemical properties of
the soil which they inhabit. At the root—soil interface, the soil habitat shows an
increase in favorable conditions to promote microbial colonization, and a higher
density and diversity of microbes is thus seen in rhizospheric soil when compared to
the bulk soil. These microbes vary in their function from site to site and species to
species (Ghosh et al. 2019). The rhizosphere of a plant houses a plethora of culture-
dependent and culture-independent microbial species. Microbial colonies found in
the rhizospheric niches of the plant vary from species to species and influence crop
production, productivity, and plant sustainability (Fig. 9.1). An abundance is
witnessed in the number and highly diverse variety of microbial species occupying
the rhizospheric niche.

9.3.1 Common Rhizospheric Population

Azobacter, Azospirillium, Azolla, Rhizobium, and Cyanobacteria species are com-
mon microbes generally that are known for their nitrogen-fixing abilities. These
symbiotic microbes are Gram-negative, aerobic bacteria. These nitrogen-fixing
bacteria act as natural fertilizers impacting the plant metabolism, production of
antibiotics, and plant growth hormones, root development and allowing for
enhanced nutrient uptake. Pseudomonas, Bacillus, Actinomyces, Agrobacterium,
and Acetobacter are known to be phosphorous-solubilizing bacteria. Apart from
partaking in photosynthesis, energy transfer, and other plant processes, phosphorus
is an important element because it is known to limit the fixation of nitrogen. Presence
of the aforementioned bacterial species in the rhizosphere is not only limited to
solubilizing phosphorus for plant uptake to regulate the metabolic processes of the
plant but also enhance the nitrogen fixation process. Pseudomonas and Bacillus
species also commonly facilitate the solubilization of potassium. Various Pseudo-
monas, Bacillus, Rhizobium, and Azospirillum species have been classified as plant
growth-promoting rhizobacteria (PGPR). They are important for plant proliferation
with their ability to serve as biocontrol. These species have also been reported as
being capable of solubilizing zinc (Reddy et al. 2020).

9.3.2 Plant-Microbe Interaction

The evolution of the microbial strains is majorly affected by environmental condi-
tions and plant species. The microbes evolve as to facilitate growth-promoting
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Fig. 9.1 Microbial interaction in the plant rhizosphere for nitrogen fixation, production of biolog-
ically active compounds and phytoremediation
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activities, heightened nitrogen-fixing ability, act as a metal detoxifier, synthesis of
biologically active compounds, and combat other the abiotic and biotic stresses its
native plant species is subjected to. The plant—microbe interaction is governed by
complex physiological and biochemical activities that facilitate communication.

The rhizospheric microbial interactions are very defined and specific in nature
since the structural and functional diversity of the bacterial population is greatly
influenced by the soil environment around the rhizosphere and the requirement of the
native plant. A relative increase in microbial density and microbial activity is seen in
rhizospheric soil when compared to non-rhizospheric soil, where the presence of
such dense and hyperactive microbial niches is not observed (Shu et al. 2012). The
growth stage of a plant has been reported to result in a marked change in the
microbial community composition and dynamics. The plant species is a major
determining factor for the community structure of the rhizosphere. Rhizobium
harboring legumes is one such example (de los Reyes et al. 2020).

The plant-microbe interaction has made phytoremediation as a popular choice for
bioremediation to keep in check contaminants that are found as a result of industrial
activities and intensive farming methods. The class of Alphaproteobacteria, associ-
ated with the rhizosphere of the O. basilicum plant, has been known not only to
tolerate high levels of polychlorobiphenyl in soil but also to exhibit major
polychlorobiphenyl degradation activities. It has been reported that the rhizosphere
has a significant effect on the bacterial genus isolated from the roots of a plant and
the metabolic process of the said bacteria (Sanchez-Pérez et al. 2020). Therefore, the
rhizospheric microflora ensures the efficiency of the phytoremediation process, by
enhancing the contaminant removal potential.

9.4 Molecular Tools for Rhizospheric Microbial Diversity
Analysis

9.4.1 Traditional Molecular Tools

Microbial community diversity analysis was conducted at the sites mentioned in the
following table using traditional molecular tools approach which includes tech-
niques such as ARDRA (amplified ribosomal DNA restriction analysis), RFLP
(restriction fragment length polymorphism), DGGE (denaturing gradient gel elec-
trophoresis), TGGE (temperature gradient gel electrophoresis), and RISA (ribosomal
intergenic spacer analysis). The common bacterium phyla that were reported to be
present predominantly were Proteobacteria, Firmicutes, and Actinobacteria. The
analysis of microbial diversity at different sites shows that the dominant species in
the rhizospheric microbial population of various plants were mostly Pseudomonas,
Bacillus, and Rhizobium (Fig. 9.2; Table 9.1).
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Fig. 9.2 Molecular tools for characterizing rhizospheric microbial diversity

94.1.1 ARDRA

Amplified ribosomal DNA restriction analysis (ARDRA) is a molecular technique
that mirrors the RFLP technique except that it applies to the 16s ribosomal subunit of
culture-independent bacteria. The steps involved are amplification, digestion, and
gel electrophoresis. The PCR amplified fragment with restriction endonuclease is
resolved with electrophoresis gel and a pattern is obtained. The methods used to
analyze RAPD patterns are also used to analyze ARDRA patterns. NT-SYS and
PAST are used for information about whether bands are present or not (1’s and 0’s
for presence and absence, respectively). These patterns can be used to create
phylograms or phylogenetic trees which describe the restriction pattern and give a
relationship between organisms. The most common softwares used are GelCompar
II and BioNumerics. Clones are amplified with primers and digested by restriction
endonucleases and the resultant fragments are separated by acrylamide gels. The
resultant profiles can be used for community clustering in genotyping or strain
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Table 9.1 Rhizospheric microbial diversity analysis utilizing traditional molecular tools

SL Dominant microbial Molecular
no. | Sample site community methods Reference

1. | Contaminated agricultural soil in | Bacillus, Lysinibacillus, ARDRA Sanchez-

Parral, Chiapas, Mexico Rhizobium Pérez et al.
(2020)

2. | Indian peninsula—Coimbatore, Bacillus, ARDRA Verma
Dharwad, Krishna Nagar, Nashik, | Methylobacterium, et al.
Warangal Pseudomonas (2019)

3. | Jaduguda Uranium mine tailings, | y-Proteobacteria ARDRA Ghosh
India et al.

(2019)

4. | Chittagong, Faridpur, Gazipur, Rhizobia—Rhizobium ARDRA Tanim
Khulna, Manikganj, Mymen- azibense et al.
singh, Narsingdi, Patuakhali, (2019)
Rajshahi and Sylhet districts in
Bangladesh

5. | Wanagama Forest-Yogyakarta, Actinomycetes— ARDRA Ali et al.
Indonesia. Streptomyces. (2018)

6. | Agricultural field in Salvatierra, Stenotrophomonas, ARDRA Marquez-
Guanajuato, Mexico Microbacterium, Santacruz

Burkholderia, Bacillus, et al.
Pseudomonas (2010)

7. | Admiralty Bay, King George Pseudomonas ARDRA Da Silva
Island, South Shetland Islands, et al.
Antarctica (2017)

8. | Dafang village, Jilin Province, Bacillus, Acidobacteria, ARDRA Ying et al.
China Proteobacteria (2012)

9. | Chiapas, Mexico Agrobacterium ARDRA Lopez-
Fuentes
et al.
(2012)

10. | Ni-rich serpentine soil Actinobacteria, ARDRA Abou-
Proteobacteria Shanab
et al.
(2010)
11. | Tranca, Bay, Laguna, Philippines | Bacillus, Arthrobacter DGGE de los
Reyes
et al.
(2020)
12. | Kettara mine, Marrakech, Pseudomonas, Bacillus, DGGE Benidire
Morocco Streptomyces, et al.
Tetrathiobacter (2020)
13. | Vineyards in Puglia region, Italy | Bacillus, Actinomycetes, DGGE Sacca et al.
Pseudomonas (2019)
14. | Fujian Agriculture and Forest Pseudomonas DGGE Wang
University (FAFU), Xitao town, et al.
Wuzhi County, Henan Province, (2019)
China

(continued)
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Table 9.1 (continued)

SL Dominant microbial Molecular

no. | Sample site community methods Reference

15. | Northeast Institute of Geography | Bacillus., DGGE Tian et al.
and Agroecology, Jilin Province, | Flavobacterium, (2019)
China Rhizobium

16 | Phetchabun, Nakhon Nayok, Actinobacteria DGGE Nimnoi
Rayong and Chiang Mai prov- et al.
inces of Thailand (2011)

17. | U.S. Salinity Laboratory, River- Uncultured bacteria, DGGE Ibekwe
side, CA, USA Proteobacteria, et al.

Bacteroides (2010)

18. | YingFengWuDou organic farm, Rhizobiales, DGGE Shu et al.
ChongMing Island, Shanghai, Pseudomonadales (2012)
China

19. | Varanasi, Chandauli, Ghazipur Proteobacteria, RISA, Srivastava
district of Uttar Pradesh, India Actinobacteria DGGE et al.

(2016)

20. | P. roxburghii forest area, Solan, Gamma and Alpha RISA Mittal

Himachal Pradesh, India Proteobacteria et al.
(2019)

typing (Ying et al. 2012). The advantages of ARDRA are quick analysis of varia-
tions, multiple strains, and species. The drawback of this method is the inability to
provide information about the sample microorganisms and the requirement of large
quantities of DNA. Similar to the outcome of ribotyping, this method is faster but is
not much sensitive.

94.1.2 DGGE

Denaturing gradient gel electrophoresis (DGGE) is another culture-independent
method for analysis of microbial community which yields a visual fingerprint
representation of the microbial community. The axis of a polyacrylamide gel is
exposed to a denaturing gradient. Primers are used for PCR amplification after which
the DNA undergoes gel electrophoresis by the denatured gel. Change in melting
temperatures due to variations cause different migration ultimately leading to sepa-
ration. The DNA separates due to the melting domains which are changed from the
denaturation whose branching patterns are analyzed. The change in denaturation
concentration leads to a change in the migration rate which in turn leads to a banding
pattern. By comparing these patterns and known sequences, the various species in
the sample can be identified and analyzed (Nimnoi et al. 2011). Digital image
analysis can be used to interpret the DGGE profiles. By comparing distances
between the migrated and reference strains, species can be identified and classified.
This analysis technique poses one drawback as its bands only generate partial
sequences. As a molecular tool, this method is often mentioned as a pair with
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temperature gradient gel electrophoresis (TGGE). Around 95-99% of microbial
diversity in a community can be identified through this method.

94.1.3 RISA

Ribosomal intergenic spacer analysis (RISA) is an analysis method of community
fingerprinting. It involves PCR amplification, electrophoresis, and staining. The
region between the two subunits, namely 16S and 23S, is called the intergenic spacer
region. The PCR amplification of this region is the main step in RISA (Srivastava
et al. 2016). RISA fragments are obtained from specific regions in both the subunits
which have been targeted with oligonucleotide primers. Based on the microbial
species, tRNAs are encoded by elements of the intergenic spacer region. For the
most effective length and sequence heterogeneity, the ISR length ranges from 150 to
500 base pairs. Multiple dominant community members result in a mixed PCR
product. This is followed by electrophoresis by polyacrylamide gel. Visualization
of the resultant DNA is possible after staining. A complex banding pattern consisting
of DNA bands that correspond to a bacterial population gives a community-specific
profile. It has been used for soil sustainability studies, species population studies, etc.

9.4.2 Omics-Based Rhizospheric Microbial Diversity

Omics-based approaches involve the use of data available from multiple omics fields
including genomics (DNA, genomes), transcriptomics (gene transcripts or mRNA
expressions), proteomics (proteins, proteomes), and metabolomics (metabolites,
metabolome) for the purpose of microbial diversity analysis for an environmental
sample. The following table (Table 9.2) provides a summary of sites where omics-
based technologies such as metagenomics, functional metagenomics,
metatranscriptomics, metaproteomics, and metabolomics have been used to perform
microbial diversity analysis for the rhizosphere. The most common bacteria phyla
reported to be present predominantly in these studies are Proteobacteria,
Acidobacteria, and Firmicutes.

9.4.2.1 Metagenomics (Using all NGS platforms)

Metagenomics is the study of genetic materials collected immediately from an
environment. It is one of the most commonly used culture-independent method
and first of the omics methods to be developed for the study of microbial diversity
including unculturable soil microbial community. It involved sequencing of genes
available directly from environmental samples and analysis of the sequence gener-
ated which can then be used for various data analysis and predictions. Sequencing of
data is done by the various platforms of NGS, most popular of them being Illumina
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sequencing followed by 454 sequencing and pyrosequencing. Metagenomics
approach has been widely used to characterize microbial communities of any
environmental habitat (Andreote et al. 2012; Puranik et al. 2016; Wei et al. 2017).
Metagenomic analysis has been used in the study of microbiome present in soil
contaminations and other aspects related to it (Kumar et al. 2018; Ridl et al. 2016).
Whole metagenome sequencing has been used to study the role of rice rhizosphere in
the metabolism of methane and nitrogen (Bhattacharyya et al. 2016) and effect of a
specific strain of bacillus on lettuce rhizosphere microbial community (Krober et al.
2014). Studies have also been conducted on bacterial diversity of specific crop
species (Knief et al. 2012; Uroz et al. 2010) as well as utilization of compound
present in rhizosphere soil (Unno and Shinano 2012) thereby revealing the wide use
of this method in diverse fields of microbiology.

9.4.2.2 Functional Metagenomics

Functional metagenomic approach is a type of metagenomic approach which focuses
on the studying of gene function from a mixed population of DNA. It involves
construction and screening of metagenomic libraries which help in annotations of
gene function. It involves the identification of functional gene during screening
without using previously retrieved sequenced genes enabling the identification of
both novel and known genes (Mirete et al. 2015). This approach has been widely
used to study functional traits in rhizosphere community selection, functional poten-
tials of various ecosystems along with determining the community diversity
(Alzubaidy et al. 2016; Bai et al. 2014; Mendes et al. 2014; Yan et al. 2017). This
approach has been used for discovery of resistance genes in a particular ecological
habitat (Mirete et al. 2015; Willms et al. 2019) and study of the effect on pollutant
removal in ecological wastewater (Bai et al. 2017).

9.4.2.3 Metatranscriptomics

Metatranscriptomics studies gene expression of microbes (RNA expressions or gene
transcripts) within natural environments, i.e., metatranscriptome. Metatranscriptome
provides information about the active metabolic processes of the microbiome in a
given condition in an environment (Kothari et al. 2017). Metatranscriptomics can
retrieve and sequence mRNAs from an environmental microbial community without
any previous idea of the genes that might be expressed by the community thereby
making it advantageous and less biased (Poretsky et al. 2009). NGS is the preferred
technique for sequencing in metatranscriptomics with Illumina sequencing and
454 sequencing being the most popular platforms. Metatranscriptome analysis has
been used for studying microbial diversity and host-microbiome interactions of
various plant species (Cao et al. 2015; Rampadarath et al. 2018). Effects on the
rhizosphere due to various factors of soil, soil contamination, developmental stages
of plants have been investigated through this approach (Chaparro et al. 2014;
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Yergeau et al. 2018). Comparative studies based on metatranscriptomics have been
performed among various samples to reveal the variations and effects of changing
factors such as plant species, day timings, or soil types (Hayden et al. 2018; Poretsky
et al. 2009; Turner et al. 2013).

9.4.2.4 Metaproteomics

Metaproteomics refers to the study of all proteins and peptides present in environ-
mental samples. Mass spectrometry combined with various chromatography tech-
niques is usually used for extraction and analysis of protein samples and latest
advancements in this field has resulted in various high efficiency analyzing systems
for protein and peptide identification. Metaproteomics is used for the characteriza-
tion of soil microbial communities, biological samples based not only on taxonomy
but also their functional activity and protein expression. For soil ecosystems, it
provides an analysis of the functional proteins and helps in understanding various
metabolic processes and signal transductions involved in the soil biotic community.
Metaproteomic analysis and characterization have been done in different soil sys-
tems and crops giving an insight into the metabolic activities inside the soil by the
microbes or the plants, molecular (secreted protein) interactions between microbes
and plants and the effect of the proteins on rhizosphere community (Bona et al. 2019;
Knief et al. 2012; Mattarozzi et al. 2017; Wang et al. 2011). Apart from character-
izing bacterial community, metaproteomics analysis can be used to evaluate the role
of particular microbes in specific processes such as nitrogen fixation, methane
oxidation (Bao et al. 2014), or effect of fertilizers and related crop yield improve-
ment (Chen et al. 2019).

94.2.5 Metabolomics

Metabolomics is the whole-community sampling of all the metabolites (i.e., sugars,
lipids) represented within a microbial community, representing the functional sub-
strate and products of metabolomic pathways within an ecosystem (White et al.
2017). Metabolomics uses mass spectroscopy-chromatography-based systems for
analyzing metabolites to draw conclusions about different cellular, biochemical
processes, interactions with environmental factors, and microbial contributions to
metabolic varieties thereby determining the functional diversity of given microbial
samples based on their biochemical activity. It has been used for studying the effects
of specific exogenous metabolites or its hydrolyzed products produced on the
rhizospheric microbial community and also evaluating the effect of engineered
plants with altered metabolic profiles (Bressan et al. 2009, 2013). Non-sterile soils
have been studied for the presence of plant-derived metabolites and their suitable
application for crop agriculture (Pétriacq et al. 2017). Using a combined approach of
comparative genomics and exometabolomics, it has been demonstrated that root
exudate chemistry during developmental stages of a plant and microbial preferential



166 T. Gupta et al.

substrate uptake is correlated and aid in predicting microbial response to root growth
apart from determining the rhizospheric diversity (Zhalnina et al. 2018). Along with
these, the effect of diverse soil microbiome on leaf metabolome, plant growth
patterns and herbivore feeding habits has also been successfully investigated
(Badri et al. 2013).

9.5 Pros and Cons of the Omics-Based Approach

Omics-based approaches have gained rapid popularity among researchers as they
have made it possible to study entire genome sequences, transcripts, proteins, and
metabolites from environmental samples providing a more comprehensive view of
genetic diversity of the culture-independent microbiome. They provide more
in-depth information about composition, the function of a whole microbial commu-
nity, their interactions with biotic/abiotic factors, metabolic processes occurring
inside the soil microbe community (Lagos et al. 2015). However, these approaches
have a few drawbacks such as huge data volume and complex data for data analysis,
complex extraction methods of analytes from samples, shorter read length of NGS
platforms leading to overestimation of taxonomic classifications, high error rate (Pal
et al. 2019), and lack of adequate libraries and databases.

9.6 Future Prospects

Future prospects include advancements in existing techniques with the objective of
discovering the lesser-known rhizospheric bacterial communities; predict the
responses of various species in their native environment, activities, and prosperity
of such communities in soil (Lagos et al. 2015). Advancements in software devel-
opment are needed for qualitative improvement of data generated from recent NGS
platforms, developing robust reference libraries, spectral databases for
metaproteomic and metabolomic studies, and adequate data analysis tools to make
an integrated multi-omics approach possible (White et al. 2017). An integrated
multi-omics study will enable us to look at the complete picture of soil microbiome
with all its aspects and will help in deciding and implementing strategies for
the selection of native bacterial strains capable of beneficial use, to comprehend
the significance and function of the rhizosphere microbial activity to support healthy
plant growth, improved yield and much more.
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