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Preface

Since the beginning of life on earth, rhizospheric microbial communities and plants
have been living together. During these million years of coexistence, they both are
being exposed to various environmental conditions and coevolved in various types
of interactions. Both the partners are taking clues from each other for their survival
and development. Researchers have always wanted to know more about the mech-
anism behind these interactions, and the recent development in the field of omics
science (metagenomics, metatranscriptomics, metaproteomics, and so on) has pro-
moted the interest in knowing more and more about how rhizospheric microbiomes
impact physiology and growth of crop plants. The studies are shedding light on how
the association is established between the host and surrounding microbiome,
accessing different biochemical processes happening in symbiotic or antagonistic
interactions, and bioprospecting of valuable products. These advancements in tech-
nologies will be useful to establish functional mechanism of host–microbe relation-
ship. Recent research in this field has achieved some results and now we know that a
specific portion of soil microbiome is always actively associated with roots of plants
and contributes significantly to host physiological performance. The recent focus is
now to identify and isolate this core microbiome for the betterment of plant growth
under various stress conditions. However, there are still some bottleneck like the cost
of analysis and lesser availability of databases, and more informed and focussed
future work will be helpful in utilization of plant microbe ecosystem in fuller extent.
This book has reviewed the recent studies and emphasized on specific focus of future
research. The chapters contributed by prominent scientists will be a ready source of
information for young researchers who want to contribute to this field.

Reviewing the current research and writing it in the chapter form demands lot of
efforts and dedication, and for that we thank our authors for their valuable
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contribution. Also, we extend our sincere thanks to Ms. Raagai Priya
Chandrasekaran of Springer for her valuable support to facilitate completion of
this book.

Noida, India Ramesh Namdeo Pudake
Rourkela, India Binod Bihari Sahu
New Delhi, India Maya Kumari
Pantnagar, India Anil K. Sharma
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Chapter 1
Rhizosphere Metagenomics: Methods
and Challenges

Abiramavalli Moorthy and Usha Balasundaram

Abstract “Rhizosphere” is a narrow region associated with plant roots, acting as a
residing place for millions of microorganisms. The rhizosphere-associated microbes
are collectively called as root microbiome or rhizobiome. These microbiomes play a
vital role in plant health by manipulating their growth and development.
Rhizobiomes include both beneficial communities which enhance plant growth
and improve plant defense mechanisms and pathogens which are harmful to plants.
Nevertheless, the beneficial communities compete with the pathogens and colonize
the roots. Though the significance of rhizosphere microbial community is well
acknowledged, characterization of a plenty of microbes colonizing the rhizosphere
is not done. Studying the rhizobiome of a crop species is an essential factor of crop
improvement. “Metagenomics” is a frontier science that deals with study of
metagenomes found in an environment such as rhizosphere. In this chapter, we
have reviewed the most important metagenomic approaches and attributes to study
the microbial diversity in the rhizosphere. We have discussed about the methods and
software programs available for metagenome assembly, binning strategies, taxo-
nomic classification, and functional annotation of metagenomics datasets. In addi-
tion, we have briefly pointed out the bottlenecks of the metagenomics approaches in
studying the rhizobiomes.

Keywords Assembly · Binning · Classification · Metagenomics · Microbiomes ·
Rhizosphere
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1.1 Introduction

In 1904, a German agronomist, Lorenz Hiltner, coined the term “rhizosphere” from
the words rhiza and sphere (rhiza-root; sphere-environment of influence). The term
describes an associated area of plant roots and the surrounding soil (Hartmann et al.
2009). The rhizosphere soil has proximity of 1–2 mm to the plant root. This is the
zone where the plant roots release their metabolites and colonization of a wide range
of microbiome that feed on these metabolites occur. The rhizosphere region can be
divided into three zones (Fig. 1.1). The endorhizospheric zone is the cortex and
endodermis of the root. The second, rhizoplane zone is the surface of root where the
roots release their metabolites that attracts the microbes for colonization. And
ectorhizospheric zone where soil region found between the rhizoplane and the
bulk soil. This is where the free-living microorganisms reside.

Apart from these three zones, there are certain well-defined specific layers in the
rhizosphere where fungal association occurs and this region is termed as
mycorrhizospheric zone (Odelade and Babalola 2019). However, rhizosphere of
any plant does not have a defined size or shape, it just changes along the root surface.

Plant roots in general release a wide variety of chemical compounds into their
rhizosphere as a result of their metabolic processes. This process is termed as
rhizodeposition, and the released metabolites are called rhizodeposits or root exu-
dates. Rhizodeposits can be broadly categorized into two categories: low molecular
weight compounds and high molecular weight compounds. Among these, organic
acids, amino acids, sugars, phenolics, and flavonoids are low molecular weight
compounds released from the roots which act as a readily available major carbon

Below
Ground
Surface

Endorhizosphere

Rhizoplane

Ectorhizosphere

Microorganisms

Bulk soil

Rhizosphere soil

Fig. 1.1 Schematic diagram showing rhizosphere soil zones with associated microbes
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source for the soil-borne microbial community (Hinsinger et al. 2009). Proteins,
polysaccharides, and mucilage’s are high molecular weight compounds exuded by
the roots (Hayat et al. 2017). Basically, these plants derived compounds act as key
signals and attract various microorganisms towards them. The attracted microbes
colonize the root surface found in the rhizoplane and consume the released metab-
olites for their energy. In turn, these colonized microbes produce certain secondary
metabolites, antibiotics, phytohormones, and a few other compounds which help the
host plant in their growth, development, and in defense mechanisms. This leads to a
better productivity of the plants. In some cases, pathogenic bacterial community will
also get attracted towards the plant-derived metabolites. In such cases, a negative
interaction develops between the host plant and the pathogens, the invading patho-
genic organisms secrete toxic metabolites, leading to detrimental effects of the host
plants.

However, plants are smart enough to protect themselves from these pathogens by
modifying their root exudates composition which selectively attracts beneficial
bacteria that outcompete the soil-borne pathogens (Pérez-Jaramillo et al. 2016).
For instance, Rudrappa et al. (2008) have demonstrated this selective recruitment
of growth-promoting bacterial community in the rhizosphere of Arabidopsis upon
pathogen infection, by predominantly releasing malic acid. Similarly, under nutrient
deprivation especially iron, plants release a different set of metabolites that attract
microbes which produce siderophores to make the soil nutrient (iron) available for
the plants (Carvalhais et al. 2013). In case of phosphate and nitrogen deprivation,
plants exude strigolactones and flavonoids which specifically recruit mycorrhizas
and nitrogen-fixing bacteria, respectively (Bertin et al. 2003; Akiyama et al. 2005;
Hassan and Mathesius 2012). These observations elucidate the significance of
rhizodeposits in plant–microbe interactions and in sustainable maintenance of the
rhizosphere. Additionally, even in the nonexistence of a plant, the root exudates
when blended with the soil precisely alter the bacterial community of the soil by
selective attraction. This has been proven through 16S rRNA pyrosequencing (Badri
et al. 2013). This clearly demonstrates the significance of root exudates in microbe–
microbe interactions.

In addition to Plant Growth-Promoting Rhizobacteria (PGPRs), there are fungal
partners that have a symbiotic relationship with plants by feeding on root exudates.
Arbuscular Mycorrhizal Fungi (AMF) and a few non-mycorrhizal endophytic strains
provide benefits to host plants by increasing the availability of soil nutrients, fighting
against pathogen attack and enhancing the overall yield of the host plants (Parniske
2008). The ability of a plant to alter its root microbiome for its own benefits
(Germida and Siciliano 2001) lead to diversity in rhizobiome of each plant species.
Not only species variations but also the genotype of the host plant determines the
rhizobiome diversity. Plant diversity is directly related to the belowground microbial
diversity. In addition, belowground microbial diversity is instigated also depending
on the following factors such as the soil type, physico-chemical properties of the soil,
climatic conditions, nutritional status of the host plant, host root exudate composi-
tion, and developmental stage of the host plant (Berg 2009). Therefore, it is
important to clearly understand the biogeochemical processes that occur in the

1 Rhizosphere Metagenomics: Methods and Challenges 3



rhizosphere soil for substantial maintenance of the soil environment and the organ-
isms colonizing it (Morrissey et al. 2004). Also, to utilize the root colonizing
microbiome as an efficient tool for improved agricultural productivity, it is vital to
understand the microbial diversity in terms of their structure, composition, ecology,
and activities in various environments (Pinton et al. 2007). This would provide a
source of information to prefer a selective microbiome that helps in crop improve-
ment (Panke-Buisse et al. 2015).

1.2 Rhizosphere Metagenomics

Soil-borne microorganisms are the key players of biogeochemical processes of the
ecosystem. Millions of prokaryotic and eukaryotic taxa are found in the soil such as
bacteria, archaea, viruses, phages, fungi, and protozoa. A report suggests that,
generally soil possess around 4 � 106 different microbial taxa (Curtis et al. 2002).
In addition to this, recent reports suggest that every 1 g soil contains 1000–10,000
bacterial taxa (Wagg et al. 2014; French et al. 2017). The diversity in the soil-borne
microorganisms is huge, influenced by various important factors (Berg 2009). So, it
is important to unveil the complexity of belowground microbial diversity using
suitable methods. There have been various methods to study the microbial diversity
since 1880s till date. The methods that are followed to identify the taxonomic
diversity and phylogenetic relationships of microorganisms can be divided into
two types: culture-dependent and independent methods. Culture-dependent
approaches include (1) plate count method, (2) BIOLOG plate method (Biolog
Inc., Hayward, CA, USA), where only microbes which can grow under laboratory
conditions can be identified and studied. This method was not suitable for the
unculturable microbes found in the soil.

Culture-independent approaches are of four types: (1) microbial lipid based
(Phospholipid fatty acid analysis-PLFA, fatty acid methyl esters-FAME), (2) non-
PCR-based (DNA re-association, GC content-based), (3) PCR-based (RFLP, RAPD,
DGGE, FISH, and so on), and (4) sequencing-based (clonal library sequencing,
marker-based, and whole metagenome shotgun sequencing). Among these, sequenc-
ing techniques such as marker gene based and shotgun sequencing (Fig. 1.2) are
being widely used recently because of the ease of the techniques, its high efficiency,
and low cost.

4 A. Moorthy and U. Balasundaram
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1.3 Metagenomics Methods to Explore Microbial
Diversities

There are two major methods that have been widely used in the recent times to study
the microbial community in the rhizosphere. (1) Marker-based sequencing,
(2) Whole metagenome shotgun sequencing. Both the methods are high-throughput
next-generation sequencing (NGS)-based methods. However, in marker gene
sequencing, only the known species (classified species found in databases) can be
identified while the unknown species or the uncultivable species cannot be studied.
On the other hand, this lacuna is bridged in whole metagenome shotgun sequencing
approach. The second approach allows functional analysis of genes from the
genomes undertaken for the study (Handelsman et al. 1998) and identification of
novel genes and its products from the given microbiome (Fig. 1.2).

1.3.1 Marker-Based Sequencing Method

Until a few years back, metagenomics methods included the amplicon [(16S rRNA/
Small-SubUnit (SSU) rRNA genes and intergenic transcribed spacers (ITS)]-based
sequencing approach that elicits taxonomic diversity of a given sample. However, it
was proposed recently that since marker gene or single gene-based sequencing
approach highly concentrates on the taxonomic diversity rather than functional
diversity it is termed as “Metataxonomics” or “Metaprofiling” (Escobar-Zepeda
et al. 2015; Marchesi and Ravel 2015). In this method, the most commonly used
phylogenetic markers are 16S rRNA gene sequences for prokaryotes and ITS
regions for fungal population (Eloe-Fadrosh et al. 2016). These sequences are
universally conserved among the microbial communities; and are flanked by hyper-
variable regions which discriminates species of a microbiome (Woese and Fox
1977). The amplicons are sequenced using second-generation NGS platforms such
as Illumina MiSeq or the Ion torrent PGM. Although, the recently emerged NGS
platform is widely preferred for metagenomic studies, there were significant pro-
gresses in Sanger sequencing-based studies as well (Sanger et al. 1977; Gillespie
et al. 2002). Nevertheless, considering the amount of data generated (almost
100 GB) at a low cost and in a less time (Watson 2014), NGS is chosen over Sanger
sequencing. The sequenced reads are first filtered, and the chimeric reads are
removed. The clean processed reads are aligned or compared with the sequences
found in the reference databases such as Greengenes (DeSantis et al. 2006), Ribo-
somal database project (Wang et al. 2007), and Silva (Quast et al. 2012) using
bioinformatics tools such as MetaPhlAn, Phylosift, and MOCAT2 (Darling et al.
2014; Truong et al. 2015; Kultima et al. 2016). These tools use either Bowtie2 or
HMMER algorithms for the alignment. Based on the sequence similarities, the reads
are clustered into “Operational Taxonomic Units” (OTUs). In this context, an OTU
is a cluster or a group of reads which share 97% similarity and are expected to be
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from the same species. This method can be called as “direct taxonomic classifica-
tion” (Breitwieser et al. 2019) since it matches each read directly to the reference
database, and it is particularly helpful if the research question is quantifying the
known community. Over the last 40 years, 16S rRNA genes have been used as a
standard marker for taxonomic annotation of soil microbiome. The major drawbacks
of this approach is that, it relies exclusively on a single marker gene region (16S
rRNA for prokaryotes and ITS for fungi) to interpret the species diversity. If any
horizontal gene transfer events have occurred in the target soil region, then this
marker-assisted sequencing approach would become uninformative. If there is no
closely related species found in the database, the software cannot classify those
reads. In addition, this method cannot detect viruses (if any) in the sample. Although
this method is fast and relatively cheap, classification of unknown species is not
possible (Breitwieser et al. 2019). Therefore, to overcome these limitations, scien-
tists prefer whole metagenome shotgun sequencing method, particularly if their
research purpose is to identify and quantify microorganisms from all domains.

1.3.2 Shotgun Metagenome Sequencing Method

Shotgun sequencing of the complete collection of genomes (metagenome) available
in a given space at a given time is referred to as “Metagenomics” (Scholz et al.
2016). In the field of ecology, “Metagenomics” is analogous to culture-free genomic
approaches to study the microbiomes (complete collection of microbes found in a
particular ecosystem) in its natural environment (Chen and Pachter 2005). It is a
frontier science that combines microbiology, molecular biology, and biotechnology
to answer the two popular ecological queries such as: Who are they? What are they
doing in that vicinity? (Singh et al. 2010). This approach can reveal both coding and
non-coding part of the genomes which can be used further to identify new markers,
genes and its products (Escobar-Zepeda et al. 2015). Shotgun metagenome sequenc-
ing for microbial diversity studies have been attempted so far, through various NGS
platforms such as 454 pyrosequencing, Ion torrent PGM, Illumina, and PacBio
(Glenn 2014). At present, the second- and third-generation technologies (Illumina,
PacBio and Oxford Nanopore Technology) are leading in metagenomics studies. In
Illumina, millions of short reads will be generated (150–400 bp in length), whereas
in PacBio and ONT longer reads (6–20 kb) but fewer in number will be generated. In
the latter, there is a high raw error rate but are correctable. Ease of library prepara-
tion, depth of sequencing (generates almost 100 GB data), time and cost reduction
favors these two technologies. Also, such deep sequencing would reveal even the
least abundant species found in the given sample. The major benefits of this method
are that researchers can achieve deep sequencing of a sample with a lesser starting
material and generate a bigger sequence datasets (around 100 GB at a time). In
addition, the datasets can be analyzed more precisely by measuring both structural
diversity and functional diversity. Furthermore, if the sample comprises of
unexplored genomes, a de novo assembly of the dataset followed by downstream
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analysis is possible with this method. However, this approach requires high end
computational resources and softwares to assemble and analyze bigger datasets.
Also, prior knowledge on the UNIX operating system is essential for a researcher to
analyze the big data.

1.3.3 Attributes to Quantify Microbial Diversity

Before stepping into quantification or classification of metagenomic datasets, one
must know the attributes or measures that classify their structure. The key element of
a biological community is “species diversity”. So far researchers have proposed a
few concepts and metrics to quantify a microbial community. The two important
attributes followed by researchers till date to determine microbial diversity are
species richness (refers to number of species in a particular area) and species
differential abundance (which quantifies the uneven distribution of communities).
The latter can be tested against a theoretical community which has equal distribution
of all species. So, when two or many communities that share equal species richness,
but different abundances are compared, the community, or the group which has the
lowest abundance value will be considered as more diverse. In addition to this,
different metrics have been used in metagenomics approaches to quantify the
diversity of one or many communities. To quantify the diversity within one com-
munity (Operational Taxonomic Units-OTUs), alpha diversity is being used.
Regional diversity between many communities is being measured through gamma
diversity.

Linking the two metric data, there is a third metric named beta diversity which
opens up about the diversity of many communities in a given area (Krebs et al.
2014). However, these metrics could not reach a maximum sample size. So, statis-
tical non-parametric estimators were designed for quantifying microbial diversity:
Simpson’s index and Shannon-Weaver’s index. Simpson index gives weightage to
most common species whereas Shannon index gives higher weightage to rare
species. Both the estimators are good for species richness concept; however, metic-
ulous sampling is required when the sample has more rare species in it. There came
an invention of a new index, tail statistic, which measures the rare species in a
complex sample precisely lending more weightage to the less abundant taxa (Li et al.
2012). These metrics are useful in comparing communities between samples. But the
comparison should be vigilant that no data is biased to provide an informative result
(Bonilla-Rosso et al. 2012).

1.3.4 Classification of Metagenomic Datasets

As mentioned earlier, the classification method is chosen depending on the research
purpose. If the objective is targeted to a particular known species or to just detect the
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presence or absence of a known community, then marker-based metagenomic
sequencing followed by direct taxonomic classification of the sequenced reads is
preferred. But when the research question is on identifying and quantifying the
microbiome from an unexplored environment such as rhizosphere soil, it requires de
novo assembly-based classification since soil environments might possess a wide
range of uncultivable microbial domains. Classification of datasets generated from
shotgun metagenomics method can be done in two aspects: (1) structural classifica-
tion (2) functional classification (de Fátima Alves et al. 2018). In this context,
structure refers to the population abundance and richness in an environment. Here,
one can elaborately study the connections between individual members of a com-
munity, which is mandatory to decipher their biological functions (Tringe et al.
2005; Vieites et al. 2008). This approach brings out the phylogenetic diversity
among the microbiomes. In functional classification, sequenced reads are assembled
into longer contigs and scaffolds, and are compared against gene databases and
pathway databases to decipher the functional significance of the given sample.

1.3.5 Structural Classification

To structurally analyze the datasets generated from sequencing, a process called
“binning” is being applied. Clustering of sequencing reads into groups or compart-
ments or bins are referred to as “binning.” Binning is the subsequent step of both
marker gene sequencing approach and shotgun sequencing approach. Depending on
the sequencing approach, we choose (amplicon-based/shotgun) binning methods,
which can be sorted into various categories.

1.3.5.1 Binning Strategies Based on Taxonomy

In taxonomy-based binning, the softwares work by assigning the individual reads
obtained from marker gene sequencing/shotgun sequencing against a reference
database which then group the reads into bins based on their taxonomic similarity.
However, this taxonomy-dependent strategy is not suitable for microbes whose
genomes are not found in the reference databases analyzed. Software simply groups
those reads that are not mapped to any reference as “unassigned.” Therefore, it can
be put forth that taxonomy-dependent binning could decipher the taxonomic diver-
sity of only known microorganisms. Furthermore, this strategy can be subdivided
into three: (1) alignment based, (2) composition based, and (3) hybrid based.

1.3.5.2 Alignment-Based Classification

In alignment-based analysis, BLAST and BLAT were the preferred algorithms to
compare the reads to reference genomes initially. However, in recent times, because
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of the bigger datasets, Hidden Markov Models (HMMs) and Bowtie2 algorithms are
used by the bioinformatics tools, MetaPhlAn, Phylosift, MOCAT2, and GOTTCHA
(Darling et al. 2014; Freitas et al. 2015; Truong et al. 2015; Kultima et al. 2016). This
method is faster when compared to other two methods. It simply aligns the reads
against the databases which contains millions of genes and genomic signatures from
various genomes of microorganisms. The publicly available reference databases are
NCBI, EMBL, PFAM, UniProt, Genbank, DDBJ, NCBI Refseq, and Ensembl.
Reads are grouped based on their alignment quality and the topmost hits obtained
from the comparison. Publicly available softwares that adopt this alignment-based
strategy are MG-RAST server and CAMERA. This strategy can predict the species
relative abundance and species overall composition found in the given sample.
However, these softwares can predict the similarities of only known species.
While the datasets from a not well-explored niche such as soil generally will have
a lot of unknown or completely new species which is not present in the reference
databases. In such cases, specialized methods that works based on sequence com-
position are implemented to address this issue.

1.3.5.3 Composition-Based Classification

This is an alignment free and a reliable method for taxonomic diversity prediction.
Sequence composition is the key attribute which is used to quantify the conservation
among species. Instead of alignment, this method uses algorithms that rely on
matching of k-mers. A k-mer is defined as subsequences of a nucleotide sequence
of length k. In this strategy, the bioinformatics tools such as Kraken and CLARK
(Wood and Salzberg 2014; Ounit et al. 2015) first create a database with k-mers and
an identifier for every k-mer. The k-mers are basically generated from the reads by
clustering each read into short k-mers. K-mers can be of any size but it can neither be
too long nor be too short which may lead to nonspecific matches or doesn’t match at
all. The ideal length of the k-mers, k ¼ 20–31, is followed by the familiar tools. So,
the database created by the tools will ideally have k-mers of every genome and their
taxonomy IDs, that are acting as references for the query k-mers generated from the
metagenomic dataset. When a k-mer matches with more than one taxa, the Least
Common Ancestor (LCA) of those taxa will be considered. In addition to k-mers of
fixed length, there are certain tools (extension of Kraken) (Wood and Salzberg 2014)
which construct k-mers or seeds with variable length. These seeds are considered as
genomic signatures and are used for matching metagenomic datasets with the
reference sequences. In this case, an exact match of the bases in the signature is
trivial whereas it requires only a part of it to match perfectly. The accuracy of
classification for these tools is diverse. For instance, Kraken works well up to taxa
level classification. While Bracken (an extension of Kraken), (Lu et al. 2017) and
CLARK (Ounit and Lonardi 2016) can precisely classify even at species or genus
levels.
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1.3.5.4 Hybrid-Based Classification

Hybrid-based binning combines the two strategies (alignment based and composi-
tion based). First phase will be aligning the clean reads against reference sequences
for similarities among the species using a local aligner such as BLAST (Altschul
et al. 1990; Camacho et al. 2009). Second phase will be comparison of the results
obtained from alignment with the reference sequences. That is, tools like MEGAN
utilizes the LCA of the alignment generated in the first phase for further classifica-
tion. In other tools such as Taxator-tk, the sequence overlaps of the query (resulted
from local alignment) will be merged into longer sequences. These longer sequences
will then be matched against reference genome sequences. The pairwise distance
between the query and the reference genome is calculated and used for further
classification. This method ensures accuracy and secures time. The programs that
work on this hybrid-based binning are PHINX (Mohammed et al. 2011), PhymmBL
(Brady and Salzberg 2009), Amphora2 (Wu and Scott 2012), and MaxBin (Wu et al.
2014).

1.3.5.5 Amino Acid-Based Taxonomic Classification

Compared to DNA sequences, amino acid sequences are evolutionarily highly
conserved among microbial population. Hence, classifying the microbiome based
on their amino acid sequences instead of DNA sequences would be more sensitive
form of classification. In this method, the sequenced reads are first translated into
amino acid sequences and aligned against reference protein databases. Then based
on the alignment results, species composition will be quantified through LCA
approach. The most widely used bioinformatics tools that apply these strategies
are DIAMOND for translation of datasets and MEGAN for composition prediction.
A few other classifiers such as Kaiju uses Burrows-Wheeler transform (BWT)
algorithm to index the reference databases and stores the pre-constructed index in
FM-index table. So, when a dataset is assigned to this tool, it first translates all the
reads in all the six frames. Then compare the amino acid fragments against the
pre-indexed reference databases for perfect matches.

1.3.5.6 Taxonomy-Independent Binning

When a sample for metagenomics study is chosen from a least explored environ-
mental niche such as rhizosphere, comprising uncharacterized and unculturable
microbes, the downstream analysis of the datasets such as binning, assembly, and
classification highly varies. In this scenario, the process of binning is not based on
taxonomy but based on sequence features. The principle behind taxonomy-
independent binning is that each species will have a unique sequence composition.
So, the reads which share the same tetra nucleotide frequencies or k-mer frequencies
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are assumed to be originated from the genome of the same species. In general,
binning and assembly of metagenomes are interrelated processes which can be
performed one after the other or in an integrated platform. However, in this scenario,
binning is always performed before a metagenomic assembly. Because binning of
reads into different taxa will reduce the ambiguity in mixing of genomic information.
Theoretically, each bin is considered as separate taxon and assembled separately.
There are several methods such as Likelybin is available for binning. Likelybin
(Kislyuk et al. 2009) is a simplified approach where the reads are clustered in an
assumption that tetra nucleotide frequency of all the reads are similar within a
microbial taxon. This model cannot be used when there is an occurrence of hori-
zontal gene transfers in the community. So, more complex models such as
PHYSCIMM (Kelley and Salzberg 2010), MetaWatt (Strous et al. 2012), CON-
COCT (Alneberg et al. 2014), and Latent Strain Analysis (LSA) (Cleary et al. 2015)
are available for clustering of complicated reads. The outputs or bins generated from
these methods are further used for de novo assembly and taxonomic classification.

1.3.5.7 De Novo Assembly of Metagenomic Datasets

An assembly is a process of reconstruction of original genome sequence in silico
using the reads generated from sequencing the genomic fragments. A de novo
metagenomic assembly is nothing but a parallel reconstruction of all the genomes
present in a metagenomic sample without a reference genome. Generally, de novo
assemblers use either of the following specialized algorithms for assembling the
reads (1) Overlap Layout Consensus (OLC), (2) de Bruijn graph based. OLC
assemblers perform a pair-wise alignment between the reads. Significantly
overlapping reads are connected to form a graph which is then used for construction
of longer contigs. While, in de Bruijn assemblers, instead of pair-wise comparison,
the reads are split into k-mers (k can be any length) and the graph is generated by
reading the successive k-mers of every read. Most of the recently developed genome
assemblers adopt de Bruijn algorithm because it requires less computational
resources when compared to OLC assemblers. However, de Bruijn assemblers are
highly prone to sequence errors and false joining of sequences because of the short
k-mers. MetaVelvet and RayMeta are the well-accepted tools for assembling of
metagenomics datasets. These tools follow de Bruijn algorithm to construct contigs.
After constructing the longer contigs, scaffolds are generated and validated statisti-
cally. N50 values (length of the 50% of scaffolds assembled) and length of the
contigs generated are significant attributes in validating an assembly, which should
be equal and longer, respectively (Mäkinen et al. 2012). Online tools such as
MetaQUAST are available to do the validation of assemblies (Mikheenko et al.
2016). The validated assemblies are then compared with the reference genomes for
taxonomic classification.
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1.3.5.8 Contig Binning

Assembled contigs and scaffolds are clustered into bins through binning algorithms
discussed in the earlier sections. Either contigs will be aligned against the reference
databases or binning will be performed based on composition of the species such as
GC content, genomic signatures, and nucleotide frequency distribution between the
species. Furthermore, after clustering the contigs into bins, these bins are validated
by softwares for incompleteness or contamination. Each bin is considered as one
taxon or one species. So, if there is repetition of marker genes, it is considered as
contamination and if there is absence of marker genes in a bin then it is considered as
incomplete assembly. In both the cases, bins can be reclustered. CheckM and
BUSCO are two such tools which carry out the validation of contig binning (Parks
et al. 2015; Simão et al. 2015).

1.3.6 Functional Classification

The functional classification part comprises of gene and promoter predictions and
gene function annotations by correlating the datasets with reference protein data-
bases. The term “metagenomics” does not stop only with analyzing the microbial
diversity, but also deals with predicting the significant genes of the metagenomes
and predicting their probable functions. Once the assemblers generate contigs and
scaffolds, they will be subjected to gene prediction analysis through bioinformatics
tools. The gene finder softwares such as MetaGene Annotator (Noguchi et al. 2008),
Glimmer (Delcher et al. 2007), Glimmer-MG (Kelley et al. 2012) critically search
even shorter contigs and scaffolds for the presence of translation initiation sites, start
and stop codons and Open Reading Frames (ORFs) based on the most potential and
reliable features of gene prediction and classification, di-codon usage, and GC
composition. Importantly, the softwares predict the gene length and their location
in the genome. These popular software programs work through statistical models
such as Hidden Markov Model (HMM) and Ribosomal Binding Site (RBS) model.
In addition to this, tools such as FragGeneScan (Rho et al. 2010) can predict genes
straightaway from the short sequenced reads itself without requiring an assembly,
using HMMs. It is reported that FragGeneScan performs well when compared to
other gene prediction tools and classifiers (Roumpeka et al. 2017). Adding to this,
there are integrated and interactive programs such as MetAMOS (Treangen et al.
2013) and Anvi’o (Eren et al. 2015) that performs metagenomic assembling and
gene annotation as well. Furthermore, once predicting and classifying the probable
protein coding genes is done, they will be searched against protein databases such as
Interpro (Hunter et al. 2012), Kyoto Encyclopedia of Genes and Genomes (KEGG)
(Kanehisa et al. 2007), and MetaCyc (Caspi et al. 2016) to predict their likely
functions. Last, but not the least, a metagenomic assembly and annotation generate
a large file in a format which is not easily accessible on desktops and laptops. In such
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cases, there are web applications such as Meta4 (Richardson et al. 2013) and online
portals such as MG-RAST (Glass et al. 2010), and recent one EDGE (Philipson et al.
2017) for accessing these information.

1.4 Milestones of Rhizosphere Metagenomics

The well-known rhizosphere microbiomes identified and studied so far are plant
growth-promoting rhizobacteria, nitrogen-fixing bacteria, biocontrol agents, mycor-
rhizas, protozoa, mycoparasites, a few deleterious organisms such as nematodes and
pathogens (Mendes et al. 2013). Till date, the interactions between the plant roots
and the associated microbiomes (“root microbiome” or “rhizobiome”) have been
well documented in various rhizosphere soils. In general, microbial diversity anal-
ysis of various different soils indicated that there are more than one million different
bacterial taxa found in a single gram of soil. The prominent communities in the soils
analyzed are Bacteroidetes, Betaproteobacteria, and Alphaproteobacteria (Gans
et al. 2005; Roesch et al. 2007). A lot of reports on rhizobiomes through
metagenomics approach have been documented. For instance, marker-based
sequencing of rhizospheres of 14 different plant species depicted the presence of
approximately 1200 distinct taxa in it, with the Proteobacteria as the predominant
phylum (Hawkes et al. 2007). Similarly, marker-based pyrosequencing (SSU-rRNA
library and nifH cluster I library) in Erica andevalensis in a metal-rich acidic soil and
maize, respectively, demonstrated the abundance of Actinobacteria, Acidobacteria,
Azospirillum, Bradyrhizobium, and Ideonella. Almost 27% of the clones analyzed
belonged to uncharacterized taxa (Mirete et al. 2007; Roesch et al. 2007). PhyloChip
investigation or 16S microarray of oats microcosms revealed that there were 1917
distinguishable taxa in it (DeAngelis et al. 2009). Similar analysis on potato rhizo-
sphere revealed the presence of almost 2432 OTUs (Weinert et al. 2011). The
rhizosphere of sugar-beet was predicted to have 33,346 OTUs in total (Mendes
et al. 2011). Over all, it is estimated that, approximately 55,000 OTUs are found in
rhizospheres of various plant species (Mendes et al. 2013). Furthermore, functional
classification of metagenomics datasets generated from various rhizospheric soils,
predicted many significant beneficial genes such as genes that confer metal tolerance
and salt tolerance (Mirete et al. 2007, 2015; Guazzaroni et al. 2013). These kinds of
research and inventions in the rhizosphere metagenomics studies are trending
recently. Structure and composition of rhizobiomes of many important plant species
such as Oryza sativa, Zea mays, Setaria italica, Gossypium hirsutum L., Solanum
lycopersicum, Allium cepa L., and Nicotiana tabacum have been documented
recently (Table 1.1).
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1.5 Challenges of Rhizosphere Metagenomics

There are a few practical difficulties in a successful metagenomics study of rhizo-
sphere soils. First and foremost is the quality of starting genetic material. A suc-
cessful metagenomics study requires a high quality, intact, pure DNA from the
rhizosphere soil. Presence of polyphenolics in the DNA will highly hinder the
PCR and subsequent sequencing steps (Ranjan et al. 2005; Sharma et al. 2007).
To address this issue, there are a lot of modified protocols and suitable isolation kits
available (Felczykowska et al. 2015; Tanveer et al. 2016). However, the rhizobiome
of different plants will be different and hence demand different extraction procedures
which were proven through PCR-DGGE profiles (Niemi et al. 2001). The second
challenge is to choose a suitable sequencing platform as there are various NGS
platforms in the market, choosing a sequencing technique that is appropriate to the
research question is a consideration. The third concern is assembly of metagenomes.
As single genome assembly itself is a complex process because of the presence of
repetitive elements in the reads, reconstruction of multiple genomes present in a
single sample is definitely a difficult process requiring specialized assemblers,
algorithms, and softwares. As rhizosphere comprises of a wide variety of microbes
which are not always clonal and there are chances for horizontal gene transfers, the
assembly and classification becomes even harder. Assemblers might predict repeat

Table 1.1 The dominant microbial taxa associated with the rhizosphere of various important plants
detected through metagenomics methods (Only recent reports are listed in this table)

S. no. Plant Rhizosphere-associated microbes References

1 Rice (Oryza
sativa)

Proteobacteria, Gemmatimonadetes,
Verrucomicrobia, Geobacter Anaeromyxobacter,
Clostridiaceae, Opitutaceae and Herbaspirillum

Breidenbach
et al. (2016)

2 Maize (Zea
mays)

Acidobacteria, Proteobacteria, Actinobacteria,
Bacteroidetes, Chloroflexi, Firmicutes,
Gemmatimonadetes, Chitinophaga, Nitrospira,
Flavabacterium, Nonomuraea, Thiobacillus,
Phenylbacterium, Bradyrhizobium, Erwinia,
Inquitinus, Nitrosovibrio, and Rickettsia

Yang et al.
(2017)

3 Cotton
(Gossypium
hirsutum)

Proteobacteria, Verrucomicrobia, Planctomycetes,
Acidobacteria, Actinobacteria, Bacteroidetes,
Firmicutes, Chloroflexi

Qiao et al.
(2017)

4 Tomato (Sola-
num
lycopersicum)

Proteobacteria, Acidobacteria, Actinobacteria,
Bacteroidetes, Firmicutes, other unclassified
bacteria.

Li et al.
(2014)

5 Fox tail millet
(Setaria italica)

Proteobacteria, Acidobacteria, Actinobacteria,
Bacteroidetes, Firmicutes, Thaumarchaeota

Jin et al.
(2017)

6 Onion (Allium
cepa)

Proteobacteria, Firmicutes, Actinobacteria Ikeda et al.
(2014)

7 Tobacco (Nicoti-
ana tabacum)

Proteobacteria, Verrucomicrobia, Acidobacteria,
Actinobacteria, Firmicutes, Gemmatimonadetes,
Planctomycetes, Bacteroidetes

Saleem et al.
(2016)
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variations as species variations. The next challenge is the identification of rare
species, as rhizosphere is a niche where a lot of uncharacterized and unculturable
microbes reside, covering a specific species with any depth of sequencing is not
feasible. Even with large size datasets, unless the sample itself contains only a few
communities, it is not easy to pull out the rare species. The last issue is wrong
matches in taxonomic classification, when the reads are directly compared against
the reference databases, there is a possibility that the match could point even
noncoding regions and show hits from an outlying organism. This is based on the
quality of the database (Carr and Borenstein 2014). This would definitely lead to a
wrong taxonomic grouping. Furthermore, in functional annotations, gene prediction
errors are common as the species richness in the sample increase, softwares can
predict false genes by detecting the structural level homology instead at the sequence
level. But there are specific substitution parameters for the softwares to overcome
this error (Yooseph et al. 2008).

1.6 Concluding Remarks

In this chapter, we have briefed about the significance of rhizosphere microbiome
and reviewed the various metagenomics methods available for analyzing the micro-
bial diversity of the rhizosphere and also about the probable pitfalls of a rhizosphere
metagenomics study. Application of metagenomics approaches to study the rhizo-
sphere microbiome would clearly contribute to characterization of a wide range of
unknown and unculturable microbes and to discover novel candidate genes and gene
products. Next-generation sequencing is a promising approach to study the microbial
diversity in a rarely explored niche such as rhizosphere. A wide range of computa-
tional softwares are being developed for analysis of metagenomics datasets. How-
ever, an expertise in handling these large datasets and bioinformatics tools is a
pre-requirement in metagenomics study.
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Chapter 2
Metagenomic Approach in Relation
to Plant–Microbe and Microbe–Microbe
Interactions

Sivasankari Ramadurai, Abiramavalli Moorthy, and Usha Balasundaram

Abstract Metagenomics is the study of collective microbial genomes of environ-
mental samples. Microorganisms are essential components of every part of life on
the planet. Microorganisms do not exist as individuals, but they form complex
communities (microbiomes) in the above-ground and below-ground parts of the
plants, contributing to the plant’s growth, health, and performance in many ways.
There are several factors that regulate the structure and composition of the microbes
interacting with plants. However, it has been calculated that only 0.1% of the
microbes found in the environment are culturable, and remaining are uncultivable
and untapped. The unculturable microbial communities are referred to as “microbial
dark matter” which almost covers a high percentage of the planet’s biomass and
biodiversity. However, only very little is known about these microbiomes and their
interactions with a host. Every microbial genome contains a unique set of genes
encoding novel enzymes used for biotechnological applications. Metagenomics
methods using advanced sequencing technologies enable tracking of these novel
biological molecules that are available in the natural systems in a high-throughput
manner. Metagenomics approach also unravels the microbial interactions between
themselves and between plants and the microbes as well. This chapter describes the
significance of microbial interactions and how plant–microbiome and microbe–
microbe interactions are being studied by metagenomics approaches.

Keywords Metagenomics · Next-generation Sequencing Technologies ·
Microbiomes · Microbial interactions · Plant Microbe interaction

S. Ramadurai · A. Moorthy · U. Balasundaram (*)
Department of Genetic Engineering, Faculty of Engineering and Technology, SRM Institute of
Science and Technology, SRM Nagar, Kattankulathur, Kanchipuram, Chennai, Tamil Nadu,
India

© Springer Nature Singapore Pte Ltd. 2021
R. N. Pudake et al. (eds.), Omics Science for Rhizosphere Biology, Rhizosphere
Biology, https://doi.org/10.1007/978-981-16-0889-6_2

21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-16-0889-6_2&domain=pdf
https://doi.org/10.1007/978-981-16-0889-6_2#DOI


2.1 Introduction

Microorganisms influence several important plant characteristics. A few microbes
can delay growth or destroy a plant, whereas beneficial ones can enhance the plant’s
immunity by directly destroying pathogenic invaders (Jackson and Taylor 1996) or
by inhibiting the growth of pathogens (Enebe and Babalola 2019). These microbes
also play a key role in plant’s hormonal levels and acquisition of nutrition from the
soil. Interestingly, these microbes in their natural ecosystems exist as complex
communities made of a myriad of culturable and unculturable ones to uphold their
environmental stability (Kennedy and Gewin 1997). Interactions in plants can be
grouped into plant–microbe and microbe–microbe interactions (Fig. 2.1).

The imperceptible participants of a microbial community vary greatly in their
biochemical actions and interactions among species and within species as well.
Although, phylotyping provides consistent information about the individual

Fig. 2.1 Representation of
plant–microbe and
microbe–microbe
interactions in rhizosphere
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members of a community, because of high genomic diversity within a species makes
it difficult to predict the functions of the community members. Existing culture-
dependent techniques and single genome-sequencing approaches have their own
drawbacks such as only lab-cultivable organisms can be detected. Thus, a new
modern culture-independent technique, “metagenome sequencing” has evolved.
Metagenomics took over the existing traditional culture-based techniques by iden-
tifying the hitherto unknown proteins and related sequences in microbial genomes.
Moreover, this approach allows studying the microbes in their natural ecosystems
(Ghosh et al. 2018).

Metagenomics is a research field that includes a collection of research strategies
and computational methods for the exploration of a particular environment. Further-
more, metagenomics methods circumvent the major hurdles of environmental micro-
biology, the uncultivability, and the diversity of microbiomes. This technology
enables detailed prediction of the numbers and diversities of the microbial commu-
nities and their compositions found in a complex environment. Nevertheless,
metagenomics methods demand isolation of any environmental DNA with high
purity and deep sequencing. Only then, it is possible to do a detailed taxonomic
classification of the microbes present in the sample analyzed (National Research
Council 2007). In earlier days, metagenomics referred to the isolation of DNA,
cloning, screening of cloned libraries and sequencing the unique clones, and
documenting their origin and structure based on their phylogenetic information.
However, the evolution of novel, efficient and simpler methods such as direct
sequencing of any environmental sample without the need for culturing it in the
laboratory has progressed metagenomics into a new higher level.

Modern metagenomics techniques emphasize on three major directions. (1) Cor-
relation of phylogeny to its possible functions, where the large segments of the DNA
that possess phylogenetically important genes is screened and the flanking segments
which propound a possible function for the DNA being analysed is also screened;
(2) Identification of novel genes which can be exploited for industrial applications;
and (3) Bulk sequencing of any environmental sample which would ultimately
reveal the number, nature, and complete genetic diversity of the communities
found in that sample (Leveau 2007). This approach provides a global view of the
community being studied. In addition, it offers clarity about the complex interactions
that happen between the communities being analyzed. Adopting metagenomics
methods enables researchers to view environments themselves as biological entities
possessing their own genetic repertoires and to avoid considering individual species.
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2.2 Unravelling Microbiome Interactions Through
Metagenomics Approach

Metagenomics methods in studying the microbial communities in a specific envi-
ronment are divided into two ways such as structural metagenomics and functional
metagenomics (Rabausch et al. 2013). However, a combinatorial approach of these
two strategies permits deeper insights on individual units of the communities found
in an ecosystem and their functions as well. Consequently, microbial interactions in
complex habitats regulated by microbes can easily be studied now with the help of
metagenomics. Initially, Sanger sequencing was the key metagenomic sequenc-
ing method followed by researchers, which indeed showed good progress. Never-
theless, the emergence of Next-Generation Sequencing technologies (NGS) and its
massive capability to sequence millions of DNAs at the same time and at a less
expense highly reinforced the application of this technology for metagenomics
studies (Alves et al. 2018). With this advanced technology, any ecosystem can
now be unveiled just by direct sequencing of the environmental DNA. The intense
effect of NGS technologies on generating a large amount of metagenomics sequence
data has made researchers to redefine metagenomics as “Random shotgun sequenc-
ing of any environmental DNA generating no less than 50Mbp sequence
data”(Kunin et al. 2008). This sequencing-based metagenomics analysis can be
performed either by sequencing clones amplified with a marker (16S rRNA) gene
designating the possible taxonomic source of the DNAs or by random shotgun-
sequencing of the whole metagenomes until our genes of interests and taxonomic
markers are found. Furthermore, these capabilities allow the identification of novel
genes, their roles in conferring stress resistance, antibiotic resistance, and their
taxonomic origins without even isolating and culturing of microbes. Nevertheless,
these strategies have their own pros and cons. In case of 16S sequencing method, it is
only possible to identify and quantify the structure and composition of the commu-
nities while the functions of those communities cannot be predicted (Soni et al.
2012). Similarly, in whole metagenomes sequencing, assembly and taxonomic
classification can be done well through binning strategies. However, in this method,
it is only possible to predict species differentiation, but it is very difficult to
differentiate the strains of a species (Sharon and Banfield 2013).

2.2.1 Microbe–Microbe Interactions

In natural environments such as soil, microorganisms hardly occur in isolation. They
are often associated with some hosts and develop interactions with the host organ-
isms. Additionally, there will be interactions between the microbial species found in
an environment in which one species outcompete the other. These interactions
highly influence the plant–microbe interactions. Although plants provide resources,
the interactions between the microbes which share the same habitat are critical for
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their community dynamics, structure, and function (Kinkel et al. 2011). The first
kind of interaction between microbe–microbe is “antagonism.” Some microbes
produce cell wall degrading enzymes such as cellulases and chitinases which
completely degrade the cell wall of the competing pathogenic microorganisms.
One good example of such an antagonism is Plant Growth-Promoting Rhizobacteria
(PGPR), which suppress the fungal infection caused by Rhizoctonia solani in several
plants. This recommends that certain interactions between the microbes invading the
same ecosystem are essential to overcome several detrimental effects. Besides
bacteria, fungi such as Arbuscular Mycorrhizal Fungi (AMF) are unique, beneficial,
and environmentally important organisms in soil. They interact with various
microbes found in the soil ecosystem such as mycorrhiza helper bacteria for their
mycorrhizal formation by inhibiting other fungal organisms. AMF and PGPR are
indeed two principal components of the soil microbiota. They are known for their
ability to induce systemic resistance against pathogenic microbes. The interactions
between these two communities are synergistic and reflective on growth, health, and
overall performance of the host plants in agriculture environments. These kinds of
microbe–microbe interactions have a high impact on host plant’s nutrition and
defence mechanisms. For instance, AMF inhibits other fungal pathogen attack and
PGPR such as Rhizobium and Bacillus produce siderophores which dispossess
pathogens from the environment. The next kind of interaction between microbe–
microbe is “amensalism”. Chemical compounds released by one organism destroy
the other organism. This is also known as “antibiosis” where one microbe produces
antimicrobial substance causing detrimental effects to another microbe. The occur-
rence of this interaction is most common in beneficial bacteria while fighting against
host pathogens. For example, Bacillus, Streptomyces, and Pseudomonas synthesize
bioactive molecules such as lipopeptides which destroys the pathogenic organisms
such as oomycetes and trophozoites. The third kind of interaction between microbes
is “parasitism”, where one species survives at the cost of the other. For instance, the
bacteria Pasteuria penetrans suppress the root-knot nematode infection by
reproducing themselves within the infected nematodes leading to detrimental effects
of the nematodes and also the inhibition of penetration of new nematodes (Igiehon
and Babalola 2018). On the other hand, interactions between the microbes which
share the same habitat not necessarily be detrimental always except for the patho-
gens. The microbes indeed collaborate, co-operate with each other by sharing some
genes among themselves for communal stability. This is nothing but the horizontal
gene transfer events. This way they have the possibility for both the partners to
influence each other’s fitness (Bakker et al. 2014). These interactions were
documented through cytology-based systems, microplate reader-based systems and
microfluidics-based systems so far (Hennessy et al. 2017; Massalha et al. 2017).

Furthermore, microbes in general, produce various kinds of signalling molecules,
termed as auto-inducers which basically observe the community density in a native
ecosystem and control their behavioural pattern in a mutual way (Fuqua et al. 1994).
This mechanism is termed as quorum sensing (QS). The auto-inducers produced by
microbes are further categorized into three types (a) auto-inducer synthase,
(b) acylhomoserine lactones (AHLs), (c) auto-inducing peptides (AIPs) (Huang
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et al. 2016). AHL signals are detected majorly in Gram-negative bacteria, whereas
cyclic peptides are found only in Gram-positive bacteria (Hartmann et al. 2014).
Microbes use this method to control the formation of biofilm, DNA transfer,
pathogenic infections, to produce extracellular polysaccharides, and several other
processes (Galloway et al. 2011). On the other hand, in certain cases, microbes
themselves interrupt the process of QS by producing receptor molecules that inhibit
QS or by producing degrading enzymes which degrades the auto-inducers. This
mechanism is known as quorum quenching (QQ). Microbes use this mechanism as a
competitive strategy for food and space. These are the major ways by which
microbes interconnect themselves and interact with each other.

2.2.2 Plant–Microbe Associations

Plants are associated with a surfeit of microbes having potential roles for plant health
and performance. Plants employ microbes from their associated vicinities such as the
phyllosphere (leaves in contact with the external environment), the anthosphere
(flowers), the carposphere (fruits), the spermosphere (germinated seeds), and the
rhizosphere soil, a part that is closely associated with the roots (Hardoim et al. 2015).
However, the communities that are laterally transferred from the rhizosphere are
highly assorted encompassing various groups such as Acidobacteria,
Verrucomicrobia, Bacteroidetes, Proteobacteria, Planctomycetes, and
Actinobacteria (Fierer 2017). The spermosphere microbes are vertically transferred
and thrive in the developing roots (Liu et al. 2012; Hardoim et al. 2012). Similarly,
the phyllosphere of many plants includes bacterial species mostly when compared to
other species of microbes such as fungi, archaea, protists, and pathogenic microbes
which are found to be less in abundance in the phyllosphere (Dong et al. 2019).

A substantial amount of information on the structure, dynamics, and functional
capabilities of the plant holobiont (A collection of a host plant and a myriad of living
organisms in and around it form a separate ecological unit) and the secluded
community members are available now. The significance of the plant holobiont
has recently been widely studied because of the functional potentials of the associ-
ations. Concerning the plant–microbiome association, the associated microbial taxa
can be beneficial or pathogenic to plants. Certain plant–microbe interactions secure
the host plants against invading harmful organisms and help plants in their nutrition
whereas a few interactions can be detrimental to the host plants (Igiehon and
Babalola 2018). Hotspots of microbial interactions in a plant are shown in Fig. 2.2.

2.2.2.1 Significance of Above-Ground Microbiomes

As mentioned earlier, plant–microbiome associations can be both above-ground and
below-ground. The above-ground plant parts such as leaves, stems, and other repro-
ductive organs comprises of a collection of microbes associated with it. Specifically,
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microbes that colonize the outer surface of the plant parts are epiphytes and the
endophytic microbes colonize the interior parts of the plants by penetration. The
endophytes basically enter the plant from the soil environment through root cracks
or through lateral root developing spots regulated actively (Compant et al. 2005). The
endophytes are then transmitted to various parts of the plants for colonization which is
controlled by the distribution of plant resources and the ability of the endophytes to
colonize. Though endophytes can penetrate through aerial parts such as flowers and
fruits and enter the plant, they mostly prefer entering through the xylem pathway to
various parts of the plant (Compant et al. 2010). It has been stated that, in some plants,
phyllosphere microbes arise from the soil ecosystems with the help of roots and are
regulated by environmental factors (Vorholt 2012; Zarraonaindia et al. 2015; Wallace
et al. 2018). Subsequently, the endosphere and phyllosphere microorganisms are
found to be highly diverse at the genus and species level (Zarraonaindia et al. 2015).

The above-ground plant microbes in general arise from soil, kernels, or air and
acclimatize themselves on or inside the plant organs. While the soil type and

Fig. 2.2 Schematic showing hotspots of microbial interactions with the plant
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ecological factors and farming practice contour the composition of the microbial
community. Adding to this, the host genotype and the host tissues specifically recruit
microbiomes which clearly indicate a sturdy functional connection between the
plants and their phyllosphere microbiomes. Hitherto reports stating that endophytes
and above-ground microbiomes possess the ability to uphold plant growth, enhance
immunity for disease resistance, and improve stress tolerance (Hardoim et al. 2015).
For instance, the dominant taxa of above-ground microbiomes of several plants are
Pseudomonas, Methylobacteria, Sphingomonas, and Enterobacteriaceae (Roat and
Saraf 2017). Pseudomonas is an important microbe that helps to withstand osmotic
stress by secreting osmoprotectants such as trehalose and choline (Roat and Saraf
2017). Similarly, Methylobacteria found in the phyllosphere of most of the plants
uses the available methane to stimulate plant growth (Abanda-Nkpwatt et al. 2006).
In general, phyllosphere microbes are restricted by the accessibility of nitrogen and
carbon sources (Fürnkranz et al. 2008). During drought conditions, the population of
nitrogen-fixing bacteria is being raised up to assist the plant to adapt to the external
environment (Roat and Saraf 2017).

Besides, fungal species were found abundant next to bacterial strains in the
endosphere and phyllosphere regions, but the colonization potential varies among
the plant species. Such fungal communities play an important role in nutrient cycling
(Tebbe and Vahjen 1993). Some common fungal endophytes found to belong to the
genera Alternaria, Penicillium, Fusarium, and Aspergillus (Roat and Saraf 2017).
Furthermore, phyllosphere microbes release catalase and superoxide dismutase
enzymes that detoxify the reactive oxygen species (Vorholt 2012).

2.2.2.2 Significance of Below-Ground Microbiomes

Generally, below-ground microbial associations occur between the rhizosphere soil
and the associated roots which form the rhizosphere-rhizobiome. Rhizosphere soil, a
niche that lies closer to the roots, is rich in nutrients due to the deposition of mucilage
and root exudates. Root exudates alter soil properties, reduce the spread of compet-
ing plant species, and influence microbial communities association. Exudate com-
pounds include various low molecular weight and high molecular weight
compounds which stimulate plant–microbe interactions, especially associations
involving rhizobacteria and Arbuscular Mycorrhizal Fungi (AMF) (Monther and
Kamaruzaman 2012). Root exudates are the sole energy source of soil-borne
microbes and thus, they consume exudates for their survival and in turn promote
plant’s overall health. Consequently, there is a mutual connection with each other,
resulting in suppression of the growth of pathogens, acquisition of nutrients from the
soil, and promotion of the host plant’s growth (Liu et al. 2019).

Rhizosphere microbes release a variety of chemicals that have specialized func-
tions such as fixing of atmospheric nitrogen, nutrient solubilization, production of
phytohormones, improving plant’s defence mechanisms against pathogens and
stress alleviation (Ali et al. 2009). Moreover, rhizosphere microbial communities
compete internally with each other, and with invading pathogenic microbes, which
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affect the plant crops (Alina et al. 2015). However, the root exudates and their
composition of the host plant decide the structure of the community to be colonized.
For instance, in a few medicinal plants, elevated flavonoid exudation was correlated
to the colonization of bacterial communities such as Bacillus and Paenibacillus
(Köberl et al. 2013). Furthermore, several metagenomic analysis reports reveal
that rhizosphere regions of most of the plants comprises of Proteobacteria,
Firmicutes, Actinobacteria, and Bacteriodetes as their predominant genera
(Akinsanya et al. 2015).

Nevertheless, the community constantly changes in the rhizosphere based on the
key factors such as different developmental stages of roots of the host plant, type and
texture of the soil, pH of the soil, moisture content, organic deposition, and root
exudates (Rehman et al. 2019). In addition, a few other ecological factors such as
climate change, farming practices, and contaminated soil also affect the microbiome
structure, composition, abundance, and interactions (Fierer 2017; Hartmann et al.
2009). Besides, plant species also reflects specificity in microbiomes, each species
have their own set of microbes in their rhizosphere and associated roots (Hacquard
2016). For instance, metagenomics analysis of root microbiomes of several barley
plants grown in the same soil and environment depicted different root microbiome
structures and compositions because of the innate immunity of each host and their
respective exudate profiles (Bulgarelli et al. 2015).

2.2.2.3 Benefits of Rhizosphere Microbiomes

Plant Growth-Promoting Rhizobacteria (PGPR) are a group of rhizosphere soil-borne
microbes which highly improve soil fertility and helps plants in various ways for their
growth and development. PGPRs are involved in nitrogen fixation, microbial antag-
onism, phosphate, and potassium solubilization, and absorption of heavy metals
polluting the soil. In addition, rhizobacteria help in improving the photosynthesis
process, chlorophyll enhancement, and carbon assimilation. Phytohormones such as
auxins or gibberellins are produced by certain root endophytes which influence the host
plant’s growth. Bacterium helping in nitrogen fixation includes species of
Achromobacter, Arthrobacter, Acetobacter, Azomonas, Beijerinckia, and Bacillus
(Pindi et al. 2014). Bacillus sp. produces organic acids such as gluconic, citric, and
fumaric acids under phosphorous-limiting conditions which increases the solubility of
poorly soluble phosphorus (Pindi et al. 2014). An increase in the germination of orchid
seeds was observed when inoculated with Spingomonas and Mycobacterium
sp. Bacillus cepacia and Pseudomonas aeruginosa were able to reduce infections
caused by the pathogen Sclerotinia sclerotiorum in sunflower (Ambrosini et al. 2012).
PGPR produces siderophores that chelate metals and thus play an important role in
rhizoremediation. For instance, Burkholderia strains isolated from the rhizosphere and
rhizoplane of tomato plants exhibited activities involved in bioremediation and acts as
a potential fertilizer (Ambrosini et al. 2012).

In addition, PGPRs help plants with their defence mechanisms against invading
pathogens by stimulating plants to produce proteolytic enzymes against the invading
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pathogens and by producing antibiotics which inhibit cell wall synthesis in invading
pathogens. Additionally, PGPRs greatly support plants for their survival under stress
conditions. For instance, Achromobacter isolates were found to enhance the growth
of seedlings under water-deficient conditions. Furthermore, reports have suggested
that 50% of the rhizosphere-associated bacterial communities belong to the genus
Rhizobium, which promotes plant growth (Ambrosini et al. 2012). Besides, plant
hormones were synthesized by the plant growth-promoting rhizobacteria that con-
quer the rhizosphere of the plant. Several characteristics of the rhizobacteria aid in
promoting plant growth. One such plant growth-promoting activity of rhizobacteria
is the production of phytohormones. For example, fluorescent Pseudomonas sp.,
were found to exclusively produce gibberellic acid that regulates the growth of the
plant. Production of gibberellic acid was observed in Bacillus pumilus, Bacillus
licheniformis, and Bacillus siamensis, BE 76 (Ambawade and Pathade 2013).
Similarly, Rhizobium sp. was observed to enhance cytokinin production in plants
by regulating the expression of the signalling pathways which triggers cortical cells
of the plants to divide (Farag et al. 2013). Cytokinin-producing bacteria has been
shown to enhance shoot growth in droughted plants. Agrobacterium tumefaciens
produced trans zeatin and boosted the growth in Arabidopsis. The bacterial strains of
Bacillus, Pseudomonas, Escherichia, Micrococcus, and Staphylococcus genera
were reported to improve the endogenous IAA content of the plants especially in
wheat (Ali et al. 2009). Cyanobacterial species including Anabaena, Anabaenopsis,
Chlorogloeopsis, Gloeothece, Nostoc, and Synechocystis were found to raise the
IAA levels in the plants (Hussain et al. 2010).

2.3 Sampling and Experimental Design to Study Plant–
Microbiomes

The rhizosphere is one of the complex ecosystems and a potential hotspot of
countless microbial interactions that occur among the microbes and between the
microbes and a host plant. One gram of rhizosphere soil possesses more than a
million microbes in it (Gans et al. 2005). Interestingly, the population of rhizobiomes
is highly diverse than the microbiomes found in the bulk soil. The main reason
behind this is root exudates (Nannipieri et al. 2008). Hence, predicting the number
and diversity of the microbial communities in the rhizosphere and identifying their
functions require a special technique. Metagenomics analysis of the rhizosphere is a
perfect solution for this issue. In general, the experimental procedures start with
sampling, isolation of high quality pure DNA from any rhizosphere soil,
metagenomic library construction, followed by sequencing and analysis of the
metagenomics data using softwares.
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2.3.1 Soil Sampling

Sampling is an essential step for obtaining good quality metagenomic data and its
interpretations, especially when a highly complex habitat such as rhizosphere is
being taken for study. The sample size should be sufficient enough to represent the
whole population present in the habitat analysed (Wooley et al. 2010). So, it is
significant to preselect sample preparation methods which will include the entire
target group of microbes. It is also very important to know the sampling strategies
and various effective experimental methods (Felczykowska et al. 2015). One should
try asking and answering a few important questions before stepping into sampling of
a habitat. For instance, when and where the samples are collected? Similarly, how
the samples are transported to the laboratories? How long has the sample been stored
before the isolation of DNA? The year, month, day, and time of collection should be
noted. Samples should be transported properly without getting contaminated. The
samples should not be stored for long term and isolation to be done as soon as
possible after sample collection (Paul and Clark 1988). The “metadata” of the
sample states the physical, chemical, and environmental features of the sample and
can be submitted in the bio project databases at National Center for Biotechnology
Information (NCBI) for future access.

In plant–microbe interaction studies, as phyllobiomes and rhizobiomes vary in
their structure and abundance according to the host’s developmental stage, it is
important to have enough replicates of the sample. Additionally, species arrival
timing influences their distribution on phyllobiomes and rhizobiome (Kennedy et al.
2009). Thus, it is advisable to have at least five replicate samples per plant organ or
sample type to resolve this issue. In addition, if the aim of the study is to analyse the
root microbiomes, it is recommended to analyse bulk soil samples (i.e. soil in
distance �2 cm to roots) as well for comparing and predicting the origin of
rhizobiomes (Kuzyakov and Razavi 2019). Furthermore, samples should always
be collected at their own sites (e.g. field, greenhouse) to avoid ecological factors that
affect the microbiome composition. Adding to this, proper processing, storing, and
transporting of the samples should be assured such as snap freezing, storing in RNA
stabilization solution, and transporting with liquid nitrogen (Reid 2003; Salter et al.
2014).

2.3.2 Isolation of DNA from Rhizosphere

Isolation of DNA from any environmental sample is very complex and challenging
as it may get affected by contamination. In case of a highly complex ecosystem such
as rhizosphere soil, there will be various impurities, viz., humic, fulvic acids, DNases
mixed in the soil which hinder other downstream processes of a metagenomic
workflow (Tebbe and Vahjen 1993). Therefore, it is always important to isolate
any environmental DNA in a good quality as well as quantity for a successful
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metagenomics analysis. Several rapid and efficient protocols that give good yield
have been developed and tested in many samples (Sagar et al. 2014). Besides, there
are several commercially available environmental DNA isolation kits that extract
pure as well as enough DNA. PowerSoil, UltraClean, and RNA PowerSoil (Mo Bio
Laboratories, California, USA); FastDNA Spin kit for soil and FastRNA Pro soil-
direct kit (MP Biomedicals, Solon, Ohio, USA); and SoilMaster (Epicentre Bio-
technologies, Madison, Wisconsin, USA) are some of the recent widely used kits.

2.3.3 Amplicon Sequencing

Amplicon-based sequencing approach in general demand a high quality DNA,
which will be amplified by normal Polymerase Chain Reaction (PCR) with phylo-
genetic marker genes (16S rRNA, 18S rRNA, and internal transcribed spacer-ITS)
and the resulting PCR products will be sequenced, followed by classifying and
characterizing the sequenced reads using bioinformatics methods and tools
(Sharpton 2014). This approach has been one of the successful metagenomics
technique which unveiled earth’s microbial diversity remarkably, ranging from
ecosystems such as the human gut, plant roots, thermal vents of oceans, hot springs
and volcano soil (Lozupone and Knight 2007), and human microbiome consortium
(De León et al. 2013).

Amplification of marker genes and high-throughput sequencing of the amplicons
is being widely used in recent times to reveal the organization, structure, composi-
tion, and distribution of microbiomes in the environment and is progressively used in
plant–microbiome studies (Knief 2014). High specificity of amplicon sequencing in
targeting individual microbial taxa and also their related genes favours this technique
(Herbold et al. 2016). This technique can even predict the rare species found in the
environment that is being analysed. Nevertheless, this technique is extremely sensi-
tive; hence, it is always mandatory to include positive (known mock communities)
and negative controls (reagent and extraction blanks) (Glassing et al. 2016).

Metagenomic analyses of rhizosphere microbiomes generally depend mainly on
the 16S rRNA gene that codes for the small RNA subunit of the ribosome. Thus far,
the most commonly used next-generation sequencing (NGS) technology for
amplicon sequencing is Illumina MiSeq which allows for high coverage at a less
expense (Kozich et al. 2013). There are various 16S rRNA primers available based
on the hypervariable regions of the 16S gene; however, a few of them have restricted
coverage. Similarly, 18S rRNA gene primers and internal transcribed spacer (ITS)
have been used for studying the fungal populations (Gilbert et al. 2014). In addition,
certain functional genes encoding enzymes are being used as phylogenetic markers
in amplicon sequencing of rhizosphere samples for classifying microbial taxa. For
instance, pmoA gene for methanotrophs (Suddaby and Sourbeer 1990), amoA gene
for ammonia oxidizers (Pester et al. 2012), nxrB gene for nitrite oxidizers (Pester
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et al. 2014). A list of such functional markers is available at the FunGene database
(http://fungene.cme.msu.edu/) (Fish et al. 2013).

Once primers are decided, the libraries can be constructed by adding the adapters
to the primers through a one-step PCR. The barcodes present in the primer pairs help
in the simultaneous sequencing of several samples. However, if the primers selected
do not contain barcodes, a two-step process is followed in which the DNA is first
amplified and the barcodes are then added to the amplicons (Caporaso et al. 2011;
Herbold et al. 2016). Another method for amplicon sequencing also exists, where the
whole 16S gene or larger fragments (up to 30 kb) can be sequenced using PacBio
sequencing (Armanhi et al. 2016). The resulting data are a valuable source for the
researchers, and therefore it is recommended to submit such data to the Sequence
Read Archive (SRA) of International Nucleotide Sequence Database Collaboration
(INSDC) (Cochrane et al. 2016).

Nevertheless, this approach also has certain limitations. First and foremost is that
amplification of the sample using universal primers may not be efficient to cover the
genomes that contain longer introns in their rRNA genes (Hong et al. 2009; Sharpton
et al. 2011). Second, if the same genome has many rRNA gene clusters then it will
directly affect the relative richness of individual microbial taxa (Větrovský and
Baldrian 2013). Third, in some cases, the 16S genomic loci between distantly related
groups are transferred among themselves (i.e. horizontal gene transfer); and this have
a direct impact on diversity estimation (Acinas et al. 2004). In addition, error prone
sequencing and chimeras also hinder the quality of the reads (Wylie et al. 2012).
Furthermore, with amplicon sequencing it is only possible to understand the struc-
tural aspects of the communities; however, resolving their functions is difficult. In
such circumstances, rebuilding phylogenic information in order to predict their
functions is a suitable solution (Langille et al. 2013). Depending on the structural
diversity of the genomes available in databases, precision of function prediction
varies. Lastly, this approach is restricted to the analysis of known taxa. Studying
novel unknown microbial taxa such as viruses is a challenging task with this
approach.

2.3.4 Shotgun Metagenomics

Shotgun metagenomics sequencing is a comparatively advanced and powerful
approach that offers a detailed understanding of microbial communities concerning
their structural and functional aspects as well. However, due to the large amount of
data generated from this technique, the sequence analysis part is a bit tedious. Yet,
the availability of new tools and softwares sidestep this complexity and allow the
scientific community to unravel the structural and functional diversities of the
microbiomes. Shotgun sequencing offers a better understanding of phylogenetic
information and allows identification of the functions. This approach is very efficient
in predicting rare species found in a sample. However, the species richness measured
through this approach is unaccountable (Poretsky et al. 2014).
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Nevertheless, to influence the richness of the sample data, it is significant to think
through the depth and coverage of the sequencing. Regrettably, this is not an upfront
chore. Especially, in analysing a complex environmental sample with a high level of
genomic diversity such as rhizobiomes, depth of sequencing should be decided
thoughtfully, as such sample may reflect in poor assembly with lower coverage
(Sczyrba et al. 2017). So, to decide on the depth of the sequencing and the required
amount of reads, in order to uncover the entire population present in the sample, it is
recommended to follow a combinatorial approach of amplicon sequencing followed
by shotgun metagenomics based on the results of the 16S sequencing data (Ni et al.
2013; Rodriguez-R et al. 2018). It is true that a small amount of good quality
metagenomic data is adequate to predict the taxonomic abundance but such data
might lead to wrong scientific conclusions (Kwak and Park 2018; Zaheer et al.
2018). Hence, it is vital to cautiously decide the required sequencing depth along
with the type of analysis that will be performed.

Once the sequencing is done, the metagenomics data generated must be analysed
computationally using various tools and softwares. The workflow of analysing
metagenomics data includes four steps: (1) taxonomic binning, (2) taxonomic pro-
filing, (3) target–gene reassembly, and (4) genome binning. These steps have been
briefed in Chap. 1 of this book. These allow researchers to relate taxonomic
distinctiveness to their key functions. For instance, in plant–microbe interactions,
symbiont functions such as nitrogen fixation, effector secretions can be predicted
just by linking their taxonomic identity (Eichinger et al. 2016).

In spite of various advantages over amplicon-sequencing technique, this
approach also has its own limitations. First, as the resulting data from a deep
sequencing of metagenomic sample is very large and complex, it is very challenging
to bin the reads with precision. In addition, in the case of rhizosphere microbiomes,
the sample is highly diverse and hence not all the genomes will be entirely
sequenced. Consequently, overlapping of reads from the same gene may not be
possible which can result in poor assembly (Sharpton et al. 2011). Even if the reads
overlap, it is not necessary that they belong to the same or different genomes, which
can impact sequence assembly (Mavromatis et al. 2007; Mende et al. 2012). Second,
interference of host plant’s DNA in the metagenomics sample highly influences the
sequencing efficiency and subsequent analysis. Thus, enrichment of microbial DNA
is mandatory prior to sequencing. Several molecular methods are available for
enrichment and also, several computational tools are available to filter out the host
reads present if any (Schmieder and Edwards 2011a; Garcia-Garcerà et al. 2013).
Luckily, progressively developing bioinformatics tools and softwares resolve these
challenges and ease the analysis process (Schmieder and Edwards 2011b).

2.3.5 Bioinformatics Analysis

Bioinformatics tools and softwares have significantly contributed to have insights on
microbial interactions in complex ecosystems such as rhizosphere (Spence et al.
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2014; Cha et al. 2016). For instance, metagenomics unveiled the causative agent of
Rhizoctonia solani infection as Pseudomonas spp. in sugar beet grown in a suppres-
sive soil (Mendes et al. 2011). Nevertheless, it is always important to assess the
computational extrapolations under regulated conditions in the lab or in the field
(Vorholt et al. 2017). For classifying reads generated through 16S amplicon
sequencing, a few efficient computational tools are available, e.g. Mothur (Schloss
et al. 2009), QIIME (Caporaso et al. 2010), and UPARSE (Edgar 2013). Quality-
wise, all three pipelines perform equally. Similarly, for classification of ITS reads,
PIPITS (Gweon et al. 2015) denotes a set of commands that are prerequisites of a
few software, such as VSEARCH (Rognes et al. 2016) and USEARCH (Edgar and
Flyvbjerg 2015; Nilsson et al. 2019). An assessment of the available tools and
software for metagenomic analysis is beyond the scope of this chapter but is
available in other reports (Kopylova et al. 2016).

2.4 Concluding Remarks

The advent of molecular techniques has substantially upgraded in unravelling the
plant-associated microbiomes, e.g. (1) A detailed insight of A. thaliana roots
microbiome (Bulgarelli et al. 2012; Engelbrektson et al. 2012) and (2) prediction
of key microbial taxa and genes intricate in the destruction of a fungal root pathogen
(Mendes et al. 2011). Metagenomics is a promising approach to recognize the
mutual effects of plants, and their associated microbiomes (Vorholt et al. 2017;
Durán et al. 2018). It offers a broader view of a complex environment such as
rhizosphere and their interactions when compared to the other culture-dependent
techniques. Metagenomics has its own power and potential to resolve innumerable
challenges in various fields such as earth sciences, life sciences, biomedicine,
bioenergy, bioremediation, biotechnology, agriculture, biodefense, and microbial
forensics. So, with such progressive technique in hand, it is possible to predict the
interactions between natural environments and human actions which collectively
contour the future of our planet.
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Chapter 3
Metagenomics and Metatranscriptomics
Approaches in Understanding
and Discovering Novel Molecules
in Rhizosphere Environment

Jaspreet Kaur Boparai and Pushpender Kumar Sharma

Abstract Rhizosphere microbiome is a diverse and dynamic communities affecting
both plant health and nutrition. A better understanding of these ecosystems however
remain uncharted owing to lack of tools that facilitate comprehensive profiling of
microbial communities and processes which are largely constituted by uncultivable
subset. Recent advances in molecular biology techniques that include metagenomics
and metatranscriptomics facilitate whole community level characterization of gene
diversity and their expression patterns, respectively. While metagenomics focuses
on meta-analysis of structural and functional gene contents of microbial communi-
ties in various environment niches, metatranscriptomics focuses on meta-analysis of
expressed genes under set of environmental conditions. These omics technologies
are new and comprehensive approaches to system biology that integrate multiple-
datasets, both these techniques have shed novel insights about the community
activity and responses. This chapter discusses the utilization of these tools and
techniques in understanding microbial interaction networks, communications, and
the chemical diversity in the rhizosphere.

Keywords Metagenomics · Metatranscriptomics · Rhizosphere microbiome · Novel
biochemical · System biology

3.1 Introduction

Microorganisms are found everywhere in the environment ranging from soil, ani-
mals, plants, and lower eukaryotes (Girguis 2016), and constitute dynamic commu-
nities, diversities, and competitions in various environments (Vega and Gore 2018).
The rhizosphere (the soil environment influenced by root exudates) harbors complex
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microbial communities that affect both plant health and nutrition. Better understand-
ings of these ecosystems remain uncharacterized due to a lack of tools that may
facilitate complete profiling of extremely diverse microbial communities and pro-
cesses (Zaccaria et al. 2017). Recent advances in molecular biology techniques that
include metagenomics and metatranscriptomics will help in accessing whole com-
munity level characterization of genomes, gene expression patterns, and plant–
microbe interactions in the rhizosphere. Rhizosphere microbiology has gained
significant attention in recent years, as microorganisms present in its vicinity directly
or indirectly play a critical role in plant defense and development (Jeyanthi and
Kanimozhi 2018). Previously, rhizosphere microbiome was explored for its benefi-
cial effects on plants that include process of nitrogen fixation, phosphate solubiliza-
tion, production of plant growth hormones, biocontrol properties, and tolerance to
various stresses (Singh et al. 2019). In the rhizosphere, the microbial communities’
composition is mainly determined by soil type, its texture, plant genotype, cultivars,
and developmental stage of the plants (Pantigoso et al. 2020; Buscot 2005). In
addition to beneficial microbes, certain microbial pathogens often colonize the
rhizosphere and may bypass the mechanism of innate plant protection to trigger
disease (Mendes et al. 2013; Wang et al. 2018). This chapter will discuss the role of
metagenomics and metatranscriptomics tools in studying the rhizosphere environ-
ment. Eukaryotic and prokaryotic life forms studied in extreme environment
(Bochdansky et al. 2017), revealed reservoir of genes responsible for different
activities in soil, however, isolating and cultivating these organisms under laboratory
condition is difficult. Holistic approaches such as metagenomics and
metatranscriptomics can classify genes and archive them as library of soil genes
(Andrews et al. 2018). Microbial operational taxonomic units (OTU’s) investiga-
tions of desert, grassland, rain forest has revealed that archaeal or fungal OTUs
appeared to be equal or exceed the number of unique bacterial OTUs in these
ecosystems (with minimal taxonomic overlap observed between the soil types
(Fierer et al. 2007).

3.2 The Rhizosphere Microbiome—Who Is There?

Soil microbial communities constitute the world’s greatest repository of biodiversity
known to date (Bowker et al. 2010). The rhizosphere is inhabited by ~1011 microbial
cells/gram root (Egamberdieva et al. 2008) and over 30,000 prokaryotic species
(Mendes et al. 2013). It is an interface between plant root and soil characterized by
microbe–microbe and plant–microbe interactions which are mediated mainly
through the secondary metabolites (Arora et al. 2013). This interface is rich in
variety of carbon compounds creating a special habitat for a variety of soil micro-
organisms, including bacteria, fungi, oomycetes, nematodes, protozoa, algae,
viruses, archaea, and arthropods. At the root–microbe interface, there is exudation
of chemicals that serve as microbial capital, while microbes in return enhance plant
growth (Chaparro et al. 2014). In addition, rhizosphere acts as barrier to pathogen
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causing infection in plants (Berendsen et al. 2012; Ryan et al. 2008). Several
processes in the rhizosphere are essential gateways for nutrients and water, it uses
about 50% of the energy provided by photosynthesis in terrestrial ecosystems
(Taylor et al. 2012), contributing 50% of the total CO2 released from terrestrial
ecosystems (Trumbore 2006).

3.3 Interaction Network, Communications, and Chemical
Diversity in Rhizosphere

Rhizosphere constitutes the most complex ecosystem harboring variety of organisms
including nematodes, fungi, bacteria, and arthropod (Sharma et al. 2019a, b). This
zone is associated with the increased bacterial abundance and activity as compared to
the bulk soil. Plants are known to cause a selective pressure on the microbial
community found in the rhizosphere. Community-level research has identified
diverse microbial communities in the different plant species, indicating role of
plant-derived metabolites in determining the rhizosphere microbiome assembly
(Mhlongo et al. 2018; O’Banion et al. 2020). Various plant growth-promoting
rhizobacteria (PGPR) are Bacillus, Pseudomonas, Enterobacter, Acinetobacter,
Burkholderia, Arthrobacter, and Paenibacillus (Kour et al. 2019). These species
interact with each other and with the plant through chemical communication. Plant
releases variety of metabolites (primary and secondary) in response to altered gene
expression (Verma et al. 2018), availability of nutrients, microorganism accumula-
tion, and biofilm formation (Nazir et al. 2019), as well during inhibition of soil–
borne pathogens (De Boer et al. 2019). Signaling metabolites which regulate gene
expression in the host plants are volatile organic compounds (VOCs), these mole-
cules are low molecular weight lipophilic compounds synthesized during different
metabolic pathways (Fincheira and Quiroz 2018). Quorum sensing (QS) is a mech-
anism used by bacteria to perceive their environment, the well-documented QS
signals frequently produced by Gram-negative bacteria are AHLs (N-acyl
homoserine lactones) (Papenfort and Bassler 2016).

3.4 Omics Approaches and Microbial Dynamics
in Rhizosphere

3.4.1 What Is Omics?

Omics is a novel approach to systems biology that integrates multiple datasets from
genomes, proteomes, transcriptomes, and metabolomes. All these datasets are
derived from individual organisms that include bacteria, fungi, plants, animals,
and even viruses. Data gathered pertaining to central dogma of molecular biology
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includes DNA, mRNA, and proteins is measured, analyzed, and integrated using
multivariate statistics methods. This book chapter will briefly discuss application of
metagenomics and metatranscriptomics tools in understanding the rhizosphere
environment.

3.4.2 Metagenomics in Understanding and Discovery
of Novel Molecules from Rhizosphere

Metagenomics refers to meta-analysis of genomes recovered directly from environ-
mental samples, rhizosphere contains high levels of the soil matrix, interfering
humic acids, as well as plant polyphenols and other macromolecules, all of which
makes it difficult to extract biological molecules such as DNA, RNA, proteins, and
metabolites (Cesco et al. 2012). Despite several challenges, metagenomics studies
have successfully used to reconstruct the complete to nearly complete genomes from
unknown and uncultivated phyla (Seitz et al. 2016: Bickhart et al. 2017: White III
et al. 2017: Pop et al. 2004; Beaulaurier 2018). It has offered enormous opportunities
for researchers to unravel information related to microbial diversity and the discovery
of novel molecules from rhizosphere environment (Thijs et al. 2016; Gilbert and
Dupont 2010). Several microbial communities have been identified and character-
ized from rhizosphere environment using the metagenomic approach (Boparai et al.
2019: Li and Qin 2005: Lu et al. 2018). A recent study carried out from five distinct
Sinorhizobium spp. (Sinorhizobium meliloti, Sinorhizobium medicae, Sinorhizobium
fredii, Sinorhizobium teranga, Sinorhizobium saheli) found that each bacterium has
adopted slightly a different strategy to interact with diverseMedicago spp. in the soil
environment. The study further highlighted that the genes involved in the biosynthe-
sis of the Nod factor (lipochitooligosaccharides secreted by rhizobia that are impor-
tant in the interplay of recognition between roots and microbes) in polysaccharides
synthesis, denitrification, and secretion systems vary within and between species
(Sugawara et al. 2013). Table 3.1 briefly describe detailed studies related to the dis-
covery of novel molecules from the rhizosphere via metagenomic.

3.4.3 Metatranscriptomics in Understanding and Discovery
of Novel Molecule and Metabolic Pathways from
Rhizosphere

Metatranscriptomics has enabled researchers to profile the expressed genes from
diverse microbial communities; it identified key genes interactions between plants
and microbes (Schenk et al. 2012) and shed light on the structure and function of a
soil community (Ambardar et al. 2016). In this method, total community RNA is
randomly reversely transcribed into cDNA, and the sequences obtained are profiled
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taxonomically. Metatranscriptome-based research has discovered novel genes in the
rhizosphere (Kim et al. 2014). Though metatranscriptomic approaches from the
rhizosphere are not frequently used due to difficulty in the extraction of mRNAs
from the complex system (Simon and Daniel 2011), nonetheless several studies were
carried out employing metatranscriptomic approach. A metatranscriptome analysis
carried out on oxic and anoxic zone reported Cyanobacteria, Fungi,
Xanthomonadales, Myxococcales, and Methylococcales in the oxic zone, while
Clostridia, Actinobacteria, Geobacter, Anaeromyxobacter, Anaerolineae, and
methanogenic archaea conquered the anoxic zone, and were maintained stably
during the time of incubation. In addition, methane oxidation and photosynthesis
were carried out by Methylococcales and Cyanobacteria, respectively, which were
specific to the oxic zone (Kim and Liesack 2015). Researchers also investigated the
plant pathogenic fungi Rhizoctonia solani and reported that it directly or indirectly
increases the transcript of oxidative stress-related genes in certain rhizobacterial
families by ppGpp signalling pathway. This pattern may be responsible for the
change in microbial communities and can inhibit the growth of the fungal pathogens
(Chapelle et al. 2016). One more study investigating de novo metatranscriptomics of
plant and fungi in the symbiotic roots of sewage-cleaning Eichhornia crassipes
reported upregulated and downregulated genes during symbiotic process, the study
reported alteration in metabolic pathways of plant in the presence of fungi (Luo et al.
2015). Metatranscriptomics data combined in chronological and/or spatial degree
can address questions related to functionally active transcripts, e.g., it has been
successfully implicated in biogeochemical cycles (Muller et al. 2018), models of
plant–microbe interactions (Verma et al. 2018), and functional diversity measure-
ments (Dubey et al. 2020; Ramachandran 2008; Green et al. 2019). A recent study
from our lab compared metatranscriptome from two different ecosystems that
include agriculture soil and organic soil, sequencing and analysis of reads revealed
variations in level of gene expression in two soil types, high expression of transcripts
related to aromatic hydrocarbon metabolism and stress-related proteins in agriculture
soil compared to organic soil (Sharma et al. 2019a, b). Another study conducted in
our lab a few years back from agriculture soil having a long history of usage of
chemical fertilizers and revealed the presence of several important genes and
pathways related to the metabolism of aromatic hydrocarbon (Sharma and Sharma
2018).

Studies on the Gram-positive rhizobacterium B. amyloliquefaciens in response to
root exudates from maize revealed alteration in transcript expression related to
bacterial chemotaxis, motility, and antimicrobial peptides. Some genes with
unknown functions were also showed changes in their expression pattern, indicating
the role of root exudates in understanding the rhizobacteria (Fan et al. 2012). In
another study transcriptome data was used to investigate the Ca2+calmodulin-depen-
dent protein kinase (Ishiguro et al. 2006), and it was demonstrated that transcript-
based cloning is a healthy approach for cloning genes and, the construction of a
genetic map is not required in this process. In another study, the method was
successfully used to study plant productivity and rhizosphere dynamics (Zhang
et al. 2010). It was discovered that NCRs (nodule Cys-rich antimicrobial peptides)
(NCR) genes regulate the terminal differentiation, nitrogen fixation, and infection of
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Table 3.2 Metatranscriptomics studies reporting important findings in plant rhizosphere

Plant rhizosphere Main finding References

Wheat, oat, pea and an oat
mutant (sad1)

Profiling microbial communities with
metatranscriptomics enables comparison of rela-
tive abundance, from different samples, across all
domains of life, without bias in the polymerase
chain reaction. This revealed profound differences
in the rhizosphere microbiome, spatially at the
kingdom level between plants

Turner et al.
(2013)

Arabidopsis thaliana Genes involved in streptomycin synthesis were
substantially induced at bolting and flowering
stages, possibly for suppression of disease. This
suggested that plants secrete mixture of com-
pounds and specific phytochemicals in the root
exudates that are produced differentially at distinct
stages of development to help orchestrate rhizo-
sphere microbiome assemblage

Chaparro
et al. (2014)

Willow tree (Salix purpurea
and Sambucus nigra)

The root metatranscriptomes of two species has
been compared and concluded that plants tran-
scripts are primarily affected by willow species,
whereas microbial transcripts mainly responded to
contamination

Yergeau
et al. (2018)

Wheat In the non-suppressive rhizosphere samples, a
large number of genes involved in detoxifying
reactive oxygen species (ROS) and superoxide
radicals (sod, cat, ahp, bcp, gpx1, trx) were
expressed most likely in response to the infection
of Rhizoctonia solani AG8 in wheat roots

Hayden
et al. (2018)

Corn (Zea mays) and soy-
bean (Glycine max)

This study identified 67 differentially expressed
bacterial transcripts from the rhizosphere. Tran-
scripts downregulated after glyphosate treatment
included carbohydrate and amino acid metabo-
lism, and the upregulated transcripts included
protein metabolism and respiration. In addition,
bacterial transcripts involving nutrients, including
iron, nitrogen, phosphorus, and potassium, was
also affected by long-term glyphosate application

Newman
et al. (2016)

Sugar beet rRNA-based analyses found that
Oxalobacteriaceae, Burkholderiaceae,
Sphingobacteriaceae, and Sphingomonadace
were considerably more prevalent in the rhizo-
sphere upon fungal invasion. Metatranscriptomics
showed that stress-related genes (ppGpp metabo-
lism and oxidative stress) were upregulated in
above mentioned bacterial families

Chapelle
et al. (2016)

Grassland rhizosphere Functional evaluation of root mRNA indicates
that the production of plant secondary metabolites
was increased in the summer

Bei et al.
(2019)
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intracellular S. meliloti bacteroid by manipulating the bacterial cell cycle (Farkas
et al. 2014; Penterman et al. 2014; Haag and Mergaert 2019) and provided strong
evidence about the molecular mechanism by which NCR peptides control the
S. meliloti cell cycle during symbiosis. Authors further reported that these peptides
explicitly block cell division without affecting replication of DNA and disrupt the
expression of genes involved in motility, cell division, and cell cycle regulation.
Another study investigated non-fungal sources of industrially important enzymes in
forest soils, via screening metatranscriptomic library and identified major plant cell
wall, polymer degrading, and organic matter hydrolyzing enzymes (Damon et al.
2012). Table 3.2 briefly discusses novel findings related to metatranscriptomics.

3.5 Conclusions and Future Trends

The rhizosphere is a fascinating ecosystem for basic as well as applied microbiology,
plant biology, and ecology studies. A major challenge in rhizosphere studies is to
select the technology platforms that can better address the most pressing scientific
questions. These considerations remain relevant in several areas: acquiring data that
address a particular scientific hypothesis; preventing data deluge and long delays
from research to publication; and allowing for significant scientific advances. Weak
planning or inadequate knowledge also causes significant downstream problems.
Multi-omic approaches will contribute to a greater understanding of species in the
rhizosphere and their roles in plant development, crop production, and healthy
ecosystems. Furthermore, metagenomics alone cannot be used to deduce whether
all of the metabolic genes at the time of sampling are expressed, and thus another
omics technique called metatranscriptomics is used to probe these questions. They
will help in harnessing the rhizosphere as a resource for improved plant growth and
quality, for sustainable crop production, and for increased soil carbon storage under
various environmental stresses.
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Chapter 4
“Omics” Approaches for Understanding
Soil Suppressiveness in Agriculture

Shivani Khatri, Annapurna Bhattacharjee, and Shilpi Sharma

Abstract Disease suppressive soils are instrumental in combating phytopathogens,
which cause severe diseases in plants. They provide an eco-friendly way to mitigate
biotic stresses in agricultural systems worldwide. Efforts have been made to under-
stand the mechanisms of disease suppressiveness in soil using culture-dependent and
culture-independent methods. Omics approaches have provided useful insights into
the key markers responsible for imparting antagonism against soil-borne plant
pathogens. Specific genera such as Pseudomonas, Bacillus, Streptomyces,
Lysobacter, and Trichoderma, along with antibiotics and siderophores, are the key
constituents in disease suppressive soils. Disease suppressive potential of a soil is
dependent on several factors such as soil pH and soil type, with one of the critical
factors being the type of nutrient amendment applied to the soil. While the under-
lying mechanisms of growth inhibition of specific fungal pathogens such as Fusar-
ium and Rhizoctonia solani in soil ecosystem have been well elucidated, there is
restricted knowledge regarding “general-disease suppression”. The mechanisms
responsible for imparting broad range suppressiveness can help us develop econom-
ically favourable agricultural management practices. In this chapter, we have criti-
cally reviewed significant investigations related to specific- and general-disease
suppression where omics-based approaches have been adopted to study the micro-
bial community dynamics of disease suppressive soils. Based on the reported
studies, we have identified the potential role of diverse markers, compost amend-
ments, and different microbial strains (producing key metabolites) in disease sup-
pressiveness of soil. Thus, we propose that using different molecular and microbial
markers, mapping of disease suppressive soils can efficiently be done across the
globe. In addition, the effectiveness of synthetic microbial communities, and possi-
bilities of transforming conducive soil by microbiome transfer from suppressive soil
may be explored in the context of disease suppressiveness in the future.
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Keywords Disease suppressive soils · Molecular markers · Microbial markers ·
Sustainable agriculture

4.1 Introduction

Soil-borne pathogens cause severe plant diseases and detrimentally impact agricul-
tural productivity, worldwide. Interestingly, to naturally combat this challenge,
various microbes present in plant’s rhizosphere mediate disease suppressiveness
by producing several crucial molecules like siderophores, volatiles/secondary
metabolites, and antifungal agents in soil, which impart suppressiveness to specific
pathogens (Weller et al. 2002; Joshi et al. 2009). Notably, soils exhibiting greater
microbial diversity have been reported to have lower incidences of disease devel-
opment in plants, majorly due to the competitive interactions among rhizospheric
soil microbiota and plant pathogens (Weller et al. 2002; Penton et al. 2014). Several
soil-borne pathogens, e.g. Verticillium dahliae, Fusarium spp., Pythium spp., Scle-
rotium spp., Rhizoctonia solani, Pythopthora spp., Ralstonia solanacearum, and
Erwinia carotovora, are negatively impacted by microorganisms present in disease
suppressive soils (Bonanomi et al. 2018). There are several examples of soils
exhibiting disease suppressiveness. One of the widely studied examples is the
suppression of F. oxysporum by Pseudomonas species, which produces pyoverdin,
a potent secondary metabolite (Alabouvette 1999; Siegel-Hertz et al. 2018). Further,
many studies have reported that organic amendments like compost has led to
improvement in disease suppressive capacity of soils (Bonanomi et al. 2007; Postma
et al. 2008; Vida et al. 2016; De Corato et al. 2018; Mehta et al. 2018). Interestingly,
in another study, to decipher the mechanism of disease suppression by fluorescent
pseudomonads, the phlD locus encoding the antibiotic 2,4-diacetylphloroglucinol
(DAPG) was determined and quantified by qPCR. Interestingly, the expression of
genes at phlD locus was found to be highly correlated with disease suppressive
capability of pseudomonads in amended compost (Hunjan et al. 2017).

Disease suppressiveness of soils can be classified into two types, namely general-
disease suppressiveness and specific-disease suppressiveness. General-disease sup-
pressiveness of soils develop due to combinatorial action of several microorganisms
present in soil, and can be enhanced by organic matter amendments (Weller et al.
2002; Bonanomi et al. 2010; Bonilla et al. 2012; Tomihama et al. 2016). So far,
general-soil suppressiveness has not been reported to be transferrable from one
region to another (Weller et al. 2002). Contrastingly, specific-disease suppressive-
ness of soils occurs as a result of activities of a particular microbial population,
which affects the pathogen at a specific stage of its life cycle (Weller et al. 2002;
Gómez Expósito et al. 2017). Specific-soil suppressiveness is effectively inheritable
when a defined amount (1–10% w/w) of suppressive soil is mixed with conducive
soil (which has high disease incidence) but the property is lost if soil is subjected to
pasteurization or fumigation in most cases (Weller et al. 2002; Mendes et al. 2011).
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Precisely, general- and specific-soil suppressiveness can be compared to innate and
adaptive immunity, respectively, in animals (Raaijmakers and Mazzola 2016).
Specific-soil suppressiveness can further be categorized into long-standing and
induced soil suppressiveness. Long-standing soil suppressiveness is a trait inherently
present in specific soils, having an unknown origin, and the property is retained even
in pathogen’s absence (Weller et al. 2002). Soils in Chateaurenard region of France
have been shown to exhibit Fusariumwilt suppressiveness in various plants, and this
remains a prime example of long-standing soil suppressiveness (Alabouvette 1986).
Induced soil suppressiveness, on the other hand, develops as a result of crop
monoculture (e.g. take-all decline disease suppressiveness induced by wheat or
barley monoculture), the addition of pathogen as inoculum to soil, or by exposure
of susceptible plants to the soil-borne pathogens (Weller et al. 2002). The effect of
suppressive soil microbial community is found to be highly variable and specific to
each host plant (Chet et al. 1990; Berg et al. 2000).

Numerous investigations have been carried out in the context of disease suppres-
sive soils across the world (Weller et al. 2002; Schlatter et al. 2017; Gómez Expósito
et al. 2017). However, the mechanisms responsible for general- as well as specific-
disease suppression still remain to be comprehensively studied (Schlatter et al.
2017). Primarily, in an attempt to understand the basis of soil suppressiveness,
traditional microbiological approaches like cultivation-dependent techniques
(enumeration-based methods) and biocontrol assays have been employed (Schlatter
et al. 2017; Gómez Expósito et al. 2017). However, the limitation of routinely used
cultivation-dependent methods is that only about 1–10% of the microbiome is
culturable, and information about majority of the unculturable microorganisms
remains elusive. Consequently, it has not been possible to decipher the exact basis
of soil suppressiveness, by relying only on cultivation-dependent techniques. Thus,
to circumvent this problem, in recent decades, molecular techniques like restriction
fragment length polymorphism (RFLP) (Gu and Mazzola 2003), denaturing gradient
gel electrophoresis (DGGE) (Cretoiu et al. 2013; Chng et al. 2015), quantitative PCR
(qPCR) (Hunjan et al. 2017), and omics-based approaches like 16S rRNA amplicon
sequencing (Rosenzweig et al. 2012; Yin et al. 2013), metatranscriptomics (Chapelle
et al. 2016), metabolomics (Cha et al. 2016), etc. have been used to identify key
microbial members responsible for disease suppression, and to gain deeper insights
into the mechanisms of soil disease suppressiveness (Gómez Expósito et al. 2017;
Carrión et al. 2018; Hayden et al. 2019; Ossowicki et al. 2020).

In this chapter, we focus exclusively on different omics approach-based studies,
which have endeavoured to understand the mechanisms of general- and specific-soil
suppressiveness in the last two decades. Interestingly, during this period, people
have increasingly adopted omics-based approaches to study soil suppressiveness
(Fig. 4.1). Based on the reported investigations, we also provide a global overview of
the incidences of disease suppressiveness across the world (Fig. 4.2). Further, within
the purview of this chapter, we specifically review the findings of some interesting
case studies, and enlist the details of the research studies (conducted during
2000–2020) related to general- and specific-soil suppressiveness (Table 4.1).
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Eventually, we explore further possibilities which can be vital for executing sustain-
able disease suppression programmes in agricultural systems, based on our current
understanding of the subject.

Fig. 4.1 “Omics”-based approaches for understanding soil disease suppressiveness. The number of
hits (articles) is the results of searches with keywords “omics” and “disease suppressive soils” in the
NCBI database

Fig. 4.2 Global overview of disease suppressive soils identified across the world. The green
shaded regions represent the countries that have reported evidence of soil suppressiveness against
different pathogens. The data is based on literature published in NCBI till 2019
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Table 4.1 Overview of disease suppressiveness reported in agriculture by employing various
approaches

S.
no. Pathogen(s) Host plant

Remarks including type of
approach References

A: General suppressiveness
Non-omics-based approach

1 Pythium ultimum, Rhizocto-
nia solani, Phytophthora
spp., F. oxysporum and
Verticillium dahliae

Turf grass Bioassays
Compost-based amendment
induced disease suppressive
ability

Noble and
Roberts
(2004)

2 Rhizoctonia solani,
Verticillium longisporum,
Streptomyces scabies

Sugarbeet Bioassays
Growth suppression of path-
ogens was the result of spe-
cific- and general-disease
suppression caused by char-
acteristic antagonistic micro-
bial community
Isolated two species,
Lysobacter sp. and Strepto-
myces sp. exhibiting disease
suppression

Postma et
al. (2008)

3 Fusarium oxysporum,
Pythium aphanidermatum,
Rhizoctonia solani, Pythium
debaryanum

Tomato Plant pathogenicity assay
Significant reduction of path-
ogen infestation was observed
in compost-treated pot
experiments

Dukare et
al. (2011)

4 Rhizoctonia solani,
Sclerotinia minor, Fusarium
oxysporum, Phytophthora
cinnamomi, Pythium
irregulare

Cucumber,
tomato,
bean,
melon

In vitro and in vivo assays
Significant reduction in the
growth of mycelia of all
pathogenic fungi under study
Characteristic antagonistic
microbial members associ-
ated with compost-treated soil
belonged to Trichoderma,
Aspergillus, Pseudomonas,
and Actinomycetes

De Corato
et al.
(2018)

5 Pythium ultimum, Sclerotinia
minor, Rhizoctonia minor

Cress Bioassay for damping-off
disease, and quantitative esti-
mation of antifungal enzymes
Observed higher fungal and
bacterial diversity with
increased activity of enzymes
(glucanases, chitobiosidase
and N-acetyl-
glucosaminidase) reported to
exhibit antagonistic activity
against wide range of fungal
pathogens in compost-treated
soil compared to conventional
farming.

Pane et al.
(2011)

(continued)
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Table 4.1 (continued)

S.
no. Pathogen(s) Host plant

Remarks including type of
approach References

Omics-based approach

6 Rhizoctonia solani AG3,
Plasmodiophora brassicae,
Fusarium

Different
plants

METACONTROL-
metagenomics project (Trans-
European project)
Metagenomic analysis of
diverse suppressive soil sam-
ples revealed the presence of
antibiotic biosynthetic clus-
ters in microbial community
prevailing in different soils

van Elsas
et al.
(2008)

7 Rhizoctonia solani, Pythium
ultimum, Fusarium
oxysporum, Aspergillus niger

Sugarbeet
and
cauliflower

16S rRNA-based sequencing
of all strains and in vitro
antifungal assay
Isolated several Lysobacter
strains from disease suppres-
sive soil and their in vitro
antagonistic activities were
confirmed against all selected
pathogens

Gómez
Expósito et
al. (2015)

B: Specific suppressiveness
1 Rhizoctonia solani Non-omics-based approach

French
bean

Culture-based quantification
of biocontrol genera form
compost amended soil
Trichoderma spp. and fluo-
rescent pseudomonads were
responsible for growth sup-
pression of the pathogen

Joshi et al.
(2009)

Omics-based approach

Apple and
wheat

RFLP analysis of 16S rRNA
gene
Change in population of
fluorescent pseudomonads by
changing the type of amend-
ments and intercropping
pattern

Gu and
Mazzola
(2003)

Pine In vitro pot study, terminal
RFLP (T-RFLP) analysis of
16S and 18S rRNA genes
Type of compost determined
the structural and functional
diversity of soil microflora
with disease suppressive
ability

Pérez-
Piqueres et
al. (2006)

Sugarbeet Using PhyloChip-based
metagenomic, crucial

Mendes et
al. (2011)

(continued)
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Table 4.1 (continued)

S.
no. Pathogen(s) Host plant

Remarks including type of
approach References

bacterial taxa were identified
from sugarbeet rhizospheric
microbiome, which can cause
disease suppression of Rhi-
zoctonia solani, the fungal
root pathogen

Metagenomics and
metatranscriptomics
Analysis indicated that spe-
cific bacterial family mem-
bers like Oxalobacteriaceae,
Burkholderiaceae, etc. from
sugarbeet rhizospheric sup-
press R. solani due to
upregulation of stress-related
genes

Chapelle et
al. (2016)

16S rRNA PhyloChip-based
analysis
Heat perturbations negatively
impacted disease suppres-
siveness of soil by altering the
rhizobacterial community
composition

van der
Voort et al.
(2016)

Comparative genomics and
metabolomics analysis upon
isolation of Burkholderiaceae
strains, and their genome
sequencing, LC/MS, and in
vitro and in vivo antifungal
assays
Studied the antagonistic
activity of members belong-
ing to family
Burkholderiaceae producing
sulphurous volatile molecules
with antifungal activities in
soil, and deciphered their role
in disease suppressiveness

Carrión et
al. (2018)

Wheat 454 pyrosequencing of 28S
LSU gene sequencing
revealed differences in fungal
community structures of sup-
pressive and non-suppressive
soils
About 40 genera possessing
pathogen suppressiveness
were identified in suppressive
soils

Penton et
al. (2014)

(continued)
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Table 4.1 (continued)

S.
no. Pathogen(s) Host plant

Remarks including type of
approach References

Metabolomics and
metatranscriptomic analysis
Identified Macrocarpal, a
potential disease suppression
marker from R. solani AG8
suppressive soil and revealed
diverse patterns of
metabolomic profiles among
suppressive and non-suppres-
sive soils

Hayden et
al. (2019)

2 Fusarium oxysporum Omics-based approach
Flax Isolation of phenazine and

DAPG producers done on
KMB agar, genetic diversity
of phenazine and DAPG pro-
ducers assessed by RFLP and
BOX PCR analysis of phzC
and phlD genes
Observed increased levels of
phenazines and DAPG in
naturally occurring disease
suppressive soil

Mazurier
et al.
(2009)

Strawberry Induction of resistance by
cropping susceptible crop,
pyrosequencing of disease
suppressive soil, genome
mining of specific isolates
and their LC/MS profiling
Korean soil had disease sup-
pressive effects due to anti-
fungal molecules produced
by Streptomyces and some
members of Actinobacteria.
Streptomyces was solely
responsible for inhibition of
pathogen by production of
novel antagonistic
thiopeptide

Cha et al.
(2016)

Banana 16S rRNA and fungal ITS
gene pyrosequencing
Specific genera capable of
mitigating infection were
found to be present in disease-
free soil in contrast to disease-
infected soil

Zhou et al.
(2019)

Genomics analysis revealed
that high-GC Streptomyces
species possessed disease
suppressive capacity and

Heinsch et
al. (2017)

(continued)
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Table 4.1 (continued)

S.
no. Pathogen(s) Host plant

Remarks including type of
approach References

mediated evolution of micro-
bial communities

3 Phytophthora nicotianae Pepper 16S rRNA amplicon
sequencing and
metaproteomics
Compost was found to sup-
press soil-borne pathogens
like Phytopthora nicotionae
in pepper plants. Analysis
revealed phylogenetic and
functional differences
between suppressive and non-
suppressive compost

Ros et al.
(2018)

Metagenomic and
metabolomic analysis
Specific metabolites pro-
duced by members of
Ascomycota phylum, abun-
dant in suppressive compost,
play roles in disease
suppression

Blaya et al.
(2016)

4 Thielaviopsis basicola Tobacco 16S rRNA-based taxonomic
microarray
The diversity pattern of
rhizospheric Pseudomonads
in Morens soil was different
as compared to Savoie soil,
which had low disease
receptivity

Almario et
al. (2013)

5 Plasmodiophora brassicae Cabbage Metagenomic analysis
Chi18H8, the first chitinase to
be identified from a
metagenomic library of sup-
pressive soil, was found to be
antagonistic to various fungal
pathogens

Hjort et al.
(2014)

6 Gaeumannomyces graminis
var. tritici

Wheat 16S rRNA amplicon
sequencing
Wheat cultivars impacted
Pseudomonas genetic diver-
sity in soil microbiome in the
subsequent year of wheat
cultivation

Mauchline
et al.
(2015)

7 Rosellinia necatrix Avocado Plant pathogenicity assay,
16S rRNA amplicon
sequencing, GeoChip assay
Composts amended with
almond shells (rich in organic
matter) comprised of strong
biocontrol agents like

Vida et al.
(2016)

(continued)
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4.2 Understanding General-Soil Suppressiveness by
Employing Omics Approaches

To better understand the mechanism of general-disease suppressiveness, compre-
hensive studies are required using high-end molecular techniques in terms of
identifying the key ingredients present in the suppressive soils. There are few studies
attempting it using omics approaches. In this section, we will focus on some case
studies related to deciphering the mechanisms of general-disease suppressiveness.

One of the significant studies in this aspect was the metagenomics analysis of
trans-European soil (van Elsas et al. 2008). In this megaproject, the authors untapped
the molecular mechanisms responsible for general-disease suppressiveness using
soils from four European countries: France, Sweden, the UK, and the Netherlands,
which have suppressive potential against Fusarium, Plasmodiophora brassicae, and
Rhizoctonia solani. The crucial part was to analyse the unculturable fraction, along
with genes related to the production of antibiotics belonging to polyketide groups
and siderophores, by performing metagenomic analysis of DNA isolated from these
soils. The results of this study are notable; they found 7 novel clones of polyketide
synthase I, with one of the inserts exhibiting high similarity to Acidobacterium sp..

Table 4.1 (continued)

S.
no. Pathogen(s) Host plant

Remarks including type of
approach References

Proteobacteria which led to
disease suppression
A characteristic difference in
the microbial community was
found between compost
amended soil compared to
control. In compost amended
soil, well-known antagonistic
microbial members belonging
to Actinobacteria, Pseudo-
monas and Burkholderia
were present

8 Fusarium culmorum Wheat 16S rRNA amplicon
sequencing
Screening and metabolite
analysis of field soils for sup-
pressiveness against Fusar-
ium culmorum in wheat
revealed volatile emission
from diverse bacteria taxa,
majorly Acidobacteria, which
could contribute to suppres-
siveness in various soil
samples

Ossowicki
et al.
(2020)
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This is one of the few studies that assessed the active ingredients present in the
general-suppressive soils across nations.

The type of soil amendment also has a role in imparting disease suppressive
potential to the soil; organic amendments have specifically been reported to play a
positive role. Pane et al. (2011) reported the impact of amendment of peat along with
compost on disease suppressiveness against Sclerotinia minor, Pythium
aphanidermatum, and Rhizoctonia solani. Up to 60% growth inhibition of all
these phytopathogens was reported using these amendments, with maximum inhi-
bition observed when animal manure was used as compost. Several other soil
parameters have been observed related to disease suppressiveness such as activity
of chitobiose, N-acetyl glucasaminidase, and antagonistic volatiles. The increased
activity of selected hydrolytic enzymes and higher alkyl/O-alkyl ratios was observed
in disease suppressive soils by amendment of compost.

The potential disease suppressive indicators in the soil can be the selective
abundance of specific genera imparting antagonism against phytopathogens. The
16S rRNA-based amplicon sequencing of disease suppressive soils against
F. oxysporum, P. ultimum, R. solani, and A. niger claimed that there is significantly
higher population of Lysobacter in these soils, this genera is known to have
antagonistic activity against broad host-range plant pathogens due to the production
of a number of extracellular enzymes and other antifungal compounds. Based on
metagenomic analysis, 18 Lysobacter strains isolated using specific media showed
in vitro antifungal activity against the selected pathogens (Gómez Expósito et al.
2015). Thus, from this study, it was concluded that Lysobacter-based
bioformulations can be used as a sustainable approach to control various plant
diseases.

4.3 Understanding Specific-Soil Suppressiveness by
Employing Omics Approaches

In this section, we will emphasize on some studies that have adopted different omics-
based approaches to understand the mechanistic complexities of specific-soil sup-
pressiveness in context of particular pathogens and their respective host plants.

4.3.1 Rhizoctonia solani

Rhizoctonia solani, a fungal root pathogen, is one of the most studied systems in
the context of disease suppression in soil. In order to understand how the sugarbeet
rhizospheric microbiome composition and associated activities get altered when
grown in a suppressive soil proven to be effective against R. solani damping-off
infection (Mendes et al. 2011), a metagenomics study (based on Illumina HiSeq
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2000 platform) was conducted by Chapelle et al. (2016). Comparative analysis of
the composition of rhizobacterial community in non-inoculated and R. solani inoc-
ulated sugarbeet rhizospheric sample revealed significant differences at taxonomic
levels. Interestingly, an abundance of bacterial members belonging to
Oxalobacteraceae, Sphingomonadaceae, Sphingobacteriaceae, and
Burkholderiaceae families were witnessed in R. solani inoculated sugarbeet
rhizospheric microbiome, in contrast to control. Many members from this family
have known inhibitory effects against fungal infections (Johnsen et al. 2010). To
gain further insights into the functional aspects of these abundant bacterial family
members, metatranscriptomic analysis was carried out. Greater expression of tran-
scripts related to oxidative stress response, in addition to transcripts governing HfrA/
secretion systems and guanosine-3,5-bis-pyrophosphate ((p)ppGpp) metabolism,
also known as bacterial alarmone, related to stress regulation, was found in
R. solani inoculated sugarbeet rhizospheric microbiome, vis-a-vis control. Based
on evidences from their study, Chapelle et al. (2016) proposed a mechanistic model,
and highlighted that during R. solani infection in sugarbeet grown in suppressive
soil, oxalic acid, or related molecules are produced, which trigger the activation of
abundantly present rhizospheric members from suppressive soil, belonging to
Oxalobacteraceae or Burkholderiaceae and eventually lead to oxidative stress
responses. This possibly results in the activation of several pathways in plants,
which finally establish fungal disease resistance.

Chapelle et al. (2016) had reported the involvement of Burkholderiaceae family
members in disease suppressiveness of R. solani. As an extension of this study,
Carrión et al. (2018) employed omics approach to conduct a comprehensive inves-
tigation in order to delineate the mechanistic role of selected Burkholderiaceae
family members in disease suppression. Based on growth on semi-selective media
(Pseudomonas cepacia azelaic with and without acid tryptamine, PCAT and
PCATm, respectively) and PCR analysis, a total of 29 isolates of Burkholderia
and Paraburkholderia were found in suppressive soil analysed from sugarbeet
rhizospheric region. Based on PhyloChip analysis (Mendes et al. 2011), classifica-
tion of isolates was done into five species, namely Paraburkholderia hospita,
P. terricola, P. graminis, Burkholderia pyrrocinia, and P. caledonica. Abundance
of these species, majorly P. graminis, was found in R. solani suppressive soil.
However, in vitro sandwich plate assay conducted to assess antifungal activity of
strains mediated by volatile organic compounds (VOCs) revealed that only
P. graminis potently inhibited R. solani infection by VOCs. Metabolite profiling
of all identified isolates detected about 1084 putative VOCs. Comparison of VOC
profiles of selected strains with P. graminis PHS1 (exhibiting hyphal inhibition by
VOCs in vitro) found 158 significantly different VOCs produced by P. graminis
PHS1. Representation of sulphurous VOCs was found to be high among the
significantly different VOCs of P. graminis PHS1. Further, comparative genomics
analysis of five species upon sequencing (on Pacific Biosciences {PacBio} RS
sequencing platform) revealed unique genes in P. graminis PHS1, involved in
production of sulphurous VOCs. Overall, this study revealed that selected
Burkholderiaceae members were responsible for disease suppressiveness of soil
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analysed from rhizospheric region of sugarbeet, and possible mode of antifungal
activity was due to production of sulphurous VOCs.

In another study, van der Voort et al. (2016) employed 16S rRNA-microarray
approach to decipher the effect of heat perturbations on changes in sugarbeet
rhizobacterial community compositions and in turn suppressive potential of
soil against damping-off disease caused by R. solani. PhyloChip data analysis for
16S rRNA gene was carried out using the data generated by Mendes et al. (2011) by
employing customized tool, Phyloprofiler, developed in an open web-based platform
named Galaxy (Blankenberg et al. 2010; Goecks et al. 2010). The study revealed that
disturbances caused due to heat treatment for short duration (50/80 �C for 1 h)
resulted in enhanced alpha diversity in rhizospheric microbiome and even led to
abolishment of disease suppressive trait of soil. Members of bacterial families, viz.
Cornamonadaceae, Bacillaceae, and Paenibacillaceae were found to be dominantly
responsive to heat disturbances, whereas Actinobacteria and Acidobacteria mem-
bers exhibited variable responses to heat perturbations. Based on this study, a
rhizobacterial community reassembly model was put forth, whereby heat perturba-
tion was found to accentuate growth of heat-tolerant and fast growing bacterial
members, in contrast to the temperature-sensitive bacterial members, which possibly
play roles in soil disease suppressiveness. Thus, heat treatment was found to
restructure the existing sugarbeet rhizospheric bacterial communities, and eventually
disrupt disease suppressive capacity of soil.

Rhizoctonia solani anastomosis group (AG) 8, causing root rot and bare patch
disease is a major menace for farmers as it adversely affects crop productivity of
cereals like wheat and barley. Suppression of R. solani AG8 was reported in a
farmer’s field at Avon, South Australia. A pioneering study carried out by Hayden
et al. (2019) exemplified the implementation of environmental metabolomics in
understanding the differences between R. solani suppressive and conducive soils
present in wheat and barley cropping regions of Avon. By conducting metabolic
profiling at different cropping stages of both wheat and barley, by untargeted nuclear
magnetic resonance (NMR) performed on Bruker Avance III 700 MHz spectrometer
and high performance liquid chromatography-mass spectroscopy (HPLC-MS),
conducted in Agilent series 1290 HPLC system, stark differences in R. solani
suppressive and conducive soils could be detected. The soil extracts of R. solani
suppressive soils were richer in lipids, sugars, and terpenes, as compared to condu-
cive soils. 2D-NMR analysis identified glucose as the key carbohydrate molecule
present in R. solani suppressive soils. LC-MS analysis further highlighted that levels
of metacarpal metabolites, the possible biomarkers, were prominently enhanced in
R. solani suppressive soils. Thus, this study firstly reported the approach of
untargeted metabolomics which could enable distinction between conducive and
suppressive soils, in context of R. solani AG8. They also identified macrocarpals as
the naturally occurring secondary metabolites, having antimicrobial property; their
elevated levels in soil can possibly be correlated with disease suppression.
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4.3.2 Fusarium oxysporum

Fusarium spp. are among the most detrimental pathogens, which negatively affect a
broad range of plant hosts. F. oxysporum f. sp. fragariae causes wilt disease of
strawberry, which is difficult to control. Cha et al. (2016) identified in close
proximity a wilt-suppressive and conducive area in strawberry fields situated in
Sancheong County, Korea. Using traditional and community-based approaches, the
biological basis of Fusarium wilt disease suppression could be deciphered. Next-
generation sequencing on Roche GX-FLX plus platform followed by analysis
revealed variations in rhizobacterial communities among the wilt-suppressive and
conducive samples taken from strawberry rhizosphere. Fusarium wilt-suppressive
soil had prominent representation of Proteobacteria, Firmicutes, followed by
Actinobacteria and Acidobacteria. Among them, Actinobacteria members were
slow growers and exhibited tolerance to heat treatment, besides being abundantly
present in Fusarium wilt-suppressive soil. Isolation of Actinobacteriamembers from
Fusarium wilt-suppressive soil was done using selective media and their antagonis-
tic activity was assessed in vitro. Strain S4-7, identified as Streptomyces sp., was
found to exhibit potent biocontrol property against Fusarium wilt of strawberry.
Genome mining enabled the identification of an effective thiopeptide antibiotic,
produced by Streptomyces sp., with possible role in Fusarium wilt disease suppres-
sion. Further, HPLC-HR-ESI-MS/MS analysis revealed conprimycin and ectoine as
active components of thiopeptide, from Streptomyces sp., to be responsible for
antifungal activity. The mode of action of thiopeptide was found to be against fungal
cell wall synthesis, as revealed by a chemogenomics study, carried out in yeast
system.

4.3.3 Phytophthora nicotianae

P. nicotianae is the causative agent of root rot, crown rot, fruit rot, leaf-and-stem
infection across diverse host plants including onion, tobacco, tomato, pepper, citrus
plants, etc. In a recent investigation, Ros et al. (2018) used omics approach to
delineate the suppressive effects of compost samples against Phytophthora nicotiana
in pepper. Overall, compost samples exhibited disease suppressive effects; however,
their effects had significant variations depending on the composition of composts.
Analysis after 16S rRNA amplicon sequencing, performed on Illumina MiSeq plat-
form, revealed the abundant existence of Proteobacteria, Bacteroidetes, and
Actinobacteria in the microbial population of different compost samples analysed.
Sequencing of ITS2 region resulted in identification of Ascomycota, Basidiomycota,
and Mucoromycota as dominant representatives of fungal community in compost
samples. By employing metaproteomics approach, about 367 bacterial proteins were
identified in compost samples after LC-MS analysis. Among Proteobacteria, bac-
terial proteins primarily belonged to orders Xanthomonadales, Pseudomonadales
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and Enterobacteriales within Gammaproteobacteria, followed by order Rhizobiales
within Alphaproteobacteria whereas Betaproteobacteria had abundance of proteins
produced by order Burkholderiales. Among Actinobacteria, bacterial proteins pro-
duced by order Micromonosporales were found to be dominantly represented.
Majority of bacterial proteins were found to be involved in carbohydrate transpor-
tation and metabolism, besides determination of cell wall structure in suppressive
composts. Correlating the sequencing and metaproteomic data, insights could be
gained into the dynamics of compost-mediated disease suppression in pepper plants.

In accordance to the reported omics-based studies related to general- and specific-
disease suppressive soils, the representative molecular and microbial markers that
can be used to characterize disease suppressive soils, having antagonistic activity
against bacterial and fungal plant pathogens have been summarized in Table 4.2.
Using various meta-tools to determine the presence of these markers in any given
soil samples, mapping of disease suppressive potential can be easily done.

4.4 Conclusions and Future Perspectives

Over the past few decades, extensive investigations have been carried out in order to
understand the intricacies of soil disease suppressiveness in context of various soil-
borne pathogens and their respective host plants. With rapid technological advance-
ments in recent times, researchers have been employing omics-based approaches to
further delineate the biological basis governing soil suppressiveness across the world
(Gómez Expósito et al. 2017; Schlatter et al. 2017). Insights have been gained
pertaining to the roles of microbial population, exhibiting biocontrol activities in
disease suppressive soils. Several molecular and microbial markers related to soil
disease suppressiveness have already been identified. Role of compost in disease
suppression has also been recognized. Efforts have been made to systematically
characterize metabolites/proteins that impart disease suppressiveness in soil and
thereby interpret the biological basis of their mode of action.

It is important to devise new strategies that can ensure effective disease manage-
ment practices in agricultural systems. Emerging approach in this direction is
the transfer of disease suppressive soils or microbiome transfer to establish biolog-
ical control of diseases across different regions of the world. Successful application
of microbiome transfer has been evidenced in the case of potato common scab, black
root rot disease of tobacco as well as damping-off disease in sugarbeet (Foo et al.
2017). Further, the potential of synthetic microbial communities in mediating soil
disease suppressiveness against soil-borne pathogens may be assessed. Application
of high throughput technologies, coupled with exhaustive metadata analysis, can be
explored to further understand the complexities of microbial interactions, which
govern disease suppressiveness of diverse soils. While disease suppressive capacity
of soils have been assessed for major soil-borne pathogens like Rhizoctonia,
Gaeumannomyces, and Fusarium spp., it is important to decipher the disease
suppressive dynamics of lesser studied pathogens also, as disease incidences are

4 “Omics” Approaches for Understanding Soil Suppressiveness in 67



Table 4.2 Molecular and microbial markers for characterization of disease suppressive soils

A. Molecular markers associated with disease suppressive soils
S. no. Marker Type of

compound
Mechanism of antagonism References

1 Zopfiellin Cyclooctanoid Interrupts the metabolic path-
way related to oxaloacetate
synthesis

Daferner
et al. (2002)

2 Methyl
2-methylpentanoate,
1,3,5-trichloro-2-
methoxy benzene

Volatiles Interrupts cell signalling
responsible for fungal growth

Cordovez
et al. (2015)

3 Iturin-A, Surfactin Lipopeptides Amphipathic molecules dis-
rupt cell integrity

Yokota and
Hayakawa
(2015)

4 Nunamycin and
Nunapeptin

Non-ribo-
somal
peptides

Amphipathic molecules dis-
rupt cell integrity

Michelsen
et al. (2015)

5 2,4-
diacetylphloroglucinol

Phenol Disrupts cell integrity and
membrane potential

De Souza
et al. (2003)

6 Chitinase Hydrolytic
enzyme

Hydrolysis of fungal cell wall Hjort et al.
(2009)

7 Glucanase Hydrolytic
enzyme

Damages cell wall structure of
fungal cells

O’Kennedy
et al. (2011)

8 Phenazine
1-carboxylic acid

Aromatic car-
boxylic acid

Disrupts cell integrity Mavrodi
et al. (2012)

9 Pyrrolnitrin Pyrrole Interrupts respiratory electron
transport chain

Dignam
et al. (2018)

10 Bacilysin Non-ribo-
somal peptide

Inhibition of glucosamine
synthetase

Dignam
et al. (2018)

B. Microbial markers associated with disease suppressive soils
S. no. Indicator microbes with biocontrol

potential
Target(/s) pathogen(/s) References

1 Sphingobacterium,
Sphingobacteriaceae,Chaetomiaceae,
Zopfiella, Lasiosphaeriaceae,
Chryseobacterium soldanellicola, dif-
ferent species of Streptomyces,
Burkholderia pyrrocinia,
Paraburkholderia caledonica,
P. graminis, P. hospita, P. terricola

Rhizoctonia solani Liu et al.
(2019)
Yin et al.
(2013)
Cordovez
et al. (2015)
Carrión
et al. (2019)

2. Bacillus amyloliquefaciens, Bacillus
subtilis, Pseudomonas brenneri, Pseu-
domonas protegens

Alterneria solani, F. solani,
Pectobacterium carotovorum,
Phytophthora infestans, Rhi-
zoctonia solani

Caulier
et al. (2018)

3. Acidobacteria, Planctomycetes,
Nitrospirae, Chloroflexi, Chlorobi

Pythium intermedium van
Agtmaal
et al. (2015)

4. Pseudomonas spp., Burkholderia spp.,
and Actinobacteria

Rosellinia necatrix Vida et al.
(2016)

(continued)
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often pathogen- and crop-specific. By amalgamating various omics approaches, it is
essential to understand the mechanisms operative in different disease suppressive
soils, so that it would be possible to develop suitable disease management practices
that can mitigate different biotic stresses in plants. These endeavours can eventually
improve crop productivity worldwide and establish sustainable agricultural systems.
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Chapter 5
Rhizosphere Dynamics: An OMICS
Perspective

Munazza Ijaz, Muhammad Iqbal, Bilal Rasool, Muhammad Zubair,
Issayeva Akmaral Umirbekovna, Shazia Anwer Bukhari, and
Mahmood-ur-Rahman

Abstract The interface between soil and root system of a plant is referred to as
rhizosphere. A complex microbiome is present in the ecosystem of rhizosphere that
produces different metabolites and proteins to enhance the growth and yield of
different plant species. To understand the complexity of rhizosphere, different
multi-OMICS techniques are being used in modern sciences. The success of rhizo-
sphere science depends upon the successful implementation of multi-OMICS tech-
nique and use of robust bioinformatics software and databases which have been used
to analyze the complex data. In this chapter, the recent advances, challenges,
bioinformatics tools, and latest OMICS technologies to study the rhizosphere
dynamics have been discussed.
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5.1 Introduction

The interface between plant roots and their surrounding soil is called rhizosphere
(Odelade and Babalola 2019). It is considered as a most complex terrestrial habitat
for microorganisms on earth that has thousands of microbial cells and millions of
functional genes per gram of soil (Mueller et al. 2019). The diverse microbial
community that lives in rhizosphere is usually known as rhizosphere microbiome
which survives on exudates of plant roots and comprised of numerous microbes such
as viruses, bacteria, archaea, and some eukaryotes (Berendsen et al. 2012). The
production and comparative abundance of different plant root exudates have positive
effects on the soil environment as well as on microbiome present in the rhizosphere.
Reciprocally, the plant growth and yield also get benefits from the functional and
structural properties of rhizosphere microbiome (Mendes et al. 2019).

The study of complex mechanisms in rhizosphere is quite possible by using
integrated multi-OMICS approach that is a new branch of System Biology (Shinano
2019). It is an interdisciplinary field based on complex interactions in the biological
systems and follows a holistic approach in advanced biological research (Pinu et al.
2019). Integrated multi-OMICS approaches are very useful for analyzing both
individuals and community datasets by involving multiple OMES, such as genomes
[information obtained from DNA (Faure et al. 2020)], transcriptome [information
obtained from mRNA (Gao et al. 2019)], proteomes [information obtained from
proteins (Kumar et al. 2019)], and metabolome [information obtained from metab-
olites (Mhlongo et al. 2018)]. In multi-OMICS approach, data or information is
collected and analyzed with the help of a variety of softwares and instruments. For
example: to study the “Central Dogma of Molecular Biology,” it is necessary to
measure and analyze three biomolecules, e.g., DNA, RNA, and protein by using
multivariate statistical approaches (Csala and Zwinderman 2019).

These techniques can also be studied at the organism and community level. The
blueprint of an organism is described as genome that means the same arrangement
and sequence of nucleotides is required to build an identical organism (Franzosa
et al. 2018). The “meta” prefix is used when the genomic information is of “com-
munities.” So, metagenome can be defined as the complete set of genomic informa-
tion of all prokaryotes, eukaryotes, and viruses present in an ecosystem like
rhizosphere. The metagenome contains the complete information about genes and
organisms present in a specific ecosystem (Krishnaraj and Pasha 2017). All the
functional genes which are transcriptionally active at the time of sampling from an
ecosystem are described by metatranscriptomics (Yergeau et al. 2018). The complete
set of proteins isolated from the ecosystem at specific time is known as
metaproteome. The metaproteome gives the complete information about the regula-
tion of gene expression (Bona et al. 2019). The set of all metabolites in an ecosystem
is referred to as metametabolome (Badri et al. 2013).

The non-sequence modifications of DNA and protein of whole community is
known as metaepigenome and metaepiproteome, respectively (Allen et al. 2017;
Hiraoka et al. 2019). The methylation pattern of DNA in a community
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(metaepigenome) can be measured by next-generation sequencing (NGS)
(Chatterjee et al. 2017). The post-translational modification, such as protein phos-
phorylation in an ecosystem (metaepiproteome) can be measured by mass spectrom-
etry (MS) (Uzasci et al. 2016). The multi-OMICS technologies are important to
understand the dynamic features of rhizosphere. The OMICS study can provide an
exciting insight of different cellular functions, which may determine the relationship
between various processes which are occurring in rhizosphere of a plant. These
techniques are robust and significantly important; therefore, a detailed explanation of
different OMICS technologies is provided in this chapter.

5.2 Recent Advances in OMICS Approaches
in Rhizosphere

Currently, there is a limited number of studies reported on the integrated multi-
OMICS approaches in rhizosphere science, but many researchers have applied
different OMICS techniques individually and elucidated functional and structural
properties of rhizosphere. For example, structures of microbial community in the
rhizosphere and identification of its core members have been revealed directly with
the help of NGS of 16S ribosomal RNA by using polymerase chain reaction (PCR)
that helps in determining the diversity of organisms in rhizospheric soil of different
plants such as: coffee, soybean, maize, common annual grass, white lupins and
Arabidopsis thaliana (Marschner et al. 2002; Bulgarelli et al. 2012; Peiffer et al.
2013; Navarrete et al. 2014; Caldwell et al. 2015; Shi et al. 2015). Additionally, the
metabolic potential of rhizospheric soil has been revealed by the studies of
metagenomics on rice and soybean (Knief et al. 2012; Navarrete et al. 2014).

A metatranscriptomic study has revealed that in cereal grains (soybean and
maize), the application of glyphosate on bacterial cells affects the metabolism of
amino acids, nutrients, and carbohydrates (Newman et al. 2016). When rhizosphere
of legumes (peas) was compared with of cereal grains (oat and wheat), it was
identified from metatranscriptomic study that microbiome of pea was different and
stronger due to “rhizosphere effect” (Turner et al. 2013). While there are no reports
available currently about metaepigenomics in neither rhizosphere nor in some other
ecosystem, the focus is needed on this domain for identification and understanding
the diverse microbial community and its regulation at the epigenomic level. How-
ever, epigenomics has been used to study bacterial epigenetic modifications which
give a way out for the application of metaepigenomic techniques on rhizosphere
(Murray et al. 2012).

There are no significant studies available on metaepiproteome in complex eco-
systems like rhizosphere, but it has been successfully implemented on microbial
communities living on less diverse and simple ecosystems like acid mine waste and
deep vents (Li et al. 2014; Zhang et al. 2016). The function of proteins present in
rhizosphere and their downstream regulation could be studied by metaepiproteome.
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The black truffles, rhizospheric methanotrophs, or tissues of roots in field-grown rice
and decomposition of leaf litter are some sources on which metaproteomic studies
can be done (Schneider et al. 2012; Bao et al. 2014; Zampieri et al. 2016). It has been
found that approximately 4600 proteins are present in the phyllosphere (above-
ground plant parts) of rice plant (Knief et al. 2012). The rhizosphere metabolomics
usually focus on some general root exudates. In A. thaliana, many root exudates
have been identified from metametabolomics studies and authenticated by multivar-
iate data analysis (Van Dam and Bouwmeester 2016). Although independent studies
provide bundles of information, integrated OMICS approaches can give a better
understanding of the different processes like gene expression, transcription, transla-
tion, and production of metabolites.

5.3 Challenges for Multi-OMICS Data Analysis
in Rhizosphere

Most of the disciplinary practices and methods used in rhizosphere science are going
through a transition phase. Nowadays, it is known as an interdisciplinary field that
focuses on statistics, mathematics, software engineering, computer science, and
informatics. Improvement in experimental technologies and the development of
complementary software are two main reasons for the success of rhizosphere
science. There are different integrated multi-OMICS techniques that are necessary
to be studied for understanding the rhizospheric structure; however, in rhizosphere
environment, they face four major challenges.

Firstly, the datasets obtained from rhizosphere are big and complex due to high
diversity of organisms in soil. The microarray analysis of rhizosphere sample
suggested that it contains approximately 30,000 OTUs (operational taxonomic
units) of archaea and bacteria (Mendes et al. 2011). A study based upon 16S
rRNA sequencing of rhizosphere of A. thaliana had suggested that more than
2000 OTUs are found per gram of rhizospheric soil that represents high biodiversity
of rhizosphere (Bulgarelli et al. 2012). Secondly, the analysis of rhizosphere needs
many replicates for each sample to maintain the statistical viability (Vandenbygaart
and Allen 2011). So, analysis and management of rhizosphere data is a major
problem. Thirdly, wet laboratory technologies are developing with a rapid pace,
thus more robust, specific and sophisticated softwares are needed to analyze the data.
The actual computational performance does not combat with the data production by
OMICS approaches. Different OMICS technologies produce enormous amount of
data that can only be analyzed by new algorithms and software (Roudier et al. 2015).
Fourthly, different factors in software engineering disrupt the OMICS data analysis,
such as the absence of rigor, reproducibility, and data curation. Some software used
for OMICS analysis, suffer from internal systematic issues as well as some of them
are prohibitively licensed, instead of being open source software (Asay 2008). While
some software are very difficult to use for new-users and non-professionals, they do
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not reproduce the results and do not behave according to expectations (Hunt et al.
2014).

Moreover, some softwares, databases, and websites are not actively maintained or
diminish from internet sources. The data obtained from new rhizospheric technolo-
gies is needed to be analyzed from the well-tested OMICS softwares which are
validated and endorsed by community. They must have specific benchmarks,
datasets, standards, and workflows to study the properties of rhizosphere. The
analysis of data, either of single or multi-OMICS is a great challenge in the current
world of rapid discoveries. The more robust, cost-effective, less time consuming,
appropriate and specific softwares, websites, and databases are required for analysis
of rhizosphere in this era of multi-OMICS.

5.4 Current Resources for Multi-OMICS Analysis

There are many online softwares, databases, and websites available to analyze data
of metagenomics, metatranscriptomics, metaproteomics, and metametabolomics
(Table 5.1). These softwares are used for general OMICS searches and very few
of them are specific to rhizospheric analysis. Therefore, more softwares are required
to specifically analyze the OMICS of rhizosphere.

5.5 Recent OMICS Techniques to Study Rhizosphere
Dynamics

The advancement of previous approaches and development of emerging technolo-
gies, such as metabolomics, metagenomics, metatranscriptomics, and
metaproteomics have been used to measure the composition and behavior of rhizo-
sphere. These improvements answer previous questions and raise new questions
about the functions of different microbial communities (Sørensen et al. 2009; Hirsch
et al. 2010).

5.5.1 Metagenomics

Metagenomics is defined as the complete genetic information of all organisms and
cells that are present in a specific location at specific time. The different living
organisms are present in rhizosphere, so it is important to understand their ecological
functions, distribution and activity in rhizosphere. Various advanced molecular
biology techniques have been reported to study microbial diversity in rhizosphere.
In rhizospheric soil, the bacterial diversity which is identified by different molecular
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techniques is much more than the predicted OTUs. The metagenomes studied on the
basis of 16S rRNA and ITS have revealed 33,346 bacterial (Mendes et al. 2011) and
3320 fungal (Schmidt et al. 2013) OTUs are present in 1 g of rhizospheric soil. The
Roche 454 and Illumina sequencing platform can be used to examine the biodiver-
sity in the rhizosphere (Unno 2015). It has been revealed from Roche
454 pyrosequencing that proteobacteria, bacteroidetes, acidobacteria, and
actinobacteria are the major bacterial taxa present in the rhizosphere of oak plant
(Uroz et al. 2010).

The metagenomic analysis of micro-sites present in Lolium perenne has
suggested that proteobacteria, acidobacteria, and actinobacteria are some major
bacterial taxa which were found (Lagos et al. 2014). The studies of apple rhizosphere
through Illumina sequencing have identified different bacterial taxa, such as
gematimonadetes, bacteroidetes, proteobacteria, actinobacteria, and acidobacteria
(Sun et al. 2014). The metagenomics studies give a detailed description about
various OTUs present in the rhizospheric soil. These techniques are also helpful in
determining the functions and structures of different OTUs present in an ecosystem.

5.5.2 Metaproteomics

The metaproteomics is defined as complete set of proteins that are present in an
ecosystem at specific time interval. It can give information about different soil
microbes and their functional importance, such as biochemical processes and biore-
mediation (Bastida et al. 2012). The proteogenomics is an emerging technique used
for studying physiology, ecology, and evolution of rhizospheric microbiome
(VerBerkmoes et al. 2009). This approach gives significant results because it uses
metagenomics and metaproteomics simultaneously to analyze the data. Although
this is important to understand that the repositories used for identification of protein–
protein interactions are incomplete, numerous metaproteomics experiments have
revealed the protein diversity that are usually expressed because of plant interactions
with rhizospheric microbiome. The metatranscriptomic profile of ratoon sugarcane
and plant sugarcane was compared in a study which suggested that rhizosphere has
more enzymatic activities, increased gene expression and great catabolic diversity
due to more plant–microbe interactions. It was also discussed in this research that
24.77% proteins of rhizosphere came from bacteria and are involved in membrane
transport and signal transduction (Lin et al. 2013). Another study on Rehmannia
glutinosa has described that majority of the proteins produced by rhizospheric
microbes are involved in energy and amino acid metabolism and to generate
responses against different abiotic and biotic stresses (Wu et al. 2011). Moreover,
a study on Lactuca sativa rhizospheric soil has showed that proteins present in
rhizosphere are responsible for energy metabolism, responses against viruses, and
different stresses (Moretti et al. 2012). The metatranscriptomic studies give a clear
description of the genes and proteins present in rhizosphere.

82 M. Ijaz et al.



5.5.3 Metatranscriptomics

The metatranscriptomics is referred to as complete set of mRNA present in all cells
or organisms of in an ecosystem at specific time, and it provides the information
about the gene expression of microbiome. The metabolic activities and functions of
novel genes can be identified using metatranscriptomic analysis. Although the
metatranscriptomic study has tremendous potential, it cannot be widely used for
rhizosphere due to instability of mRNA as well as it is quite difficult to extract
mRNA from a complex ecosystem. There are many other challenges, i.e., interfer-
ence of mRNA molecules with humic acid, shorter half-life of mRNA, and it is
difficult to separate mRNA from other molecules of RNA. Moreover, most of the
experiments on rhizospheric soil usually focus on plant growth-promoting
rhizobacteria (PGPRs). Therefore, there is a great need to study other microbes
like fungi, protozoa, microalgae, and archaea present in microbiome of rhizosphere
(Lagos et al. 2015).

The evolutionary studies of archaeal and bacterial genomes can be improved with
the help of “Genomic Encyclopedia of Bacteria and Archaea (GEBA) project”which
was launched in 2007 (Rinke et al. 2013). The strain Mg1 of Streptomyces species
was sequenced by using a third-generation sequencing tool named as “Pacific bio-
sciences single–molecule real–time (PacBio-RS-SMRT) sequencer” (Niedringhaus
et al. 2012). This species was found responsible for the degradation of a famous
bacteria known as Bacillus subtilis (Hoefler et al. 2013). The technique was bene-
ficial to analyze long reads of 16S rRNA which was extracted from rhizospheric soil.
It can also be used for determining the microbial taxonomy and phylogeny of
bacteria present in rhizosphere. The metatranscriptomic studies can be helpful to
find the gene expression of multiple genes present in microbiome in response to
particular stress. There is a need to develop robust techniques to isolate RNA from
rhizospheric soil so that metatranscriptomic analysis could be carried out in an
efficient way.

5.5.4 Metametabolomics

The metametabolomics is the study of structures and functions of metabolites
present in an ecosystem. This is not restricted to metabolic profiling only, but also
considers the production and identification of metabolites present in that specific
region of rhizosphere and quantify the abundance of different metabolites.
Metametabolomics also determine the differences among metabolites. In rhizo-
sphere, the metabolites come from root exudates which can be identified and
analyzed by this technique. Many PGPRs live near the roots which are also respon-
sible for the production of metabolites. This technique helps to determine the
functions and production of metabolites produced from rhizosphere microbiome.
Numerous compounds in rhizosphere are identified and modified through various
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metabolomic engineering techniques. These studies also provide a chance to criti-
cally analyze each metabolite produced from both microbiome and plant (Van Dam
and Bouwmeester 2016). The metametabolomic analysis become more complicated
in higher plants that produce 1–2 million metabolites approximately (Oksman-
Caldentey and Inzé 2004).

It is important to understand the difference between targeted metabolite analysis
and comprehensive global metabolic profiling, so that a complete understanding of
primary and secondary metabolites production can be obtained. Some of organic
acids, carbohydrates, lipids, vitamins, amino acids, glucosinolates, alkaloids,
phenyl-propanoids, trepenoids along with different secondary metabolites should
be used to develop a comprehensive metabolic profile that could be varied in
the rhizosphere of different plants. Thus, it is stated that complex interaction between
the microbiome and higher plants is not the only problem in metabolomics, but also
the different classes of chemicals increase the complexity of rhizosphere. According
to the varying microbiome and plant interaction, different metabolites are produced
which can be analyzed by applying different methods. Nowadays, plant pathology
can be studied by merging metabolomics, genomics, and transcriptomics
approaches. Metabolomics is a post-genomic technique used to study the bacteria,
archaea, and other prokaryotes in rhizosphere.

The different enzyme-based or RNA-based techniques are not enough to identify
the effects of different metabolites in an ecosystem. Therefore, various technologies,
such as chromatography, spectroscopy, spectrometry, and nuclear magnetic reso-
nance are also utilized to estimate, identify, and report the various concentrations of
metabolites in rhizosphere at a specific time interval. The different processes of data
visualization and bioinformatics have been used to make a profile of metabolites and
for identifying their functions in rhizospheric soil. With the help of these approaches
a detailed report of rhizosphere metametabolomics can be generated that would have
minimum errors. The metabolic profiling is referred as a complete record of various
metabolites present in an organism or ecosystem. Metabolic profiling is a complex
and expensive procedure, so before going to it some cheap procedures like nuclear
magnetic resonance, spectroscopy, fingerprinting, and chromatography are applied
to identify and screen different metabolites (Verma et al. 2018). There are some
reports in which liquid chromatography and mass spectrometry have been found
useful in identifying different metabolites from extract. Some bioinformatics tools
are also used to develop a profile of metabolites from the data obtained through mass
spectrometry and liquid chromatography (Goodacre et al. 2004). Although
metametabolomics is a complex procedure, it gives useful insight into rhizosphere
dynamics.
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5.6 Conclusions

The rhizosphere has a complex ecosystem and many important phenomena are
taking place there. So, it is required to study the complex dynamics of the
rhizospheric soil. The growth and yield of different plants depend upon the healthy
rhizospheric environment. Many complex agricultural issues can be resolved by
applying multi-OMICS techniques to study the rhizospheric soil, but there is a great
need to develop robust softwares which can be used to analyze the complex data
obtained from multi-OMICS experiments. Moreover, the application of bioinfor-
matics tools can reduce the time and cost of extensive procedures to analyze
the rhizosphere.
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Chapter 6
Transcriptomics Analyses
and the Relationship Between Plant
and Plant Growth-Promoting Rhizobacteria
(PGPR)

Shokufeh Moradi, Bahman Khoshru, Debasis Mitra,
Bhaswatimayee Mahakur, Pradeep K. Das Mohapatra,
Behnam Asgari Lajayer, and Mansour Ghorbanpour

Abstract Plants and microbes in the rhizosphere are constantly interacting in a
chain, from pathogens (deleterious) to symbionts (beneficial). Relationships between
the two sides are very large at various stages of plant development, and signaling
molecules play a significant role on both sides. The result of this conversation is that
the microbe is absorbed by the plant’s roots and responds to it. Among the microbes
that approach the roots of plants during this signal conversation are the plant growth-
promoting rhizobacteria (PGPR). In order to emphasize the beneficial effects of
PGPR on the plant, it is important for the roots of the plants to be colonized by
PGPR. Colonization of plant roots by PGPR induces beneficial effects on the plant,
such as increasing the overall growth of the plant, resistance to disease, and
increasing tolerance to abiotic stresses. Among the mechanisms used by PGPR to
increase plant growth are: eliminating the need for plant nitrogen by fixing the
molecular nitrogen of the atmosphere, increasing the bioavailability of nutrients
needed by plants such as phosphorus, potassium, and iron producing various growth
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hormones and regulators such as auxins, cytokinins, and gibberellins, reducing the
level of ethylene produced by plant roots under stress conditions, etc. Since PGPR
may modulate plant regulatory mechanisms, an important question to be answered is
how is the plant–microbe relationship, and what factors play a role in it, and whether
or not the microbes can influence the expression of different plant genes at different
times? To answer these questions, transcriptomics analysis is an ideal technique that
has been addressed in this chapter.

Keywords Microbes · Plants · Rhizosphere · Transcriptomics · PGPR

6.1 Introduction

In the rhizosphere, the root is associated with a large number of microorganisms,
collectively referred to as the rhizosphere microbiome (Berendsen et al. 2012;
Bulgarelli et al. 2013; Saghafi et al. 2018, 2019a, b, 2020). To preserve the root
microbiome, the plant secretes 20% of its photosynthetic material through the roots
(Bais et al. 2006). Rhizospheric bacteria take action in exchange for photosynthetic
substances provided by plant roots, such as improving root growth, increasing
uptake of nutrient, and stimulating the plant’s innate immune system (Lugtenberg
and Kamilova 2009; Berendsen et al. 2012; Venturi and Keel 2016; Sarikhani et al.
2019b; Khoshmanzar et al. 2020). Popular examples of such microbes include
arbuscular mycorrhiza (AM) fungi and PGPR bacteria (Zamioudis and Pieterse
2012; Sarikhani et al. 2019a). The ability of PGPR to increase plant growth and
immunity is associated with negative and hostile characteristics (Huot et al. 2014).
These bacteria prepare the soil for the development of biological controllers (Pieterse
et al. 2016).

To date, there has been a great deal of focus on the response of plants to these
beneficial microbes (Xie et al. 2015). Detailed work has been undertaken on the
interactions between plants and roots-related PGPR in order to define the criteria of
bacteria for adaptation and root colonization, and to provide valuable knowledge on
the possible applications of PGPR strains in agriculture (Fan et al. 2012). There is
irrefutable proof that interactions between bacteria and plants in the rhizosphere are
mainly controlled by root exudates. For example, flavonoids play a significant part in
the early signaling of the association of legumes and rhizobes, which are secreted
from the roots of legumes (Badri et al. 2009). There are many ways to understand
plant–microbial relationships, but to examine the momentary changes in these
interactions, a technique is needed that reveals the interaction at all times. In this
regard, transcriptome analysis can be the best technique.

The complete collection of RNA molecules in the organism is known as a
transcriptome. It consists of mRNAs (coding messenger-RNA), rRNAs (ribosomal
RNA), tRNAs (transfer RNA), and non-coding types of RNAs, such as sRNAs
(small RNAs). According to biological studies, mRNAs are important for the
comprehension of the functional elements of the genome and the molecular
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components of mRNA cells. Therefore, they are very important in terms of the
relationship between genotype and phenotype. There are basically three main tech-
niques to deal with transcriptome: microarrays, real-time RT-PCR, and next-
generation RNA sequencing (RNA-seq). In addition, the aim of transcriptomics is
to identify genes that are expressed under different conditions and provide a different
viewpoint on the genome (Lowe et al. 2017). Strategies and techniques such as
microarray analyses, cDNA-based suppression-subtractive hybridization, and pro-
moter trapping are used to study the interaction between root exudates and microbes
in the laboratory. Genes involved in this interaction include the genes of metabolism,
chemotaxis and bacterial motility, transport, and antibiotic secretion (Zhang et al.
2015).

Next-generation sequencing (NGS) techniques are used to sequence the whole
genome and to analyze gene expression at various periods (dynamic transcriptome)
(Metzker 2010). Certain uses of the NGS system include study of RNA (including
RNA-seq) in studies of small regulatory RNAs and genome annotation and calcu-
lation of transcript expression rates under various conditions for both eukaryotes and
prokaryotes. This approach provides a great way to research root exudate–bacteria
interactions than previous techniques such as microarray analysis and RNA-seq.
Therefore, it saves time and is useful in examining uncharacterized genes (Zhang
et al. 2015). These techniques have enhanced our thoughtful of plant–microbe
interactions and will create new perspectives for future researches (Xie et al. 2015).

6.2 Plant Growth-Promoting Rhizobacteria

There are bacteria around the root of the plants that interact with root exudates. Such
bacteria, classified as plant growth-promoting rhizobacteria (PGPR), colonize the
roots of the plant, promote plant development, and eliminate disease, and benefit
from the nutritional benefits of the food. Based on their interaction with plants,
PGPR can be classified into two groups: co-existing bacteria and free-living
rhizobacteria (Khan 2005). PGPR may also be split into two classes based on its
location: iPGPR and ePGPR. The iPGPR, which resides within plant cells, develops
nodules, and is found inside complex structures (i.e., symbiotic bacteria). And
ePGPR, which lives outside plant cells and does not develop nodules but also
accelerates plant development (e.g., free-living rhizobacteria) (Gray and Smith
2005). Various PGPR have been used as stimulant inoculants for plant growth in
agriculture and have benefited from their beneficial effects (Sarikhani et al. 2016,
2019a, b), PGPR genera such as Bacillus, Azotobacter, Azospirillum, Pseudomonas,
Serratia, Burkholderia, Agrobacterium, Arthrobacter, Erwinia, Micrococcous,
Caulobacter, Chromobacterium, Flavobacterium, and Cellulomonas Flavigena
(Hassan et al. 2019).
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6.3 Beneficial Characterizations of Rhizobacteria

The pathways used by PGPR to promote plant development have not yet been fully
established (Dey et al. 2004). However, there are several potential pathways for
growing plant development through PGPR include:

1. Increasing the bioavailability of nutrients required by the plant, i.e., atmospheric
nitrogen fixation (Kennedy et al. 2004), increasing the dissolution of low-soluble
mineral elements such as phosphorus and potassium (Sarikhani et al. 2016,
2019a, b; Banerjee and Yasmin 2002), production of siderophores and increased
bioavailability of elements such as iron (Glick and Pasternak 2003).

2. Production of various hormones and stimulating plant growth such as IAA
(indole acetic acid) cytokinin’s (Dey et al. 2004) GA (gibberellic acid), and
ABA (abscisic acid) (Dobbelaere et al. 2003).

3. Increasing root growth in stress conditions by producing ACC
(1-aminocyclopropane-1-carboxylate) deaminase enzyme and reducing ethylene
level and increasing the root length and growth (Glick et al. 1998).

4. Restricting or controlling the plant pathogens through the production of
siderophores, antibiotics, chitinase, ß-1, 3-glucanase, hydrogen cyanide, fluores-
cent pigment, etc. (Glick and Pasternak 2003).

5. Production of water-soluble B vitamins such as niacin, pantothenic acid, thia-
mine, riboflavin, and biotin (Revillas et al. 2000; Heidarpour et al. 2019).

6. Improving soil structure, and bioaccumulation or microbial leaching of minerals
(Sarikhani et al. 2019b).

The PGPR also have recently been used to mineralize organic pollutants, such as
bioremediation of oil-contaminated soils (Zhuang et al. 2007). Given the above, it
can be understood that if the plant can benefit from the help of these beneficial
microbes, it will lead to increased growth and yield even at stressful conditions
(Shoebitz et al. 2009).

The population of these beneficial bacteria in the soil is generally low, and one of
agricultural researchers’ aims is to raise the population of these beneficial bacteria in
the soil. For example, the use of these beneficial microbes in the form of
biofertilizers and their inoculation into plants while increasing plant yield, will
lead to an increase in the population of these beneficial bacteria in the soil (Burd
et al. 2000). Currently, a variety of PGPR are used around the world in various forms
such as liquid and solid biofertilizers (Cocking 2003.

6.4 Interaction of Plant and Beneficial Rhizobacteria

The word “rhizosphere” was first coined by Hiltner as the field of microbial action
around rhizosphere and roots (Hiltner 1904). Rhizosphere as the amount of soil that
has been influenced by exudation from plant root tissues and colonized by
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rhizobacteria. Bacterial populations have been estimated to be 10–100 times higher
in the rhizosphere than in bulk soil (Berendsen et al. 2012). Rhizobacterial interac-
tions with roots of plants in the rhizosphere can be positive, negative, or neutral.
Friendly associations can contribute to enhanced growth of plants and to suppression
of plant pathogens (Morgan et al. 2005). The role of rhizosphere is crucial to plant
growth promotion, nutrition, and crop quality (Berg and Smalla 2009; Hassan et al.
2019; Mitra et al. 2019a, b) due to the significance of plant–microbe interactions in
carbon sequestration, nutrient cycling, and ecosystem functioning (Singh et al. 2004;
Sarikhani et al. 2016, 2019a). The beneficial relationships between the plant and the
microbes are complicated. Plants emit chemicals such as malic acid that draw
rhizobacteria, enabling microorganisms to move to and from the roots. Rhizobacteria
consume sugars and amino acids extracted from the plant during colonization. At the
same time, PGPR produces substances that influence plant growth and development,
such as IAA hormones, cytokinins, and gibberellins (Mitra et al. 2016; Sarikhani
et al. 2019b).

PGPR-associated host plants comprise members of the families: Fabaceae,
Asteraceae, Poaceae, Crassulaceae Asteraceae, Brassicaceae, and Solanaceae.
Fabaceae includes essential Glycine max, Pisum sativum, and Medicago sativa
crops. Within this family, the symbiotic relationship between endophytic nitrogen-
fixing bacteria and leguminous plants has been well described (Oldroyd et al. 2011).
Crop plants belonging to the Poaceae family used maize, sorghum, and barley for the
phytoremediation of metal polluted soil because of their high productivity and good
demand for biofuels (Vamerali et al. 2010). The PGPB related with these plants is
linked to the free-living Pseudomonas sp. and Burkholderia sp. as well as the
association of endophytic (Bacillus sp.) with hyper-accumulator plants. Microbial
populations associated with plants and soil have been found to have some specificity
for growing plant species that could be attributable to secondary metabolites gener-
ated by root exudates. Knowing PGPB genetic variation may expand the knowledge
base for beneficial plant–microbe interactions and may be useful in formulating new
inoculants and improving crop processes for the most efficient usage (Yadav et al.
2015; Mitra 2017; Khoshmanzar et al. 2020).

Endo-rhizosphere is rich in diverse nutrients associated with bulk soil due to an
abundance of root exudates, including amino acids, organic acids, enzymes, carbo-
hydrates, minerals, and vitamins (Gray and Smith 2005). Root exudates emit ions,
water, and oxygen which common of all produce compounds containing carbon
(Uren 2000). Some root exudates are repellent pathogenic, whereas others are
appealing to helpful microbes (Panneerselvam et al. 2019; Ahemad and Kibret
2014) based on physiological status, plant types, and microorganisms (Kang et al.
2010). Various associations between rhizobacteria and plant arise in the rhizosphere.
For example, signal molecule interactions between plant roots and rhizobacteria are
similarly important and occur in the rhizosphere (Werner 2000), and these interac-
tions may be root–insect, root–root, and root–microbe interactions that influence
plant growth and crop yields (Shaikh et al. 2018; Bais et al. 2006).

Despite the general agreement of extracellular plant-derived signals can affect the
behavior of bacteria in the rhizosphere, very little is known about the impact of these
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signals on the patterns of bacterial gene expression and the role of such genes with
altered expression in the plant–microbe interaction (PMI) process (Goldberg 2000).
It is also hypothesized that plant selection of specific microbial communities relies,
at least in part, on the activation of unusual patterns of gene expression in the
microbe in response to molecular signals from the host (Morrissey et al. 2004). In
the period of sustainable crop growth, PMI in the rhizosphere plays a crucial part in
converting, mobilizing, solubilizing, etc. nutrients from a small supply of nutrients,
and eventually taking up plant-based vital nutrients to achieve their maximum
genetic potential.

6.5 Genes and Plant Growth Promotion

It has already been determined that all plant–PGPR interaction mechanisms are
based on genetics and signal transduction components between the two parties,
and due to the low studies in this part, our understanding of transcriptional changes
during colonization is not very broad (Zhuang et al. 2007). The number of PGPR-
inoculated plant reports about transcriptional changes is not copious, and most of
these studies are based on the Induced Systemic Resistance (ISR) of the plant
(especially Arabidopsis thaliana) by PGPRs such as Bradyrhizobium strain
ORS278 (Cartieaux et al. 2008), Pseudomonas sp. (Verhagen et al. 2004), and
B. subtilis (Zhuang et al. 2007). In recent years, studies of Arabidopsis have
shown that transcriptional responses in the plant are highly dependent on its PGPR
partner.

The biofilm formation has been shown to have a very important effect on bacterial
establishment and colonization of plant roots (Rudrappa et al. 2008). Another effect
of biofilm formation is its protective effect, which protects the root from the invasion
of pathogens (Compant et al. 2005) in the bacterium B. amyloliquefaciens. The two
genes ycmA and luxS have been identified by root exudates. ycmA plays a role in the
formation of critical biofilm (Fernández et al. 2012). It has been shown that root
exudates, in addition to expressing the above genes, have increased the transcription
intensity of these genes (Fan et al. 2012).

Plant growth hormones are an important factor in regulating plant development
including auxin, cytokinin, and bioactive gibberellin (Han et al. 2018). Auxin is
involved in lateral root growth and hypocotyls elongation, cytokinins, and gibber-
ellins are phytohormones that regulate growth, seed germination, seed, fruit growth,
etc. (Swain and Singh 2005). The changes in the rate of transcription of genes
associated with plant hormones have been reported in PGPR-inoculated plants
(Xie et al. 2015). It has been reported that the exact concentration of auxin and
cytokinin in the plant should be adjusted between the root system and the aerial part
of the plant, and the slightest change in the transcriptional rate of genes related to
phytohormones can alter the growth and pattern of all plant parts, which have been
reported in PGPR-induced plants (Skvortsov and Azhikina 2010).
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In the PGPR, P. putida strain MTCC5279 has been reported to induce many
genes with the help of plants. These genes are involved in maintaining the integrity
of the genome, auxin production responsive to plant growth, signaling, and induc-
tion of ABA in induced systemic resistance, nutrient uptake, inducing the biosyn-
thesis pathway of amino acids, etc. (Jatan et al. 2019). It has been reported that the
presence of PGPR in the roots of Arabidopsis thaliana leads to RNA helicase
(PRH75, At5g62190) overexpression, which is needed to regulate plant growth
and development in young tissues (Ng and Yanofsky 2001; Sessitsch et al. 2005).
It has also been reported that At2g15890 is responsible for the emergence of petals
and stamen identity, which is overexpressed in the presence of PGPR.

In plant–PGPR interaction, it is necessary to identify signals released from both
sides to better understand this relationship (Cartieaux et al. 2008). Understanding
these signals causes the bacteria to be attracted to the roots of the plant to settle in the
roots, Chemotaxis, mobility caused by flagella, riding, and production of surfactants
are among the movements of bacteria in the roots (Compant et al. 2005). The
analysis of transcriptional modifications in the genes involved in chemotaxis
(cheC, cheD) and motility (hag, fliP, fliD, and flgM) found that the root exudate
produces compounds that enhance the expression of these genes (Sessitsch et al.
2005).

In order to investigate the regulatory functions of PGPR in rhizosphere and plant
activity, in particular the mechanisms involved in stimulating plant growth due to the
expression of specific genes in the plant affected by PGPR, transcriptional studies
are required and may provide an in-depth understanding of plant–microbe relations.

6.6 Transcriptomics Analyses

Identification and characterization of PGPRs has been performed by different phe-
notypic and molecular methods. The new approaches are generally based on molec-
ular methods to study of beneficial characterizations of rhizobacteria which may
decrease the time of findings from days to a few hours. These methods such as
transcriptomics are very particular, optional, and trustworthy to find PGPRs, as well
as they can establish the association between function and organization of the
PGPRs (Kasa et al. 2015). Transcriptomics is used as a useful methodology to
analyze host–microorganism interactions. Only a few reports were carried out with
PGPRs (Table 6.1) (Chauhan et al. 2019), while this method has been widely applied
to study of gene expression related to pathogenic microbes infecting their host plant
(Tiwari et al. 2017). Some of the genes involved in metabolism and chemotaxis from
P. aeruginosa were recognized to react to sugar-beet root exudates (Chauhan et al.
2019).
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6.6.1 Isolation of RNA (Properties of Bacterial RNA)

Transcriptome analysis of plant growth-promoting bacteria needs to the isolation of
bacterial RNA. A typical bacterial cell contains 0.05–0.1 pg of RNA, which consti-
tutes approximately 6% of the cell weight. The total bacterial RNA, i.e., the bacterial
transcriptome, contains a large amount of non-coding RNA species, such as tRNA
and rRNA; moreover, the latter one as a structural and functional component of
ribosomes represents the fraction largest in its relative content. In addition, the total
RNA of the bacterial cell contains regulatory RNA and mRNA. All of the mRNAs,
whose amount in only a few cases exceeds 4% of the total cell RNA, are gene
transcripts of this cell (Brown 2002). A distinctive feature of bacteria is a high rate of
adaptation to changing environmental conditions; correspondingly, the variations in
gene expression in reaction to either host defense or the action of drugs are a
necessary condition for the survival and function of intracellular pathogens. How-
ever, the rate of changes in the functional state of a bacterial cell depends not only on
the rate of synthesis of new gene transcripts but also on the degradation rate of old
transcripts. It has been demonstrated that the half-life of bacterial RNA is relatively
short, amounting on average to 7 min; moreover, this time for several mRNAs is less
than 2 min (Hambraeus et al. 2003). Ribonucleases, in particular, RNase E, are the
main contributors to the degradation of bacterial transcripts. Therefore, the possibil-
ity of isolating high-quality RNA appropriate for further analysis depends on how
quickly the method used for RNA isolation allows the ribonucleases to be
inactivated and RNA to be stabilized (Kennell 2002).

Table 6.1 Some studies of PGPRs transcriptomics

Function Bacteria References

Salt tolerance IcePGPB Halomonas sp. Zhang et al.
(2020)

Soybean resistance to SCN Bacillus simplex Kang et al.
(2018)

Nitrogen fixation Paenibacillus
riograndensis

Brito et al.
(2017)

Synthesis of plant hormones
Biofilm formation
Nonribosomal synthesis of lipopeptides and
polyketides

Bacillus
amyloliquefaciens

Zhang et al.
(2015)

Responses of PGPR to root exudates Bacillus
amyloliquefaciens

Fan et al. (2012)

Rice seedlings Bacillus subtilis Xie et al. (2015)
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6.6.2 RNA Amplification and the Synthesis
of Bacterial cDNA

The relative prokaryotic RNA content in an infected tissue specimen is low, and the
isolated RNA quantity is frequently insufficient for transcriptome analysis. There-
fore, researchers have to resort to various methods of RNA or cDNA amplification
(Lang et al. 2009). For a high-throughput whole transcriptome analysis, the total
RNA enriched with bacterial species is usually converted into a cDNA sample using
reverse transcription enzymes. To construct the first cDNA strand from prokaryotic
RNA, the three primer types are used, namely, specifically selected primers to certain
regions of individual genes (gene-specific primers) (Stahlberg et al. 2004), oligo
(dT) primers complementary to poly(A) 30terminal regions of mRNA, and random
primers. The method for cDNA synthesis using gene-specific primers is inapplicable
to bacterial whole transcriptome analysis. The question regarding the degree of
prokaryotic mRNA polyadenylation is still open. Although it has been shown that
some subpopulations of bacterial mRNAs are polyadenylated (Adilakshmi et al.
2000), the pool of prokaryotic cDNAs produced by this method is insufficiently
representative (Lakey et al. 2002). The use of random priming for synthesizing
bacterial cDNA also has some disadvantages, the main one of which is the unequal
probability of synthesis from a particular primer under specified conditions of the
reaction medium, which also leads to the degeneration of a cDNA pool. All of this
complicates the work with bacterial mRNA and interferes with the application of
several popular methods for the analysis of gene expression (SAGE and its deriva-
tives) (Skvortsov and Azhikina 2010).

6.6.3 Expressed Sequence Tags (EST)

The use of expressed sequence tags dates related to the early 1980s (Parkinson and
Blaxter 2009). Expressed sequence tags (ESTs) are relatively short reads (200–800
base pairs (bp)) generated from cDNA clones from which PCR primers can be
derived. Since they indicate the expressed section of a genome, ESTs are extremely
useful for the identification of genes and verification of gene predictions, therefore
represent an inexpensive replacement for a complete sequence of genomes. EST
analysis and SAGE are unsuitable to the analysis of bacterial transcriptomes due to
the specific particularity of mRNA polyadenylation (Skvortsov and Azhikina 2010).
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6.6.4 Serial and Cap Analysis of Gene Expression (SAGE/
CAGE)

This method (SAGE) is a highly effective technology to get a global gene expression
profile of a cell or tissue (Velculescu et al. 2000). This technique can be used to
characterize a set of specific genes by comparing the profiles created for a pair of
cells that are kept at various conditions and also for the explanation of quantitative
gene expression template that does not depend on the previous access of transcript
information (Polyak and Riggins 2001; Velculescu et al. 2000). SAGE methodology
isolates short fragments of genetic data from the expressed genes. These unique
sequence labels approximately 9–10 base pairs (bp) are conjoined sequentially into
long DNA fragments for lump-sum sequencing. The serial analysis of many gene-
specific labels allows the concurrent accumulation of information from genes
expressed in the tissue of interest and creates an expression profile in cell or tissue
under study (Hogenesch et al. 2001). This sequencing information is then examined
to identify gene expression level and each gene expressed in the cell (Daly 2002), as
well as forms a library that analyzes the variances in gene expression between cells.
The abundance of each SAGE label in the cloned multimers directly reflects the
transcript frequency (Velculescu et al. 2000).

Most SAGE experiments have used the 4-bp recognition site anchoring enzyme
NlaIII, predicted to occur every 256 bp and thus present on most mRNA species.
However, creating a second SAGE library with a different anchoring enzyme may be
useful for detecting transcripts without a NlaIII site and also for reconfirming
transcript identity in those with both anchoring restriction sites. This may signifi-
cantly lessen the work associated with data analysis, but the marginal utility of such
an approach remains to be demonstrated. Next, the sample is equally divided into
two separate tubes and ligated to two different linkers, A or B. Both linkers contain
the recognition site for BsmFI, a type IIS restriction enzyme that cuts 10-bp 3 from
the anchoring enzyme recognition site. BsmFI generates a unique oligonucleotide
known as the SAGE tag, hence called the tagging enzyme (TE). The SAGE tags
released from the oligo(dT) beads are then separated, blunted, and ligated to each
other to give rise to ditags. The ditags are PCR amplified, released from the linkers,
gel purified, serially ligated, cloned, and sequenced using an automated sequencer
(SAGE2) (Patino et al. 2002).
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6.7 Methods for Investigating Gene Expression

6.7.1 Methods Based on Hybridization

6.7.1.1 Northern Blot

The Northern blot is a molecular biology technique used in a mixture of complete
RNAs to check for different populations of RNAs (Moustafa and Cross 2016). The
approach is focused upon a nucleotide strand’s capacity to bind to its complementary
strand. The name Northern blot was granted in reference to the Southern blot
(Southern 1975), which, although with DNA, follows the same definition (Moustafa
and Cross 2016). The approach is used to identify differences in target gene
expression rates in a certain tissue, cell form, or biological samples under specified
environmental conditions (e.g., stressed vs. non-stressed plants). A number of
changes have been proposed since its introduction to improve Northern blot results
and durability. Vacuum-blotting, RNA-transfer simulation, and RNA ultraviolet
fixation are among these modifications (Kroczek and Siebert 1990).

6.7.1.2 Microarray Method

DNA microarrays are a series of small probes of oligonucleotides bound to a rigid
surface (i.e., glass) unique to thousands of genes. This method is focused on
nanofabrication methods and is focused on simultaneous hybridization of the detec-
tor, where it is possible to calculate the relative abundance of thousands of transcripts
from two or more samples at once.

The first step in microarray protocols, as in the case of RT-PCR, is isolation of
RNA and its retro-transcription into cDNA. After that phase, numerous labeling
techniques are carried out by commercial channels (Valdés et al. 2013). The
fluorescence produced by identified targets bound with the probes is determined
after hybridization. Raw data (intensity of fluorescence) is transformed and normal-
ized to eliminate systemic variance and enable the comparison of various samples to
be rendered acceptable. Therefore, the analysis of gene expression between various
samples is achieved by evaluating a ratio of fluorescence strength (Karakach et al.
2010). Microarrays usually have a strong background noise owing to cross-
hybridization, rendering low-copy transcripts challenging to identify. Microarrays
are closed platforms which require prior knowledge of the assessed organism to
design the probes (Karakach et al. 2010).
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6.7.2 Methods Based on PCR

6.7.2.1 Real-Time Quantitative PCR

Real-time quantitative polymerase chain reaction (qPCR) is actually one of the most
commonly used techniques for researching identified candidate gene expression.
When this process is used, complementary DNA (cDNA) is synthesized by reverse
transcriptase from isolated mRNA. Gene-specific primers are then used to amplify
the interest gene, and the abundance of that particular cDNA molecule is tracked in
real time during amplification using fluorescent dyes (Josefsen et al. 2012). One can
measure the actual sum of starting RNA transcript from the kinetics of PCR product
creation and do quantitative comparisons between samples (Pfaffl 2012). It is,
however, very inexpensive, and simple to pursue in-house relative to many other
RNA technologies; therefore, it is accessible to most study classes. However,
questions have been posed repeatedly about (1) the lack of quality assurance and
standardization in a real-time qPCR workflow, and (2) the lack of adequate infor-
mation published in several publications to allow for qualitative assessment of the
findings (Chapman and Waldenström 2015; Derveaux et al. 2010).

6.7.2.2 Real-Time RT-PCR

Real-time RT-PCR is based on the fluorescence detection during the PCR reaction.
The PCR reaction mix for this reason involves intercalating fluorophores or specified
labeling probes. Because of these properties, RT-PCR in real time became the global
norm for gene expression assays because it is fast, accurate, and capable of detecting
tiny amounts and transcript number changes (Kubista et al. 2006). One of the key
drawbacks of RT-PCR in real-time is the small number of assays per sample that can
be performed concurrently for operational purposes. Transcriptomics’ high-
throughput criteria contribute to PCR not being considered a transcriptomic method
in real time but is commonly accepted as a testing tool (Lamas et al. 2016; Nonis
et al. 2014).

Several reasons have led to the development of this technique into a common
testing tool: (1) as a homogeneous assay it eliminates the need for post-PCR
processing; (2) a broad dynamic range (>107-fold) allows for a direct comparison
between RNAs that vary greatly in their abundance; and (3) the assay understands
the PCR’s intrinsic quantitative ability, rendering it a quantitative.

6.7.3 Next-Generation Sequencing: RNA-Seq

A particular technique called RNA-seq rapidly extended NGS from
DNA-sequencing to gene expression study. Such technologies are open systems
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focused on a combination of high-throughput sequencing and bioinformatics
methods that collect and measure the transcripts present in an RNA extract (Lowe
et al. 2017). The application of NGS allows for comparisons of genomes and
transcriptomes between organisms, species, and meta-populations, thereby allowing
a better underlying of ecological and evolutionary processes. For example, NGS data
analyzes help researchers to investigate selection trends (Angeloni et al. 2012) and to
recognize candidate genes that underpin adaptation (Stapley et al. 2010). It is
significant because loci are candidates for variability in fitness under selection and
could be representative of the particular selective forces involved (Nielsen 2005).
NGS approaches allow demographic and genetic popularization processes to be
separated from adaptive processes (Kirk and Freeland 2011; Angeloni et al. 2012).

Genome-wide coverage utilizing NGS enables processes impacting more than
one locus to be observed, such as genomic regions providing signs of systematic
sweeps (Schlötterer 2003; Boitard et al. 2012). Statistical approaches are possible to
improve the identification of selective sweeps, such as the pooled-sample sensitive
approach developed by Boitard et al. (2012), which was able to use coverage for
genotyping as small as 1X per individual.

6.7.3.1 Methods Based on Sequencing

Transcriptome analysis is normally completed using methodologies based on
hybridization or sequencing which involve mandatory of fluorescently tagged frag-
ments to supplementary probe sequences (e.g., in microarray) (Okoniewski and
Miller 2006) although these methods suffer from low determination, specificity,
and sensibility (Mantione et al. 2014). Later, Sanger sequencing-based approaches
such as SAGE, CAGE, and MPSS were developed; however, these techniques have
major difficulties such as pay attention to parochial transcripts structure and incapa-
bility to individuate between isoforms (Wang et al. 2009; Anamika et al. 2016).
Next-generation sequencing (NGS) is approach that allows sequencing of many
gene fragments in parallel and RNA sequencing (RNA-seq) has appeared as a potent
technique for assessment of the transcriptome (Okoniewski and Miller 2006).

6.7.3.2 Using RNA-Seq for the Analysis of Bacterial Transcriptomes

Some benefits of the use of RNA-seq for the study of transcriptomics includes not
relying on prior information about sequences of genome or transcript and also
methods of sequencing without the cross-hybridization, decreasing background
levels. This method improves the range of detection because signals are not saturated
as easily (Wang et al. 2009). Using RNA-seq allows the discovery of several
transcriptional features such as the 50 end of all RNAs (Wurtzel et al. 2010), and
TSSs can be identified by choosing for primary RNA transcripts with a 5-
0-triphosphate (Sharma et al. 2009). Most RNA-seq studies are performed on instru-
ments, while direct sequencing of RNAs is probable (Ozsolak et al. 2009) and
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sequence DNAs designed for DNA-based sequencing because of the development of
commercial instruments. Hence, the preparation of the cDNA library from RNA is a
necessary stage for RNA-seq. Every cDNA in an RNA-seq library is created of a
cDNA insert of determined size connected to adapter fragments. Methods of the
cDNA library preparation differ according to the RNA species under examination,
so it can vary in sequence, size, abundance, and structural properties (Hrdlickova
et al. 2017). To determine the ratio between primary and processed for a transcript
can be used from an RNA ligation stage that differentially labels primary and
processed RNA molecules. This method should be directly appropriate to
RNA-seq though it has not been used on a global scale (Filiatrault 2011).

6.7.3.3 Bioinformatics Analysis of RNA-Seq Data

Several stages are necessary for analysis of the RNA-seq data including quality
assessment, information processing, transcriptome assembly, quantification, statis-
tical analysis, and functional annotation (Fig. 6.1) which are described in the
following (Anamika et al. 2016):

Fig. 6.1 Basic RNA-seq data analysis workflow (Anamika et al. 2016)
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6.7.3.4 Quality Check and Data Preprocessing

One of the expected outcomes of transcriptomics analysis is the process of finding
knowledge from a lot of data that is retrieved. Then this function requires the
processing of millions of short reads (~100 nucleotides). Data preprocessing usually
includes filtering, alignment, assembly, clustering, counting, and normalization for
each experimental condition, and also analyses of differential expression in these
conditions. In this regard, the FASTQ format has recently considered (Fig. 6.2) (Lee-
Liu et al. 2012).

FastQC

FastQC can be run from both Linux (using command line) and Windows systems as
an independent Java-based program. This function is an easy-to-use tool that
assesses the quality of read data from the next-generation sequencers method
(NGS). The inputs for FastQC can be either in the compressed or uncompressed
form in Fastq and SAM format that relates primary statistics such as over-
represented sequences, base content, and quality, and adapter sequence (Anamika
et al. 2016).

6.7.3.5 Transcriptome Assembly

Generally, the first stage of the computational workflow in a transcriptome profiling
study is aligning the quality-evaluated reads to the reference transcriptome using an
appropriate read aligner. In the following, the reads are used to determination of the
genomic features quantity that needs to be standardized before comparison of
different experimental conditions. In order to draw statistical inference on their
difference in expression between samples, the standardized counts are used. Finally,
the expressed genes are processed to conclude biological insights. The success of
transcriptome assembly depends on decisions that the user takes while choosing
reference genome, annotation, tools, and associated parameter values at every step of
the analysis (Anamika et al. 2016). Decisions that the user takes while choosing
reference genome, annotation, tools, and associated parameter values at every step of
the analysis brings success in transcriptome assembly (Anamika et al. 2016).

6.7.3.6 Annotation and Pathway Analysis

After computing the abundance of transcriptome and mapping the assembled contigs
fragments to the assembled transcriptome or reference genome and differential
expression data analysis, it can be searched coding regions within de novo assem-
bled transcripts using ORF predictor tools such as Transdecoder (http://transdecoder.
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Fig. 6.2 RNA-seq data analysis flowchart. Next-generation sequencing results can be delivered in
several input formats. However, FASTQ format has become a standard in the field. Adapters are
first removed from raw sequences, followed by data filtering. The next stage is the mapping of the
filtered sequences to Xenopus reference sequences. Output files (SAM/BAM) can be used for
quantification and differential gene expression analyses. It is important to mention that although
deep sequencing technologies and their associated software are rapidly changing, the diagram

104 S. Moradi et al.



github.io/). Two tools of homologous gene identification of assembled transcripts
are BLAT and BLAST (Altschul et al. 1990).

6.8 Conclusion

The plant–microbe association in the soil is inevitable, and if this relationship is
being optimal, it can guarantee the growth and yield of the plant under different
conditions (stress and non-stress). In this situation that the growth of plants and
production of agricultural products is facing many problems due to biotic and abiotic
stresses and agricultural products are constantly decreasing, so regulating and
establishing plant–microbial relationship can greatly reduce the problems of univer-
sal food production. In order to establish an ideal relationship between the plant and
beneficial soil microbes, a deep insight about this relationship is needed. The more
the unknowns of this relationship are resolved, the more the production of agricul-
tural products will increase with the help of these beneficial microbes. A PGPR may
affect the entire life cycle of a plant, accelerate its growth rate, and shorten its
growing season, both of which are related to most crops. The whole plant–microbial
relationship is under the full control of genes, and the expression or silencing of these
genes is influenced by various factors. Identifying and understanding the involve
genes and mechanisms in this relationship can have profound implications and is
important for improving strategies for using these beneficial bacteria in agriculture.

Unlike the genome, which is stable, the transcriptome varies (highly dynamic)
from moment to moment in the throughout the life of an organism. To understand
these changes, analysis of content and composition of the mRNA molecules
(transcriptome analysis) can be helpful. With these studies, it is possible to estimate
which gene is expressed at a particular time. Also, specific RNA molecules numbers
analyzing can show the intensity of transcription of a gene. Therefore, to understand
the function of genes (coding or non-coding) and also to detect their expression in
different stages of the organism’s life, transcriptome analysis can be used. Finally,
the study of transcriptome analysis results gives us a lot of practical information
about the deep understanding of plant–PGPR interaction during plant lifetime, which
could be a window into new science for relevant biological associations and solve
the shortage of agricultural products production universal problems.

⁄�

Fig. 6.2 (continued) displayed here is robust because it is general and not attached to any specific
software or technology (Lee-Liu et al. 2012)
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Chapter 7
Proteomics for Understanding
the Interaction Between Plant
and Rhizospheric Microflora

Ramesh Namdeo Pudake, Pallavi, and Mrinalini Singh Pundir

Abstract Rhizosphere is a complex system of biological activities of plants and
microflora. Interaction between plants and microbes residing in its rhizosphere has
been point of interest among the scientific communities for a long time. In-depth
knowledge of these interactions is crucial to the current world scenario in context of
food availability. Metagenomics and metatranscriptomic studies are being done with
the objective elucidate the diversity of culturable and nonculturable microbiome. But
this information is incomplete without understanding their functional role in plant–
microbiome interaction. Complete proteome represents the ongoing metabolic pro-
cesses happening in soil at particular time and needs to be studied for knowing the
key players in functionality of microbiome. Metaproteomics is emerging tool that
sketch the information about entire proteins present in a specific environmental
situation at a particular time. It correlates the diversity and functionality of soil
microorganisms in both dominant species and at community level. With the help of
traditional tools, the development of high-throughput proteomics tools like mass
spectrometry, the better understanding of functional aspects of soil complex system
has become feasible. However, the progress is little bit slow due to the presence of
some bottle neck like presence of various interfering molecules present in the soil
samples, scarcity of soil proteome databases, etc. This chapter discusses proteomics
tools that are available and review recent studies where the proteomics tools have
been applied to decode the underlying processes responsible for differential func-
tioning of soil microbiome in diverse environments.
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7.1 Introduction

To quench the hunger of ever-increasing world’s population, which is estimated to
reach the number of 10 billion by 2050, we need to substantially increase food
production. This is one of major challenge of the humankind in twenty-first century
(www.unfpa.org). This requires an increase in agricultural productivity of staple
crops. However, in the agriculture practices that are being used result in serious
environmental issues through the use of chemicals, salinization, and the lowered
water table. Additionally, crop yield in many African, Asian, and South American
developing countries cannot be further increased without an increase in forest area
and that may destruct the biodiversity, which is already under danger due to other
anthropogenic activities; thus, the greatest challenge for today’s science to improve
crop production in an environmentally viable manner.

Most of the scientific efforts are being focused on plant biotechnology, in
developing new crop varieties with enhanced biotic and abiotic stress tolerance
and better nutritional value using either breeding or genetic manipulation for intro-
duction of desirable traits. Considering the crucial role played by microbial commu-
nities in maintaining plant health, productivity, and biodiversity, their exploitation in
developing new environmentally sustainable crop productivity enhancing strategies
is minimal. While the current advancement in genomics tools and onsite studies is
helping in better understanding of plant–microbe interactions mechanism, but still its
full utilization in field conditions yet to be achieved.

In the past, majority of the diversity research was focused on plant and above-
ground visible organisms, but still many studies have clearly demonstrated the
correlation between the “above-ground” and “below-ground” invisible diversity
(Van Der Heijden et al. 2008). One basic and visible advantage for the plant is an
increase in access to soil nutrients. Age old symbiont that fixes nitrogen from air, i.e.,
rhizobia is extensively studied, and recent data shed more light on the mechanism of
nutrient exchange in between the plant and bacteria (Lodwig et al. 2003). The plant
released metabolites act as a signal to nitrogen-fixing bacteria, and they colonize the
roots to get carbohydrates from the plant in exchange of nitrogen. Similarly, some
fungal interactions with plants like arbuscular mycorrhizal fungi (AMF) also provide
nutrients and water to the host plant in exchange of carbohydrates (Bonfante and
Genre 2010). Along with these directly related microbes, there are many other
microbes like bacteria of the Azospirillum genus which promote the plant root
growth and better nutrient absorption (Arzanesh et al. 2011).

Along with the better nutrient availability to plant, the soil microbes also protect
their hosts from various disease-causing pathogens. For example, the microbes from
various genera like Pseudomonas, Bacillus, and Trichoderma protect the crop plants
through releasing a range of metabolites against other phytopathogens (Ab Rahman
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et al. 2018). Some non-pathogenic microbes on interaction with plants also confer a
kind of immunity to the host plant against pathogens which is termed as induced
systemic resistance (ISR). Some biocontrol agents are already available in the
market, not fully utilized because of persisting problems associated with their
efficacy and consistency. But through future research and improvement such
microbes can act as alternatives to chemical control that may help in achieving
sustainability in current agriculture.

Recent data on studies on this plant–rhizosphere microbes interaction have
indicated that there is the presence of high levels of host specificity. Even the
different cultivars of the same plant show different microbial dynamics associated
with them. This soil microbial population diversity associated with that particular
plant is partly dependent on inducing specific genes of soil microbes by the bio-
chemical signals released by the plant. A cross talk between the rhizobium and
legumes can be a base model of plant-induce gene expression in associated
microbes. Also, the phenolics compounds from plant wounds induces the expression
of virulence genes from Agrobacterium spp. is another example (Loh et al. 2002).
But in general, limited knowledge is available on the signaling mechanism involved
behind the beneficial microbes and plants interaction. This deeper understanding of
the processes related to the response and specificity of microbial population with the
plant signals will help in obtaining the benefits of plant–microbe interactions in full
extent.

During the last decade, the face of genomics has been completely overhauled; lots
of new technologies have been developed with improved precision and speed.
Today, it is possible to understand the molecular foundation of plant–microbe
interaction. By describing the root exudates, induced comprehensive molecular
response by soil microbes, will give us the complete picture of the functional
mechanism behind the specific diversity. It will describe the differential responses
of soil microbes to different plant cultivars and species. This information will also be
helpful in understanding the basic differences between associative, mutual, and
pathogenic interactions of microbes with the host plants.

Although there is availability of complete genome sequences owing to the
development of advanced sequencing technologies, this information is not enough
to understand the underlying mechanisms that synchronize all cellular functions
involved in supporting the complexity of microbial association with plants. Many
proteins arbitrate their defined function through the establishment of both stable or
transient protein complexes and networks. Many times the same protein may interact
with different partner proteins in different situations of biological activity, making
their expression pattern a spatially and temporally regulated phenomenon (Hsieh
et al. 2003). Besides, protein–protein interactions are regulated by post-translational
modifications and can be tissue specific (Zhang et al. 2019). To assist the basic
understanding in a plant–microbe interaction, the proteome and metabolome of the
plant can be potential tools to provide additional information on levels of regulation
and regulatory processes. This chapter will discuss the use of proteomics research
that has increased our understanding of plant–soil microbe interaction.
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7.2 Proteomics

Proteomics is defined as the technique when the entire protein component expressed
by a genome or by a cell of an organism can be used for assessing the expression and
localization of proteins, as well as for analysis of post-translational modifications
(Wilkins et al. 1996). Classical proteomics comprises protein identification, while
functional proteomics involves the detailed characterization of protein structure and
cellular function as well as protein–protein interactions (Yarmush and Jayaraman
2002). The functional proteomics is concentrated on the elucidation of interactions
between proteins in the cellular networks and it requires high-throughput instru-
ments to elucidate it(LaBaer and Ramachandran 2005; Yarmush and Jayaraman
2002). It intends to characterize the function of each protein in a given organism in a
particular cellular condition (LaBaer and Ramachandran 2005). The techniques that
are being used in proteomic studies are discussed below in detail.

7.2.1 Gel-Based Protein Separation Techniques

7.2.1.1 Two-Dimensional Gel Electrophoresis (2-DE)

The first and the oldest technique used for large-scale protein separation along with
detection of difference in abundance as well as pattern of protein distribution is
2-DE. Through the year, many technical advancements have been made to improve
its accuracy there by widening its scope of application. In this technique, proteins are
first separated on the basis of their charge (iso-electric focusing), followed by
separation according to their molecular weight (SDS-PAGE) (Görg et al. 2004;
Wittmann-Liebold et al. 2006). After separation, the next step is visualization of
protein spots, which is done by staining. Coomassie Blue (CBB-R, Colloidal),
SYPRO (ruby, red, orange), or silver stain are the commonly used dyes (Miller
et al. 2006; Westermeier and Marouga 2005). Among these, silver stain is the most
sensitive option with the detection limit of 0.1 ng/spot but it interferes with down-
stream processes, i.e., Edman degradation, mass spectrometry (MS) analysis and
accurate determination of spot volumes, making Coomassie Blue preferred dye for
the visualization of proteins (Wittmann-Liebold et al. 2006). Software such as
Melanie (Geneva Bioinformatics, Switzerland), PDQuest (Bio-Rad Life Science,
USA), Phoretix (http://www.perkinelmer.com/proteomics), Progenesis (Nonlinear
Dynamics, USA), Z3 or Z4000 are used for analysis of scanned digital images of
2-DE gels (Righetti et al. 2004). The protein spots of interest from the gels are
removed either manually or robotically. The differentially expressed protein samples
are then subjected to digestion with trypsin and analyzed by MS to ascertain their
identities (Rose et al. 2007).

Although the effectiveness of 2-DE is definite, there are several limitations to this
technique that include poor separation of protein with very high or lowMW, extreme
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pI values, low-abundance, and extremely hydrophobic proteins (Molloy and
Witzmann 2002). Still the robustness and reproducibility of protein separation by
immobilized pH gradient (IPG) strips make this technique attractive to many
researchers.

7.2.1.2 Fluorescence 2-D Difference Gel Electrophoresis (DIGE)

The major limitation associated with conventional 2-DE is its requirement of images
from at least two different gels for comparison to generate results, and it is very hard
to get reproducible gels when running 2-DE leading to discrepancies. Many times,
minute changes in protein level go undetected due to this (Marouga et al. 2005). The
newer DIGE techniques employ different sets of fluorophores (Cy2, Cy3, and Cy5)
which are able to covalently label each sample and separating them on the single
2-DE gel (Ünlü et al. 1997). The development and progress in DIGE technique has
made it more sensitive and linear by eliminating the post-electrophoretic processing
like fixing and destaining of protein gels. This similar electrophoresis conditions
increased the reproducibility by directly comparing samples (Van den Bergh and
Arckens 2005; Zhou et al. 2002) . The subsequent images are then electronically
assessed by using software such as De-Cyder (GE Healthcare, USA) that are
exclusively designed for 2-D DIGE analysis (Marouga et al. 2005). However, this
technique has its own drawbacks, like proteins lacking lysine cannot be labeled and
need special equipment for visualization. In addition, high cost of fluorophores leads
to significantly higher experimental cost (Lery et al. 2011; Van den Bergh and
Arckens 2005). Other multiplexing methods like labeling of two samples with
different radio isotopes have also been reported (Spandidos and Rabbitts 2002);
however, protein labeling in in vivo condition with radioactive isotope is not feasible
in all biological experiments; therefore, DIGE technique has more promise in terms
of applicability in gel-based protein analysis.

7.2.2 Gel-Free Proteomics

With the progress in the proteomics technologies and instrumentations, more precise
gel-free quantitative proteomics approaches with higher sensitivity are in different
phases of development and could be utilized for protein identification, dynamic
regulation, and analyzing the post-translational modifications (Picotti et al. 2009).
Gel-free-based technique includes Isotope Coded Affinity Tag (ICAT), Isobaric
Technique for Relative and Absolute Quantification (ITRAQ), Stable Isotope Label-
ing by Amino Acid in Cell Culture (SILAC), and Multidimensional Protein Identi-
fication Technique (Mud PIT). These techniques also follow the same steps as the
gel-based techniques, first separation is done, followed by identification or quanti-
fication by mass spectrometry or tandem mass spectrometry (Quirino et al. 2010).
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Finally, database comparison is done to identify protein and its function. They are
briefly discussed below.

7.2.2.1 Isotope-Coded Affinity Tag (ICAT)

In this method, proteins of two samples are chemically tagged with separate iso-
topes, and this differential tagging can help to measure quantitative changes in
protein levels (Gygi et al. 1999, 2002). ICAT reagents consist of three regions:
one protein-reactive group that specifically recognizes cysteine residues in proteins,
a second linker region, and third as an affinity biotin tag for separation. Two separate
linker regions containing a light or heavy isotope that vary by eight mass units are
used for differential labeling of the two separate protein samples. These protein
samples are then subjected to subsequent analysis by liquid chromatography-
electrospray-tandem mass spectrometry (LC-ESI-MS/MS) (Gygi et al. 1999). The
differential changes in particular protein levels induced by a treatment to the
organism are assessed by comparing the changes in intensities of protein peaks in
the samples that were labeled with the light and heavy isotopes. This technique
doesn’t require 2-DE, but has selective biasness toward the proteins with high
cysteine content and the detection of acidic proteins is difficult (Gygi et al. 1999;
Zhou et al. 2002). Although the automation is easily possible in case of ICAT as
compared to 2-DE, it is still not widely used in proteomics due to above said
limitations.

7.2.2.2 Isobaric Tags for Relative and Absolute Quantitation (iTRAQ)

The iTRAQ technology is a recent variation of ICAT (Ross et al. 2004), and both the
techniques are based on a similar concept of tagging. While ICAT depends on
tagging cysteine residues, the iTRAQ method uses tagging on primary amines
(Schneider et al. 2012). This technology offers many advantages, which include
the possibility of multiplexing several samples, quantification, simplified analysis,
and enhanced precision and accuracy in analysis (Aggarwal et al. 2006; Wiese et al.
2007). The iTRAQ labeling approach uses four isobaric amine-specific tags that
eliminates dependency of ICAT on nonabundant cysteine, and potentially allows for
the extended coverage of the proteome (Ross et al. 2004). Another advantage of this
technique is that we can tag four samples simultaneously that reduces the time
required for mass spectrometry analysis.

7.2.2.3 Multidimensional Protein Identification Technology (MudPIT)

Another robust and widely acceptable alternative to 2-DE in proteomics is MudPIT
that can analyze the complex protein mixtures (Issaq et al. 2005; Kislinger et al.
2005). In this method, the protein samples are subjected to sequence-specific
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enzymatic digestion, generally with trypsin and endo-proteinase lysC, and the
resultant peptide mixtures are separated by strong cation exchange (SCX) and
reversed phase (RP) high performance liquid chromatography (HPLC)(Chen et al.
2006). Peptides from the RP column go to the mass spectrometer and then MS data is
used to search the protein in databases by SEQUEST algorithm. This technique
identifies a comprehensive and unbiased list of proteins present in a proteome of any
organism, within a short time. It is highly sensitive and good reproducibility in
analysis; however, it is not able to provide quantitative information (Kislinger et al.
2005; Washburn et al. 2001). As discussed above, the blend of techniques like
HPLC, liquid phase isoelectric focusing and capillary electrophoresis has provided
the high-throughput alternative for protein separation from the complex mixtures
(Kislinger and Emili 2005). The techniques like MudPIT, ICAT, and iTRAQ
have the potential to replace 2-DE, at least theoretically, but did not achieve that
in the real world. That is due the confidence by researchers in tried and tested 2-DE
technique. In future, due to development of automation and availability of comput-
ing tools, it is expected that these gel-free techniques will gain more importance.
Even though the label-based, or label-free modern gel-free quantitative proteomic
methods can provide more information on the changes in protein expression quantity
between the samples when compared to 2-DE, they have their own limitations.
These methods are designed for less hydrophobic, more aqueous buffer-soluble
sub-proteomes making it difficult to get comprehensive proteome coverage. But
that is not the case for gel-based protein separation techniques where the more
efficient solubilization of hydrophobic protein occurs in buffers and detergents
used. The development and use of combination of label-free quantitative analysis
techniques and 2-DE gels can be a solution to solve one of the main disadvantages of
gel-based method for separation and quantitative analysis of proteins, i.e., related to
co-concentrating/co-localization of several proteins and their altered forms in one
spot or band on the gel.

7.2.3 Mass Spectrometry (MS) for Protein Identification

Irrespective of gel separation techniques, a mass spectrometer is always the primary
tool for protein identification. Prior to discovery of MS, the protein sequences were
decided by Edman degradation (Laursen 1971). However, recently a significant
development has been achieved in the application of MS for the identification of
protein sequences. Basic units of mass spectrometers are an ion source, the mass
analyzer, and an ion detection system. Three steps are involved in analysis of
proteins by MS and that are—(a) protein ionization and generation of gas-phase
ions, (b) separation of ions according to their mass to charge ratio and (c) detection of
ions (Yates et al. 2009). Proteins from gel-free methods like ICAT and MudPIT can
be directly used for analysis, while in gel-based separation (2-DE and 2-D DIGE),
the proteins are first recovered from gel and then digested with enzyme. The peptides
resulting after trypsin digestion are then separated by LC or directly analyzed by
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MS. After the analysis, the peptide masses are searched against the peptide finger-
prints of known proteins in the online databases using computer tools like Mascot
and Sequest (Helsens et al. 2007; Tabb 2015). Currently, the two major sources for
ionization, i.e., matrix-assisted laser desorption/ionization (MALDI) and
electrospray ionization (ESI) are being used in MS. Regarding the mass analyzers,
time-of-flight (TOF), ion trap, quadrupole, and Fourier transform ion cyclotron
(FTIC) are being commonly used for protein identification and characterization
(Aebersold and Mann 2003). A proteome analysis of different mass analyzers is
significantly improved when they are used in combination like use of quadrupole-
TOF and quadrupole-ion trap together. The blend of ionization sources with differ-
ent types of mass analyzers are used depending on the specific application, and this
provides a variety of dedicated mass spectrometers for protein analysis (Domon and
Aebersold 2006).

Simple MS such as MALDI-TOF can give us data only on mass of protein
whereas tandem MS are used for knowing the amino acid sequence (Domon and
Aebersold 2006). In MALDI, a laser ion source causes excitation of the matrix and
the sample of interest that is crystallized with it on a metal surface, which are then
released into the gas phase. It quantifies the mass of peptides produced from a trypsin
digested protein and produces a list of experimental peptide masses, commonly
referred as “mass fingerprints” (Fenselau 1997). In electrospray ionization (ESI), the
analyte is ionized from a solution and moved into the gas phase by creating a fine
spray from a high voltage needle that yields in multiple charging of the analyte and
generation of multiple consecutive ions (Fenn et al. 1989). Two MS separation
principles are used for performing tandem mass spectrometry or MS/MS. In this
method, separate trypsin-digested peptides are fragmented after a liquid phase
separation. Tandem MS instruments such as triple quadrupole, quadrupole ion
trap, Fourier transform ion-cyclotron resonance or quadrupole time-of-flight are
used in LC-MS/MS or nanospray experiments with electrospray ionization (ESI)
to generate ion spectra of peptide fragment (Corthals et al. 2000). This tandem
spectrum then used to search databases to know the protein identity. Recent devel-
opments made MS very accurate, high-throughput, and robust techniques that make
characterization of entire proteomes a feasible task.

7.3 Tools for Analyzing Protein–Protein Interactions
and Protein Function

Protein–protein interactions (PPIs) are very critical in a wide range of biological
processes and essential in cell-to-cell interactions, metabolism, and development of
organisms. Therefore, it is very important to study these interactions. Traditionally,
methods like yeast two-hybrid and immunoprecipitation (IP) are being popular
methods for identifying and characterizing protein–protein interactions. The devel-
opment of protein microarrays made high-throughput analysis possible for
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thousands of proteins simultaneously (Ramachandran et al. 2005). Protein
microarrays can provide important and systemic information in functional protein
analysis that may be not possible in other techniques. Antibodies or purified proteins
are immobilized in protein microarray chips are used to check the cellular response
to the eternal stimulus like pathogen or abiotic stress, and also to study protein–
protein interactions. To study protein function in high throughput, along with
antibodies and proteins, cDNAs are also being used for making nucleic acid pro-
grammable protein array (NAPPA) (Ramachandran et al. 2008). The integrated use
of surface plasmon resonance (SPR) and MS has created a unique opportunity for
protein interactions, where SPR measures the interaction of proteins with surface-
immobilized ligands, and MS is used to analyze the structural features of the bound
proteins (Nedelkov and Nelson 2003). From the past experience on these break-
through technologies, it is sure that they have potential to be a powerful tool utilized
throughout rhizosphere sciences.

7.4 Metaproteomics and Its Use in Rhizosphere

Metaproteomics is a powerful tool for obtaining data on all proteins isolated directly
from environmental and soil samples at a particular time. Microbial proteins medi-
ated many functions in soil, thus measuring or understanding of them though
“omics” science can be the true indicator of potential activity of the microbial
community. Metaproteomics can provide solution to elucidate the functional roles
of soil microorganism, such as biogeochemical processes, degradation, or bioreme-
diation processes (White et al. 2017). Similar to DNA and RNA isolation method
from soil and its uses in metagenomics and metatranscriptomics analysis, there has
been a steady progress in protein extraction and analytical methodology. However,
extraction of protein is problematic as they form strong interaction with other
organic and inorganic component of soil, thus a standard soil protocol is not
available and every method incorporates certain soil-based modifications (Chourey
et al. 2010; Taylor and Williams 2010). Along with this limited databases are
available for soil protein identification. And recent metaproteomics studies are filling
those gaps and found that diversity of proteins playing important role in plant and
soil microbial communities interactions (Abiraami et al. 2020). Some of the studies
with comparative metaproteomics analysis have been summarized in Table 7.1.

7.5 Metaproteogenomics Studies in Rhizosphere

In this method, the combined information of genomics and proteomics for a partic-
ular sample is used for better understanding of genetic and functional mechanisms
involved in any biological phenomenon. When we have to study the soil microbial
community, this global metagenome- and proteome-based analyses identify its
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important members, the physiological potential, and the metabolic pathways in
the rhizosphere under given conditions.

In one study, the rice rhizosphere and phyllosphere were analyzed with
metaproteogenomics, and its finding suggested that protein expression of
dinitrogenase reductase was specific to rhizosphere despite its genomic presence in
phyllosphere (Knief et al. 2012). Also, it was found that proteins involved in
methanogenesis and methanotrophy were abundant in the rhizosphere, highlighting
the importance of microbes in one-carbon compound cycling. In a consolidative
analyses on the proteome, transcriptome, and metabolome of Arabidopsis and well-
known PGPR strain Paenibacillus polymyxa E681; it has been reported that induced
metabolism and activation of defense-related proteins in Arabidopsis resulted in
growth promotion (Kwon et al. 2016). The potential of this technique was discussed
in relation to the studies of plant endosphere for discovering more about endophyte
functionality (Kaul et al. 2016).

7.6 Conclusion

The soil is a very complex system and studies planned in this system always need a
robust and high-throughput technique to understand it to deeper extend. As
discussed, metaproteomics can be a tool that gives an idea about the functionality
of soil microbiome. But due to the existing high analytical cost might be discourag-
ing the researchers to do the more replicative studies to confirm their findings. This
may lead to biased analysis favoring the spatial and temporal variations present in
proteome. But the recent development and reduction in cost of MS analysis and
cheaper protein isolation kits in near future will remove this bottle neck, and more
replicated and comprehensive studies will be planned. The bioinformatic tools and
databases are also improving and they will be helpful in clear results in protein
identification. Also, in combination with other omics tools like metagenomics and
metatranscriptomics, soil metaproteomics can provide a comprehensive picture of
microbiome functioning. This would make metaproteomics a very useful and
invaluable tool in rhizospheric microbe studies to unravel its interactions with plants
and use that knowledge to improve crop yield through sustainable ways.
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Chapter 8
A Proteomics Perspective
for Understanding Rhizosphere Biology
at Higher Altitudes

Shiv Shanker Gautam, Deep Chandra Suyal, Ravindra Soni, and Reeta Goel

Abstract Earth is enriched with diverse climate, weather, and natural resources
responsible for variable flora and fauna. The temperature change and variation in
physical and chemical environmental factors give rise to a diverse microbial com-
munity. Soil microorganisms play an essential role in plant growth by several means
including nitrogen fixation, element solubilization, nutrient mobilization and uptake,
and suppression of disease, etc. However, higher altitudes face the issues of lower
crop productivity due to less availability of soil nitrogen. Studies of rhizosphere
communities may explore the potential microbial candidates to enhance and improve
crop yield. The earlier development in molecular biology and proteomic approaches
has been energized to explore such microbial communities. This chapter aimed to
provide the current scenario of proteomic approaches to study the rhizosphere
biology of higher altitudes.
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8.1 Introduction

Rhizosphere describes the interface between inhabiting a specific population of
microorganisms and plant roots influencing each other (McNear Jr. 2013; Joshi
et al. 2019). The term rhizosphere (Greek word “rhiza,”meaning root; and “sphaira”
around) first coined by the German agronomist and plant physiologist Lorenz Hiltner
in 1904 (Hartmann et al. 2008). Plant–microbes relationship can be friendly or
hostile (Giri et al. 2015; Dash et al. 2019) and beneficial rhizobia and fungi present
the rhizosphere can provide mineral nutrients, nitrogen, and other essential elements
via solubilization in exchange of carbon to host plant (Kumar et al. 2014; Suyal et al.
2014a, b; Puschel et al. 2017). However, in hostile relationship plants are exposed to
a various range of fungi, bacteria, and viruses and cause economic loss worldwide
(Makovitzki et al. 2007; Petriacq et al. 2018). At higher altitudes, the crops are
directly affected by low temperature and faced various challenges for survival
including low photosynthesis rate, water transport, and low availability of inorganic
nitrogen in soil (Volder et al. 2000; Goel et al. 2017, 2018; Jeyakumar et al. 2020).
The development of polyphasic agricultural strategies, i.e., reshaping the rhizo-
sphere microbial community may improve growth and productivity of such crops
and provide abiotic and biotic stresses tolerance in this region (Suyal et al. 2014a;
Kumar et al. 2018, 2019).

Moreover, the microbial community proteomics have been revolutionized the
research in rhizospheric microbial diversity, ecological functions, metabolic poten-
tial, and microbe–environment relationships (Wasinger and Corthals 2002; Wang
et al. 2016; Suyal et al. 2015b, 2017). Proteomics comprises multiple technologies,
viz. protein–protein interaction, algorithms for databases for rapid and accurate
protein determination, post-translational modifications, upregulated and
downregulated proteins, and their functionality, etc. (Wasinger and Corthals 2002;
Soni et al. 2015; Suyal et al. 2018). Thus, proteomics can boost our understanding of
rhizosphere biology at higher altitudes and improvement of crop productivity and
growth in these regions.

8.2 Ecology of Higher Altitudes

Altitude can directly influence the species richness and biomass production
(Bhandari and Zhang 2019). The higher altitude has been reported as low biomass
production and decreased rhizosphere microbial diversity owing to suboptimal or
freezing soil temperatures (Suyal et al. 2014a). Similarly, Margesin and Miteva
(2011) had suggested the negative relationship among the diversity and ecology of
psychrophilic microorganisms and bacterial abundance with the altitudes. In this
connection, the Himalaya has been seen as the reservoir of diversity and active gene
pool for cold adapted microorganisms (Suyal et al. 2014b; Joshi et al. 2017). The
microorganisms of higher altitudes have the potential to tolerate extreme
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environmental conditions for their survivability (Barauna et al. 2017). The survival
mechanisms may include the maintenance of membrane fluidity, change in meta-
bolic rate, cellular processes, and synthesis of essential proteins, expression of
housekeeping genes, and cold-shock proteins. The cold environment gives rise to
a very diverse habitat for diazotrophs including the cold desert of high mountains,
polar ice and snowfields, salt brine of Arctic and Atlantic, and deep oceans. The
major dominant species included mosses, lichens, algae, fungi, and bacteria of such
environment (D’Amico et al. 2006; Yadav et al. 2017; Joshi et al. 2017; Hamdan
2018). In high altitude ecosystems, the diazotrophs play a key role in N2 fixation in
nutrient-limited soil for plant growth and soil microorganisms (Duc et al. 2009).
They are also responsible for the influence of primary productivity of the soil.

8.2.1 Cold-Adapted Microorganisms

Cold inhabiting microorganisms have been divided into two groups, psychrophiles
and psychrotrophs. Psychrophiles are the microorganisms which have optimal
growth temperature less than 15 �C and do not grow above 20 �C. However,
psychrotrophs are those which can survive even at sub-zero temperature but grow
optimally at 20–25 �C. However, this division scheme is not accurate for all
microorganisms living in cold environment as many ambiguities are observed in
the microorganisms with respect to the growth temperature. Psychrophilic organisms
are present in the extremely cold ecosystem of glaciers, high altitude mountains,
polar regions, alpine, and deep oceans. Besides the cold stress, these ecosystems are
characterized by the additional stress including nutrient stress, increased, or
decreased atmospheric pressure, and variable metal ion concentrations (Suyal et al.
2019b). Psychrophiles have evolved different adaptation to survive in cold stress.
Adaptation at the cell membrane, RNA metabolism, transcription, translation, and
protein degradation/stability are important to carry out the cellular metabolism at
very low temperature.

Cold stress affects the stability of the secondary structure of nucleic acid hence
affecting the vital process of transcription, translation, and RNA degradation (Suyal
et al. 2017, 2019b). During this cold stress, bacteria modify its cellular physiology
and biochemistry. Low temperature triggers the cold-shock response in which
bacteria adapt to the cold stress. During the initial cold response, growth arrest is
observed for 3–6 h. This phase of growth arrest is termed as acclimation phase,
where only the cold inducible proteins (CIPs) are expressed, and rest of the protein
expression is downregulated. After the acclimation phase, cell down regulates the
expression of CIPs, resume expression of the other proteins and start dividing
normally. Understanding the molecular mechanisms of cold adaptation in microor-
ganisms could enhance the current knowledge of their increased survival under cold
stress. Maintaining the viability of microorganisms at low temperature is a major
task for the refrigerated probiotic food-based industries and microbial culture col-
lections. Moreover, this understanding will further facilitate the development of
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strategies to reduce the growth of the pathogenic microorganisms under refrigerated
temperature which can cause food spoilage and diseases.

8.3 Synergistic Effect of Rhizosphere with Cold-Adapted
Microbial Life

The rhizosphere is the hotspot area for microbial growth, abundance, and diversity
due to the influence of rhizodeposits, plant litter, nutrients, and exudates secreted by
roots of the host plant (Preece and Penuelas 2016; Rajwar et al. 2018; Alawiye and
Babalola 2019; Rawat et al. 2019). In rhizodeposits, microorganisms are abundant
due to high nutrient availability (Preece and Penuelas 2016) that responsible for
stimulating plant growth, disease suppression by the fungal and viral attack, via the
release of cyanide, siderophores, ammonia, and other volatile components (Shukla
et al. 2015; Suyal et al. 2015a, c). At higher altitudes, soil microorganisms cope with
the harsh, oligotrophic, and nutrient-limited conditions. In such a context,
rhizospheric microorganisms may be helpful in abiotic stress and improve crop
yield by acting as biofertilizers (Tomer et al. 2016, 2017). There are several factors
that can affect the growth rate and survival of microorganisms. The major environ-
mental factors of survival of microbial communities are carbon and nitrogen con-
tents, pH, temperature, moisture contents, and precipitation rate. The rhizospheric
bacterial communities belong to various genera including Arthrobacter,
Acetobacter, Achromobacter, Anabaena, Azospirillum, Azotobacter, Bacillus,
Burkholderia, Clostridium, Enterobacter, Flavobacterium, Frankia,
Hydrogenophaga, Kluyvera, Microcoleus, Phyllobacterium, Pseudomonas,
Serratia, Streptomyces, Rhizobium, etc. (Soni et al. 2016, 2017; Alawiye and
Babalola 2019; Suyal et al. 2019a, b; Jeyakumar et al. 2020).

Furthermore, Praeg et al. (2019) studied the rhizosphere soil of Ranunculus
glacialis from high alpine altitudes and figured out the major prokaryotes belong
to order Rhizobiales, Gamma proteobacteria, Pseudomonadales, Actinomycetales,
Sphingobacteriales, Sphingomonadales, Flavobacteriales, Burkholderiales,
Planctomycetales, Rhodospirillales, Xanthomonadales, respectively. While fungal
communities belonged to order Hypocreales, Incertae, Pleosporales,
Sporidiobolales, and Lecideales. Therefore, it can be stated that higher altitudes
not only affect the vegetation and their productivity but also the microbial life of
rhizospheric soil.

8.4 Microbial Community and Proteomics

Proteomics deals with the protein complements expressed in a cell under certain
physiological conditions at a certain time is referred to as the proteome (Nilson and
Graveley 2010). Currently, proteomics has become a very valuable tool for
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exploring the environmental microbial community (Wang et al. 2016; Eldakak et al.
2013). The microbial community proteomics, also known as metaproteomics is an
emerging area of microbiology and helpful for studying the whole protein content
directly isolated from the complex ecological community at a particular time (Wang
et al. 2016). The metaproteomics can expand our knowledge of taxonomic compo-
sition and microbial functions including nutrient cycles, mutualistic relationship,
metal utilization, eutrophication, nutrient mobilization and uptake, and suppression
of diseases, etc. (Schneider and Riedel 2010; Baldrian and Lopez-Mondejar 2014;
Glass et al. 2014; Heyer et al. 2019).

8.4.1 Strategies for Rhizosphere Proteomic Studies

For rhizosphere community studies, various strategies and steps have been devel-
oped including sample collection, protein extraction and separation, mass spectrom-
etry analysis, database search, and data interpretation (Fig. 8.1). The protein
separation and identification include one-dimensional or two-dimensional polyacryl-
amide gel electrophoresis (2D-PAGE) followed by enzymatic digestion, i.e., trypsin.
The digested peptides are subjected to analysis by complementary mass spectrom-
etry, i.e., MALDI-TOF-MS, LC-ESI-MS/MS, MS/MS analysis, protein identifica-
tion, and interpretation by database search and bioinformatic analysis (Suyal et al.
2014b; Wang et al. 2016).

In mass spectrometry method, the high-throughput MALDI-TOF-MS analysis in
combination with LC-ESI-MS/MS can enhance the identification of unknown pro-
teins by a database search of the unknown bacterial genome (Encarnacion et al.
2005). The proteomics tools and techniques are briefly discussed here (Table 8.1).

8.4.1.1 2-DE

Two-dimensional gel electrophoresis (2-DE) is a gel-based technique extensively
used for biological proteins and peptides compositional samples. This technique is
helpful to separate two different proteins as spot via the biophysical separation
processes including isoelectric focusing and polyacrylamide gel electrophoresis.
2-DE is broadly used for proteomic study, especially for environmental and patho-
logically important bacteria (Curreem et al. 2012; Eldakak et al. 2013).

8.4.1.2 2D-DIGE

Two-dimensional difference gel electrophoresis (2D-DIGE) is similar to 2-DE that
help to compare one to two or three proteins concurrently on the similar gel (Minden
2012; Mozejko-Ciesielska and Mostek 2019). The proficiency of this technique is
related to detect as small as 0.2 fmol of protein, and protein variability less to�15%,
approximately 10,000-fold protein concentration array (Minden 2012).

8 A Proteomics Perspective for Understanding Rhizosphere Biology at Higher. . . 135



8.4.1.3 LC-MS

Liquid chromatography-mass spectrometry (LC-MS) enables the appraisal of micro-
organisms by multiple discriminative peptides which allow characterization of
species or at strain level (Lasch et al. 2019). This technique is slightly time-
consuming when tested with sequence databases of different microbiological taxa.
From digested bacterial cell extracts, LC-MS showed significant results for identi-
fication of tryptic peptides and sequence to bacterium assignments (Dworzanski

Fig. 8.1 Steps of proteomic analysis for microbial diversity from rhizospheric soil
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et al. 2006). Another similar study has been conducted to find out the relatedness
among stains of B. cereus sensu stricto, B. thuringiensis and B. anthracis by
studying peptide fractions derived from prototype database (Dworzanski et al.
2010).

Table 8.1 Overview of proteomics techniques used for rhizosphere microbial study

Proteomic techniques/
tools Characteristics Ref.

2-DE Analysis of labeled protein Eldakak et al. (2013)

2D-DIGE Protein separation and visualization Mozejko-Ciesielska and
Mostek (2019)

LC-MS Identification of microbial species by
multiple discriminative peptides

Lasch et al. (2019)

Shotgun proteomics Identification of microbial proteins
between sets of samples based on dif-
ference in abundance under stress or
other conditions

Gouveia et al. (2020)

Protein-SIP Identification by 13C or 15N labeled
substrate into nucleic acid for finding
functional relationship inside a micro-
bial community

Jehmlich et al. (2008)

MALDI-TOF-MS Identification of microbial
predominated proteins, i.e., ribosomal
proteins, cytosolic proteins
Detection of antibiotic resistance; Epi-
demiological studies

Wang et al. (2016), Suyal
et al. (2014b), Dingle and
Butler-Wu (2013)

LC-ESI-MS/MS Peptide and cellular protein-based
identification

Encarnacion et al. (2005)

MS/MS Identification and 13C content as indi-
cator for function and metabolic activ-
ity of microorganisms

Wang et al. (2016), Suyal
et al. (2014b)

SELDI-TOF Modified technique of MALDI-TOF
and combination of MS and high-
throughput nature of protein arrays

Al-Tarawneh and Bencharit
(2009)

Proteins and antibody
microarray

Proteins of post-translational modifica-
tions, study of host–microbe interac-
tions, profiling antibody specificity,
identification of biomarkers in autoim-
mune diseases

Sutandy et al. (2013)

ICAT Quantitative proteomics, MS-based
protein identification method

Hsu and Chen (2016)

MetaProteomeAnalyzer Open-source tool for metaproteomics
data analysis

Muth et al. (2018)

Unipept 4.0 Web-based application of
metaproteome data analysis grounded
on tryptic-peptide-based biodiversity
study of MS/MS samples

Singh et al. (2019)
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8.4.1.4 Shotgun Proteomics

Shotgun proteomics is a method for identifying proteins, i.e., microbial proteins
between groups of samples that depend on difference in abundance under stress or
other conditions. This technique depends on a set of combination including LC and
MS, covering a broader range of proteins than 2D-GE, specially the hydrophobic
and low-copy proteins (Lee and Lee 2004; Hendrickson et al. 2008). In microbial
community study, this technique can explain the clearly altered abundances of key
protein players (Gouveia et al. 2020) and the quantification of isolated microbial
proteins can be done by tandem mass spectrometry.

8.4.1.5 Protein-SIP

Protein-based stable isotope probing (Protein-SIP) is based on isotope labeled
substrate (13C or 15N) into nucleic acid for finding functional relationship within a
microbial community (Jehmlich et al. 2008). This technique showed link between
microbe-specific metabolic function to their phylogeny. Moreover, proteomic-SIP
can help in proteomic investigations to enumerate enzymatic pathways and such
values may be combined with flux balance models of biogeochemical cycles, i.e.,
carbon, sulfur, and nitrogen to understand the dynamics and rates of reactions at both
the grouping and ecosystem scales (Marlow et al. 2016).

8.4.1.6 MALDI-TOF-MS

Matrix-assisted laser desorption ionization time-of-flight mass spectrometry
(MALDI-TOF-MS) is a powerful tool for microbial identification, i.e., bacteria,
fungi, viruses, and diagnosis based on predominated proteins, i.e., ribosomal pro-
teins, cytosolic proteins, and detection of antibiotic resistance. This technique is also
used for the screening of biological warfare agents, water- and food-borne patho-
gens, and epidemiological studies (Dingle and Butler-Wu 2013; Suyal et al. 2014b;
Wang et al. 2016).

8.4.1.7 LC-ESI-MS/MS

The liquid chromatography-electrospray ionization-tandem mass spectrometry
(LC-ESI-MS/MS) is a peptide and cellular protein-based identification method
(Encarnacion et al. 2005). This technique is helpful to analyze tryptic digestion of
bacterial samples and provides useful information of peptide sequences, allowing
identification of large number of proteins. This technique has attracted much atten-
tion for the identification of bacteria, fungi, and viruses of different ecological and
diseased samples.
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8.4.1.8 MS/MS

The mass spectrometry (MS/MS) provides the way of structural elucidation of a
wide range of peptides (Graham et al. 2007). The MS/MS peptides are ionized by
using the ESI or MALDI in the source region. Further, such peptides are separated,
based on m/z ratio. The MS/MS provides the identification via 13C content as
indicator for functional and metabolic study of microorganisms (Wang et al. 2016;
Suyal et al. 2014b).

8.4.1.9 Surface-Enhanced Laser Desorption/Ionization Time-of-Flight
(SELDI-TOF)

Surface-Enhanced Laser Desorption/Ionization Time-Of-Flight (SELDI-TOF) is a
modification of MALDI-TOF and combination of MS and high-throughput nature of
protein arrays, known as protein chips (Al-Tarawneh and Bencharit 2009). SELDI-
TOF has three major components including protein chip arrays, mass analyzer, and
data analysis software. SELDI-TOF can analyze proteins from various crude sam-
ples with minimal sample size. This technique is very efficient and can detect rapidly
the native undigested samples.

8.4.1.10 Proteins and Antibody Microarray

Protein microarray is an emerging technology that offers a stand for the screening of
hundreds of thousands of proteins in a high-throughout manner. This technique
consists of two major classes, the analytical and functional. The tissue or cell lysates
can be fractionated and placed on a slide to form a reverse phase protein microarray.
This technique is helpful for analyzing the proteins of post-translational modifica-
tions, host–microbe interactions, profiling of antibody specificity, identification of
biomarkers in autoimmune diseases (Sutandy et al. 2013). The antibody microarray
is the precise form of protein microarray. In this, the sets of antibodies have been
spotted and fixed on a solid surface and reactive groups of the surface have been
blocked. The sample of soluble proteins of interest is incubated on the array and
targeted protein samples are captured by the antibodies. In result, the bounded
samples are reported directly by fluorescent labeling or by the addition of secondary
detection reagent (Chen et al. 2018). The benefits of antibody microarray can be seen
in diverse biological processes including protein–protein interactions (Paul et al.
2016), analysis of signal pathways (El-Haibi et al. 2012), post-translational modifi-
cations (Pelech and Yue 2018), study of toxins (Lian et al. 2010), etc.
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8.4.1.11 Isotope-Coded Affinity Tags (ICAT)

Isotope-coded affinity tags (ICAT) depend on the principle that only free cysteine
thiols are disposed to labeling by the iodoacetamide-based ICAT, and mass spec-
trometry (MS) is used to quantitate the relative labeling of free thiols. Gygi et al.
(1999) first used ICAT for differential protein expression study of Saccharomyces
cerevisiae. This technique is helpful for quantitative proteomics, and MS-based
protein identification method (Hsu and Chen 2016). The reagent named as amine
reactive isobaric tag for relative and absolute quantitation (iTRAQ) has been
suggested to use for protein labeling to analyze the protein expression from multiple
samples and treatments at a time (Graham et al. 2007).

8.4.1.12 Unipept 4.0

Unipept (https://unipept.ugent.be) is a web-based application of metaproteome data
analysis which initially focuses on tryptic-peptide-based biodiversity analysis of
MS/MS samples (Singh et al. 2019). This tool is fast and efficient in depiction of
taxon-specific catalytic functions and helpful to correlate BLAST-based functional
study of similar data.

8.4.2 Microbial Potential Proteins for Plant Survival
and Total Productivity

In cold and nitrogen depleting environment, cold-adapted bacteria can fix atmo-
spheric N2 while other microorganisms assimilate nitrogen or ammonia to accom-
plish their needs. Under cold stress, cellular normal protein products are decreased.
While some special protein products are increased until adaptation in certain organ-
isms (Table 8.2). Such cold-induced homologous class of proteins is known as cold-
shock proteins (Csps) (Latha et al. 2009). Csps are multifunctional RNA/DNA
binding proteins with the presence of one or more cold-shock domains (Lindquist
and Mertens 2018). Csps have been reported in a wide variety of Gram-positive and
Gram-negative bacteria including E. coli (Newkirk et al. 1994), Bacillus spp.
(Mueller et al. 2000), Thermotoga spp. (Kremer et al. 2001), Arthrobacter spp.,
Streptococcus spp., Listeria sp., and Pseudomonas spp. (Latha et al. 2009). E. coli
contains nine Csps (CspA to CspI) in which CspA, CspB, and CspG are cold-
inducible and CspD stationary-phase inducible (Wang et al. 1999). Expression of
7.28 kDa CspD protein of psychrotolerant Antarctic Janthinobacterium sp. Ant-5 of
class Betaproteobacteria has been observed at various temperatures ranged from
37 to �1 �C (Mojib et al. 2011). Metagenomics of Csp library from temperate and
glacier soils of central Himalaya has been figured out low temperature adaptation
and homology of Csp genes of P. fluorescens, Psychrobacter cryohalolentis K5, and
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Table 8.2 Cold adaptation-associated bacterial proteins reported from high altitude rhizospheric
soils

S. no. Proteins Genes Functions Ref.

1. Cold-shock protein
csp1–6

Csp1–6 Cold-shock regulation Barauna et al.
(2017)

2. desK, desR desK,
desR

Cold induction Barauna et al.
(2017)

3. accA - accD accA–
accD

Synthesis of fatty acids Barauna et al.
(2017)

4. Cold-shock protein
CspB – CspI

cspB–
cspI

Cold stress regulation Latha et al.
(2009)

5. YacG yacG DNA gyrase inhibitor Soni et al.
(2015)

6. Clp protease CLPP Cleaves peptides and various pro-
teins in an ATP-dependent process

Soni et al.
(2015)

7. Superoxide
dismutase

SOD1 Breakdown harmful oxygen
molecules

Soni et al.
(2015)

8. tRNA (cmo5U34)-
methyltransferase

cmoA Catalyzes the conversion of
S-adenosyl-L-methionine (SAM) to
carboxy-S-adenosyl-L-methionine
(Cx-SAM)

Soni et al.
(2015)

9. Ketol-acid
reductoisomerase

AHRI Ketol-acid reductoisomerase
activity

Soni et al.
(2015)

10. Octaprenyl-diphos-
phate synthase

ispB Supplies octaprenyl diphosphate Soni et al.
(2015)

11. F420-dependent glu-
cose-6-phosphate
dehydrogenase

fgd1 Catalyzes the coenzyme F420-
dependent oxidation of glucose
6-phosphate to
6-phosphogluconolactone

Soni et al.
(2015)

12. Nucleoside diphos-
phate kinase

NME1 Synthesis of nucleoside triphos-
phates other than ATP

Soni et al.
(2015)

13. MsrB msrB Catalytic activity Soni et al.
(2015)

14. MsrA msrA Catalyzes the reversible oxidation-
reduction of methionine sulfoxide in
proteins to methionine

Soni et al.
(2015)

15. Quinolinate synthase
A

nadA Catalyzes the condensation of
iminoaspartate with dihydroxyace-
tone phosphate to form quinolinate

Soni et al.
(2015)

16. nifHD region glnB-
like protein 2

glnB Regulation of nitrogen fixation Soni et al.
(2015)

17. N(2)-fixation sus-
taining protein
CowN

cowN Sustain N2-dependent growth in the
presence of low level of carbon
monooxide

Soni et al.
(2015), Suyal
et al. (2019b)

18. Nitrogenase-stabiliz-
ing/protective pro-
tein NifW

nifW Protect the nitrogenase Fe-Mo pro-
tein from oxidative damage

Soni et al.
(2015)

(continued)
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Shewanella spp. MR-4 (Latha et al. 2009). Under environmental stresses, the
nonsporulating bacteria can activate the viable but nonculturable state. Thus, envi-
ronmental stress and low N2 in the soil are also responsible for stimulating N2

fixation (Suyal et al. 2014a). Earlier studies for metabolic responses of Himalayan
cold-adapted diazotrophs P. palleroniana N26 has been investigated for nitrogen
deficiency in the cold niche. Under the cold condition, expression of nifA, nifL, nifH,
nifB, nifD, nifK, and cowN of the nitrogenase system has been observed (Suyal et al.
2018). Thus, the regulation/expression of such regulatory proteins ensures the

Table 8.2 (continued)

S. no. Proteins Genes Functions Ref.

19. Glutamine synthe-
tase 2

Gs2 Metabolism of nitrogen by catalyz-
ing the condensation of glutamate
and ammonia to form glutamine

Soni et al.
(2015)

20. Chaperone protein
DnaK

dnaK Involve in chromosomal replication
and refolding of misfolded proteins

Suyal et al.
(2017, 2018)

21. Chaperone protein
HscA homolog

hscA Essential in stress regulation Suyal et al.
(2017)

22. 60 kDa chaperonin groL Avoid misfolding and encourage the
refolding and correct assembly of
unfolded polypeptides generated
under stress environment

Suyal et al.
(2017)

23. Chaperone protein
TorD

torD Biogenesis of TorA; TorA bears a
bifunctional Tat signal peptide,
which directs protein export and
serves as a binding site for the TorD
biosynthetic chaperone

Suyal et al.
(2017),
Buchanan
et al. (2008)

24. Iron-sulfur cluster
repair protein YtfE

ytfE Di-iron-containing protein involve
in the repair of iron-sulfur clusters
which damaged by oxidative and
nitrosative stress conditions

Suyal et al.
(2017)

25. Ferredoxin-like pro-
tein in nif region

fdxN Metal binding property with iron-
sulfur involve in nitrogen fixation

Suyal et al.
(2017)

26. Protein mrp homolog mrp ATP binding Suyal et al.
(2017)

27. Aspartate
carbamoyltransferase

pyrB Catalyze the condensation of
L-aspartate and carbamoyl phos-
phate (CP) to produce
N-carbamoyl-L-aspartate

Suyal et al.
(2017)

28. Phenylalanyl-tRNA
synthetase alpha
chain

syfA ATP binding, phenylalanine tRNA
ligase activity

Suyal et al.
(2017)

29. Glycine cleavage
H-protein

GCSH Catalyzes the degradation of glycine Suyal et al.
(2017)

30. Dephospho-CoA
kinase

coaE Catalyze the phosphorylation of the
30-hydroxyl group of
dephosphocoenzyme A to form
coenzyme A

Suyal et al.
(2017)
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microbial survival capability and enhancement of agronomic practices under low
temperature.

CIPs prevent the secondary structure formation and facilitate the degradation of
structural RNA at lower temperatures (Latha et al. 2009). Among the CIPs, some
proteins from the small acidic protein family of 7.4 kDa are most strongly induced
under cold stress and are termed as cold-shock proteins (CSPs). CSPs bind to the
only single-stranded RNA or DNA and not to the double-stranded conformation. All
CSPs have nucleic acid-binding domains termed as cold-shock domain (CSD),
which facilitates their binding to the nucleic acid. Binding of CSPs to RNA main-
tains the single-stranded conformations thus protecting the cell from cold-induced
secondary structure formation. In mesophilic organisms, CSPs are transiently
induced through cold-shock and soon after the acclimatization their expression is
downregulated. However, in psychrophiles they are constitutively expressed and act
as cold adaptive proteins (CAPs). Besides the major function in the cold-shock
response, CSPs also have major role in the other cellular processes.

8.5 Proteomics Strategies for Crop Improvement at Higher
Altitude

The proteomics are helpful in gaining information about microbial community
activity and their interactions between roots and soil (Bona et al. 2019). At low
temperatures, rhizospheric microorganisms still survive and provide essential nutri-
ents via mutualistic relationship, metal utilization, eutrophication, nutrient mobili-
zation, and suppression of diseases. The metaproteomic study of such a harsh
environment can be helpful to improve other cold environment crops or vegetation
by rhizospheric replacement (Suyal et al. 2014a, b). The cold-regulated microbial
proteins also ensure the plant survival capability and enhancement of agronomic
practices under low temperature condition. The earlier advancement in proteomic
approaches have been accelerated crop improvement programs globally. The micro-
bial proteomics data available on different databases have been significantly played
its role in crop improvement including the PRIDE (Proteomics IDEntification
database) (https://www.ebi.ac.uk/pride/) database part of EMBL-EBI, blastp suite
of NCBI, UniProt (www.uniport.org), HAMAP (High-quality Automated and Man-
ual Annotation of microbial Proteomes) (http://www.expasy.org/sprot/hamap),
PLGS (ProteinLynx Global SERVER), etc. These proteomic databases provide a
platform for researchers in identifying, analyzing, and finding similarity/dissimilar-
ity between proteins and peptides with previous data. The 2D-DIGE, MALDI-TOF-
MS, and protein microarray are some powerful tools also used for characterization of
metaproteomes of different crop rhizosphere soils. Furthermore, metaproteomics has
been provided the scenario for soil functional composition and taxonomic structure
of microbial communities within their environment. The soil enzymes, i.e., protease
and peptidases, can be directly identified for participating in nitrogen fixation and
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nitrification (Wang et al. 2016). Additionally, the molecular mechanisms and inter-
actions between plants and their pathogens can be easily understood (Rampitsch and
Bykova 2012).

8.6 Conclusion and Future Perspectives

Proteomics is an emerging field that deals with proteins expressed in a cell under
certain physiological conditions at a particular time. Currently, it has become a very
valuable tool for exploring environmental microbial community, popularly known
as metaproteomics. Metaproteomic tools have allowed the quantification of per
species biomass to determine community structure, in situ carbon sources, and
uptake of labeled substrates by community individuals. Proteomic platforms can
speed up crop improvement programs worldwide. Nowadays, sustainable crop
production is a major challenge for cold-climate agriculture system. The cold-
adaptive microorganisms have significantly provided a rational scenario for the
improvement of crop health and productivity. Thus, proteomics can be helpful in
such stress conditions and holds great promise for the betterment of the agriculture
system.
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Chapter 9
Structural and Functional Rhizospheric
Microbial Diversity Analysis by
Cutting-Edge Biotechnological Tools

Tanya Gupta, Debatri Chakraborty, and Angana Sarkar

Abstract The rhizosphere is a composite ecosystem which supports multiple bac-
terial populations that nourishes the terrestrial biosphere and plays a crucial role in
the continuous recycling of minerals, nutrients, and organic matter through the soil.
Diverse varieties of molecular tools based on immediate isolation and analysis of
various compounds from environmental samples such as lipids, nucleic acids, and
peptides have been discovered which have provided structural and functional data
about microbial communities present in rhizospheric soil. With the advent of next-
generation sequencing technologies (NGS), it has become possible to delve deeper
into the rhizosphere microbiome to understand the unknown aspects of it. This has
resulted in a shift from traditional approaches to the modern omics-based approach
based on NGS sequencing technologies for discovering and distinguishing the vast
microbial diversity to understand their interactions with different environmental
factors. The major objective of this chapter is to provide insights on structural and
functional rhizospheric microbial diversity analysis by the application of cutting-
edge biotechnological tools. We have first glanced through the basic concepts of
rhizosphere and its importance in plant system, the common rhizospheric microbial
population, and looked at the plant–microbe interactions which are of prime impor-
tance in the rhizosphere ecosystem. Next, we come to the molecular tools used for
rhizospheric microscopic diversity analysis—a detailed view into a few of the
traditional approaches used for diversity approaches before proceeding to the rapidly
emerging and more popular omics-based approaches used for rhizosphere microbial
diversity analysis. We have also identified the merits and demerits, future opportu-
nities of omics-based approaches in rhizosphere microbiology.
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9.1 Introduction

Plant-associated microbes have been known to function as nitrogen fixers, zinc
solubilizers, phosphorous solubilizers, potassium solubilizers, absorbers, accumula-
tors, conversion of essential nutrients into a form that the plant can uptake, source of
antibiotic and antifungal agents, source of commercially viable enzymes, inducer for
production of plant hormones, the key to developing a tolerance for biotic and
abiotic stress such as salinity, acidity, alkalinity, excess soil moisture, drought
conditions, and extremely high or extremely low temperatures (Ali et al. 2018;
Tanim et al. 2019). These microbes influence plant growth, and the growth of the
plant and environmental stressors influence the structural and functional dynamics of
such microbial niches. Majority of the plant-associated microbe population is
formed by the microbiota colonizing the rhizosphere of the plant. The microbes
show enforced as an ecological consequence of the influence of root exudates on
which they thrive. This microbiota is extremely influential and diverse has immense
applications in the field of biotechnology with significant agricultural and commer-
cial importance.

The multiform microbiome carries out and regulates a variety of processes
occurring in the rhizosphere of the plant that are relevant to plant proliferation.
Betaproteobacteria act as nitrogen fixers by denitrification and nitrate reduction.
Acinetobacter is known for the bioremediation of xenobiotic compounds.
Gammaproteobacteria adapt for suitable growth in a rhizospheric environment
requiring resistance to metal toxicity and metal reduction to get rid of the contam-
inant for bioremediation and enriching the soil to make it fertile. Pseudomonas and
Bacillus species are known to act as heavy metal detoxifiers and participate in
phosphorous solubilization. Clostridia exhibits the ability to reduce heavy metals
through hydrogen metabolism and fermentation (Ghosh et al. 2019).

The increase in industrial activities over the past few decades and the intensive
agricultural activities undertaken to meet heightened demand for crop production has
resulted in pertinent inorganic and organic pollution. Metal pollution has led to
excessive degradation of soil quality and adversely affected plant health as well as
microbial population composition (Benidire et al. 2020). As a consequence of this,
the use of biofertilizers involving the application of the rhizosphere-associated
biome for assisting its growth by improving soil conditions to benefit the environ-
ment has been championed as an alternative for chemical fertilizers. Certain bacterial
colonies in the plant roots act as bio-inoculants increasing the fertility of the soil via
their metabolism and can be isolated for bioremediation purposes. The application of
biofertilizers is also encouraged owing to the increasing popularity of organic
farming. Some plant species are hyperaccumulators, with the rhizospheric commu-
nities regulating the uptake of metal ions contaminating the soil. Microbial diversity
analysis is essential for determining the contaminant degradation ability of the
various species in a microbial population. Microbial diversity can also help under-
stand the biological impacts of certain farming practices on crop production (Wang
et al. 2019), verify the presence of antibiotic and antifungal agent producing strains
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(Ali et al. 2018), or to isolate any other strain from the concerning rhizosphere
responsible for the production of specific enzyme or metabolite.

Many molecular tools have been developed such as the traditionally employed
techniques Amplified Ribosomal DNA Restriction Analysis (ARDRA) and Dena-
turing Gradient Gel Electrophoresis (DGGE) for microbial diversity analysis to
facilitate understanding of the community dynamics and the microbial metabolic
processes that occur in the rhizosphere. Both cultivation-based approach and
DNA-based approach have been employed for this purpose. With the recent
advancements in technological high-throughput sequencing tools with a reduced
expense, time consumption, and hassle have been developed. These sequencing
tools are next-generation sequencers that are utilized in the study of the entire genetic
material present in a microbial community referred to as metagenomics. The
sequencing tools are also employed in metatranscriptomics which is the study of
gene expression and interaction, metaproteomics which refers to the characterization
analysis of the protein expressed in the microbial, and metabolomics which refers to
the study of the significant metabolites and exudates present in an ecological system.
Metagenomics, metatranscriptomics, metaproteomics, and metabolomics studies can
be and have been applied in numerous plant-related researches to understand and
define the rhizospheric microbiota of the given plant and the specificity of the plant–
microbe interactions. The significance of the rhizospheric biota for plant prolifera-
tion has been well acknowledged and analyzing their microbial diversity is important
for characterizing their relevant functional traits (Singh et al. 2020).

9.2 What is Rhizosphere?

The rhizosphere is the region of the soil that can be defined as the zone that is
immediately surrounding the root of a plant that houses a diverse range of microbial
colonies (Ali et al. 2018). Different plant species have complex and unique micro-
flora associated with them. This microflora may compose of bacteria, fungi, viruses,
and archaea. Along with the host plant, these microbes form a delicately balanced
ecosystem, and they may or may not benefit from the presence of these microbes that
are found on their leaves, flowers, stems, and roots. The rhizosphere is inhabited by
the root-associated microbes which maintain either a symbiotic or non-symbiotic
relationship with the plant. These microbes thrive on the root exudates of the host
plant and therefore the rhizosphere forms an agreeable niche for the microbial
population. These microbes, being present at the soil–root interface of the plant
exerts a significant influence over the rhizospheric processes that take place (de los
Reyes et al. 2020). These microbial interactions are very distinctive based upon the
microbial species. The evolution of the soil microflora of an individual plant has
occurred simultaneously with the evolution of the plant itself over time (Ghosh et al.
2019). Therefore, the microbiome of the rhizosphere is unique to the specific host
plant.
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9.3 Rhizospheric Diversity

Any soil sample when taken and analyzed for microbial diversity shows the soil
biota representing a huge number of microbial species. The diversity which is shown
by a microbial community heavily depends upon the physicochemical properties of
the soil which they inhabit. At the root–soil interface, the soil habitat shows an
increase in favorable conditions to promote microbial colonization, and a higher
density and diversity of microbes is thus seen in rhizospheric soil when compared to
the bulk soil. These microbes vary in their function from site to site and species to
species (Ghosh et al. 2019). The rhizosphere of a plant houses a plethora of culture-
dependent and culture-independent microbial species. Microbial colonies found in
the rhizospheric niches of the plant vary from species to species and influence crop
production, productivity, and plant sustainability (Fig. 9.1). An abundance is
witnessed in the number and highly diverse variety of microbial species occupying
the rhizospheric niche.

9.3.1 Common Rhizospheric Population

Azobacter, Azospirillium, Azolla, Rhizobium, and Cyanobacteria species are com-
mon microbes generally that are known for their nitrogen-fixing abilities. These
symbiotic microbes are Gram-negative, aerobic bacteria. These nitrogen-fixing
bacteria act as natural fertilizers impacting the plant metabolism, production of
antibiotics, and plant growth hormones, root development and allowing for
enhanced nutrient uptake. Pseudomonas, Bacillus, Actinomyces, Agrobacterium,
and Acetobacter are known to be phosphorous-solubilizing bacteria. Apart from
partaking in photosynthesis, energy transfer, and other plant processes, phosphorus
is an important element because it is known to limit the fixation of nitrogen. Presence
of the aforementioned bacterial species in the rhizosphere is not only limited to
solubilizing phosphorus for plant uptake to regulate the metabolic processes of the
plant but also enhance the nitrogen fixation process. Pseudomonas and Bacillus
species also commonly facilitate the solubilization of potassium. Various Pseudo-
monas, Bacillus, Rhizobium, and Azospirillum species have been classified as plant
growth-promoting rhizobacteria (PGPR). They are important for plant proliferation
with their ability to serve as biocontrol. These species have also been reported as
being capable of solubilizing zinc (Reddy et al. 2020).

9.3.2 Plant-Microbe Interaction

The evolution of the microbial strains is majorly affected by environmental condi-
tions and plant species. The microbes evolve as to facilitate growth-promoting
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Fig. 9.1 Microbial interaction in the plant rhizosphere for nitrogen fixation, production of biolog-
ically active compounds and phytoremediation
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activities, heightened nitrogen-fixing ability, act as a metal detoxifier, synthesis of
biologically active compounds, and combat other the abiotic and biotic stresses its
native plant species is subjected to. The plant–microbe interaction is governed by
complex physiological and biochemical activities that facilitate communication.

The rhizospheric microbial interactions are very defined and specific in nature
since the structural and functional diversity of the bacterial population is greatly
influenced by the soil environment around the rhizosphere and the requirement of the
native plant. A relative increase in microbial density and microbial activity is seen in
rhizospheric soil when compared to non-rhizospheric soil, where the presence of
such dense and hyperactive microbial niches is not observed (Shu et al. 2012). The
growth stage of a plant has been reported to result in a marked change in the
microbial community composition and dynamics. The plant species is a major
determining factor for the community structure of the rhizosphere. Rhizobium
harboring legumes is one such example (de los Reyes et al. 2020).

The plant–microbe interaction has made phytoremediation as a popular choice for
bioremediation to keep in check contaminants that are found as a result of industrial
activities and intensive farming methods. The class of Alphaproteobacteria, associ-
ated with the rhizosphere of the O. basilicum plant, has been known not only to
tolerate high levels of polychlorobiphenyl in soil but also to exhibit major
polychlorobiphenyl degradation activities. It has been reported that the rhizosphere
has a significant effect on the bacterial genus isolated from the roots of a plant and
the metabolic process of the said bacteria (Sánchez-Pérez et al. 2020). Therefore, the
rhizospheric microflora ensures the efficiency of the phytoremediation process, by
enhancing the contaminant removal potential.

9.4 Molecular Tools for Rhizospheric Microbial Diversity
Analysis

9.4.1 Traditional Molecular Tools

Microbial community diversity analysis was conducted at the sites mentioned in the
following table using traditional molecular tools approach which includes tech-
niques such as ARDRA (amplified ribosomal DNA restriction analysis), RFLP
(restriction fragment length polymorphism), DGGE (denaturing gradient gel elec-
trophoresis), TGGE (temperature gradient gel electrophoresis), and RISA (ribosomal
intergenic spacer analysis). The common bacterium phyla that were reported to be
present predominantly were Proteobacteria, Firmicutes, and Actinobacteria. The
analysis of microbial diversity at different sites shows that the dominant species in
the rhizospheric microbial population of various plants were mostly Pseudomonas,
Bacillus, and Rhizobium (Fig. 9.2; Table 9.1).
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9.4.1.1 ARDRA

Amplified ribosomal DNA restriction analysis (ARDRA) is a molecular technique
that mirrors the RFLP technique except that it applies to the 16s ribosomal subunit of
culture-independent bacteria. The steps involved are amplification, digestion, and
gel electrophoresis. The PCR amplified fragment with restriction endonuclease is
resolved with electrophoresis gel and a pattern is obtained. The methods used to
analyze RAPD patterns are also used to analyze ARDRA patterns. NT-SYS and
PAST are used for information about whether bands are present or not (1’s and 0’s
for presence and absence, respectively). These patterns can be used to create
phylograms or phylogenetic trees which describe the restriction pattern and give a
relationship between organisms. The most common softwares used are GelCompar
II and BioNumerics. Clones are amplified with primers and digested by restriction
endonucleases and the resultant fragments are separated by acrylamide gels. The
resultant profiles can be used for community clustering in genotyping or strain

ARDRA

DGGE/TGGE

RISA

Metagenomics

Metaproteomics

Metatranscriptomics

Metabolomics

Whole community
analysis methods

PCR based methods
(Partial Community

analysis)

Molecular tools for
diversity analysis

Fig. 9.2 Molecular tools for characterizing rhizospheric microbial diversity
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Table 9.1 Rhizospheric microbial diversity analysis utilizing traditional molecular tools

Sl.
no. Sample site

Dominant microbial
community

Molecular
methods Reference

1. Contaminated agricultural soil in
Parral, Chiapas, Mexico

Bacillus, Lysinibacillus,
Rhizobium

ARDRA Sánchez-
Pérez et al.
(2020)

2. Indian peninsula—Coimbatore,
Dharwad, Krishna Nagar, Nashik,
Warangal

Bacillus,
Methylobacterium,
Pseudomonas

ARDRA Verma
et al.
(2019)

3. Jaduguda Uranium mine tailings,
India

γ-Proteobacteria ARDRA Ghosh
et al.
(2019)

4. Chittagong, Faridpur, Gazipur,
Khulna, Manikganj, Mymen-
singh, Narsingdi, Patuakhali,
Rajshahi and Sylhet districts in
Bangladesh

Rhizobia—Rhizobium
azibense

ARDRA Tanim
et al.
(2019)

5. Wanagama Forest-Yogyakarta,
Indonesia.

Actinomycetes—
Streptomyces.

ARDRA Ali et al.
(2018)

6. Agricultural field in Salvatierra,
Guanajuato, Mexico

Stenotrophomonas,
Microbacterium,
Burkholderia, Bacillus,
Pseudomonas

ARDRA Marquez-
Santacruz
et al.
(2010)

7. Admiralty Bay, King George
Island, South Shetland Islands,
Antarctica

Pseudomonas ARDRA Da Silva
et al.
(2017)

8. Dafang village, Jilin Province,
China

Bacillus, Acidobacteria,
Proteobacteria

ARDRA Ying et al.
(2012)

9. Chiapas, Mexico Agrobacterium ARDRA Lopez-
Fuentes
et al.
(2012)

10. Ni-rich serpentine soil Actinobacteria,
Proteobacteria

ARDRA Abou-
Shanab
et al.
(2010)

11. Tranca, Bay, Laguna, Philippines Bacillus, Arthrobacter DGGE de los
Reyes
et al.
(2020)

12. Kettara mine, Marrakech,
Morocco

Pseudomonas, Bacillus,
Streptomyces,
Tetrathiobacter

DGGE Benidire
et al.
(2020)

13. Vineyards in Puglia region, Italy Bacillus, Actinomycetes,
Pseudomonas

DGGE Saccà et al.
(2019)

14. Fujian Agriculture and Forest
University (FAFU), Xitao town,
Wuzhi County, Henan Province,
China

Pseudomonas DGGE Wang
et al.
(2019)

(continued)
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typing (Ying et al. 2012). The advantages of ARDRA are quick analysis of varia-
tions, multiple strains, and species. The drawback of this method is the inability to
provide information about the sample microorganisms and the requirement of large
quantities of DNA. Similar to the outcome of ribotyping, this method is faster but is
not much sensitive.

9.4.1.2 DGGE

Denaturing gradient gel electrophoresis (DGGE) is another culture-independent
method for analysis of microbial community which yields a visual fingerprint
representation of the microbial community. The axis of a polyacrylamide gel is
exposed to a denaturing gradient. Primers are used for PCR amplification after which
the DNA undergoes gel electrophoresis by the denatured gel. Change in melting
temperatures due to variations cause different migration ultimately leading to sepa-
ration. The DNA separates due to the melting domains which are changed from the
denaturation whose branching patterns are analyzed. The change in denaturation
concentration leads to a change in the migration rate which in turn leads to a banding
pattern. By comparing these patterns and known sequences, the various species in
the sample can be identified and analyzed (Nimnoi et al. 2011). Digital image
analysis can be used to interpret the DGGE profiles. By comparing distances
between the migrated and reference strains, species can be identified and classified.
This analysis technique poses one drawback as its bands only generate partial
sequences. As a molecular tool, this method is often mentioned as a pair with

Table 9.1 (continued)

Sl.
no. Sample site

Dominant microbial
community

Molecular
methods Reference

15. Northeast Institute of Geography
and Agroecology, Jilin Province,
China

Bacillus.,
Flavobacterium,
Rhizobium

DGGE Tian et al.
(2019)

16 Phetchabun, Nakhon Nayok,
Rayong and Chiang Mai prov-
inces of Thailand

Actinobacteria DGGE Nimnoi
et al.
(2011)

17. U.S. Salinity Laboratory, River-
side, CA, USA

Uncultured bacteria,
Proteobacteria,
Bacteroides

DGGE Ibekwe
et al.
(2010)

18. YingFengWuDou organic farm,
ChongMing Island, Shanghai,
China

Rhizobiales,
Pseudomonadales

DGGE Shu et al.
(2012)

19. Varanasi, Chandauli, Ghazipur
district of Uttar Pradesh, India

Proteobacteria,
Actinobacteria

RISA,
DGGE

Srivastava
et al.
(2016)

20. P. roxburghii forest area, Solan,
Himachal Pradesh, India

Gamma and Alpha
Proteobacteria

RISA Mittal
et al.
(2019)
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temperature gradient gel electrophoresis (TGGE). Around 95–99% of microbial
diversity in a community can be identified through this method.

9.4.1.3 RISA

Ribosomal intergenic spacer analysis (RISA) is an analysis method of community
fingerprinting. It involves PCR amplification, electrophoresis, and staining. The
region between the two subunits, namely 16S and 23S, is called the intergenic spacer
region. The PCR amplification of this region is the main step in RISA (Srivastava
et al. 2016). RISA fragments are obtained from specific regions in both the subunits
which have been targeted with oligonucleotide primers. Based on the microbial
species, tRNAs are encoded by elements of the intergenic spacer region. For the
most effective length and sequence heterogeneity, the ISR length ranges from 150 to
500 base pairs. Multiple dominant community members result in a mixed PCR
product. This is followed by electrophoresis by polyacrylamide gel. Visualization
of the resultant DNA is possible after staining. A complex banding pattern consisting
of DNA bands that correspond to a bacterial population gives a community-specific
profile. It has been used for soil sustainability studies, species population studies, etc.

9.4.2 Omics-Based Rhizospheric Microbial Diversity

Omics-based approaches involve the use of data available from multiple omics fields
including genomics (DNA, genomes), transcriptomics (gene transcripts or mRNA
expressions), proteomics (proteins, proteomes), and metabolomics (metabolites,
metabolome) for the purpose of microbial diversity analysis for an environmental
sample. The following table (Table 9.2) provides a summary of sites where omics-
based technologies such as metagenomics, functional metagenomics,
metatranscriptomics, metaproteomics, and metabolomics have been used to perform
microbial diversity analysis for the rhizosphere. The most common bacteria phyla
reported to be present predominantly in these studies are Proteobacteria,
Acidobacteria, and Firmicutes.

9.4.2.1 Metagenomics (Using all NGS platforms)

Metagenomics is the study of genetic materials collected immediately from an
environment. It is one of the most commonly used culture-independent method
and first of the omics methods to be developed for the study of microbial diversity
including unculturable soil microbial community. It involved sequencing of genes
available directly from environmental samples and analysis of the sequence gener-
ated which can then be used for various data analysis and predictions. Sequencing of
data is done by the various platforms of NGS, most popular of them being Illumina
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sequencing followed by 454 sequencing and pyrosequencing. Metagenomics
approach has been widely used to characterize microbial communities of any
environmental habitat (Andreote et al. 2012; Puranik et al. 2016; Wei et al. 2017).
Metagenomic analysis has been used in the study of microbiome present in soil
contaminations and other aspects related to it (Kumar et al. 2018; Ridl et al. 2016).
Whole metagenome sequencing has been used to study the role of rice rhizosphere in
the metabolism of methane and nitrogen (Bhattacharyya et al. 2016) and effect of a
specific strain of bacillus on lettuce rhizosphere microbial community (Kröber et al.
2014). Studies have also been conducted on bacterial diversity of specific crop
species (Knief et al. 2012; Uroz et al. 2010) as well as utilization of compound
present in rhizosphere soil (Unno and Shinano 2012) thereby revealing the wide use
of this method in diverse fields of microbiology.

9.4.2.2 Functional Metagenomics

Functional metagenomic approach is a type of metagenomic approach which focuses
on the studying of gene function from a mixed population of DNA. It involves
construction and screening of metagenomic libraries which help in annotations of
gene function. It involves the identification of functional gene during screening
without using previously retrieved sequenced genes enabling the identification of
both novel and known genes (Mirete et al. 2015). This approach has been widely
used to study functional traits in rhizosphere community selection, functional poten-
tials of various ecosystems along with determining the community diversity
(Alzubaidy et al. 2016; Bai et al. 2014; Mendes et al. 2014; Yan et al. 2017). This
approach has been used for discovery of resistance genes in a particular ecological
habitat (Mirete et al. 2015; Willms et al. 2019) and study of the effect on pollutant
removal in ecological wastewater (Bai et al. 2017).

9.4.2.3 Metatranscriptomics

Metatranscriptomics studies gene expression of microbes (RNA expressions or gene
transcripts) within natural environments, i.e., metatranscriptome. Metatranscriptome
provides information about the active metabolic processes of the microbiome in a
given condition in an environment (Kothari et al. 2017). Metatranscriptomics can
retrieve and sequence mRNAs from an environmental microbial community without
any previous idea of the genes that might be expressed by the community thereby
making it advantageous and less biased (Poretsky et al. 2009). NGS is the preferred
technique for sequencing in metatranscriptomics with Illumina sequencing and
454 sequencing being the most popular platforms. Metatranscriptome analysis has
been used for studying microbial diversity and host–microbiome interactions of
various plant species (Cao et al. 2015; Rampadarath et al. 2018). Effects on the
rhizosphere due to various factors of soil, soil contamination, developmental stages
of plants have been investigated through this approach (Chaparro et al. 2014;
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Yergeau et al. 2018). Comparative studies based on metatranscriptomics have been
performed among various samples to reveal the variations and effects of changing
factors such as plant species, day timings, or soil types (Hayden et al. 2018; Poretsky
et al. 2009; Turner et al. 2013).

9.4.2.4 Metaproteomics

Metaproteomics refers to the study of all proteins and peptides present in environ-
mental samples. Mass spectrometry combined with various chromatography tech-
niques is usually used for extraction and analysis of protein samples and latest
advancements in this field has resulted in various high efficiency analyzing systems
for protein and peptide identification. Metaproteomics is used for the characteriza-
tion of soil microbial communities, biological samples based not only on taxonomy
but also their functional activity and protein expression. For soil ecosystems, it
provides an analysis of the functional proteins and helps in understanding various
metabolic processes and signal transductions involved in the soil biotic community.
Metaproteomic analysis and characterization have been done in different soil sys-
tems and crops giving an insight into the metabolic activities inside the soil by the
microbes or the plants, molecular (secreted protein) interactions between microbes
and plants and the effect of the proteins on rhizosphere community (Bona et al. 2019;
Knief et al. 2012; Mattarozzi et al. 2017; Wang et al. 2011). Apart from character-
izing bacterial community, metaproteomics analysis can be used to evaluate the role
of particular microbes in specific processes such as nitrogen fixation, methane
oxidation (Bao et al. 2014), or effect of fertilizers and related crop yield improve-
ment (Chen et al. 2019).

9.4.2.5 Metabolomics

Metabolomics is the whole-community sampling of all the metabolites (i.e., sugars,
lipids) represented within a microbial community, representing the functional sub-
strate and products of metabolomic pathways within an ecosystem (White et al.
2017). Metabolomics uses mass spectroscopy-chromatography-based systems for
analyzing metabolites to draw conclusions about different cellular, biochemical
processes, interactions with environmental factors, and microbial contributions to
metabolic varieties thereby determining the functional diversity of given microbial
samples based on their biochemical activity. It has been used for studying the effects
of specific exogenous metabolites or its hydrolyzed products produced on the
rhizospheric microbial community and also evaluating the effect of engineered
plants with altered metabolic profiles (Bressan et al. 2009, 2013). Non-sterile soils
have been studied for the presence of plant-derived metabolites and their suitable
application for crop agriculture (Pétriacq et al. 2017). Using a combined approach of
comparative genomics and exometabolomics, it has been demonstrated that root
exudate chemistry during developmental stages of a plant and microbial preferential
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substrate uptake is correlated and aid in predicting microbial response to root growth
apart from determining the rhizospheric diversity (Zhalnina et al. 2018). Along with
these, the effect of diverse soil microbiome on leaf metabolome, plant growth
patterns and herbivore feeding habits has also been successfully investigated
(Badri et al. 2013).

9.5 Pros and Cons of the Omics-Based Approach

Omics-based approaches have gained rapid popularity among researchers as they
have made it possible to study entire genome sequences, transcripts, proteins, and
metabolites from environmental samples providing a more comprehensive view of
genetic diversity of the culture-independent microbiome. They provide more
in-depth information about composition, the function of a whole microbial commu-
nity, their interactions with biotic/abiotic factors, metabolic processes occurring
inside the soil microbe community (Lagos et al. 2015). However, these approaches
have a few drawbacks such as huge data volume and complex data for data analysis,
complex extraction methods of analytes from samples, shorter read length of NGS
platforms leading to overestimation of taxonomic classifications, high error rate (Pal
et al. 2019), and lack of adequate libraries and databases.

9.6 Future Prospects

Future prospects include advancements in existing techniques with the objective of
discovering the lesser-known rhizospheric bacterial communities; predict the
responses of various species in their native environment, activities, and prosperity
of such communities in soil (Lagos et al. 2015). Advancements in software devel-
opment are needed for qualitative improvement of data generated from recent NGS
platforms, developing robust reference libraries, spectral databases for
metaproteomic and metabolomic studies, and adequate data analysis tools to make
an integrated multi-omics approach possible (White et al. 2017). An integrated
multi-omics study will enable us to look at the complete picture of soil microbiome
with all its aspects and will help in deciding and implementing strategies for
the selection of native bacterial strains capable of beneficial use, to comprehend
the significance and function of the rhizosphere microbial activity to support healthy
plant growth, improved yield and much more.
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Chapter 10
Rhizosphere Fingerprints: Novel
Biomolecules Via Meta-Omics Technology

Nidhi Srivastava and Indira P. Sarethy

Abstract The rhizosphere is a highly dynamic environment with complex signaling
mechanisms between plant roots and microbes in a constant flux as a consequence of
various (bio)-chemical and physical processes. Unraveling the chemical agents or
biomolecules within this complex niche environment can be of tremendous value in
mapping various functional aspects established between plants and microbes. Recent
advances in high-throughput and meta-omics technologies offer opportunities to
discover novel molecules in this environment, overcoming the challenges faced by
conventional methods. Metabolomics studies in rhizosphere has facilitated the
profiling and annotation of metabolites (exo/endo) participating in various physio-
logical processes within biological systems. This chapter will elucidate various
aspects of plant–microbe interactions resulting via the production of various signal-
ing molecules, including those of novel bioactive molecules that have been discov-
ered by meta-omics technology.

Keywords Plant–microbe interactions · Meta-omics · Metagenomics ·
Metatranscriptomics · Metabolite fingerprinting · GC-MS

10.1 Introduction

Soil environments, enriched with the carbon-containing exudates secreted by terres-
trial plants, attract microbial populations surrounding the root environment and
promote plant–microbe associations (Dennis et al. 2010). The plethora of microbial
population is enriched in terms of diversity, with unique metabolic pathways in
response to the molecules secreted by the plants in the vicinity. Free-living and
endophytic microbial populations (symbiotic/free-living bacteria, actinomycetes,
and mycorrhizal fungi) are also affected by the type of soil in that area (Lakshmanan
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et al. 2014). Plants are affected by the secretory/regulatory chemicals secreted by
associated microbes (Turner et al. 2013). The microbial population in the plant
vicinity imparts functional diversity to them and is, hence, considered to constitute
the “second genome” and “metaorganism” complex (East 2013).

It has been estimated that the global loss of 24 billion acres of fertile land is due to
a variety of causes such as deforestation, nutrient cycling (nitrogen) imbalance,
dynamic fluctuations in climatic conditions, desertification, changed physicochem-
ical properties of soil (organic carbon/pH), stress caused by physical and biotic
environments, and anthropological activities (Dubois 2011). Microbial populations
within or in the surroundings of the plants make the plants more resistant/resilient to
unfavorable conditions.

Rhizospheric environments are tightly coupled with the metabolic functioning of
plants and microbes. Signaling molecules like allelochemicals, plant growth-
promoting hormones (PGPR), stress-related bioactive compounds, and chemical
release in response to defense (against weeds / insects / pathogens) are the metabolic
activities of the plants that occur in the rhizospheres (Berendsen et al. 2012;
Gurusinghe et al. 2019). The microbial structural communities accordingly vary
with the associated flora and in response, microbes also secrete chemicals (antimi-
crobials/toxins/enzymes/siderophores) as a result of secondary metabolism by mul-
tiple biosynthetic pathways to overcome the competition between them and favor
plant growth by enriching the nutrients and other molecules (Raaijmakers and
Mazzola 2012; Gurusinghe et al. 2019). However, research in such environments
is limited due to less comprehensive high-throughput screening (HTS) methods than
conventional approaches associated with the screening and characterization of
biodiversity and chemo-diversity (Gurusinghe et al. 2019).

Recent advances in meta-omics technologies such as metagenomic sequencing,
proteomics, metabolomics, and better microorganism co-culture techniques have
provided more interesting information concerning the microbial diversity of
rhizospheric regions, as compared to those by conventional methods. Emergence
of high-throughput screening methods with automation concomitant with high
resolution in identifying the naturally occurring complex bioactive compounds in a
shorter duration, development of bioinformatics tools and software, database avail-
ability, low cost of Next-Generation Sequencing (NGS) services, and advances in
Mass Spectrometry techniques have speeded up the research in even underexplored
habitats. This chapter focuses on various meta-omics technologies that have played
an important role in assessing structural and functional diversity of the rhizosphere in
the detection of new bioactive compounds (Gurusinghe et al. 2019; Fierer et al.
2012).
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10.2 Plant–Microbe Interactions

There are three kinds of microbial interactions—beneficial, pathogenic, and sapro-
phytic—that affect plants. Based on the applications, beneficial microbes can be of
varied applications such as biofertilizers, phytostimulators, rhizomediators, and
biopesticides. Pathogenic microbes secrete antibiotics/toxins in response to defense
or to cause virulence. Saprophytic microbes are well-known key players in balancing
ecosystems by composting and elemental/nutrient cycling. The beneficial/patho-
genic/saprophytic microbes choose almost similar strategies while interacting with
plants. However, the mechanisms behind the interactions are still not well under-
stood (Lugtenberg et al. 2002).

10.3 Key Barriers During Interactions

Innate immunity effectors and modulators from plants enable them to resist herbiv-
ory and entrance or invasion of the pathogenic microbial population. Under such
conditions, plant immune response is activated, known as microbe-/pathogen-asso-
ciated molecular pattern (MAMP)-triggered immunity (MTI). MAMP detection
occurs via molecular signatures enunciated by extracellular transmembrane recep-
tors or plant pattern recognition receptors (PRRs) (Gao et al. 2013). In response, in
some pathogens, effector molecules are secreted, that down-regulate MTI and cause
effector-triggered susceptibility (ETS); in turn, the effector molecules are recognized
by the plant’s resistance proteins, and quick response (hypersensitivity) is activated
(effector-triggered immunity—ETI) by activation of the second line of defense
(Jones and Dangl 2006). Similar defense mechanisms are employed in all types of
microbial populations (pathogenic/beneficiary). Hence, the plant–microbe interac-
tion is a complicated mechanism resulting either in elimination of pathogens or
promoting colonization of the beneficial microbes (Hacquard et al. 2017).

10.4 Chemical Communication in Rhizospheres Via
Secretion of Signaling Molecules

Rhizospheres are very complex niche habitats with abundance of less diverse
microbes. Plants and microbes interact with each other apart from interacting
between themselves in sophisticated ways, by secreting small signaling molecules.
Various metabolomics (signalomics) studies have helped in detection and quantifi-
cation of these signaling metabolites involved in chemical communication between
various combinations of players—plant–plant, bacteria–bacteria, and plant–bacte-
ria—all in the microbiome assemblage in the rhizosphere (Hacquard et al. 2017;
Yang et al. 2017). Figure 10.1 depicts the various ways in which plant–microbe
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communications occur, and Fig. 10.2 shows the signaling molecules secreted from
plants and microbes establishing their communication system leading to various
effects. Some of these interactions and the role by the metabolites are discussed
below:

10.4.1 Plant to Plant

Plant communicate with the other plants both in above and under-ground parts via
signaling molecules such as phytotoxins and volatile organic carbons (VOCs)
showing the effect of allelopathy. The secreted compounds responsible for inter-
and intraspecific competition among plants either promote establishment or growth
of same/other plant in the vicinity or inhibit it. Allelopathic molecules generally
belong to phenolics/benzene-derived compounds/hydroxamic acids/terpenes chem-
ical categories (Massalha et al. 2017).

10.4.2 Bacteria to Bacteria

Bacterial communities in the rhizospheric regions communicate with each other by
signaling molecules such as lipophilic VOCs (low molecular weight) as a product

Fig. 10.1 Communications between plants, plants, and microbes, and between beneficial and
pathogenic microbes
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synthesized in various metabolic pathways (Kanchiswamy et al. 2015) specific to
species/genotype. These VOCs may be hydrocarbons/alcohols/ketones/terpenoids/
sulfur compounds. Quorum sensing (QS) is a very important cell-to-cell communi-
cation mechanism, mainly occurring where colonization of PGPR [plant growth
promoters/induced systemic resistance (ISR) inducers] such as Bacillus, Pseudomo-
nas, Enterobacter, Acinetobacter, Burkholderia, Arthrobacter, or Paenibacillus is
likely to take place (Finkel et al. 2017; Zhang et al. 2017).

10.4.3 Plant to Bacteria

Plant root exudates (species/genotype specific) are also certain signaling molecules
that influence the diversity and complexity of microbes inside host plants as well as
in the vicinity. These compounds may be organic acids, sugars, flavonoids, VOCs,
or amino acids or a combination of these. Citric acid secreted from cucumber root
was shown to induce biofilm formation of Bacillus amyloliquefaciens (Zhang et al.
2014), while fumaric acid secreted by banana root induced a similar biofilm forma-
tion of B. subtilis (Zhang et al. 2014).

10.4.4 Bacteria to Plant

Symbiotically associated bacteria secrete chemicals triggering changes in plant
transcriptomes and establish communication. PGPR are well-known producers of
phytohormones such as auxins, cytokinins, gibberellins, abscisic acid, jasmonic
acid, salicylic acid, brassinosteroids (BRs), and others (Fahad et al. 2015). VOCs
such as 2-endecanone, pentadecane, 2-heptanol, produced by PGPR, induce resis-
tance under stress conditions, modulate plant growth, and balance soil health
(Mhlongo et al. 2018). As a result of QS, Gram-negative bacteria secrete N-acyl-
homoserine lactone (AHL), which then helps the host plant to establish symbiotic
associations by imparting resistance to the plants (Hassan et al. 2016).

10.5 Overview of Rhizosphere Defense

This section elaborates the information on the defense mechanisms induced in plants
and microbes to avoid pathogenesis and promote symbiosis. PGPR are proven
alternatives to chemical fertilizers, pesticides, herbicides, and promote symbiosis
by direct or indirect mechanisms (Mhlongo et al. 2018). Direct mechanisms include
nitrogen fixation, mineral solubilization, siderophore production, and phytohormone
biosynthesis while indirect mechanisms include production of hydrolytic enzymes,
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antibiotics, siderophores, lipopolysaccharides (LPs), and ISR (García-Fraile et al.
2015).

Some bacteria secrete antibiotics and protect the host plant from diseases. Asadhi
et al. (2013) reported an antibiotic compound (2,4 diacetylphloroglucinol), produced
from Pseudomonas fluorescens that exhibited 75% inhibition efficacy to Sclerotium
rolfsii (Asadhi et al. 2013). Similarly, Lohitha et al. (2016) have reported that
Phenazine-1-carboxylic acid antibiotic produced by P. fluorescens inhibited S. rolfsii
and Gaeumannomyces graminis and protected the groundnut plant from stem rot.
Hydrolytic enzymes (proteases/chitinases/lipases/glucanases/amylases) inhibit fun-
gal growth by degrading many components of the fungal cell wall (Saraf et al. 2014).
LPs also are a kind of antibiotics belonging to three different categories (fengycin,
iritin, and surfactin) based on their fatty acid branching pattern and play an inhibitory
effect on pathogens and activate the plant defense system (Saraf et al. 2014).
Recently, a study by Chowdhury et al. (2015) demonstrated that LPs extracted
from B. amyloliquefaciens protected rhizospheric plants from Rhizoctonia solani.
Siderophores such as hydrocarboxylic acid, hydroxamic acid, and catechols are not
only iron chelators (that provide iron to plants in iron-deprived soil) but also
suppress soil-borne diseases as proved by the studies of Tank et al. (2012) and
Patil et al. (2014). As reported in Sect. 10.4.4, AHLs are responsible for enhancing
plant perception and resistance and induce the elongation of roots. AHLs produced
by Serratia liquefaciens and P. putida have been reported to trigger the defense
mechanisms against Alternaria alternata in tomato plants (Schuhegger et al. 2006).
3-hydroxydecanoyl-homoserine lactone secreted by Acidovorax radices (barley
endophytic bacteria), induced resistance in the host by facilitating accumulation of
flavonoids (saponarin/lutonarin) (Han et al. 2016). VOCs produced by rhizobacteria
also promote plant growth and resistance and inhibit soil-borne pathogens (Song and
Ryu 2013). Similarly, VOCs such as (E)-ocimene, 6-methyl-5-hepten-2-one and (E)-
(1R, 9S) caryophyllene (Pickett et al., 2007), (Z)-3-hexen-1-ol (Wei and Kang 2011)
produced by plants triggered defense response when exposed to insect or herbivory
attack.

Several studies using PGPR have revealed ISR and RMPP-associated enhanced
gene expressions in case of plant stress, or during pathogens/insects/pests/herbivore
attack. An initial subjection to such a smaller scale trigger, known as priming,
induces a quick (secondary) defense response by the host plant (Conrath et al.
2009). PGPR are priming agents and due to this ability they can modify cell wall
and primary metabolites and induce effector response (defense mechanisms) and
biosynthetic pathways associated with the production of secondary metabolites
(Conrath et al. 2009). Initial stage priming includes signal transduction through
phytohormones acting either synergistically or antagonistically. Primary metabolism
during priming helps in biosynthesis or activation of phytohormones/phytoalexins/
phytoanticipins, and enhanced gene expression related to defense by providing
energy. Secondary metabolites accumulated during initial priming phase become
activated when plant is exposed to secondary stress (Mhlongo et al. 2016a, b, 2017).
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10.6 Meta-Omics Technology

As we can see from information provided in the previous sections, the rhizosphere
region is very complex due to a diverse microbial population and interactions with
the various signaling molecules among and within the plant and microbial commu-
nities. However, most of the molecules and the mechanisms are still not well
understood. Meta-omics technologies incorporating advanced high-throughput
screening technologies offer greater resolution, higher sensitivity, robustness, and
in combination with better bioinformatics tools and software, database availability,
and powerful computers new avenues to explore such understudied niches for the
novel chemo-diversity and the mechanisms behind them have opened up (Mhlongo
et al. 2018). Details of various meta-omics technologies can be accessed from the
comprehensive review by Srivastava et al. (2019). Figure 10.3 presents an overview
of meta-omics approaches/technology to assess bio- and chemo-diversity and inter-
action mechanisms in rhizospheres.

Metabolomics studies facilitate the complete metabolite fingerprinting analysis of
the signature molecules and demonstrate the chemistry established or the mecha-
nisms of the reciprocal interactions of these complex niche habitats (Lloyd et al.
2015) and hence provide better understanding of the metabolism in plants and
associated microorganisms. These studies are associated with various
bio-analytical techniques for metabolite fingerprinting and studying the respective
interactions (Naz 2014).

Gas chromatography–mass spectroscopy is one of the most used technologies in
metabolomics. A recent study by Miller et al. (2019) has used this technology to
detect the metabolites secreted by two genotypically different Sorghum roots in
sand, clay, and soil and has reported various metabolites belonging majorly to amino
acids, carbohydrates, and organic acids. Sixty-eight metabolites have been identified
by GC-MS from Bacillus sp., B. amyloliquefaciens, and B. thuringiensis associated
with the rhizosphere of Barabara groundnut from an agricultural land of South Africa
(Ajilogba and Babalola 2019). Combined metabolomics by GC-MS and
transcriptomics studies were conducted on soybean to show the resistance offered
to this plant by rhizobacterial Bacillus simplex Sneb545 against soybean cyst
nematode by over production of palmitic acid, methionine, 4-vinylphenol, and
piperine (Kang et al. 2018). Stable isotope probing (SIP) coupled with GC-MS has
proven useful in detection of rate determining steps in various metabolic pathways
(You et al. 2014). High resolution and efficient separation have been provided using
two different stationary phases in GCxGC with advanced mass analyzer [Time-of-
flight (TOF)/semi-fasts scan Q] (Jin et al. 2015).

Liquid chromatography–mass spectrometry is another technique to detect bioac-
tive metabolites including hydrophilic components. For better resolution and sensi-
tivity, use of advanced column dimensions, porosity (column particle size)
combination of reverse and normal stationary phases has helped better. Ultra-high
performance liquid chromatography (UHPLC) is better than high performance liquid
chromatography (HPLC) in terms of diameter of the column (1.0–1.2 mm) with
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smaller particle size (�2 μm) and under very high pressure that allows the separation
of smaller bioactive molecules (Walter and Andrews 2014). For accurate mass
detection, soft ionization mechanism such as electron spray ionization (ESI) that
hold and maintain the integrity of the separated biomolecules are now frequently
used for metabolite fingerprinting (Hird et al. 2014). UHPLC-DAD-QToF-MS
analysis of the culture filtrate of Acinetobacter sp. showed the presence of
tetracenomycin D1 (Rohr et al. 1988). Similarly, Williamsia muralis, an
actinobacterium, showed the presence of the antioxidant compound ribesin B
(Sasaki et al. 2013). Vicenin-2, with UV absorption properties, was found to be
the major metabolite from Lychnophora salicifolia plants, when analyzed by UPLC-
MS/MS analysis (Silva et al. 2014). Combined analysis of LC-MS and 1H-NMR
have been employed to discriminate disease suppressive soils for Rhizoctonia solani
AG8 in cereal crops involving metabolomics approaches (Hayden et al. 2019).

Mass spectrometry imaging (MSI) is an emerging technology which can be
applied in situ to determine the distribution of molecules within samples. It helps
in multidimensional imaging with enhanced pixels of associating and co-existing
species in rhizobacterial environment (Anderton et al. 2016). Matrix-assisted laser
desorption ionization–mass spectroscopy (MALDI-MS), MALDI-TOF, and
MALDI-SIMS (secondary ion mass spectroscopy) are well-known MSI techniques
used for analyzing bioactive metabolites with higher resolution and sensitivity.
However, these techniques are laborious, time consuming, and require very accurate
sample preparation to avoid errors. Other recently used MSI techniques that does not
require extensive sample preparations and provide native stage images are desorp-
tion electro spray ionization (DESI) MSI, laser ablation electrospray ionization
(LAESI) MSI, air-flow-assisted desorption electrospray ionization (AFADESI)-
MSI, and nano-DESI MSI (Rao et al. 2016). To achieve cellular level chemical
information, single cell MS (SCMS) are now being used (Rao et al. 2016). Some of
these techniques which have been utilized to provide information on rhizosphere-
associated metabolites are listed in Table 10.1.

Nuclear magnetic resonance plays a vital role in metabolomics as a robust and
high-throughput screening technique. In complex rhizospheric regions, this tech-
nique has proven useful in screening of primary and secondary metabolites secreted
by plants or microorganisms. NMR spectroscopy has helped in detecting the role of
phytase secreted by Nicotiana tabacum. It was found that the phytase improved the
organic phosphorus uptake and reduced the requirement for fertilizers (Giles et al.
2017). Combined GC-MS and NMR metabolomics study have been employed on
cucumber plant stressed with nano-Cu (Copper nanoparticle) to observe the changes
in metabolic profile of cucumber plant root exudates. Results showed the
up-regulation of amino acids which could sequester Cu, and ascorbic acid and
phenolic compounds that improved antioxidant activity. It also showed the down-
regulation of citric acid to reduce the mobilization of Cu ions (Zhao et al. 2016).
DNA-stable isotope probing can assess functional groups of microbial populations
specific to particular substrates without cultivating them. This approach has been
applied by Bressan et al. (2009) to show the effect of glucosinolates produced by
Arabidopsis thaliana on rhizobacterial and fungal diversity.
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Table 10.1 MSI technology for plant-associated rhizobacterial activity analysis

MSI
Technology Rhizospheric activity analysis Summary of results References

MALDI-
FTICR-
MSI

Distribution of metabolites in
soybean root nodules involved
in regulating symbiosis and
nitrogen fixation

Asymmetric distribution of
S-adenosylmethionine in nodule
affecting plant–microbe interac-
tion in terms of nitrogen fixation

Veličković
et al.
(2018)

MALDI-
FTMS

Bacterial and plant physiology
in leaves of Arabidopsis
thaliana

To assess the shifts in carbohy-
drate sugars profile on leaf sur-
face after colonization of
Sphingomonas melonis, Pseu-
domonas syringae and
Methylobacterium extorquens in
turn altering arginine metabo-
lism and phytoalexin
biosynthesis

Ryffel et al.
(2016)

MALDI-
LTQ-
Orbitrap

Study of pesticide (metalaxyl)
kinetics under given O2 and pH
conditions in lupine roots

Results indicated positive and
negative correlation of pH and
O2 on enantioselective dissipa-
tion of the metalaxyl

Rudolph-
Mohr et al.
(2015)

MALDI-
MSI

Interactions between rice–bacte-
rium and soybean–aphid

In soybean–aphid system, iso-
flavone, and salicylic acid resis-
tance mechanisms and in rice–
bacterium interactions, role of
antibiotic diterpenoids was
visualized

Klein et al.
(2015)

MALDI-
TOF/TOF

Resistance of banana plant to
burrowing nematode

Development of resistance in
banana in response to infection
by Radopholus similis by pro-
duction of phenylphenalenone
anigorufone phytoalexins

Hölscher
et al.
(2014)

MALDI-
TOF/TOF

Antimicrobiome secretion by
root bacteria to show plant–
microbe interactions

Elicitation of production of
antibiotics (macrolactin A,
macrolactin D, bacillaene A,
difficidin, and oxydifficidin) by
Bacillus amyloliquefaciens
associated with tomato root

Debois
et al.
(2014)

MALDI-
MSI

Detection of surface heteroge-
neity of plant lipid polymers

Effect of in situ release of the
lipid monomers by alkaline
hydrolysis on cutin polymers of
nectarine, tomato, and apple
fruits

Veličković
et al.
(2014a)

MALDI-
MSI

Physiological roles of polysac-
charides [Arabinoxylans
(AX) and (1!3),
(1!4)-β-glucans (BG)] in cell
walls of wheat grains and the
specificity of the hydrolytic
enzymes involved

Assessment of quality and use of
wheat grains by observing
chemical and distributional het-
erogeneity of Arabinoxylans and
β-glucans after reaction to
hydrolytic enzymes

Veličković
et al.
(2014b)

MALDI-
MSI

Metabolite distribution during
nitrogen fixation in Medicago

Exhibiting distribution of
organic acids, amino acids,

Ye et al.
(2013)

(continued)
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Metagenomics studies in rhizospheric regions have provided considerable infor-
mation about the structural and functional diversity (Wu et al. 2018). It is estimated
that only 1% cultivable bacteria have been documented by conventional methods,
while metagenome analyses have revealed the presence of microorganisms of a
much larger magnitude. Rhizospheres are rich in nutrient contents. By optimizing
conditions like temperature, growth media, increased incubation period, and reduc-
ing nutrients, the recovery rate may be increased up to 10% (Ling et al. 2015).
Metagenomics study has been conducted to observe the change in fungal community
(abundance/diversity) in the rhizosphere of sugarcane soil with respect to nitrogen
fertilizer dosages (Paungfoo-Lonhienne et al. 2015). Growth-promoting ability of
the novel Burkholderia australis in nitrogen-deficient soil environment of sugarcane
has been investigated by culture-independent methods and bacterial identification
(Paungfoo-Lonhienne et al. 2014). Microbial diversity profiling showing their role in
carbon and nitrogen cycling has been done in Amazon forest by metagenomics
(Fonseca et al. 2018). Recently, the innovative “i chip” technology (in situ culture
apparatus) has facilitated the culture recovery up to 50% of cultivable bacteria. This
technique can be applied to understand novel bio- and chemo-diversity and associ-
ated genes (Ling et al. 2015). This technique has enabled the identification of the
novel antibiotic teixobactin from Eleftheria terrae (Nichols et al. 2010). Recently,
Wu et al. 2018 have used comparative metagenomic analysis to assess the impact of
monoculture of Rehmannia glutinosa consecutively for 2 years at Jiaozuo City,
Henan Province, China on microbial community shifts (increased abundances of
Sphingomonadaceae and Streptomycetaceae and decreased abundances of
Pseudomonadaceae and Burkholderiaceae) with associated functional aspects (pro-
duction of bioactive molecules and their responses).

Metatranscriptomics is another technology which is helpful in metabolic profiling
of complex niche habitats by elucidating the gene expression of microbial commu-
nities associated with niche habitats (Chialva et al. 2020). The technique allows the
identification of microbes, active genes, their expression levels, and products. It also
facilitates the observation of changes in metabolic profiles in different environmental
conditions such as under stress (Bashiardes et al. 2016). Metatranscriptomic profil-
ing of 12 rhizospheric areas of Australia to assess microbial and functional diversity

Table 10.1 (continued)

MSI
Technology Rhizospheric activity analysis Summary of results References

truncatula-Sinorhizobium
meliloti symbiosis

sugars, lipids, flavonoids
between roots and nodules dur-
ing Medicago-Sinorhizobium
association

NanoSIMS Nutrient uptake (nitrogen
assimilation)

Assessment of nitrogen assimi-
lation between plant roots
(wheat) of freely draining soil of
Australia and associated soil
microbial communities

Clode et al.
(2009)
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in wheat microbiome, which were suppressive and non-suppressive to Rhizoctonia
solani was carried out. The mRNA data annotation suggested that Buttiauxella
sp. and Stenotrophomonas sp. were the dominant microbes of suppressive samples,
while Pseudomonas sp. and Arthrobacter sp. were dominant in non-suppressive
samples. Polyketide cyclase, encoded by dxs gene and cold shock proteins (csp),
were majorly expressed by suppressive samples. R. solani infection in suppressive
samples of wheat led to the expression of detoxifying genes and antibiotics genes
chloroperoxidase (cpo), involved in pyrrolnitrin and phenazine biosynthesis family
protein F (phzF) and its transcriptional activator protein (phzR) (Hayden et al. 2018).
Recently, metatranscriptomics study has been conducted by Chialva et al. (2020) to
reveal whether host-targeted transcriptomics (RNA-seq dataset of Solanum
lycopersicum grown in the native soil of Italy) can detect the taxonomic and
functional diversity (plant nutrition/disease resistance/plant development mecha-
nisms) of root microbiota.

Metaproteomics is another high-throughput screening technique that provides
information on the protein recovered from the environments and is useful in inves-
tigating microbial and functional diversity. This technique has been applied by
Gupta et al. (2019) to explore microbial and functional diversity of maize. A total
of 696 proteins with different functions were recovered and were shown to belong to
244 genus and 393 species. This technique has also been found useful to detect the
microbial flora associated with Vitis vinifera rhizospheres by Bona et al. (2019).
They found that Streptomyces, Bacillus, Bradyrhizobium, Burkholderia, and Pseu-
domonas genera were active in expression of proteins, phosphorus metabolism, and
regulation of primary metabolic processes.

Metaproteogenomics approach has also been reported to assess the biodiversity in
rhizospheres and phyllosopheres. The technique comprises of combining 16S rDNA
and metagenome sequencing with protein identification to provide insight into the
associated metabolic pathways and physiological phenomena. This method was
employed by Knief et al. (2012) to demonstrate the microbial diversity and the
physiological activities of the microbial communities associated with the rhizo-
sphere and phyllosphere of rice fields of Philippines. Rhizobium,Methylobacterium,
and Agrobacterium were the dominant genera in the rhizosphere, while
Bradyrhizobium, Rhodopseudomonas, Azospirillum, Methylobacterium,
Magnetospirillum, and Methylosinus were dominant in the phyllosphere region.
The authors identified 4600 proteins by metaproteomic datasets and concluded
that one carbon conversion occurs in both regions. They also found that the
identified proteins were involved in methanotrophy and methanogenesis. Response
to stress and transport processes and the presence of nifH genes were more notice-
able in the phyllosphere than in the rhizosphere.
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10.7 Conclusion and Future Aspect

It is evident from the literature and from the quoted examples in this chapter that the
meta-omics technologies are not only high-throughput but also provide a huge
dataset of information on the activities of microorganisms in the rhizosphere. Each
technology is complementary to the other but cannot be supplanted. They provide a
piece of information of a large puzzle, which then needs orchestrated assembling to
provide a comprehensive picture. The availability of better software and processors
would facilitate in easier processing of the information; however, the challenge lies
in accurately assembling the information in the correct sequence.

To unravel the complexity and heterogeneity of rhizospheric regions and to
facilitate the understanding of plant–microbes interactions by assessing the produc-
tion of novel natural products and their monitoring to specify their targeted roles and
dynamics, the high-throughput meta-omics technologies will play an important role.
Accordingly, with increased usage, costs are expected to reduce considerably lead-
ing to even more high-throughput data availability.
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Chapter 11
Rhizosphere Virology and Plant Health

Shikha Thakur, Lisha Khungar, Yashika Dhingra, and Rahul Arora

Abstract Plants are at the interface of above- and below-ground interactions. The
diverse group of microbes interacts with the plants in both beneficial and detrimental
manner. Plants have evolved a number of different strategies to overcome these
attacks. Viruses make an important group of organisms that interact with the plant to
use the host molecular machinery to replicate its own genome and propagate further.
Plants have developed defence strategies involving electrical signalling, using reac-
tive oxygen species and involve the role of different plant hormones in a signalling
cascade. This prevents the plant from further damage and also intimates its
neighbouring plant to prepare themselves for a forthcoming attack. Volatile organic
compounds play an important role in such phenomenon.

Keywords Plant–virus interaction · Rhizosphere · SAR · Chaperons ·
Phytohormones · VOCs · NGS · Signalling

11.1 Introduction

Plant which belongs to the kingdom plantae may broadly be defined as any
multicellular eukaryotes characteristically carrying out photosynthesis for nutrition
wherein chemical energy is produced from water, minerals, and carbon dioxide,
aided by chlorophyll and solar radiations. They often show continuous growth at
localized regions. They have cells with cellulose in their walls, providing them the
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essential rigidity to stand without any external support. Plants lack organs for
locomotion, thus making them sessile in nature. Plants however are not seen in the
light of being an isolated entity, rather they are recognized as meta-organism which
possesses a distinct microbiome showing symbiosis with the co-inhabiting microbes
(Mendes et al. 2013). These microbes reside in the area around the plant root known
as the rhizosphere. The rhizosphere can formally be defined as the plant–root
interface. The rhizosphere is inhabited by the distinct microorganisms the composi-
tion of which is dictated by chemicals secreted by the plant roots. The rhizosphere,
however well understood, is not a region which can be well defined with its shape or
size; in fact, it may consist of various strata based on the varying chemical,
biological, and physical properties of the plant root system (McNear Jr. 2013). It
is one important niche for the microbial communities to dwell upon. The number and
the great diversity of microbes living in these niches is a result of the rhizodeposits in
this region. A deep knowledge of the plant–microbe interaction in the rhizosphere
will lead to sustainable food, fuel, and fibre production, sufficient to sustain the ever-
increasing world population (Berg and Smalla 2009). The under-ground microbes
are important for both, the plant as well as soil ecology. These microbes take active
part in soil structure determination, organic matter decomposition, removing toxins,
and the recycling of some important elements. Besides, the microbes also play
monumental role in keeping at bay, the soil-borne plant diseases. They help promote
plant growth and the changing vegetation types (Doran et al. 1996).

The microbes colonizing the rhizosphere range from bacterium-fixing nitrogen
for the plants to mycorrhizal fungi helping in the uptake of certain minerals in close
association with the roots. The rhizosphere also hosts a huge range of viruses.
Viruses exist where any other form of life exists. They are the most abundant
biological entities prevailing on Earth. Recent work shows that viruses can play
important role in association with plants; they confer the plant resistance to extreme
environmental conditions. The viruses, besides being a therapeutic tool and model
system for biological enquiries, act as the major drivers of biogeochemical cycles.
They also play a pivotal role in shaping the rhizospheres’ microbial diversity.
Viruses tend to be the greatest reservoirs of gene helping in the widely occurring
horizontal gene transfers (Kimura et al. 2008). Viruses cannot function outside the
host cells and can only carry out the processes for its replication and integration for
further transmission only when they are inside a host cell. This unique property of
the viruses, wherein it does not identify with the living organisms renders them a
unique position in the classification system of organisms. They show intrinsic
properties, which is a factor of its size and shape, as well as relational properties,
which is dictated by the type of host they are being harboured in (Regenmortel
2000). The viruses present in the rhizosphere are of great significance due to their
influence on other soil biological communities through gene transfer from one host
to another host and the death of the microbes which occurs as a consequence of the
transmission of these particles (Emerson 2019).

Viruses follow a similar pathway for infection. They can be lytic, lysogenic, or
pseudo lysogenic in nature. A temperate phage in the lysogenic state is known as a
prophage. Viral lysogeny involves integration of the phage genome into the host cell
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chromosome as a prophage. The production of a temperate phage in the lysogenic
state does not depend on the host cell density. In contrast, a virulent virus in the lytic
state redirects the host metabolism towards the production of new virus particles,
resulting in lysis of the cells. As a consequence, the production and survival of a
virulent virus require frequent, successful host–phage encounters to exceed the rate
of phage destruction and inactivation. Viral lysogeny posits advantage over the
virulence for phage and its hosts where long inactive periods of hosts are survived
by the resident phages (Kimura et al. 2008; Mann 2003).

The plant viruses are sub-microscopic in nature and show a great diversity in their
shape, ranging from spherical, rod-shaped to filamentous, which may further contain
different kinds of genomes. A major chunk of these virus genome happens to be
single-stranded RNA (ssRNA), while some of those even might have double-
stranded RNA (dsRNA), single-stranded DNA (ssDNA), and double-stranded
DNA (dsDNA) (Gaffar and Koch 2019; Matthews’ Plant Virology 2002). The
viral genetic material is encapsulated by a coat or capsid and the infection is
mediated by vectors. Virus multiplication within the host cell works in an intricate
manner. This also needs the systemic movement of viruses via the plasmodesmata
and the phloem. The plant however has evolved a complex mechanism to deal with
various strains of different viruses it encounters in the rhizosphere (Gallet et al.
2018).

It is important to study the rhizosphere viruses to determine plant health and
ultimately the ecosystem health. An approach that works best to study these com-
plexes below-ground interactions is metagenomics. Microbial metagenomics for soil
bacterium has been widely used and standardized using the 16srRNA sequencing,
but the same does not hold true in case of viruses. Though there are methods like
plaque formation studies, but they impose a number of limitations. Metagenomic
sequencing of viruses is limited because of the lack of universal markers and the
phylogenetic means for defining viral populations. This probably is one of the
plausible reasons for high local viral diversity as opposed to the low global viral
diversity. Modern techniques involving single molecule real-time sequencing
(SMRT) will help in the improved identification by stratifying different viral variants
which otherwise would have got flattened out in the short reads (Breitbart and
Rohwer 2005; Rhoads and Au 2015). This would also enhance the traceability for
molecular epidemiology and ecology emitted by the viruses. This in turn would help
establish virus-associated risk analysis and the viral durability in the proximal area
(Jones 2014). The plant–virus interactions will continue to harbour attention in
future as well; the viruses will continue to invade both cultivated and wild plants
and thus, the new plant–virus interactions would keep evolving. The accelerated rate
of plant–virus interactions and the emergence of new virus-borne diseases in a wide
variety of crop plants offer a great potential for future research in this domain.

An insight into the rhizosphere’s viral diversity would help to develop different
strategies for sustainable agricultural practices and to mitigate the food security
challenge. Apart from impacting the plant health in a deteriorating manner, these
virus particles also provide resistance to their host plants against a number of
different biotic and abiotic stresses (Roossinck 2015). The ability of viruses to
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confer beauty in the ornamental plants, and tolerance in several different crops,
which has long been overlooked can be put as an interesting research domain. The
interplay of rhizosphere inhabitants needs to be thoroughly investigated to look for
the enhanced beneficial functionalities (Berendsen et al. 2012). Furthermore, a
systems approach will facilitate designing of robust rhizosphere engineering plat-
forms. The immense impact of this will revolutionize the approaches towards
agricultural practices.

11.2 Virus Particles Enter the Host Plants Through
Their Roots

Most plant viruses enter the host through its aerial parts, but there are some classes
which invade plants via roots with the help of various soil-inhabiting vectors. The
first ever root invading plant virus identified was soil-borne wheat mosaic virus
(SBWMV) which causes mosaic disease in wheat (Hamm et al. 2007). Since then
various soil-borne viruses have been identified. The viruses have single-stranded
RNA (ssRNA) genome and belong to 17 different genera from 8 virus families
(Table 11.1). The viruses are transmitted by soil-inhabiting vectors belonging to
three different groups, namely, plasmodiophorids (Prostita), Olpidium spp. (Fungi),
and nematodes (Invertebrates). Plasmodiophorids transmit viruses from Potyviridae,
Benyviridae, and Virgaviridae, Olpidium spp. transmit Alphaflexiviridae,
Tombusviridae, Rhabdoviridae, andOphioviridae, while nematodes transmit viruses
from Secoviridae, Virgaviridae, and Tombusviridae. The virions may be icosahe-
dral, rod-shaped, or filamentous. Moreover, the structure of virus has no association

Table 11.1 Classification of soil-borne viruses

S. no. Family Genus Virus representative

1 Benyviridae Benyvirus Beet necrotic yellow vein virus

2 Virgaviridae Furovirus Soil-borne wheat mosaic virus

Pecluvirus Peanut clump virus

Pomovirus Potato mop-top virus

Tobravirus Tobacco rattle virus

3 Potyviridae Bymovirus Barley yellow mosaic virus

4 Ophioviridae Ophiovirus Mirafiori lettuce big vein virus

5 Rhabdoviridae Varicosavirus Lettuce big vein-associated virus

6 Alphafexiviridae Potexvirus Pepino mosaic virus

7 Tombusviridae Tombusvirus Cucumber necrosis virus

Gamma-carmovirus Melon necrotic spot virus

Dianthovirus Red clover necrotic mosaic virus

Alpha-/Beta-necrovirus Tobacco necrotic virus

8 Secoviridae Nepovirus Tomato ringspot virus

Cheravirus Cherry rasp leaf virus
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with the type of vector mediating its transmission (Kormelink et al. 2011;
Verchot-Lubicz 2003). In icosahedral virions, the coat protein (CP) plays a signif-
icant part in the transmission process. It adsorbs the virus either on to the surface of
vector zoospores or to nematode feeding apparatus while in rod-shaped or filamen-
tous virions some other proteins are also involved in the transmission in addition to
the coat protein (Adams et al. 2001; Bragard et al. 2013; MacFarlane 2003).

11.2.1 Nematode-Transmitted Viruses

Nematodes generally transmit viruses belonging to Nepovirus, Tobravirus, and
Dianthovirus. Movement proteins in Nepoviruses form a hollow tubular structure
inside the infected cell which extends and connects the neighbouring cells. The
tubular structures contain viral movement proteins and form the channel for virion
transmission to adjacent cells and its spread to other plant areas (Wieczorek and
Sanfaçon 1993). Tobraviruses move from one cell to the other without any coat
protein. The movement protein binds in a cooperative manner to the RNA genome
forming a ribonucleoprotein complex which moves from one to the other through
plasmodesmatal junctions. Whereas the Tobraviruses move from one cell to the
other without any coat protein (Carrington et al. 1996).

11.2.2 Fungi-Transmitted Viruses

Olpidium spp. transmits viruses belonging to Dianthovirus, Necrovirus,
Tombusvirus, and Varicosavirus. Tombusvirus and Dianthovirus do not need coat
proteins for cell-to-cell movement. The movement protein of Red Clover Necrotic
Mosaic Virus (RCNMV; Dianthovirus) has a special RNA-binding property. It
moves the viral RNA through plasmodesmatal pores by inducing their expansion
(Fujiwara et al. 1993; Giesman-Cookmeyer and Lommel 1993).

11.2.3 Plasmodiophorids-Transmitted Viruses

It includes viruses from Benyvirus, Furovirus, Pecluvirus, and Pomovirus (Mayo
1999). Beny-, Pomo-, and Pecluviruses encode three proteins, namely, TGBp1,
TGBp2, and TGBp3, also known as triple gene block proteins. TGBp1 is an RNA
helicase and associates itself with plasmodesmata while TGBp2 and TGBp3 are
small membrane-binding proteins and are essential in cell-to-cell viral movements
(Torrance and Mayo 1997).
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11.2.4 Viral Transport to Aerial Parts

After entering the host plant through roots, these soil-borne viruses generally spread
their invasion to the aerial parts via a vascular system of the plant, specifically the
xylem. Immunogold-labelling studies and transmission electron microscopic studies
have revealed the invasion of beet necrotic yellow vein virus (BNYVV) and
SBWMV in root xylem parenchyma and vessels of infected plants (Chiba et al.
2008; Verchot et al. 2001). Rice yellow mottle virus (RYMV) particles move from
one cell to another into immature xylem elements where they also undergo replica-
tion. The virus particles are released into the xylem upon programmed cell death and
travel upward to the aerial parts and subsequently, generate symptoms of infection
(Opalka et al. 1998; Verchot et al. 2001).

Cellular level damage and molecular signalling triggered by viruses upon enter-
ing the plant forms the basis of plant defence mechanisms. Once a virus enters the
plant system, it starts using the host plant’s cellular machinery to replicate itself.
Plants develop immune responses against the invading viruses to restrict the putative
damage by the virus. They either employ RNAi-based signalling or resistance
(R) gene-based defence mechanisms.

11.3 RNAi-Based Signalling Mechanisms

Viruses that infect plant systems generally have an RNA genome. Therefore, RNAi-
or RNA-induced silencing-based immune responses are an important basal defence
mechanism (Ding and Voinnet 2007; Vaucheret 2006). The RNA genome comprises
of various stem-loop structures, which are replicated by virus-encoded
RNA-dependent RNA polymerases (RDRPs) to form double-stranded RNA
(dsRNA). Plant dicer-like (DCL) ribonucleases act on these dsRNA structures to
generate 21–24 nucleotide short interfering RNAs (siRNAs). The siRNAs are taken
up by RISC, RNA-induced silencing complex, processed into guide RNAs
(giRNAs) and then targeted to the foreign RNA molecules with complementary
sequences (Ruiz-Ferrer and Voinnet 2009). Host Argonaut (AGO) family proteins
degrade these targeted viral RNA molecules to impede the spread of viral infection
(Vaucheret 2008). The RNAi-based signalling mechanism tends to limit the viral
invasion, but viruses also have a counter-mechanism to combat this layer of plant
defence. Viruses encode anti-silencing proteins, also known as viral suppressors of
RNAi (VSRs) which interfere with host RNA silencing machinery (Ding and
Voinnet 2007). Generally, all plant–virus families encode VSRs. These VSRs are
diverse in sequence, evolutionary origin, competency, and mode of action (Bazzini
et al. 2007). VSRs undertake diverse mechanisms to suppress plant RNAi pathway,
i.e. they interfere with the cellular RNAi pathway at various steps (Fig. 11.1). For
example, they may either impede the initiation of RNAi response by sequestering
dsRNA or DCL like Potyviral HcPro and beet yellow virus P21 protein (Carbonell
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and Carrington 2015; Goto et al. 2007; Haas et al. 2008; Lakatos et al. 2006) or they
may interact with AGO proteins resulting in mis-assembly of RISC like cucumber
mosaic virus 2b (Carbonell and Carrington 2015; Csorba et al. 2015; Duan et al.
2012). They may even suppress RDRPs or altogether block any other downstream
RNAi pathway (Glick et al. 2008). In addition to performing RNA silencing
suppressor activities, these viral proteins also participate in other viral processes
like replication, assembly, or movement of these virus particles.

11.4 R-Gene-Mediated Defence Responses

The RNAi-based mechanism restricts the entry of viral pathogen inside the plant
host while the R-gene-mediated defence limits viral replication inside the host cells
and its escalation to other plant areas (Nakahara and Masuta 2014; Verlaan et al.
2013; Zhou and Chai 2008). R proteins generally belong to nucleotide-binding site–
leucine-rich repeat (NBS–LRR) class of proteins which trigger broad spectrum
defence processes against various pathogens including bacteria, fungi, and viruses
(Jones and Dangl 2006; Kachroo et al. 2006). R-genes are either dominant or
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Fig. 11.1 VSR-mediated suppression of plant RNAi signalling
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recessive resistance genes. Dominant type R-genes tend to directly fight against the
viral invasion while recessive type proteins limit viral replication by indirectly
suppressing the host proteins required for viral propagation. Tomato Ty-1 resistance
gene is a dominant type R-gene, which codes for an RNA-dependent RNA poly-
merase (RdRP) which amplifies the RNAi signal in response to tomato yellow leaf
curl geminivirus (TYLCV) (Verlaan et al. 2013). Ty-1 expressing tomato plants
show very low level of TYLCV infection compared to the ones which do not
express. An example of recessive type R-gene is silencing of elongation factor,
EF1A in soybean which is required for soybean mosaic virus (SMV) replication.
EF1A silencing results in limiting SMV replication and therefore, confers resistance
(Luan et al. 2016). Some other R-genes are tobacco ‘N’ protein against tobacco
Mosaic virus (TMV), potato ‘Rx1/2’ against potato virus X (PVX), and Arabidopsis
RCY1 against cucumber mosaic virus (CMV) (Bendahmane et al. 1999, 2000;
Cooley et al. 2000; Takahashi et al. 2001; Whitham et al. 1994).

11.5 Viral Replication Inside the Host and Associated
Damages

After invading the plant system, viruses undergo de-encapsidation and the viral
RNA remains in the host cytoplasm where it further replicates and traverses to either
cells through plasmodesmata (PD). PDs are continuous intercellular channels among
neighbouring plant cells. Viral particles replicate inside viral replication complexes
(VRCs) which comprise of host and viral proteins required for viral replication and
the viral genome template. The cis-acting elements in the viral genome guide the
initiation of replication process, recognition of the template by RNA-dependent
RNA polymerase, synthesis of complementary RNA strands, VRC formation, and
activation. VRCs are highly organized structures and associate with host cells’
membranes. They tether to modified membranes of various cellular organelles like
endoplasmic reticulum (ER) or mitochondria.

The steps of viral replication depend on the genome type of the virus. The (+)
RNA viruses first translate the genomic RNA to form the required viral proteins for
replication and then, undergo the actual replication process. The (+) strand is first
copied into (�) RNA strands which undergo subsequent rounds of replication to
form (+) strands that form the genome of daughter virions. In (�) RNA viruses, the
RDRPs are already present along with the genomic RNA which copies the template
to form a (+) strand. These (+) strands are again replicated into (�) strands which
may undergo subsequent rounds of replication before finally serving as the template
for new viruses. In dsRNA viruses, the RDRP synthesizes the (+) strand which is
forced out the virion. This (+) strand undergoes translation to form the viral proteins
like CP, RDRP which assemble to form an immature virion. The (+) strand is then
subsequently copied into the (�) strand to form the complete dsRNA genome
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(Gelderblom 1996; International Committee on Taxonomy of Viruses 2012; King
et al. 2012).

Viral replication and spread in the plant system are a co-ordinated process. The
VRCs are anchored to cellular membranes and therefore, are in contact with the host
cytoskeleton. The transport of newly synthesized virions via PDs is mediated by the
virion-encoded movement proteins (MPs). MPs are known to bind to both, the viral
ribonucleoprotein complex and the PDs. MPs interaction with PDs involves PD
dilation easing the virion traversing between adjacent cells (Lucas 2006). MPs are
essential for viral transport as viruses deficient in MP do replicate but are unable to
spread their infection. Complementation of such viruses with functionally related
MP results in viral movement to systemic tissues (Deom et al. 1987; Holt and
Beachy 1991; Morozov et al. 1997; Niehl et al. 2014). Moreover, MPs bind to the
ribonucleoprotein complexes in a sequence-independent manner and associate them-
selves with the viral RNA in their vicinity. TMVMP co-localizes with the viral RNA
irrespective of being synthesized during the infection or introduced exogenously
(Boutant et al. 2010; Heinlein et al. 1998). MPs have an intrinsic mechanism of
nucleic acid identification and binding and therefore have a significant role in viral
transport.

11.6 Signalling Events in Plant Defence Against Viral
Attack

In an attempt to fight against pathogens, plants have various layers of defence
strategies. However, before mounting an efficient response against these potential
threats, plants must possess the ability of differentiating between different patho-
gens. This is achieved by recognizing various elicitors like PAMPs (pathogen-
associated molecular patterns) and MAMPs (microbe-associated molecular patterns)
which further leads to PTI (PAMP-triggered immunity) responses. To this perspec-
tive, whether viruses encode for such molecular patterns is still not clear. Neverthe-
less, upon viral attack, PTI has been reported to be generated in response to
intracellular dsRNAs, thus they can be referred to as viral PAMPs (Nicaise 2014;
Niehl et al. 2016). After pathogen recognition, typical PTI responses are generated in
plants which include crosstalk between electrical signalling, Ca2+, and the reactive
oxygen species (ROS) waves, callose deposition, MAPK, and phytohormones
signalling. Plants also respond to viral attack by triggering such orchestrated set of
processes and signalling events. In case of a viral attack, PTI was reported to be
accompanied with similar processes like SA accumulation which triggers a relay of
events associated with downstream signalling and differential regulation of pathogen
defence genes. The early response involves ROS production and activation of
MAPKs (Bigeard et al. 2015). For example, resistance against various viruses was
achieved by signalling cascades involving RLKs (receptor-like kinases) in
Arabidopsis (Gou et al. 2010; Kørner et al. 2013). Likewise, NIKI- a RLK was
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found to be involved in Arabidopsis defence against CaLCuv (cabbage leaf curl
virus) (Fontes et al. 2004). Various studies suggest that among a plethora of
elements, Ca2+ ions are the earliest doers of plant defence response. Various Ca2+

sensors like CaM (calmodulin), CMLs (calmodulin-like protein), and CDPKs (Ca2+-
dependent protein kinases) are involved in plant immunity against pathogens. In
context to viruses, a tobacco CML was seen to play a crucial role in plant defence by
regulating virus-induced gene silencing (Anandalakshmi et al. 2000). It binds and
controls degradation of silencing suppressors of viruses, thus, exerting its antiviral
activity. Similarly, CML role has also been described in tobacco against CMV
(cucumber mosaic virus) (Jeon et al. 2017). CML was found to be involved in
triggering SAR (systemic acquired resistance) by acting as a receptor which further
leads to downstream SA (salicylic acid) signalling. Here, CML was proposed to
perform dual function as it perceives Ca2+ influx as well as viral suppressors for
RNA silencing.

Another early plant defence response is an increase in reactive oxygen species
(ROS). The literature carries various examples where in response to viral attack, an
increase of ROS was observed. For instance, enhancement in level of ROS was seen
after infection by cucumber mosaic virus (Riedle-Bauer 2000), clover mosaic virus
(Clarke et al. 2002), and plum pox virus (Díaz-Vivancos et al. 2008; Hernández et al.
2006). Thus, an increase in ROS levels seems to be a common antiviral defence
strategy adopted by plants. Apart from ROS and Ca2+ signalling, NO (nitric oxide)
signalling also plays a positive role in antiviral defence. Induction in NOS (nitric
oxide synthase) activity was seen upon TMV (tobacco mosaic virus) infection. NO
also induces SA accumulation which further induces pathogenesis-related (PR) gene
expression mediating N-gene resistance against TMV (Durner et al. 1998). Overall,
it can be concluded that plants activate similar signalling pathways in defence
against viruses as seen in the case of non-viral pathogens.

11.6.1 Contribution of Cyclins, CDKs, Chaperones,
and Other Enzymes During Viral Infection

Modulation of plant’s cell cycle progression is very common during viral attack.
Alteration in the expression levels of cell cycle-associated genes was observed upon
infection of CaLCuV (cabbage leaf curl virus) in Arabidopsis (Ascencio-Ibáñez et al.
2008). In parallel, upregulation of genes like CDKs (cyclin-dependent kinases), CYC
(cycloidea) and PCNA (proliferating cell nuclear antigen), and downregulation of
genes like RBR1 (retinoblastoma-related gene) and CDK inhibitor was reported upon
BSCTV (beet severe curly top virus) infection in Arabidopsis (Park et al. 2010). In
another study, upon infection with RBSDV (rice black-streaked dwarf virus),
upregulation of cdc2 gene (encodes a CDK) was reported in maize plants (Shen
et al. 2016). Accumulating evidences have shown that activation of these core cell
cycle genes and interactions between viral and cell cycle proteins lead to
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perturbations in various cell cycle controls, which in turn facilitates viral infection
(Jing et al. 2019; Mills-Lujan and Deom 2010; Shen et al. 2016). One such
regulatory switch for transition from G1 phase to S phase in cell cycle is
E2F/RBR (Sidle et al. 1996). Interactions between E2F/RBR facilitates control of
being in G0 state (Harbour and Dean 2000; Lavia and Jansen-Dürr 1999); however,
cyclin D-dependent CDK-mediated phosphorylation of RBR disrupts its interaction
with E2F leading to expression of S phase genes (Kaelin 1999). Some viruses
smartly interacts with RBR and escapes this phosphorylation prerequisite, which
in turn leads to uncontrolled DNA replication (Jansen-Dürr 1996; Niculescu et al.
1998). It was observed that overexpression of cyclin D (CYCD3:1) leads to no
symptom development upon CaLCuV infection in Arabidopsiswhereas mutations in
CYCD (3:1, 3:2 and 3:3) leads to severe symptoms (Ascencio-Ibáñez et al. 2008).
Moreover, high titre of viral DNA was detected in mutants of cycd3, in contrast to
very less amount in CYCD3 overexpression lines, howbeit, highlighting an impor-
tant defence approach against viral attacks.

Viruses also reconfigure the chaperone machinery of plants to support their own
replication. Subversion of key chaperones like HSP70 and HSP101 from their
regular function into viral protein complexes is one of the common strategies
employed by viruses to amplify their genomes (Aparicio et al. 2005; Carr et al.
2006). Nevertheless, plants have also developed some mechanisms to counteract this
viral strategy. HSP90 is one of the key chaperones involved in NLR-mediated
defence response as reduction in the defence was seen due to mutations in HSP90.
Various studies have reported that HSP90 along with Rar1 (a resistance signalling
gene) and SGT1 (suppressor of G2 allele of skp1) forms a complex to achieve N- or
Rx-mediated resistance against viruses like TMV and PVX (potato virus X) (Botër
et al. 2007; Takabatake et al. 2007). HSP40 might also be playing an important role
in plant immunity as susceptibility to SMV (soybean mosaic virus) was enhanced
upon silencing of HSP40 in soybean (Liu and Whitham 2013). In another study, ER
residing chaperones were also seen to affect antiviral defence responses (Caplan
et al. 2009). Calreticulin (CRT)—an ER chaperone was found to be involved in
N-mediated resistance against TMV by directly interacting with TMV movement
proteins. When CRT was overexpressed, movement of TMV between cells was
interfered and moving proteins was directed to microtubules for degradation (Chen
et al. 2005). Other than CRT, BiP (binding immunoglobin protein), and PDIs
(protein disulphide isomerases) including ERp57 were upregulated during
N-mediated resistance to TMV (Caplan et al. 2009). Silencing ERp57, CRT2, and
CRT3 in N-gene expressing N. benthamiana led to partial restoration of systemic
accumulation lending further support to earlier reports that upregulating CRT blocks
TMV movement. It is highly probable that ERQC (endoplasmic reticulum quality
control) might be identifying viral proteins as foreign and directing them for
degradation via proteasome machinery, thus forming an important control in
antiviral immune responses.
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11.6.2 Systemic Acquired Resistance in Plant Against Viral
Infection

Cellular defence responses elicited at the site of infection are passed to distant
non-infected cells, ensuing decreased virulence in these regions. This kind of
response is termed as SAR (systemic acquired resistance). It is crucial for plants as
it limit the spread of virus progeny to only infected cells and can remain sustained for
several weeks (Fu and Dong 2013). Generally, SAR is initiated during an incom-
patible reaction between R/Avr at the site of infection. This further results in an
increase of endogenous levels of SA which in turn activates expression of defence-
related genes (Tsuda et al. 2008; Yi et al. 2014). A crucial aspect of SAR response is
how the immune signal travels to the distant parts of plants. Several molecules like
G3P (Glycerol 3 phosphate), MeSA (Methylated SA, a derivative of salicylic acid),
glycerolipids, azelaic acid, and indole derivatives act as putative signals during
non-viral and viral pathogens (Chanda et al. 2011; Jung et al. 2009). From studies
in tobacco infected with TMV, MeSA was found to be involved in mounting SAR. It
binds to lipid-transport proteins and its derivatives and travels through phloem to
other parts of the plants (Dempsey and Klessig 2012; Park et al. 2007).

How SAR signals remain sustained for a long duration is still ambiguous but
epigenetic changes like chromatin remodelling and DNA modifications seem to be
essential in maintaining them (Spoel and Dong 2012). Moreover, it has been
reported that SAR can be successfully passed to next generation, despite no patho-
gen attack (Luna et al. 2012). As such, with respect to viral attacks, molecular
determinants of SAR and how it will be successfully forwarded to progeny still
requires investigation. However, in one interesting example, it was seen that upon
TMV infection, frequency of DNA homologous recombination was increased in
infected as well as non-inoculated distant leaves. This increased frequency of
recombination was seen to transmit in the progeny of TMV-infected plants. The
increased rate leads to more DNA rearrangements and less methylation of LRR
(leucine-rich repeat) gene loci which is homologous to N resistance gene (Boyko
et al. 2007). Likewise, the progeny also showed more tolerance to TMV (Kathiria
et al. 2010). It is quite an interesting aspect which upon exploration will uncover
many crucial information on SAR defence and its transmission against viral attacks.

Apart from SAR, some host proteins and immunity molecules are also involved
in mediating resistance against viruses. For instance, a mutation in TOM1 and
TOM2a (tonoplast-localized transmembrane proteins) resulted in reduced infection
against TMV in Arabidopsis (Ishikawa et al. 1993; Tsujimoto et al. 2003). Similarly,
mutations in translation initiation factors (eIF4E, eIF4G) impart resistance against
viruses in Arabidopsis, pepper, tomato, pea, barley, and rice (Albar et al. 2006; Lellis
et al. 2002; Ruffel et al. 2002, 2005). In addition, lectin proteins are also involved in
antiviral defence. Resistance against TEV (tobacco etch virus) was achieved due to
RTM1 (restricted TEVmovement1)—a jacalin-type lectin in Arabidopsis (Chisholm
et al. 2000). Likewise, resistance against potexviruses was mediated due to JAX1
proteins (Yamaji et al. 2012). Lectin-mediated resistance is different than other
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antiviral responses as it doesn’t involve SAR or HR responses, neither it changes
level of SA nor it incorporates typical defence genes alterations. In summary, it
involves a yet unidentified antiviral defence strategy that needs to be determined in
future.

11.6.3 Phytohormones-Mediated Defence Against Viral
Attack

Being in constant threat of potential viral attacks, plants depend upon phytohor-
mones to fine tune their antiviral defence mechanisms. SA (salicylic acid) is one of
the major phytohormones involved in mounting an effective response against viral
pathogenicity. The literature carries various examples of role of SA in mediating
R-gene resistance, basal immune processes, and SAR. For instance, accumulation of
SA was significantly increased after TMV infection in tobacco. Similarly,
SA-mediated defence response was generated to restrict tomato ringspot virus
(ToRSV) infection in tobacco (Baebler et al. 2014). Moreover, despite of the
presence of appropriate R-genes, mutations in SA pathway still made plants more
susceptible to viral attacks (Baebler et al. 2014; Dinesh-Kumar et al. 2000; Lewsey
et al. 2009; Takahashi et al. 2004). In another similar case of depletion of SA by
using NahG (salicylate hydrolase), transgene decreased immunity against potato
virus Y in potato Ny-1 R-gene-resistant lines (Baebler et al. 2014). In parallel,
overexpression of SA pathway genes and/or spraying plants with SA and its
analogues lead to a further delay in virulence and viral disease establishment
(Ishihara et al. 2008; Mayers et al. 2005; Peng et al. 2013). Generally, upon SA
biosynthesis, signalling events are initiated which leads to the production of ROS,
callose deposition, formation of PR proteins, and induction of HR and SAR
responses (Jones and Dangl 2006; Torres et al. 2006; Vlot et al. 2009). All these
events lead to further downstream activation of other defence genes which helps
plant to decrease susceptibility to viral attacks.

Other than SA, phytohormones like JA (jasmonic acid) and ethylene are also
involved in plant–virus interactions. On exogenous application of JA, reduction in
geminivirus infection was reported in Arabidopsis (Lozano-Durán et al. 2011).
Similarly, endogenous levels of JA was seen to enhance incompatible plant–virus
interactions in potato and tobacco (Dhondt et al. 2000; Kovač et al. 2009). Few
studies about the involvement of ethylene in plant–virus interactions have also been
reported. It has been observed that spraying plants with ACC (immediate precursor
of ethylene) prior to infection leads to a reduced viral pathogenicity. Furthermore,
spraying of SA and JA also aided in reducing viral titres (Clarke et al. 1998).
Although in plants, it has been seen that during viral attacks, endogenous levels of
Et and JA have antagonistic consequences on defence responses mounted via SA,
howbeit, this finding implies that the timing of treatment is crucial for an adequate
defence response. Moreover, it is also becoming progressively clear that a crosstalk
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among these hormones exist which regulates the defence responses against viral
attacks. A modulation of JA and SA was seen to be crucial in mounting HR
responses initiated during Avr-R reactions (Nicaise 2014). It was concluded that a
fine balance between JA and SA is required to determine the level of resistance,
similar to pathosystems involved in non-viral pathogens (Thaler et al. 2012). Recent
researches also indicate a potential role of ABA (Chen et al. 2013) and
brassinosteroids (Ali et al. 2014) in antiviral mechanisms; however, the exact
mechanisms and their functions still remain unclear. Nevertheless, future researches
(along with current findings) would help to gain a better understanding of plant–
virus interactions mediated by phytohormones which might encourage researchers to
achieve robust resistance phenotypes against viral infections.

11.6.4 Volatile Organic Compounds and Plant–Virus
Interactions

Another line of defence system includes utilization of VOCs (volatile organic
compounds) for communication among plants and/or between distinct divisions of
same plant. Various diverse molecules like fatty acids and amino acid derivatives,
benzenoids, phenylpropanoids, and terpenes have been seen to function as plant
VOCs (Pichersky et al. 2006). For instance, tobacco plants emits methyl salicylate
(a derivative of salicylic acid) in response to TMV infection which leads to increased
resistance against TMV (Shulaev et al. 1997; Vlot et al. 2008). Likewise, accumu-
lation of MeSA was also reported in leaves of tomato plants upon TMV infection
(Deng et al. 2004). A model has been suggested where upon TMV infection,
accumulated SA is converted to MeSA which further travels to distant leaves via
phloem transport. Here, SA-binding protein 2 converts MeSA to SA by its methyl
esterase activity (Forouhar et al. 2005) which in turn mounts a SAR response in
distant tissues (Park et al. 2007). VOCs are also involved in a process known as
priming of plants which serves as an alarm for the adjacent plants to construct their
defence responses. In a study using tobacco plants (Nicotiana tabacum cv. Xanthi
nc), it was reported that under laboratory conditions, the emitted MeSAs from
TMV-infected plants was adequate to induce resistance in the neighbouring tobacco
plants (Shulaev et al. 1997).

Apart from VOCs, synthetic elicitors also trigger defence reactions in plants
against pathogens. A number of synthetic elicitors like polyacrylic acid, salicylic
acid, chitosan, ozone, paraquat, and many more compounds have been shown to
induce defence responses against bacteria, fungi, and viruses. Gianinazzi and
Kassanis (1974) demonstrated that application of polyacrylic acid (PA) either by
spraying on tobacco leaves or by watering the plants with it leads to resistance
against TMV and TNV. Similarly, acetylsalicylic acid and 2, 6-dichloro-isonicotinic
acid was shown to provide resistance against TMV in tobacco (Uknes et al. 1992;
White 1979). Resistance against turnip crinkle virus (TCV) was achieved in
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Arabidopsis by treating them with a novel chemical activator benzothiadiazole
(BTH) (Lawton et al. 1996). BTH leads to activation of SAR signalling pathway
which further provides disease control against various pathogens (bacteria, fungi,
and viruses) in crops like rice, lettuce, tobacco, and wheat (Friedrich et al. 1996;
Görlach et al. 1996). Burketová et al. (1999) showed that BTH in sugar beets induces
synthesis of β-1, 3-glucanase, and chitinase to provide resistance against TNV.
Taken together, it can be concluded that a complex cocktail of VOCs and chemical
elicitors are required in generating antiviral responses in plants which can further be
exploited to combat agricultural loses due to viral attack.

11.7 Conclusion

Plants and virus particles have been evolving simultaneously over the past many
years. Where virus particles have developed various strategies of its transmission
from one host to another and to survive by means of its own alterations in the genetic
material, plants on the other hands have also come up with various defence strate-
gies. Viruses have adapted to the complex multi-dimensional interactions both under
and above the ground with its host plants and with the other microbes. It is
interesting to note that despite showing parallel evolution, plants have emerged to
be more smart than its pathogens. The plants have developed three distinct layers of
defence response with early signalling mechanisms involving the participation of
ROS and electrical signalling followed with a more chemically and energetically
demanding phytohormone signalling. The third layer of fine defence strategy
includes the response elicited by the secondary metabolites. The VOCs seems to
play a very intelligent role by informing the neighbour plants of a potential attack so
that they can decide the fate of signalling and can divert the resources adequately. It
would be interesting to see the degree of variation in gene expression of defence-
associated genes in plants under control conditions with no viral pathogen versus a
viral-attacked plant versus a plant-allocating resource to prepare for a viral attack
when informed by a neighbouring plant emitting VOCs.

Future research avenues might look into the integration of proteomic and
transcriptomic studies to understand the role of differential transcription and trans-
lation and up- and downregulation of the metabolome to have a better insight onto
how interaction of a diverse variety of microbes and herbivores in the rhizosphere
alter the plant–virus interactions and what all factors contribute towards the syner-
gistic and/or antagonistic nature of the molecular machinery involved. A tremendous
improvement over the years in next-generation sequencing can help decipher the role
of epigenetic transfer of SAR from one to another generation. Therefore, to have a
better insight and a comprehensive understanding of the molecular biology involved
in plant defence strategies, an understanding of interactome is very essential.
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Chapter 12
Long Sequencing Tools for Rhizosphere
Study

Debasish Pati and Binod Bihari Sahu

Abstract At present, the rhizosphere study is gaining huge scientific attention
worldwide. Plant and microbes are interlinked by a thin networking system com-
prising bacteria, archaea, fungi, picoeukaryotes, and phage, aggregated with in the
narrow zone within close proximity of plant roots. The fine tuning of the microbial
community depends upon the plant species, texture of soil, and nature of root
secretion, in response to the microbiota directly/indirectly regulates plant growth,
metabolism, nutrient cycling, and survival under stress condition. The gain in
research interest of rhizosphere is majorly due to the recent rapid development of
NGS platform in the last decade. Development and evolution of NGS from the time
of Sanger’s sequencing is now facilitating researchers with low cost, high through-
put, longer read length, and lesser technical complexity in sample processing. With
the progress of NGS, huge genomic data has been generating that force the parallel
innovation in bioinformatics tools for data processing and storing. In this chapter, we
focus on evolution of NGS platform and their applications in rhizosphere study.
Rhizosphere study have the immense possibilities towards world food security,
improving nutrient cycling in agricultural field, engineering microbial community
for plant growth and higher productivity as well have applicable in preserving
natural plant diversity of local ecosystem.
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12.1 Introduction to Rhizosphere

The rhizosphere can be known as the confederate platform between a plant roots and
the surrounding soil. The term was first introduced in 1904 by Lorenz Hiltner, where
he postulated that a plant’s nutrition is remarkably guided and modulated by
the structure of its rhizosphere microbiota (Philippot et al. 2013) and vice versa.
On the other hand, the activity of a rhizosphere’s microbiome is governed through
the nature, composition, and characteristics of the plant’s root exudates (Doornbos
et al. 2012). All of the above mechanism of symbiosis/ mutualism is known as plant
effect/rhizosphere effect. It can be evaluated in terms of rhizosphere ratio, i.e., (R:S),
where “R” stands for sum of microbe number in the rhizosphere in comparison to the
corresponding number in the bulk soil “S” (Antoun and Prévost 2006).

The rhizosphere microbiome is the orchestra of microbial community, which is
plumed within the several millimeters of radius around the root. Structurally, the
ecosystem can be broadly categorized into three major regions (Prashar et al. 2014):

• Endorhizosphere: Consists of the root outer most layers, the endodermis, and
cortical layer.

• Rhizoplane: Consists of root exterior where soil particle adheres and microbiome
flourish, consists of epidermis, cortex, and mucilaginous polysaccharide layer.

• Ectorhizosphere: Consists of soil in immediate vicinity to root.

The rhizosphere is a cluster of various microbial lifeform like bacteria, archaea,
fungi, picoeukaryotes, and phages. The rhizosphere comprises of microbiome com-
munity very specific to the plant species and genotype (White III et al. 2017). The
microbe community largely are regulated and characterized by the plant root envi-
ronment, plant species, and surrounding soil texture/quality. Below is a diagram-
matic representation of rhizosphere functional anatomy, represented in Fig. 12.1.
The term “Rhizodeposition” was coined by Whipps and Lynch in 1985, which
denotes the bulk of organic compounds released by living root to its surrounding.
It includes low molecular weight compounds like simple carbohydrate, amino acid,
vitamins, plant hormones, phenols, organic acids, sugar phosphate esters, and many
other carbon containing secondary metabolites, as well contains higher molecular
weight compounds like enzymes, protein, and mucilage. In response to these
compounds, the microbial diversity gets regulated, for example, Agrobacterium
tumefaciens, a bacterial pathogen gets allured towards specific phenolic compound
(acetosyringones) secreted from injured plant. Oomycetes and other pathogens can
take over symbiotic signaling molecules, such as cutin monomers to initiate infec-
tion. Likewise, indigenous secondary metabolites like pyrrolizidine alkaloids can
influence the rhizosphere microbial community by favoring resistant/tolerant micro-
organisms or, in contrast microorganism that utilize these compounds.

The rhizosphere microbiota acts in a species-specific manner, diverse among each
other as well from each other. The community itself gets regulated by its host in
response to the microbiome that modulates host behavior directly or indirectly. It has
been reported that the rhizosphere microbiota is responsible for plant defense against
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soil-mediated pathogen, and the phenomenon is best known as the so-called disease-
suppressive soil. The rhizosphere is a versatile entity that has wider applicability in
plant metabolism, growth regulation, defense mechanism, and survival, yet many
more to find the hidden attributes. Most of the findings emerged from the studies on
Medicago truncatula and Arabidopsis thaliana. However, significant advancement
in revealing the non-cultivated plant species rhizosphere microbial ecology is also
accelerating at present scenario. To answer some of the key question like:

• How the microbes modulate growth and survival of host plant?
• What are the parameters for microbes diversity and abundances?
• How can the rhizosphere be engineered to enhance food security?

A better understanding of key contender and process that regulates in rhizosphere
need to be discovered, for the purpose an array of molecular techniques applied, such
as stable isotope- probing and metagenomics. Among all, next-generation sequenc-
ing (NGS) technology has magnificently hastened findings in plant–microbe inter-
action study since last two decade by facilitating the generation of huge sequence
data at a significantly reduced price per base.

Fig. 12.1 The Rhizosphere ecology: adapted and modified from Philippot et al. (2013). Diagram-
matic representation of narrow zone of rhizosphere consists of saprophytic and symbiotic bacteria,
archaea, fungi, virus, and picoeukaryotes, influencing and interacting with each other in a
microenvironment
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12.2 Introduction to NGS Technology

In the rhizosphere study, most of the challenges arise as vast number of microbes is
nonculturable where DNA/RNA-based studies have higher value. Genome-wide
analysis of individual microbial strain or metagenomics studies can provide brighter
insight to the configuration and physiological potential of rhizospheric microbes.
NGS technology has the tremendous output on DNA and RNA-based analysis
method. A rapid evolution been happened in NGS technology from the time of
Sanger sequencing termed as first generation of sequencing. An evolutionary time-
line of sequencing strategy and key events are tabulated in Table 12.1.

Table 12.1 Evolutionary time scale of sequencing technology

Timeline Landmark findings

1953 Discovery of DNA double helical structure by D. Watson and Francis Crick

1977 Frederick Sanger develops a DNA sequencing technique and did full genome
sequence of a virus phiX174 by chain-termination method

1977 Walter Gilbert developed DNA sequencing by chemical modification of DNA and
subsequent cleavage at specific base

1983 The polymerase chain reaction (PCR) is developed by Dr. Kary Mullis

1987 Applied Biosystems incorporated markets the first automated DNA sequencer
(AB370)

1990 Human genome project was launched

1995 The first bacterium genome (Haemophilus influenza) sequenced

1996 Complete sequencing the genome of yeast (Saccharomyces cerevisiae)

1998 Published genome of the nematode worm C. elegans

2000 454 Life Science Corporation was founded

2000 Drosophila melanogaster full genome sequenced

2001 First draft of the Human Genome sequence released

2002 First mammal-the mouse full genome sequenced

2003 Human Genome project completed

2004 Pacific Bioscience founded

2005 Oxford Nanopore Technologies founded

2006 Illumina launched new Genome analyser

2007 Sequencing by Oligo Ligation Detection (SOLD) launched by Applied Biosystems

2008 1000 Genome project launched/NGS result in dramatic drop in sequencing cost

2009 Pacific Bioscience introduced single molecule Real Time (SMRT) DNA sequencing
technique

2011 Major three new sequencing platforms (Ion Torrent’s personal genome machine/Paci
Biosciences/Illumina Miseq) are released

2014 The average cost for a whole genome sequencing is less than US $10,000

2015 The pocket-sized MinION-Oxford Nanopore Technology

2017 SeqLL release the true single molecule sequencing platform
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12.2.1 The First Generation of Sequencing

At the pioneering stage, Sanger introduced sequencing by base termination. They
use chain termination method by incorporating dideoxynucleotide to determine the
sequence of nucleotide in a DNA strand. Nucleotides get incorporated to the 30 end
of the primer with the targeted DNA as template. The dideoxynucleotide added to
respective DNA template while amplifying terminates the primer activity by getting
incorporated at the growing chain end. This generates DNA fragments of various
lengths. The fragments are discrete by gel-electrophoresis and the bands generated in
the autoradiograph of separating gel can be used for direct sequence prediction,
starting from the bottom (50 end). Later on, the above method got automated by the
use of unique fluorescent-labeled nucleotides as per four nucleotide bases.

12.2.2 The Next Generation of Sequencing

By the introduction of Solexa in 2005, the next generation of sequencing (NGS)
technology became marketable. Then, after a slew of sequencing platforms have
been invented, all of which were gradually evolving and being refined at an amazing
pace. Gradual development of NGS technologies leads to a drastic reduction in per
base sequencing cost, as represented in Fig. 12.2a we can observe by the evolution of
sequencing platform, the landmark “US $ 1000” genome goal was achieved in 2015
for human genome sequencing as compared to the first ever human genome project
did cost about ~$300 million worldwide. The NGS platforms are calibrated on the
basis of two parameters, i.e., the total throughput and the read length. a comparative
graphical representation for both the parameter of widely used NGS platforms are
illustrated below in Fig. 12.2b, c. These techniques can be grouped into three major
categories depending upon the standard chemistry used for sequencing as—
“sequencing by synthesis, sequencing by ligation and single-molecule sequencing”
(Egan et al. 2012). Each platform has its own advantages and specificity as compared
to other approaches represented in Table 12.2.

12.2.2.1 Sequencing by Synthesis

NGS technique uses the basic principle of Sanger sequencing; base incorporation is
determined by recording the chemiluminescence from respective nucleotides added
during DNA polymerase-mediated complementary DNA strand synthesis in the
above approach. DNA is cleaved to proper length, attached with adaptor sequence,
and clonally polymerized to amplify the signal generated by chemical reaction or
fluorescent. Templates are then separated and immobilized in preparation for flow
cell cycle. Roche-455/Illumina and ion torrent use the above principle, among all in
general the detection procedure for chemical or fluorescence shift during nucleotide
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addition is carried out by the sequential washing of nucleotide and is common in all
procedures (Egan et al. 2012).

12.2.2.2 Roche 454 Pyrosequencing

In sequencing by Roche 454 a single, primed DNA template is attached on a
microbead and polymerized by emulsion PCR. Each bead represents a homogeneous
genomic unit which is then placed in a well of PicoTiter Plate, then subjected to a
flow well for incubation with the mixture of apyrase, luciferase, DNA polymerase,
and ATP sulfurylase, along with the adenosine 50-phosphosulfate (ASP) and lucif-
erin as substrates. It applies the basic principle of DNA synthesis, where DNA
polymerase incorporates correct nucleotide into the strand, and a single phosphate
molecule gets released. In the presence of ASP, the phosphate molecule utilizes for
ATP (adenosine triphosphate) synthesis. ATP catalyzes the conversion of luciferase
to oxyluciferin, in the process fluorescent light is released in equal proportion to ATP
generated during the reaction (Nyrén 2007). The process is then followed by the
removal of unused ATP and nucleotide by apyrase. A new set of reaction mixture is
flooded over the template. The same procedure is cycled, until the whole template is
elongated. The light and its intensity is recorded by camera for further processing,
i.e., for DNA sequence evaluation

12.2.2.3 Illumina

It was preliminarily introduced by Solexa where the Illumina platform uses solid-
phase bridge PCR principle, where the solid substrate contains complementary
known sequence in response to the adaptor ligated to the DNA library. Both 50

and 30 adaptors are ligated to substrate that forms a bridge supplemented with
forward and reverse primers. The DNA remains attached to the base and amplified
with the primers and form a cluster of amplicons, the cluster helps in intensifying the
chemiluminescence. Numerous identical clusters are generated within each channel
of the flow cell. The amplicons are denatured, primed as well as elongated sequen-
tially. The base incorporation takes place cyclically multiple times with repeated
flooding of mixture of all the nucleotide; each nucleotide is labeled with a different
fluorophore. Each fluorophore is modified with reversible terminator (30-O-
azidomethyl) (Bentley et al. 2008). The emitted fluorescence captured for imaging;
sequencing is restored by addition of free 30OH group with the help of tris
(2-carboxyethyl) phosphine. The overall process is repeated cyclically until the
desired length of DNA is synthesized.
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12.2.2.4 Ion Torrent

The ion torrent system uses the measurement of pH shift due to liberation of
hydrogen ion in DNA polymerization is a unique approach irrespective of other
NGS technologies (Rothberg et al. 2011). The microwell containing DNA templates
is washed with deoxyribonucleotide triphosphate (dNTP). By the incorporation of
correct dNTP, it releases one H+ that signals an ISFET (ion-sensitive field-effect
transistor) ion detector. In the presence of homopolymer repeats in the template,
multiple dNTP gets incorporated in response multiple hydrogen ion will produce
leading to higher intensity.

12.2.2.5 Sequencing by Ligation

DNA polymerase was used in sequencing by synthesis process as the elongation
factor, in contrast the mismatch sensitivity feature of DNA ligase is used in sequenc-
ing by ligation approach to determine the sequence (Landegren et al. 1988).
Depending on the nucleotide(s) to be determined, random length of fluorescently
tagged oligonucleotide probes are used. The cleaved DNA templates are ligated with
a short, known anchor sequence, then DNA ligase is added to the flow cell, which
hybridize the fluorescently labeled probe to the primer and template. To determine
the incorporated probe, fluorescence imaging is performed. To assess the sequence
of nucleotides, the above procedure is cycled with different sets of probes.

12.2.2.6 SOLiD

From the sequencing industry leader, Life Technologies/Applied Biosystems comes
the support oligonucleotide ligation detection (SOLiD) system, that is a revolution-
ary new platform with built-in scalability delivering ultra-high-throughput with
greater accuracy. At first, the desired DNA is sheared to a particular length and
resulting fragments are ligated with adaptors. The microbeads subjected to clonal
amplification containing single adaptor ligated molecule through emulsion PCR
reaction. Microbeads attached to glass slide; the templated beads are combined
with a universal sequencing primer ligase and a large pool of dye-based probes,
which are fluorescently labeled with four dye, each dye represents four of 16 possible
dye nucleotide sequences. The first two positions are specific to the fluorophore
followed by the hybridized primer. Bases location of three to five in the primer are
degenerate bases separated from bases of six to eight place, made up of universal
inosine bases, by a phosphorothiolate linkage (Mckernan et al. 2012). The comple-
mentary probe gets hybridized to the template sequence and then the signature
fluorescence is recorded after which the dye is cleaved off leaving 50 free end
available for further addition. This process is repeated for several cycles until the
desired length is achieved. After that, the whole amplified strand is replaced with a
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new primer that is incorporated at n-1 base position and the successive recurrent
cycle of ligation takes place. To enhance the accuracy, the primer’s reset process is
cycled five times more, providing a dual measurement of each base separated by
several rounds (Ashelford et al. 2011).

A generalized work flow for the so-called second generation of sequencing has
been drawn below in Fig. 12.3, representing the outlook of library preparations,
amplification, and sequencing procedure for above-mentioned platforms.

All of the genomic molecules are collected from rhizosphere’s microbes, cleaved,
and converted into double-stranded DNA, conjugated with adaptors for library
preparation. Adaptors are specific for sequencing platform and enable the binding
of the library molecules to the surface of beads or a flow cell depending on the
strategy, where they are amplified prior to sequencing by emulsion PCR/ bridge
PCR, respectively. Sequencing is either by synthesis process like in illumine,
454, and ion torrent sequencing or by sequencing by ligation process in SOLiD.

Fig. 12.3 Overview of the library preparation and sequencing strategy of the most commonly used
NGS platforms: adapted and modified from Knief (2014)
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12.2.3 Single-Molecule Sequencing

Third-generation sequencing, often termed as single-molecule sequencing (SMS),
can tackle few of the limitation, faced by rest of the NGS technologies. This method
uses simplified sample preparation thus requires lower concentration of starting
material. It has the potential to detect signals of nucleotide polymerization through
chemiluminescence from a single nucleic acid molecule, by the means it eliminates
the DNA template amplification step and avoids the PCR-generated errors like
GC-bias (Ozsolak 2012). The respective methods have the advantage of direct
RNA sequencing, thus removing the biases generated during cDNA amplification
in RNA-seq studies (Ozsolak et al. 2009).

12.2.3.1 Pacific Biosciences (PacBio) Single Molecule Real-Time
(SMRT) Sequencing

In 2010, PacBio became marketable which is a dynamic technology amalgamating
molecular biology with nanotechnology using solo molecules known as single
molecule real-time (SMRT) sequencing. In this methodology, a single DNA tem-
plate along with the φ29 derived DNA polymerase with higher accuracy is being
immobilized, at the bottom of zero-mode waveguides (ZMW) irrespective of other
approaches where DNA strands are immobilized on surface. Zero-mode waveguide
(ZMW) is an imprisonment of nanophotonic unit possessing a circular well (~70 nm
in diameter and ~100 nm in depth) in aluminum-coated film sediment on a trans-
parent silica surface. The optical intensity of light decreases exponentially inside the
chamber when it moves through the narrow aperture. The observation volume within
an illuminated ZMW is ~20 zeptoliters (20*10�21 L). With this characteristic, single
nucleotide incorporation by DNA polymerase can readily be detected. The DNA
polymerase adds the labeled nucleotide to the immobilized template, induces signals,
which excite the instrument optics, continuously monitoring the enzymes active site
in ZMW. The overall strategy adapted by PacBio platform is represented schemat-
ically in Fig. 12.4. The reads length of sequence in PacBio can range up to ~40Kb,
but with >15% error rate, which is the limiting factor as compared to second
generation of sequencing (Mardis 2013).

12.2.3.2 Nanopore DNA Sequencing

Nanopore technology is the most recent single molecule third-generation sequencer
developed by Oxford Nanopore Technologies, UK. This technology uses the char-
acteristic of biological nanopores lodged in the polymer membrane. Biological
nanopores are either set up from engineered proteins like α-hemolysin MspA
(Mycobacterium smegmatis porin A protein) or derived from Staphylooccus aureus,
or are entirely synthetic, e.g., graphene (Knief 2014). An ionic solution is maintained
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across the nanopore. The nanopore consists of 1 nm diameter pore coupled with
adaptors. The adaptor can detect a simple alteration in electrical density, each
nucleotide possesses its characteristic property, thus each base that can be detected
according to its signature electrical hindrance pattern (Hart et al. 2010) is represented
in Fig. 12.5. The table-free, portable sequencing device MinION was introduced in
the year 2004 and has been commercially in May 2015. The performance of MinION
nanopore sequencer has been calibrated by using M13 genomic DNA and shows
99% sequence similarity when compared to reference genome (Hayden 2012). The
sequencer is like a USB chip and can be used only once. One can avoid sample
collection from site and carry them to lab which may cause component degradation
or change in status of sample. Instead of that, the sequencers can readily be taken to
field and sequencing will be done on spot directly, which will further reduce the cost
and efforts in sequencing significantly and help in maintaining sample integrity (Jain
et al. 2015).

Fig. 12.4 Sequencing by PacBio through light pulse detection: adapted and modified from Mardis
(2013. The hairpin adaptor ligated double-stranded DNA molecule (SMARTbell) diffuse into
ZMW; the adaptor binds to the polymerase immobilized at the bottom, which carries out template
polymerization. To differentiate all four nucleotides according to their emission spectrum, each
labeled with different fluorescent dye. A fluorescently labeled nucleotide is incorporated with the
help of DNA polymerase. The fluorescent output of the color corresponding to the incorporated
base is elevated, which can be represented in intensity vs. time plot

12 Long Sequencing Tools for Rhizosphere Study 225



12.3 Application of NGS in Rhizosphere Study

NGS is one of the holistic approaches that can revolutionize the rhizosphere study, as
about ~98% of microbe cannot be cultured in vitro that limits its detailed study. In
particular, sequence-based study is an indispensable approach as well as challenging
due to the uneven composition of microbial communities that creates convolution.
Due to new platform invention and upgradation, NGS is now paving path for high
throughput, cost- and time-effective analysis like microbial diversity and abundance
evaluation, their direct-indirect tunning with particular host species, microbes impact
on plant growth during stress condition and many more. The whole applicability of
NGS technology towards rhizosphere study can be summed in single term, i.e.,
“meta-omic,” it includes metagenomics, metatranscriptomics, and metabolomics
study in a single sphere, the various aspects of meta-omic been diagrammatically
represented in Fig. 12.6. Meta-omics provides a major tool for studying evolution
within microbial communities, which can occur due to random mutation during
convergent evolution (Philippot et al. 2013).

High-throughput sequencing-mediated microbiome study can be achieved by two
main approaches (Roumpeka et al. 2017)

• By marker gene studies: PCR amplification of a particular gene is done by
designed inclusive primer, (e.g., rbcl and matk for plants, 16s rRNA for pro-
karyotes or ribosomal ITS for fungi and cox1 for animals), from whole genomes
present in a sample then, the resultant product is sequenced. The sequences are

Fig. 12.5 Diagrammatic representation of a nanopore sequencing during base calling: adapted and
modified from Ambardar et al. (2016)
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clustered into operational taxonomic units (OTUs) and these are compared across
the rhizosphere samples.

• By shotgun metagenomics: whole microbial DNA is extracted from rhizosphere
and subject to collective functional analysis.

In particular, NGS has been used to deduce rhizosphere microbial community
anatomy, diversity and metabolic potential by metagenomics microbial community
in response to chemical treatment and plant–microbe interactions. Many other
researches have furnished with mine of information applicable to study the structure,
abundance, distribution pattern, and key members of rhizosphere. Studies of the
rhizosphere using NGS technologies have mainly focused on model plants such as
Arabidopsis thaliana (Bulgarelli et al. 2012), legumes (e.g., soybeans and peas) and
cereals (e.g., corn, oats, and wheat) (Newman et al. 2016; Turner et al. 2013).

Amplicon sequence study of microbe’s genes through NGS platform is a dynamic
approach towards characterization of the rhizospheric community. At preliminary
stage, majority of the studies used the Roche 454 sequencing technology as it was
the first introduced sequencing platform. Only few used the Ion PGM platform, but
recently the Illumina MiSeq have been used widely, as Illumina provides conjoining
insert libraries with paired end reads, which denotes its accuracy (Knief 2014). For
example, in study (Joshi and Chitanand 2020) it has been observed that microbes
community helps directly in plant growth mechanism, they observed that a strain of
Pseudomonas aeruginosa possesses traits for plant growth as well as has antifungal
activity studied through Illumina sequencing.

Majority of amplicon sequencing of rhizosphere research was focused to evaluate
and identify the plant-associated microbial communities; later on, the studies that
were made on the climatic adaptation, topological factors, role of host taxon in

Fig. 12.6 Image representing and dictating the application spectrum of meta-omic studies. Mod-
ified from White et al. (2017)
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modulating community diversity, and the microbial species succession were
addressed. Below are some of the recent MiSeq Illumina-mediated amplicon studies:

In the study by Ren et al. (2020), NGS helped in profiling the effect of long-term
application of fertilizer on microbe’s composition; from the study it has been
demonstrated that long-term nitrogen fertilizer application can significantly affect
most of the dominant microbes species by altering soil pH as well as long-term
application of fertilizer reduce microbes diversity and size of rhizosphere microbes
community. In the respective study, they concluded that microbes could act as an
indicator of soil quality index, as Actinobacteria can serve as an indicator of
decreased soil pH. In another study by Yim et al. (2020), they demonstrated that
in plant immune response microbes can act as the positive and negative modulator,
in the study the change in rhizosphere microbiome composition due to various
treatment is directly related to plant growth and root integrity as well as the
rhizospheric microbes like Nectriaceae and Streptomyces act as potential casual
agents of rose plant disease. As previously mentioned, the rhizosphere community
depends upon the species genotype; in the study by Chen et al. (2020), plant itself
regulates its rhizosphere as an umbrella species, and the Miscanthus cultivation
significantly alters the bacterial and fungal community composition and reduces
bacterial fungal diversity. They also observed concentration of organic matter and
nitrogen that are the key regulators for microbial diversity and composition in the
rhizosphere community.

Metagenomics-based taxonomic analysis has advantages over amplicon studies
as it provides results in less bias manner, also facilitates direct analysis of metabolic
dynamic of a rhizosphere ecosystem. De novo assembly of metagenomics data has
been featured like added length assembly during alignment to reference databases,
which provides error rectification, linking genes responsible for protein coding and
more robust functional and taxonomical assignment. By the above approach, one can
reconstruct a complete genome of novel, unculturable phyla (Knief 2014). To
strengthen the metabolomic analysis, technology like metatranscriptomic have gen-
erated enormous possibilities, as one can deduce any of metabolic gene expression at
the time of sampling. Both 454 and illumine technology have been revolutionaries in
the research area. NGS has potential advantages over its nearby competitive tech-
nologies as it does not rely upon prior knowledge of organism’s sequence, as well in
some studies the transcriptome of the plant and the microbe were analyzed in parallel
(Zhuang et al. 2012). The first metatranscriptomic studies by Chaparro et al. (2014)
in Arabidopsis thaliana they analyzed microbial metatranscriptome and concluded
that genes participating in microbial metabolism changes their expression level in
relation to root exudate composition at various time point of growth, as well the root
secretion itself alter accordingly. Turner et al. (2013) in there study they performed
rRNA sequencing instead of mRNA of functional microbiota in the rhizosphere of
some crop species and found profound difference in the composition of whole
microbial community in bulk soil comparison as well as between the different
plant species.

Overall, the second-generation sequencing technologies have superiority over
first-generation sequencing; some of their drawbacks like short-read length make
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them less applicable for some studies, including determination and assembly of
critical genome region, gene isoform identification, and epigenetic modification
detection. Single molecule real-time sequencing by PacBio provides an unparallel
opportunity to carry over major challenges faced by the second-generation sequenc-
ing, as it enables shorter run time, wide information on kinetic variation and longer
read length. However, the technology requires improvement, such as the high error
rate of raw single pass data which can be tackled by hybrid sequencing technology in
near future (Rhoads and Au 2015). The other de novo sequence assembler is the
nanopore sequencing platform which has maximum advantages over other technol-
ogies; it can generate read length>10Kb appropriate for genomic assembly study, as
well as can help in-depth study of telomeric region sequences. By the direct RNA
sequencing application, no prior sequence knowledge is required, also major
metatranscriptomic analysis can be achieved. The epigenetic modification like
methylation and hydroxy methylation can be identified through the SMRT approach
thus, key regulatory functional genes of rhizosphere can be assessed, by the devel-
opment of table-free portable MinION platform one can analyze the sequence on the
sport avoiding sample alteration or degradation while transporting to laboratory for
sequencing. The major drawback of high error percentage can be tackled, and it is
not going to be the limiting factor in recent future.

12.4 Computational Tools for Metagenomics Study

The metagenomics sequencing analysis produces massive amount of data, which
need to be processed, analyzed, and stored to get significant output. Irrespective of
the NGS platform, the overall goal of each analysis is basically the same; however,
each platform has its own identities and specificities. Many metagenomics compu-
tational/ statistical analysis procedure and databases have been evolved due to an
increase in computational capabilities as well as algorithms and applications to assist
all the required steps. It will be beyond the scope of this study to discuss the whole
analytical procedure, bioinformatics pipeline, and software available for
metagenomics analysis. Thus, below is a generalized representation of workflow
and some of the tools required for metagenomics analysis being diagrammatically
represented in Fig. 12.7.

12.5 Future Aspects

Study of the rhizosphere ecology of both cultivated and non-cultivated plant species
has created awareness about the conservation of biodiversity and the ecological
succession depend on plant–microbes interaction linked by a narrow, complex, and
unrevealed networking system. A critical thinking is required diverging from the
boundaries of mutualism—competition prospective, as well major studies are
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required to reveal the effect of climatic and edaphic factor on rhizosphere commu-
nity. As climate and geography of plant directly influence the composition of root
exudates, which in turn influence the microbiota. In terms of crop improvement,
restoration of natural species and to remove exotic species’ root microbial compo-
sition have pivotal role. The sustainability of any species of agricultural practice
depends on reduced input of mineral nutrients and pesticides. Thus, we have to focus
on genotypes, which can take advantage of biotic and abiotic soil resources at a time.
To ease the above critical problem and eliminate major limitations faced by rhizo-
sphere study, NGS technology paves a wider path in particular direction by
metagenomics studies. The high ratio of organisms’ unannotated genes is one of
the major limitations in metagenomics sequencing for which no homology is found
in public database. Interlinking of genes and genome sequencing of representative
pure culture of strain will remain an important task to overcome major challenges in
sequencing.

Using specialized sequence data analysis method can compensate limitation of
NGS such as short-read length and higher sequencing error rate. Sequence informa-
tion is not going to be further limiting factors as sequencing of uncultivated
microorganisms is now possible due to the innovative technologies like single cell
genomic sequencing. The complementation of metagenomics with meta-omics data
will be one of the major aims to obtain more detailed view of rhizosphere activity.
By the hand-on-hand approach of NGS, rhizosphere study has wider application
towards sustainable food crop improvement, natural species conservation, bioenergy
crop improvement, and engineered microbial community development that will
possibly accelerate in the near future.
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Chapter 13
Rhizoengineering: A Strategy to Enhance
Soil and Crop Productivity

Kulandaivelu Velmourougane and D. Blaise

Abstract The persistence, survival, and availability of the applied agri-inputs
(water, fertilizers, and other soil/plant amendments) including microbial inoculants
in the rhizosphere of crop plants have become a major problem in agriculture.
Rhizosphere engineering is an innovative approach through which the soil biophys-
ical properties are modified to influence plant–microbiome–soil interactions to
enhance soil and crop productivity through higher input use efficiency. The basic
components of rhizosphere engineering include soil, plant, and microbes, which
could be modified to optimize water and nutrient transport as well as microbial
activity at the root–soil interface. Though genetic modification of crop plants and
microbial engineering has taken back seat because of consumer awareness on human
and environmental health, rhizosphere modification through agronomic approaches
is the only hope at present to improve soil and crop productivity in an eco-friendly
and sustainable manner. Natural way of modification of crop rhizosphere is expected
to make soil healthy by avoiding indiscriminate use of plant protection chemicals
and fertilizers. Hence, rhizoengineering approach should be advocated to farming
community through eco-friendly farm amendments, instead of engineering crops or
microorganisms.

Keywords Rhizoengineering · Microbiome engineering · Root exudates · Microbial
biofilms · Plant and soil health

13.1 Introduction

The key challenges in agriculture are related to food security, land degradation, and
crop yield. Since the microbes are critical drivers of soil functions and agricultural
crop productivity, their significance is well recognized. A foremost challenge to
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agriculture at present climate change scenario is to make the maximum and efficient
use of natural and external agri-inputs (water, fertilizers, and other amendment)
resources by the crop plants, to enhance soil and crop productivity to feed the ever
growing population (Lynch and Brown 2012). However, inefficient use of these
resources makes the crops plants suffer, resulting in low agricultural production.
Shortage of water (abiotic factor—drought) and infestation from pests and diseases
(biotic factors) makes the crops vulnerable to express its potential productivity.
Hence, worldwide attention has been diverted towards developing crop plants
tolerant to biotic and abiotic factors to meet the targeted yield and quality. Thus,
increasing biotic/abiotic tolerance in crop plants to improve water and nutrient use
efficiency has become a prime objective in agricultural research. Though these
factors have been achieved to a smaller extent by genetic modification of important
crops, still, there is a long way to go, due to public acceptance of genetically
modified crops especially on its effect on humans and environment. Hence, there
is an urgent need for eco-friendly and alternative strategies to water and nutrient use
efficiency in crops in a holistic manner. One such approach of late put forward to
enhance crop productivity is the modification of crop rhizosphere
(Rhizoengineering), which is expected to improve input use efficiency in crop
plants, through modifications of soil physico-chemical and biological properties
(Ahmed et al. 2018; Dessaux et al. 2016; Sposito 2013). In the present review, we
discuss the significance of rhizoengineering in agriculture in enhancing soil and crop
productivity.

13.2 Significance of Rhizosphere Biology in Agriculture

The rhizosphere is defined as a small area ranging from millimeter to centimeters
adjacent to the roots (Hiltner 1904). In general, the rhizospheric region has three
main zones: endorhizosphere, rhizoplane, and ectorhizosphere (Berendsen et al.
2012). The rhizosphere is considered as an active zone of biological activities,
greatly influenced by several factors including the host, its metabolites (as root
exudates or mucigels), and microbial groups (Darrah 1993; Mendes et al. 2013).
The rhizosphere is considered to be a hotspot of microbial interactions (Bakker et al.
2013; Bonkowski et al. 2009; Jacoby et al. 2017; Raaijmakers et al. 2009), which
acts as an important interface between plants–soil–microbe interactions, which pro-
vides important ecosystem services including carbon and water cycling, nutrient
trapping, crop production, and carbon uptake and storage (Adl 2016; Lareen et al.
2016). Several metabolites are shown to be released from the plant roots as exudates,
which include amino acids, organic acids, flavonols, glucosinolates, indole com-
pounds, fatty acids, polysaccharides, and proteins (Li et al. 2014; Nguyen 2009). The
rhizosphere not only represents the biologically active zone in the soils, but also it act
as preventive microbial buffer zone that protects host plants against several patho-
genic infections through production of several antimicrobial metabolites and
imparting natural resistance (Kamalnath et al. 2019). Several studies on soil
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properties such as soil structure, soil aggregation, and water allocation around the
roots have shown that they are physico-chemically and biologically different from its
counterpart bulk soil (Ahmed et al. 2016a, b; Carminati et al. 2010; Watt et al. 1994;
Young 1995). The root exudation or the presence of mucigels or mucilage plays a
major role in differentiating the rhizosphere from the bulk soils. Recent studies have
shown the role of mucilage in manipulating rhizosphere hydraulic properties and
regulating root water uptake in crop plants (Ahmed et al. 2018). The root mucilage
have been shown to influence the rhizospheric attributes including soil hydraulic
properties, nutrient transformations, and mobilization to plants, through interactions
between roots and surrounding soil particles (Ahmed et al. 2014; Carminati et al.
2011; McCully 1995). Thus managing the hydraulic properties of the rhizosphere
can help in improvement of plants adaptation to drought situations (Ahmed et al.
2018).

13.3 Rhizoengineering

The rhizosphere is the area of soil (a few millimeters wide) that encircle a plant root
where the biological and chemical activity in are influenced by compounds exuded
by the root (rhizodeposits) and by associated microorganisms. Mucilage secreted
from plant roots and extracellular polysaccharide (EPS) secreted by soil microor-
ganisms changes the physical properties of the soil solution. Rhizosphere also acts as
a hotspot for communication between the plant and the microbiome. “Rhizosphere
engineering” is an innovative approach where soil biophysical properties are mod-
ified to positively influence plant–microbiome–soil interactions (Dessaux et al.
2016). The basic components of rhizosphere engineering include soil, plant, and
microbes. The rhizosphere attributes could be altered to improve water and nutrient
transport to plant as well as positive microbial activity at the root–soil interface.
Higher mucilage exudations by plants and subsequent action of microbes increase
soil aggregation properties, which increase CEC, BS, and hydraulic conductivity.
Higher rhizodeposits by plants increase carbon sequestration in the rhizosphere,
which increase organic carbon content of soil, apart from enhancing soil nutrient
availability and plant uptake (Ahkami et al. 2017). The mucilage a component of
plant root exudates is reported to play an important role in maintaining the hydraulic
relationship between the soil and roots, especially during water-deficit conditions
(Carminati et al. 2010, 2016; Read et al. 2003). Thus, modifications in mucilage
swelling, rhizoligands may affect the hydraulic conductivity of the root–soil inter-
face. The opening and closing of stomata during drying and wetting cycles were
shown to be highly influenced by physical and chemical signals surrounding soil and
plant systems (Dodd et al. 2015). Rhizoligands are reported to decrease the mucilage
swelling after drying, thus limit the flow of mucilage far from the plant roots (Ahmed
et al. 2018). The rhizoligands application in plants is shown to suppress the mucilage
swelling, which results in a reduced hydraulic conductivity, lowering the transpira-
tion in plants (Ahmed et al. 2018). Though the rhizoligand treatments were reported
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to increase the wettability of the rhizosphere, their effects on stomatal opening was
not much faster as expected (Ahmed et al. 2018). They predicted that the applied
rhizoligands might have induced some embolism that limited the recovery of
transpiration, through entering the xylem and or they would have affected the
plant hormone abscisic acid (ABA). Several data suggests that ABA functioning is
one of the mechanisms involved in the control of stomatal conductance as the soil
dries (Blackman and Davies 1985; Davies 1991; Dodd 2009; Dodd et al. 2015). The
above facts suggest that the rewetting of rhizosphere by rhizoligand influences plant
roots greatly and manages water and ABA transport to the xylem and ultimately to
the shoots, where it briefly inhibits transpiration (Ahmed et al. 2018). The progress
in noninvasive analytical methods and techniques like X-ray computed tomography,
nuclear magnetic resonance, two-dimensional light transmission imaging, and neu-
tron radiography are being used to improve the better understanding of rhizospheric
phenomenon (Garrigues et al. 2006; Koebernick et al. 2014; Moradi et al. 2013;
Pohlmeier et al. 2015). However, compared with other imaging methods, neutron
radiography has been proven to be most useful method for studying root–soil water
relations (Ahmed et al. 2016a, b; Carminati 2013; Carminati et al. 2010; Dara et al.
2015; Esser et al. 2010; Kroener et al. 2015).

13.4 Rhizoengineering and Its Types

The persistence and survival of applied agri-inputs including microbial inoculants to
the crop plants have become a major problem in agriculture, due to limited survival
and innate competition from resident microorganisms (Weller 1988). Hence, it is
therefore crucial to develop methods to extend the survival and persistence of the
bioinoculants in the rhizosphere of crops (O’Connell et al. 1996). This modifications
in the rhizosphere is possible through either modifying the plants to release exudates
supportive to the inoculated microbes or through exogenous addition of supple-
ments, which supports the growth and proliferation of introduced microbes (Colbert
et al. 1993a, b; Di Cello et al. 1997). The microbial populations were also reported to
be highly dependent upon soil (Latour et al. 1996, 1999; Øvreås and Torsvik 1998;
Parke 1991) and plant exudates (Graystone et al. 1998; Lemanceau et al. 1995;
Miethling et al. 2000). The basic components of rhizosphere engineering includes
soil, plants, and microbes (Dessaux et al. 2016). For better soil and plant productiv-
ity, all these three components can be engineered.

13.4.1 Rhizosphere Modification Through Plant Engineering

Conventional plant breeding methods and advanced plant molecular breeding
methods including genetic engineering are promising ways to modify the plant
genetic setup to enhance plant yield or quality attributes. Subsequently, these
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modifications in the plants, also lead to differences in plant root exudation, which
changes the soil quality and subsequent biological (Ryan et al. 2009). Understanding
the mechanism of photosynthate distribution in plants is key to alter its allocation
between root and shoots (Su et al. 2015). Hence, there is a scope to modify the
physico-chemical and biological properties (microbial community structure) in the
rhizosphere through rhizoengineering. Since genes controlling plant exudation have
been identified in several crops; it is practically possible to modify the rhizosphere
for desired functional attributes. Arabidopsis vacuolar H+-pyrophosphatase gene
AVP1 was overexpressed in rice and tomato, and transgenic plants has shown
50% greater citrate and malate efflux than wild-types when treated with AlPO4.

This resulted in enhanced the crop resistance to Al3+ stress and also improved the
ability to use insoluble phosphorus (Yang et al. 2007). Plants engineered to produce
specific bacterial growth substrates have been shown to support the selective group
of microbes in their rhizosphere (Guyon 1993; Oger et al. 1997; Savka and Farrand
1997). Primarily these plant produced substances found to be opines (Dessaux et al.
1992), a family of compounds derived from amino acids and/or sugars and specif-
ically detected in the Agrobacterium infected tissues (Dessaux et al. 1992). Plants
such as lotus and Solanum have been engineered through Agrobacterium rhizogenes
mediated transformation to produce opine (Petit et al. 1987).

Since the microorganism has enormous potential related to enhancing soil and
crop productivity, plant microbiome engineering offers us a great scope to enhance
crop yields and quality. Transfer of bacterial N2 fixing genes to cereals has offered a
great possibility to meet the plant nitrogen requirements (Bageshwar et al. 2017; Fox
et al. 2016; Geddes et al. 2015, 2019; Lugtenberg and Kamilova 2009; Mondy et al.
2014; Pankievicz et al. 2015). Transgenic plants that produced opine molecules,
through gene transfer from Agrobacterium, were shown to enrich their rhizosphere
with bacteria able to catabolize opines (Mondy et al. 2014; Oger et al. 1997; Savka
et al. 2013). However, efforts to engineer rhizopine-producing plants (rhizopines, a
compound recognized as chemical signal in plant–microbial interactions) in the past
were unsuccessful (Savka et al. 2013). Rhizobia were reported to synthesize and
utilize rhizopines as carbon and nitrogen sources (Murphy et al. 1987, 1993). Even
though the role of rhizopines remains to be explained, earlier studies suggested that
they may be excreted into the rhizosphere (Gordon et al. 1996; Murphy et al. 1995).
Integration of synthetic signaling (rhizopine, scyllo-inosamine) networks between
plants and bacteria, helps in targeted regulation of rhizospheric bacterial gene
expression for achieving useful functions to plants (Geddes et al. 2019). Further,
the signaling molecules integration in plants is important, as they serve as biocon-
tainment strategies for detection of genetically modified bacterial inoculants getaway
into the environment (Chan et al. 2016).
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13.4.2 Rhizosphere Modification Through Microbiome
Engineering

Microorganisms either through their beneficial or harmful interactions greatly influ-
ence or modify the crop rhizosphere biology. Microbiomes of crop plants either from
rhizosphere or phyllosphere can be chosen for their plant beneficial traits such as
nutrient bioavailability, biocontrol potential, production of growth hormones, and
biotic/abiotic stress alleviator. However, the selected microbial inoculants' survival
and persistence in the crop rhizosphere or phyllosphere has become a big challenge
in agriculture. Hence, there is a need to modify or engineer the crop plants rhizo-
sphere or phyllosphere to accommodate these exogenously applied beneficial micro-
bial inoculants in the targeted niche. The main challenges include minimizing the
parasitism and competition between the selected bioinoculants, while maximizing
beneficial effects and cooperation (Foster and Bell 2012; Großkopf and Soyer 2014).
The external environmental factors and the innate soil physico-chemical attributes
also play an important role in proliferation of applied bioinoculants. Several micro-
bial genera are known to colonize the crop plants rhizosphere and offer their
ecological benefits in terms of plant growth promotion, biocontrol agent, nutrient
solubilizers/mobilizers, etc. (Dong and Zhang 2014; Kim and Timmusk 2013;
Medema et al. 2011). However, there is a drawback in engineering and development
of synthetic microbial communities of some plant beneficial microorganisms, which
have large genomes and mobile elements (Köberl et al. 2015). The most widely
engineered bacterium is Bacillus spp, as it is relatively easy to engineer (Dong and
Zhang 2014), has complete genome sequences (Sharma and Satyanarayana 2013),
and possess multifunctional beneficial role in plants, including biocontrol
(Arkhipova et al. 2005; Kim and Timmusk 2013; Köberl et al. 2013, 2015). Further,
attempts were also made to engineer Pseudomonas, Rhizobium, and Bradyrhizobium
for their plant beneficial roles (Großkopf and Soyer 2014).

Before designing a desired microbial community for an engineered rhizosphere,
several crucial elements has to be considered, such as colonization efficiency and
survival capabilities of the introduced microbes, competence of the introduced
microbes to the native microorganisms, attachment and production of biofilms of
its survival under undesirable situations, compatibility to the host plant biology
including root exudation and rhizodeposits, multifunctional role of introduced
microbes on plant growth and development, etc. (Bashan et al. 2014; Yang et al.
2009). In general, microorganisms which are compatible to host plant metabolites
and have additional mechanisms for stronger attachment to roots are other plant parts
have higher probability for proliferations in the plant systems (Bashan et al. 2014;
Yang et al. 2009). Further, the microbes which have higher population density and
antimicrobial mechanisms against the potential competitors including pathogens
survive better in the hostile environment (Haas and Défago 2005). Additionally,
the microbes should have mechanisms to tolerate or use the plant protection
chemicals (seed treating chemicals, herbicides, fertilizers, and pesticides) applied
to the host plants (O’Callaghan 2016). Hence, for microbiome engineering, the
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microbes chosen should possess all those above-mentioned attributes to qualify for
specific plants or environment.

13.4.3 Rhizoengineering Through Soil Engineering

To improve soil overall quality, it can be amended or managed in such a way that its
physical and chemical properties changes. The change in soil structure is gradually
recognized as a form of soil degradation (Chan et al. 2003; Bhattacharyya et al.
2013) and is often associated with the land use and crop management operations.
Soil structure influences various factors like soil water movement and its retention,
erosion, crusting, nutrient recycling, root penetration, and ultimately crop yield.
Different soil and crop management strategies can modify the soil quality or health,
thus affecting crop rhizosphere and its functioning (Bhattacharyya et al. 2014; Ray
et al. 2014; Velmourougane et al. 2017d). The enhancement in soil organic carbon,
soil aggregation and hydraulic conductivity, which plays a major role in plant root
proliferation and rhizosphere biological activity can be made through several soil
and crop management practices or amendments including addition of fertilizers,
management of grazing animals, allowing native vegetation, inclusion of cover
crops, legumes and grasses, bioinoculation with beneficial microbes and irrigation
(Bronick and Lal 2005; Nalayini et al. 2013; Raychaudhuri et al. 2014; Sidhu et al.
2014). Chemical compounds and microbes in the rhizosphere have stronger
cementing effects on soil particles, resulting in greater soil aggregate stability in
the rhizosphere than those in non-rhizosphere soil (Caravaca et al. 2002; Six et al.
2004, 2006). Crop management strategies such as growing a series of different crops
and cover crops has found to improve soil aggregate dynamics (Lal and Jarecki
2003), which differs with crop chemical composition (Martens 2000), rooting
structure and its ability to change the chemical and biological attributes of the soil
(Castro Filho et al. 2002; Chan et al. 2003). The cover crops in agriculture has been
reported to be helpful in increase of soil carbon content, reduction in erosion, and
improve cation exchange capacity, aggregate stability, water infiltration, and nutri-
ents recycling. Thus, it influence the crop rhizosphere biology and its functions
(Bronick and Lal 2005). Residues of cover crops was also reported to increase
microbial biomass, soil respiration, N mineralization, and shift in microbial com-
munity, thus influencing root chemistry and microbial activity (Schutter and Dick
2002; Velmourougane and Sahu 2013). The inclusion of leguminous trees in
cropping systems also reported to reduce soil erosion and improve its productivity
(Buresh and Tian 1998; Craswell et al. 1998).

The quantity and quality of fertilizers was also reported to affect soil properties
and plant growth and development. Fertilizer applications though supplies nutrient
requirements of the crop plants, under some situations, they may also decrease
organic carbon content, reduce aggregation of soil and reduce microbial diversity
compared to organic manured soils (Halvorson et al. 2002; Singh et al. 2014). Heavy
dose of fertilizer are also reported to modify the soil pH and the electrolyte
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concentrations in soil, which can have adverse effects on soil structure and subse-
quent plant physiology and microbial activity affecting the crop rhizosphere (Haynes
and Naidu 1998). Hence, optimum fertilizer application is always recommended to
sustain normal plant growth and soil health, which supports normal microbial
functions. Manuring has been reported to improve soil structure, macro-aggregation,
porosity, aggregate stability, and organic carbon, which results in decreased bulk
density and supports higher soil biological activity and plant functions (Hao and
Chang 2002; Kay 1998). Earthworm populations in manured soil is higher, and this
increased population results in increased soils pores through their boring activity,
and improving in aggregate stability of soil through mucilage production (Six et al.
2004).,

Among soil management practices, tillage is found to influence soil structure and
aggregate stability, thus affecting soil health and microbial activity. It disrupts the
soil aggregates and leads to compaction of soil, and ultimately affect plant and
microbial communities (Plante and McGill 2002). Differences in tillage intensity
also have an impact on microbial diversity (Jackson et al. 2003). No tillage systems
are reported to have more stable soil aggregates and organic carbon (Castro Filho
et al. 2002). Reduced tillage is also reported to enhance higher macropores that
affects water movement and its availability, helping plants to establish good growth
and development (Benno 2001; Logan et al. 1991). Mulching and addition of
composts to soils is also reported to plant growth and soil health (Caravaca et al.
2002; He et al. 2019; Leifheit et al. 2014; Rillig et al. 2015). Further, mulching
practices are shown to increase the soil organic carbon reservoir (Duiker and Lal
1999; Jacinthe et al. 2002), which modifies soil temperature and moisture regimes
and influences soil biology.

It has been known that microbial communities that are linked with different crop
plants and their genotypes varies in terms of composition, activity, and nutrient
content (Graystone et al. 1998; Schloter et al. 2003; Srivastava et al. 2014;
Velmourougane and Sahu 2013; Velmourougane and Blaise 2014). The cropping
systems, their rotation and types affects the soil biota (Orr et al. 2011;
Velmourougane et al. 2014). Use of organic manure that are originated from
leguminous green manure crops was reported to encourage more soil microflora as
compared to field where chemical fertilizers are added, thus ultimately influencing
plant growth (Bolton et al. 1985). Diverse cropping systems have been corelated to
the increased microbial activity and diversity (Moore et al. 2000). Cultivating the
different crops on the rotation basis is reported to increase soil carbon sequestration
in comparison with mono-cropping system; and more intensive cropping rotations
are also found to be responsible for increase in microbial activity (Six et al. 2006).
Various soil management and cultural practices also impact soil microbial diversity
and their activities (Velmourougane 2016; Wu et al. 2008). As compared to different
soil type, crop management operation and type of crop cultivation have more control
on soil biota (Fromm et al. 1993; Ibekwe et al. 2002; Velmourougane et al. 2014).
Enzymes like urease, dehydrogenase, glucosidase, phosphatase, arylsulfatase, etc.
that are present in soil are found to be involved in soil nutrient conversion, are also
affected by soil attributes and plant types (Blaise and Velmourougane 2014;
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Dorodnikov et al. 2009; Fliessbach et al. 2007; Kumar et al. 2015; Srivastava et al.
2014; Velmourougane et al. 2013, 2014; Velmourougane and Blaise 2014).

13.5 Factors Influencing Rhizosphere Functioning

13.5.1 Role of Rhizodeposits in Rhizosphere Biology
and Functioning

Global climate change, together with increasing temperatures and global weather
patterns such as rise in levels of atmospheric CO2, were also shown to affect
rhizosphere ecology, in several direct and indirect ways (Lobell and Field 2007).
However, our understanding on the interactions between plant microbiome, root
exudation, and plant growth and reproduction, remains limited (Bai et al. 2015). The
rhizosphere biology is strongly influenced by plant metabolism including its secre-
tion of photosynthate as root exudates (Bais et al. 2006; Estabrook and Yoder 1998).
Plant root exudates play a vital role in influencing the interactions between soil,
plants, and microbes, which in turn plays a major role in nutrient transformation and
subsequent plant uptake (Xu et al. 2014). Several factors including type of plant
species, varieties, developmental stages, and other biotic and abiotic factors regulate
the quantity and quality of root exudates (Xu et al. 2014). Root exudates account for
around 5–21% of total photosynthetically fixed carbon; however, they are the prime
factors which influence community composition of the rhizosphere
(Vandenkoornhuyse et al. 2015). The root exudates comprise the major portion of
the rhizodeposits and are generally synthesized in the meristematic zone of root tips
(Bais et al. 2006; Vicré et al. 2005; Watson et al. 2015) into the rhizosphere, which
includes sloughed-off root cells and tissues, mucilages, root exudates, soluble
lysates, volatile compounds, sugars, organic acids, phenolic compounds, alcohols,
polypeptides, amino acids, proteins, plant cells, etc. (Nguyen 2009; Tian et al. 2020;
Vicré et al. 2005; Watson et al. 2015). In general, rhizodeposits are reported to be
rich in carbon and nitrogen compounds, and thus support growth of several
rhizomicrobiome (Bais et al. 2006; Dennis et al. 2010).

Plant roots are reported to exude up to 20% of fixed carbon and 15% of nitrogen
(Meharg and Killham 1988; El Zahar Haichar et al. 2016). The composition of
rhizodeposits also varies spatially and temporally including the differences in plant
species, plant physiological status, and upon biotic and abiotic stresses (Carvalhais
et al. 2013; Chaparro et al. 2014; Edwards et al. 2015; Hirsch et al. 2013; Liu et al.
2019). Several metabolites including amino acids exuded from the plant roots were
shown to influence the rhizosphere microbial community composition and their
functioning (Hao et al. 2010). Amino acids excreted through roots also serve as
nutrient sources for microbial growth (Hao et al. 2010). Phenolic acid exudates from
the roots were also reported to act as inhibitors, attractants, or signaling molecules
(Lanoue et al. 2010; Mandal et al. 2010). The root exudates are also shown to
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modulate a neutral, positive, or negative interactions among the soil microbes
including soil-borne pathogens (Ling et al. 2013). The plant-derived carbon excre-
tion in soils act as an nutrient source for different groups of microorganisms, leading
to their rapid growth and community shifts based on the characteristics of the
exudates (Jones et al. 2009; Steinauer et al. 2016), which in turn induces their
enzymes mechanisms and transform nutrients in fixed form to plant available
(Bonkowski and Clarholm 2012; Ekelund et al. 2009; Koller et al. 2013). The
rhizodeposits also serve as and provide a physical barrier between the root cells
and the pathogenic microorganism (Hirsch et al. 2013; Nguyen 2009). After being
released into the rhizosphere, the rhizodeposits are reported to synthesis and release
several secondary metabolites including antimicrobial compounds, which form first-
line of defense against phytopathogens (Koroney et al. 2016). Apart from
rhizodeposits, plant mucilages are also reported to release into the rhizosphere on
the event of pathogens infections (Koroney et al. 2016), wherein they function as a
lubricant, chelator, humectant, aggregator, as well as a carbon source (Hirsch et al.
2013; Nguyen 2009). The proteins and extracellular DNAs components of the
mucilage are also reported to be involved in conferring defense against phytopath-
ogens (Basu et al. 2006; Weiller et al. 2017). Exudates may be excess plant products
(Preece et al. 2018; Preece and Peñuelas 2016), but they can also contain signaling
and chemo-attractant molecules. The plant root exudates are also reported to func-
tion as microbial attractants/repellents, through production of different chemo-
attractants, which attract or repel several groups of microbes towards the plants
(Weisskopf et al. 2006, 2011). In some cases, plants in association with the
interacting microbes are also reported to produce several compounds including
volatiles which help plants to alleviate biotic or abiotic stresses (Sharifi et al.
2018; Zhalnina et al. 2018).

13.5.2 Soil Microbiome and Rhizosphere Functioning

The rhizosphere microbiome plays an effective role in influencing rhizosphere and
its functioning, which aids in better plant growth and development through produc-
tion of growth hormones, nutrient acquisition, imparting tolerance to biotic and
abiotic stresses through soil–plant interactions by modifying the nutrient transfor-
mation and their mobilization into plant systems (Lareen et al. 2016; Lu et al.
2018a, b; Panke-Buisse et al. 2015; Soussi et al. 2016; Wagner et al. 2014). The
beneficial microbial associations with crop plants were reported to promote root
growth, which results in a larger root surface, which helps in greater water acquisi-
tion and nutrient uptake by the plants, which in turn increase specific metabolites in
soil through root exudation benefit the growth of associated microbes. The quantity,
type, and composition of root exudates were shown to modify the microbial dynam-
ics and its composition in rhizosphere as well as the soils (Bais et al. 2006; Chaparro
et al. 2014). Further, the quality of the root exudates released from the plants decides
the variations in microbial community composition to be accommodated in its
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rhizosphere (Baudoin et al. 2002). However, studies have also demonstrated that
these rhizospheric microbial compositions are significantly influenced by the devel-
opmental stages of the plants (Li et al. 2014; Okubo et al. 2014; Yuan et al. 2015).
Several plant-associated microorganisms, including plant growth-promoting
rhizobacteria (PGPR) provide several nutrients and growth factors to crop plants,
which modifies the rhizosphere environment (Carvalhais et al. 2013; Karandashov
and Bucher 2005; Ling et al. 2014; Prasad et al. 2015), helping in their growth
promotion (do Amaral et al. 2016; Peiffer et al. 2013; Wintermans et al. 2016).
Several plant-associated microorganisms including PGPR and endophytes also help
the host plant in prevention of pathogen colonization in the rhizosphere and rhizo-
plane (Bloemberg and Lugtenberg 2001; Lau and Lennon 2012; Prasad et al. 2015;
Van Der Ent et al. 2009) Similarly, the plant's root exudation can regulate the
rhizosphere environment through its exudate composition, thereby modifying the
microbial community structure of the rhizosphere (Chen et al. 2016). At least 21% of
carbon fixed through photosynthesis was reported to enter the soils system, by way
of root exudations, influencing the microbial community composition in the rhizo-
sphere (Marschner 2012). Photoassimilates of cereals transferred to soil as root
exudates was shown to play a crucial role in the plant–microbe interactions
(El Zahar Haichar et al. 2014). Though the community structure of the rhizosphere
microbiome was affected by several biotic and abiotic factors such soil physical and
chemical properties, plant types and stages of development, rhizosphere attributes,
and root exudation play a major role (Pérez-Jaramillo et al. 2016; Schreiter et al.
2014). The role of plant types and its root exudation on dynamics of the rhizosphere
microbiome have been studied in several crops (De la Cruz-Barrón et al. 2017; Donn
et al. 2015; Knox et al. 2014; Marasco et al. 2013; Marques et al. 2014; Smalla et al.
2001; Zarraonaindia et al. 2015). Recent studies also propose that the microbiota
present around the roots may contribute to phenotypic plasticity, which has signif-
icant role in our understanding of plant phenology in a changing climate and also for
improving crop production (Chen et al. 2017; Singh et al. 2010).

The synthesis of plant hormones by PGPR was also reported to regulate initiation
of lateral root primordial, root elongation, and root architecture (Aloni et al. 2006;
Dobbelaere et al. 2001; Patten and Glick 2002). The interactions between of protists
and bacteria also reported to influence microbial plant hormone production, plant
productivity, root diameter, root architecture and nutrient uptake efficiency in
several plant species including garden cress, rice , Plantago lanceolata L., and
A. thaliana (Jousset 2017; Koller et al. 2013; Kreuzer et al. 2006; Krome et al.
2009, 2010). Root gene expression was also shown to be regulated by presence of
pathogenic bacteria (Chen et al. 2014), PGPR (Camilios-Neto et al. 2014; Do
Amaral et al. 2014), and mycorrhiza in the rhizosphere (Dhawi et al. 2015; Gupta
et al. 2017). Decrease in plant stress levels also shown to cause protist-induced shifts
in microbial communities in the rhizosphere (Kuppardt et al. 2018).

13 Rhizoengineering: A Strategy to Enhance Soil and Crop Productivity 245



13.5.3 Soil and Crop Management

The significance of rhizosphere processes and root–soil interactions in influencing
soil organic matter decomposition has been increasingly recognized (Dijkstra and
Cheng 2007a; Fontaine et al. 2007; Wallenstein and Weintraub 2008). Both abiotic
and biotic factors, such as soil nutrient status (Liljeroth et al. 1994), soil moisture
(Dijkstra and Cheng 2007b), CO2 concentration (Carney et al. 2007), light intensity
(Kuzyakov and Cheng 2001), plant phenology (Cheng et al. 2003), biomass
(Dijkstra et al. 2006), and rhizodeposition (Dijkstra and Cheng 2007a) have been
reported to manipulate rhizosphere biology and its functioning.

In some of the crop plants, root growth is reported to create soil compaction,
which reduces the porosity of the rhizosphere (Aravena et al. 2011). Roots are also
shown to shrink when they are dry, creating space between soil and roots. Repeated
drying and wetting cycles in the rhizosphere also reported to enhance soil aggrega-
tion (Carminati et al. 2009). Several root attributes were shown to involved in the
extraction of water and nutrients from the soil, including root architecture (Wasson
et al. 2012), root depth (Tron et al. 2015), internal axial and radial conductivity and
the conductance of the roots to the shoot base (Lobet et al. 2014), the ability of roots
to reach the subsoil (Lynch and Wojciechowski 2015), and root-shoot signaling
(Huber et al. 2014). Plants were also shown to modify the rhizosphere, to enhance
their water uptake (Hinsinger et al. 2009; York et al. 2016). Although, the mucilage
secreted by the plants was reported to absorb large volumes of water (McCully and
Boyer 1997), they also shown to have a small fraction of amphiphilic components
such as lipids (Read et al. 2003). Under water-deficit conditions, the hydrophilic
ligands of mucilage may bind to each other or to the soil particles and may leave the
hydrophobic end towards the air-filled phase of the pore space, resulting into water
repellency in the rhizosphere (Ahmed et al. 2016a, b). Zarebanadkouki et al. (2016)
has reported that the rhizosphere water repellency is temporarily limited to the root
water uptake following soil drying and rewetting. Rhizosphere water repellency has
been reported in several crops, including barley (Hallett et al. 2003), lupines (Moradi
et al. 2012; Zarebanadkouki et al. 2016), beans and wheat (Zickenrott et al. 2016),
and maize (Ahmed et al. 2015, 2016a, b). It has been shown that lowering the root
hydraulic conductance increased the collar xylem potential during lengthy periods of
soil drying (Couvreur et al. 2014). Similarly, lowering the root hydraulic conduc-
tance was reported to induce an early closure of the stomata, resulting in a reduced
transpiration and water consumption, which can improve plant performance
(Tardieu et al. 2017). In recent years, use of rhizoligands as an additive to enhance
the rhizosphere wettability especially in water-repellent soils is also proposed
(Dekker et al. 2005; Kostka 2000; Kostka et al. 1997). Rhizoligands are reported
to have hydrophilic and hydrophobic functional groups (Ahmed et al. 2018).
Simovic et al. (1999) reported that, at specific concentrations, nonionic surfactants
decrease the swelling and increase the viscosity of gels containing hydrophobic
components.
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13.6 Role of Microbial Biofilms and in Rhizoengineering

Microbial biofilms are aggregation of their cells in a self-produced polymeric matrix
attached to biotic and abiotic surfaces (Costerton et al. 1978). Microbial cells form
single, dual, or multispecies biofilms depending on the ecological conditions in their
habitat. Biofilms are generally formed by microorganisms to overcome stress in the
environment, or nutrient limitation, change in cultural conditions, competition,
presence of antibiotics, disinfectants, etc. (Karatan and Watnick 2009). Apart from
being a stress avoidance strategy, biofilm style of growth also confers a reproductive
fitness advantage, making them better adapted to endure challenges, as compared to
the free floating cells (planktonic cells) (Davey and O’Toole 2000). Formation of
biofilm has been considered as a developmental process (Monds and O’Toole 2009),
as it is assisted by microbial attributes such as cell-to-cell communication (Lopez
et al. 2010), cell differentiation (López and Kolter 2010) and pattern formation
(Asally et al. 2012). Microbial organelles including flagella, fimbriae, pili, and
other microbial components such as lipopolysaccharides and membrane proteins
are reported to be involved in biofilm formation (Hinsa et al. 2003). Biofilms are
recognized to have various application in many areas like health, agriculture, food,
biopolymers, oil refinery, metal extraction, mineral exploration, biofuel cells, bio-
remediation, etc. However, microbial biofilm application in agriculture, especially in
crop production and protection has gained importance, recently (Velmourougane
et al. 2017a).

Biofilm formation on the plant roots is a valuable tool of rhizospheric microor-
ganisms that protect them from being separated from the roots due to various natural
processes occurring in the soil (Velmourougane et al. 2017a). Secretion of EPS by
bacteria have been also reported to help the microbes to colonize the roots in
an effective way by formation of biofilms that protect them from desiccation
(Sandhya et al. 2009, 2010a; Velmourougane et al. 2017c, 2019a; Velmourougane
and Prasanna 2017). Many bacterial EPS have the property of trapping water in its
polymeric matrix, which safeguards bacteria from drying under drought stress by
maintaining a wet microenvironment and controlling the diffusion of organic carbon
sources from microbes to plants and contrariwise (Sandhya et al. 2009, 2010a, b;
Vardharajula et al. 2011). It was reported to have beneficial changes in the soil
structure, root-associated soil/ root ratio, and the macroaggregate properties resulting
in better plant growth, by increasing uptake of water and nutrients through extended
roots . The EPS composition was reported to change during stress conditions
producing more glucose, rhamnose, mannose, and trehalose that enhance EPS
property to retain more water (Tewari and Arora 2014). Promotion of in situ biofilm
production or using the native biofilms are promising technologies for future agri-
culture, due to their huge potential to provide multiple benefits via single inoculant.
It has potential to improve plant growth, nutrient mobilization, biotic/abiotic stress
tolerance, etc. Recent research on biofilms containing multiple species has found to
be a more attractive option in agriculture and other industries as they produce new
types of polysaccharides with different composition or other bioactive compounds,

13 Rhizoengineering: A Strategy to Enhance Soil and Crop Productivity 247



compared to single species biofilm (Velmourougane et al. 2017, 2017c). The
enhancement in soil physical assets such as improved soil aggregation, reduction
in bulk density, better water and nutrients holding in rhizospheric region, can be
achieved due to the polysaccharides released by microbial biofilms. Some microbes
were also reported to modulate antioxidants enzymes (peroxidases, polyphenol
oxidases, catalase, PAL, PEP carboxylase, phenols etc.), compatible osmolytes,
and polyamines in crop plants to endure the drought stress (Ghosh et al. 2017;
Sandhya et al. 2010a, b; Sen et al. 2018). Foliar application of these biofilm-
produced microbial polysaccharides can be explored as tool for protecting crops
from the damages of biotic and abiotic stresses (Velmourougane et al. 2017a, b,
2019a). The use of microbial biofilms can be a novel option, in lieu of their
preponderance, versatility in function and resilience to environmental stressors.
Microbial biofilms, by virtue of their resilience to environmental perturbations and
stress can also be a promising option due to their dynamic nature and ability to
persist in unfavorable environments (Bharti et al. 2017). This opens the avenue of
using microbial biofilm-based agents as sustainable approach in future crop cultiva-
tion and management.

Microbial biofilms (cyanobacterial or fungal-based bacterial biofilms) have been
successfully developed, and inoculation in rice, wheat, maize, cotton, legume crops
has improved plant growth attributes, soil nutrient availability, and caused
the expression of plant defense system (Babu et al. 2015; Triveni et al. 2013;
Velmourougane et al. 2017a). Recently, the use of biofilm developed by Azotobacter
chroococcum) and Trichoderma viride has have shown higher polysaccharide pro-
duction when grown together as biofilms ( Velmourougane et al. 2017). Further, our
group characterized the qualitative aspects and modulation of exopolymeric sub-
stances (EPS) produced during this biofilm development (Velmourougane et al.
2017a; Velmourougane and Prasanna 2017), and found that increased production
of hydrolytic enzymes (β-1, 3-glucanases, and chitosanase) by biofilm as compared
to individual inoculation. Bacterial (Az) and fungal (Tv) partners in biofilms were
reported to change their gene expression (Velmourougane et al. 2019b).

Microbial biofilm-based formulation is expected to assist in engineering the root
and rhizosphere, which helps in retention of higher moisture in the rhizosphere,
thereby improve root architecture, enhance soil aggregation and hydraulics leading
to improved soil moisture and nutrient availability under moisture-deficit situations.
Further, the microbial biofilms are also an eco-friendly alternative to chemical
rhizoligands/hydrogels/osmoprotectants (synthetic polymers) to enhance soil hydra-
tion, soil functional diversity, and subsequent plant water/nutrient use efficiency in
crops rhizosphere, leading to better soil health and productivity. From an environ-
mental perspective, the use of rhizoengineering using biofilm is expected to reduce
the usage of plant growth regulators and osmoprotectants, which are environmental
polluters in long-term usage.
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13.7 Conclusion and Future Outlook

Rhizoengineering is a recent innovative approach to modify the crop plants rhizo-
sphere to derive maximum benefits in terms of soil and crop productivity. Though
exogenous application of agri-inputs including bioinoculants to crops have proved
beneficial effects, most of these functions are found to be transient in nature.
However, modification of rhizosphere through crop and soil management interven-
tions was proved to be advantageous in several crops. Though genetic modification
of crop plants and microbial engineering has taken back seat because of consumer
awareness on human and environmental health, rhizosphere modification through
agronomic approaches is the only hope at present to improve soil and crop produc-
tivity in an eco-friendly and sustainable manner. Inclusion of cover crops and
following crop rotations and right type of nutrients in farming systems were
shown to enhance soil health to support microbial groups, and their beneficial
interactions with the crop plants. In recent years, application of microbial inoculants
in the form of microbial biofilms is also shown to modify rhizosphere attributes in
terms of enhancement in microbial colonization and associated benefits. Further,
understanding of soil–plant–microbial interactions is still in infant stage to be
applied in rhizoengineering approaches in agriculture. However, overall rhizosphere
engineering is reported to help plants to tolerate several biotic and abiotic stresses
under climate change situations. With the recent advancement in omics techniques, it
is expected to enhance our knowledge on rhizosphere engineering and its function-
ality in agriculture. Natural way of modification of crop rhizosphere is also expected
to make soil healthy by avoiding indiscriminate use of plant protection chemicals
and fertilizers. Hence, rhizoengineering approach should be advocated to farming
community through eco-friendly farm amendments, instead of engineering crops or
microorganisms.
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Chapter 14
Endospheric Microbiome-Assisted
Alteration in the Metabolomic Profiling
of Host towards Abiotic Stress Mitigation

Srishti Kar, Priya Jaiswal, Sankalp Misra, and Puneet Singh Chauhan

Abstract Abiotic stress such as salinity, low or high temperatures, alkalinity,
drought, and other environmental extremes may be defined as a negative effect of
non-living factors on a living thing thus inhibiting plant function. Abiotic stress
tends to negatively impact growth, development, seed quality, and yield of the crop
and other plants. To overcome this problem, various researches are being carried out
in genetic engineering to develop plant varieties that are tolerant against abiotic
stress. An alternative strategy has also been observed in the present scenario, where
microbial endophytes play a key role in plant survival under abiotic stress. Endo-
phytes that live internally in plant tissues for a part of their life cycle are known to
regulate homeostasis in plants during stressed environmental conditions. This poten-
tial of endophytes to promote plant growth during abiotic stress has been explored
with several in vitro studies. Several mechanisms that are employed by endophytes
to overcome abiotic stress include accumulation of stress responsible molecules,
secondary metabolites, increased production of phytohormones, and production of
antioxidant enzymes. The tools of omics can be used further to provide detailed
insight into how endophytic diversity influences the metabolomics of hosts during
abiotic stresses. This chapter mainly emphasizes on the endophyte microbiome and
its role in altering the mechanisms of a host to mitigate abiotic stress.
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14.1 Introduction

The word endophyte refers to something that is present inside the plant. Thus, in literal
terms, endophyte could refer simply to the location of the organism. However, it has
been this term is not very useful in case of the absence of a mutualistic relationship.
The usage of this term is as broad as its literal definition and spectrum of potential
hosts and inhabitants, e.g., bacteria (Kobayashi and Palumbo 2000), fungi (Stone et al.
2000), plants (Marler et al. 1999), and insects in plants (Feller 1995), but also for algae
within algae (Peters 1991). There have been various definitions for the term endo-
phyte, but the “endophytes” can most commonly be defined as those organisms whose
“. . .infections are inconspicuous, the infected host tissues are at least transiently
symptomless, and the microbial colonization can be demonstrated to be internal. . .”
(Stone et al. 2000). Petrini’s characterization of endophytic interactions as not “caus-
ing apparent harm” (Petrini 1991), which presumably refers to an absence of macro-
scopically visible symptoms further adds validity to the description of the definition of
endophytes. The term “endophyte” can be used to describe both bacteria and fungi that
can be detected at a particular moment within the tissues of apparently healthy plant
hosts (Schulz and Boyle 2005).

The plant without endophytes can be contemplated as the unconventional one to
that found in nature (Partida-Martinez and Heil 2011). Endophytes lacking plants are
basically prone to stress circumstances related to the environment and often lack
in the potential to hold back the pathogens (Timmusk et al. 2011). The endophytes
origin is quite complex to be interpreted, as it possesses a multifaceted association
with the host plant and also because of the host’s natural surroundings and their
unique ability to multiply. However, endophytes nativity has been hypothesized by
two theories one being the endogenous theory other being the exogenous theory.
Endogenous hypothesis concluded that the nativity of endophytes appeared previ-
ously from the mitochondria and chloroplast of the plant, and hence possess a
commensurate genetic background to the host (Wen 2004). Exogenous hypothesis
proposes that endophytes are from the external environment of the plant and were
inculcated into the host from the various surface, induced channels, or root wounds
(Li 2005).

It has been known that host plant roots are colonized by variants of the microbial
community including bacteria, algae, fungi, and actinomycetes (Mishra et al. 2017;
Misra et al. 2019; Dixit et al. 2020; Prashar et al. 2014; Saharan and Nehra 2011).
The transmission of endophytes takes place across the seeds between the soil
rhizosphere. Spread is quick between the endo-rhizosphere through the lateral root
junction incited by nematodes or microbial phytopathogens (Chi et al. 2005). Also,
there is another route present for the bacterial endophytes to enter their host plant
roots which is through the available spaces present between the epidermal cells and
root hairs (Hardoim et al. 2008). The most common endophytic fungi isolated and
identified from numerous plants are Penicillium sp., Alternaria infectoria,
Colletotrichum musae, Aspergillus sp., Colletotrichum gloeosporioides, Nigrospora
sphaerica, Nigrospora oryzae, Phomopsis sp., Guignardia sp., Rhizoctonia sp.,
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Cordana musae, Phialocephala sphaeroides, P. chrysogenum, A. alternata (Fouda
et al. 2015;Wilson et al. 2004).

14.2 Endophytes and Their Potential Roles

Endophytes and plants exhibit a mutualistic relation, where endophytes tend to
colonize in plant tissues internally, obtaining protection and nutrition from them
and exhibits a favour to the host plant in return by providing induced fitness with the
help of production of certain metabolites. Along with these secreted functional
metabolites, there are several other mechanisms that play a potential role in keeping
the plant healthy and briefly discussed below.

14.2.1 As Plant Growth Promoters

The plants that are infected with endophytes often tend to grow faster than
non-infected ones. Hence, it has been interpreted that this effect exists due to the
ability of endophytes to produce phytohormones such as cytokines, indole-3-acetic
acid (IAA), and other plant growth-promoting substances. Also, this can be partly
considered that the host’s uptake of nutritional elements such as nitrogen and
phosphorus can be readily induced by endophytes potential functions (Papik et al.
2020).

Microbes involved in plant growth promotion are found to be associated with
many plant species that have beneficial effects involving extensive growth of plant
and less prone to diseases that are caused by various categories of plant–pathogen
including nematodes, fungi, viruses, and bacteria (Bisht et al. 2020; Dixit et al.
2016). The primary role of plant growth promotion is carried out by various
beneficial activities such as phosphate solubilization, nutrient uptake, and release
of indole-3-acetic acid (IAA), gibberellins, cytokinins, siderophores, and antago-
nism to phytopathogens (Misra et al. 2017). Plant growth-promoting microbes can
also activate physical and chemical changes by a unique process termed as induced
systemic resistance helping in the protection of plants.

“Induced resistance” may be explained as a unique process where endophytes
enhance plant defences against various pathogens. It is a form of resistance that is
initiated by several chemical and biological agents thus helping plants to evolve
against the pathogen. Various bacterial factors such as salicylic acid, siderophores,
lipopolysaccharides, N-acyl- homoserine lactones, antibiotics, jasmonic acid, and
volatiles (e.g., acetoin) are responsible for the induction of ISR (Bordiec et al. 2011).
Induced systemic resistance involves the protection of plants by various defence
mechanisms against pathogens and herbivorous insects. Endophytic bacteria have
been considered to enhance induced systemic resistance through the induction of
salicylic acid, plant hormones such as jasmonic acid (JA) and ethylene (ET) also
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possess essential roles in regulation of signalling pathways involved in initiation of
ISR (Pieterse et al. 2012). Pseudomonas fluorescens 89B-61 is known to be the first
reported endophytic bacterium that imparted ISR to protect cucumber plants against
cucumber anthracnose (Kloepper and Ryu 2006).

14.2.2 Endophytes in Mitigation of Abiotic Stress

Agricultural productivity is hugely governed by environmental variations. Alter-
ations in environmental conditions is one of the major causes of increasing abiotic
stresses. Salinity, alkalinity, drought, nutrient deficiency, high and low temperatures,
heavy metal toxicity, and pesticide stress are the major categories of abiotic stresses
faced by plants. In field conditions, crops are subjected to a combination of several
abiotic stresses. To cope up with these variations, plants synchronize with their
symbiotic microbial partners. Endophytes that live in close association with their
host often contribute to the better survival and growth of their partners. Endophytes
employ several mechanisms to improve their hosts endurance to abiotic stresses
(Table 14.1).

Plants have developed several morphophysiological, biochemical, and molecular
responses to cope with drought stress, and endophytic bacteria via their close
associations are capable of altering these processes and improve tolerance in plants.
Tolerance to abiotic stress is regulated by changes in osmolytes, relative water
content, generation of antioxidants, and regulation of phytohormones.

Osmolyte regulation is an effective mechanism to maintain hydration in cells.
Osmotic adjustment is maintained by the active accumulation of osmoprotectants
also known as compatible solutes. These compatible solutes are highly soluble,
electrically neutral and pose low toxicity to cells at high concentrations. Sugars,
glycine, betaine, inorganic ions (e.g., calcium), organic acids (e.g., malate), and
proline are the major constituents of osmoprotectants. The term osmoprotectants has
been denoted for these solutes as they act as protectants for cellular organelles,
enzymes, proteins, cell membranes, and genetic materials during stress conditions
like drought (Ullah et al. 2017). Various research works have illustrated the role of
endophytes in osmotic regulation. For example, endophytic bacteria, Sphingomonas
sp. LK11 isolated from the leaves of Tephrosia apollinea was found to enhance the
drought tolerance in soybean plants. In an in vitro drought-induced stress, soybean
plants treated with Sphingomonas LK11 produced higher amounts of sugars and
amino acids (proline glycine and glutamate) which improved the osmoregulation
(Asaf et al. 2017). Arthrobacter sp. and Bacillus sp. isolated from pepper seeds
(Capsicum annuum L.) were found to increase proline content under in vitro osmotic
stress experiment (Sziderics et al. 2007).
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14.2.2.1 Regulation of Relative Water Content

Slatyer in 1967 coined the term “relative water content” (RWC) which is the most
probable measurement of plant water status relative to its extreme water holding

Table 14.1 Potential endophytes and their beneficial uses as plant growth promoters and as
effective biocontrol agents for sustainable agriculture

Endophyte
Source of
isolation Application

Citation
and year

Aspergillus
fumigatus sp. LH02

Soyabean plant
roots

Gibberellin (GA) production under salt
stress

Khan
et al.
(2011)

Aureobasidium
sp. BSS6 and
Preussia sp. BSL10

Boswellia sacra Plant growth promotion through pro-
duction of IAA

Khan
et al.
(2016a)

Azospirillum
brasilense

– Ameliorates the Arabidopsis thaliana of
reaction to drought by enhancing of
abscisic acid (ABA) levels

Cohen
et al.
(2015)

Azospirillum
lipoferum

– Produces ABA, IAA, and gibberellins
and phytohormones. Its inoculation to
what plant has shown to alleviate
drought stress

Creus
et al.
(2004)

Bacillus
amyloliquefaciens

Rice seeds Produced ABA under salt-stressed
conditions

Shahzad
et al.
(2017)

Bacillus
licheniformis

Helianthus
annuus roots

Produced ABA in minimal media Cohen
et al.
(2009)

Bacillus subtilis Leaves of
Speranskia
tuberculate (bail)

Effective biocontrol agent with antago-
nistic action against pathogen causes
rotting in tomatoes

Wang
et al.
(2009)

Paecilomyces
formosus

Cucumber plants
roots

Gibberellin (GA) production under
saline conditions

Khan
et al.
(2012)

Pantoea alhagi Alhagi
sparsifolia leaves

Improves the drought tolerance mecha-
nism of wheat by the production of IAA

Chen
et al.
(2017)

Penicillium
resedanum

Drought-stressed
Capsicum
annuum plants

Gibberellin (GA) production under abi-
otic stress

Khan
et al.
(2014)

Pseudomnonas
fluoroescens

Helianthus
annuus roots

Produced ABA in minimal media Cohen
et al.
(2009)

Streptomyces
capillispiralis Ca-1

Recombinant
endophytic strain

Uses synthesized copper nanoparticles
for biocontrolling these insects

Hassan
et al.
(2018)

Yarrowia lipolytica Euphorbia milli
L. spines

Produces high indole-3-acetic acid
(IAA), indole-3-acetamide (IAM) under
salinity stress

Jan et al.
(2019b)
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capacity and is an indicator of the water balance of a plant. Plant species possessing
higher relative water content have better potential to survive during drought condi-
tions. With continuously changing environmental conditions and declining water
tables plants have adopted some strategies to maintain high water potential to
mitigate drought stress. Plant growth-promoting microbes are known to act as stress
protecting agents. Endophytes are naturally associated with their host plants and
interact via several mechanisms during abiotic stresses. Several endophytic strains
have been isolated which have shown to improve relative water content under
drought stress. Burkholderia phytofirmans is capable of colonizing maize seeds,
and it has shown to improve the relative water content under drought stress. Another
endophyte—Pseudomonas azotoformans isolated from the leaves of Alyssum
serpyllifolium improves relative water content of Trifolium arvense under drought
stress (Ma et al. 2017).

14.2.2.2 Antioxidant Enzymes

Reactive oxygen species are produced during natural metabolic processes and play
significant roles in maintaining cellular homeostasis and signal transduction. Higher
concentrations of ROS are detrimental for living organisms and cause oxidative
stress. ROS comprises of free radicals like hydroxyl radical (•OH), superoxide anion
(O2•�), and non-radical molecules like singlet oxygen (1O2), hydrogen peroxide
(H2O2). ROS family is involved in several physiological phenomena they act as
secondary messengers and induce oxidative damages under several environmental
stress conditions like cold, drought, salinity, heavy metals, and extreme tempera-
tures. The generation and elimination of ROS are important for maintaining cellular
homeostasis. Generation of reactive oxygen species increases during abiotic stresses
which can cause oxidative damage to proteins, lipids, membranes, and other mac-
romolecules. To combat the oxidative damage caused by high levels of ROS, plants
utilize their endogenous antioxidant defence system. This antioxidant defence sys-
tem comprises of enzymatic and nonenzymatic components. Enzymatic components
comprise catalases, superoxide dismutases (SOD), glutathione reductases (GR),
ascorbate peroxidases (APX), guaiacol peroxidase (GPX), dehydroascorbate reduc-
tases (DHAR), and mono-dehydroascorbate reductases (MDHAR) and nonenzymic
components comprise of glutathione (γ-glutamyl-cysteinyl-glycine, GSH), cellular
redox buffers ascorbate (AsA), carotenoids, tocopherols, and phenolic compounds.

Microorganisms also employ antioxidant enzymes like plants to combat
unfavourable conditions. However, the generation of ROS can be minimized by
employing endophytes under drought stress (Khan et al. 2016b). They isolated seven
endophytic bacteria, i.e., Acinetobacter calcoaceticus, Rhizobium tropici,
Burkholderia vietnameinsis, Sphingomonas yanoikuya, Enterobacter asburiae,
Burkholderia sp., Rhanella sp., Pseudomonas sp., and Curtobacterium sp. from
willow and poplar stem and examined their potential for drought tolerance in poplar
plants. The treated plants exhibited decreased ROS activity when exposed to drought
conditions. Xu et al. (2017) studied the potential protective activity of endophytic
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fungus Piriformospora indica against the detrimental effects of drought stress.
Maize and finger millets plants inoculated with P. indica produced higher levels of
antioxidant enzymes thereby lowering the membrane damage (Xu et al. 2017; Tyagi
et al. 2017). Burkholderia phytofirmans and Enterobacter sp. alleviated drought
stress in maize plants by producing enzymes like peroxidase, catalase, and superox-
ide dismutase (Naveed et al. 2014).

14.2.2.3 Production of Phytohormones

Phytohormones help plants to survive or escape abiotic stresses. Plants along with
their symbiotic partners, i.e., endophytes modulate the production localization and
distribution of phytohormones to protect themselves under stressed conditions. Plant
growth-promoting bacteria synthesize phytohormones like auxin, abscisic acid,
ethylene causing physiological, biochemical, and molecular changes in plants and
improve tolerance to environmental stresses. Auxin is the most abundant phytohor-
mone found in plants and it predominantly exists as IAA. Auxin has an important
role in the regulation of plant growth, seed germination, cell division, and cell
elongation. IAA is the most abundant phytohormone produced by rhizospheric
bacteria and endophytes. Endophytic bacteria influence the auxin levels by
interacting with IAA transporters in plants (Sukumar et al. 2013). Inoculation of
plants with endophytic bacteria showed an increase in the lateral roots and root hair
formation resulting in increased surface area and higher uptake of moisture and
minerals from the soil (Egamberdieva et al. 2017).

Phytohormone abscisic acid is involved in plant responses to several abiotic stress
(extreme temperature, drought, and salinity) responses and adaptation (Vysotskaya
et al. 2009). Under drought stress, ABA improves the root system to enhance
optimal water and nutrient acquisition by increasing root length and density
(Shahzad et al. 2017). Abscisic acid sustains the cell turgor potential in plants by
maximum utilization of soil moisture which leads to better drought tolerance. This
increased tolerance is achieved by the upregulation of the antioxidants and the
accumulation of compatible osmolytes which maintains the relative water content
of plants during drought conditions.

Ethylene is the only gaseous phytohormone that is responsible for plant growth
and development. It also regulates senescence, and abscission, and fruit ripening
(Glick 2014). Abiotic stress (drought) leads to increased production of ethylene
which can become inhibitory for plant growth. To minimize the ethylene levels,
several bacteria produce ACC deaminase which cleaves ACC into ammonia and
α-ketobutyrate and reduces the ethylene levels. Regarding the role of ACC
deaminase-producing endophytic bacteria in drought stress, Naveed et al. (2014)
demonstrated that ACC deaminase-producing endophytic bacteria Burkholderia
phytofirmans enhanced drought stress tolerance in maize. Salicylic acid (SA) was
increased in heavy metal-treated plants inoculated with endophytic bacteria. These
results suggest that both hormones may have synergistic effects on heavy metal
stress, as observed in another study (Jan et al. 2019a) (Fig. 14.1).
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14.3 Endophytes and Sustainable Agriculture

Biocontrol: Endophytes can be used as potential biocontrol agents, in comparison to
the controls by chemical agents such as pesticides and insecticides which is harmful
to the whole trophic level. Numerous cases exist where it has been proven that they
act as potential biocontrol agents (Kusari et al. 2013). Few are also listed in
Table 14.2.

Bio-remediators: This has been clearly observed by various findings that endo-
phytes possess an ability to bioremediate hazardous wastes and pollutants, i.e., they
are able to eliminate them by breaking them down into less harmful substances or
compounds and finally degrading them or volatizing them through a certain biolog-
ical process. Mastretta et al. (2009) has reported that with the help of introduction of
endophytes into Nicotiana tabacum plants have an increase in the plant biomass

Table 14.2 Naturally obtained secondary metabolites from endophytes and their potential func-
tions giving a varied explanation about host endophyte interaction and why there is a need to
decipher them (Tan and Zou 2001)

Group Secondary metabolite Endophyte Function

Alkaloids Peramine Neotyphodium
coenophialum, N. lolli,
Epichloe festucae, and
E. typhina present in
the stem and leaf of tall
fescue, ryegrass, and
other grasses

Toxic to insects
(extremely to Argen-
tine stem weevil)
without any harmful
impact on mammals

Steroids 3β-hydroxyergosta-5-ene,
3-oxoergosta-4,6,8(14),
22-tetraene, 3β, 5-
α-dihydroxy-
6βacetoxyergosta-7, 22-diene
and 3β, 5α-dihydroxy-6-
β-phenylacetoxyergosta-7,
22-diene

Colletotrichum sp. of
Artemisia annua

Antifungal against
some crop pathogens
Gaeumannomyces
graminis var. tritici,
Rhizoctonia cerealis,
Helminthosporium
sativum, and
Phytophthora capsici.

Isocoumarin
derivatives

(R)-Mellein Pezicula spp. Fungicidal, herbicidal,
and algicidal

Quinones Rugulosin Hormonema
dematioides, an endo-
phytic fungus of bal-
sam fir

Insecticide

Peptides Cryptocandin Cryptosporiopsis
cf. quercina of
redwood

Potent antifungal
activity

Phenol and
phenolic
acids

2-Methoxy-4hydroxy-6-
methoxymethylbenzaldehyde

Tree endophyte
Pezicula sp.

Antifungal by the
bioautography assay
against phytopathogen
Cladosporium
cucumerinum
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even under the presence of Cadmium (Cd). Many other studies have proved the
useful effects of endophytes in the case of bioremediation process (Thijs et al. 2016).

14.4 Metabolomics Approach for Amelioration of Abiotic
Stress

An organism’s physical traits is generally considered to be the outcome of the amal-
gamation of various entwined, precise/non-precise and potent kind of interaction
amidst varied elements involving RNA, metabolites, DNA, and proteins in accor-
dance to the environment consisting of certain adverse conditions and/or advancing
stages equivalent to nutrient availability, water and temperature or salinity. There-
fore, a meticulous explanation of the physical characteristics other than the scanning
of metabolites, proteins, and RNA transcripts is required by almost all genome-scale
studies. Nevertheless, to obtain a translucent frame work for the traits acquired
physically of a given organism only the sum of these three aspects is not enough
rather an approach where elements can be characterized in a sequential manner,
respectively, should be considered. There is a demanding need to involve all these
various conditions as an individual or the classical approach lacks in the character-
ization of the evolving properties of an organism (Arbona et al. 2013). This kind of
need is now a universal requirement and more helpful as well as informative to the
motive where one is evaluating plant relationship dynamics in accordance with the
environment. When such dynamics is being taken into consideration, it has been
realized that the approach involving expression of proteins and definitive genes
display only plants capabilities to respond in stressed conditions but the approach
that involves metabolites includes or constitutes both protein and gene expression in
addition to the environment dynamics making it a suitable and an universal approach
amidst other omics technologies with fairly less amendments and more applications
to a varied number of organisms. An area where metabolomics has been
implemented and gained successful conclusions involves finding similar patterns
that are able to confer stress especially abiotic stress in plants by deciphering their
molecular physical traits (Arbona et al. 2013).

Therefore, the definition of metabolomics can be summarized as the recognition
of metabolites that possess lower molecular weights of an organism at particular
tissue, organ, and cell type or at a specific developmental level/levels (Arbona et al.
2009; Fiehn 2001). This summarization of metabolomics appears to be peculiar and
tough to defy for a sole reason that these constitutes of high number of continuous
molecules that possess varied chemical composition and structures. But still, broad
categories of metabolites that are contained in plant kingdom and their overall
analysis are yet uncharacterized. Such issue can be overcome by or can be
deciphered by certain kind of techniques that include a specific combination of
separation technique paired up with a detection device which is usually mass
spectrometry (Arbona et al. 2013). The role of the separation technique is primarily
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to provide the selective pattern or a layer required by the varied categories of
metabolites, as we can see in case of gas chromatography that has the primarily
objective of selectivity for primary volatile metabolites, e.g., amino acid, tricarbox-
ylic acid (TCA), or sugar intermediates after they have been derivatized (Arbona
et al. 2009). Another technique, namely liquid chromatography which is considered
quite adjustable can be used for a wide range of compounds to decipher secondary
metabolites—a category of most important sort of metabolites in plants. This
technique is carried out without the metabolites being derivatized means first
through LC metabolites are screened and then derivatization takes place. In com-
parison to this capillary zone electrophoresis (CZE) is also possesses similar sort of
objectives. But in case of CZE, there is a step ahead of separation of even ionic
metabolites also. Various useful objectives are being served by the category of plant
metabolomics, and some of which involves as follows:

(a) To decipher or to trail various compounds to their category which is involved in
a specific kind of degradation or biosynthetic pathway.

(b) To know about the effects of the functioning of plant metabolism when the host
plants have conferred stress or have been treated with such impactful conditions.

(c) Plant metabolomics also helps in various samples classification.

Activation of a specific metabolic pathway releases certain intermediates or
precursors that pilot the release of certain bioactive molecules like signalling com-
pound, an antioxidant, a cell structure biosynthesis intermediate, or even a storage
compound. Once they are produced, they are controlled or levelled by various other
elements such as plant hormones or signalling molecules. These regulatory elements
are in fact considered to be not in relation to any kind of such pathways which can
activate or deactivate varied steps involved in metabolism.

This above-explained mechanism can be clearly observed in the case of a very
important process known as photosynthesis, which is also considered to be sensitive
process to abiotic stress. Therefore, when the host plants undergo through abiotic
stress, carbon assimilation, and the primary metabolism are largely affected. Mostly
the concentration of essential metabolites like sugar alcohols, amino acids, and
sugars is affected due to stress conditions. But the effect is not just because of
conferring a particular stress condition, the effect is also considered to be the
outcome of another complex regulatory network (Arbona et al. 2013).

14.5 Deciphering Host Endophyte Interaction Through
Metabolomics

The interaction between host plants and endophytes is a complicated one as it
revolves not only between these two but with whole microbiome from the outer
surroundings. So, what actually happens is that the endophytes adapt to certain
aspects in order to survive through unknown conditions, firstly they start their
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evolution through coexisting. To achieve this, they develop or inbuilt varieties of
traits within themselves in different range. For example:

• Production of certain molecules that would help in inhibiting quorum sensing.
• Production of certain other compounds that play role in defence actions, such as

enhancers to produce precursors that would catalyse certain important unravelled
biosynthesis pathways effectively.

• Or by being epigenetic modulators (Kusari and Spiteller 2011; Jia et al. 2016;
Mookherjee et al. 2018; Scherlach and Hertweck 2018).

This has been fairly concluded by several researches that the production of these
molecules or compounds have an essential ecological role. The significant discovery
was the endophytic fungus Neotyphodium coenophialum that found in tall fescue. It
produces alkaloids that are toxic in nature and results in the disease known as fescue
toxicosis in livestock, hence protecting their host plants against herbivores (Bacon
et al. 1977).

Now a major question lies on the point that how can such biomolecules/com-
pounds can be identified or unravelled? Metabolomics in combination with other
analytical techniques can be deciphered. In this case, the most used technique is low
chromatography mass spectrometry (LC-MS) which is generally used to identify
complex peptides or non-volatile molecules from endophytes. With the help of
metabolomics approach certain peculiar compounds or substrates involved in
interlinked mechanisms can be decoded. Usually, the function of these interlinked
compounds is in activating defence mechanism of the hosts. This is also an escape
from the traditional old methods that have been used until now. These profiling
methods are considered to be way more effective. In addition to this, these when
linked with other present omics technologies are capable of decoding the whole
process and give us a platform to redesign the beneficial activities in a much broader
scale as in terms of whole ecology.

14.6 Metabolomic Profiling

Metabolite profiling with multiple variables and data based is considered to be a very
effective and dedicated approach to classify samples where plant microbes are
interrelated that may lead to recognition of various metabolites found in plants,
i.e., basically, this technique is used to explain that irrespective of interaction
between plant and endophytes there always exists varied kind of metabolites. So
basically, the metabolomic profiling technique has been designed in such a pattern
that the information of metabolite when deciphered; is in respect to the coexistence
of metabolites present in both plant and microbe. For example, the technique GC-
TOF-MS also known as gas chromatography coupled with time-of-flight mass
spectrometry is said to decipher or to find a total number of microbes present in
that particular area specifically defined as microbial biomass. Basically, the emphasis
of this metabolomic tool is to unravel certain interesting topics related to endophytes,
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may it be in terms of their importance in relation to environment or their sustainable
impact on plants (Christian et al. 2009; Barsch et al. 2006a, b; Andrea and Paul
2011). In recent study, in situ analysis was done in Setaria viridis roots colonized by
beneficial endophytic bacteria with in situ laser ablation electrospray ionization mass
spectrometry to investigate the metabolic changes in roots (Agtuca et al. 2020). The
present omics world also includes studies that identify the genes and proteins
potentially engaged in the plant–microbe interaction. Understanding how plant–
microbe interaction happens allows researchers to ameliorate crop yield and reduce
environmental stresses.

Hence, this whole procedure could be summarized into different steps which can
be described as follows:

1. The quick study of metabolites at their early stages can be achieved with the help
of techniques like 1H nuclear magnetic resonance and high resolution mass
spectrometry (Emwas et al. 2019).

2. To properly execute, a technique known as metabolite fingerprinting shall be
applied at precursor stages, i.e., to the cultivation media that is yielding the active
metabolites at maximum levels. By doing this, we simply increase or enhance the
production of active metabolites to optimum/desired levels.

3. Then comes the procedure of metabolite profiling which involves the deciphering
of such extracts that can be processed further for fractionation.

Therefore, after this whole guided procedure of metabolomics, it becomes easier
to obtain the potential metabolites that were present in certain combinations.
Metabolomics as a whole in respect to endophytes can prove as a very diligent
and effective technique to decipher various useful compounds or substances that are
involved in various major process of plants or investigate novel leads that lead to
the survival of plants in such extreme conditions. Metabolomics is a powerful
facilitator in the discovery of natural products, which are considered as an excellent
source for novel leads, and even more, as a means to highlight active targets (Kamal
et al. 2017; Maciá-Vicente et al. 2018; Tawfike et al. 2019; Wei et al. 2020).
Table 14.2 lists such various secondary metabolites from endophytes and their
uses thus proving that metabolomics is a potent tool.

14.7 Conclusions

The metabolome study explains more accurately and precisely the phenotype of a
given plant species by indicating the integration of the genetic background and the
influence of the environmental conditions. In response to adverse abiotic stimuli,
plants orchestrate an array of responses oriented to stress avoidance, defence, or
resistance, depending on the particular stress tolerance. It would be an interesting
section to explore the impact of endosymbionts on the host’s gene expression,
metabolism, and other physiological aspects essential in conferring resistance
against biotic and abiotic stresses. A more intriguing and inexplicable issue with
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many endophytes that must be critically evaluated is their ability to produce host
metabolites, which can be harnessed on a large scale for potential use in diverse
areas. It is a much required need of the hour to obtain the biochemistry and
physiology of endophytes up to genomic and metabolomic levels. To date, there
are no databases exclusively available for endophytic microorganisms and their
metabolites, which can be of great importance and provide solutions to many issues.
Hence, with the help of omics technologies, it is important to decipher the role of
metabolites and their possible mechanism of action to gain all possible benefits from
the remarkable association.
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