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Abstract Hexavalent chromium is a geochemical element and designated as
priority pollutant. It has mutagenic and carcinogenic property and poses a serious
threat to both humanity and ecosystem. Despite of toxicity, little dose of chromium
acts as micronutrient in the diets of animals and humans and also helps in sugar,
protein, and lipid metabolism in mammals. Chromium speciation exists in two
states: hexavalent chromium and trivalent chromium, out of which the latter is
nontoxic. Health problems associated with high dose of chromium are ulcers,
diarrhea, irritation of skin, eye and lung carcinoma, dysfunction of kidney, birth
defects, and reduced reproductive health. The lethal dose (LD)50 value for oral
toxicity in rats is 50–100 mg kg−1 and 1900–3000 mg kg−1 for Cr (VI) and Cr (III),
respectively. Due to high toxicity of Cr (VI) compounds, there is multiplicity of
treatment technologies including physico-chemical and biological methods.
Physico-chemical methods are high energy demanding, have high operational cost,
generate secondary pollutant, and sometimes have lesser efficiency due to high
metal concentration and interferences. In contrast to physciochemical method,
bioremediation of Cr (VI) reduction is operated at low cost, and less energy is
required with high efficiency of reduction, no health and environmental hazards.
Microorganisms involved in remediation metabolize the chemicals via
enzyme-catalyzed pathway converting into harmless compounds and often use
compounds as a source of their growth. Despite of all these methods, some green
technologies and modification in these techniques also proved to be effective in
chromium reduction. This chapter deals with occurrence and fate of chromium,
speciation, various treatment technologies, mechanism of reduction and their
advantages-disadvantages, pilot-scale studies, and future perspectives in remediat-
ing toxic hexavalent chromium.
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4.1 Introduction

The seventh most abundant element and metal found in earth’s crust is chromium
(Cr) which is excavated as chromite (FeCr2O4) (Sultana et al. 2014). Being a
geochemical element, its presence is found in rocks, fresh water, and mineral soils.
Despite of several oxidation states, it is the most stable form, and trivalent chro-
mium Cr (III) and hexavalent chromium Cr (VI) are prevalent in environment
(Sultana et al. 2014; Fernandez et al. 2018). Chromium cycle mainly follows
oxidation and reduction of its different form. Oxidation of Cr (III) into hexavalent
form in sediments and soils occurs by manganese oxide while Cr (VI) is reduced to
its trivalent form by soil compounds that are in reduced form. Hexavalent chro-
mium has wide range of industrial application like chrome plating, leather tanning,
electroplating, stainless steel industries, and wood preservation (Jobby et al. 2018).
United States Environmental Protection Agency-USEPA has designated this ele-
ment as priority pollutant as it becomes easy for the metal complexes to cross the
membrane, thereby generating reactive oxygen species (ROS) which in turn alters
cellular structure (Fernandez et al. 2018; Fedorovych et al. 2009; Juvera-Espinosa
et al. 2006). Owing to toxicity of chromium element, hexavalent chromium is 1000
times mutagenic and 100 times lethal than trivalent state (Chojnacka 2010).
Organisms come into contact with chromium via inhalation, oral digestion, or
dermal contact. Cr (III) enters through digestive system, and if there enters Cr (VI),
simultaneously most of them gets reduced to Cr (III) (Hamilton et al. 2018;
Pechancova et al. 2019). Absorption of Cr in the gastrointestinal tract follows the
unsaturated passive transport and is severely influenced by substances present in
diet. The Cr species then travels in the bloodstream and gets accumulated in the
deep organs like liver, kidney, and spleen and then excreted out via urine and
negligible amount by bile or hair (Finley et al. 2017). Cr (III) is helpful in human
metabolism like cholesterol and triglyceride levels, stability and amalgamation of
proteins, nucleic acids, glucose maintenance, and stability of cell membrane (Di
Bona et al. 2011; Frois et al. 2011; Fernandez et al. 2014). A study compared rats
supplied with less content of Cr (III) and another provided with heavy amount of Cr
(III) confirms that those having little amount of trivalent chromium had no adverse
consequences and are not used as nutritional supplement. Higher dosing of trivalent
chromium forms composite with organic compounds which interferes with metal-
loenzymatic process (Poljsak et al. 2010) and may cause lung cancers, decrease in
reproductive health and birth deficiency (Fernandez et al. 2018).

These polluting agents are directly thrown into water and soil from various
sources generates pollution, contamination and demolition of the ecosystem. For
the treatment of chromium ions, various technologies have been developed till date
from water, wastewater, and soil. Physico-chemical methods like use of activated
carbon, chemical precipitation, reverse osmosis, ion exchange, membrane tech-
nologies, and adsorption (Krowiak 2013) have been extensively used but some-
times these processes are exceptionally expensive when the metal concentration
varies from 1 to 100 mg/L. Another drawback of these techniques is they generate
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huge quantity of toxic chemical sludge which creates a serious concern for disposal.
On the other side, microorganisms interact with chromium via biosorption, enzy-
matic reduction, and bioaccumulation is gaining grounds due to its low opera-
tionality and minimum chemical requirement. Use of scrap iron in reducing Cr
(VI) is a promising and emerging technology because of its easy availability, faster
reaction rate, and cost-effectiveness.

4.2 Chromium Toxicity and Contamination

Chromium is an essential micronutrient in the diets of humans and animals which is
helpful in lipid, sugar and proteins metabolism, but in case of plants and
microorganisms, there is no such known necessity of chromium in their metabolic
pathways. However, chromium is toxic at high level depending upon its oxidation
state. In between its two oxidation states (III) and (VI), hexavalent state is highly
lethal, carcinogenic, and mutagenic and has effects on lowering reproductive
capacity and birth defects as well. The casualty may occur due to large dosage of
Cr (VI). The lethal dose (LD)50 value for oral toxicity in rats is 50–100 mg kg−1 for
Cr (VI), and for Cr (III), it is 1900–3000 mg kg−1 (Jobby et al. 2018). The other
toxicity effects associated with chromium are that it reduces the plant’s capacity to
grow by decreasing uptake of nutrients and photosynthesis. The morphological,
physiological, and biochemical processes of plants are rigorously affected by high
dose of chromium which induces formation of reactive oxygen species. In plants, a
phenomenon called chlorosis and necrosis indicates its toxicity.

Chromium has corrosion-resistant quality due to which it has been widely used
in industrial processes like manufacturing of stainless steel, metallurgical, tanning,
wood preservation, electroplating, pulp and paper, and production of paints. These
industries generate huge amount of wastes in the environment. In many countries,
the chromium contamination in surface water has crossed its permissible limits
approximately 0.5–2 mg/L. (US Environmental Protection Agency 1987) and
(Guidelines for drinking-water quality 1996) reported that the total chromium
content of 84 mg/L and 0.2–44 mg/L has been found in the surface water of Central
Canada and USA, respectively. The contamination to groundwater by Cr (VI) is
due to leaching and seeping of dumped wastes as a filling material possess a great
threat to health. Major source of Cr (VI) pollution are tannery industries where
chromium compound has been used to tan hides. However, Cr is not completely
used in the tanning process of leather, a large portion of it is discharged as it is in
the effluent. Around the world, approximately 40 million tonnes of chromium waste
is produced by tanning industries which is directly released into water and disposed
of on land. It has been detected in India that around 2000–32,000 tonnes of ele-
mental chromium are discharged annually by tannery industries in the environment
having chromium concentration ranging between 2 and 5 g/L which is higher than
the permissible limit.
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4.3 Chromium Reduction by Different Methods

4.3.1 Physical and Chemical Methods

Physical methods of Cr (VI) reduction include membrane filtration, granular acti-
vated carbon, adsorption, photocatalysis, electrodialysis, soil washing (Wang et al.
2008), and chemical methods include use of chemicals like ferrous sulfate, sulfur
dioxide, barium sulfite, sodium metabisulfite, lime and limestone, and sodium
sulfite, for reduction of Cr(VI) to Cr(III). The disadvantages of these methods are
high energy demand, high operational cost, generation of secondary pollutant and
sometimes lesser efficiency due to high metal concentration and interferences
(Zouboulis et al. 2004). A list of physico-chemical treatment technologies is dis-
cussed in Table 4.1.

4.3.2 Biological Methods

Bioremediation is one of the best approachs toward remediating heavy metal pol-
lution. It is a phenomenon of transforming harmful pollutants into nontoxic com-
pounds by involving living organisms (fungi, bacteria, plants, yeast, and algae). The
advantage of this method is that there is low operational cost, less energy
requirement, high efficiency, no health and environmental hazards, metal recovery
and possibility to reuse. Microorganisms involved in remediation metabolize the
chemicals via enzyme-catalyzed pathway converting into harmless compounds and
often uses compounds as a source of their growth. Some of the parameters that
affect the efficiency of the process are chemical nature of pollutants, structure of the
compound, pH and temperature of the system, nutritional state, presence of
microbial community and hydrogeology. Bioremediation approaches to heavy
metal treatment are bioaccumulation, biosorption, and biotransformation.

4.3.2.1 Bioremediation by Fungi

Fungi has been well known for biosorption of Cr (VI). Several genera of fungi had
been discovered in biosorption process such as Aspergillus oryzae, Trichoderma
sp., A. niger, Fusarium oxysporum, Trichoderma inhamatum, Hypocrea tawa,
Fusarium oxysporum NCBT-156, Saccharomyces cerevisiae, Penicillium griseo-
fulvum MSR1, and Acremonium sp.. Cr (VI) biosorption by fungi can be accom-
plished by metabolism-dependent and independent pathway. The mechanism for
Cr (VI) sorption involves adsorption of Cr (VI) on the cell surface of fungi by
formation of a chemical bond that have some functional groups present. The
presence of hydroxyl, carboxyl, amino, and carbonyl groups on the cell surface
helps in attachement of Cr (VI) on the wall of fungal cell. Involvement of different
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fungal species in Cr (VI) reduction exerts different results such as Saccharomyces
cerevisiae from culture collection bank reduced 200 mg/L of Cr (VI) in 24 h with
85% efficiency (Mahmoud and Mohamed 2017), A. niger was capable of reducing
18.125 mg/L having efficiency 96.3 and operating duration was seven days
(Sivakumar 2016), Paecilomyces lilacinus isolated from tannery effluent reduced
200 mg/L Cr in 120 h with 100% removal (Sharma and Adholeya 2011).

4.3.2.2 Bioremediation by Bacteria

Cr (VI) remediation using bacteria proved to be a very efficient, cheaper, no
chemical input, less energy requiring method that converts it in less toxic
Cr (III) form. Both gram positive and gram negative bacteria, living and dead cells
are efficient in remediation approaches. A work reported ability of chromium
biosorption in B. circulans (34.5 mg Cr g−1 of dry weight), B. megaterium
(32.0 mg Cr g−1 of dry weight) and B. coagulans (39.9 mg Cr g−1 of dry weight)
and it was found out that the biosorption ability of living and dead cells of
B. coagulans and B. megaterium were compared and dead cells were found to be
more effective for chromium biosorption. Some of the bacterial species applied for
the treatment of hexavalent chromium reduction are provided in Table 4.2.

4.3.2.3 Bioremediation Using Algae

Biosorption by algae is another remediation method for Cr (VI) which involves
adsorption of metal on the algal cell surface, and may further follows accumulation
inside the cell. Specific molecules like phytochelatins, metallothioneins, guluronic
acid, alginates, sulfated polysaccharides with hydroxyl, amino, carboxyl, and sul-
fate as functional groups trigger Cr (VI) remediation. Variety of algal species has
been used in Cr (VI) removal like, Euglena, Scenedesmus, Cladophora
sp. Selenastrum, Ceramium virgatum, Spirulina sp. Nostoc linckia and Chlorella
vulgaris. It was studied by (Pradhan et al. 2017) using Chlorella vulgaris for
3.22 mg/L of hexavalent chromium. At 28 °C, complete reduction was observed
within 12 days. Furthermore, organelles (Chloroplasts) were extracted from
Chlorella vulgaris for reduction and the results stated that it adsorbed total chro-
mium (21%) and reduced 70% of Cr (VI). An algal species, Sargassum cymosum,
has been used in Cr (VI) reduction as an electron donor and the reduction was due
to acidic carboxylic group associates with the surface of the biomass which
mediates sequestration of trivalent chromium. During the reduction process, the
oxidation of biomass forms the binding sites on the surface.
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4.4 Mechanism of Cr Reduction by Microbes

Microbial remediation is the process of quickly degrading the lethal pollutants to
naturally safer limit in water, sludge, soil, residues, and subsurface materials. (Asha
Latha and Sandeep Reddy 2013). The different remediation mechanisms followed
by microbes are biosorption, bioaccumulation, and biotransformation. Biosorption
is a reversible, passive, and rapid process that involves a biosorbent and a sorbate.
(Ahluwalia and Goyal 2007). Enormous variety of microorganisms have been
applied for biosorption activity such as cyanobacteria, algae, microalgae
(Khoubestani et al. 2015; Kwak et al. 2015; Nemr et al. 2015), yeast (Fernandez
et al. 2013; Farina 2012; Khani et al. 2012) fungi (Huang et al. 2016), and bacteria
(Wu et al. 2015; Bahafid et al. 2013). Structural integrity and many functional
groups like hydroxyl, amino, carboxylate, and phosphate are provided by microbial
cell wall that helps in binding of heavy metal ions. The sorption of metal ions
requires energy consumption which is provided by citoplasmatic metal binding
proteins. A study by (Thatoi et al. 2014) found out that hexavalent chromium
removal involves adsorption on functional groups like polysaccharides, amide I,
amide II, amide III, carboxyl, and sulfonate and which further accumulates within
the cell and thus biotransforming hexavalent chromium to its trivalent form.
Biotransformation of Cr (VI) to Cr (III) is mediated by soluble cytosolic proteins or
insoluble cell membrane enzymes (Viti et al. 2014; Kadlec and Wallace 2009).
Biotransformation in plants is mediated by chemical or enzymatic process. The
reduction of Cr (VI) by chemically induced mechanism is mediated by cysteine,
sulfite, thiosulfates, and glutathione that are present in the plant cell. The enzymatic
method of reduction is carried out by diverse group of bacteria such as Bacillus sp.,
Pseudomonas sp., Staphylococuusarlettae sp. etc. The presence of soluble and

Table 4.2 Different bacterial species in Cr (VI) reduction

Species Cr (VI)
concentration
(mg/L)

Duration of
reaction (h)

% efficiency Growth
condition

References

Cellulosimicrobium
sp.

50, 100, 200,
and 300

24 and 96 99.33 and
96.8

– Bharagava
and Mishra
(2018)

Bacillus circulans
BWL1061

50 – 100 – Liu et al.
(2017)

Serratia sp. 4, 8, 12, 16,
20

36 and 48 100 Aerobic Upadhyay
et al. (2018)

Bacillus sp. (CSB-4) 10–500 144 90 – Dhal et al.
(2010)

Ochrobactrum sp. 300 – 96.5 – Chen et al.
(2016)

Acinetobacter
baumannii L2

1000 24 99.58 – Sathishkumar
et al. (2016)
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membrane-bound reductases such as flavin reductase, cytochromes, and hydroge-
nases is used by the bacteria that can use chromate as the terminal electron acceptor
in electron transport system. Also, presence of different chromate reductase such as
YieF, LpDH ChrR, and NemA, and that are present in section of cytoplasm else are
membrane bounded helps in transforming activity. The mechanism of chromium
reduction varies with different microorganisms. In yeast, the detoxification occurs
indirectly by riboflavin and sulfate and is released to the extracellular medium by
the yeast cells. (Fedorovych et al. 2009). A pictorial representation is depicting the
reduction of Cr (VI) by microorganism and their effects associated with the process
in Fig. 4.1. A flowchart showing different scale-up approach for Cr (VI) reduction
is depicted in Fig. 4.2.

4.5 Cr Removal by Constructed Wetlands

Constructed wetlands (CW) play an important role in chromium removal process
involving a combination of biological and physico-chemical processes which
includes sedimentation, attachment to porous media, plant uptake, and precipitation
as insoluble forms (mainly sulfides and (oxy-) (hydroxides) (Maine et al. 2009).
Rhizosphere is the most efficient reaction zone where both biological and
physico-chemical processes and interaction of microorganisms, plants, and pollu-
tants takes place. CW vegetation in Cr removal follows release of root exudates
which impacts metal toxicity and their mobility and provides surface area for
microbial growth to occur, and the tissues accumulates Cr in themselves. Root zone
accumulates metals and inhibits metal mobility from roots to shoots in vascular

Fig. 4.1 Chromium reduction by microbes and the possible effects associated with cell
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plants, and also the complex compounds formed with carboxyl group prohibits
movement of metals to the shoots. It has been stated by many researchers that Cr
ions itself have the binding capability with cell walls of plant tissues which inhibit
their translocation. Plants take up metals in their ionic forms by metal ion carriers or
channels. Cr ions form chelating compounds with chelators like glutathione, met-
allothionein protein, organic acids, and phytochelatin within the cells to reduce
metal toxicity. Upon entering into the roots, they are either accumulated in the roots
or translocated into the shoots through xylem tissues. Afterward, the movement of
these ions from shoot xylem to leaf tissue takes place. Absorption of metal ions by
root cells takes place via plasmalemma and via passive diffusion by cell walls in the
roots of aquatic plants. In the root cells, both Cr (VI) and Cr (III) enter via symplast
method where reduction of Cr (VI) to Cr (III) form takes place and get stored in the
root zone. The movement of Cr ions is limited in aerial parts and mainly dependent
on chemical structure inside the tissue. But uptake of Cr (VI) can damage root
membranes due to its high oxidation power and it also restricts uptake of some
essential elements like K, Fe, Mn, P, Mg, and Ca due to similarity in their ionic
forms.

Fig. 4.2 Flowchart showing different scale-up approach for Cr (VI) reduction
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Microorganisms too have vital role in CW function as they involve metal
reduction mainly by an energy-dependent active process called as bioaccumulation
and another one is nonenergy-dependent passive process known as biosorption.
In CW, microorganisms influence metals by biosorption, metal speciation,
methylation of heavy metals and precipitation by sulfate reduction. Metal sorption
by some bacteria occurs by formation of amorphous mineral inclusions.
Mycorrhizae forms a symbiotic connection between roots and soil and provides
adsorptive surface area for metals present in toxic form in the soil (Table 4.3).

4.6 Biostimulation

Biostimulation is the modification of the process to enhance the growth of existing
bacteria during course of bioremediation. Various nutrients and electron accepters
or donors like lactate, molasses, or acetate are required in the modification process.
Based on the physico-chemical properties and indigenous microbial communities,
the efficiency of each electron donors in this process depends. It helps in heavy
metal reduction and microbial growth kinetics in a specified environmental con-
dition. A study conducted by (Brodie et al. 2011) stated that in presence of acetate
as an electron donor, 16 mM Cr (VI) was reduced to zero within 25 days. Some
more experiments were conducted by (Varadharajan et al. 2015) using variety of
electron donors for chromium reduction based on lactate polymerization. The
experiments involved treatment of Cr (VI) contaminated groundwater using dif-
ferent electron donors such as polylactate cysteine, primer hydrogen release com-
pound (HRC), and extended HRC. Both the electron donors proved to be effective
in overall reduction process with enhanced biomass and their activity.

4.7 Pilot-Scale Studies

Generally, the findings obtained from laboratory experimental setup do not
essentially equate to the results from large scale on-site operating conditions.
A very restricted number of pilot-scale experiments have been implemented for Cr
(VI) remediation (Table 4.4).

4.8 Future Perspectives in Chromium Removal

The development and certain modification in the reduction processes offer great
opportunities for the ongoing heavy metal pollution problem. Fungi and bacteria
have been used recently in the proteomic or transcriptomic studies on their response
to hexavalent chromium. Certain modifications such as use of immobilized
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microbial cells and enzymes in combination with nanotechnology like infusion of
carbon nanotubes into calcium alginate beads have better efficiency in Cr
(VI) reduction. Application of nanomaterials with metal reducing bacteria can be
efficient as they act as an electron donor, thus accelerating Cr (VI) reduction into Cr
(III) (Gutierrez-Corona et al. 2016; Seo and Roh 2015). Genetically, engineered
bacteria have the great adaptability and treatment efficiency for the removal of
chromium compounds. Development of technologies like combining electro-
chemical and biological processes together may prove to be helpful in treatment of
chromium released from tannery effluent in future. Bioaugmented microorganisms
have diverse metabolic pathways and robustness which is a must requirement for
high-scale application (He et al. 2014).

4.9 Conclusion

Diversity in anthropogenic activities and industrialization has increased the risk of
life due to heavy metal pollution. Among the heavy metal, Cr (VI) possesses a great
threat to environment as well as life of living beings due to its mutagenic, car-
cinogenic, and teratogenic behavior. Different Cr (VI) remediation techniques like
biosorption and biotransformation involving variety of microorganisms have been
implemented and proven to be cost-effective, eco-friendly and efficient. Presence of
functional groups like polysaccharides, amide I, amide II, amide III, carboxyl, and
sulfonate mediates the Cr (VI) accumulation inside the cell, thereby transforming Cr
(VI) into Cr (III) form. Use of different types of constructed wetlands has been also
proven to be effective in treatment process. Despite of all these above-explained
treatment technology, there is a gap between laboratory outcomes and pilot-scale
studies of Cr contaminated sites. A suitable operational strategy may fulfill the gap
and can be applied to Cr contaminated sites.
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