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Preface

Metabolic plasticity to adopt changing environmental conditions played a significant
role during evolution and colonization of terrestrial plant from aquatic life. The
extensive urbanization and industrialization in addition to several other environmen-
tally non-friendly human activities in the last half-century have brought significant
change in the climatic conditions, making the living conditions challenging for
plants and animals. According to Intergovernmental Panel on Climate Change
(IPCC) report, agricultural crops will face extreme climate changes such as increase
in temperature, drought, flood, and increase in sea level that leads to intrusion of salt
on arable land.

Climate change and its adverse impact on food production and quality are
worrisome for the food and nutritional security of human civilization. Furthermore,
in view of exponentially increasing global population in excess of 9.7 billion by
2050 and sharp diminishing natural resources, there is an untiring importunity to
augment food production. We need almost 70% more food production than is
consumed today. Achieving humongous goal of global food security will be possible
only by improving the qualitative and quantitative traits of crops through exploita-
tion and modification of metabolic pathways involving advanced analytical tools and
technologies. We have emphasized the challenges ahead in the food and agriculture
sectors in the face of climate change and global megatrend like increasing agricul-
tural productivity with minimum inputs. Collaborative and transdisciplinary
approaches for global food security with a focus on technological intervention
from producer to consumer have been realized. In the last two decades, unprece-
dented progress has been made in the implementation of high-throughput omics
technology in plant biology, which provides better understanding and support in
developing climate-resilient technologies.

Omics technology provides a platform of different modern tools to ponder upon
the integrative approach of omics to deal with complex biological problems. It
touches multiple branches of biology. In the last two decades, omics platform has
added many new tools and application and modernized itself. For instance, it started
with genomics followed by transcriptomics, proteomics, and metabolomics. In
addition, different high-throughput next generation sequencing (NGS) platforms
have evolved different sequencing purposes, which are quick and cost-effective as
well. With the passage of time, omics has made a significant contribution in the field
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of agriculture from crop breeding to gene editing to address the food security issues
for sustainable crop production.

Genomics, transcriptomics, proteomics, and metabolomics are the four most
important branches of omics technologies which imply genome, transcriptome,
proteome, and metabolome quantification and characterization with extremely
automated methods. These advancements in technologies disclose the genomic
regions, expression of genes, proteins, and metabolites, which provide molecular
insights into growth, development, resistance, and yield in changing environments.
Genomics has opened new avenues and opportunities for crop development. The
discovery of sequencing technology helped in unraveling the secrets of genome
information in many plants like Arabidopsis thaliana, maize, rice, wheat, soybean,
tobacco, canola, etc. which have changed the fate of agricultural science immensely.
NGS has provided huge information about the genome of crop plants and led to the
discovery of SNPs, microRNA, and QTLs which were earlier a time-
consuming task.

Gene discovery and expression profiling of major crop species have given outre
opportunities to plant breeders in terms of enhancing diversity in germplasm collec-
tion, introgression of useful traits from novel sources, and identification of key traits
controlling genes. The genomics technologies have been found very beneficial in
deciphering the mutagenicity in biotic and abiotic stress tolerance through genome
sequence, stress-specific gene and transcript collection, protein and metabolite
profiling, their dynamic changes, protein interactions, and mutant screening. As a
result of high-throughput omics technologies and growing data, bioinformatics
would help in analyzing in functionally relevant context.

Further, proteome study provides valuable information about the total proteins
profile getting expressed under stress or any developmental changes of a cell/tissue/
organ. Proteins profile helps in identifying the protein expression, posttranslational
modification, and interaction with other proteins that regulate several cellular and
biological processes of a living system. Proteomics study involves gel-based prote-
omics like 2D PAGE and gel-free proteomic for the detection of low complexity and
low abundance proteins, respectively. Furthermore, quantitative proteomics
techniques like iTRAQ have gained popularity in the recent past. These
advancements in proteomics have broaden our understanding about the biological
pathways and help in improving the traits of the plant. In fact, integration of
proteome with genome sequencing and RNA-seq is being used for improvisation
of genome annotation.

Further, metabolomics research has opened up a new avenue in identifying
specific metabolites involved in plant development, fruit ripening, shelf life of fruits,
nutrient contents of food crop, and aromatic/phenolics compound in the plants. One
should not forget that secondary metabolites played a vital role in evolution of plant
especially on colonization of terrestrial life. They help the plants to survive under
different climatic conditions and pathogen attacks. Therefore, metabolomics
research has widened our knowledge to pinpoint the metabolite involved in survival
of plants under the adverse climatic conditions and required for sustainable produc-
tion of crop. Metabolomics utilized advanced techniques like GC-MS, MALTI-
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TOF-MS, ESI-MS, LC-MS, and MS-MS for metabolite profiling. These platforms
have been used for the exploration of several new intermediate metabolites for
rediscovery of existing pathways and the genes which encode them.

Furthermore, meta-omics techniques have also been utilized for understanding
microbial system and their ecological function. Different meta-omics techniques like
meta-genomics have been employed for identification of microbial community
involved in plant disease tolerance, bioremediation, soil improvement, plant
growth-promoting rhizobacteria (PGPR), plant–microbe interaction, virulence
mechanism, and biofuel.

In addition, genome editing has emerged as a promising tool for introducing
precise mutation in a gene to improve the plant performance. Genome editing
techniques such as CRISPR/Cas have been tried in many agriculturally important
crops like rice, wheat, maize, and tomato. Researchers and plant breeders are
preferring CRISPR/Cas technique over other genome editing techniques due to its
precision and easy to use. One of the attractive features of genome editing is
generation of desire plants in an environmentally safe manner. Furthermore, few
countries like U.S.A. and Canada have approved genome edited canola and mush-
room. It is likely that genome editing might be instrumental in meeting the challenge
of feeding 12 billion people by the end of the twenty-first century.

Precisely, this book comprehensively and coherently reviews the application of
various aspects of rapidly growing omics technology including genomics,
transcriptomics, proteomics, and metabolomics for crop development. It provides a
detailed examination of how omics can help crop science and introduces the benefits
of using these technologies to enhance crop production, genetic resilience, and other
values to feed the increasing world population. It also provides platform to ponder
upon the integrative approach of omics to deal with complex biological problems.
The book highlights crop improvements such as yield enhancement, biotic and
abiotic resistance, genetic modification, bioremediation, food security, etc. It
explores how different omics technologies independently and collectively would
be used to improve the quantitative and qualitative traits of crop plants. This book is
also an asset to modern plant breeders and agriculture biotechnologists.

Amarkantak, Madhya Pradesh, India Anirudh Kumar
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Recent Advances in OMICS Technologies 1
Vikas Gupta, Satish Kumar, Disha Kamboj, Chandra Nath Mishra,
Charan Singh, Gyanendra Singh, and Gyanendra Pratap Singh

Abstract

Omics is a collaborative, wide-ranging science primarily concerned with the
study of the relationships of biological knowledge resulting from genome
profiling, transcriptomes, proteomes, metabolomes, and a variety of other related
omes. These high-throughput approaches generate huge information related to
differentially expressed genes/proteins/metabolites. The interrelationship
between different omics studies and high-dimensional biological data produce
from these omics are analysed through statistical methods. These studies have
helped to create new resistant varieties by elucidating metabolic responses of crop
plants to different biotic and abiotic stresses. Interpretation of omics research has
enhanced biological study resolution, which contributed to analyses of metabolic
pathways and biological system research. However, it is important for the crea-
tion of strategy to work on problem-oriented and process-oriented objectives
leading to crop improvement to proceed to organised disciplines such as struc-
tural genomics, transcriptomics, proteomics, and metabolomics with plant physi-
ology, biochemistry, and plant breeding.
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1.1 Introduction

Food supply is a requirement for food security, and is an important factor to reduce
hunger. The agriculture industry has shown significant improvements over the past
50 years with respect to production and productivity enhancement, dominated by the
cereals which form the major staples across countries. The twentieth century has
seen tremendous increase in food production with the introduction of high yielding
crop varieties, especially since the first ‘green revolution’ thus saving millions of
people from starvation (Rajaram 2005). This has been achieved mainly because of
development and adoption of high yielding cultivars, increased area under irrigation,
and widespread use of fertilisers. However, the present crop yield is not sufficient
enough to feed the 9 billion of global population by 2050 (Ray et al. 2013). In
addition, global climate change has further worsened this scenario with altered
rainfall patterns, extreme weather events, and changing patterns of pathogens and
pests in terms of severity and distribution (Abberton et al. 2016). With population
rising gradually and natural capital shrinking, the production of food must be
improved that can be accomplished with the use of modern analytical methods and
technology to increase the quality and quantitative improvement of crop plants
(Agrawal et al. 2013; Nelson et al. 2014; Haddeland et al. 2014).

Cultural change relies on current or created genetic variation, and the genetic
benefit rate in breeding systems will increase either by expanding the quantity of
variation available for selection or by speeding up the selection process so that
varieties can be developed more quickly. During the last few decades, the develop-
ment and use of molecular markers in crop genetics led to the identification and
mapping of genes and QTLs controlling key traits. The marker system initially
started with the use of restriction fragment length polymorphisms (RFLPs) followed
by RAPDs, SSRs, AFLPs and culminated with the SNP markers based on genome
sequencing (Tanksley et al. 1989; Varshney et al. 2009). The SSR markers have
been used extensively for linkage map construction, tagging of new genes/QTLs due
to their abundance in the crop genomes as well as because of their high polymor-
phism. (Somers et al. 2004; McCouch et al. 2002; Varshney et al. 2007; Smith et al.
1997; Sharma et al. 2013). Use of SSR markers has few limitations like SSRs are not
uniformly distributed in genomes, gel based assay and cannot be integrated across
platforms, which limit its potential to be exploited in plant breeding programmes.

With the development of low-cost sequencing technologies and genotypic
platforms, there is an exponential increase of plant sequences in databases and
enhanced our understanding of molecular and physiological roles of genes. Plant
genomics includes both structural and functional genomics, which covers both basic
and applied aspects. Given the rapid evolution of novel technologies, especially the
advent of bioinformatics, the understanding from gene to genome level has
increased. The new developments in the ‘omics’ technologies have brought revolu-
tion in plant science research due to the next-generation sequencing (NGS)
454, Solexa Illumina, Applied Biosystems (ABI) SOLiD, and high-throughput
marker genotyping technologies. Consequently, the availability of complete genome
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sequences for different crop plants holds great promise for research targeted towards
crop improvement.

Many different functional genomics approaches have been used to identify genes
that linked to the key biological processes. The crop traits are generally complex
quantitative traits, which are controlled by multiple genes involving complex genic
interactions (Core et al. 2008). Omics is a collaborative, broad-based field that
focuses on the study of bio informative interactions obtained from genome profiling,
transcriptomes, proteomes, metabolomes, and a variety of other related omes. The
three main omic technologies for the analyses of genomics, proteomics, and
metabolomics are the genetic, proteome and metabolism analyses of organisms’
cells and tissues (Varshney et al. 2013). In this chapter we will discuss these
technologies in detail and how these can be integrated in breeding programmes for
better understanding of the functioning of key genes.

1.2 Genome and Genomics

The term genome refers to the entire genome compliment contained in a haploid
chromosome set of any organism and the term was coined by German botanist Hans
Winkler in 1920 at the University of Hamburg (Vukmirovic and Tilghman 2000).
Genomics is the study of complete DNA sequence of organisms. It has been proven
as one of the most transformative impacts on biological studies. Genomics study
involves recombinant DNA technology, DNA sequencing, assembly, and annotation
of genome to decipher the structure, function, and evolution of genes.

The understanding of genome sequences of organisms is crucial for unravelling
the roles and networks of genes, for defining evolutionary relationships and pro-
cesses, and to discover previously unaware control pathways that coordinate gene
operation. Genomics has become one of the most transformative forces in biological
sciences, the study of the whole organism’s DNA sequence. Genomics is the genetic
characterisation and cloning technique of entire genomes to explain gene structure,
function, and evolution. The genetic material in eukaryotic organism is
deoxyribosenucleic acid (DNA), which is a double stranded molecule composed
of nucleotide bases, viz., adenine (A), guanine (G), cytosine (C), and thymine (T).
The sequence of nucleotides in a gene on a DNA strand determines the sequence of
amino acids that make up a protein.

For protein synthesis, the DNA in a gene is first transcribed to messenger RNA,
followed by its translation into a sequence of amino acids through ribosomes in the
cytoplasm of the cell. The proteins and products are fundamentally responsible for
all cellular mechanisms. Finding out the pattern of arrangement of nucleotide bases
in the entire genome is called genome sequencing. Time line for key discoveries in
molecular biology has been depicted in Table 1.1 that led to the enormous data
generation and formed a basis for better understanding of the key functions of the
genomes. In 1972, gene sequence for bacteriophage MS2 coat protein was first
determined by Walter Fiers and his team at the Laboratory of Molecular Biology of
the University of Ghent, Belgium. The first DNA-based genome of bacteriophage
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Φ-X174; (5368 bp) was sequenced by Frederick Sanger (Sanger 1977). Since then
genomes are being sequenced at a rapid pace ranging from viruses, human, bacteria,
fungus, and many crop plants. Scientists, through a variety of functional genomics
approaches, are characterising the genes that control key processes. The crop
genome sequences are valuable for the discovery and insight into genetic diversity
by resequencing of various genomes. The positional cloning and seed breeding
promote sequence dependent markers linked to the rare elite alleles.

Affymetrix (Santa Clara, CA, USA; www.affimetrix.com) and the Illumina (San
Diego, CA, USA; www.illumina.com) BeadArrayTM technology are commonly
used for microarrays from GeneChipTM (GeneChipTM) and chip related
technologies. Some recently built commercial platforms such as Affymetrix ®
EurekaTM, and Illumina’s Infinium also rely on SNP markers of high density.
Furthermore, plant breeding and agricultural biotechnology have been
revolutionised by the micro-array-based characterisation of plant genomes.

Ganal et al. (2011) reported a uniform large-scale SNP genotype array of over
8,00,000 SNPs, which were spread evenly throughout genome of maize. In addition,
competitive PCR (KASP), TaqMan real-time PCR, and STARP experiments use
low-cost PCRs to detect SNPs and provide versatility with regard to the number of

Table 1.1 Timeline showing key discoveries in DNA Sequencing

S. no. Year Discovery

1 1977 Sanger’s chain termination method
Chemical cleavage Maxam Gilbert’s method

2 1980 Non-radioactive sequencing

3 1986 First semi-automated DNA sequencing machine

4 1987 ABI 370 fully automated sequencing machine

5 1990 Base by base sequencing

6 1995 ABI prism 310 genetic analyzer

7 1996 Pyrosequencing

8 2000 Massively parallel signature sequencing (MPSS)

9 2003 SMRT [single molecule real-time sequencing]

10 2004 ABI 3130 Genetic Analyzer

11 2005 First NGS machine Roche 45-4GS-20

12 2006 Solexa/Illumina sequence analyzer

13 2007 Second commercial NGS platform ABI SOLID sequencer

14 2008 Third commercial NGS platform 454 titanium GAII

15 2009 Illumina GAIIx SOLID 3.0

16 2010 Illumina Hi Seq2000
Ion Torrent

17 2011 Pac Bio RS sequencer
CMOS non-optical sequencing MI Seq

18 2012 Ion proton

19 2014 Nanopore sequencer

20 2015 Sequel system (Pac bio)

21 2016 Oxford nanopore mini ion sequencer
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samples to be analysed (He et al. 2014; Semagn et al. 2014; Long et al. 2017).
Diagnostic markers may be used without further confirmation, developed on target
gene sequences, to improve application of marker-assisted selection (MAS) in
breeding. The production of diagnostic markers is rapidly assisted by genome
sequencing/resequencing. Such markers allow plant breeders to precisely produce
new crops with targeted characteristics in future to satisfy different food
requirements.

Most significant agronomic and economic characteristics in culture write traits in
cultural breeding methods are several QTL regulated quantitative characteristics.
Therefore, it is of considerable significance for marker-assisted breeding to explore
QTL or even underlying causal genes/alleles. Linkage mapping is a standard
approach for the genetic dissection of the quantitative trait loci genetic foundation
(Emebiri et al. 2017; Liu et al. 2017; Zhang et al. 2017). To date, this approach has
detected a significant number of QTLs. Moreover, the meta-QTL study was devel-
oped by combining QTL published to classify reliable QTL for crop enhancement
with the achievement of biological informatics and large genetic knowledge (Van
and McHale 2017). The extensive mapping of genomes in large populations makes it
easier to map and clone target genes in crops.

Due to the available high-density SNP markers, the GWAS (Genome-Wide
Association Studies) analysis, which includes natural populations, opened a path.
The GWAS analysis will solve a range of traditional mapping shortcomings and
deliver a powerful alternate technique for the dissection of complex features. By
bringing together high-performance phenotypic and genotypic results, GWAS
provides inspections of maize’s complex characteristic genetic architecture, particu-
larly in view of the rapid loss of corn imbalance (Yan et al. 2011).

Genome selection (GS) estimates the genomic estimated breeding values
(GEBVs) of lines by a study of traits and high-density marker values in an artificially
generated whole-genome population (Meuwissen et al. 2001; Crossa et al. 2017). GS
has shown as important breeding method to develop dynamic characteristics easily.
Closer relationships, including polygenic features, between the genomic estimate
and true breeding values have been found (Jia and Jannink 2012). Even if also
expensive, the number of QTLs that regulate a trait has proven superior to the
recurring collection of markings for changes in complex characteristics in crops,
so it can efficiently prevent problems.

1.3 Transcriptomics

Transcriptome is the study of total RNA, which gets edited and becomes mRNA, and
finally translated into proteins. It involve the analysis of expression profiling of
mRNAs in a given cell population.

The transcriptome is complex, since it is mainly a representation of the genes
actively expressed at any given time under different circumstances. It assesses the
changes in gene expression pattern due to inner and outer factors such as biotic and
abiotic stress. It is an important method for understanding responses of biological
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system under different circumstances. Transcriptome research offers a crucial forum
for the review of the connexions between genotype and phenotype, which provides a
deeper understanding of the fundamental pathways and mechanisms involved in the
regulation of the cell fate (Ruan et al. 2004).

Transcriptomic approaches such as next-generation sequencing (NGS) facilitate
the comprehension of functional components of genome. From past two decades, a
number of agricultural researchers have made use of advances NGS techniques that
enabling them to study high-resolution linkage between gene variants and traits of
interest resulting in an upsurge in the scope of transcriptomic studies, not only in
number but also in the range of agricultural systems that are being studied (Imadi
et al. 2015).

Microarrays, serial analysis of gene expression (SAGE), massive parallel signa-
ture sequence (MPSS), and next-generation sequencing platforms (NGSPs) are
typical technologies applied for genome wide or high-throughput genetic expression
analysis (Costa et al. 2010; Harbers et al. 2005; Mardis et al. 2008). High-
performance, quantitative PCR is used to confirm the expression of a broad variety
of genes that are elucidated by tissue omics and choice care (Czechowski et al.
2004).

1.3.1 Differential Display

Differential Display technology is a PCR based technique for analysing gene
expression using an Oligo-dT (30) and an arbitrary 50-end oligonucleotide primers
(Liang and Pardee 1992). In order to achieve good visualisation, all RNA fingerprint
variants need a low annealing temperature during PCR amplification. Therefore, not
only the initial concentration of the cDNA depends on the quantity of the actual
amplification components, but also the consistency of a precise match between
primer and prototype (McClelland et al. 1995).

Throughout the course of PCR amplification, plentiful cDNAs with bad matches
to the primers used would possibly outperform rare species with perfect matching.
Despite this drawback, the classification of genes expressed distinctly by plants is
recorded in many ways. This include the cloning of the last (1-aminocyclopropane-
1-carboxylate-oxidase) enzyme involved in the synthesis of ethylene, a hormone
which is involved in tomato ripening (Barry et al. 1996); and senescence, particular
genes involved in the synthesis of flavonoids (Saito et al. 1999; Yamazaki et al.
1999); genes expressed differentially during carpel growth (Yung et al. 1999) or
floral transformation (Yu and Goh 2000); module such as plant/environmental
interaction based nitrate conveyors (Filleur, and Daniel-Vedele 1999); light
photoreceptor-regulated genes, phytochrome (Kuno et al. 2000), and abiotic stress-
response proteins (Brosche and Strid 1999; Baldi et al. 1999; Kim et al. 2000). This
method is also used to differentiate within a species between individuals (Lapopin
et al. 1999; Ni et al. 2000).
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1.3.2 cDNA-AFLP

This fingerprinting approach depends on the sub-set of DNA molecules from a
diverse pool being selectively amplified. The creation of an amplified polymorphic
fragment length (AFLP) gives a consistent means with which two similar individuals
can distinguish the few differences (Vos et al. 1995). The method is based on highly
stringent conditions that are supported by the insertion of dual strand adapters at the
ends of limit fragments that act as primary sites during amplification. Selective
fragment enhancement is obtained by adding one or two foundations to the PCR
primers and is only successfully improved by a fragment flanked by the limiting site,
minimising the amount of visualised band.

More than 260 studies presented the advantages of this technique for exposing
DNA fingerprinting. As cDNA was used to amplify transcripts in plants due to the
benefit of this approach in producing a good individual polymorphism. As a tool for
producing differently expressed products, the use of any pair of four and six simple
restricting enzymes was suggested and successfully used as a combination of Pst
I/Mse I and Asen I/Taq I (Bachem et al. 1996; Money et al. 1996). This technique
seems more effective than that to recognise the individual RNA fingerprint and
discern it; it is possible to quickly clone and subsequently characterise a certain
band, particularly if silver stain is used to establish the fingerprint pattern. There
have been accounts of definitions of many ESTs (Suarez et al. 2000; Durrant et al.
2000; Bachem et al. 2000).

1.3.3 DNA Microarray

A high efficiency, most frequently used technique for gene expression analysis, and
a central factor in today‘s practical genomics research (Aharoni and Vorst 2001) is
the DNA microarray (also referred to as a DNA chip or microarray). In short, this
procedure involves the extraction, first of all by means of a laser-capture micro-
dissection (LCM) technology of individual cells from two or more biological
samples, and then the extraction from cells captured of complete RNA. The copies
of each RNA that has been expressed are multiplied. Thus generated RNAs (and
hybridised into a DNA chip under machine control be radioactively labelled or
labelled with fluorescent colours) are engineered to visualise which genes are
transcribed into the RNA in the cell when the sample is taken.

For any colouring position of the chip, scanners are used to read signals and
fluorescence measurements are made. For data retrieval and interpretation (http://
www.parisdevelopment.com), advanced applications and data collection systems are
then used. A variety of plant procedures including the circulation clock, plant
protection, environmentally stressful responses, fruit maturing, phytochrome signal-
ling, seed growth, or nitrate assimilation have been investigated using microarray
technology (Aharoni and Vorst 2001).

1 Recent Advances in OMICS Technologies 7

http://www.parisdevelopment.com
http://www.parisdevelopment.com


1.3.4 Serial Analysis of Gene Expression (SAGE)

The key difference between DNA hybridisation and SAGE approaches is that the
latter does not need previous sequence knowledge to be studied, as SAGE is a gene
expression profiling technique focused on sequencing (Velculescu et al. 2000).
SAGE can be used to achieve full transcriptional profiles of expressed genes,
although unknown, for species with poorly defined and expressed sequences. A
new modification of SAGE known as Long SAGE makes it possible to use the
derived transcriptome in the annotation of genetic expression in the genome (Saha
et al. 2002). SAGE is a genuinely global and neutral technique for gene expression.
The SAGE procedure uses several enzyme steps, amplifying and cleaning PCR and
cloning. The SAGE protocol begins with mRNA cleaning connected with solid-
phase magnetic oligo(dT) beads. The cDNA is synthesised directly on the oligo
(dT) bead and then digested with the anchoring enzyme NlaIII (AE) to reveal the 30

most restriction site on the oligo(dT) bead. The 4-bp site-detection enzyme NlaIII is
expected to take place per 256 bp and thus to be present on most mRNA organisms
in most SAGE experiments. However, a second SAGE library can be used for the
identification of transcripts without a NlaIII site with a separate anchoring enzyme
and also for the reconfirmation of a transcript identity in both sites. This could
decrease the work relevant to research substantially, but the marginal importance of
this method remains to be seen. Next, the sample is also divided into two separate
tubes and attached to two separate connectors, A and B. The BsmFI, a type IIS
restrictive enzyme that reduces 10 bp 30 from the position of anchoring enzyme
recognition, is recognised by both linked instruments. A special oligonucleotide
known as the SAGE tag, hence known as the Tagging Enzyme (TE) is produced by
BsmFI. The SAGE tags released from the beads of oligo (dT) are then removed and
binding to each other for the purpose of making the ditag was amplified by the help
of an electronic sequencer (Patino et al. 2002) and released from the ligators. The gel
is purified, serially ligated, clone and sequenced.

1.4 Proteomics

Proteomics includes the recognition and characterisation of the full collection of
genome proteins (Wilkins et al. 1996) sufficient for the preservation of the structure
and maintenance of important regulatory functions (Whitelegge 2002). Proteins are
huge amino acid molecules, each with a special genetically-defined series that
specify the basic shape and role of the proteins in various ways, to form tens of
thousands of proteins. Proteomics analyses the sequence of amino acids and various
post-translation modifications to determine their relative abundance (Brygos and
Joyards 2004). A cell, tissue, or organism's protein is the complete complement of
proteins expressed by its genome at any given time (Renaut et al. 2006).

It includes systematic study of proteins expressed by a genome, from their amino
acid sequence to relative quantities assessment, post-translocation transition state
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and the interplay with other proteins or molecules of various forms to protein
function and structure classification (Brygoo and Joyard 2004; Rhee et al. 2006).
It starts with functionally modified proteins and the corresponding gene sequences,
as opposed to genomics.

Proteomics is simply a method for plant functional genomics. The proteomics
research leads to understanding diverse biological mechanisms and cellular response
to environmental stress. It has emerged as an effective method to understand the role
of proteins that establish homeostasis in cells, participate in cell signals, and are
needed to maintain the structure. Protein-level studies are thus important to demon-
strate molecular mechanisms that underlie plant growth, production, and environ-
mental interactions (Chen and Harmon 2006). These are particularly compatible
with crops because they can provide insights, not only in terms of nutritional worth,
but also in terms of yield and the impact of adverse conditions on these factors
(Solekdeh and Komatsu 2007).

Many emerging proteome approaches are available, each seeking to increase
isolation, resolution, and automation in conjunction with various experimental
objectives and with the chemical and physical properties of the target proteins.
The significant technology used during research is the identifying and
characterisation of 2-D polyacrylamide gel electrophoresis of separated proteins
(Klose 1975; Fenn et al. 1989; Kara et al. 1989) and Mass Spectroscopy (Fenn
et al. 1989; Kara et al. 1989) for the identification and characterisation of separated
proteins. 2-DE is based on isoelectric concentration, where the proteins are
segregated in polyacrylamide gels pH gradient (first dimension) and in the SDS
(sulphate sodium dodecyl) PAGE according to their pI (second dimension) (Klose
1975; Klose and Kobalz 1995) and are separated according to their molecular
weight.

The visualisation is accomplished with the use of staining methods of isolated
protein spots. Electron-spray-ionisation (ESI) is carried out to transform peptides
into ions by transmitting them through high-voltage columns. Proteins within the
points of interest are first detected by digesting them into peptides usually with
trypsin and then analysed by the mass spectrometry (MS). Flight Time (TOF) is an
operation that analyses the mass of peptide ions in mass spectrometry. The MALDI
TOF (Matrix-assisted laser desorption and ionisation time-of-flight) technique is the
most widely used MS technique. These methods are used to trace peptides to classify
protein and its complex interaction (Kersten et al. 2002; Henzel et al. 1993).

An alternative approach for analysis of protein products directly by MS, without
isolation of gel, has been developed that enables the automatic analyses of peptide
mixtures that are formed from complex protein samples, to be carried out using a
capillary, high-performance liquid chromatography pair (HPLC), MS or MS/MS
(Appella et al. 1995; Washburn et al. 2001, in French). In addition, the ground
breaking reagent known as isotope encoded affinity tag (ICAT) in the LC-MS/MS
method is made possible for quantitative proteomics. Yeast two-hybrid (Y2H) assay
helps in detection of the protein–protein interactions (Fields and Song 1989). The
large-scale protein-interaction map was developed using Y2H systems, which were
used in the study of signalling complexes (Chen and Harmon 2006). These maps are
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also available. This genetic technique enables the speedup detection and separation
of the relationship between in vivo protein–protein interactions of the related nucleic
acid sequences. In holding the intracellular balance, the relationship between protein
and protein is important (Ozbabacan et al. 2011). The study of proteomics is
therefore important for understanding the dynamics of complex biological processes.
Proteomic analytics are becoming a good method for tracking growth and for
obtaining insight into the molecular workings of plants. Attempts were made to
improve the photosynthesis and abiotic stress resistance in crops. C4 plants were
found to possess two forms of chloroplasts, making them more energy-efficient. A
comparative proteomic analysis of C3 and C4 plant chloroplast was carried out to
determine the proteins that cause more effective light fastening (Zhao et al. 2013).

In Arabidopsis the application of proteome analysis resulted in better understand-
ing of the complex cellular events while analysing the role of gibberellic acid
(GA) during the initial stages of seed germination and the effect of scarification on
seed germination. During the production of food, after proteome review, a number of
previously unknown, novel enzyme encoding genes were found in maize. The
genetic diversity at the level of expressed proteins has been extensively tested with
proteomics (Canovas et al. 2004). Genetically heterogeneity at the level of the
expressed proteins has been commonly applied to proteomics (Canovas et al.
2004). The male sterility proteins fundamentally required for the selection of hybrids
have been identified by Wang et al. (2013). The conditions of heat stress influence
crop plant growth and yield. The organ-specific proteomic trial was conducted in
various crop plants (Hossain and Komatsu 2013) to determine proteins directly
acquired during abiotic stress. The proteomic information has been extended to the
development of desired transgenic plants (Gong and Wong 2013).

1.5 Metabolomics

The quality and derivative products of crop plants depend directly on their
metabolites. The taste, fragrance, colour and texture of crops, their storage
properties, and their field efficiency are determined by metabolite concentration
(Memelink 2005). A plant’s metabolite material is its metabolome. It is a technology
for comprehensive analysis which identifies and quantifies all the metabolites of an
organism at a particular time (Fiehn 2002). Building on their existence at the
developmental stage, metabolites are categorised as primary and secondary.

The metabolome is very diverse: lipid soluble chemical usually present in
membranes, acidic and simple ions, acidic and basic chemicals for aqueous cell
elements, stable oxidisation systems and structures (Maloney 2004). This
metabolome is very diverse. The plant kingdom contains an estimated
100,000–200,000 metabolites (Oksman-Caldentey and Inze 2004). A broad view
of the biochemical status, which can then be used to track and determine gene
expression (Fiehn et al. 2000), is provided by quantitative and qualitative
measurements of this vast number of cellular metabolites. In several plant resistance
and stress reactions the metabolites are stated to be working (Bino et al. 2004).
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The organism’s biochemical reaction to conditional disruption is characterised by
the impact it has on differential aggregation of each metabolite (Raamsdonk et al.
2001). As metabolites reflect catabolic and anabolic behaviour by proteins at a given
time (Maloney 2004), macro-molecular processes such as feedback inhibition and
signalising molecules (Dixon et al. 2006) are increasingly understood as modulating
(metabolite). It originated as a practical genome approach to help us understand the
diverse molecular dynamics in biological processes (Hall et al. 2002).

In contrast with genes and proteins, metabolites are much more variable in the
order for atoms and subgroups. The invention of new methods such as mass
spectrometry (MS), nuclear resonance magnetism (NMR), and four-transform infra-
red spectroscopy (FTIR) makes the study of metabolites much simpler. The study of
metabolomics relies on the sample being extracted at a certain point in time (Hall
2006). The techniques of metabolomics give us an insight into the diverse metabo-
lism and diversity of the organic reactions involved in plant growth, differentiation,
stress tolerance, and pathogens defence mechanisms. The performance of the
metabolome analysis depends on a few important factors, such as biological mate-
rial/sample production and the processing of samples/metabolite detection (Hall
2006).

Bino et al. (2004) proposed a metabolomics research (MIAMET) protocol that
includes experimental design; sampling; planning, extraction, and deriving of
metabolites; design and design of metabolite profiles; and calculation of metabolites
and parameters of metabolites. Because of complicated metabolic data for complex
analytics, various analytical methods have been developed. These methods include
target analysis, profiling of metabolites, metabolomics, and metabolism. Metabolite
target analysis requires a variety of approaches for the preparation and analysis of
samples for one or a few compounds from diverse mixtures. Samples based on
genotype, phenotype, or biologic significance are tested by metabolic fingerprinting
on a variety of metabolites (Shanks 2005).

Metabolomics in the strict sense is the calculation of all metabolites in a given
organism. It is not yet theoretically feasible, and would possibly require platform of
complementary technologies, since no single methodology is systematic, selective,
and efficient enough to quantify them all (Weckwerth 2003). Technology for the
study of target compounds and metabolic profiling is such as gas chromatography
(GC), high-performance liquid chromatography (HPLC), and NMR. These methods
focus on chromatographic isolation, often paired with sophisticated analytical
calibrations. Samples are studied using NMR, direct injection mass spectrometry
(MS), or FTIR spectroscopy for metabolic fingerprinting as crude extracts without
separation. Often paired with multivariate analyses, these fingerprinting methods get
the best out of the results.

In order to produce metabolic profile for study of different stress, economically
significant characteristics, and heredity results, studies in metabolomics were carried
out in the agricultural sector. Seasonal variations, geographical area, and natural
variation have all been successfully used to determine the effect of metabolic
profiles. The metabolic profiles of transgenic plants have been studied in order to
characterize them. Metabolomics allows researchers to classify and distinguish
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genotypes and phenotypes based on metabolic levels in a non-biased way. This
information will be important for tracking crop quality characteristics (Hall et al.
2005). The detection and enhancement of trait production in farm and biological
refining products (Reid et al. 2004) will identify possible biological markers for
commodity contaminations and adulteration (Dixon et al. 2006).

Plant properties can be enhanced in different ways, for example, through raising
metabolic fluxes by metabolic engineering to useful biochemical routes
(e.g. increasing food’s nutritional value, reducing pesticidal or fertiliser
requirements, etc.) or through utilising the required routes for pharmaceutical devel-
opment in plants (Giddings et al. 2000). In the same way, the incorporation of a
foreign group of enzymes that contribute to the creation of desired finished products
from other or more upstream precursors can lead to metabolistic shortcuts, and the
synthesis of new metabolites may also generate foreign enzymes (Bino et al. 2004;
Memelink 2005). Metabolic fluid analyses helped to define the similar catalytic
properties of orthologous enzymes. Metabolistic experiments to classify the growth
profile, production, and chemical taxis research were also conducted. Biochemical
network construction has been carried out by creating relative metabolite profiles
(Mendes 2002). The incorporation of metabolome and transcriptome evidence
indicates that regulatory networks are being recognised and genetic material is
correlated with phenotypic characteristics (Urano et al. 2009).

1.6 Bioinformatics

Over the past 15 years, bioinformatics has steadily developed and has become a
modern major field in biology. A vast range of genetically and genome dependent
results have been created using next-generation sequence technology to produce
massive genetic and genome data, too detailed to be processed by the human brain.
Bioinformatics includes one discipline: genetics, computer science, and IT (Rhee
et al. 2006; Vassilev et al. 2005). It uses specialised tools and computers to search
and interpret datasets from gene sequences and other sources. The National Science
Foundation (NSF) began a project following the genome sequence of Arabidopsis
thaliana to determine the function of 25,000 genes of Arabidopsis (Ruperao et al.
2014). Rice was the first genome-sequenced crop (International Rice Genome
Sequencing Project 2005), and subsequently a variety of large crop genomes were
sequenced. A vast number of data were published from all these sequencing
initiatives. A series of bioinformatics instruments have been developed to organise
and interpret these data that have significantly contributed to the drawing of signifi-
cant biological conclusions, gene function predictions, etc. In addition, it allows
researchers to define quantitative trait loci characteristics (QTLs) in the production
of unorthodox mapping communities and online marker tools.

For the DNA sequencing research, transcriptomic, proteomics and metabolomics,
multiple bioinformatics instruments and databases were developed and different
researchers have given a detailed list of the same for separate purposes (Bino et al.
2004; Varshney et al. 2005; Rhee et al. 2006). These databases formed the
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foundations for generating theories, developing tests, and inferring knowledge of a
single organism. Furthermore, various species have used datasets and omic tools to
evaluate the ‘omic’ properties of species which allow for further analysis of pre-
served genes and evolutionary relationships. The role of bioinformatics in gluing
fundamental science to applied research will continue to be important, and biotech-
nology is crucial in solving the pressing issues of society such as sustainable energy
production, reduction of world malnutrition, hunger and protection of the environ-
ment (Rhee et al. 2006).

1.7 Conclusion

The genomics, proteomics, and metabolomics technology platform is extremely
successful. They significantly increase the number of proteins/genes which can be
concurrently identified and are able to connect complex mixtures in gene/protein
expression profiles with complex results. Constitute infrastructure for the implemen-
tation of genomics information and techniques (and other ‘omics’) was considerably
advanced to allow alterations in crop plant characteristics to boost real and potential
production, increase resource use efficiency, and improve health in the crop system.
The need for developing new crop varieties with higher yield, heat resistance, and
lower use of pesticides is to meet the demands of the growing population,
improvements in climate trends, and environmental stress.

High-dimensional biological data have been produced by advanced technologies,
analysed using statistical methods to detect interrelationships within omics studies.
In order to grow new resistant varieties, the study of metabolic responses of cultivars
against different biotic and abiotic stresses will be helpful. However, over time,
stage, and environmental factors the transcriptome, proteome, and metabolomic data
have become extremely variable and thus the processing and interpretation of
samples needs to be conducted with great caution. The understanding of omics
also enhanced the resolution of biological experiments, which led to analyses of
metabolic pathways and biological system research. Disciplines including structural
genomics, transcriptomics, proteomics, and metabolomics are also required for the
production of strategy for problem-oriented and process-oriented processes in plant
physiology, bio-methods, and plant breeding.
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Relevance of Bioinformatics and Database
in Omics Study 2
Rama Shankar, Vikas Dwivedi, and Gulab Chand Arya

Abstract

Bioinformatics is an interdisciplinary branch of biological sciences that assists
biologists to interpret and extract the biological information from the omics data.
The biological information is further used to create different databases for
annotation of an unknown molecules from the novel organism. In the cell,
different types of molecules are present with diverse functions. Based on their
type and functions, these molecules are divided into various categories. These
molecules are majorly categorized into DNA, RNA, proteins, and metabolites.
The bioinformatics tools and techniques are specific to study and analyze the
variations and mechanism of these molecules. These molecules are divided into
different omics for better understanding. In DNA, majorly two types of variations
occur, which is categorized as genetic and epigenetic variations and known as
genomics and epigenomics variations, respectively. Diversity in RNA is studied
under the transcriptome category, where the level of mRNA, their regulatory
molecules and modifications during synthesis and post-synthesis are examined.
In addition, synthesis, modification, and interaction of proteins and metabolites
are studied in proteome and metabolome categories. These studies are being
analyzed by different bioinformatics tools and their respective databases are
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used to extract their biological information. Here, we have discussed in brief
about the relevance of various bioinformatics tools and databases, which are
being used for the analysis of biologically important molecules. This would
provide a basic overview of the importance and application of these tools and
databases in different omics study.

Keywords

Genomics · Epigenomics · Transcriptomics · Proteomics · Metabolomics ·
Database · Bioinformatics · Crop improvement

2.1 Introduction

Bioinformatics is an interdisciplinary branch of biological sciences that deals with
applications of computational biology for the collection, storage, and analysis of
biological data. In recent years, several omics projects in plants have been
performed, which were contributed by a vast amount of sequencing data. These
omics data generated through the traditional or high-throughput next-generation
sequencing (NGS) approaches and belong to genome, transcriptome, proteome, or
metabolome of the plants (Knasmüller et al. 2008). The term genome refers to the
complete nuclear chromosomal DNA sequence of an organism, whereas the total
messenger RNA (mRNA) content in a cell at a time is termed as trancriptome. Its
level varied with different plant developmental stages and external environmental
condition. The latter produce proteome, which is the result of the translation of the
mRNA. During the cell metabolism, primary and secondary metabolites are
generated and complete set of metabolites present in the cell are called as
metabolome (Lister et al. 2009; Saito and Matsuda 2010). Besides, various inevita-
ble modifications, such as expression of genes without changing original genetic
material (DNA) of the organism occurs during lifetime and inherited to next-
generation, are termed as epigenetics changes.

The data and related information obtained from the plant omics can be useful for
generating high-density linkage maps, allele mining, QTL mapping, genome-wide
association studies (GWAS), SNP genotyping, single sequence repeats (SSR), and a
better understanding of metabolic pathways and its regulations. All these informa-
tion may be helpful for better plant breeding and improvement programs.

Besides, bioinformatics with the support of highly advanced experimental
evidences, various databases have been developed and curated (Shinozaki and
Sakakibara 2009). These databases help to discover the novel and unknown infor-
mation of novel plants and organisms. The National Center for Biotechnology
Information (NCBI) is among the world's largest resource databases, storing a vast
amount of data in various categories. Also, there are various other databases related
to specific plants are available, such as rice genome annotation project (RGAP)
database for rice (Kawahara et al. 2013), The Arabidopsis Information Resource
(TAIR) for Arabidopsis (https://www.arabidopsis.org/), Phytozome (https://
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phytozome.jgi.doe.gov/pz/portal.html), and OmicsDI (open source platform
facilitating the access and dissemination of omics datasets) (https://www.omicsdi.
org). The Phytozome and OmicsDI databases are one of the comprehensive omics
databases that included information about several datasets including genomic,
transcriptomic, proteomic, and metabolomic data (Goodstein et al. 2012). There is
one important tool known as ODG (Omics database generator), which is a tool used
for generating, querying, and analyzing multi-omics comparative databases to facili-
tate biological understanding (Guhlin et al. 2017). A list of various omics integra-
tion, software tools, and web applications is provided in Table 2.1

The present chapter describes the available tools and techniques used for curation,
interpretation, and functional relevance of biological data using web-based
resources. Further, this chapter also describes the online available databases,
which can be used to extract the functional and structural information of unknown
genes and proteins of novel plants. The relevant resources are also included for
validating metabolic pathways. A basic overview is provided for the workflow of
different omics analysis (Fig. 2.1).

2.2 Relevance of Bioinformatics in Genomics

DNA polymorphism is the variation of nucleotides in the genomic DNA. These
modifications can be originated as a result of single nucleotide polymorphism (SNP),
insertion and deletion (InDels), or simple sequence repeats (SSRs). SNPs are
locations within the genome, where the original nucleotide is substituted with
other nucleotide, whereas InDels are insertion and deletion of nucleotide in the
genome, and these changes are inheritable from one generation to other. The length
of insertion and deletion in the genomic DNA varies from one to many bases.
However, three nucleotide insertion or deletion is very common (Chai et al. 2018;
Jain et al. 2014). This could be an evolutionary adaptation as three nucleotides code
for an amino acid. SSRs are another genetic variation that occurs in genome and
known as simple sequence repeats of single nucleotide to ten nucleotides. However,
during the analysis repeats of two nucleotides or more with specific repetition are
considered as the SSRs (Agarwal et al. 2015; Daware et al. 2016; Parida et al. 2015;
Dwivedi et al. 2017).

Identification of DNA polymorphisms is highly essential for gene mapping, QTL
analysis, and marker-assisted breeding. Various techniques have been used to
identify DNA polymorphisms including gel-based, like random amplified polymor-
phic DNA (RAPD), amplified fragment length polymorphism (AFLP), restriction
fragment length polymorphism (RFLP), microsatellites, SSR, simple sequence
length polymorphism (SSLP), and non-gel-based techniques, like SNPs and InDels.
SNPs/InDels are the most popular non-gel-based DNA marker systems, which
represent the position of nucleotide(s), where DNA sequence differs by a single or
more bases. SNPs/InDels have gained importance due to their ubiquity in the
genome coupled with various characteristics, such as stability, robustness, effi-
ciency, and cost-effectiveness (Alkan et al. 2011; Kumar et al. 2012b; McCouch
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Table 2.1 Summary of multi-omics integration software tools and web applications

Tools Omics integrated Domain Functionality
Type of
license

Omics Transcriptomics,
proteomics, and
metabolomics

Medical
(human)

Correlation network
analysis, co-expression
analysis, phenotype
generation, KEGG/
Human Cyc, pathway
enrichment, GO
enrichment, Name to ID
conversion

Open

COBRA Transcriptomics,
proteomics,
metabolomics,
and Fluxomics

Unspecified Genome scale
integrated modeling of
cell metabolism and
macro molecular
expression

Open

Gaggle Variety of omics
platform
bioinformatics
solutions

Unspecified Inoperability of the
following tools:
Bioinformatics resource
manager, Cytoscape,
Data Matrix Viewer,
KEGG, Genome
Browser, MeV, PIPE,
Bio Tapestry,
N-Browse

Open

KaPPA-view Transcriptomics,
and
metabolomics

Plants Integrates
transcriptomics and
metabolomics data to
map pathways

Open

MADMAX Metagenomics,
transcriptomics,
and
metabolomics

Plants,
medical and
clinical

Integrates omics data—
Statistical analysis and
pathway mapping

Open

MapMan Metagenomics,
transcriptomics,
and
metabolomics

Plants Compare data across
these two species,
KEGG classification,
classification into KOG
clusters, mapping
expression responses

Open

MetaboAnalyst Genomics,
transcriptomics,
proteomics,
metabolomics,
and clinical

Plants,
microbial,
microbiome,
medical and
clinical

Data processing and
statistical analysis,
pathway analysis,
multi-omics integration

Open

mixOmics
(R package)

Metagenomics,
transcriptomics,
proteomics, and
metabolomics

Unspecified Integration of data,
Chemometric analysis
(similarity/difference)

Open

Omickriging
(R package)

Transcriptomics,
proteomics, and
metabolomics

Unspecified Integration and
visualization of omics
data

Open

(continued)
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Table 2.1 (continued)

Tools Omics integrated Domain Functionality
Type of
license

PaintOmics Transcriptomics,
and
metabolomics

100 top
species of
different
biological
kingdoms

Integration and
visualization of
transcriptomics and
metabolomics data

Open

Reactome Genomics,
transcriptomics,
proteomics, and
metabolomics

Unspecified Multi-omics data
visualization, metabolic
map of known
biological processes
and pathways

Open

SIMCA Metagenomics,
transcriptomics,
proteomics, and
metabolomics

Unspecified Integration of data,
Chemometric analysis
(similarity/difference)

Commercial

VitisNet Metagenomics,
transcriptomics,
proteomics, and
metabolomics

Grapes Integration of data -
visualization of
connectivity

Open

GenBank
(database)

Proteomics Numerous
(over
100,000
organisms)

Proteomics database,
open access, annotated
collection of all
publically available
nucleotide sequences
and their protein
transitions.

Open

Plant
metabolic
network
(PMN)

Genomics,
proteomics, and
metabolomics

Plants Plant-specific database
containing pathways,
enzymes, reactions, and
compounds

Open

PRIDE Proteomics Unspecified Proteomics database

KEGG Genomes,
transcriptomics,
proteomics, and
metabolomics

Plants
animals
microbes

Collection of databases
dealing with genomes,
biological pathways,
diseases, drugs, and
chemical substances

Open and
licensed

Yeast
metabolome
data (YMDB)

Metabolomics Microbe
(yeast)

Metabolite database Open

VANTED Metagenomics,
transcriptomics,
proteomics, and
metabolomics

Unspecified Comparison of multiple
omics data sets,
visualization of
metabolic maps,
correlation networks
analysis

Open
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et al. 2010; Rafalski 2002; Steemers and Gunderson 2007). The next-generation
sequencing (NGS) is an easy and cost effective method for discovery of SNPs/
InDels in a population. A large number of SNPs have been discovered from several
plant species like Arabidopsis (Atwell et al. 2010), rice (Huang et al. 2010, 2011;
Jain et al. 2014; McNally et al. 2009; Meyer et al. 2016; Zhao et al. 2011), maize
(Kump et al. 2011; Tian et al. 2011), chickpea (Deokar et al. 2014; Thudi et al.
2014), and soybean (Hwang et al. 2014; Lam et al. 2010) via genome re-sequencing.

Since huge data of SNPs/InDels are being generated using the NGS, a large
number of bioinformatics tools are available to validate the biological significance of
the aforesaid changes in the genome. For the analysis and validation of SNPs/InDels
various bioinformatics tools are available (Li and Wei 2015; Seal et al. 2014), in
which GATK and Freebays are the two important tools to discover the SNPs/InDels
from the genome mapped files (Garrison and Marth 2012; Van der Auwera et al.
2013). The genome mapping of sequence reads is performed using different tools,
mainly TopHat, STAR, and Bowtie tools (Dobin et al. 2013; Trapnell et al. 2009;
Wu et al. 2018). Once the DNA polymorphism is identified, it is annotated using the
snpEff software (Cingolani et al. 2012). This helps to understand the effect of SNPs/
InDels on various transcriptional, post-transcriptional, and post-translational
modifications. These genetic modifications can be further associated with various
traits using the genome-wide association (GWAS) study in plants (Marees et al.
2018). The SNPs/InDels associated with various traits can be used for the genetic
engineering and crop breeding purposes to improve the crop productivity.

Raw reads

QC analysis

Genome mapping

SNPs/InDels RNA‐seqDNA Chip analysis

Annotation

Cellular components
Biological process
molecular functions
Pathway analysis

Fig. 2.1 Basic workflow of omics analysis
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2.3 Application of Bioinformatics in Epigenomics

DNA methylation is one of the epigenetic variations that occur by addition of a
methyl group to the genomic DNA. It plays a crucial role in the regulation of
chromatin structure and regulates the gene expression in eukaryotes. DNA methyla-
tion mainly occurs at the cytosine and adenine nucleotides in DNA; however,
methylation in cytosine is specific to higher eukaryotes. In plants, DNA methylation
is occurred in three different sequence contexts, CG, CHG, and CHH (where H¼ A,
C or T). This methylation is established and maintained by de novo
methyltransferases (DRM1/2/CMT3) via RNA-directed DNA methylation
(RdDM) pathway and MET1 proteins (Cao and Jacobsen 2002; Lindroth 2001).
Epigenetic modifications are highly stable and heritable, and it regulates cellular and
developmental modifications including agronomically important traits in the plants
(Manning et al. 2006; Miura et al. 2009; Soppe et al. 2000). DNA methylation
analysis has been carried out in different plants to study their role in different
developmental processes and stress responses (Chinnusamy and Zhu 2009; Dowen
et al. 2012; Gehring et al. 2009; Hsieh et al. 2009; Lang-Mladek et al. 2010; Mirouze
et al. 2009; Saze et al. 2003; Zemach et al. 2010).

To study the genome-wide DNA methylation, various techniques have been
developed (HPLC, mass spectrometry, Sssl methyltransferase tritium labeling and
methyl sensitive restriction enzyme). Initially, these methods were low throughput
because they could capture the DNA methylation only in few genes (Karan et al.
2012; Wang et al. 2011). Later, microarray has been proved as first high-throughput
technique to study the DNA methylation (Schumacher et al. 2006). Further, next-
generation sequencing (NGS) based technique has also been evolved to capture the
DNA methylation at the single-base resolution and has been used to study the DNA
methylation in various plants including Arabidopsis and rice (Dowen et al. 2012;
Garg et al. 2015; Rajkumar et al. 2020; Wang et al. 2011). This technique provides
more in-depth knowledge about the DNA methylation, its distribution, and
regulation.

Bioinformatics tools such as Bismark and Methylkit are highly efficient tools to
analyze the DNA methylation data. Bisulfite sequencing is widely used technique to
study the DNA methylation, in which nonmethylated thymine is changed into a
cytosine but methylated thymine nucleotide does not modify (Li and Tollefsbol
2011). The first step of bisulfite sequencing is NGS based sequencing. Further, the
sequencing data needs to be mapped on genomic DNA. Specific sequence aligner is
required to align the sequence reads on the genome. The most widely used sequence
aligner is Bismark (Krueger and Andrews 2011). Further, the mapped reads are
mined by another bioinformatic tool widely known as Methylkit (Akalin et al. 2012).
It extracts the methylated cytosine from the data throughout the genome. This
information is further used to annotate and study the biological relevance of methyl-
ation on the various biological processes and metabolic pathways using different
databases.
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2.4 Bioinformatic Tools to Identify the Transcriptomic
Alterations

2.4.1 RNA-Seq Analysis

Transcriptome can be defined as the total mRNA in a cell at a particular time. mRNA
is derived from one strand of genomic DNA. Further, it translates into a protein with
the help of the ribosomes. Transcriptome of the cell can be studied by the microarray
and RNA sequencing (RNA-seq) (Jain 2012; Wang et al. 2011). Microarray has low
throughput and various limitations as compared to the RNA-seq.

Microarray is based on the hybridization of the DNA probe designed for every
gene (Page et al. 2007). They are very specific for the genes. mRNA in one condition
is labeled with the green color and mRNA in other condition is tagged with red color.
These labeled mRNAs are hybridized on a chip containing DNA probes for various
genes. Once the labeled mRNA hybridized with the probe, it emits a fluorescent
color, which is detected by the highly sensitive camera. Further, these patterns of
color overlap between two conditions and based on the intensity, the differential
expression between two conditions is estimated. To analyze these data, GeneSpring
GX is one of the most widely used bioinformatics tool provided by the Agilent
(Agapito 2019). It is a combination of different utilities that provides powerful,
accessible statistical tools for data analysis and visualization. It is designed basically
for the need of biologist and enables understanding of transcriptomics, genomics,
proteomics, metabolomics, and NGS data within the biological context. It allows the
researchers to quick and reliable identification of the biologically significant genes
and pathways.

RNA-seq is one of the most advanced techniques based on next-generation
sequencing (NGS) to study the transcriptome (Børsting and Morling 2015; Jain
2012; Lister et al. 2009). It has various advantages over microarray, as it can be used
to study alternative splicing, polyadenylation, and novel genes or transcript discov-
ery (Rao et al. 2018). During the RNA-seq library preparation process, mRNA is
converted into cDNA to enhance stability. The cDNA is mechanically fragmented
into small fragments (100–500 nucleotides). These fragments are attached with the
adopter sequences present on the sequencing chip. The attached fragments further
PCR amplified using the primers based on the adopter sequences to enhance the
number of fragments for each molecule. These cDNA fragments are further
sequenced by the sequencing technology (Kumar et al. 2012a; Zhong et al. 2011).
The sequencing platform uses the sequence by synthesis approach. Based on the
sequence length, these techniques are divided into two groups, i.e. short reads and
long reads (Berbers et al. 2020). Both of these groups have advantages and
disadvantages. The short reads sequencing technology can provide more read
depth, whereas long reads technology provides the longer reads but shallow read
depth (Reinert et al. 2015).

Once the sequencing is complete, the sequencing reads are mapped on the
genome sequence of the respective plant. Mapping of sequencing reads is done by
various bioinformatics tools, such as Tophat, SOAP, STAR, Salmon, Bowtie (Dobin
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et al. 2013; Kim et al. 2013; Patro et al. 2017; Trapnell et al. 2009; Xie et al. 2014).
Among all, STAR is the better alignment tool and it provides the normalized count
of reads mapped on each gene in every sample (Dobin et al. 2013). Normalized
mapped read count is used to estimate the differential gene expression between two
samples or conditions. To estimate the differential gene expression, various bioin-
formatics tools are being used including EdgeR, DESeq, Limma, cufflinks/Cuffdiff,
RSEM, and Salmon (Ghosh and Chan 2016; Li and Dewey 2011; Love et al. 2014;
Patro et al. 2017; Pollier et al. 2013; Ritchie et al. 2015; Robinson et al. 2010).
Edger, DEseq, and Limma are the most used tools for identification of differentially
expressed (DE) genes (Love et al. 2014; Ritchie et al. 2015; Robinson et al. 2010).

The DE genes are further used to discover the biological processes and pathways
regulated by them. The biological processes were discovered by the EnrichR and
BinGO tools (Kuleshov et al. 2016; Maere et al. 2005). For the annotation of DE
genes, these tools used the functional annotation from the ontology databases. To
discover the role of DE genes in biological pathways KEGG pathway database
(https://www.genome.jp/kegg/pathway.html) is used. DE genes were also used to
discover the transcription regulatory elements using different databases (Table 2.2).
Among all, plant cis-acting regulatory elements database (PlantCARE) and PLACE
are the most suitable and highly used database (Guo et al. 2008).

For transcriptomic studies, there are several public databases available to store the
transcriptomic data, such as Genevestigator, NASCArrays, ArrayExpress, Stanford
Microarray Database, Omics DI, and Gene Expression Omnibus (Bhardwaj and
Somvanshi 2015). An example of the database is Chickpea Transcriptome Database
(CTDB), which has information about the tools used for transcriptome sequence,

Table 2.2 Databases for the study of promoter sequences and regulatory elements of a gene

Database Description URL

TRANSFAC Transcription factor database http://transfac.gbf.de/TRANSFAC/

PlantCARE Plant cis-acting regulatory
elements database

http://sphinx.rug.ac.be:8080/PlantCARE/

PLACE Plant cis-acting regulatory
elements database

http://www.dna.affrc.go.jp/htdocs/
PLACE/

SignalP 4.0 Identification of signal peptides http://www.cbs.dtu.dk/services/SignalP/

TargetP Subcellular localization of
sequences

http://www.cbs.dtu.dk/services/TargetP/

LOCTREE3 Subcellular localization of
sequences

https://www.rostlab.org/services/loctree3/

Plant-
mPLoc

Subcellular localization of
sequences

www.csbio.sjtu.edu.cn/bioinf/plant-multi/

PSI-Pred Prediction of transmembrane
regions of the gene

http://bioinf.cs.ucl.ac.uk/psipred/

DNASTAR Making of sequence assembly http://www.dnastar.com/

PromPredict Promoter analysis http://nucleix.mbu.iisc.ernet.in/
prompredict/prompredict.html

CTDB Transcriptome http://www.nipgr.ac.in/ctdb.html
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transcription factor families, conserved domain(s), and molecular markers in chick-
pea (Verma et al. 2015) (Table 2.2).

2.4.2 Tools and Databases for Transcription Factor Binding Site

Chromatin immunoprecipitation (ChIP)-sequencing (ChIP-seq) is the method to
analyze the protein DNA interaction. It is a combination of chromatin immunopre-
cipitation (ChIP) coupled with NGS to identify the binding sites of DNA associated
proteins. It could be useful to discover the binding sites of any protein and has
primarily been used to study the transcription factor (TF) binding sites and
chromatin-associated proteins (Mundade et al. 2014).

ChIP-seq includes a few critical steps before the sequencing of the
DNA-fragments attached with TF/protein. It starts with the crosslinking of protein
with the DNA using formaldehyde (Hoffman et al. 2015; Klockenbusch and Kast
2010; Nadeau and Carlson 2007). However, along with the protein DNA
crosslinking there are chances of contamination of RNA-protein complexes in the
reaction mixture. This crosslinked sample was fragmented to get the DNA-protein
crosslinked fragments and pull-down using antibody. The DNA fragments are then
sequenced using the deep short-read sequencing platform. The first step in the ChIP-
seq data analysis is known as the peak calling.

The most popular bioinformatics tool for peak calling is MACS (Feng et al. 2012;
Zhang et al. 2008). This empirically models the shift size of ChIP-seq tags and uses it
to improve the spatial resolution of predicted binding sites. Once the binding sites in
the whole genome are predicted, these binding sites must be annotated to find out the
respective genes, which are present at the downstream. This can be performed by
HOMER and various other databases available to annotate these binding sites and
related TFs (Table 2.3) (Heinz et al. 2010, 2018). It provides information about the
binding sites and their regulating genes and pathways. This information can be used
to identify genes and relevant pathways that can be used to implement in the crop
improvement.

2.4.3 Tools and Databases for Analysis of Post-Transcriptional
Modifications

Another important event known as alternative splicing is also studied in
transcriptome analysis as the post-transcriptional event. Alternative splicing is
divided into five categories such as exon skipping, mutually exclusive exon, alter-
native 50 donor site, alternative 30 acceptor site, and intron retention (Bedre et al.
2019; Eckardt 2013; Shang et al. 2017; Shankar et al. 2016). Intron retention is the
most common alternative splicing events that happened during the transcription
process under normal or any stress condition (Shankar et al. 2016). The
recommended tools to identify the alternative splicing are TopHat, MapSplice,
SpliceMap, HMMsplicer, STAR, and HISAT (Au et al. 2010; Dimon et al. 2010;
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Dobin et al. 2013; Kim et al. 2015; Trapnell et al. 2009; Wang et al. 2010). These
tools provide information about the alternative splicing in mRNA. Various bioinfor-
matics tools are available for computing the differential expression of transcript
isoforms produced as a result of alternative splicing (Kim et al. 2013; Patro et al.
2017). This will help to identify a specific isoform produced during the stress or
different developmental stages (Akhter et al. 2018; Jiang et al. 2015; Shankar et al.
2016). A biologist to understand the deeper knowledge of plant development and
stress responses will use this information.

RNA secondary structure is another post-transcriptional changes happened in the
RNA during the post-transcriptional event (Ding et al. 2014; Wang et al. 2019b;
Yang et al. 2018). It is known that genomic DNA is folded into specific shapes in the
nucleus. Similar folding is reported in RNA also after post-transcriptional process to
deliver its function or stability. It is well established that ribosomal RNA folded into
distinct three-dimensional shape including internal loops and helices. It binds with
the ribosomal protein and make ribosomal subunit required for protein synthesis.
Various studies have been carried out to discover the mRNA secondary structure in
plants using the NGS techniques (Ding et al. 2014; Wang et al. 2019b; Yang et al.
2018). It has been observed that mRNA with variations in RNA secondary structure
lead to affect various transcriptional and post-transcriptional events (Li et al. 2012).
There are several bioinformatics tools available, which can provide the secondary
structure of the RNA (Gruber et al. 2008; Reuter and Mathews 2010; Wang et al.
2019a). It has been observed that RNA secondary structure predicted using the
bioinformatics tools and structure detected using the NGS technique are very similar
(Li et al. 2012).

Table 2.3 Database for transcription factor prediction

AGRIS, AtTFDB Arabidopsis http://arabidopsis.med.ohio-state.
edu/AtTFDB/

DRTF Rice http://drtf.cbi.pku.edu.cn/

DPTF Poplar http://dptf.cbi.pku.edu.cn/

TOBFAC Tobacco http://compsysbio.achs.virginia.
edu/tobfac/

PlantTFDB Plant species http://planttfdb.cbi.pku.edu.cn/22

PlnTFDB Plant species http://plntfdb.bio.uni-potsdam.de/
v3.0/20

GRASSIUS,
GrassTFDB

Maize, rice, sorghum, and
sugarcane

http://grassius.org/grasstfdb.html

LegumeTFDB Soybean, lotus japonicas, and
Medicago truncatula

http://legumetfdb.psc.riken.jp/

DBD 700 species http://dbd.mrc-lmb.cam.ac.uk/
DBD/index.cgi?Home

PlantTFDB 83 species http://planttfdb.cbi.pku.edu.cn/
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2.5 Importance of Bioinformatics in Proteomics
and Metabolomics

Proteins regulate various biochemical and physiological functions in the cells. The
dysregulation of proteins may result in various diseases like cancer, neurodegenera-
tive disease, and metabolic imbalance. Protein is synthesized from the mRNA during
the translation process and folded into three-dimensional structure after protein
synthesis. If the 3D structure is not folded properly, the protein will not be able to
perform its activity and will not be able to interact with other proteins as well. The
knowledge of protein–protein interactions and structure can be obtained from
various databases (Table 2.4).

One of the most advanced techniques available for proteomic analysis is known
as mass spectrometry (Di Falco 2018; Reinders et al. 2004). All the proteins from a
sample are needed to be extracted and digested using specific proteases to generate a
defined peptide. The peptides obtained are analyzed by the liquid chromatography
coupled to mass spectrometry (GC-MS) (Lluveras-Tenorio et al. 2017). During the
analysis, peptides eluted from the chromatography are selected and data is recorded
as a mass spectrometer. The resulted tandem spectra provide information about the
sequence of the peptide. These proteins are further used for functional annotation
using the gene ontology (GO) terms and KEGG pathways database. The GO term
provides the information about the cellular component, biological process, and
molecular functions of the respective genes and proteins. The cellular component
GO term provides information about the protein location in the cell compartment.
The biological process GO terms provide information about the biological processes
and molecular functions GO terms represent activities rather than the entities
(molecules or complexes) performed by the genes or proteins (Hill et al. 2008).
Similarly, the KEGG pathways database provides knowledge about the metabolic
pathways regulated by these proteins. This information is further used by the
research scientist to conclude the pathways regulated by these genes and used it to
translate into genetic engineering and crop improvement.

There are different public databases available for MS proteomics research. These
databases are Global Proteome Machine Database (GPMDB), Mass Spectrometry
Interactive Virtual Environment (MassIVE), PRIDE, PeptideAtlas, PeptideAtlas
SRM Experiment Library (PASSEL), and Proteomics DB. Moreover, for more
integration and sharing of public databases, the Proteome Xchange consortium has
been made recently to take its advantage for the scientific community (Perez-Riverol
et al. 2015).

Metabolomics is another direction of omics included in the comprehensive
assessment and quantification of metabolites present in the cell. Metabolites repre-
sent a diverse group of low molecular weight molecules including lipids, amino
acids, peptides, nucleic acids, organic acids, vitamins, thiols, and carbohydrates.
These metabolites have a different role in the biological systems and their role in
various plant stress and development processes needed to be understood (Hussein
and El-Anssary 2019; Bartwal et al. 2013; Jwa et al. 2006; Saito and Matsuda 2010;
Shankar et al. 2016). Further, this information can be used by the biologist to
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Table 2.4 Important computational tools for predicting protein structure and protein–protein
interactions

S. No.
Software/
server URL Description

1 SWISS-
MODEL

http://swissmodel.
expasy.org/

Automated protein homology
modeling server

2 YASARA http://www.yasara.org/ Molecular modeling tool

3 ESyPred3D http://www.unamur.be/
sciences/biologie/urbm/
bioinfo/easypred/

Homology modeling with increased
alignment performance

4 ROSETTA http://boinc.bakerlab.
org/resetta/

3D structure prediction

5 RaptorX http://raptorx.uchicago.
edu/

Protein structure prediction

6 HHPred http://toolkit.tuebingen.
mpg.de/hhpred

Homology detection and structure
prediction server

7 Phyre2 http://www.sbg.bio.ic.ac.
uk/~phyre2/html/page.
cgi?id¼index

3D structure prediction

8 Bhageerah http://www.scfbio-iitd.
res.in/bhageerath/index.
jsp

Energy-based protein structure
prediction server

3DJigsaw http://bmm.
cancerresearchuk.org/
~3djigsaw/

Predict structure and function of
protein

9 I-TASSER http://zhanglab.ccmb.
med.umich.edu/I-
TASSER/

Predict structure and function of
protein

10 3DJigsaw http://bmm.
cancerresearchuk.org/
~3djigsaw/

Predict structure and function of
protein

11 MODELLER http://salilab.org/
modeller/

Comparative modeling of protein 3D
structures

12 PIPE2 http://cgmlab.carleton.
ca/PIPE2

PIPE2 queries the protein interactions
between two proteins based on
specificity and sensitivity

13 HomoMINT http://mint.bio.uniroma2.
it/HomoMINT

HomoMINT predicts interaction in
human based on ortholog information
in model organisms

14 MirrorTree http://csbg.cnb.csic.es/
mtserver/

The MirrorTree allows graphical and
interactive study of the coevolution of
two protein families and assesses their
interactions in a taxonomic context

15 COG http://www.ncbi.nlm.
nih.gov/COG/

COG shows phylogenetic
classification of proteins encoded in
genomes

16 PreSPI http://code.google.com/
p/prespi/

PreSPI predicts protein interactions
using a combination of domains

(continued)
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perform genetic engineering or plant breeding to improve the crop plants. Various
methods have been developed to study the metabolites including GC, HPLC, UPLC,
CE coupled to MS and NMR spectroscopy (Boizard et al. 2016; Boros et al. 2018;
Garcia-Perez et al. 2020; Lluveras-Tenorio et al. 2017; Patel et al. 2017; Yang et al.
2013, 2020). This could help in separation, detection, characterization, and quantifi-
cation of such metabolites and their related pathways. However, the diverse group of
molecules makes it more challenging to study the metabolites using a single tech-
nique. Thus, more than one technique is used to identify the different metabolites in
the plant system.

2.6 Challenges and Opportunity in Omics Study

Various advancements have been achieved in the field of omics study. Now we can
detect the maximum number of RNA, DNA, and protein content present in the cell.
However, different challenges are still persisted, which need to be answered. Even
today, during library preparation of DNA or RNA sequencing, we are not able to
capture all the DNA and RNA molecules. A large number of RNA and DNA have
become degraded during the sample preparation. Genome re-sequencing with
advanced technology is not able to cover 100% of the genome of any organism.
We used to get a lot of redundancy during the mapping of the sequencing reads on
the genome and/or transcriptome. This problem is more prominent in the plants with
genome�2n (diploid). Study of proteomics and metabolomics are at very early stage
and recent development in large scale proteomics data impose a substantial chal-
lenge for available bioinformatics tools to validate these results (Cho 2007;
Hongzhan et al. 2007; Reinders et al. 2004; Schubert et al. 2017). During the
proteomic analysis, a large number of challenges needed to be resolved besides

Table 2.4 (continued)

S. No.
Software/
server URL Description

17 InPrePPI http://inpreppi.biosino.
org/InPrePPI/index.jsp

InPrePPI predicts protein interactions
in prokaryotes based on genomic
context

18 STRING http://string.embl.de STRING database includes protein
interactions containing both physical
and functional associations

19 InterPreTS http://gabrmn.uab.es/
interpret/

InterPreTS uses tertiary structure to
predict interactions

20 iWARP http://groups.csail.mit.
edu/cb/iwrap/

iWARP is a threading-based method
to predict protein interaction from
protein sequences

21 Coev2Net http://groups.csail.mit.
edu/cb/coev2net/

Coev2Net is a general framework to
predict, assess, and boost confidence
in individual interactions inferred
from a high-throughput experiment
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sample preparation such as data assembly and database search for the functional
annotation (Reinders et al. 2004; Schubert et al. 2017). We can annotate only those
proteins, whose information is present in the database, but identifying a novel
protein is very challenging.

To capture all the DNA and RNA new methods and techniques are being
developed. Single molecule sequencing is evolving, as the new approach is devel-
oped to improve the genome coverage. The analysis for these molecules is also being
improved. It provides a complete sequence information of all the mRNA expressed
in a cell or tissue. This will also enable to get a deeper understanding of the post-
transcriptional modifications occurred in RNA. Implementation of this method can
solve the limitation of protein sequencing and quantification. During the sample
preparation, one part of tissue is used to extract either DNA or RNA or proteins and
metabolites. This adds the batch effect in the analysis. Now molecular signature is
being analyzed from single cell, so developing methods to extract the entire molec-
ular signature from the same cell or tissue has a great opportunity. Recently, few
protocols have been developed to extract the DNA and RNA from same tissue but
still need a lot of optimization. In bioinformatics analysis, all the tools and
techniques come with few limitations. To solve all these limitations, novel
techniques and methods are being developed. Hopefully, in future we will be able
to develop more advanced technology to solve all these challenges and limitations.
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Omics Approaches for Understanding Plant
Defense Response 3
Prajna Priyadarshini Das, Sumi Rana, Mehanathan Muthamilarasan,
Monica Kannan, and Irfan Ahmad Ghazi

Abstract

Plants are the major components that contribute to energy, environment, and
ecosystem, and they are also the primary producers of the food chain. Despite
their importance, their sustenance in the environment is challenged by several
biotic and abiotic factors. Among the biotic factors, diseases and infections cause
devastative results, and in agriculture, such biotic stresses caused by pathogens
lead to a severe decrease in yield and productivity, which ultimately challenges
food security. Plants have also developed sophisticated molecular mechanisms to
defend the pathogens, thus leading to resistance or tolerance to the given disease.
Understanding the mechanism of tolerance or resistance is now imperative to gain
insights into the molecular machinery underlying such defense responses, which
could be further exploited to develop disease-resistant plant species. To study the
response of plants to pathogens, different approaches have been developed that
interrogates the system at varying levels of disease infection. These approaches
are generically called “omics” approaches that enable the study of plant systems
at the genome, transcriptome, proteome, and metabolome levels. The advent of
tools and techniques has advanced these omics approaches, and the knowledge
generated so far has been proven useful in developing elite cultivars resistant to
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pathogens. Transgene-based approaches and/or molecular breeding-based
techniques are now being used to develop such improved varieties, whereas the
introduction of genome editing tools like CRISPR/Cas9 is expected to expedite
the crop improvement programs. Given this, the present chapter enumerates the
use of different omics approaches, namely, transcriptomics, proteomics, and
metabolomics, to delineate the molecular mechanism underlying disease
response, and how this information could be integrated to advance the current
understanding of plant defense response.

Keywords

Transcriptomics · Proteomics · Metabolomics · Plant defense · Plant-pathogen
interaction · Molecular response · Disease resistance

3.1 Introduction

The defense response of plants to biotic stresses is not fully understood even when
the fundamental processes underlying defense have been delineated
(Muthamilarasan and Prasad 2013). The response of plants to each pathogen is
unique, and therefore, gaining a complete insight into the molecular mechanisms
regulating such tolerance or resistance is essential. The advent of “omics” has
enabled studying the molecular response of plants to biotic stresses and the factors
regulating the defense response. Among the different “omics” approaches,
transcriptomics, proteomics, and metabolomics form the key tools to unlock the
molecular mystery that the plants hold to effectively circumvent any pathogen.
Genomics has enabled the sequencing of plant genomes, thus providing direct access
to the genes encoded in the chromosomes. Annotation of the genes thus identified
has provided information about the defense-related genes present in the genome;
however, their expression as well as the regulation are unclear. Further, genes are
present in families, where more than one gene constitutes a multigene family, and
these gene family members are differentially regulated during growth, development,
and stress response. A few gene families get upregulated during abiotic stresses, and
several get induced after perceiving a biotic stress signal. To gain a better under-
standing of the expressed genes and their mode of regulation, transcriptomics
approaches are being deployed. Transcriptomics investigates only the expressed
RNAs, which could be mRNA or small RNA that play roles in defense response.
Also, transcriptomics facilitates the study of splice variants that genomics overlooks
due to the lack of resolution at the genome level. Further, transcriptomics enables the
study of expression levels of each gene expressed at a given timepoint or tissue.
Transcriptomics has played a significant role in understanding gene expression
dynamics during pathogen infection and disease progression (Martin et al. 2013).
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However, not all the transcripts are translated to form a functional protein as
several studies have shown that the abundance of mRNA does not correlate with the
amount of protein that is synthesized, and therefore, proteomics gains importance to
study the dynamics of gene expression at proteome levels. Genomics and
transcriptomics might provide information at the gene and expression level, but
proteomics will suggest the expression of proteins, abundance, and their post-
translational modifications. A functional protein would have undergone several
modifications after translation, and thus, proteomics is important to study such
proteins that play a direct role in defense response. In addition to proteins,
metabolites are also involved in defense response, wherein the primary, secondary,
and tertiary metabolites have unique roles to play in defending the pathogen. This
underlines the importance of studying the metabolites using metabolomics
approaches in plants that are challenged with pathogens.

Integrated omics involves the amalgamation of knowledge generated using each
omics tool to identify the precise molecular machinery underlying defense response
and characterize the genetic determinants (genes, alleles, or QTLs) to regulate the
tolerance traits. While genomics provides the data on a complete set of genes present
in the given organism, transcriptomics enables identifying expressed subset of genes
during a pathogen challenge. Proteomics pinpoints the proteins specifically trans-
lated from the transcripts that are upregulated during pathogen stress, and
metabolomics identifies the metabolites secreted to circumvent the pathogen. Such
an integrated approach is the need for the time to gain a thorough insight into the
defense machinery. Despite the efforts invested in understanding the same, not a
complete picture has been captured yet as the plants deploy several unique strategies
to resist the pathogen attack and disease development. Several such mechanisms are
species-, or cultivar-specific, and therefore, comparative omics approaches are now
seeing dawn in expediting the search for knowledge on molecular defense response.
In view of this, the present chapter has been structured to enumerate the different
omics approaches used to study the molecular defense with examples and summarize
the way forward.

3.2 Transcriptomics

“Transcriptomics” is a generic term that indicates the study of “transcripts” or
“RNAs” that are produced as a result of transcription. Among these, mRNAs encode
for different proteins or enzymes obtained during translation, whereas other classes
of RNAs play a multitude of functions, and altogether, the RNAome plays diverse
roles in growth, development, and stress response. Thus, to identify and characterize
the RNAs involved in molecular stress response, particularly to biotic stresses,
transcriptomics is important. To facilitate this, several approaches have evolved
and are majorly classified into non-sequencing and sequencing-based methods.
Next-generation sequencing has transformed the study of RNAs, wherein the total
transcriptome of a cell, tissue, or organ can be captured, sequenced, and annotated to
identify the dynamics of gene expression (Ozsolak and Milos 2011). Given this, the
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forthcoming sections enumerate the non-sequencing and sequencing-based methods
of dissecting the transcriptomes of plants during patho-stress.

3.2.1 Non-sequencing Based Transcriptomics

3.2.1.1 Microarray
Among the non-sequencing based transcriptomic approaches, microarray has a
prominent place as it served as a highly preferred platform for large-scale analysis
of gene expression at genome-wide levels (Taub et al. 1983; Pollack et al. 1999). In
principle, microarray involves the synthesis of chips wherein the labelled single
strands of DNA or cDNA were cross-linked to a solid surface. Presently, these
probes are gene-printed on the slides to produce commercially viable microarray
gene chips (Goldmann and Gonzalez 2000). Following this, hybridization is allowed
to occur by adding the mRNA or single-stranded cDNA of the test sample onto the
chip. The binding of the test strand with the DNA or cDNA probe in the chip
develops a signal, which could be either colored or radioactive (Shalon et al. 1996).
These signals are detected using analytical tools, and the data is processed to identify
the gene expression along with the level of expression (Wei et al. 2004). California-
based Affymetrix, Inc. are well known for developing commercial high-density
oligo microarrays. The hybridization is captured as an image file which is further;
(1) normalized using algorithms like RMA (Robust MultiArray Average), (2) used
for identification of differentially expressed genes (using t-test), and (3) analysis of
gene ontology, functional pathways, enrichment, etc.

Microarray has been widely used to understand the transcriptomic complexities
associated with plant defense to environmental stresses (Lodha and Basak 2012).
Baldwin et al. (1999) were the first probable researchers to test the use of microarray
in maize (Zea mays) and identified 117 genes that were differentially expressed in
response to the infection of a fungal pathogen, Cochliobolus carbonum. In
Arabidopsis, Schenk et al. (2000) studied the transcriptome during Alternaria
brassicicola infection (incompatible) to identify the genes showing altered expres-
sion. The study identified 168 upregulated and 39 downregulated genes in
A. thaliana after infection. In the same year, Reymond et al. (2000) studied the
gene expression in A. thaliana during mechanical wounding and feeding by Pieris
rapae (cabbage butterfly insect). In this study, the expression of 150 genes was
studied in wild type as well as a coronatine-insensitive coi1-1 mutant to identify
genes that play a role in defense response. The alteration in gene expression during
systemic acquired resistance (SAR) was performed by Maleck et al. (2000) in
Arabidopsis. The study identified a set of candidate genes that were specifically
upregulated during SAR. In continuation of this, Wang et al. (2005) studied the gene
expression levels in NPR1 (Non-expression of Pathogenesis-Related 1)
overexpressed as well as in mutant lines (npr1) during SAR. A comparison of the
datasets showed that the SAR was induced by NPR1 by two mechanisms, viz.,
enhancing the expression of PR proteins, and induction of protein secretory path-
way. Roots and shoots of tomato (S. lycopersicum) plant subjected to Tomato
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spotted wilt virus infection showed organ-specific responses (Catoni et al. 2009). In
the shoot, defense and signal transduction-related genes were upregulated, whereas
in roots, the genes having a role in biotic stresses were highly expressed. In barley
(Hordeum vulgare), non-host resistance to three different fungal (host/non-host)
pathogens, namely Blumeria (powdery mildew), Puccinia (rust), and Magnaporthe
(blast) was studied using microarray (Zellerhoff et al. 2010). The study showed that
the pathogen infections modulated the activation or deactivation of common meta-
bolic or signalling pathways without a distinct difference between PR and non-host
specific genes.

In rice (Oryza sativa), Zhou et al. (2010) have studied the global gene expression
pattern during infection with a non-host bacterial pathogen, Xanthomonas oryzae
pv. oryzicola (Xoc). Maize R gene, Rxo1 (a dominant NBS-LRR type R gene), was
overexpressed in transgenic rice lines prior to the infection (Zhao et al. 2005).
Infection of Xoc in transgenic as well as non-transgenic rice lines followed by
expression analysis using microarray revealed the involvement of Rxo1 that activates
a broad set of genes leading to a hypersensitive response against Xoc infection.
Among these genes, OsNPR1 and OsPR1 were identified as probable candidates for
further functional characterization. The application of microarray to study the gene
expression expands beyond the well-studied species. In Italian ryegrass (Lolium
multiflorum), this approach was used to identify the genes involved in defense
response to Xanthomonas translucens pv. graminis (Wichmann et al. 2011). The
study identified differential expression of at least 1200 genes, which were then
mapped onto the genetic linkage map (Studer et al. 2006), and further analysis
was performed. Altogether, the study pinpointed that a Low silicon protein
1 encoding gene, Lsi1, could be a potential candidate gene for marker-assisted
selection for disease resistance (Wichmann et al. 2011).

In nature, plants encounter more than one stress at a given point of time, and
studies have underlined that the response of plants to combined stresses is unique
compared to their response to individual stresses (Ramegowda and Senthil-Kumar
2015). This demanded the study and understanding of the transcriptomic dynamics
of plants exposed to multiple stress combinations in the natural environment.
A. thaliana plants exposed to individual and combined challenge with drought as
well as Pseudomonas syringae pv tomato DC3000 infection showed unique expres-
sion of twenty novel genes during the combined drought and pathogen stress (Gupta
et al. 2016). One of these genes was AtGBF3, a G-Box Binding Factor 3 (transcrip-
tion factor) that showed significant upregulation during individual as well as com-
bined stresses. Dixit et al. (2019) had further characterized this gene by
overexpression and knockout approaches in A. thaliana. The AtGBF3
overexpression lines were observed to be tolerant to both individual and combined
stresses, whereas the mutant plants were susceptible. A similar study was performed
in chickpea (Cicer arietinum) to identify the genes playing roles in drought and
pathogen interaction by Sinha et al. (2017). Here, the plants were challenged with
drought stress and infection by Ralstonia solanacearum (causative agent of wild
disease) both individually and in a combined pattern. The authors then correlated the
downregulation of defense-related genes with in planta multiplication of
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R. solanacearum. The upregulation of genes having roles in hormone signalling and
lignin biosynthesis was identified to be potential candidates for functional character-
ization. The impact of pathogen infection during drought recovery was studied by
Gupta and Senthil-Kumar (2017), wherein microarray analysis revealed the specific
upregulation of proline dehydrogenase (AtProDH1) which could be studied further
to delineate its role in imparting tolerance to dual stress. Recently, Fatima et al.
(2019) performed a comparative study on how the host, Brassica juncea, and the
non-host, C. arietinum respond to A. brassicae at morpho-pathological and molecu-
lar levels. Comprehensive microarray analyses identified several genes involved in
multilayered pathogen defense. These genes could serve as putative candidates to
study their precise involvement in non-host resistance and help in the development
of blight-resistant transgenic lines Brassica sp.

The large-scale microarray datasets were deposited in open-access repositories,
including NCBI-Gene Expression Omnibus (https://www.ncbi.nlm.nih.gov/geo/)
and EMBL-ArrayExpress (https://www.ebi.ac.uk/arrayexpress/). The availability
of this information has enabled several secondary studies and further analyses of
microarray datasets. For example, Ramu et al. (2016) had performed a meta-analysis
of sunflower microarray datasets to identify commonly regulated genes that were
then characterized to delineate their roles in conferring tolerance to environmental
stresses. Altogether, microarray remained a powerful tool to resolve the
transcriptomic intricacies towards understanding the regulation of gene expression
at a genome-wide level; however, the advent of next-generation sequencing has
overtaken the pride of microarray. This has resulted in microarray becoming the least
preferred approach as compared to NGS-based transcriptomics studies.

3.2.1.2 Northern Blotting and Quantitative Real-Time PCR
Before microarray, gene expression analysis and quantification of transcripts were
performed using the Northern Blot technique. RNA blot or Northern blot enabled the
validation of gene expression by detecting the presence of corresponding mRNAs
through autoradiographic signals (Alwine et al. 1977). To achieve this, the total
RNA extracted from the sample will be subjected to mRNA isolation and agarose gel
electrophoresis. The mRNAmolecules in the gel will then be transferred to the nylon
membrane through capillary action, and the mRNAs are cross-linked with
the membrane using UV irradiation. The probes with complementary sequences to
the test gene are synthesized and radio-labelled, and are allowed to hybridize with
the nylon membrane containing the mRNA. After hybridization, the membrane is
washed to remove unhybridized probes, and then the autoradiogram is generated and
analyzed for signals. The signals on X-ray film could then be quantified using
densitometry. Though Northern blotting appears to be a reliable experimental
method used to validate and quantify RNAs (Kevil et al. 1997), the approach does
not support a large-scale analysis of genes. A genome containing thousands of genes
cannot be analyzed for its expression data using Northern blot as it is time taking,
low-throughput, and labor-intensive. However, to date, the approach is used for
validation of results obtained through other transcriptomics studies. Recently, the
application of Northern blots in studying the microRNAs (miRNA) was also
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realized. For instance, A. thaliana infected with Oil-seed Rape Mosaic Virus were
analyzed for the expression of stress-responsive miRNAs (Hajdarpašić and
Ruggenthaler 2012). Northern blot showed that 28 miRNAs were differentially
expressed during viral infection. Recently, Sharma and Prasad (2020) have
performed in planta silencing of the AC1 gene of Tomato leaf curl virus in tomato
using artificial miRNA (AC1-amiR), and Northern blot was used to detect the
AC1-amiR and viral AC1 expression. Interestingly, the transgenic tomato lines
overexpressing AC1-amiR, when challenged with leaf curl virus, showed reduced
disease symptoms and high percentage resistance ranging between �40 and 80%.
These examples underline the importance of Northern blot in the analysis of gene
expression in several high-end investigations being conducted worldwide.

Two approaches advanced the Northern blotting method of transcript analysis,
and they are semi-quantitative reverse-transcriptase PCR and quantitative Real-Time
PCR (qRT-PCR). The former is a gel-based approach where the mRNA is reverse
transcribed to produce cDNAs that are resolved on agarose gel (Bell 1995). The band
intensity was measured using densitometry to quantify the transcript abundance
(Overbergh et al. 2003). The efficiency and convenience of this approach held its
popularity until the arrival of qRT-PCR (Higuchi et al. 1993). RT-qPCR or
qRT-PCR allows the real-time detection of transcript abundance that can be trans-
lated to predict the expression levels in terms of “relative expression” or “fold-
change.” Studies involving the identification of genes and gene families having roles
in growth, development, and stress response have started using qRT-PCR as a tool to
validate their findings. Also, qRT-PCR serves as a prominent tool in studying the
expression levels of genes across different samples, time-points, and treatments.
Precisely, the method works by recording the intensity of light emitted by the
fluorochrome integrated into the newly synthesized strand using PCR (Livak and
Schmittgen 2001). Compared to Northern and semi-quantitative reverse-transcrip-
tase PCR, qRT-PCR is rapid and sensitive with high specificity as well as scalability
(Udvardi et al. 2008), as demonstrated by Czechowski et al. (2004) wherein the
expression of thousands of Arabidopsis transcription factors were studied using
qRT-PCR. The study showed that the genes detected by qRT-PCR were absent in
Arabidopsis EST library, thus underlining the precision of this approach. Thus, the
approach has gained momentum in functional genomics studies, and the search for
suitable reference genes to quantify the expression levels has also expanded widely.
Several computational algorithms are developed to identify suitable reference genes
or internal controls for qRT-PCR, and this includes geNorm (Vandesompele et al.
2002), NormFinder (Andersen et al. 2004), BestKeeper (Pfaffl et al. 2004), and
RefFinder (Silver et al. 2006). Recently, Pandey et al. (2019) had identified
131 genes encoding DEAD-box RNA helicase in tomato, and expression analysis
of these genes in tomato cultivars using qRT-PCR showed that SlDEAD23 and
SlDEAD35 were involved in multiple stress response. Previously, Mandal et al.
(2018) had studied Armadillo repeat family (ARM) genes in tomato and has
identified significant upregulation of SlARM18 in the tomato cultivar tolerant to
leaf curl disease as compared to the susceptible cultivar. Further functional charac-
terization of the gene delineated the precise tolerance mechanism in tomato against

3 Omics Approaches for Understanding Plant Defense Response 47



Tomato leaf curl disease. These are a few examples where qRT-PCR has been
successfully used in studying the expression of genes and gene families; however,
the approach could not provide genome-wide coverage.

3.2.2 Sequencing-Based Transcriptomics

3.2.2.1 Expressed Sequence Tags
A short sub-sequence of a cDNA (usually <1000 bp) is called expressed sequence
tag (EST), which typically represents the gene that has been transcribed to derive a
functional mRNA. ESTs enabled the identification of genes and determination of
their sequences, and therefore, the advent of sequencing approaches has resulted in
a massive accumulation of EST data in public databases. NCBI had a separate
database for ESTs (dbEST), which subsequently merged into “Nucleotide” database.
Large-scale single-pass sequencing of cDNA clones to generate ESTs was first
reported in humans (Adams et al. 1993) that was later adapted to plants. In potato,
Crookshanks et al. (2001) had reported around 6000 ESTs, and later, Ronning et al.
(2003) generated 61,940 ESTs from different tissues of potato (Solanum tuberosum),
including the tissues infected with late blight pathogen (Phytophthora infestans).
The study identified several ESTs that are exclusively expressed during the incom-
patible interaction with P. infestans. Jantasuriyarat et al. (2005) had subjected rice
(Oryza sativa) cultivars IR36, IR68, and Nipponbare to rice blast fungus
(Magnaporthe grisea) infection and sequenced the cDNA libraries derived from
mRNAs isolated at different time-points. The study identified ten highly induced and
suppressed genes in contrasting cultivars, and their expressions were confirmed
using Northern Blot. In Brassica oleracea, Cramer et al. (2006) had identified
several ESTs encoding potential genes that confer tolerance to black spot disease
(caused by Alternaria brassicicola). Among legumes, the sequencing of ESTs in
chickpea has been reported. Ashraf et al. (2009) had identified 6272 ESTs in
chickpea that were differentially expressed during fusarium wilt (caused by Fusar-
ium oxysporum ciceri). Functional annotation of these ESTs provided insights into
the regulators that modulate host-pathogen interaction. Using the Brazilian Coffee
Genome Project Database, Alvarenga et al. (2010) identified 11,300 ESTs in coffee
(Coffea spp.) genome and annotated them for their involvement in defense response.
ESTs encoding for catalase, chitinase, protein with a BURP domain, and unknown
proteins were predominantly found in the database, and their corresponding genes
were speculated to be involved in resistance to diseases. Recently, Mahomed and
van den Berg (2011) has studied the avocado rootstock infected with Phytophthora
root rot (caused by Phytophthora cinnamomi), and identified the ESTs associated
with disease response. Though these studies have made notable findings in deter-
mining the candidate genes, the EST sequence method suffered several
disadvantages. Mainly, it does not provide a genome-wide coverage as only a limited
number of mRNAs undergo reverse transcription to produce cDNAs. Further clon-
ing of cDNAs into plasmids, followed by transformation and sequencing is laborious
and time-consuming. Despite the disadvantages, EST sequencing helped develop
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several gene-based molecular markers (Varshney et al. 2005). EST sequences
facilitated the identification of microsatellite motifs in the sequences and designing
the primers flanking those motifs (Scott et al. 2000; Kumari et al. 2013b). These
microsatellites were exploited as codominant markers that were useful in genetic
diversity analyses, population structure prediction, and linkage mapping. Thus,
ESTs served as the first step towards the high-throughput analysis of gene expression
as well as expediting trait improvement programs using molecular breeding
approaches.

3.2.2.2 Tag-Based Sequencing Approaches
As cDNA or EST sequencing has failed to provide genome-wide coverage, expen-
sive and not quantitative, several tag-based approaches were developed to study the
transcriptomes. Serial analysis of gene expression (SAGE), cap analysis of gene
expression (CAGE), and massively parallel signature sequencing (MPSS) were a
few examples of tag-based approaches. Velculescu et al. (1995) were the first to
report SAGE in which the cDNAs are digested with an anchoring enzyme (usually
NlaIII) followed by ligation of a linker. Then digestion of tagging enzyme and
formation of ditags were performed, followed by PCR amplification, redigestion
with the same anchoring enzyme, concatenation, and cloning into a vector. The
clones are then sequenced to obtain the data. Matsumura et al. (1999) were the first to
use SAGE in plants to identify the genes in rice seedlings. The same group used
SuperSAGE, an advanced version of SAGE, to study the gene expression in rice
subjected to Magnaporthe grisea infection (blast disease; Matsumura et al. 2003).
Later, Lee and Lee (2003) identified the genes involved in regulating cold stress
tolerance in pollen grains of A. thaliana. In cassava (Manihot esculenta), Fregene
et al. (2004) used SAGE to analyze the gene expression pattern during Cassava
mosaic virus infection.

In the case of CAGE (Kodzius et al. 2006), the total RNA was used as the input
material. Here, random priming and oligo (dT) priming were performed separately,
followed by full-length cDNA selection by Cap-trapper method. Following this,
linker I ligation and second-strand cDNA synthesis were performed. The double-
stranded cDNA is digested with MmeI to release the 50 end-specific CAGE tag,
facilitating the ligation of linker II to the sticky end. Now, the linkers I and II provide
primer sites for PCR amplification of the tags. After amplification, the PCR product
is digested with cloning enzymes, and the tags are ligated into concatemers
(~500–800 bp size). The concatemers are cloned into the vector for sequencing,
and the sequence data provides information about the mRNAs that were expressed in
the given sample (Harbers and Carninci 2005; Kodzius et al. 2006). Brenner et al.
(2000) defined the MPSS for the first time, where the mRNAs were subjected to
cDNA synthesis followed by digestion with DpnII. The resultant products were
fused to TAGs for PCR amplification and coupling to microbeads. This was
followed by the determination of 16–20 bp sequence from each bead by
hybridization of fluorescent labelled probes. The fluorescent signal from the beads
adhered to the two-dimensional surface was analyzed to determine the DNA
sequence parallelly from all the beads (Nobuta et al. 2007). Meyers et al. (2007)
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had later optimized the procedure for studying plant-pathogen interactions, and
Peiffer et al. (2008) used MPSS to study the gene expression during flower develop-
ment in A. thaliana. SAGE, CAGE, and MPSS critically laborious, require expertise,
and are time-consuming. Also, the cost of running the reactions was extremely high,
and these demerits limited the use of SAGE, CAGE, and MPSS in studying the plant
system.

3.2.2.3 Suppression Subtractive Hybridization
Comparative transcriptomics requires identifying genes that were uniquely
expressed in one dataset compared to another, and such a comparison requires
capturing the complete transcriptome in both the datasets followed by subtraction
of the commonly expressed genes. This approach is called SSH or suppression
subtractive hybridization, which was first described by Diatchenko et al. (1996).
Xiao et al. (2001) used this approach to identify the uniquely expressed genes in
transgenic tomato overexpressing the resistance gene, Pto, compared to wild-type
tomato. A set of 82 unique genes that have not been reported previously were
identified through this study. In Arabidopsis, Mahalingam et al. (2003) studied the
transcriptome response of plants treated with ozone, bacterial, and oomycete patho-
gen, and identified a broad repertoire of stress-responsive genes that confer tolerance
to these stresses. Sahu et al. (2011) compared the transcriptomes of tolerant as well
as susceptible tomato cultivars to Tomato leaf curl disease caused by Tomato leaf
curl New Delhi virus and identified that 106 non-redundant transcripts were uniquely
expressed in the tolerant cultivar upon virus infection. Among these, a 26S
proteasomal subunit RPT4a (SlRPT4) gene was further characterized to delineate
its non-proteolytic function and participation in defense pathway against virus
infection in tomato (Sahu et al. 2016). Roohie and Umesha (2015) used SSH to
identify the defense responsive genes in cabbage against black rot causing
Xanthomonas campestris pv. Campestris. In wheat, Li et al. (2015) SSH was used
to study the transcriptional response against stripe rust caused by Puccinia
striiformis f. sp. tritici, and a resistance allele, WCBP1 (wheat copper-binding
protein) was identified. To investigate the genes underlying crown rust disease
caused by Puccinia coronata in oat (Avena sativa), SSH was performed, and
reported the presence of several new genes that were not identified in the previous
studies (Loarce et al. 2016). In maize, Dhakal et al. (2017) had compared the
transcriptomes of resistant and susceptible inbreds to Aspergillus flavus infection
and identified 267 unigenes related to defense response. Similarly, Saabale et al.
(2018) compared the transcriptomes of contrasting chickpea genotypes to infection
with Fusarium oxysporum f. sp. ciceris. SSH analysis revealed several genes having
roles in pathogen response. Recently, Jothiramshekar et al. (2020) had studied the
response of a halophytic species, Suaeda nudiflora that was subjected to combined
stress of salinity and elevated CO2 treatments. Altogether, SSH still remains as one
of the preferred approaches to studying the transcriptome dynamics, as it identifies
uniquely expressed genes. However, the procedure involved in performing SSH is
tedious and requires expertise as several cloning, PCR, and sequencing exercises had
to be executed.
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3.2.2.4 RNA-Seq
EST sequencing, where the mRNAs were isolated, reverse transcribed, cloned, and
sequenced, was later improvised into RNA-Seq to enable sequencing of total
RNAome without the need for cloning libraries. Next-generation sequencing
(NGS) offers direct sequencing of the total RNA after adapter ligation, PCR, and
library preparation. These libraries can then be sequenced using advanced platforms,
including Illumina HiSeq or PacBio or Oxford Nanopore. Illumina platform, though
produces short reads, is very popular due to its low cost and easiness of sequencing.
Also, Illumina sequencing does not require any tedious pre-preparations; however,
PacBio requires pre-preparation of the samples. PacBio and Nanopore systems offer
long-read sequencing, and it is most useful in sequencing the genomic DNA.
RNA-seq data produced by these platforms are processed to identify the genes
present in the respective sample. Several standard pipelines have been established
to achieve this, and one such pipeline is NGS QC Toolkit (Patel and Jain 2012).
These pipelines check the sequence data for base and sequence quality score
distributions, average base content per read, GC distribution in the reads, PCR
amplification issues, and over-represented sequences. Following this, preprocessing,
alignment, and differential expression analysis are performed. Preprocessing
includes the trimming of adapter sequences and low-quality bases, followed by the
removal of rRNA sequences. Alignment of reads could either be de novo or
reference-based, and after alignment, the read count (expressed in FPKM or
RPKM) will be predicted to analyze the expression levels of each transcripts.
Leebens-Mack et al. (2019) led the one thousand plant RNA-seq that successfully
decoded the transcriptome of 1000 plant species. The complete data is available at
the NCBI-SRA database (http://ftp.cngb.org/pub/Dataset/datapla4/; Carpenter et al.
2019). The RNA-seq not only enables the identification of genes, but also facilitates
the development of gene-based molecular markers useful for genotyping
applications. For example, RNA-seq data of contrasting cultivars could be aligned
to identify sequence polymorphisms, which could then be exploited as SNP markers
(Muthamilarasan et al. 2019). Further, subjecting the transcript sequences to compu-
tational tools such as the MISA microsatellite finder enables the identification of
simple sequence repeats that could be utilized as microsatellite markers
(Muthamilarasan et al. 2019).

In addition to this 1000 plant transcriptome analysis, NGS has also favored
independent studies on specific plants challenged with different stress factors.
Hundreds of reports were published in the year 2020 alone on the use of RNA-seq
to understand the transcriptomic complexity in responding to various stresses
(Fig. 3.1). In rice, contrasting cultivars to bacterial leaf streak were subjected to
RNA-seq analysis that showed upregulation of resistance-related genes in the
tolerant cultivar than the susceptible one (Lu et al. 2020). Chen et al. (2020)
conducted a similar study in poplar (Populus tomentosa) infected with Marssonina
brunnea by sequencing the RNA of 435 cultivars. The research identified ~7000
differentially expressed genes associated with basal defense and mined ~30,000
SNPs within the regions of pathogen-responsive genes, which could be useful for
genotyping and breeding for disease tolerance. Contrasting cultivars of tea (Camellia
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sinensis) to the feeding of Empoasca onukii (green leafhopper) was studied at
transcriptome level using RNA-seq by Jin et al. (2020). The study showed an
elicitation of jasmonic acid-related genes in the tolerant cultivar at the early stage
as compared to the susceptible cultivar, and also, the role of secondary metabolite
biosynthesis was underlined in the tolerant cultivar. Transcriptomic response of
tomato to potato spindle tuber viroid (PSTVd) was performed by Więsyk et al.
(2020), where the plants were infected individually with highly-virulent and mildly-
virulent PSTVd strains. Thousands of genes were found to be differentially
expressed specifically in the plants infected with highly-virulent strain, among
which the upregulation of C2C2-GATA and growth-regulating factor (GRF) tran-
scription factor families were notable. In date palm (Phoenix dactylifera), Khan et al.
(2020) had studied the transcriptome during Ommatissus lybicus attack and
identified 6919 upregulated and 2695 downregulated genes during infection. The
gene ontology annotation data showed that the genes are predominantly involved in
the hypersensitive reaction, which could be a probable mode of defense in date palm.
A Fusarium wilt-resistant cucumber was studied at transcriptome level to understand
the molecular defense response against Fusarium oxysporum f. sp. cucumerinum
infection (Dong et al. 2020). A total of 4116 differentially expressed genes were
identified by comparing the datasets from different time-points of infection, and the
annotation data showed that ethylene signalling pathways play a prominent role in
conferring tolerance to fusarium wilt in cucumber. The response of peanut (Arachis
hypogaea) to early leaf spot (caused by Cercospora arachidicola) was studied by

Fig. 3.1 Plant genomes and transcriptomes sequenced until October 2020. The graph shows the
data retrieved from NCBI (Genome and BioProject) to demonstrate the number of plant genomes
and transcriptomes sequenced so far

52 P. P. Das et al.



Gong et al. (2020), wherein the transcriptome sequencing identified 133 differen-
tially expressed genes, of which a significant proportion belonged to R gene families
as well as defense responsive genes.

3.2.2.5 Allele Mining Approaches
Identification of novel or superior or effective alleles of the known candidate
resistance genes using PCR analysis among the wild and cultivated crop populations
and further confirmation of the level of novelty/superiority by expression analysis is
known as allele mining. This approach is very popular in rice to identify several
resistant varieties against different diseases using wild and cultivated germplasms,
which can provide the molecular basis of allelic variations for any trait to establish
the nucleotide changes related to novel or superior alleles. Once the superior and
effective alleles are identified from available gene pools, which regulate the different
plant defense responses, these can be further deployed in susceptible crops using
plant breeding approach in further crop improvement programs (Ramkumar et al.
2010). This approach will also provide the degree of nucleotide diversity and
conservation among the candidate genes and their transcriptional and translational
control signals across the crop population. This technique has been widely used for
rice blast-resistant genes Pita (Huang et al. 2008), Pikh (Ramkumar et al. 2010),
Pi54 (Kumari et al. 2013a), rice bacterial blight resistance genes Xa27 (Bimolata
et al. 2013), Xa26, Xa21, and xa5 (Bimolata et al. 2015), Xa7 (Utami et al. 2013),
rice yellow mottle virus genes RYMV1, RYMV2, and RYMV3 (Pidon et al. 2020), etc.
from different rice cultivated varieties and wild species.

3.3 Proteomics

Proteins that are expressed in a cell at a given time, are collectively called a
proteome, and the study of it is defined as proteomics. Proteins being workhorses
of the cells are involved in several biochemical and signalling responses to plant
defense mechanisms. Proteomics techniques characterize the proteins based on the
following; (1) function/structure, (2) interaction with the protein, nucleic acid, lipid,
and substrate, (3) post-translational modifications, (4) activity and localization, and
(5) rate of synthesis and turnover rate. When exposed to biotic stresses, insects,
pests, fungus, bacteria, etc., the plants elicit a cascade of events that activates a
network of responses involved in immunity. Plants identify the pathogen-associated
molecular patterns (PAMPs) via receptors called pattern recognition receptors
(PRRs) and activates the PAMP-triggered immunity (PTI; Boller and Felix 2009;
Zipfel et al. 2004). During the immune response, several genes encoding effector
signalling molecules and pathogenesis-related proteins are activated. Strategically
these interactions could be studied by proteomics as most of these PRRs are protein
molecules and decipher the plant-host interaction and defense signalling (Ashwin
et al. 2017). Comparative protein profiling of the diseased and control plants under
biotic stress could be performed using either gel-based or gel-free proteomics
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techniques coupled with mass spectrometric analysis for identification, quantifica-
tion, sequencing, and analysis.

3.3.1 Gel-Based Proteomics Approaches

The gel-based strategies have contributed to gain significant knowledge in under-
standing the protein expression profiling during biotic stresses. In the gel-based
techniques, the proteins are basically separated based on their pI (isoelectric point)
and molecular weight. The different types of gel-based techniques are 1-DE, 2-DE,
3-DE, and DIGE. Following these separation methods, the proteins are subjected to
mass spectrometric analysis to identify, quantify, and sequence the proteins in a
given sample. The crude protein extract may contain several contaminations like
lipids, nucleic acid, and carbohydrate, which should be removed by detergent, pH
precipitation, and enzymes, respectively. The prerequisites of the gel-based
techniques are protein unfolding, solubilization, and disulfide bond breaking that
can be achieved using urea, detergent, and Mercaptoethanol (or dithiothreitol and
dithioerythritol), respectively.

3.3.1.1 Two-Dimensional Gel Electrophoresis
In 1975, O’Farrell introduced 2DE for biochemical separation that could resolve a
large number of proteins at a given time. Firstly, the proteins are separated according
to their pI, called isoelectric focusing (IEF). Then, in the second dimension, they are
separated based on molecular weight. Due to its significant resolving power, 10,000
spots that may correspond to a thousand protein samples with wide molecular
isoforms could be separated in a single gel.

A wide range of 24 cm or 18 cm length linear immobilized pH 3–11 gradient IPG
strip may be selected to study the global proteome expression levels between the
control and the different stages of stress conditions. IPG strips were equilibrated
before the second dimension by placing them in separate tubes containing support
film near the tube wall and adding the SDS equilibration buffer solution. Incubation
in DTT and followed by iodoacetamide. Mild horizontal shaking is recommended
for reduction and alkylation steps. The equilibrated strips could be layered on
acrylamide gels and further sealed using agarose. The second dimension of gel
electrophoresis is the separation of proteins based on the molecular weight. The
sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) is run, and
the gels were treated with fixative solution methanol:water:acetic acid overnight and
further are stained with appropriate staining dyes like Coomassie brilliant blue.
Destaining is done using methanol until the clearance of the background and the
gel could be documented by image scanner having either MagicScan software or
with Typhoon Trio+ if labelled.

2DE has extensively been used in comparative proteomic studies during pathogen
attacks in crop plants, and such studies have identified several candidate defense-
related proteins. In Arabidopsis, 2-DE was used to check the expression of proteins
post infection with Plutella xylostella that revealed ROS’s role in plants against the
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pathogen (Collins et al. 2010). Heterodera glycines, a nematode, make soybean a
host. A study was conducted by 2-DE on the proteomics of susceptible and resistant
cultivars of soybean that revealed that about 370 proteins were related to the
susceptible cultivar and about 365 related to resistant cultivar (Liu et al. 2019). In
Arabidopsis, a study conducted by Yin et al. (2012) studied the post-infestation by
whitefly using 2-DE and checked the expression of proteins, wherein expression of
20 proteins showed drastic change. The study thus revealed the downregulation of
the protease enzymes and upregulation of redox-associated enzymes. Protein
profiling of apoplastic fluid (APF) proteins from coffee was performed using
2-DE. Interaction of Coffea arabica cultivars that were susceptible and resistant to
Hemileia vastatrix were chosen for the study. About 210 proteins have shown
differential expression in control, susceptible and resistant plants (Guerra-Guimarães
et al. 2015). To understand the molecular mechanism of Blumeria graminis infection
in wheat, expression profiling was performed using 2-DE in the susceptible wheat
cultivar following infection (Li et al. 2017). In 2019, Martins’ group studied the
proteomics of interaction between Meloidogyne arenaria (Peanut root-knot nema-
tode) and Arachis stenosperma (wild peanut) using 2-DE and found about 222 dif-
ferentially abundant proteins (DAP) by comparing the control and nematode
inoculated root (Martins et al. 2020). In wheat, Tilletia indica causes the Karnal
burnt disease. 2-DE was used to study the change in expression profiles of the
disease infected and control plants (Pandey et al. 2019). Recently, Kumar et al.
(2020) had identified about 94 differentially abundant proteins using 2-DE in
Arabidopsis, in wild type and fld mutant (SAR compromised). These proteins
DAPs might have a role in developing systemic acquired resistance.

3.3.1.2 Three-Dimensional Gel Electrophoresis
Difficulty in quantifying proteins that showed co-migration was one of the signifi-
cant limitations of 2-DGE that led to the introduction of 3DGE (Colas et al. 2010). In
this, the third time separation of co-migratory proteins is performed in different
buffer systems containing ion carriers (Colignon et al. 2013). Post-translational
modifications could be identified with this in addition to its increased accuracy
(Rabilloud 2013). 3DGE could be exploited to understand and analyze the complex
plant proteome and decipher phyto-pathoproteomics correlation (Ashwin et al.
2017). The major drawback of this technique is that it cannot identify low copy
number proteins and has low reproducibility. Due to this drawback, the approach has
not been used in studying the molecular defense response of crop plants.

3.3.1.3 Difference Gel Electrophoresis
In DIGE, covalent labelling of each sample is done using a collection of
fluorophores, viz. Cy-2, 3 and 5 that gets tagged to lysine and cysteine residues,
followed by gel separation (Unlu et al. 1997). The labelling dyes have substantial
dynamic range, sensitivity, and linearity that help in the comparative analysis of the
proteome. Only a few mass spectrometers can match the sensitivity of that of DIGE.
Hence, the separation of proteins using the Cy-labelled dyes has come into regular
practice. Overstaining of gels with Coomassie blue, post-Cy-labelled fluorescent
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imaging is done, and then both the images are compared and excised for further mass
spectrometric analysis (Thelen and Peck 2007). DIGE can overcome sensitivity
problems and detect proteins that are less abundant. It is the best suitable approach
for comparative proteomics to understand the differential protein expression levels.
The major drawback of DIGE is that the protein sample would not be labeled in the
absence of lysine residue. In this case, high-resolution laser scanners are used for
visualization, and for this, the fluorophores used are specific for laser scanners,
which can be pretty expensive (Marouga et al. 2005).

In Arabidopsis thaliana, DIGE was used for protein profiling post-infection with
cell culture of Fusarium sporotrichioides. It was observed that the infection
increased the activity rate of the enzymes, peroxidase, and phenylalanine
ammonialyase, which are associated with the metabolism of phenolic compounds
(Chivasa et al. 2006). In potato, comparative proteome analysis was performed using
DIGE that showed that about 50 proteins were differentially expressed and might
function in plant defense (Di Carli et al. 2010). Zea mays is one of the staple crops
and is often exposed to Aspergillus flavus infection leading to yield loss. In a study
conducted by Pechanova and group, protein profiling was performed using DIGE,
which revealed the significance of housekeeping as well as inducible proteins to
acquire resistance against the fungus (Pechanova et al. 2011). Orobanche crenata
infects legumes and leads to yield loss in the Mediterranean countries. To study the
molecular mechanism of the virus-host pathogenesis, 2D-DIGE was performed in
two different resistant cultivars of pea. The result showed a change in expression in
about 43 proteins when compared to the control and the infected ones (Castillejo
et al. 2012). Proteome analysis was performed in the susceptible and resistant hosts
post-infection with Sugarcane Mosaic Virus. The DIGE analysis of the virus and
host interaction revealed 17 proteins that were responsive to the virus and about
seven proteins with unknown functions (Wu et al. 2013). Erwinia amylovora causes
fire blight in the Rosaceae family. The outer membrane of the pathogen, showing
contrasting high and low virulence, was studied by protein profiling using 2D-DIGE
(Holtappels et al. 2016). 2D-DIGE was used to detect the protein abundance in
wheat infected with Fusarium head blight (FHB). Comparative protein analysis of
the QTL, Dfhb1 (confers resistance against FHB), in contrasting NIL of wheat
identified about 80 proteins with differential expression (Eldakak et al. 2018).

3.3.1.4 Mass Spectrometry
Though MS is not a gel-based technique, it is a follow-up procedure for identifying
the proteins in gel. Mass spectrometry has gained significant importance in protein
studies as it can reveal both the quality and the quantity of the proteins. In a mass
spectrometer, biomolecules are analyzed based on the mass-to-charge ratio (m/z) of
peptide ions that indicate the peptide sequence. Further, fragmentation analysis
reveals the structure of the peptide. The three major components of a basic mass
spectrometer are (1) source of ionization, (2) mass analyzer, and (3) a detector.
Detection of the mass-to-charge ratio is done mainly by combining either of the
5 mass analyzers, namely Fourier transform ion cyclotron resonance (FTICR), time
of flight (TOF), ion trap, quadrupole (Q), and orbitrap (Graham et al. 2007; Thelen
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and Miernyk 2012). Among these five, FTICR contains an ultra-high vacuum device
that entraps the ions for a longer time and shows the highest degree of mass accuracy
and sensitivity. FTICR helps develop a 3-D map of the protein sample by following
two major approaches: bottom-up and top-down. In top-down, the proteins are
intact, whereas in bottom-up fragmented proteins are used. This can be observed
in tandem mass spectrometers that use either two or more mass analyzers, and for
precursor fragmentation, in between the mass analyzers, collision-induced dissocia-
tion is used (MS/MS scan; de Hoffmann and Stroobant 2007). Detection by orbitrap
is based on harmonic oscillations of the ions. Presently linear ion trap quadrupole
Orbitrap (LTQ) is combined with increasing the levels of accuracy and sensitivity
(Hu et al. 2005). Altogether, as discussed, a handful of mass analyzers could be used
in various combinations to increase the resolution and accuracy of the proteome data.

In proteomics, MS soft ionization approaches are utilized in Matrix-assisted laser
desorption ionization, i.e., MALDI (Karas and Kruger 2003) and electrospray
ionization, i.e., ESI (Fenn 2002). In MALDI sample preparation, the digested protein
is mixed in solution and co-crystallized on a target plate. For this, the mass analyzer
used is the time of flight. 2D Protein spots selected for identification and sequencing
by mass spectrometer were either manually or robotically excised followed by
trypsin digestion (Shevchenko et al. 2006), with slight modifications. A laser beam
targets the MALDI plate for ionization. The ionized peptides are separated according
to the m/z ratio in TOF. MALDI-TOF is a robust technique and is less expensive. In
Electrospray Ionization (ESI), an electrospray needle direct the sample to the
ionizing source with a high potential difference from the needle (Fenn et al. 1989).
Ionization occurs in a strong electric field with elevated temperature in the ion source
(Mora et al. 2000; Fenn 2002). ESI can be combined with LC (Liquid chromatogra-
phy) to fractionate large molecules or generate various charges ions. SPR-MS
analysis, i.e., Surface Plasmon Resonance, can quantify protein interaction with
nucleic acid, protein, and drugs using surface-immobilized ligands. The structural
features of the interacting protein are understood by MS analysis. The sample
solution is allowed to pass over the surface containing immobilized ligands, and
SPR detects the interaction between the protein and ligand. This chip is further
evaluated using MALDI or ESI added with TOF. SPR can help detect non-specific
binding, PTMs, and protein interactions with other biomolecules (Bradbury et al.
2003). As per the need for the research, MS can be coupled with any of the above-
mentioned techniques for a better understanding of the proteome and its interactions
with other biomolecules.

As discussed earlier, there are different variants of MS and can be used in
combinations according to the need of the research. To study the plant-pathogen
interaction of Brassica napus and Leptosphaeria maculans, the proteome analysis of
the infected leaves was performed at different time intervals post-infection using
ESI-Q-TOF and ESI-IT MS/MS (Subramanian et al. 2005; Sharma et al. 2008). In
Oryza sativa, the proteome analysis of the apoplastic extracts was performed post-
infection with Magnaporthe oryzae using ESI-LC-MS/MS (Shenton et al. 2012). In
wheat grains, the grain development is significantly interrupted by the Blumeria
graminis infection. Comparative proteome analysis of the control and the infected
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samples has shown the differential expression of 43 proteins. This data could be used
for further molecular analysis of the host-pathogen interaction (Li et al. 2017). Until
now, researchers are facing difficulties in developing wheat cultivars that might
show resistance to Karnal bunt. Comparative proteome analysis of the Tilletia indica
low (TiP) and high (TiK) virulent strains was performed using MALDI-TOF/TOF.
Eventually, it was found that the pathogenicity factor is oxalic acid as TiK isolates
were found to be a malate dehydrogenase (Pandey et al. 2019). Xanthomonas
axonopodis is a bacterial pathogen that infects several crop plants. With the use of
MALDI-TOF, comparative proteome analysis was performed in 32 Xanthomonas
axonopodis strains, and a mass spectrum was created. This data would further help in
the study of plant-pathogen interaction (Sindt et al. 2018). Rice is often exposed to
blast disease and salicylic acid (SA) signalling plays an important role in plant
defense. Here, MALDI-TOF was implied in studying the phosphoproteomics during
blast infection in contrasting rice cultivars resistant and susceptible to blast. The
study revealed that SA increases rice resistance by regulating antioxidants (Sun
et al. 2019).

3.3.1.5 Studying the Post-Translationally Modified Proteins
Understanding the post-translational modifications can help in comprehending the
mechanism underlying plant-pathogen interaction. However, such modifications
occur at very minute levels in proteins and are hard to detect. Multidimensional
separation of protein samples could be achieved by affinity chromatography coupled
with reverse-phase (RP). It enriches the post-translationally modified protein
samples and brings them to a level where an MS can detect them. Titanium dioxide
(TiO2) or dihydroxybenzoic acid (DHB) could be used to enrich phosphor-
containing proteins in SAX chromatography, whereas charged peptide centric are
used in SCX chromatography (Macek et al. 2009; Mohammed and Heck 2011) and
ions like Ga3+, Al3+, Fe3+, Zr3+ or Co2+ are utilized in IMAC (Ficarro et al. 2002).
These techniques can also be used in combination with better enrichment of the
PTMs. PTMs have a very dynamic nature. The dynamic nature and PTMs like
glycosylation and phosphorylation have significantly less stoichiometric
concentrations, making the enrichment step compulsory before performing MS
(Thingholm et al. 2009).

In plants, Nod-like receptors act as immune receptors, but their regulation is very
stringent as the upregulation may cause autoimmunity, whereas downregulation will
cause pathogen susceptibility (Xu et al. 2015). Evolution of novel effector in
Meloidogyne graminicola, MgGPP is abundantly expressed in initial stages when
infecting the rice plants by targeting the endoplasmic reticulum. Interestingly,
suppression of host response is when MgGPP undergoes N-glycosylation (Chen
et al. 2017). Xanthomonas oryzae pv. Oryzae contains a collection of 10 gigX genes
helping in glycosylation of flagellin that regulates virulent nature and the movement
of the pathogen (Yu et al. 2018). Cochliobolus carbonum infects maize, and to
inhibit histone deacetylases, and it secretes HC-toxin (HCT). During a study using
iTRAQ, it was seen that HCT is vital for infection, and it does so by changing the
histone deacetylases activity. This alteration in deacetylases' activity affects the
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acetylation process during the interaction of plant and pathogen (Walley et al. 2018).
In rice, the sumoylation pathway-related genes like AOS1 and UBA2 were deleted
to develop mutants. These mutants, when exposed to Magnaporthe oryzae, the
sumoylation genes were not appropriately expressed and inhibited the invasion
and growth of the fungus (Liu et al. 2018). Hence, it is evident that studying the
PTMs of proteins is imperative to reveal the mechanism underlying plant-pathogen
interaction.

3.3.2 Gel-Free Proteomics Approaches

Similar to gel-based approaches, several gel-free strategies to decipher the
proteomes during pathogen infection have been developed. Some of the widely
used shotgun or labelled quantification proteomics approaches to study the plant
defense responses are ICAT, SILAC, iTRAQ, MudPIT, and protein microarrays
(Gygi et al. 1999; Ross et al. 2004; Washburn et al. 2001; MacBeath 2002).

3.3.2.1 Stable Isotope Labelling by Amino Acids in Cell Culture
SILAC is an MS-based shotgun quantification technique that utilizes labelling of the
sample in vivo. Non-radioactive heavy isotopes are tagged to amino acids sample in
the culture medium, followed by detection using tandem MS (Geiger et al. 2011).
SILAC can only be performed on metabolically active samples like cultures in a
suspension medium, tissue-cultured plants, or pathogens that are grown in vitro
(Harsha and Pandey 2010). In comparison to other shotgun techniques, SILAC is
very costly as well as tedious. Owing to these limitations, so far, only two studies of
proteome analysis on plant-host interaction are performed (Phillips et al. 2011;
Rowland et al. 2015). Neurospora crassa secretome, cultured in the microcrystalline
cellulose, was characterized by Phillips’ group using SILAC and absolute quantifi-
cation. They showed that four proteins were responsible for the degradation of
cellulose by fungi, including cellobiohydrolases, endoglucanase, and glucosidase
(Phillips et al. 2011).

3.3.2.2 Isotope Coded Affinity Tag
ICAT involves isotopes that are chemically tagged to the sample proteins and
quantifies the difference in protein expression levels (Gygi et al. 1999). ICAT
reagents contain a protein-reactive group, a biotin tag, and a linker. ICAT reagent
can identify cysteine (thiol groups) amino acid in the sample. A chromatographic
fractionation strategy is applied to separate ICAT labelled proteins. Then, Tandem
MS is used to identify and quantify the protein samples (Shiio and Aebersold 2006).
However, this approach has not been much popular among researchers who study
plant-pathogen interactions.

3.3.2.3 Isobaric Tag for Relative and Absolute Quantification
iTRAQ is a popular approach that involves labelling almost all the digested protein
samples, and the approach quantifies a huge number of samples. This also widens
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proteome coverage as most of the trypsin digested protein samples will contain a
primary amino group that can be tagged (Ross et al. 2004; Zieske 2006). The labels
used are isobaric and are present evenly in each peptide, which increases the
detection sensitivity than the other shotgun methods (Evans et al. 2012). Unlike
other labelling approaches, direct labelling is done at the N-terminal and in lysine
residues of the protein sample mixture. Owing to its less sophisticated strategy,
iTRAQ has become an ideal quantification approach for plant-host interaction
studies.

iTRAQ was used in studying the molecular mechanism of Bradyrhizobium
japonicum infection in soybean roots (Nguyen et al. 2012). In Solanum
lycopersicum, a comparative proteome analysis was done using iTRAQ during
infection with Pseudomonas syringae (Parker et al. 2013). A combination of
iTRAQ-RNA-seq in Ziziphus jujuba infected with phytoplasma showed differential
expressions of about 37 genes responsible for multistep regulation post-infection
(Ye et al. 2017). Proteome analysis for Rhizoctonia solani infected resistant and
tolerant cultivars of cotton showed the differential expression of about 170 proteins,
and most of them were associated with ROS activity (Zhang et al. 2017). In a study
in Zea mays, iTRAQ was implied to demonstrate the damaging consequences of
Maize chlorotic mottle virus. It was seen that about 970 proteins were differentially
expressed, with about 310 downregulated and 660 upregulated (Dang et al. 2020).
iTRAQ was used to develop a comparative expression profile with two virulent
strains of Nilaparvata lugens that infect rice. The expression profile indicated that
about 258 proteins were differentially expressed, out of which about 151 were
upregulated (Zha and You 2020). Recently, Yang et al. studied the phenomenon
of heterologous superinfection exclusion (HSE) against Cucumber mosaic virus–
Fny strain in Nicotiana benthamiana. This HSE was developed by a prior infection
of the plant with a mild mutant strain of the Tobacco mosaic virus -43A. The
proteome analysis of superinfected samples was performed using iTRAQ, which
showed that TMV-43A could protect the plant from CMV (Yang et al. 2020). In
Chinese cabbage, iTRAQ was used to quantify the proteome during TuMV infec-
tion, and the differentially expressed proteins identified had a vital role in calcium
signalling, random lipid transfer, HSP, and WRKY transcription factor (Lyu
et al. 2020).

3.3.2.4 Multidimensional Protein Identification Technology
In MudPIT, the tryptic peptides are subjected to separation using a strong cation
exchanger and reversed-phase high-performance liquid chromatography. Post-
separation, the samples are subjected to mass spectral analysis (Issaq et al. 2005;
Washburn et al. 2001). It produces a huge number of peptides contained in the
sample. MudPIT is a relatively fast and sensitive technique with an enhanced
reproducibility rate. One of the major drawbacks of this approach is that it cannot
quantify the sample information (Rose et al. 2004). In tomato, wilt and canker are
caused by the pathogen Clavibacter michiganensis though the pathogenesis mecha-
nism is not well understood. MudPIT was implied in delineating the molecular
mechanism of the plant-host interaction that revealed that the pathogen secrets
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various hydrolytic enzymes, which is recognized by the LOX1 protein of the plant
and activation of defense machinery (Savidor et al. 2012). Rice leaves were infected
with Magnaporthe oryzae strains viz. KJ401 (incompatible) and KJ301 (compati-
ble). The proteome of the infected leaf and the control was studied using MudPIT
combined with MALDI-TOF MS. About 730 proteins were identified from the
secretory proteome, which contained 60 percent of pathogen protein and 40 percent
host proteins. The rice proteins were related to energy metabolism and ROS activa-
tion. The pathogen proteins include cell wall hydrolyzing enzymes (Gon et al. 2012).
MudPIT was also used to analyze the differential expression of the protein in rice
when infested with Schizotetranychus oryzae, a phytophagous mite. The data
revealed that 11 proteins were upregulated in the control and one protein was
upregulated during the later stages of infestation. This data was further correlated
with RT-qPCR analysis that indicated these proteins might interfere with the meta-
bolic processes in rice leaf (Blasi et al. 2017).

3.4 Metabolomics

There has been a significant improvement in omics technology, among which the
metabolomics approach has successfully been applied for studying plants and
microbes. The metabolomics approach is the qualitative and quantitative study of
tiny endogenous molecules having a molecular weight below 1000 Da present
within cells at a particular time and condition (Feng et al. 2020). Metabolites are
the downstream processing end product of genes and proteins that directly affect the
phenotypic character of a plant, i.e., curling, bending, yellowing, chlorosis, necrosis,
wilting, etc. The metabolomics platform is one of the best ways to understand a
particular trait that enables devising a better crop improvement strategy (Sharma
et al. 2018). The metabolic profiling process identifies metabolites involved in the
cellular metabolism of plants and pathogens. By this approach, the physiological and
biochemical state of any given tissue can be determined in resistant and susceptible
crop plants against the pathogen in a particular interval of time. Metabolomics has
also proven to be an effective technique to determine the functional role of a specific
gene in metabolic pathways (Zhu et al. 2018). The combined approaches of
transcriptomics, proteomics, and metabolomics have categorized the genes of the
biomarker metabolic compound. The metabolomics approach has been used in
different crop species associated with unfavorable stress conditions (Zeiss et al.
2019; Schaker et al. 2017; Thomason et al. 2018; Kumar et al. 2017), and success-
fully selected the better trait which is used in crop improvement. In studying plant-
pathogen interaction, the metabolomics study identifies defense responsive
metabolites. This enables the development of metabolic engineering technology to
be an excellent approach to developing disease-resistant plants (Fig. 3.2).
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3.4.1 Overview of Plant Metabolites

Plant metabolites are categorized into two types, primary and secondary metabolites
(Table 3.1). These two forms play different roles in plant metabolomics processes.
Primary metabolites generally help in plant growth, development, and reproduction,
i.e., carbohydrate, protein, amino acid, etc. In contrast, secondary metabolites play
an active role in defense mechanisms to overcome biotic and abiotic stress
conditions. Primary metabolites are synthesized by metabolism pathways such as
the pentose phosphate pathway, nucleoside diphosphate sugar pathway, glycolysis,
and tricarboxylic acid cycle. These primary metabolites help in the building of
secondary metabolites. Secondary metabolites again are categorized into different
classes such as fatty acids, terpenoids, phenylpropanoids, alkaloids glycosides,
lignin, lignans, tannins, flavonoids, quinines, stilbenes, etc. which repel pathogens,
avoid herbivores as well as protect the plants from different environmental
conditions like light, temperature, water, toxic metals, and nutrient deficiency, etc.
(Thomason et al. 2018).

Fig. 3.2 Metabolomics pipeline to understand the response of plants to biotic stresses. Broadly, the
approach involves sample preparation, metabolomics data analyzation, compound identification,
and statistical analysis
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3.4.2 Biochemical Effect of Metabolites on Plant-Pathogen
and Plant-Environment Interaction

In nature, sessile plants are continuously exposed to several biotic stresses leading to
yield loss. These biotic stresses could be pests, nematodes, bacteria, fungus, or
insects. The most devastating pest, Brown plant Hopper, and the most destructive
bacterial pathogen Xanthomonas oryzae pv. oryzae (Xoo) of rice causes a massive
loss in productivity. However, the resistance rice cultivars have been released by
breeding effort, and defense metabolic response of different rice varieties are
characterized against pests and pathogen (Kang et al. 2019; Sana et al. 2010).
Secondary metabolite has been involved in defense response by increasing callose
deposition in the cell wall to inhibit pathogen growth in sugarcane plants against
smut disease caused by Sporisorium scitamineum (Schaker et al. 2017). Several
different metabolites are synthesized in various resistant and susceptible crop plants
due to biotic and abiotic stresses. The susceptible plant associated with saline stress
conditions has accumulated more ROS that interacts with DNA, proteins, lipids, and
other pigments, leading to complete damage to the plant cell compared to the
resistant plant (Khan et al. 2019). Different enzymes such as polyphenol peroxidase
(PPO), superoxide dismutase (SOD), ascorbate peroxidase (APX), peroxidase
(POD) have involved in plant-pathogen interaction; however, SOD and POD enzy-
matic activities were increased in a resistant variety of pepper plant infected with
anthracnose disease (Padilha et al. 2019). A rapid increase in these antioxidant
enzymes and salicylic acid has acted as a defense system against Xoo pathogen
infection in rice plants. PPO plays a significant role in the pathogen defense
mechanism by catalyzing phenol to quinine (Shasmita et al. 2019). Sugar is a
major vital component for the growth and development of rice plants. Salicylic
acid regulates sugar content and enhances the tolerance capacity to salinity stress
conditions (Dong et al. 2011). Similarly, proline accumulation is one primary plant
response during environmental stress conditions, especially in water stress (Anjorin
et al. 2016). Sugar, protein, and plant phytohormones like cytokinin and ethylene
play an essential role in plants against stress conditions, particularly in pathogen
infection. The transgenic plant is protected against the harmful pathogen attack by
producing cytokinin phytohormone (Bari and Jones 2009). Despite these findings,
there is no clear evidence on the plants using a specific or similar pathway to defend
against a pathogen. This has necessitated the development of more advanced and
comprehensive tools and approaches to understand plant defense.

3.4.3 Prerequisites and Tools for Metabolomics Studies

Metabolomics is categorized into two groups, i.e., targeted and untargeted
metabolomics. Targeted metabolomics is based on biochemically characterized
and annotated metabolites, while untargeted metabolomics is based on chemically
unknown metabolites—both of these methods are used to characterize the
metabolites data by mass spectrometric analysis. In targeted metabolomics, a series
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of predefined analytes and prior knowledge determines whether the metabolites are
present. The targeted method is beneficial because it has higher specificity and
sensitivity than the untargeted metabolomics method. The untargeted approach
helps in the separation of very complex samples without any predefined data and
prior knowledge. Mass spectrometer and NMR are used for the best separation of
active metabolic compounds (Wallace et al. 2020).

3.4.3.1 MS-Based Methods
Separation and identification of metabolites are preferable when chromatography is
coupled with mass spectroscopy (MS). The detector of MS uses samples isolated
from gas chromatography, liquid chromatography, capillary electrophoresis, and
Fourier Transform Ion Cyclotron. The most common physical chromatographic
technique for untargeted metabolites is GC-MS, wherein samples are separated
based on polarity gradient and ionized at 70 eV. Due to the involvement of the
ionization process, the GC-MS approach is highly reproducible, and spectral data
can be easily collected and compared with the databases (Vinaixa et al. 2016). One
drawback of the GC-MS separation is that it makes the sample volatile and leaves the
underivatized compounds in the unnoticed form during analysis. To overcome the
situation, GC-TOF-MS has been used, which improves the separation of compounds
with similar peak values as it has higher sensitivity and gives an accurate measure-
ment of mass (Kumar et al. 2017). The LC-MS approach is used for comparative
separation of both untargeted and targeted metabolites present in multiple samples
without any prior knowledge. LC-MS profiling involves separating unique
metabolites by mass/charge ratio and retention time, which finally gives about
100–1000 peaks (Vinaixa et al. 2016). For analyzing secondary metabolites,
reverse-phase columns are used in LC-MS. It can separate a massive number of
structurally similar compounds. Moreover, ultra-performance liquid chromatogra-
phy (UPLC) has been developed, which is more useful for the separation of various
metabolites than high-performance liquid chromatography (HPLC) due to its higher
sensitivity and resolution capacity (Arrivault et al. 2009; Obata and Fernie 2012).

In recent years, CE-MS has been given significant attention to metabolomics
studies. It uses global metabolic profiling of various cationic and anionic
compounds. It is a useful analytical technique in which different metabolites are
separated according to their electrophoretic mobility (Ramautar et al. 2017). CE-MS
provides a distinct partition of both targeted and untargeted compounds. Its higher
resolution capacity can separate polar, neutral, charged, and hydrophobic active
metabolites based on charge and size (Ramautar and De Jong 2014). CE-MS is a
less time-consuming analysis with a low-cost effect and requires minimal sample
(Chen et al. 2019a).

One of the mass spectrometers based on Fourier transform technology, known as
FT-ICR-MS (Fourier transform ion cyclotron-resonance mass spectrometer),
analyses different fractions due to its higher sensitivity, mass accuracy, and ultra-
high resolution, i.e., 1,000,000 at 400 m/z (Viant and Sommer 2013). Typically, in
liquid chromatography (LC), the compound separation method is time-consuming
and could be overcome using FT-ICR-MS. Despite these techniques, several other
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MS-based detector chromatographic methods are used for isolation and identifica-
tion of active molecules, i.e., gas chromatography coupled with time of flight MS
(GC-TOF-MS), quadrupole rod tandem time of flight MS (Q-TOF-MS), triple
quadrupole MS (QQQ-MS), hydrophilic interaction liquid chromatography MS
(HILIC-MS), matrix-assisted laser desorption ionization MS (MALDI-MS),
MALDI with the time of flight MS (MALDI-TOF-MS), hydrophilic interaction
liquid chromatography MS (HILIC-MS), ion-pair LC with electrospray ionization
MS (IP-LC-ESI-MS; Chen et al. 2019a, b), ESI-triple quadrupole-linear ion trap
(Q TRAP)-MS (Long et al. 2019), ESI-LC-MS (Schaker et al. 2017), and ultra-high-
performance liquid chromatography MS (UHPLC-MS; Tugizimana et al. 2019).

3.4.3.2 NMR Profiling
Another important technique for identifying and characterizing metabolites is NMR
(Nuclear Magnetic Resonance). Metabolic compounds with lower molecular weight
are separated according to the nuclear atom’s magnetic properties by acquiring
energy transition under the magnetic field. The NMR profiling provides information
about a smaller molecule with <50 kDa size by screening, detection, quantification,
identification, and characterization. Several types of NMR spectrum, such as hydro-
gen (1H-NMR), carbon (13C-NMR), and phosphorus (31P-NMR), are used in the
NMR technique, but the hydrogen spectrum is mostly used (Deborde et al. 2019).
Several pathogens often infect tomato in nature, and the metabolite analysis in the
infected leaf was studied. The study revealed that only malic acid and glucose were
accumulated in the leaf tissue during viral infection, whereas upon bacterial infec-
tion, primary metabolites are accumulated (organic acids, rutin, phenyl compounds,
and amino acids; Lopez-Gresa et al. 2010). Grape berries are infected by the
pathogen Botrytis cinerea. The metabolites were studied in both control and infected
berries that indicated the accumulation of amino acids, namely, alanine, arginine,
proline, and glutamate. In the infected branches, accumulation of gluconate, succi-
nate, and glycerol was observed, which might help in the growth of the pathogen.
Thus, from NMR profiling post-infection, the host defense system, and the develop-
ment of the pathogen were understood (Hong et al. 2012).

3.4.4 Bioinformatic Tools, Databases, and Data Analysis

A huge amount of data could be generated from the above techniques, and that
requires extensive processing by several data processing software such as MZmine,
AMDIS, MarkerLynx, AnalyzerPro, MetAlign XCMS, ChromsTof, SIEVE,
MET-COFEA, MarkerView, MassProfiler, Progenesis QI, MSFACTS, etc.
(Kumar et al. 2017; Chen et al. 2019a). These bioinformatics tools and software
simplify a large amount of experimentally acquired data by alignment, correlation,
conversion, normalization, deconvolution, noise filtration, feature detection,
bucketing, etc. After processing of the metabolomics data, specific compounds are
identified using several metabolites annotation database such as PMDB (Plant
Metabolome Database), KEGG (Kyoto Encyclopedia of Genes and Genomes),
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ChEBI (Chemical Entities of Biological Interest), CAS (Chemical Abstracts Ser-
vice), DNP (Dictionary of natural products), NIST (National Institute of Standards
and Technology), Chemspider, PlantCyc, Knapsack, PubChem, METLIN, GOLM,
MetWare, etc. (Udayakumar et al. 2012; Lazar et al. 2015).

The metabolomics data identified from the above database can be analyzed using
bioinformatics-based statistical analysis, unsupervised analysis, and supervised
analysis. However, unsupervised and supervised analyses are included under multi-
variate data analysis (Bujak et al. 2015) such as principal component analysis (PCA),
partial least square discriminant analysis (PLS-DA), hierarchical cluster analysis
(HCA), orthogonal partial least squares discriminant analysis (OPLS-DA), the
multiple univariate data analysis (MUDA), the linear discriminant analysis (LDA),
and neural networks (NN), principal component regression (PCR), partial least
squares regression (PLSR), Sammon mapping multidimensional scaling (MDS),
mixture discriminant analysis (MDA), projection pursuit linear discriminant analysis
(LDA), flexible discriminant analysis (FDA), quadratic discriminant analysis
(QDA), variable importance in projection (VIP) plots, correlation map, K-means
clustering, heat map, boxplot, chemometric modelling, and metabolomic pathways,
etc. Several statistical tools, i.e., MetPA, MetaboAnalyst, Cytoscape, are used for
multivariate analysis of the identified compounds. These analytical tools help the
more accessible selection, characterization of metabolic markers, and significant
analysis of metabolic pathways associated with defense response (Schaker et al.
2017; Tugizimana et al. 2019).

3.4.5 Metabolic Phenotype Study from mQTL to mGWAS

The plant produces several defense biomarker metabolites during stress conditions,
which directly links to their phenotypic character. So, these key metabolites act as
interlinking elements between genome sequence and phenotypic characteristics. For
understanding the defense metabolic trait within the plant genome, some advanced
metabolomics techniques such as metabolic Quantitative Trait Locus (mQTL) anal-
ysis and Genome-Wide Association Study (GWAS) are used (Hong et al. 2016).
Metabolic based Genome-Wide Association Study (mGWAS) is used to identify the
specific novel uncharacterized genes of the untargeted signature metabolites. The
chromatographic metabolomics product was applied to mGWAS analysis to under-
stand the genetic control mechanism of defense bioactive compounds, and new
regulating genes have been discovered in Arabidopsis (Tong et al. 2018). The result
of mGWAS is validated through linkage map mQTL analysis. Similarly, numerous
secondary metabolites in maize plants help detect mQTL. It is more accessible
because of RNA sequencing as well as SNP data developed by genomics,
transcriptomics, and metabolomics technology (Wen et al. 2014). For mQTL detec-
tion, R/QTL software is used by interval mapping and composite interval mapping.
The functional annotation of specific defense genes associated with QTL loci is
studied by the VitisNet network database. Using the mQTL analysis, five resistance
motifs have been found on chromosome 18 of grapevine species, which provided
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resistance to several diseases caused by pathogens (Teh et al. 2019). QTL mapping
gives information about the complex and specific trait, whereas combining the
mGWAS-transcriptomics network can identify novel genes and pathways of the
metabolic defense process. The overall result helps breeder for selection of unique
genotype of plant for biomarker metabolites assisted breeding program.

Except for these, there is a combination of metabolomics approaches with several
advanced biotechnological experiments such as RNAi and gene knockout. Reverse
genetic tools help in deciphering the function of the target gene in the biochemical
reaction of the metabolic pathways. Metabolomics of mutant and transgenic
Arabidopsis plant was analyzed by gene knock-out technology, and different bioac-
tive compounds have been identified from each plant (Fukushima et al. 2014).
Furthermore, genome editing technology can also study stress resistance genes or
mutual interactive defense responsive genes by generating multiple mutant plants.
Their metabolic profiling data can give more information about the biochemical
reaction in the defense mechanism.

3.4.6 Metabolic Engineering

Metabolic engineering is an approach in which cellular networks are altered and
modified to achieve the production of a desired metabolic compound(s). Cellular
metabolomics activity is increased by enzymatic modifications involved in the
regulation of plant defense function. The metabolic engineering technique provides
resistance to transgenic plants against stress conditions and enhances nutritional
properties. The process involves a full analytical study of the biosynthesis pathway
of the desired metabolite and understanding the specific step in the path that could be
altered, followed by the change in the natural biosynthesis pathway without any
harmful side effects on the plant. The target gene is modified or manipulated in the
biosynthetic pathway by RNA interference, antisense gene, gene knockout,
CRISPR-Cas9 system, mutagenesis, and other recombinant approaches (Chownk
et al. 2019). Many biotic and abiotic stress-tolerant plants have been developed by
changing the gene expression of target metabolic compounds. Not only specific
genes but also transcription factors could be modulated to enhance stress-tolerant
plants. These transcription factors have disease resistance and stress management
function, e.g., MAPK (Mitogen-activated protein kinase), DREB1 (Dehydration
responsive element binding protein), and WRKY, etc. Secondary metabolites such
as terpenoids, phenylpropanoids, flavonoids, etc. are accumulated in stress-resistant
plants. So, technically, if the secondary metabolites are targeted, the stress tolerance
power of plants will also be improved. Genes involved in secondary metabolites
have been cloned and expressed in other (transgenic) plants to achieve stress
tolerance. So, by this metabolic engineering system of defense metabolites biosyn-
thesis pathways, several transgenic plants have been developed that possess consid-
erable tolerance to a broad spectrum of pathogens (Ganjewala et al. 2019).
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3.4.7 Metabolic Engineering of Terpenoid Compounds

Aphids are pests that cause yield loss in several crops. So aphid resistance gene
(E)-β-Farnesene (EβF) synthases have been engineered in different transgenic crop
plants, which converted farnesyl diphosphate to EβF that repulses aphid attraction
towards plant (Yu et al. 2012). The transgenic tobacco plant is engineered with
terpene synthase gene GhTPS12 derived from a cotton plant that produces a terpe-
noid defense compound, linalool, which reduces oviposition by moth Helicoverpa
armigera in transgenic tobacco plant as compared to wild plant (Huang et al. 2018).
Similarly, the acetoacetyl-CoA thiolase (AACT) gene has been overexpressed in the
alfalfa plant to cope with salt stress conditions (Ganjewala et al. 2019). FtbHLH3
gene is a drought tolerance gene induced by polyethylene glycol, and abscisic acid
has been characterized from Fagopyrum tataricum plant and overexpressed in
Arabidopsis thaliana to increase the drought tolerance mechanism (Yao et al. 2017).

Polyphenol oxidase (PPO) expressed in the tomato plant has been shown to elicit
plant defense mechanisms against several pests and pathogens. PPO overexpressed
transgenic tomato plant has increased resistance to the bacterial pathogen, Pseudo-
monas syringae, wherein reduced bacterial growth on infected leaves compared with
the control plant has been observed (Li and Steffens 2002). Phytophthora root and
stem rot disease of soybean plant has been reduced by introducing the harpin
protein-encoding gene, i.e., hrpZpsta from Pseudomonas syringae into the soybean
plant by Agrobacterium transformation. The transgenic plants showed upregulation
of several enzymes such as PPO, PAL, peroxidase, and superoxide dismutase during
pathogen infection (Du et al. 2018). CaPAL1 gene from Capsicum annuum was
overexpressed in Arabidopsis thaliana, which increased resistance to pathogens
such as Pseudomonas syringae pv. tomato (Pst), Hyaloperonospora arabidopsidis
by accumulating salicylic acid (Kim and Hwang 2014).

Secondary metabolites synthesized from the flavonoid biosynthesis pathway are
responsible for plant stress response mechanisms. Plants and microbes have been
used as model organisms for the metabolic engineering program. Overexpression of
isoflavone 7-O methyltransferase gene produces 4-O-methylisoflavonoid phyto-
alexin, which has enhanced disease resistance alfalfa plant against the fungal
pathogen, Phoma medicaginis (He and Dixon 2000). Similarly, development of
resistance in pea plant against Nectria haematococca was achieved by
downregulating the expression of 6-α-hydroxymaackiain-3-O-methyltransferase
(Wu and VanEtten 2004). F3H gene of tea plant has been overexpressed in the
tobacco plant, which provided resistance under biotic and abiotic stress conditions
(Chownk et al. 2019). Nicotiana tabacum transgenic plant with NtMYB4 gene
suppression has increased flavonoid compound rutins accumulation and improved
salt tolerance response and also suggested to confer resistance towards a few
pathogens (Chen et al. 2019c). Integration of the omics techniques mentioned
above could help in developing elite varieties of any crop. Due to the improved
biotic and abiotic stress-tolerant plant by metabolic engineering technique, the
productivity of crops can be increased that would address the nutritional food
security to the rapidly rising world population (Tatsis and Connor 2016).
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3.4.8 Biological Assays

Bioassays evaluate the effect of the transgene in the transgenic plant. Bioassay
approaches are inexpensive and straightforward, which can be experimented in both
in vitro and in vivo conditions to characterize the transgenic plants. These techniques
are also applied to characterize disease resistance and susceptibility of plants against
pathogens. For instance, PPO activity assay was performed in PPO overexpressed
transgenic tomato plants that revealed the bacterial disease resistance which was
achieved by increased activity of Polyphenol oxidase (PPO) (Li and Steffens 2002).
Aphid resistant gene inserted in transgenic Arabidopsis plant was taken for aphid
behavioral assay in which the agitation response of nymphs depended on defense
metabolite concentration and duration of exposure to defense metabolite. It helped to
determine the aphid resistant potential of the transgenic plant (Bhatia et al. 2015). In
vitro and in vivo bioassays were performed to evaluate antifungal transgenes
expressed in transgenic plants (Koppad and Panneerselvam 2016). The nematode
mortality assessment has determined a comparative resistant and susceptible nature
of nematode infected soybean plant. Different mortality rates of nematode incubated
with important metabolic compounds were analyzed by SPSS software and found
anti-nematode compounds (Kang et al. 2018). Transgenic Arabidopsis plant
engineered with the PAL1 gene, which provides pathogen tolerance to plant was
analyzed by PAL activity assay to find out the overexpressed enzymatic activity
(Kim and Hwang 2014). Drought tolerant transgenic plants have increased antioxi-
dant flavonoid content and decreased the ROS level (Rao et al. 2020).

3.5 Conclusions and Future Perspectives

Transcriptomics is a dynamic field that provides more insights into gene expression,
their regulation, and functional characterization, which altogether sheds light on the
precise roles of genes. Further, transcriptomics helps to overcome the demerits of
studying genomics alone to deduce a gene function. For instance, genomics will not
provide information on the alternate splicing, post-transcriptional regulation, and
differential expression of genes; however, transcriptomics deals with these aspects to
provide further insights. Being a vivacious field of research, transcriptomics has seen
a tremendous growth year-by-year in terms of the introduction of new tools and
strategies to improvise and accelerate the study of genes and gene expressions. The
sequencing-based approaches are in the limelight at present, as they offer a high-
throughput analysis of the transcriptome at a genome-wide scale. RNA-seq is highly
favored to date and has developed branches for analyzing specific RNA datasets,
including strand-specific RNA-seq, bulked segregant RNA-seq, double-stranded
RNA-seq, differential RNA-seq, single-cell RNA-seq, etc. Thus, RNA-seq serves
as a versatile platform to dissect the intricate complexities that exist in
transcriptomes and their regulations. The field is expected to expand its horizon
further to gain a better and precise understanding of each gene present in a given
genome.
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Proteomic approaches help decipher the complex relationship between stress
tolerance and crop productivity, enabling the development of novel plant breeding
strategies with high yield and better adapted to withstand environmental changes.
The advancement in the MS-based strategies gives a wealth of knowledge of the
plant signalling proteomics during host-pathogen interaction. It generates enormous
data sets regarding the protein; sequence, quality and quantity, modification, and
structure during plants’ growth and development. The study of PTMs has become
crucial in plant–pathogen interaction as modification in the amino acids may help
decipher pathogenesis and plant defense mechanisms. Combining multiple quanti-
tative proteomic techniques is highly beneficial. They yield complementary datasets
that improve the understanding of plant defense mechanisms and provide an
in-depth characterization of proteins with respect to their abundance and in stress
management and plant immunity.

Metabolomics studies the tiniest biomolecules and deciphers the vast signalling
pathways related to plant-host interaction and plant defense mechanisms. In order to
discriminate between host and pathogen metabolites, which is a significant issue,
either one could be labelled with heavy isotopes. Due to the lack of plant-pathogen
databases, it is very difficult to identify unknown compounds. Annotation of
metabolites is difficult as plant–pathogen interaction is a complex process, and
also, it is challenging to study the secondary metabolism pathway, hence making
metabolite identification a very tedious job. These omics technologies, when used
alone, they do not give enough information on plant–pathogen interaction. Thus, the
integration of omics technologies is preferred to decipher the whole signaling
pathway, from the genotype to the phenotype (Fig. 3.3). Linking genomics data to

Fig. 3.3 Schematic representation of the different omics approaches that provide insights into
different levels of information encoded in gene, transcript, protein, and metabolite
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proteomics data is easier than linking the genotype data to the phenotype. There is no
direct pathway with which the metabolites will alter the phenotype. Collaborative
integration of genomics and proteomics data to the metabolomics data will fast-track
the research in plant-host interaction. Omics data integration is a difficult task.
Although few platforms give multi-omics data access, it is not user-friendly and
needs expertise in bioinformatics. Plant-pathogen interaction could be thoroughly
studied using multi-omics approaches, and pathogen-resistant/tolerant crops could
be developed using various genome editing tools.
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The Early Blight of Tomato: Omics
Interventions Toward Controlling Disease
Spread and Development

4

Abhay K. Pandey, Ajit Kumar Savani, and Pooja Singh

Abstract

Alternaria spp. is a polyphagous necrotrophic pathogen and infects many crops.
In tomato, two species of Alternaria, namely A. solani and A. alternata cause
infection. Particularly, A. solani infects leaves/stem and causes early blight (EB),
which is a major yield-limiting disease of tomato worldwide, while A. alternata
only infects fruit and stem leading to canker disease. This virulent pathogen
causes severe damages to both fruits and plants of tomato. In the past decades,
this disease was managed through an integrated approach using chemicals and
bio-fungicides as well as through host-plant resistance. In the era of molecular
biology, the ongoing efforts to reduce the pathogenic nature of Alternaria species,
integration of omics technologies such as genomics, transcriptomics, proteomics,
and metabolomics have recently been an advanced approach for understanding
the pathogenesis and defense mechanisms involved in Alternaria and tomato
plant interaction. The studies of omics will offer a basis for improving breeding
programs through genetic manipulation that will ultimately lead to the possible
protection of tomatoes from EB infection. In this chapter, we have described the
disease symptoms, epidemiology, and current integrated management practices
for EB along with knowledge gaps. In addition, an attempt is made to highlight
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the current research progress in tomato plant responses against EB stress using
omics tools. We also deliberate the break that recent technologies of omics can
provide to investigate tomato–EB pathogen interaction to project potential man-
agement strategies through crop improvement.

Keywords

Alternaria spp. · Solanum lycopersicum · Chemical and biological control ·
Genomics · Transcriptomics · Proteomics · Metabolomics · Disease control

4.1 Introduction

Worldwide, tomato, Solanum lycopersicum L. is one of the most important
vegetables cultivated for its edible fruits, grown for various purposes such as for
use as fresh as well as several industrial purposes (Islam et al. 2013). According to a
report of FAO (2018), the total world production of tomato was 182 million tones
(MT), with China as the largest producer of tomato producing 61.5% MT of tomato
annually, followed by India (19.4 MT), USA (12.6 MT), Turkey (12.2 MT), and
Egypt (6.6 MT). Tomato is a rich source of 17% of vitamin C of the daily value,
contains 4% carbohydrates, and<1% each of protein and fat (FAO 2018). However,
the worldwide production of tomatoes is constrained by several biotic and abiotic
stresses, which adversely affect the quantity, quality, and profitability (Engindeniz
and Ozturk 2013).

In biotic stresses, the diseases caused by fungal pathogens are particularly crucial
in terms of production and quality (Sain and Pandey 2016). During the cropping
periods, tomato plants are attacked by several roots and foliar fungal diseases. The
wilt caused by Rhizoctonia solani and Fusarium oxysporum f. sp. lycopersici and
damping-off by Pythium aphanidermatum are the major root rot diseases, while
early blight incited by Alternaria solani or A. alternata, Septoria leaf spot by
Septoria lycopersici, and late blight by Phytophthora infestans are the major foliar
fungal diseases (Agrios 2005).

Among these diseases, early blight (EB) is one of the most severe diseases of
tomato, causing 50–90% loss of the total production worldwide under favorable
condition (Iqbal et al. 2019). For the management of this disease, growers rely on the
use of chemicals (Mizubuti et al. 2007) and biological fungicides. But, the
bio-fungicides are slow in their activity, and due to the retention of chemical
fungicide residues in the vegetables, their use should be minimized (Stangarlin
et al. 2011) and necessitates an alternative for disease management. In addition,
small farmers growing tomatoes do not practice protective gears during the applica-
tion of chemical fungicides and are not aware of the dilution instructions, thus
compromising their own safety (Damalas and Koutroubas 2015). Therefore, these
requirements have become more severe, especially in the amounts of chemical
residues remaining in the fresh vegetables (European Commission 2012).
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During recent years, using omics technology for the management of diseases of
tomatoes has been found helpful to reduce the fungicidal risks problems (AbuQamar
et al. 2016). Understanding the host responses and mechanisms toward a particular
disease by deploying omics technologies is essential to improve the defense mecha-
nism of tomato plants through breeding programs or by emerging ad hoc biotech-
nology strategies. Particularly, there is a great interest to improve tomato crops that
could be free from EB, due to its global relevance as fresh and processed produce.
Available literature revealed that little work has been done on the role of omics
technology such as genomics or transcriptomics, proteomics, and metabolomics in
understanding the Alternaria � tomato interaction and the management of EB. This
chapter captures the latest significant studies in epidemiology, host range, and
current integrated disease management strategies. In addition, we focus on the
modern approaches regarding recent omics interventions for the potential manage-
ment of EB disease along with knowledge gaps to deliver a role for the exploitation
of candidate genes of interest and their additional analyses, offering trait-specific
markers suitable for the improvement of tomato.

4.2 Disease Symptoms and the Biology of Causal Organism

Different pathogenic species of Alternaria can be distinguished by the symptoms
produced on different plant parts. Initially, symptoms appear on the lower leaves as
concentric rings in dark brown spots, which is the primary characteristic symptom of
this disease (Fig. 4.1a, b). During humid weather, the disease progresses upwards,
the areas affected by pathogen merge and form dark brown patches on the whole
leaves. Under severe conditions, infected leaves may shrink and fall prematurely,
resulting in early defoliation. On fruits, the infection takes place at the stalk end in
the form of dark brown spots near the place of attachment with the fruit (Fig. 4.1c).

Worldwide, five different species of Alternaria, namely A. alternata, A. linariae
(syn. A. tomatophila), A. solani, A. tenuissima, and A. grandis have been identified
as the causal agents of EB of tomato (Bessadat et al. 2017). However, A. solani (Ell.
And Mart) and A. alternata (Fr.) are the prevalent species. The mycelium of
A. solani consists of branched, septate, light brown hyphae, which with age become
darker. Conidiophores are relatively shorter, i.e. 50–90μm with dark color.
Alternaria conidia are typically beaked, muriform, dark, and borne single or in
chains, with 5–10 transverse septa and some time in each conidium a few longitudi-
nal septa are present (Fig. 4.1d). Alternaria alternata possesses much fluffy margin
with off white color colonies, which turn into dusky neutral gray within 96 h. Later
these colonies become nearly grayish black.
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4.3 Host Range and Pathogen Variability

The Alternaria species has a wide host range. It infects both arable crops such as
crucifers, solanaceous crops, leafy vegetables (Loganathan et al. 2016) and planta-
tion crops like tea, coconut, etc. (Rao and Subrahamanyam 1976). Based on patho-
genicity tests on tomatoes, both A. alternata and A. solani isolates have been
classified under the virulent category (Loganathan et al. 2016). Few species of
A. solani (non-pathogenic) have been found to promote growth in chili plants instead
of its pathogenic nature (Mauricio-Castillo et al. 2020). It is also reported the
A. solani isolated from the different hosts exhibited pronounced variability in their
pathogenicity. Also, the growth of isolates was influenced by the type of nutrients
provided in the media, and among the different sources of nutrition provided, V8
juice agar supported the sporulation of the fungus (Pasche et al. 2004; Kumar et al.
2008). Several researchers reported the effect of lights such as blue or UV light on
the sporulation of A. solani and other species, A. tegetica, A. alternata, and
A. kikuchiana (Prasad and Dutt 1974; Cotty 1987; Fourtouni et al. 1998).

Fig. 4.1 Early blight symptoms of tomato on leaves (a), stem (b), fruits (c), and conidia of
Alternaria solani (d)
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4.4 Epidemiology and Disease Development

The Alternaria species infect tomatoes are overwintered in diseased plant debris. It
can survive in, or on the soil, atleast one of perhaps several years. The pathogen is
seed-borne (Khulbe and Sati 1987; Shahida and Abdul 1995) and can be introduced
through the infected seeds. Primary infection takes place first on lower leaves, and
conidia are formed in crop debris left in the soil. The conidia developed on the
primary spot helps in the secondary spread of the disease. These conidia are blown
by wind or water or insects through the neighboring leaves/plants. The infection
generally occurs through stomata, but Alternaria spp. are also capable of direct
penetration.

The disease severity was reported maximum in crops sown during June–July
compared to September–October and January–April planted crops (Data and Mayee
1981). Prevalence of high humidity and soil moisture favors the disease develop-
ment during July, August, and September months. The optimum temperature
required for the growth of Alternaria spp. is 28–30 �C for A. solani and 20–25 �C
for A. alternata (Sahi 1990; Singh 1995). Once the infection has occurred, conidial
dispersion continues throughout the growing season. Datar and Mayee (1982)
reported the maximum dispersal of conidia occurs during the advanced stage of
the symptom development and particularly between 9 am and 12 pm.

Among the fungal diseases, EB incited by A. solani or A. alternata is one of the
major severe concerns due to substantial yield losses in tomatoes. This ascomycete
pathogen usually infects tomato, potato, and eggplant. The disease is promoted by
warm temperature with long periods of leaf wetness, dew, rainfall, and dense
cropping. During the fruiting period, tomato plants become more susceptible to
this pathogen (Cerkauskas 2005; Momel and Pemezny 2006). Although the disease
is termed as EB, it may occur at all stages of development. Early blight occurs in
three phases, leaf spots, fruit rot, and stem canker. Still, the foliar phase is more
destructive and accountable for significant economic losses sustained by tomato
producers (Chaerani and Voorrips 2006). The EB fungus can survive for several
days on the infected seeds, but it is still speculative that in the next season, whether
the seed-borne inoculum serves as a source of primary infection (Datar and Mayee
1982).

4.5 Existing Disease Mitigation Strategies

For the long term management of this disease, integrated disease management (IDM)
strategies such as crop rotation, breeding of resistant cultivars of tomato, use of
chemical and bio-fungicides have been practiced. Since Alternaria is both seed and
soil-borne pathogen, both seed treatment and foliar application are recommended for
disease management. Chemical and biological controls are the frequently adopted
control measure for EB.
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4.5.1 Chemical Fungicides

As far as chemical fungicides are concerned, mancozeb, hexaconazole, and zineb are
effective at different concentrations against EB in both in vitro and in vivo
conditions (Raza et al. 2016). At present, mancozeb is the most frequently used
fungicide against EB (Singh et al. 2020). Majumder et al. (2016) reported that ED50
(effective dose) of nanoformulation of mancozeb against A. solani was in the range
of 1.31–2.79 mg/L. In addition, mancozeb has also reduced the disease incidence of
EB in the Pusa Ruby variety of tomato (Kumar and Srivastava 2013; Gondal et al.
1993). Besides, mancozeb, hexaconazole (0.05%), and azoxystrobin have also
significantly managed the EB (Kumar et al. 2007). However, in the study of
Arunkumar (2006) only azoxystrobin at 0.05, 0.1, and 0.15% was found to be
more effective against EB than chlorothalonil, pyraclostrobin, and mancozeb. On
the contrary, Singh and Singh (2006) reported that hexaconazole was more effective
than chlorothalonil, azoxystrobin, mancozeb, propineb, and copper oxychloride.
Recently, Farooq et al. (2019) observed that pyraclostrobin was more efficient
against EB pathogen at 500 ppm, than that of hexaconazole and carbendazim. The
variable range of efficacy reported for the fungicides may be due to the different
isolates of the pathogens or active ingredients present in the chemical fungicides.

In addition, the fungicide resistance has also been reported for the EB pathogen,
A. solani due to the higher pathogenic and genetic variability among different
isolates, isolated from various agro-climatic regions (Pasche et al. 2004) and it
could also break down the genetic resistance of the host (van derWaals et al.
2004). Therefore, to reduce the risk of chemical fungicide resistance, fungicides
rotation strategies, use of different modes of action of fungicides through mixing
should be executed at the regional and national level where fungicide resistance is a
severe problem in EB prone areas. The increased use of fungicides to mitigate EB of
tomato requires the implementation of alternative disease control practices.

4.5.2 Biological and Botanical Control

In recent years, to minimize the use of chemical fungicides, investigations were
carried out to use the microbial biocontrol agents (MBCAs) and botanicals to combat
EB where it was severe. There are several formulations of Trichoderma spp. and
Pseudomonas spp. available in the markets that can be used against EB, and their
efficacy has been confirmed by conducting several investigations. In the late 2000s,
Varma et al. (2008) investigated that foliar spray of T. viride reduced EB severity
caused by A. solani. Other reports also evidenced that the antagonist’s Bacillus
amyloliquefaciens, Pseudomonas fluorescens, and T. harzianum were efficiently
controlled EB incidence in tomato (El-Rafai et al. 2003; Camlica and Tozlu 2019).

The antagonistic potential of these MBCAs is attributed to several extracellular
enzymes, PAL (phenylalanine ammonia-lyase), defense enzyme and oxidative
enzymes (polyphenol oxidase, peroxidase and superoxide dismutase), several anti-
fungal metabolites, presence of several enzymes and secondary metabolites (β-1,3-
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glucanase) produced by these MBCAs (Montealegre et al. 2010; Chowdappa et al.
2013). However, the slow activity of the MBCAs based fungicides limits their
application in EB management. In addition, the application of neem leaf extracts
has also been used to control EB incidence in tomato (Raza et al. 2016). In particular,
the active ingredient of neem leaf can be used for the formulation of next generation
fungicides that will have broad application in IDM as well as to reduce the residue
level and fungicide resistance problems.

4.6 Exploitation of Omics Approaches in Understanding
Tomato 3 Alternaria Interactions and for EB Management

To reduce the losses in tomato due to EB, developing resistant varieties can be an
economical and most effective management strategy (Panthee and Chen 2010;
Adhikari et al. 2017). For the development of resistant varieties, investigators
applied several genetic approaches. In particular, tomato plants show a high degree
of similarity in gene sequence with other solanaceous crops (Kumar and Khurana
2014), making the investigation easy to understand the genetic programs based on
interspecies knowledge transfer. The recent methodologies have established many
efficient omics methods to untangle the molecular mechanisms of tomato plant
response to A. solani to improve the detection and diagnosis of the pathogen
(Fig. 4.2).

Historically, in an organism the genome is a whole set of chromosomes, which
comprises all genes. The entire set of non-coding and coding RNAs is called a
transcriptome, while the collected proteins derived from a genome are termed as
proteome. Conversely, all metabolites present in the plant system are called the
metabolome. However, the defense systems in plants against a particular pathogen
cannot be studied uniquely through the genomic or transcriptomic methods, as they
involve not only the expression of several defense-related genes, but also the
incidence of post-translational modification or metabolites accumulation, affecting
the final gene products expression.

The omics tools such as metabolomics and proteomics, enabling the proteins and
metabolites interactions downstream of plant gene expression, may be practically
pooled with genome and transcriptome. Although these approaches are complex,
they can enhance our understanding of plant response mechanisms to fungal patho-
gen and other associated MBCAs, endophytes, and PGPR in a comprehensive way.
Moreover, the methods of metagenomics enable the further understanding of the
plant � associated microorganisms, offering an innovative prospect to sustain and
manage the production of tomatoes at larger scale, based on microbiomes.
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4.6.1 Search for the Resistant Cultivars against EB and Nature
of Resistance

The investigations were carried out worldwide to search the resistant/tolerant
cultivars of tomato against EB (Adhikari et al. 2017). However, till date there are
few EB-resistant tomato genotypes available. Out of 401 tomato genotypes screened
by Akhtar et al. (2019), only one genotype, i.e. “21,396” was found resistant against
EB. In addition, some investigators found that several wild species (Solanum
pimpinellifolium, S. peruvianum, S. chilense, and S. habrochaites) have been
identified as potential sources of resistance against EB (Poysa and Tu 1996;

Fig. 4.2 Schematic explanation of omics approaches used in future projects in the improvement of
resistance/tolerant to EB of tomato (PPI protein–protein interaction, DIGE differential gel electro-
phoresis, GC-MS gas chromatography-mass spectrometry)
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Thirthamallappa 2000; Foolad et al. 2000). Thus, these wild species can be exploited
in the breeding program.

In addition, HRC-G90.158, HRC90.145, HRC90.159, (Poysa and Tu 1996), and
IHR1816 F (Thirthamallappa 2000) have shown resistance toward EB. From India,
Lohith et al. (2011) reported four genotypes, such as EC251717, EC251709,
EC164295, and LE15 of tomato resistant against EB. In a recent report six genotypes
of tomato, such as NCEBR-1, NCEBR-4, Arka Rakshak, Arka Alok, Arka Saurabh,
and 8-3-3 have shown EB resistance (Amarnath et al. 2019a, b); however, these
genotypes were resistant in lab conditions and need further screening in the field.

Unfortunately, in the germplasm of tomatoes, there are only a few studies
describing wide explorations for promising resistance sources to an EB pathogen
(Adhikari et al. 2017; Nasr Esfahani 2019). In addition to 401 genotypes, Akhtar
et al. (2019) also screened inbred lines and 72 genotypes from ten species of wild
Solanum and found that none of the inbred lines was immune, highly resistant, or
resistant. However, some genotypes derived from S. galapagense (1), S. peruvianum
(1), S. pimpinellifolium (5), S. habrochaites (5 introgression lines), S. pennellii
(2 introgression lines), S. lycopersicum E-6203 � S. pimpinellifolium LA1589
(eight RILs) showed moderately resistant reaction. In tomato, the nature of resistance
is reported as polygenic in nature. Consequently, some genes present in tomato may
confer resistance to the leaf blight, whereas others may contribute stem or fruit rot
resistance (Stancheva et al. 1991; Chaerani et al. 2007). However, Barksdale and
Stoner (1977) reported that stem lesion resistance of EB was independent of EB
resistance on the leaves.

In the past decades, in the genotypes C1943 and 71B2, the EB resistance genes
were reported recessive and not allelic (Maiero et al. 1989). However, the F1 hybrids
were intermediate when these two resistance genes were crossed with another
susceptible genotype, indicating partial dominance or additive genetic control
(Maiero et al. 1989). Besides, the recessive genes have also been identified in the
genotypes 83,602,029 (Stancheva et al. 1991) and IHR1816 and IHR1939
(Thirthamallappa 2000) derived from S. lycopersicum. In addition to this, in
S. pimpinellifolium and S. habrochaites the partial dominant inheritance has been
reported (Martin and Hepperly 1987). Another tomato genotype, i.e. 87B187
derived from PI390662 (S. habrochaites), shared common resistance genes with
the genotype NCEBR-2 (Maiero et al. 1990a, b), even though this genotype was
developed via S. lycopersicum source, C1943. Moreover, Thirthamallappa (2000)
investigated independent genes in the genotypes IHR1816 and IHR1939, which
were derived from S. pimpinellifolium and S. habrochaites, respectively.

4.6.2 Identification of Quantitative Trait Loci (QTLs) for Resistance
to EB

The quantitative trait nature of EB makes selection more problematic as compared to
the qualitative traits. In the tomato breeding programs, QTL analysis and develop-
ment of molecular markers has been carried out in order to cognize the genetic
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control of EB resistance and to enable its introgression in tomatoes. Foolad et al.
(2002) identified ten QTLs for EB through the crossing of resistant (PI126445)
genotype derived from S. habrochaites and susceptible genotype (NC84173) of
tomato, and each QTL explained total phenotypic variation in the range of
8.4–25.9%, while the collective effect was more than 57%. A list of QTLs identified
by Foolad et al. (2002) for EB resistance in tomato is presented in Table 4.1. Later
on, by selective genotyping, Zhang et al. (2003) identified QTLs conferring EB
resistance in a L. esculentum � L. hirsutum cross. In addition, they also detected
seven QTLs for EB resistance in a trait marker analysis (Zhang et al. 2003).
However, the success in incorporating resistance in tomato is limited because most
of the breeding lines such as NCEBR-4 (Gardner and Shoemaker 1999), NCEBR1,
NCEBR-2 (Gardner 1988), and HRC90.303, HRC91.341 (Poysa and Tu 1996) were
late maturing, relatively low yielding, and indeterminate. These accessions were

Table 4.1 Quantitative traits loci (QTLs) detected for EB resistance in tomato

QTLs Chromosome Interval Phenotypica variation explained (%)

BC1

EBR1.1 1 TG559—TG208A 21.9

EBR2.1 2 TG337—CT59 15.3

EBR5.2 5 CT202—TG318 8.4

EBR6.1 6 TG279—CT107B 7.6

EBR8.1 8 TG176—CT92 7.3

EBR9.1 9 RLRR-130—CLRR-950 13.6

EBR9.2 9 SS14-520.3—TG429 16.2

EBR9.3 9 SS19-530—CT143 15.9

EBR10.1 10 TG241—TG403 20.2

EBR11.1 11 CT168—TG508 13.3

EBR12.2 12 SS14-520.1—SS1-530.1 13.4

BC1S1 (self-pollinated progeny of BC1)

EBR1.1 1 TG559—TG208A 11.9

EBR2.1 2 TG337—CT59 15.9

EBR3.1 3 TG411—TG214 9.1

EBR5.1 5 TG441—CT242 7.9

EBR5.2 5 XLRR-370—SAS5-250.3 11.2

EBR8.1 8 CD40—TG176 10.3

EBR8.2 8 TG330—TG294 21.0

EBR9.1 9 CLRR-950—SAS5–250.1 25.0

EBR10.1 10 TG241—TG403 16.3

EBR11.1 11 TG508—TG651 11.5

EBR11.2 11 CT55—CD17 9.9

EBR11.3 11 SAS11-760.2—TG393 11.5

EBR12.1 12 TG68—CT79 8.2
aBased on simple interval mapping in BC1 and BC1S1 populations of an interspecific cross between
L. hirsutum (PI126445; EB resistant) and L. esculentum (NC84173; EB susceptible), Source:
Foolad et al. (2002)
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derived from L. hirsutum. In 2007, Chaerani et al. (2007) identified three resistant
QTLs to stem lesions from F2 and F3 populations derived from a cross between
S. peruvianum LA2157 (resistant) and S. lycopersicum cv. Solentos (susceptible),
and that explained 35% of the phenotypic variance. These QTLs can be used for the
development of markers against EB in tomatoes.

4.6.3 Genomics Studies of Host and Pathogen

In the recent era of molecular biology, gene sequencing-based approaches remain
economical, and both the pyro-sequencing and traditional Sanger dideoxy nucleotide
have demonstrated their usefulness for confirmatory sequencing (Pareek et al. 2011).
The EB pathogen, A. alternata or A. solani has become perfect for dividing the
complexity of necrotrophic fungal pathogens and a wide range of pathogenicity of
various crops. The pathogen may survive in diverse ecological stresses that promote
or inhibit the infections on their host plants such as tomato (Ahlem et al. 2012).

Recently, based on conserved DNA sequences the genus Alternaria has been
modernized (Ozkilinc et al. 2017; Woundenberg et al. 2014). It was confirmed that
some species of Alternaria, i.e. A. grandis and A. protenta closely related to
A. solani (Duarte et al. 2014), can also incite EB in tomato and potato (Ayad et al.
2017; Bessadat et al. 2016). To understand the A. alternata or A. solani–plant
interactions in-depth at whole genome level, the whole genome sequence of
A. alternata isolated from onion was studied. Its total genome size
was 33.12 Mb with 50.9% GC content and 11,701 predicted coding sequences
(Bihon et al. 2016). In addtion, A. alternata isolates from sorghum had 27 scaffolds,
and the total genome size was 33.5 Mb (Nguyen et al. 2016). However, the partial
sequence for A. alternata isolated from tomato is available (Gherbawy et al. 2018).
Although, in the past, genomes of many Alternaria species (Hu et al. 2012),
including A. solani, have been sequenced (Dang et al. 2015; Woudenberg et al.
2015), but due to analysis based on short-read sequencing, most of these genome
assemblies were highly fragmented. Still, in discovering new genes, this information
can be useful to clarify the classification and taxonomy of Alternaria species, and
they enable comparative genomics.

Therefore, to produce fungal genomes having high-quality assemblies, use of
long reads derived from PacBio-SMRT (Pacific Biosciences-single-molecule real-
time) sequencing tools is a most prevalent method (Faino et al. 2015). This has been
recently explained for the pathogen A. alternata (Nguyen et al. 2016). In particular,
the assembly of a contiguous genome for the study of plant pathogenic fungi is
essential because the genes coding the disease development effector proteins are
often existing in fast-evolving that are challenging to assemble (Thomma et al.
2016). Likewise, understanding about related chromosomes and the gene organiza-
tion helps in the gene cluster identification that has a major role in the secondary
metabolite production, and together the characterization of potential provisionally
expendable chromosomes helps in studying the pathogenicity of Alternaria spp.
(Thomma et al. 2016).
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Recently, Wolters et al. (2018) sequenced the A. solani causing EB in tomato and
potato of genome size 33.1 Mb comprises about 99% of the total length of
chromosomes. They identified that A. solani has ten chromosomes. Similar results
were reported in an earlier study, in which genome sizes of A. solani was in the range
of 32.6–32.9 Mb (Dang et al. 2015; Woudenberg et al. 2015). Besides A. solani
genome sequenced by Wolters et al. (2018) showed a major advancement than that
of the earlier A. solani genome assemblies, which consisted of over 100 separate
contigs. Their genome sequencing analysis provides a concrete basis for the perfor-
mance of comparative genomics, which will help to understand the molecular basis
of pathogenicity of A. solani and other Alternaria species.

As far as the host is concerned, the first full genome sequence of tomato was
carried out (Tomato Genome Consortium 2012), which describes 35,000 genes on
12 chromosomes. Later on, Li et al. (2018) sequenced genome of 360 varieties of
tomato followed by Bolger et al. (2014) who sequenced the genome of S. pennellii, a
stress-tolerant tomato wild species. The tomato plant contains 83 SlWRKY genes,
which have several roles in the defense responses to both biotic and abiotic stresses
(Bai et al. 2018). In the tomato plant, most of the WRKYs genes act as positive
regulators of host responses to biotic stresses, whereas a lesser number of genes act
as negative regulators.

The releases of sequences of whole genome of A. alternata and A. solani and their
hosts will help in tackling the candidate genes responsible for virulence of Alternaria
species and the potential target genes in the tomato plant associated with resistance
against it. The genome sequences of tomatoes are very useful in understanding the
plant defense system against Alternaria species. The sequencing of the genome of
both host and pathogen will be also useful for the tomato breeders in developing
resistant hybrids through the selection of defense-related genes in host crop or
modification in virulent genes of the pathogen. As long as both Alternaria sp. and
tomato genomes have been sequenced, the gene expression analysis through whole
genome sequencing will tackle the critical factors in the pathogenesis of Alternaria
spp. and mechanisms of EB resistance in tomato.

4.6.4 Transcriptomics

The comparative gene expression analyses can be utilized to mine the guiding
information through transcriptomic technologies to generate data on biotic stress
modulations of gene expression in tomato plants. In the modern era of molecular
biology, RNAseq-based approaches are being used to study the transcriptomics in
both model and non-model plants or pathogens (Warren et al. 2007). Remarkably,
the transcriptome analysis of an organism helps to determine the pathogenesis-
related proteins to be efficient to various biotic stress conditions (Ali et al. 2018).
For instance, after the infection by a pathogen, plants produce pathogenicity-related
(PR) proteins and chitinase in response to chitin, which is a major component of the
cell wall of fungi (Adhikari et al. 2017).
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The antifungal influence of chitinases and several hydrolytic enzymes has been
determined against several foliar fungal pathogens, including A. solani. In addition,
the genes accountable for the production of PR proteins have considerable enhanced
resistance against pathogens causing EB and other pathogens in several arable crops
(McNeece et al. 2019; Upadhyay et al. 2014a, b). When Alternaria infects the
tomato plants, it suppresses both photosynthesis and metabolic processes such as
glycolysis, electron transport chain, etc. At the same time, the defense-related genes,
for instance, that encode chitinase, PR protein (PR2 and 3), and β-1, 3-glucanase
showed a higher level in the highly EB-resistant species of tomato (Moghaddama
et al. 2019). In addition, the expression of many secondary metabolites and defense-
related genes in tomato plants were also upregulated when attacked by Alternaria.

In addition to the PR proteins, WRKY proteins also have a major role in the plant
defense against the pathogens (Yang et al. 2018). In this regard, Moghaddam et al.
(2019) reported that the expression pattern of antifungal genes 7 PR and 5 SlWRKYs
genes in tomato increased 1–50-fold, when infected by A. alternata, and were
upregulated among the resistant tomato varieties. In addition, the differential expres-
sion patterns of genes SlWRKY1 and SlWRKY11 were consistent with the expres-
sion pattern of genes PR7 and PDF1.2, which suggest that these transcription factors
have a possible role in the enhancement of expression of PR genes in response to
A. alternata infection.

Apart from EB, tomato plants also showed improved resistance to late blight
caused by Phytophthora infestans (Cui et al. 2019) and S. arcanum to EB, A. solani
(Shinde et al. 2018) due to the overexpression of WRKY1 gene. In an investigation,
SlWRKY39 gene present in tomato was significantly upregulated in response to
Pseudomonas syringae infection (Bai et al. 2018). In the same line, in response to
Botrytis cinerea and A. brassicicola, the expression pattern of AtWRKY70 gene was
altered, and changes in activity of AtWRKY70 genes might increase the suscepti-
bility to B. cinerea, Erysiphe cichoracearum, gall formation by Linaria vulgaris, and
Macrophomina phaseolina (Ulker et al. 2007; Lawaju et al. 2018; Pandey et al.
2016; Zorića et al. 2019).

In addition, the variable expression pattern of WRKY and PR defense-related
genes is controlled not only by salicylic acid and jasmonic acid mediated signal
events, but in between the resistant and susceptible genotypes of tomato infected by
Alternaria species, the level of gene expression also varied (Pathak et al. 2017; Yang
et al. 2015). Conversely, some plants showed resistance at seedling stages while
becoming moderately resistant/susceptible at mature stage as has been reported for
EB in potatoes incited by A. alternata (Nasr Esfahani et al. 2017). The experiment of
Moghaddama et al. (2019) revealed that the tomato variety Esfahan local inoculated
with pathogen showed an enhanced expression of defense-related genes and signifi-
cant resistance at both young and mature stages, while the tomato variety Rio Grande
showed resistance only at maturity stage. They also reported that in the inoculated
EB-resistant tomato variety (H.a.s 2274) the expression of PR7 was upregulated at
transplanting stage, and a strong expression in the inoculated resistant genotypes
(Esfahan local, H.a.s 2274 and Rio Grande) was reported at the maturing stage
(Moghaddama et al. 2019). Therefore, from the above findings, it is suggested that
these are the key genes activating the defense response in host plant to the pathogen.
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Besides, in tomato plants PR7 gene encoding 69 endopeptidase (Moghaddama
et al. 2019), has been reported as proteases induced by the pathogen (Jorda and Vera
2000), and the fungal activities of PR7 gene is shown by another investigation
(Golshani et al. 2015). The PR7 defense gene has also been found to be expressed
during in several others interaction of the pathogen with hosts, comprising Pseudo-
monas syringae (Jorda and Vera 2000) and Phytophthora infestans (Tian et al. 2007)
infections. The enzymatic activity of PR2 and PR3 proteins (β-1, 3-glucanase and
chitinase) in the enhancement of defenses in tomato against EB has also been studied
(Moghaddama et al. 2019), which revealed that both enzymes had a significant
contribution to the protection of tomato from EB. Some studies revealed that the
release of glucanase and chitinase in the form of hydrolytic products of induced PR
genes disturbs the virulence of fungal pathogens and endorses the plant immunity
responses (Kumar et al. 2018; Pusztahelyi 2018). Further, an investigation reported
that among 32 genes present in the resistant genotype of tomato (EC-520061),
20 genes were upregulated against EB whereas in case of the CO-3, a susceptible
genotype, no significant upregulation in fold change was examined (Upadhyay et al.
2016). Thus, these studies showed that these enzymes and genes significantly impact
the EB resistance in tomatoes.

These results approve the crosstalk existence at the tomato plant retorts to
Alternaria spp., involving several hormone signaling pathways, which alter the
rate of photosynthesis, transport of proteins and their synthesis, thereby emphasizing
the complexity of cellular signaling networks in tomato plants (AbuQamar et al.
2016). In addition, the incorporation of genomics and transcriptomics data of tomato
or EB pathogen, along with proteomics will detect the biomarkers for EB pathogen.
These omics data sets (transcriptomics and proteomics data) can build a vigorous
model of functional features of biological pathways linking the transcripts and
proteins.

4.6.5 Proteomics

In a host plant, the outcome of the incompatible and compatible host-pathogen
interaction is determined through proteome analysis and associated metabolites.
Independently, proteomic and metabolic profiling, or in the permutation with
transcriptome data, provides additional understanding about the mechanisms of
host defense response at the molecular level (Sharma et al. 2007; Tenenboim and
Brotman 2016; Kumar et al. 2014). As far as EB of tomato is concerned, fewer
studies regarding the proteomics analysis of tomato plants infected with EB have
been carried out. However, literature is available for the other hosts such as Brassica
and other crops infected by Alternaria species. The level of 48 proteins was signifi-
cantly affected at several points in the tolerant lines of Brassica spp. when infected
by A. brassicae, which suggested that the role of ROS (reactive oxygen supply)
mediated auxin signaling in pathosystem of Alternaria sp. (Sharma et al. 2007).

Likewise, the level of 210 proteins in theMentha arvensis leaves affected/altered
during infection by A. alternata identified by matrix assisted laser desorption or
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ionization time of flight-mass spectrometry of them 29% of the proteins was defense-
related proteins (Sinha and Chattopadhyay 2011). In another pathosystem of tomato,
it was found that there was alternation in 186 proteins in wild-type mature green
fruits infected by Botrytis cinerea, which were unaltered in wild-type red ripe fruits
(RR). However, less defense-related proteins were altered in mature wild-type green
tomato fruits than in RR tomato fruits (Shah et al. 2012). Therefore, further
investigations are required to study the proteome analysis of tomato plants infected
with EB to understand changes in the protein level. However, as far as tomato-EB
interaction is concerned, the proteomic study can be compounded by the existence of
pathogen proteins, which can be determined through the accessible full genome
sequence of tomato and Alternaria spp.

4.6.6 Metabolomics

Each plant or pathogen contained metabolites, and these are organic compounds
classify under the end product of plant metabolism or gene expression. Secondary
metabolites present in plants have several roles in defense against pests and
pathogens, and any changes in these metabolites affect the plant defense to the
pathogens (Yuan et al. 2017). Conversely, secondary metabolites react with particu-
lar stress conditions, either biotic or abiotic, for example, ROS scavengers,
pathogens, coenzymes, regulatory molecules, and antioxidants. Metabolomic
profiling is carried out through NMR (nuclear magnetic resonance spectrometry)
or MS (mass spectrometry), such as GC (gas chromatography)-MS and LC (liquid
chromatography)-MS (Gathungu et al. 2014; Sharma et al. 2018).

Like other necrotrophic fungi infecting arable crops, the genus Alternaria often
produces various phytotoxins and secondary metabolites, as “killing”weapons to the
host cells from a wide range of plant species (Encinas-Basurto et al. 2017). Approx-
imately, the 70 phytotoxins sill has been recognized that is produced by the several
species of Alternaria, some are host-specific, and some are non-host specific (Johann
et al. 2012; Escrivá et al. 2017). The major toxins produced by Alternaria include
alternariol monomethyl ether (AME), alternariol (AOH), and altertoxin I and
altertoxin II (Jarolim et al. 2017) which have several side effects in humans as
well as in plants (Wenderoth et al. 2019). However, these phytotoxins have a
phytotoxic minor impact on the host plant. Still, majorly they support in the coloni-
zation process of the pathogen inside the host by compensating the response of plant
hypersensitive (Touhami et al. 2018). After colonization, they inhibit the enzymatic
reactions within the host tissue or lead to death or necrosis of plant cells. In more
resistant tomato genotypes, a correlation between the reduction in the production of
AOH and a hogAmutant of A. alternatawas taken as a sign for the role of Alternaria
toxin AOH as a supporting factor in the virulence and colonization (Wojciechowska
et al. 2014). However, AOH supports the colonization of the fungus (Wenderoth
et al. 2019).

In addition, during interaction of wild tomato � A. solani, a significant modula-
tion in secondary metabolites have been identified. In this regard, Shinde et al.
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(2017) reported that secondary metabolites (phytoalexins, phenylpropanoids, lignin
accumulation) synthesized in a resistant wilt tomato species, namely S. arcanum
through steroidal-glycoalkaloid and phenylpropanoid pathways has significant role
in protection against EB. The WRKY and MYB in WRKY1 genes had major role in
secondary metabolites synthesis pathways, and in resistant plant, the lignin biosyn-
thesis that was regulated by transcription factors was upregulated (Shinde et al.
2017).

During the infection, both host and pathogen release metabolites mediate the
resistance response in the host. Some secondary metabolites, such as 3-methyl-2-
butenal, dimethyl disulfide, 1-butanol, hexanol, and 2-methyl-1-butanol acetate
responsible for resistance in tomato fruits were synthesized on tomato only when
infected by A. alternata (Johanson and Thurston 1990). The primary, secondary
metabolites correlated to tomato-EB resistance include a higher level of flavonol,
tannin, and phenolic compounds in both stems and leaves, as has been reported in
EB-resistant cultivars (Bhatia et al. 1972).

The production of these metabolites is associated with several mechanisms. The
peroxidase (PO) present in the host plant plays an important role in the production of
reactive oxygen (RO), these RO are directly or indirectly toxic to the fungal
pathogen infecting plants (Hammond-Kosack and Jones 1996). The phenylalanine
lyase (PAL) is also an important enzyme in the secondary molecules synthesis
(Mauch-Mani and Slusarenko 1996), which help in the activation of the expression
pattern of a variety of pathogenesis-related genes. Moreover, in response to the
A. solani, the polyphenol oxidase (PPOs) is systemically upregulated, examined in
the upper nodes of leaves, but absent in the lower nodes of tomato leaves
(Thipyapong and Steffens 1997). This induction pattern of PR genes in tomato
leaves accords with the observation of transient resistance of young leaves of tomato
to A. solani infection (Johanson and Thurston 1990). The oxidation of phenols to
quinones is catalyzed by PPOs and sensitive molecules that encourage the death of
pathogen cell and blocks to the secondary infection in the host plant (Thipyapong
and Steffens 1997).

The expression pattern of PR-1B increased when salicylic acid was applied on
tomato roots to prevent the infection from EB (Spletzer and Enyedi 1999). After leaf
treatment of tomato with arachidonic acid, the PR-1-like protein level increased
(Coquoz et al. 1995), and the sequential expression of ST-ACS4 and ST-ACS5,
ACC synthase genes also reported in potato plants (Schlagnhaufer et al. 1997). In a
recent report, the total phenol contents of tomato were significantly increased as a
response to A. solani infection (Attiaa et al. 2020). The remarkable metabolic
changes in tomato upon infection with Alternaria spp. cause metabolic
perturbations, both in the plant and the fungal pathogen. A recent study reports
that, at transplanting stage, the activity of PAL increased 5-fold and TPC 4-fold,
when the resistant tomato plant was inoculated by EB pathogen, while 2–3 fold
increased in TPC activity and 3-fold in POD was reported at maturity stage
(Alizadeh-Moghaddam et al. 2020).

Thus, the above described results suggest the resistant genotypes of tomato can be
differentiated from susceptible genotypes through using both genetic and enzymatic
diversity to EB.
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4.7 Conclusions and Future Remarks

The descriptive information on the EB of tomato unveils a wealth of information
which is regarded, for instance, pathogen epidemiology, integrated disease manage-
ment, and role of omics in EB management. However, investigations in some
important areas need further attention. There are few EB-resistant varieties of tomato
and QTLs are available, and it will need to be investigated in the future research
program. Although few QTLs are available for EB of tomato, however, to avoid
integration of large parts of the donor genome along with the resistance gene, fine
mapping is needed before these can be used in a marker-assisted breeding program.
Also, before QTLs are deployed in a tomato breeding program, their pleiotropic
effects on other traits should be investigated in future research projects.

In the era of molecular approaches, there is no doubt that the exploitation of omics
in the potential disease mitigation is delivering toward understanding the mechanism
at the molecular level of the tomato plant resistance to the Alternaria sp. The
breeders are making potential efforts to link the resistant genes with traits to improve
the resistance of tomato cultivars and understand the mechanisms of disease resis-
tance. Therefore, to make the sustainable production of tomato, scientists must adopt
innovative technologies to develop the high yield and EB-resistant varieties of
tomato.

Omics enables the researchers to identify, isolate the desired genes and traits. It
helps to interpret the complex interaction among genes and helps in creating tools to
enhance crop productivity. This article provides a comprehensive overview of
“omics” technologies and its application in agriculture to combat major problems
of crops especially related to field pathogens, for example, EB of tomato. Through
omics technologies, the consistency and predictability of plant genetic engineering
and breeding will be significantly improved by reducing the time and expense for
producing EB-resistant tomato crops. There is an urgent need to create an environ-
ment where modern tools like omics can be conveniently used and comprehensively
regarded as important keys to combat other diseases of tomato crops, including
EB. These can still be used with conventional tools of disease diagnostics and
management, thus bridging the knowledge gaps and enabling us with a better
understanding of plant disease management under conditions like climate change.
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Abstract

The global environment offers everything like good health, good food, to the
human population. Therefore, optimization for efficient bioremediation requires
augmentation of complex input to minimize the environmental contaminants.
These pollutants hold toxic molecules that influence the ecosystem and existing
living things, the forthcoming effects could be devastating to human populations
and the environment. Moreover, bioremediation is an option to enhance the
efficacy of the natural biodegradation process by using living microbes, which
can degrade the toxic compound into less or non-toxic forms. This chapter
focused on OMIC’s approaches bringing paradigm swift in understanding micro-
bial sources and their application in the bioremediation for cleaning the
environment.
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5.1 Introduction

A healthy environment is proficient enough to provide both wealth and health to
humans. Since the earliest times the human population, wildlife, and environment
are equally distributed and they could not disturb each other. A healthy environment
is interdependent on the activities of living creatures and the rest physical world.
Today, the environmental health is besmirched directly or indirectly with anthropo-
genic activities. Release of toxic components above normal levels in the form of
liquid or solid into the environment through industrial practice and daily human
activities adversely affects not only environment but also people and animal health
(Krishna et al. 2017). The use of natural resources at a higher rate than nature’s
restoring capacity results in extreme environmental pollution, majorly affecting soil,
groundwater, rivers, and atmosphere (Gouma 2009). Industries such as Textile,
Pharmaceutical, Oil and Gas, and other heavy manufacturing industries
contaminating the air, water, and soil through several toxic chemicals such as
solvents, polychlorinated biphenyls, petroleum hydrocarbons, radioisotopes, poly-
cyclic aromatic hydrocarbons, salts, and heavy metals (Shah 2014; Gouma 2009). In
order to prevent environmental pollution due to these toxic chemicals, they need to
be not only controlled but also need to degrade them to non-toxic levels. The
processing the toxic pollutants from the environment such air, water and soil is
termed as remediation. Environmental remediation can be done using physical,
chemical, and biological processes or techniques. Bioremediation is an emerging
technology used to complete management of diverse groups of environmental
pollutants and other physical and chemical treatment methods (Pardeep Singh
et al. 2020).

Bioremediation is defined as the process whereby toxic waste can be biologically
degraded under controlled conditions to an innocuous state or below the respective
toxic concentration limits. Bioremediation employs the living organisms, most
notably microorganisms, to degrade the pollutants and convert them into less toxic
or non-toxic form (Zouboulis and Moussas 2011). The microorganisms survive at
diverse environmental circumstances through their tensile metabolic activities
(Abatenh et al. 2017). Microorganisms are natural decomposers as they have unique
ability to utilize diverse types of organic substances as a source of energy and
convert toxic ones into harmless by-products (Rawat and Rangarajan 2019). Micro-
bial bioremediation is an ecofriendly and cost-competitive strategy for eliminating
xenobiotic and or anthropogenic compounds from the polluted environments (Desai
et al. 2010). However, implementation of the bioremediation strategies requires a
detailed understanding of factors governing the growth, metabolism, dynamics, and
functions of the microbial communities. The recent advances in molecular biology
and genetic engineering have opened new avenues to study bioremediation in detail.
Omics technologies allow for an in-depth view of the microbial community and its
surroundings at the molecular level to better understand their cellular and molecular
dynamics in contaminated environments. It will help to make bioremediation more
efficient and effective over a wide range of pollutants. Omics approaches have been
utilized individually to study the microbial system in the context of bioremediation,
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providing information about biodegradation pathways and the involved organisms in
terms of changes in genome, transcriptome, proteome, metabolome, etc. in a given
time and conditions (Rawat and Rangarajan 2019).

5.1.1 OMIC’s Approaches to Environmental Bioremediation

Breakthrough innovative discoveries in high-throughput technologies such as geno-
mics, transcriptomics, proteomics, and metabolomics, along with bioinformatics
tools, have led to a better understanding of different environmental approaches
bioremediation. Earlier bioremediation research focused mainly on chemical kinet-
ics, intermediate products, and final product identification and quantification of
organic pollutants. The studies on the molecular mechanisms behind the contami-
nant transformation processes received less attention largely due to the technical
difficulties. The advancement in modern molecular biology, system biology, and
availability of whole genome sequence data, fosters new techniques including
genomics, transcriptomics, proteomics, and metabolomics, which might potentially
be applied in the bioremediation of organic chemicals in the environment (Malla
et al. 2018). The OMIC’s technology has been employed for analysis of available
whole genome sequencing data of different microorganisms from different environ-
mental communities. Different tools are essential to evaluate the entire genome
sequencing, protein profiles, and metabolites by the combination of different omic
platforms (Schneider and Orchard 2011). Several approved OMIC’s platforms
(Table 5.1) available to understand the microbial systems biology and measure or
determine the dynamic changes within cell overtime (Zhang et al. 2010). OMIC’s
technologies opened a new era in system biology and a possibility of being a
pioneering and proficient research avenue for studying natural systems (Fig. 5.1).

The high-throughput technology could summarize the gene, proteins, small
metabolites, and their metabolic pathway by coordinating with bioinformatics
tools. OMIC’s approach along with bioinformatics tools provide significant and
essential insights into specific microorganism and their ability for bioremediation
(Desai et al. 2010). Bioinformatics a new branch of science that analyzes experi-
mentally generated biological data (Schneider and Orchard 2011; Pérez-Llano et al.
2018; Mayer 2011). Understanding and quantitative discovery of biochemical
pathways through computational analysis enables understanding and detecting of
alterations in the biological systems (Desai et al. 2010). The identification of large
annotated pathway sequences of genes, proteins, and metabolites together is possible
using these bioinformatic tools (Robertson 2005; Dangi et al. 2019). The usefulness
of genome arrangement information and associated OMIC’s approaches linking
microbial population’s functions in polluted sites and their bioremediation capacity
is an immense challenge (Kumavath and Pratap 2012).
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Table 5.1 The list of OMIC tools for the study of the bioremediation

Acronym Full name Omic domain Website

MIGS Minimum Information
About a Genome Sequence

Genomic http://gensc.org

SAM Sequence Alignment/Map Genomic http://samtools.sourceforge.
net

PML Polymorphism Markup
Language

Genomic http://www.openpml.org

PaGE-OM Phenotype and Genotype
Experiment Object Model

Genomic http://www.pageom.org

Gen2Phen Gen2Phen Genomic http://www.gen2phen.org

ensembl ensembl Genomic http://www.ensembl.org

GO Gene Ontology Genomic http://www.geneontology.org

MINSEQE Minimum Information about
a high-throughput
Nucleotide SEQuencing
Experiment

Transcriptomics http://www.mged.org/
minseqe

MIAME, Minimum Information
About a Microarray
Experiment

Transcriptomics http://www.mged.org

MAGE MicroArray Gene
Expression

Transcriptomics http://www.mged.org

MAQC MicroArray Quality Control Transcriptomics http://www.fda.gov/nctr/
science/centers/
toxicoinformatics/maqc

ERCC External RNA Control
Consortium

Transcriptomics http://www.cstl.nist.gov/
biotech/Cell&
TissueMeasurements/
GeneExpression/ERCC.htm

NIST National Institute for
Standards Technology

Transcriptomics http://www.cstl.nist.gov/
biotech/

MGED O Microarray Gene Expression
Data Ontology

Transcriptomics http://www.mged.org

GEO Gene Expression Omnibus Transcriptomics http://www.ncbi.nlm.nih.gov/
geo

CR Comparative RNA Transcriptomics http://www.rna.ccbb.utexas.
edu

RNAmods RNA modification database: Transcriptomics http://library.med.utah.edu/
RNAmods

MIAPE Minimum Information
About a Proteomics
Experiment

Proteomic http://www.psidev.info/index.
php?q¼node/91

MIMIx Minimum Information about
a Molecular Interaction
Experiment

Proteomic http://www.psidev.info/index.
php?q¼node/277

PSI Proteomics Standards
Initiative

Proteomic http://www.psidev.info/

(continued)
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Table 5.1 (continued)

Acronym Full name Omic domain Website

PSI-MI Proteomics Standards
Initiative
Molecular Interactions

Proteomic http://www.psidev.info/mif

Pseq Protein sequences Proteomic http://www.uniprot.org

PIR Protein information
Resources

Proteomic http://pir.georgetown.edu

PD Protein databank Proteomic http://www.rcsb.org/pdb/
home/home.do

CIMR Core Information for
Metabolomics Reporting

Metabolomics http://msi-workgroups.
sourceforge.net

MeMo Metabolic Modelling Metabolomics http://dbkgroup.org/memo

ArMet Architecture for
Metabolomics

Metabolomics http://www.armet.org

IntEnz Integrated relational Enzyme Metabolomics http://www.ebi.ac.uk/intenz

Fig. 5.1 The schematic representation of the soil-contaminate and its OMIC’s tools for
bioremediation
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5.1.2 Tools and Strategies for Bioremediation

The conventional remediation of waste pollutants is generally carried out by ignition
and landfill. On the other hand, bioremediation or biodegradation takes advantage of
microbial metabolic processes to detoxify and degrade the toxic chemicals in
contaminated environments.

• Chemical processes such as treatment of chemical oxidation, electrochemical
degradation, and volatilization again produce the flotation, toxic gases (Mustapha
and Lens 2018).

• Physical processes such as tipping or recycling, incineration, landfilling, adsorp-
tion, and membrane filtration provide the concentrates or reduce the volume of
waste compounds and sedimentations (Otero-Blanca et al. 2018).

• Biological methods such as bioaccumulation, bio-augmentation, bio-venting,
bio-stimulation, biosorption the final products like precipitation, biotransforma-
tion or biomineralization or natural biogeochemical cycle (Moreira et al. 2018).

A combination of physicochemical and biological remediation processes like
using a specific bacterial population and or by its metabolic products can neutralize
or detoxify the toxic substances (Ju and Zhang 2015). It is easy to understand the
population dynamics and diversity in microbial communities at precise sites of the
polluted area through this advanced techniques. In the recent past, scientists started
working on discovering and developing of novel enzymes and biosensors
approaches for bioremediation of wastes from the environment. Among all remedia-
tion technologies, the sophisticated, efficient method removes dangerous chemicals
from the contaminated/spoiled water or soils through the microbial treatment
(Moreira et al. 2018). Genetically engineered microorganisms (GEMs) generated
by the biotechnology tools are efficient in bioremediation, especially at heavily
polluted sites (Rayu et al. 2012).

5.2 Genomic Tools in Environmental Bioremediation

Molecular techniques like genome mining and bioinformatics are valuable tools to
construct potential genomics data of beneficial microorganisms for bioremediation.
This contribution of genomics paves the way to understand the metabolisms and
microorganisms interactions with pollutants in both single species and microbial
communities. Such approaches aid in the utilization of microorganisms for efficient,
and environmentally sound remediation strategies (Plewniak et al. 2018). For exam-
ple, benzoate, catechol, arsenic, cobalt, cadmium, degraded by brevibacterium
epidermidis EZ-K02 (Ziganshina et al. 2018); Nitroacetate and nitriloacetate
degraded by Mycobacterium oleivorans (Miller et al. 2016); Nitrate and uranium
degraded by Anaeromyxobacter sp. Fw109-5 (Hwang et al. 2015). The whole
genome sequence analysis is important in understanding the microbial population,
including its role in biodegradation processes.
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Next-Generation Sequencing (NGS) ignited a real revolution in environmental
sciences. It triggered the spread of its novel, cutting-edge disciplines,
e.g. metagenomics and metatranscriptomics in to bioremediation and biodegrada-
tion, leading it to enter into an omics era (Ma and Zhai 2012). At least 95 percent of
microbes are uncultivable in the laboratory applying standard culture conditions
hampering their investigation for a long time during bioremediation studies. How-
ever, by using comparative metagenomic approach, millions of individual microbes
can be identified and quantified based on their PCR-amplified 16S or 18S rDNA
segments in a single run. Long-read sequencing of two hyper variable regions
enables the species-level taxonomic characterization of bacteria, archaea, fungi,
protozoa, algae, etc. (Bihari 2013). In addition, sequencing methods targeting
small subunit (SSU) rRNA hypervariable regions have allowed the identification
of signature microbial species that serve as bioindicators for sewage contamination
in these environments (Tan et al. 2015). NGS-based molecular ecology can be best
framed into on-site bio-augmentation or bio-stimulation regimes. During regular
sampling of the test site and chemical and physical, a comprehensive
microbiological datasets can be gained to create multidimensional matrices, where
coherent dynamics and association networks can be determined (Eiler et al. 2012). In
this way, the niches microbial key players and relevant interactions can be identified
(Bihari 2013).

5.2.1 Transcriptomic Tools in Environmental Bioremediation

The regulation of gene expression is one of the key processes for adapting to
environmental conditions changes and thus for survival. Transcriptomics describes
this process in a genome-wide range (Singh and Nagaraj 2006). The transcriptome is
the set of all RNA transcripts, including coding and non-coding, in an individual or a
population of cells. Microarrays are an extremely powerful platform in
transcriptomics that enable determination of the mRNA expression level of practi-
cally every gene of an organism (Singh and Nagaraj 2006). Various microbial
transcriptomics methods reveal the capabilities of biodegradation of various toxic
compounds by adapting to their stress conditions. A comprehensive 50-mer-based
oligonucleotide microarray was developed for effective monitoring of biodegrading
populations based on known genes and pathways involved in biodegradation and
metal resistance (Rhee et al. 2004). This type of DNA microarray was effectively
used develop soil bioremediation methods and analyze naphthalene-amended
enrichment. A global gene expression analysis revealed the co-regulation of several
thus-far-unknown genes during the degradation of alkylbenzenes (Kuhner et al.
2005). DNA microarrays have also been used to determine bacterial species, in
quantitative applications of stress gene analysis of microbial genomes and in
genome-wide transcriptional profiles (Muffler et al. 2002; Singh and Nagaraj
2006). Transcriptomic approaches were used for the profiling of bacterial expression
levels with comparison to various stress conditions. The studies on transcriptomic
differential expression genes (DEG) revealed the mechanism behind microbial
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degradation of several toxic compounds such as Aspergillus niger, Trichoderma
harzianum, Talaromyces purpurogenus, and Aspergillus flavus in degradation of
hydrocarbons; Acinetobacter venetianus RAG-1 Degradation of Alkanol
(Asemoloye et al. 2018; Kothari et al. 2016).

5.2.2 Proteomic Tools in Environmental Bioremediation

Proteomics an emerging and powerful discipline aimed at the study of the whole
proteome or the sum of all proteins from an organism, tissue, cell or biofluid
resulting in an information rich landscape of expressed proteins and their
modulations under specific conditions (Husi and Albalat 2014). The advent of
proteomics leads to an extensive examination of global changes in the composition
or abundance of proteins and the identification of key proteins involved in the
microorganisms in a given physiological state. A number of reports have described
sets of proteins that are up or downregulated in response to the presence of specific
pollutants (Hivrale et al. 2016). In proteomic studies, chromatographic and mass
spectroscopy (MS) associated techniques play an important role in the protein
identification, expression, posttranslational modifications, and including structure
and functions of proteins (Seibert et al. 2005; Wang et al. 2016). Liquid chromatog-
raphy and mass spectroscopy (LC-MS) other proteomic techniques including
two-dimensional polyacrylamide gel electrophoresis (2-D PAGE) and MALDI-
TOF (Matrix-assisted laser desorption/ionization time-of-flight), SELDI-TOF (sur-
face-enhanced laser desorption/ionization time-of-flight), protein microarrays—help
in systematic mapping and identification of whole-cell proteome and hundreds of
proteins profiling (Singh 2006; Bianco and Perrotta 2015; Wang et al. 2016). A
proteomics method applied to observe the ability of remediation by various
microbes. For instance, Sphingomonas sp. GY2B degrades to Phenanthrene
(Izrael-Živković et al. 2018), Penicillium oxalicum degrades to polycyclic aromatic
hydrocarbons (Liu et al. 2017). Six major proteins were identified as significantly
induced and over expressed on 2-DE when Mycobacterium sp. Starin PYR-1 was
exposed to phenanthrene, dibenzothiophene, and pyrene (Hivrale et al. 2016).
Through advances in proteomics, post-translational modification which involves in
protein functionality, protein–protein interaction have been studied extensively.
Prospective applications of modern proteomics techniques in microbial ecology
identify of novel functional genes, identify new enzymatic and metabolic pathways
and identify the novel proteomes in the biodegrading organisms. Besides this, it is
helpful to monitor dynamic and sustainability of other environmental factors
(Hivrale et al. 2016).
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5.3 Metabolomic Tools in Environmental Bioremediation

Metabolomics, a comprehensive analysis of metabolites in a biological specimen, is
an emerging technology that holds promise to inform the practice of bioremediation..
Metabolomics has emerged as a new field in biology with the promise to speed up
the functional analysis of genes with unknown function (Villas-Bôas et al. 2005). In
addition to genomics, transcriptomics, and proteomics, cutting-edge research is now
expanding toward the analysis of microbial cellular metabolites. The very important
analytical methods to the analysis of metabolite are High-Performance Liquid
Chromatography (HPLC), direct injection mass spectrometry (DIMS), gas chroma-
tography (GC), Fourier transform-infrared (FT-IR) spectroscopy, and NMR
(Chakraborty and Das 2017). Application of metabolome-based approaches to the
environmental samples has made it possible to develop models that can envisage
microbial activities under different bioremediation strategies. Metabolomics allows
us to better understand the microbial communities dynamic operations and their
functional contributions to the environments in which they live (Malla et al. 2018).
Metabolic engineering (ME) technique has been developed in order to improve
cellular properties or introduce new ones through the use of recombinant DNA
technology (Stephanopoulos et al. 1998). This approach is an alternative to classical
mutagenesis for the improvement of industrial microorganisms. Metabolic Engi-
neering (ME) tools and principles are atmost relevant for bioremediation due to the
shortcomings of natural microbial population to degrade recalcitrant xenobiotics
such as chlorotoluens, PCBs PAH, and others (Urgun-Demirtas et al. 2006). Accu-
mulation of these compounds in the environment represents a potential pollution
problem, since many of them are highly toxic, mutagenic, and/or carcinogenic
(Villas-Boas and Bruheim 2007).

The use of metabolomics trappings could also significantly extend and enhance
bioremediation approaches by providing a better sign of the biodegradation progres-
sion. However, microbial cellular physiology and metabolic activities were fre-
quently fluctuated along with environmental changes (Wang et al. 2016). The
metabolomics aims to expand the understanding of the microbiomes role and
could mineralize xenobiotic compounds too (Bharagava et al. 2019). Villas-Boas
et al. and Robertson (2005) have reviewed the environmental applications of
metabolomics, and the diversity of work is captivating. Metabolites play a key role
in connecting the numerous pathways that function within or outside of the living
cell. Metabolic footprinting analysis can be a very useful approach to assessing
xenobiotics mineralization process in the environment. Techniques developed for
metabolic footprinting analysis aim to analyze low molecular mass compounds
which is a highly recommended approach to ensure that a polluting compound is
being totally degraded or that the biodegradation process results in the accumulation
of hazard recalcitrant catabolic products. The use of metabolomics tools can signifi-
cantly extend and enhance the power of existing bioremediation approaches by
providing a better overview of the biodegradation process.

5 Microbial-Mediated Remediation of Environmental Contaminants by Integrated. . . 117



5.4 Enzymes and Biomarkers Involved in Environmental
Bioremediation

Among natural bio-agents, enzymes have an immense potentiality to effect alteration
and detoxification of toxic substances, to practice cell-free bioremediation (Rao et al.
2010). Hence, the biocatalysts are powerful tools to detoxify toxic substances and
restore polluted environments. However, the biomarkers act as biosensors for the
detection of pollutants and noticeable contaminants in an environment (Table 5.2).
The biocatalysts and biomarkers naturally occur in prokaryote and eukaryotic cells
(Dangi et al. 2019). The revolution of the OMIC’s techniques lead to a paradigm
shift in bioremediation research, there is an insistent call to develop a novel or
improved biomarkers for rapid assessment and detection of pollutants at polluted
environmental sites (Sharma et al. 2018). The Enzymatic proteins have several
beneficial characteristics, for instance, they have broad specificity, microbial ¼ l
metabolites cannot inhibit them, they can be used under extreme environment (Rao
et al. 2017). They can act on large classes of organic and inorganic pollutant
mixtures and can completely convert them into an inoffensive end product. Further-
more, enzymes have advantages over microbial remediation in effectiveness and
rapidity (Moller and Jansson 1998; Jansson et al. 2000; Rao et al. 2010). Reactive
molecules production and their use as biomarkers for the environmental bioremedi-
ation are presented in Table 5.3. The biomarkers have monitored the efficiency of
bioremediation using biosensors in various harsh environments.

The microbial enzymes have versatile applications in remediation technology and
there have been focused on developing methods for biosensors. The major advan-
tage of bacteria tag with the lacZY genes and luciferase genes (luxAB), was encoding
lactose permease and b-galactosidase (Flemming et al. 1994), can be detected and
counted as a blue colonies and luminescent colonies formation, respectively, in
oil-contaminated soils. Furthermore, the advances in genetic-engineering techniques
have opened up new opportunities towards providing the novel biocatalysts and
biomarkers from (GEMs) genetically engineered microorganisms to function as
designer biocatalysts and biomarkers, that may be able to remediate the polluted
environment (Dua et al. 2002; Rao et al. 2017; Dangi et al. 2019).

5.5 Concluding and Future Perspectives

OMIC’s, an amalgamation of different emerging technologies can help decipher the
relationship between microbes in a polluted environment and their potential role in
bioremediation. The emergence of such innovative high-throughput OMIC’s
technologies (Fig. 5.1) in identifying and characterizing of the whole environmental
microbial population has opened up a new landscape. This has enlightened us with a
myriad of concealed microbes with crucial biogeochemical functions. The highly
active enzymes of novel origin have a promising future in detoxification and
degradation of pollutants (Siggins et al. 2012; Bharagava et al. 2019). Integration
of such OMIC’s approaches can provide a deeper understanding of the pathways for
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microbe based bioremediation and could even provide a novel ecofriendly alterna-
tive to eliminate unwanted xenobiotic, pharmaceutical wastes, pesticides,
insecticides, polycyclic aromatic hydrocarbons from contaminated sites (Malla
et al. 2018). The analysis of high-throughput data from public repositories is the
current challenge that can provide strong predictive based models through deep
machine learning and artificial intelligence that can in turn be implemented for
bioremediation and sustainable development. To make the best use of public
repositories, the scientific community could be encouraged to provide descriptive
metadata.

Bioremediation is one of the most promising methods for sustainable develop-
ment. The integration of OMIC’s in the field of bioremediation has opened up an
efficient research avenue with a promising future. No wonder, the developments in
OMIC’s filed have progressed exponentially (Schneider and Orchard 2011) in the
last decade. However, it largely remains unimplemented for the public. Nonetheless,
various regulatory badies are being taken positive steps for the implementation of
OMIC’s technologies in decision making.

Table 5.3 Reactive molecules production used as biomarkers for the environmental
bioremediation

Gene Biomarker Organism/bacteria Bioremediation Reference

cytochrome
P450 1A

CYP1A1 Human Neurotoxic
substances

Sarkar 2006

luxAB luciferase Firefly Gasoline Moller and
Jansson 1998

Metallothioneins MTs Multiple bacterial
sp

Oxidative stress Paniagua-
Michel and
Olmos-Soto
2016

luxAB and lacZY lac-lux Pseudomonas
fluorescens,
Pseudomonas
cepacia

2,4-
dichlorophenoxy
Acetic acid

Masson et al.
1993

nptII Antibiotic
resistance
gene

Antibiotic resistant
bacterial sp.

Antibiotic
selection

Mer Heavy metal
resistance
gene

Multiresistant
Enterobacteriaceae

Heavy metal
resistance
selection

Andrade et al.
2018

lacZY Chromogenic
marker genes

Pseudomonas
fluorescens

Gasoline Jaderlund
et al. 2008

lacZY and luxAB lux-lac Pseudomonas
aeruginosa

Antibiotic
selection

Flemming
et al. 1994

Gfp Green
fluorescent
protein

Methylobacterium Chlorophenol Tresse et al.
1998

Cytochrome
P450

CYP1A Multiple bacterial
sp

Oxidative Kelly and
Kelly 2013

120 E. R. Tatta et al.



Acknowledgments Authors thanks to SERB-EMEQ/051/2014 for partial financial assistance and
the research facilities supported by the Central University of Kerala,

Competing Interests The authors have declared no competing interests.

References

Abatenh E, Gizaw B, Tsegaye Z, Wassie M (2017) Application of microorganisms in
bioremediation-review. J Environ Microbiol 1(1):02–09

Andrade LN, Siqueira TE, Martinez R, Darini ALC (2018) Multidrug-resistant CTX-M-(15, 9, 2)-
and KPC-2-producing Enterobacter hormaechei and Enterobacter asburiae isolates possessed a
set of acquired heavy metal tolerance genes including a chromosomal sil operon. Front
Microbiol 9:539

Asemoloye MD, Ahmad R, Jonathan SG (2018) Transcriptomic responses of catalase, peroxidase
and laccase encoding genes and enzymatic activities of oil spill inhabiting rhizospheric fungal
strains. Environ Pollut 235:55–64

Bharagava RN, Purchase D, Saxena G, Mulla SI (2019) Applications of metagenomics in microbial
bioremediation of pollutants: from genomics to environmental cleanup. In: Das S, Dash H (eds)
Microbial diversity in the genomic era, 1st edn. Academic Press, Cambridge, MA, pp 459–477

Bianco L, Perrotta G (2015) Methodologies and perspectives of proteomics applied to filamentous
fungi: from sample preparation to secretome analysis. Int J Mol Sci 16(3):5803–5829

Bihari Z (2013) Current trends in bioremediation and biodegradation: next-generation sequencing. J
Bioremed Biodegr 4:e138

Broderick JB (1999) Catechol dioxygenases. Essays Biochem 34:173–189
Cabuk A, Unal AT, Kolankaya N (2006) Biodegradation of cyanide by a white rot fungus, Trametes

versicolor. Biotechnol Lett 28(16):1313–1317
Chakraborty J, Das S (2017) Application of spectroscopic techniques for monitoring microbial

diversity and bioremediation. Appl Spectrosc Rev 52(1):1–38
Chauhan PS, Goradia B, Saxena A (2017) Bacterial laccase: recent update on production,

properties, and industrial applications. 3 Biotech 7(5):323
Coconi-Linares N, Ortiz-Vázquez E, Fernández F, Loske AM, Gómez-Lim MA (2015) Recombi-

nant expression of four oxidoreductases in Phanerochaete chrysosporium improves degradation
of phenolic and non-phenolic substrates. J Biotechnol 209:76–84

Dangi AK, Sharma B, Hill RT, Shukla P (2019) Bioremediation through microbes: systems biology
and metabolic engineering approach. Crit Rev Biotechnol 39(1):79–98

Desai C, Pathak H, Madamwar D (2010) Advances in molecular and “-omics” technologies to
gauge microbial communities and bioremediation at xenobiotic/anthropogen contaminated
sites. Bioresour Technol 101(6):1558–1569

Dua M, Singh A, Sethunathan N, Johri A (2002) Biotechnology and bioremediation: successes and
limitations. Appl Microbiol Biotechnol 59(2–3):143–152

Duran N, Esposito E (2000) Potential applications of oxidative enzymes and phenoloxidase-like
compounds in wastewater and soil treatment: a review. Appl Catal B Environ 28(2):83–99

Eiler A, Heinrich F, Bertilsson S (2012) Coherent dynamics and association networks among lake
bacterioplankton taxa. ISME J 6(2):330–342

Flemming CA, Leung KT, Lee H, Trevors JT, Greer CW (1994) Survival of lux-lac-marked
biosurfactant-producing Pseudomonas aeruginosa UG2L in soil monitored by nonselective
plating and PCR. Appl Environ Microbiol 60(5):1606–1613

Gouma S (2009) Biodegradation of mixtures of pesticides by bacteria and white rot fungi. Ph.D.
thesis, School of Health Cranfield University, 416

5 Microbial-Mediated Remediation of Environmental Contaminants by Integrated. . . 121



Hivrale AU, Rane NR, Pawar PK, Gowindwar SP (2016) Application of genomics and proteomics
in bioremediation. In: Rathoure AK, Dhatwalia VK (eds) Toxicity and waste management using
bioremediation. IGI Global, Hershey, PA, pp 97–112

Husi H, Albalat A (2014) Proteomics. In: Handbook of pharmacogenomics and stratified medicine.
Academic Press, Cambridge, MA, pp 147–179

Hwang C, Copeland A, Lucas S, Lapidus A, Barry K et al (2015) Complete genome sequence of
Anaeromyxobacter sp. Fw109-5, an anaerobic, metal-reducing bacterium isolated from a
contaminated subsurface environment. Genome Announc 3(1):e01449–e01414

Izrael-Živković L, Rikalović M, Gojgić-Cvijović G, Kazazić S, Vrvić M et al (2018) Cadmium
specific proteomic responses of a highly resistant Pseudomonas aeruginosa san ai. RSC Adv 8
(19):10549–10560

Jaderlund L, Hellman M, Sundh I, Bailey MJ, Jansson JK (2008) Use of a novel nonantibiotic triple
marker gene cassette to monitor high survival of Pseudomonas fluorescens SBW25 on winter
wheat in the field. FEMS Microbiol Ecol 63(2):156–168

Jansson JK, Björklöf K, Elvang AM, Jørgensen KS (2000) Biomarkers for monitoring efficacy of
bioremediation by microbial inoculants. Environ Pollut 107(2):217–223

Ju F, Zhang T (2015) Experimental design and bioinformatics analysis for the application of
metagenomics in environmental sciences and biotechnology. Environ Sci Technol 49
(21):12628–12640

Kelly SL, Kelly DE (2013) Microbial cytochromes P450: biodiversity and biotechnology. Where
do cytochromes P450 come from, what do they do and what can they do for us? Philos Trans R
Soc B Biol Sci 368(1612):20120476

Kothari A, Charrier M, Wu YW, Malfatti S, Zhou CE et al (2016) Transcriptomic analysis of the
highly efficient oil-degrading bacterium Acinetobacter venetianus RAG-1 reveals genes impor-
tant in dodecane uptake and utilization. FEMS Microbiol Lett 363(20):fnw224

Krishna IM, Manickam V, Shah A, Davergave N (2017) Environmental management: science and
engineering for industry. Butterworth-Heinemann, Oxford, p 664

Kuhner S, Wohlbrand L, Fritz I, Wruck W, Hultschig C et al (2005) Substrate-dependent regulation
of anaerobic degradation pathways for toluene and ethylbenzene in a denitrifying bacterium,
strain EbN1. J Bacteriol 187(4):1493–1503

Kumar V, Chandra R (2018) Characterization of manganese peroxidase and laccase producing
bacteria capable for degradation of sucrose glutamic acid-Maillard reaction products at different
nutritional and environmental conditions. World J Microbiol Biotechnol 34(2):32

Kumavath RN, Pratap D (2012) Omics in bioremediation: a consolidated overview. Indian J
Biotechnol 6(8,9):242–253

Liu S, Guo C, Dang Z, Liang X (2017) Comparative proteomics reveal the mechanism of Tween80
enhanced phenanthrene biodegradation by Sphingomonas sp. GY2B. Ecotoxicol Environ Saf
137:256–264

Ma J, Zhai G (2012) Microbial bioremediation in omics era: opportunities and challenges. J
Bioremed Biodegr 3:e120

Malla MA, Dubey A, Yadav S, Kumar A, Hashem A et al (2018) Understanding and designing the
strategies for the microbe-mediated remediation of environmental contaminants using omics
approaches. Front Microbiol 9:1132

Marasco EK, Schmidt-Dannert C (2008) Identification of bacterial carotenoid cleavage
dioxygenase homologs that cleave the interphenyl α, β double bond of stilbene derivatives via
a monooxygenase reaction. ChemBioChem 9(9):1450–1461

Masson L, Comeau Y, Brousseau R, Samson R, Greer C (1993) Construction and application of
chromosomally integrated lac-lux gene markers to monitor the fate of a
2, 4-dichlorophenoxyacetic acid-degrading bacterium in contaminated soils. Microb Releases
1:209–216

Mayer B (ed) (2011) Bioinformatics for omics data: methods and protocols. Humana Press,
New York (No. 57: 004 BIO)

122 E. R. Tatta et al.



Miller NT, Fuller D, Couger MB, Bagazinski M, Boyne P et al (2016) Draft genome sequence of
Pseudomonas moraviensis strain devor implicates metabolic versatility and bioremediation
potential. Genom Data 9:154–159

Moller A, Jansson JK (1998) Detection of firefly luciferase-tagged bacteria in environmental
samples. In: Bioluminescence methods and protocols. Humana Press, New York, pp 269–283

Moreira IS, Amorim CL, Murphy CD, Castro PM (2018) Strategies for biodegradation of
fluorinated compounds. In: Approaches in bioremediation. Springer, Cham, pp 239–280

Muffler A, Bettermann S, Haushalter M, Hörlein A, Neveling U et al (2002) Genome-wide
transcription profiling of Corynebacterium glutamicum after heat shock and during growth on
acetate and glucose. J Biotechnol 98(2–3):255–268

Mustapha HI, Lens PN (2018) Constructed wetlands to treat petroleum wastewater. In: Approaches
in bioremediation. Springer, Cham, pp 199–237

Nagata Y, Ohtsubo Y, Tsuda M (2015) Properties and biotechnological applications of natural and
engineered haloalkane dehalogenases. Appl Microbiol Biotechnol 99(23):9865–9881

Nikitina VE, Vetchinkina EP, Ponomareva EG, Gogoleva YV (2010) Phenol oxidase activity in
bacteria of the genus Azospirillum. Microbiology 79(3):327–333

Otero-Blanca A, Folch-Mallol JL, Lira-Ruan V, Carbente MDRS, Batista-García RA (2018)
Phytoremediation and fungi: an underexplored binomial. In: Approaches in bioremediation.
Springer, Cham, pp 79–95

Paniagua-Michel J, Olmos-Soto J (2016) Modern approaches into biochemical and molecular
biomarkers: key roles in environmental biotechnology. J Biotechnol Biomater 6(216):2

Pérez-Llano Y, Martínez-Ávila L, Batista-García RA (2018) Omics approaches: impact on biore-
mediation techniques. In: Approaches in bioremediation. Springer, Cham, pp 43–59

Plewniak F, Crognale S, Rossetti S, Bertin PN (2018) A genomic outlook on bioremediation: the
case of arsenic removal. Front Microbiol 9:820

Rao MA, Scelza R, Scotti R, Gianfreda L (2010) Role of enzymes in the remediation of polluted
environments. J Soil Sci Plant Nutr 10(3):333–353

Rao TE, Imchen M, Kumavath R (2017) Marine enzymes: production and applications for human
health. Adv Food Nutr Res 80:149–163

Rawat M, Rangarajan S (2019) Omics approaches for elucidating molecular mechanisms of
microbial bioremediation. In: Smart bioremediation technologies. Microbial enzymes. Elsevier,
Amsterdam, pp 191–203

Rayu S, Karpouzas DG, Singh BK (2012) Emerging technologies in bioremediation: constraints
and opportunities. Biodegradation 23(6):917–926

Rhee S-K, Liu X, Wu L, Chong SC, Wan X et al (2004) Detection of genes involved in biodegra-
dation and biotransformation in microbial communities by using 50-Mer oligonucleotide
microarrays. Appl Environ Microbiol 70(7):4303–4317

Robertson DG (2005) Metabonomics in toxicology: a review. Toxicol Sci 85(2):809–822
Santillan JY, Dettorre LA, Lewkowicz ES, Iribarren AM (2016) New and highly active microbial

phosphotriesterase sources. FEMS Microbiol Lett 363(24):fnw276
Sarkar A (2006) Biomarkers of marine pollution and bioremediation. Ecotoxicology 15(4):331–332
Schneider MV, Orchard S (2011) Omics technologies, data and bioinformatics principles. In:

Bioinformatics for omics data. Humana Press, New York, pp 3–30
Seibert V, Ebert MP, Buschmann T (2005) Advances in clinical cancer proteomics: SELDI-ToF-

mass spectrometry and biomarker discovery. Brief Funct Genomics 4(1):16–26
Shah MP (2014) Environmental bioremediation: a low cost nature’s natural biotechnology for

environmental clean-up. J Pet Environ Biotechnol 5(4):1
Sharma B, Dangi AK, Shukla P (2018) Contemporary enzyme based technologies for bioremedia-

tion: a review. J Environ Manag 210:10–22
Siggins A, Gunnigle E, Abram F (2012) Exploring mixed microbial community functioning: recent

advances in metaproteomics. FEMS Microbiol Ecol 80(2):265–280
Singh OV (2006) Proteomics and metabolomics: the molecular make-up of toxic aromatic pollutant

bioremediation. Proteomics 6(20):5481–5492

5 Microbial-Mediated Remediation of Environmental Contaminants by Integrated. . . 123



Singh OV, Nagaraj NS (2006) Transcriptomics, proteomics and interactomics: unique approaches
to track the insights of bioremediation. Brief Funct Genomics 4(4):355–362

Singh P, Singh V, Singh R, Borthakur A, Madhav S et al (2020) Bioremediation: a sustainable
approach for management of environmental contaminants. In: Abatement of environmental
pollutants trends and strategies, pp 1–23

Sood S, Sharma A, Sharma N, Kanwar SS (2016) Carboxylesterases: sources, characterization and
broader applications. Insights Enzyme Res 1:1

Stephanopoulos GN, Aristidou AA, Nielsen J (1998) Metabolic engineering: principles and
methodologies. Academic Press, San Diego

Tan B, Ng C, Nshimyimana JP, Loh LL, Gin KY-H et al (2015) Next-generation sequencing (NGS)
for assessment of microbial water quality: current progress, challenges, and future opportunities.
Front Microbiol 6:1027

Tresse O, Errampalli D, Kostrzynska M, Leung KT, Lee H et al (1998) Detection of nptII
(kanamycin resistance) genes in genomes of transgenic plants by the marker-rescue transforma-
tion. Mol Gen Genet MGG 257(6):606–613

Urgun-Demirtas M, Stark B, Pagilla K (2006) Use of genetically engineered microorganisms
(GEMs) for the bioremediation of contaminants. Crit Rev Biotechnol 26:145–164

Villas-Boas SG, Bruheim P (2007) The potential of metabolomics tools in bioremediation studies.
Omics 11(3):305–313

Villas-Bôas SG, Rasmussen S, Lane GA (2005) Metabolomics or metabolit profiles? Trends
Biotechnol 23(8):385–386

Wang DZ, Kong LF, Li YY, Xie ZX (2016) Environmental microbial community proteomics:
status, challenges and perspectives. Int J Mol Sci 17(8):1275

Zhang W, Li F, Nie L (2010) Integrating multiple ‘omics’ analysis for microbial biology: applica-
tion and methodologies. Microbiology 156(2):287–301

Ziganshina EE, Mohammed WS, Doijad SP, Shagimardanova EI, Gogoleva NE et al (2018) Draft
genome sequence of Brevibacterium epidermidis EZ-K02 isolated from nitrocellulose-
contaminated wastewater environments. Data Brief 17:119–123

Zouboulis AI, Moussas PA (2011) Groundwater and soil pollution: bioremediation. In: Encyclope-
dia of environmental health pages. Elsevier, Amsterdam, pp 1037–1044

124 E. R. Tatta et al.



Harnessing the Potential of Modern Omics
Tools in Plant Tissue Culture 6
Ranjana Gautam, Rajesh Kumar Meena, Gulab Khan Rohela,
Naveen Kumar Singh, and Pawan Shukla

Abstract

Advancement in plant biology using high-throughput molecular tools has offered
several exciting opportunities to gain new insight towards mechanisms
controlling growth and developmental processes. In the past few years, omics
technology has shown tremendous potential in the field of plant tissue culture.
This chapter focuses on the adoption of omics-based techniques such as geno-
mics, transcriptomics and proteomics to stimulate research interest in model
plants and agriculturally important crops through tissue culture. It provides
information about new candidate genes which encode for signalling and regu-
latory proteins that control early embryogenesis and morphogenesis. Omics has
given an alternative mean for tissue culture to characterize the genomic data for
marker development related to somaclonal variants. The large amount of data
generated using these tools provide a quantum increase in knowledge related to
differentiation, redifferentiation, somaclonal variation and somatic embryogene-
sis and lay foundation for analysing tissue culture samples at cellular and molec-
ular levels.
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6.1 Introduction

The potential contributions of plant tissue culture (PTC) in the field of food security
and crop improvement in the last few years are highly impressive. It has emerged as
an indispensable tool for in vitro culture of plant cells, tissues and organs under
aseptic and controlled conditions to obtain genetically true clones. PTC was first
attempted by Australian botanist Gottlieb Haberlandt in 1902. For his remarkable
contribution in in vitro culture of plants, Haberlandt is regarded as the father of PTC.
This technique has been explored in different areas including the genetic crop
improvement and production of natural products, obtaining high-quality disease-
free plants, micropropagation, generation of transgenic plants by introgression of
novel genes and preservation of germplasm (Gautam et al. 2019; Ge et al. 2017;
Shukla et al. 2014). Steps involved during plant tissue culture technique are shown in
Fig. 6.1. During tissue culture a favourable environment like suitable temperature,
growth regulators and nutrient rich medium is required for the growth and multipli-
cation of tissues and organs. Plant cells have unique potential of totipotency and
development plasticity to differentiate, redifferentiate and then regenerating into a
mature plant. Establishment of tissue culture protocol is influenced by genotype,
origin of the explants, in vitro environmental factors (such as hormones and
nutrients), light quality, temperature and photoperiod. Plant tissue culture products
are providing model systems for studying changes at morphogenesis, developmental
genetic changes and gene regulation. Culture of tissues/cells sometimes results in
physiological, genetic and epigenetic problems especially recalcitrant, vitrification
and somaclonal variation that affect plant growth adversely (Cassells and Curry
2001). Though much has been studied but still several insights are lacking which are
required to understand the molecular developmental program involved during tissue
culture. Therefore, the knowledge of ‘omics’ will favourably help in understanding
the complex regulatory mechanisms’ during developmental processes (organogene-
sis, embryogenesis and totipotency) and identification of specific genes/proteins/
metabolites which regulate genetic changes (at cell and tissue level) in plants. Hence,
in the present scenario of modern biotechnology application of ‘omics approach’ in
plant cell, tissue and organ culture has emerged as a preeminent tool of biological
science. Omics era includes modern and powerful techniques like genomics,
transcriptomics and proteomics (Fig. 6.2). These techniques have been
complementing the classical techniques to illustrate an accurate picture of the entire
fundamental cellular and the molecular processes in plants. In this chapter, current
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status of the progress made towards plant tissue culture using ‘omics-based technol-
ogy’ has been discussed.

6.2 Genomics and Progress in Plant Tissue Culture

The term genome includes the entire DNA present in an organism inclusive of its set
of genes. Genomics aims to determine DNA sequences and performing genetic
mapping of genes present in the genome. Genomic studies use high-throughput
technologies like DNA sequencing, detection of mutant libraries and molecular
markers based on DNA. These methods have the advantage that they help in
substantial gene function and interaction analysis of gene products at cellular level
(Domżalska et al. 2017; Zhou et al. 2013; Zhu et al. 2018). Recent sequencing
programs of plant genomes facilitate in addressing the problems associated with

Plant  
Tissue 
Culture

initial explant kept on  

callus induction 

medium 

Callus formation in 4-6 
weeks

Shoot regeneration

Rooting of 
regenerated shoots

Transfer to soil

Mature plant

Fig. 6.1 A representative diagram about different steps involved during plant tissue culture
technique
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epigenetic changes (somaclonal variation) and interpreting the functions of various
genes at genetic level. The rapid accretion of high number of sequencing data and
expressed sequence tags (ESTs) means that plenty of plant genes have been discov-
ered so far, however still function of many genes needs to be established (Zhu et al.
2018). An in vitro culture condition induces dynamic changes at DNA level which
cannot be observed but aid in facilitating the explants adaptation in culture
conditions. These are associated with changes in chromosomal ploidy level, base
substitution in DNA sequence and mutations (dos Santos et al. 2016).

6.3 Molecular Marker and QTL Mapping in Tissue Culture

Using molecular markers, the variations induced at morphological and physiological
level between the source plant and original donor have been recorded well (Liu et al.
2016; Tan et al. 2013). Recently, Palama et al. (2010) using TMD (transposon
methylation display) and metAFLP (modified methylation sensitive AFLP) repro-
ducible markers have suggested that modifications at the nucleotide sequence and
cytosine methylation are an important source of variation in Arabidopsis induced by
tissue culture and transformation procedures. ISSR, SSR, RAPD have been widely
used to identify the genetic relatedness among different genera and varieties of the
plant species (Heringer et al. 2015; Nalousi et al. 2019). In muskmelon (Cucumis
melo L.) by using the ISSR molecular markers the genetic homogeneity of the
regenerants was assessed. It showed that regenerants generated by direct somatic
embryogenesis (DSE) of muskmelon were 7% different as compared to mother
(Kumaravel et al. 2017). RFLP analysis in an elite maize inbred has led to identifi-
cation of chromosomal regions which are important for embryogenic initiation and
regeneration during tissue culture (Tikendra et al. 2019). In flax (commonly known
as Linum usitatissimum L.) use of RAPD, ISSR markers provides a cost-effective
method to identify the microspore-derived plants as compared to plants raised from
the tissues (somatic) of anther explants (Choi et al. 2019). In Hordeum vulgare L.,
31 progeny lines were checked for the association of response of anther culture
through molecular markers. Out of them three on chromosome 2H and 3H associated
with regeneration rate, two on 2H and 4H with anther response and one on 4H linked
with diploidization (Haoa et al. 2004). According to previous reports, by combining
molecular marker and double haploids it is possible to do gene pyramiding, i.e. to
pile up the resistance genes on top of one another (Wang et al. 2019). Some of the
studies of plant tissue culture using molecular marker have been highlighted in
Table 6.1.

QTL mapping has been conducted across various species like maize, cotton, rice
and other crops to identify the callus formation and regeneration inducing genomic
regions (Jung et al. 2008; Tikendra et al. 2019) which thus aid in improving the
regeneration ability of tissues or cells by transferring the high regeneration ability
possessing QTL genes into varieties with low response of regeneration. A nitrite
reductase gene identified by QTL analysis was used to reduce the genetic hurdle in
regeneration response of Koshihikari rice variety (Jung et al. 2008).
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Table 6.1 List of different types of molecular marker used in tissue culture responses in plants

Marker type Plant name Phenotype (tissues)

Genotype
(variety/
cultivar) References

Inter-Simple
Sequence Repeats
(ISSR)

Capsicum
chinense Jacq.

Direct
organogenesis, direct
and indirect somatic
embryos and the
embryogenic callus
system

Registration
No. 2367-
chl-021-
080110/c

Bello-Bello
et al. (2014)

Amplified
fragment length
polymorphism
(AFLP) and
methylation
sensitive amplified
polymorphism
(MSAP)

Oryza sativa
L.

Calli Japonica and
indica

Wang et al.
(2013)

Random amplified
polymorphic DNA
(RAPD)

Peach
[Prunus
persica (L.)]

Embryocallus Batsch
(Sunhigh)

Hashmi et al.
(1997)

RAPD and ISSR Dendrobium
chrysotoxum
Lindl

Micropropagation Golden
orchid

Tikendra
et al. (2019)

ISSR Polianthes
tuberosa L.

Indirect shoot
organogenesis

Pearl double Nalousi et al.
(2019)

Specific-locus
amplified fragment
sequencing
(SLAF-seq)

Oncidium Single nucleotide
polymorphisms
(SNPs) and
insertion–deletions
(InDels)
identification in
somaclonal variants

Milliongolds Wang et al.
(2019)

SSR marker Zea mays L. Double haploid (HF1) and
(11S6169)

Choi et al.
(2019)

Methylation
sensitive amplified
polymorphism
(MSAP)

Red Marsh Somatic embryo Haoa et al.
(2004)

RAPD and ISSR Musa
acuminata

Micropropagation Nanjanagudu
Rasabale
(NR)

Lakshmanan
et al. (2007)

AFLP markers Potato
(Solanum
tuberosum L.)

Axillary-bud-
proliferation,
microtuberization
and a novel somatic
embryogenesis
system

Desiree Sharma et al.
(2007)

RAPD and SSR Gossypium
hirsutum L.

Somatic
embryogenesis

Coker 312 Jin et al.
(2008)

ISSR Brassica
oleracea L.

Somatic
embryogenesis

Botrytis Leroy et al.
(2000)

(continued)
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6.4 Mutagenesis and Genome Editing

Genetic mutagenesis has been the most efficiently used technique for characterizing
the function of gene after sequencing of the genome which is just a part of the task.
An effective way to characterize the mutants generated due to somaclonal variation
is by using forward and reverse genetics. Among these insertional mutagenesis
(T-DNA insertions and transposon or retrotransposons tagging) (Ram et al. 2019;
Krysan et al. 1999), CRISPR-Cas9 (clustered regularly interspaced short palin-
dromic repeats-associated Cas9 endonuclease) and TILLING (Targeting Induced
Local Lesions IN Genomes) technology is presently widely used in crops to create
mutant and knockouts which has resulted in boost of yield and improved agronomic
traits (Viana et al. 2019; Xu et al. 2017). With CRISPR/Cas9 technology it has
become more accessible to characterize the gene function by introducing precise
mutations in the target gene(s). This technique has revolutionized the research due to
its simplicity and specificity for studying the genome engineering and functional
genomics of various crops.

CRISPR employs Cas9 endonuclease and a guide RNA complex (gRNA). The
first 20 nucleotides of the target seed sequence of the guide RNA determine the site-
specific target for the DNA recognition (Bouvier et al. 2002; Salvo et al. 2014).
Protoplast, suspension culture, somatic embryogenesis have been widely used in
producing transgenic plants harbouring the modifications of the target genes
introduced by CRISPR/Cas9 technology (Gliwicka et al. 2013; Yakovlev et al.
2014; Zhang et al. 2017). This has proved to be valuable tool in the improvement

Table 6.1 (continued)

Marker type Plant name Phenotype (tissues)

Genotype
(variety/
cultivar) References

RAPD and ISSR Linum
usitatissimum
L.

Anther culture AC McDuff,
AC Emerson
and their F1
hybrids

Chen et al.
(1998)

RAPD, RFLP,
Isozyme marker

Brassica
napus

Double haploids F1 hybrid
obtained from
cross of
Darmor and
Yudal

Foisset et al.
(1996)

SSR Cucumis melo
L.

Ovary culture F1 hybrid Jin
Man Di

Malik et al.
(2011)

Isozyme and
microsatellite
markers

Pyrus
communis L.

Haploid and doubled
haploid

‘Doyenné du
Comice’,
‘Harrow
Sweet’ and
‘Williams’

Bouvier et al.
(2002)
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of crops by considering the genetics and physiology of plants, study of developmen-
tal and biochemical pathways (Hashmi et al. 1997; Leroy et al. 2000).

The oilseed rape plants produced from hypocotyl by using CRISPR-Cas9 system
with knocked out alc (ALCATRAZ) gene function produced siliques which could
increase the level of shatter resistance, thus results in fewer seed loss during
threshing (Bao et al. 2009). Mutagenesis of Phytoene desaturase (PDS) and
PDR-type transporter (PDR6) genes in protoplast of Nicotiana tabacum was
achieved by the application of CRISPR/Cas9. Transgenic plants with mutations in
PDS and PDR6 gene displayed etiolated leaves for the pds mutant and more
branches for the pdr6 mutant (Gao et al. 2015). Similarly, Klimek-Chodacka et al.
(2018) targeted flavanone-3-hydroxylase (F3H) gene which is involved in anthocy-
anin biosynthesis pathway in purple-coloured callus and site directed editing resulted
in the generation of F3H mutants that showed discoloration of callus. This helped
in validating the functional significance of this gene in the anthocyanin biosynthesis
along with serving as visual marker for examining successful edited events in carrot
callus culture (Klimek-Chodacka et al. 2018). Combining CRISPR/Cas9 and micro-
spore technology in wheat haploid cells, followed by regeneration of microspores
into double haploid (DH) transgenic plants, demonstrated microspores as efficient
explants by using DsRed gene and TaLox2 and TaUbiL1 (wheat) genes. This study
investigated the factors that may affect the delivery of CRISPR/Cas9 into
microspores and optimized microspores mutagenesis system in wheat genome to
induce genetic modifications (Bhowmik et al. 2018). Ultimately, the studies
involved the detection of the induced phenotypes by CRISPR/Cas9 technology
within short span of time proves to be a revolutionary functional genomics tool in
tissue culture by any other editing tool and powerful tool for genetic crop
improvement.

6.5 Application of Transcriptomics for the Study of PTC

In recent years, global analysis of gene expression at the mRNA and proteomic level
is providing a deeper insight into the in vitro plant regeneration in plants.
Transcriptome consists of whole RNA (mRNA, tRNA, rRNA and noncoding
RNA) molecules present in a cell. Transcriptome approach can be applied to an
entire organism or to a specific cell. Although abundance of genomic data and
marker studies are available for various developmental stages and agronomic traits
of plant, still regulatory networks for crucial stages of plant development remain
elusive. This tool allows the identification of genes which are switched on and off
due to different stress responses in a cell. The fundamental interest behind this
technique is to determine genes responsible for critical functions. Transcriptome
sequencing represents the most straight forward approach that has been enforced to
study the process of somatic embryogenesis and callus initiation in model systems,
as well as in crops.

Plant cells have the ability to form pluripotent form of mass of cells known as
callus from which new organs or whole plants are raised. Callus formation in plants
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is considered similar to the pluripotent stem cells of animals (iPS), whose induction
is mediated by expression of a few transcription factors (Oct4, Nanog and Sox2) as
plant and animal pluripotent stem cells show pluripotency characters. Callus forma-
tion from explants during in vitro condition is generally induced upon the media
supplemented with hormonal combinations of auxin and cytokinin. The mechanism
as to how these two plant hormones regulate the developmental fates is little known.
Earlier work on the transcriptome profiling in different explants of Arabidopsis
identified differentially expressed genes (DEGs) related with transcription, post-
transcriptional regulation, hormone homeostasis and DNA-chromatin modification.
This work helped to identify transcription factors like CRF3 and HB52, which when
overexpressed, formation of callus was obtained without supplementation of auxin
hormone (Xu et al. 2012). A similar kind of approach was also performed in
Arabidopsis seedlings (shoot and root explants) displaying the importance of tran-
scription factor like Lateral Organ Boundaries Domain (LBD) in callus induction.
Four genes LBD16, LBD17, LBD18 and LBD29 when overexpressed in the absence
of callus induction medium were able to promote callus induction, whereas suppres-
sion of LBD gene inhibited callus induction. This showed that these genes are the
regulators that mediate auxin signalling (Fan et al. 2012).

A transcriptome study of maize embryos, cultured on a medium containing 2,4,-
dichlorophenoxyacetic acid for 0, 1, 2, 4, 6 and 8 days, identified genes related with
signal transduction, iron ion binding, signal transmission. In this study ZmBBM2, an
AP2 transcription factor was instantly induced by auxin and its further characteriza-
tion showed its role in callus induction and proliferation in maize (Du et al. 2019).
Transcriptome analysis during the process of dedifferentiation and shoot regenera-
tion through organogenesis was carried out in Populus, model woody species. It was
found that genes encoding cell wall, mitochondria, organization of cell, ER and
biogenetic genes were highly overexpressed during callus formation. Two F-box
genes (involved in auxin signalling) were found to be differentially regulated during
the process of callus induction and were closely related to transport inhibitor
response 1 (TIR1) of Arabidopsis (Bao et al. 2009).

During tissue culture large transcriptomic studies have been generated and
focussed on somatic embryogenesis (SE). SE is a process by which somatic embryos
were formed from somatic cells either directly or indirectly due to the process of
dedifferentiation with callus as an intermediate stage. Indirect process transits
through different stages, viz. early pro-embryo, globular, heart-shape, torpedo
shape and cotyledonary shape prior to regeneration. SE is usually bipolar and
requires auxin as plant growth regulators but can also contain cytokinin in small
amount. The regulation of embryogenesis in plants is identical to the developmental
processes that occur through a series of intrinsic signals (hormones and transcription
factors) playing a central role in giving up the information to new cells which are in
the state of differentiation process (Long and Benfey 2006). Genes including late
embryogenesis abundant (LEA) protein, WUSCHEL, MYB transcription factor and
AGAMOUS have been reported previously for its key role in the formation of
somatic embryos (Jamaluddin et al. 2017). Using transcriptome, numerous genes
functions involved in somatic embryo development were identified in many plants
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such as Arabidopsis (Gliwicka et al. 2013), cotton (Jin et al. 2014), maize (Salvo
et al. 2014), Picea abies (Dobrowolska et al. 2017) and papaya (Jamaluddin et al.
2017). Few examples of transcriptome application in different systems have been
summarized in Table 6.2. Transcription factors involved in stress responses like
WRKY and DREB families were identified as important ones in SE formation in
Arabidopsis (Jin et al. 2014) whereas during ABA and NaCl treatment, SE develop-
ment got induced and the level of gene transcripts related to stress responses in
cotton is enhanced. In maize genes involved in hormone transport (Pinformed),
transcription factors (Agamous, Boom and Leafy Cotyledon), receptor kinases
(Clavata and Somatic Embryogenesis Receptor Kinases) were characterized to be
the key genes responsible for onset of embryogenesis in immature embryo explants
(Salvo et al. 2014). In recent times, complete picture of molecular events during
Arabidopsis SE has been illustrated using Illumina HiSeq 2000 platform
(Wickramasuriya and Dunwell 2015). This study described the gene expression in
response to oxidative stress, osmotic stress and auxin signalling during SE and
thereby provided the new insights in understanding the developmental mechanism
underlying in SE formation.

In addition to this, the plants cultured in vitro encounter a range of deleterious
responses which includes browning of explant. Explant browning leads to poor
growth and can also cause death of explants. Browning damage use to be alleviated
by supplements of media like active carbon, polyvinyl pyrrolidone, ascorbic acid,
etc. This sometimes restricts the use of tissue culture in species and thus considerate
the molecular mechanisms of the browning process are important. To understand the
mechanism during explant browning, genome-wide transcriptome was carried out in
Phalaenopsis explants. The results suggested that browning is due to the expression
of genes that affect flavonoid biosynthesis and phenylpropanoid pathway as well as
genes involved in ATPase activity and photosynthesis. These genes expression
disturbs the energy metabolism, thus leading to impairment of development of
plant tissues (Xu et al. 2015). Similarly, during transcriptomic analysis of Medinilla
formosana explants obtained via ovary culture showed that genes involved in signal
transduction and secondary metabolism were differentially expressed genes (DEGs).
This study of morphological and anatomical observations also displayed that the
browning of M. formosana was adaptive but not lethal (Wang et al. 2016).

The adoption of transcriptome has allowed researchers to look into the develop-
mental mechanisms, signalling pathways governing the in vitro growth of cultured
explants and tissues. These techniques are of greatest values not so much in tissue
culture but rather in the identification of new transcripts on a genome-wide analysis
to study their role underpinning the developmental mechanisms. The formation of
tissues or callus is mediated by variable patterns of gene expression which results in
changes in constituents of plant culture transcriptome, proteomes and metabolome.

134 R. Gautam et al.



Ta
b
le

6.
2

E
xa
m
pl
e
of

ap
pl
ic
at
io
ns

of
tr
an
sc
ri
pt
om

ic
te
ch
no

lo
gi
es

in
pl
an
t
tis
su
e
cu
ltu

re

S
pe
ci
es

P
la
nt

lin
e

S
eq
ue
nc
in
g

pl
at
fo
rm

G
en
e
na
m
e

G
en
e
fu
nc
tio

n
P
he
no

ty
pe

R
ef
er
en
ce
s

M
ai
ze

In
br
ed

lin
e
A
18

8
Il
lu
m
in
a

H
iS
eq

20
00

B
ab
y
bo

om
,l
ea
fy

co
ty
le
do

n
an
d
ag
am

ou
s

In
vo

lv
ed

in
em

br
yo

ge
ni
c
pa
th
w
ay

S
om

at
ic

em
br
yo

ge
ne
si
s

S
al
vo

et
al
.

(2
01

4)

N
or
w
ay

sp
ru
ce

Il
lu
m
in
a-

ba
se
d
m
as
si
ve

an
al
ys
is

D
N
A
-C
yt
os
in
e

M
et
hy

ltr
an
sf
er
as
e
(D

C
M
2)

an
d
V
ar
ia
nt

in
M
et
hy

la
tio

n
(V

IM
1)

C
at
al
ys
in
g
m
et
hy

la
tio

n
at
C
G

co
nt
ex
t

E
m
br
yo

ge
ne
si
s

Y
ak
ov

le
v

et
al
.(
20

14
)

H
is
to
ne

m
et
hy

ltr
an
sf
er
as
es

H
is
to
ne

m
od

ifi
ca
tio

n

C
ys
te
in
e-
ri
ch

po
ly
co
m
b-
lik

e
pr
ot
ei
n
1
an
d
V
er
na
liz
at
io
n
1

E
pi
ge
ne
tic

m
em

or
y
re
gu

la
tio

n

L
ili
um

pu
m
ilu

m
D
C
.F

is
ch
.

H
iS
eq

20
00

pl
at
fo
rm

m
iR
16

4
T
ar
ge
ts
N
A
C
(p
ar
tic
ip
at
in
g
in

th
e

re
gu

la
tio

n
of

m
er
is
te
m

di
ff
er
en
tia
tio

n,
dr
ou

gh
t
re
sp
on

se
)

S
om

at
ic

em
br
yo

ge
ne
si
s

Z
ha
ng

et
al
.

(2
01

7)

m
iR
15

9
A
B
A
-i
nd

uc
ed

si
gn

al
lin

g

P
op

ul
us

IN
R
A

71
7-
1
B
4

M
ic
ro
ar
ra
y

F
-b
ox

,A
ux

/I
A
A

an
d
A
R
F

A
ux

in
si
gn

al
lin

g
S
ho

ot
or
ga
no

ge
ne
si
s

B
ao

et
al
.

(2
00

9)

D
im
oc
ar
pu

s
lo
ng

an
L
ou

r
H
on

gh
ez
i

Il
lu
m
in
a

pa
ir
ed
-e
nd

se
qu

en
ci
ng

S
W
A
1/
2

G
am

et
og

en
es
is
in

A
ra
bi
do

ps
is

E
m
br
yo

ge
ni
c

ca
llu

s
L
ai
an
d
L
in

(2
01

3)
B
E
L
1-
L
IK

E
C
yt
ok

in
in

an
d
au
xi
n
si
gn

al
lin

g
du

ri
ng

ov
ul
e
de
ve
lo
pm

en
t
in

A
ra
bi
do

ps
is

S
W
P
(S
T
R
U
W
W
E
L
P
E
T
E
R
)

D
ur
at
io
n
of

ce
ll
pr
ol
if
er
at
io
n

A
ra
bi
do

ps
is

th
al
ia
na

C
ol
um

bi
a-

0
M
ic
ro
ar
ra
y

E
3
ge
ne
s
(A

S
K
3
an
d
A
S
K
18

),
E
1
ge
ne

(U
B
A
2)

an
d
E
2
ge
ne

U
bi
qu

iti
n–

pr
ot
ea
so
m
e
pa
th
w
ay
s

C
al
lu
s
in
du

ct
io
n

X
u
et
al
.

(2
01

2)

IA
A
5
an
d
IA

A
19

A
ux

in
si
gn

al
lin

g

C
K
X
5
an
d
C
K
X
3

C
yt
ok

in
in

de
gr
ad
at
io
n

A
B
I1

an
d
P
P
2C

-t
yp

e
ph

os
ph

at
is
es

P
ro
te
in

ph
os
ph

or
yl
at
io
n

M
Y
B
11

2,
M
Y
B
14

,M
Y
B
63

,
M
Y
B
94

an
d
A
t4
g3

91
60

C
el
l
de
ve
lo
pm

en
t,
ho

rm
on

e
an
d

en
vi
ro
nm

en
ta
l
re
sp
on

se
s

(c
on

tin
ue
d)

6 Harnessing the Potential of Modern Omics Tools in Plant Tissue Culture 135



Ta
b
le

6.
2

(c
on

tin
ue
d)

S
pe
ci
es

P
la
nt

lin
e

S
eq
ue
nc
in
g

pl
at
fo
rm

G
en
e
na
m
e

G
en
e
fu
nc
tio

n
P
he
no

ty
pe

R
ef
er
en
ce
s

S
oy

be
an

(G
ly
ci
ne

m
ax
)

Ja
ck

M
ic
ro
ar
ra
y

M
A
D
S
bo

x
ge
ne
s

A
G
A
M
O
U
S
-L
ik
e1
5

(G
m
A
G
L
15

an
d
G
m
A
G
L
18

)

C
on

tr
ol

of
fl
ow

er
in
g
tim

e
S
om

at
ic

em
br
yo

ge
ne
si
s

Z
he
ng

et
al
.

(2
01

3)

M
ed
in
ill
a

fo
rm

os
an

a
H
ay
at
a

Il
lu
m
in
a
H
is
eq

20
00

pl
at
fo
rm

A
U
X
1

A
ux

in
in
fl
ux

ca
rr
ie
r
pr
ot
ei
n

B
ro
w
ni
ng

W
an
g
et
al
.

(2
01

6)
A
ux

/I
A
A
,G

H
3
an
d
sm

al
l

au
xi
n-
up

R
N
A
s
(S
A
U
R
)

P
ri
m
ar
y
au
xi
n-
re
la
te
d
ge
ne
s

P
F
K
-1

an
d
H
M
G
R

A
M
P
K
si
gn

al
lin

g
pa
th
w
ay

A
ra
bi
do

ps
is

th
al
ia
na

C
ol
um

bi
a

IG
-C
N
S

Il
lu
m
in
a

H
is
eq
20

00

B
B
M
,A

IL
5
an
d
S
E
R
K
1

P
ro
m
ot
e
em

br
yo

ge
ne
si
s
an
d

or
ga
no

ge
ne
si
s
in

th
e
ab
se
nc
e
of

ex
og

en
ou

sl
y
ap
pl
ie
d
gr
ow

th
re
gu

la
to
rs

S
E
,g

ro
un

d
tis
su
e

an
d
le
af

pr
im

or
di
al

sp
ec
ifi
ca
tio

n

M
ag
na
ni

et
al
.(
20

17
)

C
ar
ic
a

pa
pa

ya
L
.

se
ka
ki

Il
lu
m
in
a

H
iS
eq

25
00

sy
st
em

W
U
S
C
H
E
L
,N

A
C
,W

R
K
Y
,

M
Y
B
,A

ga
m
ou

s-
lik

e
M
A
D
S

bo
x
pr
ot
ei
n
an
d
bH

L
H

Im
po

rt
an
t
ro
le
in

so
m
at
ic
em

br
yo

s
in

ot
he
r
cr
op

s
E
m
br
yo

ge
ni
c

ca
llu

s
Ja
m
al
ud

di
n

et
al
.(
20

17
)

A
ra
bi
do

ps
is

th
al
ia
na

C
ol
-0

M
ic
ro
ar
ra
y-

ba
se
d

tr
an
sc
ri
pt
om

e
an
al
ys
es

A
P
2/
E
R
E
B
P
,W

R
K
Y

an
d

N
A
C
fa
m
ili
es

B
io
tic

an
d
ab
io
tic

st
re
ss
es

S
om

at
ic

em
br
yo

ge
ne
si
s

G
liw

ic
ka

et
al
.(
20

13
)

W
IN

D
1
(w

ou
nd

in
du

ce
d

de
di
ff
er
en
tia
tio

n1
)

E
st
ab
lis
hm

en
t
an
d
m
ai
nt
en
an
ce

of
th
e
de
di
ff
er
en
tia
te
d
st
at
us

of
so
m
at
ic
ce
lls

in
th
e
ab
se
nc
e
of

ex
og

en
ou

s
gr
ow

th
ho

rm
on

es

M
on

op
te
ro
s
(M

P
)

A
ux

in
re
sp
on

se
fa
ct
or

C
yt
ok

in
in

re
sp
on

se
fa
ct
or
s

(C
R
F
s)

C
yt
ok

in
in

re
gu

la
to
ry

ge
ne
s

A
R
F
an
d
A
U
X
/I
A
A

A
ux

in
si
gn

al
lin

g

E
R
F

D
N
A

bi
nd

in
g

W
R
K
Y

B
io
tic

an
d
ab
io
tic

st
re
ss
,s
ee
d

ge
rm

in
at
io
n

136 R. Gautam et al.



6.6 Proteomics in PTC

Rapid improvement in the genomic and transcriptomic technologies produces mas-
sive amount of nucleotide sequences in database. However, it is not sufficient to
elucidate the biological functions of living cell due to limited correlation between
genes and protein translation (Pandey and Mann 2000). Protein is the performer of
gene expression, which regulates the biological function through several post-
transcriptional and post-translational modification and/or protein–protein interaction
in living system (Glisovic et al. 2008; Meena et al. 2018; Shukla et al. 2019).
Therefore, the term proteomics designates the study of complete protein profile of
a cell, tissue, organ and/or organism, often subjected to stress or developmental
changes. Proteomics also accompanies the study of protein expression, modification
and interaction with other proteins to regulate the several cellular and biological
processes of living system (Kumar et al. 2014; Chin and Tan 2018). Moreover, due
to technology improvement, several advanced tools have been developed for bioin-
formatics and computational science, which used to connect the proteomics with
other omics technique and suggested the possible mode of signalling, regulatory and
metabolic network of exclusive phenotype (Eldakak et al. 2013).

PTC involves several molecular events which participate in the transformation of
explant/callus into fully developed plantlets. Various proteins and their interaction
with other proteins regulate these molecular events. In the proteomic studies, a
number of techniques, viz. nanoelectrospray ionization based liquid chromatography
mass spectrometer (nESI LC-MS/MS), two-dimensional gel electrophoresis (2-DE)
coupled with mass spectrometry (MS) and isobaric tags based relative and absolute
quantitation (iTRAQ) were widely used to analyse the protein profile of cells, tissues
and organs which are under in vitro culture studies (Ge et al. 2017; Jung et al. 2008).
Proteomics is not only used to analyse the agronomically important crop like rice
(Jung et al. 2008), wheat (Zhou et al. 2013), maize (Ge et al. 2017), cotton (Zhu et al.
2018), etc. but also implicated on trees fern Araucaria angustifolia (dos Santos et al.
2016) and Cyathea delgadii (Domżalska et al. 2017) tissue culture studies. Proteo-
mics studies have been successfully used to identify the differentially expressed
proteins (DEPs), which regulate the molecular events during different developmen-
tal stages and treatments in explant/callus during culture (Aguilar-Hernández and
Loyola-Vargas 2018; Sharifi et al. 2012; Takáč et al. 2011; Meena et al. 2018).

Callus, mass of undifferentiated cells is an important phase of in vitro culture
based plant regeneration and transformation (Tan et al. 2013; Liu et al. 2016).
Proteomic study in rice (Yin et al. 2007, 2008), vanilla (Tan et al. 2013) and Lotus
(Liu et al. 2016) on differentiation and callus formation identified the DEPs
which regulate the process of callus formation. Tan et al. (2013) and Liu et al.
(2016) have identified the most of the DEPs are involved in metabolism, stress and
redox reaction, proteins related to cell and cell wall. These results suggested that
DEPs might regulate the metabolism reprograming, ROS level and rapid cell
division and proliferation during callus formation. Another proteomic study on
Vanilla planifolia revealed that out of 15 significantly expressed proteins, mostly
belong to amino acid-protein metabolism and photosynthesis during initial differen-
tiation of shoots from protocorm callus (Palama et al. 2010). This investigation
suggested that during induction of shoot differentiation, cell metabolism is
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stimulated at three levels: (1) photosynthetic, glycolytic compound synthesis,
(2) sugar degradation and (3) synthesis of amino acid and proteins and their stabili-
zation (Palama et al. 2010).

Somatic embryogenesis (SE) is a process of producing large amount of somatic
embryo from somatic cells and it is an analogous to zygotic embryogenesis (Ji et al.
2011). Advanced proteomics-based approaches like 2-DE and iTRAQ provide an
advanced tool to investigate the molecular mechanism of this morphogenetic route.
Several proteomic studies have carried out on SE analysis in numerous plant species,
viz. Boesenbergia rotunda, Citrus sinensis Osbeck, Coffea arabica, Crocus sativus,
Cucumis sativus, Cyclamen persicum, Daucus carota, Gossypium hirsutum,
Medicago truncatula, Musa spp., Picea glauca, Vitis vinifera, Saccharum spp. and
Zea mays (Heringer et al. 2015; Kumaravel et al. 2017; Ge et al. 2017; Zhu et al.
2018) (Table 6.3). For example, Kumaravel et al. (2017) compared the protein
profile of both non-embryogenic callus (NEC) and embryogenic callus (EC) of
banana and found that controlled oxidative stress and plant growth regulators like
adenylate isopentenyl transferase and indole-3-pyruvate monooxygenase are
correlated with induction of SE in embryogenic callus. iTRAQ-based comparative
proteomic analysis also provides evidences that signalling, glycolysis, plant hor-
mone transduction, biosynthesis and metabolism of fatty acids related proteins were
differentially expressed in cotton during SE compared to EC and NEC and regulate
development of SE (Zhu et al. 2018). Further, research could be focussed on the
functional validation of the identified proteins via proteomics and could open up the
possibility to use these proteins as markers of different stages of plant tissue culture.
This would help in uncovering and elucidating the mechanism as to how a single cell
becomes a complete plant.

6.7 Metabolomics in Plant Tissue Culture

In the recent times, during the last two decades plant tissue culture has also gained its
importance in metabolomics field to understand and trace out the metabolites of a
specific metabolic pathway in plants (Kumar et al. 2017; Sharma et al. 2018). Unlike
proteomics and genomics, in metabolomics the molecules or metabolites (<1.5 kDa)
of specific metabolic pathway are studied with regard to their concentration, chemi-
cal and physical properties such as polarity, solubility, structural similarity and
functional aspects (Kuehnbaum and Britz-McKibbin 2013). Molecular farming
through tissue culture or cell suspension cultures-based production of commercially
important secondary metabolites has gained rapid interest during recent times. Cell
suspension cultures in combination with metabolomics can make and better under-
stand the metabolic profile of a specific plant cell or organ (Oliveira et al. 2018).
Plant tissue culture in combination with metabolomics can easily understand the
metabolome of a plant species, i.e. identifying the complete set of molecules
which includes signalling molecules, primary metabolites, plant growth hormones,
intermediates, secondary metabolites and final products of metabolic pathways
(De Luca and St Pierre 2000; Oliver et al. 1998).

Advanced computational tools based on metabolomics studies have also enabled
to study the tissue specific metabolite diversity under control and under the influence
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of different stress (biotic and abiotic) factors (Li et al. 2016). This computational
metabolomics studies will help in identifying specific tissues and suitable stress
factors which can induce the production of commercial metabolites in large
quantities among the plant species of several families. By using computational
metabolomics in combination with tandem mass spectroscopy and information
theory analysis, tissue specific metabolite profile was elucidated in Nicotiana
attenuata (Li et al. 2016). In vitro culture based metabolomics studies could identify
the specific metabolites like metabolites of glucosinolates synthesis in Brassicaceae
family (Zang et al. 2009). In model plant Arabidopsis several ‘omics’ based studies
such as tissue specific expression, storage of secondary metabolites in specific tissues,
targeted degradation of proteins and proteins involved in alternate splicing
mechanisms were successfully identified (Hirai et al. 2007; Rajniak et al. 2015;
Sakurai et al. 2013). Further, metabolomics research could help in identifying specific
metabolites which could enable us to identify different characteristics of a plant species
such as shelf-life of fruits or grains, content of aroma compounds in aromatic plants
under diversified conditions, nutrient contents of food crops, etc.

Several metabolomics studies were reported regarding the altered metabolic
profile of transgenic callus or mutant lines in comparison to control or wild plants
(Kumari et al. 2017). For instance, the overexpression of gene coding for MdMYBA
transcription factor in mutant and transgenic lines was reported to produce high
contents of anthocyanin pigments in flowers and fruits of mutants/compared to wild
type (Ban et al. 2007; Kumar et al. 2017). There is a report of upregulation of
MdMYB10 transcription factor which has reflected in high content of anthocyanin in
the transformed callus and all the parts of transgenic apple plants compared to the
wild cultivar type (Espley et al. 2007).

The molecular events that led the explant to undergo transformation for the
formation of callus have been deduced recently in several plant species along with
the comparative metabolic profiles of callus induced from the wild type and mutant
lines (Fan et al. 2012; Ikeuchi et al. 2013; Sugiyama 2015). Similarly, metabolomics
studies were conducted to identify the metabolic drift during deformation or sluggish
growth of callus of mutant lines compared to wild types of different plant species. In
tomato, cotyledonary callus of mutant lines (pct1–2 and shr) showed differential
expression compared to wild type plants (Kumari et al. 2017). Metabolites of
glutamine and sucrose were reported to be differentially expressed in both the mutant
lines compared to wild type. Trehalose carbohydrate was reported as overexpressed
in the cotyledons of pct1–2, whereas sugars of talofuranose, β-D-glucopyranose,
galactonate, tagatose, ribose, myo-inositol and galactoglycerol were overexpressed
in cotyledons of shr mutant lines in comparison with wild type tomato plants during
the transformation phase of cotyledon explants to callus (Kumari et al. 2017).
Differential expression of sugars and amino acids was observed among the
non-embryogenic and embryogenic callus of sugarcane (Mahmud et al. 2014).

Advancements made in in vitro based secondary metabolite production are highly
helpful in producing plant-based healthcare products for the betterment of human
life (Marchev et al. 2020). Advanced techniques of HPLC, NMR, GC-MS, MALTI-
TOF-MS, ESI-MS, LC-MS, MS-MS were utilized in the in vitro culture based
metabolomics studies (Table 6.4) of several plant species (Fischedick et al. 2015;
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Georgiev et al. 2015). Further, there is a need to utilize the advanced techniques of
CRISPR/Cas9 for the metabolic engineering of medicinally important plant species
through genome editing either by insertion, deletion, overexpression or suppression
of specific structural genes coding for transcription factors/regulatory proteins
resulting in expression profile of a specific metabolite in a desired way for providing
the health and commercial benefits to mankind.

6.8 Future Perspectives

Omics represents as the most promising tool in the area of in vitro plant tissue culture
giving perspective of the future. The application of ‘omics’ techniques has been used
to understand the complexities of the developmental processes during
micropropagation and somatic embryogenesis. Omics comprehensive nature offers
an exclusively new pathway and research programs that should adapt accordingly.
The combination of different omics has facilitated the group of gene identification
which are involved in regulating the different steps of plant tissue culture. The
integration of genomics, proteomics, metabolomics and transcriptomic studies data
should be used to prepare mathematical models that can explain the problems
associated with in vitro regeneration systems at different developmental stages.
Further applications of these techniques will provide insights to understand the
molecular mechanisms that control individual traits. It might help us to look deeper
into the biology and physiology of the cultured explants, thus paving the way for
sustainable agriculture by development of more robust plant tissue culture practices.
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Improving Nitrogen Use Efficiency
of Legumes Under Changing Climate
Through Omics Technologies

7
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Abstract

The assimilation rate of carbon per unit of nitrogen in the foliage is termed as
nitrogen use efficiency (NUE) and this clearly depends on various factors includ-
ing soil nitrogen availability, environmental conditions and climatic factors. In
legumes, symbiotic nitrogen fixation occurs in root nodules which contain
millions of nitrogen-fixing bacteroids. Root nodules possess leghaemoglobin as
main constituent and the activity mainly depends on antioxidant levels and
reactive oxygen species (ROS). Symbiotic N fixation influences a wide array of
plant metabolic pathways including photosynthesis, protein metabolism in turn
modulating the plant nitrogen use efficiency in response to different environmen-
tal conditions, viz. elevated CO2, drought stress, elevated temperature, etc. Under
elevated CO2 conditions, several C3 plants experience photosynthetic acclima-
tion due to the imbalance in C/N supply. Several legumes including pigeonpea,
soybean were reported to enhance their nitrogen fixation capacity in response to
increased carbon supply and overcame photosynthetic acclimation. Also, there
was an increase in photosynthetic nitrogen use efficiency channelizing most of
the fixed N to biosynthesis of photosynthetic enzymes. Abiotic stresses modulate
the antioxidant system of root by increasing the ROS levels thus influencing the N
fixation process and subsequently hampers plant metabolism and growth. Crops,
shrubs and annuals are the most commonly explored species for their nitrogen-
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fixing ability under various environmental conditions. However, perennial tree
legumes are poorly characterized with respect to the mechanistic aspects of their
nitrogen fixation ability and its downstream implications in plant nitrogen use
efficiency and growth under different environmental conditions. Also, not much
of data is generated in terms of molecular marker development and improvement
of traits for NUE through omics technologies wherein the relationship between
genes, proteins and metabolites is still obscure. Thus, studying legume nodule
dynamics and nitrogen fixation along with in-depth ‘omics’ technologies is
crucial to understand unexplored aspects of nitrogen fixation in legumes.

Keywords

Nitrogen use efficiency · Legume · Photosynthesis · N2 fixation · Elevated CO2 ·
Abiotic stress

Abbreviations

A Assimilation rate
Asat Light saturated photosynthesis
AMO Ammonia monooxygenase
ANUE Agronomic nitrogen use efficiency
ATP Adenosine triphosphate
BNIs Biological nitrification inhibitors
C Carbon
Ci Internal carbon dioxide concentration
DCD Dicyandiamide
DMPP 3,4-dimethylpyrazole phosphate
FACE Free air CO2 enrichment
FBPase Fructose-1,6-bisphosphatase
GS Glutamine synthetase
HAO Hydroxylamine oxidoreductase
K Potassium
N Nitrogen
N2O Nitrous oxide
NADPH Nicotinamide adenine dinucleotide phosphate
NADP-ME NADP dependent malic enzyme;
NHI Nitrogen harvest index
NNIs Natural nitrification inhibitors
NO2 Nitrite
NO3 Nitrate
NR Nitrate reductase
NUE Nitrogen use efficiency
OTCs Open top chambers
P Phosphorus
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Pn Photosynthesis rate
PNUE Photosynthetic nitrogen use efficiency
PSII Photosystem 2
R Respiration
ROS Reactive oxygen species
RUBISCO Ribulose 1,5-bisphosphate carboxylase
RuBP Ribulose 1,5-bisphosphate
SBPase Sedoheptulose-1,7-bisphosphatase
UI Utilization index
VCmax Maximum rate of carboxylation
WUE Water use efficiency

7.1 Introduction

The global crop production has seen a remarkable progress with the advent of green
revolution and modern biotechnology. Though the genetic improvement programs
in crops have been majorly responsible for the increased crop yields, the use of
synthetic nitrogen (N), phosphorous (P) and potassium (K) fertilizers had also
played immense role especially in developing countries (Duvick and Cassman
1999; Duvick 2005). The major nutrient responsible for plant development and
growth is Nitrogen (N) thus influencing the crop biomass and yield. It is a predomi-
nant constituent of cellular organic compounds including proteins, nucleic acids,
chlorophyll and alkaloids. N along with other minor elements improves root system
for better absorption of water and nutrients under varied environmental conditions
(Fageria and Baligar 2005; Garnett et al. 2009; Dechorgnat et al. 2010). There exists
a strong correlation between leaf N content and CO2 assimilation rates since major
portion of leaf N is channelized for the synthesis of CO2 assimilating enzymes such
as Ribulose 1,5-bisphospahte carboxylase (RUBISCO), Phosphoenol pyruvate car-
boxylase (PEP carboxylase) which together accounts for nearly 70% of leaf protein
(Parry et al. 2003; Sreeharsha et al. 2015). This kind of correlation was experimen-
tally validated both in C3 and C4 plants as well as genetically variable cultivars of
same species (Coque and Gallais 2006; Dawson et al. 2008; Chardon et al. 2010).
The deficiency of nitrogen hampers vegetative and reproductive growth rates of the
plant and induces premature senescence thus reducing the yields potentially.
Flowering, fruit setting, protein and starch accumulation in seeds are also affected
to considerable extent under poor N conditions (Grant et al. 2002). While, high N
availability may prolong vegetative growth periods thus delaying crop maturity.
Thus, the optimum N availability in the soil and efficiency of a plant for absorption
and assimilation of N effectively will determine the productivity of a crop.

Inorganic fertilizers contribute to 46% of the total N loads of the world’s
cropland, whereas atmospheric N fixation from legumes and other N-fixing
microorganisms add 20% of it, 12% comes by atmospheric deposition, precipitation,
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gases adsorption and 18% is lend by organic manures (farmyard manures, animal
manures, green manures and crop residues) (Cassman et al. 2002; McAllister et al.
2012; Xu et al. 2012). However, crops utilise only about one-third of applied
nitrogen, while the remaining is lost to the environment (McAllister et al. 2012;
Xu et al. 2012). The nitrogen dynamics in soil-plant systems can be better under-
stood by studying N cycling and other associated mechanisms. The cycling of the
nitrogen is the consequence of various transformations undergone by N wherein it is
used by living organisms, transformed upon the death and decomposition of
organisms, and converted finally to its original oxidized state. Hence, the addition,
transformation, utilization and release of N altogether form the main components of
N cycling. The transformation of N in soil-plant systems happens through fixation,
mineralization, nitrification and immobilization (Jansson and Persson 1982; Bolan
et al. 1991; Stevenson and Cole 1999). Through N fixation, the atmospheric N is
fixed into inorganic form while mineralization is the microbial and enzymatic
conversion of organic forms of N into inorganic forms (NH4

+ and NO3
�) through

ammonification. The oxidation of NH4
+ to nitrite (NO2

�) and subsequently to nitrate
(NO3

�) is termed as nitrification and it is an important soil process mediated by
microorganisms through which nitrogen can be lost from terrestrial ecosystems. In
addition to ammonification and nitrification other processes such as denitrification
and ammonia volatilization are also important in N cycles. Ammonia volatilization is
a process of conversion of NH4

+ into NH3 which is ultimately lost to environment.
The process of nitrification and denitrification are tightly integrated wherein NO3

� is
converted to gaseous N2 under anaerobic conditions and both these processes are
known to be responsible for the production of nitrous oxide (N2O) (Fageria and
Baligar 2005; Xu et al. 2012). Apart from these N cycles, certain levels of N in the
natural ecosystems escape from the N pool and become unavailable for crop plants.
The main reasons for this loss include leaching and surface runoff and these could be
the potential reasons for N deficiency in crops.

In order to cope with the N loss through biological cycles, farmers especially in
developing countries use excessive nitrogen fertilizer. Though this strategy is helpful
to agriculture to certain extent, in a long run it impacts the environment nega-
tively wherein eutrophication of water bodies and accumulation of nitrates occur
in the underground water making it unsuitable for the consumption by humans. Also,
the recent statistics of the worldwide agricultural productivity shows that the use of
synthetic nitrogen fertilizers to improve crop plants may have reached a plateau
wherein further increases in applied N may not result in yield improvements but will
lead to serious environmental problems (Han et al. 2015). Approximately, 25% of
the total input costs in crop production including seeds, fertilizers and pesticides is
incurred for nitrogen fertilizers. To avoid the detrimental effects of excessive use of
synthetic N fertilizers, it is crucial to improve the nitrogen use efficiency (NUE) of
plants. Increasing NUE and decreasing N fertilizer usage can markedly contribute
for conservation of air and water quality and also for economic sustainability.
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7.2 Nitrogen Use Efficiency and Its Paradigms in Legumes

The nitrogen use efficiency is a broader phenomenon manifesting several other
minor events such as agronomic efficiency, physiological efficiency, agro-
physiological efficiency, apparent recovery efficiency and utilization efficiency.
The NUE can be defined as the maximum grain yield produced per unit of N
applied/absorbed/utilized by the plant at a given point of time (Fageria and Baligar
2005; Hirel et al. 2007; Dawson et al. 2008; Garnett et al. 2009; Han et al. 2015). It
simply explains the plant efficiency to convert N inputs into outputs. So, NUE is the
combination of the efficiency of absorption or uptake of N from the soil and
efficiency of assimilation and remobilization as a function of grain yield. The
other dimension of NUE is the agronomic nitrogen use efficiency (ANUE) which
comprises both uptake and utilization efficiencies. The same can be applied to leaf N
in a more specific way to determine the photosynthetic nitrogen use efficiency
(PNUE) which can be defined as amount of C sequestered per N content present
in unit leaf area (Sreeharsha et al. 2015). NUE can also be explained based on
utilization index (UI) indicating total plant biomass produced multiplied by the ratio
of the total plant biomass to total plant N (Han et al. 2015). The determination of
NUE in crop plants is an important approach to evaluate the fate of applied chemical
fertilizers and their role in improving crop yields. NUE and PNUE show different
trends in legumes when compared to non-legume plants due to the innate capability
of legume plants to fix atmospheric N2. Symbiotic nitrogen fixation is a key
biological process in which leguminous species form root nodules which can fix
atmospheric nitrogen in symbiosis with rhizobial bacteria. Thus it is assumed that the
nodule forming legumes can show superior NUE when compared to non-legumes
particularly in nitrogen-poor soils (Rogers et al. 2006; Rogers et al. 2009; Cernusak
et al. 2011; AbdElgawad et al. 2015). However, there are a large intraspecific and
genotypic variations within the leguminous plants that exist in growth responses to
various climatic factors depending upon their capacity to form nodules and the
nodule mass ratio (ratio of nodule mass to total biomass) which correlates positively
with nitrogen fixation. The NUE is majorly regulated by the nitrogen assimilatory
and metabolizing enzymes including glutamine synthetase (GS), glutamate
dehydrogenease (GDH) and nitrate reductase (NR). The advancements in the
omics technologies including next generation sequencing (NGS), various platforms
of proteomics and metabolomics help in the generation of massive genomic, proteomic
and metabolomics data to better understand the dynamics of the nitrogen assimilatory
enzymes and subsequently NUE under different environmental conditions.

7.3 Understanding the Influence of NUE on Plant Metabolism
Through ‘Omics’ Technologies

Nitrogen use efficiency is a systemic phenomenon and almost every plant metabo-
lism is connected and influenced by N levels and its assimilation. Among others, the
major mechanisms that are tightly connected with NUE are photosynthesis,
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respiration and grain yield. A multidisciplinary approach with various ‘omics’
technologies including genomics, transcriptomics, proteomics and metabolomics
would help in dissecting specific plant pathways that are in association with NUE.
This will also decipher identification of the genes corresponding to a particular trait
along with the proteins and metabolites and also identify associated molecular
markers. The NUE and PNUE and their interaction with other plant metabolism
are depicted in Fig. 7.1.

7.3.1 Photosynthesis

The C sequestration through photosynthesis and NUE is interdependent on each
other and tightly correlated since the leaf N levels invariably influence the photo-
synthetic process. An epistatic interaction between NUE and C assimilation will help
in analysing their mutual association (Krapp and Truong 2005). Overexpression of
cytosolic GS1 gene in tobacco from Medicago sativa demonstrates better nitrogen
use efficiency thereby enhancing photosynthesis, growth and interestingly this was
applied to many other crop plants also (Fuentes et al. 2001; Oliveira et al. 2002; Jing
et al. 2004; Man et al. 2005). Long term growth under N deficient soils induces an
imbalance in source-sink relationship associated with reduced nitrogen content and
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Fig. 7.1 Schematic representation of NUE and the associated mechanisms along with the
influencing factors in a model legume
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usually results in accumulation of leaf carbohydrates especially starch, which
triggers a feedback mechanism that reduces photosynthetic capacity. This is due to
reduction in Rubisco protein and its activity which is termed as RuBP carboxylation
limitation (Spreitzer and Salvucci 2002; Parry et al. 2003; Sekhar et al. 2015). The
Rubisco limitation can be assessed by VCmax which can be measured by using A/Ci
curves and these values are well correlated with PNUE. Approximately, 25–40% of
the leaf nitrogen used for the synthesis of Rubisco in C3 plants, which leads to
decreased nitrogen use efficiency. Thus, an increased PNUE can be seen when
Rubisco-limited photosynthetic acclimation occurs within the leaf tissue because
there is conservation and redistribution of nitrogen which was otherwise utilized for
Rubisco synthesis. This holds true for many legumes including pigeonpea, soybean
and other non-legumes including mulberry and Jatropha where there was a decrease
in PNUE as the growth proceeds (Sekhar et al. 2015; Kumar et al. 2017). The other
factor which can limit the photosynthesis is RuBP regeneration capacity which
depends on the expression and activity of sedoheptulose-1,7-bisphosphatase
(SBPase), fructose-1,6-bisphosphatase (FBPase). In addition, RuBp regeneration
can be hampered by inefficient function of photosystem-II linked with decreased
electron transport capacity leading to reduced amounts of ATP and NADPH, which
are vital for activation of key enzymes in RuBP regeneration process (Sekhar et al.
2014).

There are many traits affecting NUE like root structure in case of uptake effi-
ciency and photosynthesis in case of assimilation efficiency. NUE can be improved
by improving photosynthesis for given concentration of leaf N or by reducing N
content per unit leaf area without changing photosynthesis (Foulkes et al. 2009).
Nitrogen uptake efficiency of plant also depends upon the growth capacity of the
plant along with external factors and the feedback is regulated by both N and C
signalling in shoot (Lemaire and Millard 1999; Gastal et al. 2015). N uptake is
positively regulated by photosynthetic assimilate transported from leaf to root
through phloem when levels of N are low (Forde 2002). When levels of N are
saturated within respective organs, a negative feedback is sent from shoot to root. It
is also found that N can also be sequestrated into stem along with leaf which can lead
to more storage of N thus delaying the absorption of N from soil. So, the increase in
growth rate of plant increases photosynthesis and leaf area leading to positive C
signal which can enhance the uptake of N and also lead to N sequestration to various
organs. It is also observed that decreased plant growth rate causes a drop in C
signalling which increases the organic N- compounds recirculating in phloem and
represses the N absorption by root. Hence the N uptake is co-regulated by both soil N
and plant growth rate which in turn regulated by photosynthesis.

The NUE is different in C4 and C3 plants since the former plants show different
photosynthetic mechanism from C3 plants and have advantage under N limiting
conditions. Further, legumes have an advantage over non-legume plants wherein
they require less use of N fertilizer since they can fix nitrogen through symbiotic
relationship between N-fixing diazotrophs (Vance and Heichel 1991; Cernusak et al.
2011). Legumes are known to have more leaf N content and this results in more
photosynthesis and subsequent higher growth rates (Adams et al. 2018). In cereals
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and dicots the leaf N was not significant measure of Asat whereas in case of legumes
Asat and leaf N are interlinked (Feng et al. 2009; Adams et al. 2018). Light is often
co-regulated by leaf N and also affects the allocation of N to various photosynthetic
components. Reports have shown that NADP-ME (NADP dependent Malic
enzyme) containing plant species tend to have higher PNUE relative to other C4
grasses except for one NADP-ME lineage (Aristidoideae) that had PNUE similar to
C3 counterparts (Taub and Lerdau 2000; Ghannoum et al. 2005; Taylor et al. 2010).
In grasses, the higher PNUE in NADP-ME was driven by a faster Rubisco enzyme
this in turn was associated with differential allocation of nitrogen, chlorophyll and
PSII between the mesophyll and bundle sheath cells (Edwards and Barber 1976;
Hatch and Osmond 1976; Ghannoum et al. 2005).

7.3.2 Respiration

The response of respiration to nitrogen and their correlation is important as it
influence the plant, the ecosystem and global carbon budgets (King et al. 2006;
Houghton 2007). The respiration of whole plant differs not only with the amount of
nitrogen per plant but also across the plant sizes (Reich et al. 2006). This in turn is in
proportion to biomass and N levels of various tissues including leaves, stems and
roots which differ not only chemically but also structurally and metabolically (Reich
et al. 2008). Various studies have shown that the plant respiration is influenced by
both the enzymes, co-factors which contain N and the substrate which is usually
carbohydrates irrespective of the organ type (Amthor 1994; Amthor 2000; Cannell
and Thornley 2000; Amthor and Baldocchi 2001; Atkin and Tjoelker 2003; Gifford
2003; Bouma 2005; Lambers et al. 2005). However, it is still unclear whether the
respiration–nitrogen relationship is same or different for each organ. One of the
many hypothesis regarding R–N is that the slope would be similar for plant parts
such as roots, leaves and stems but at the same time respiratory cost related to N
partitioning or processes like turnover of protein, phloem loading, uptake of nutrient
and assimilation of nitrogen will differ consistently among different plant organs
(Reich et al. 2006). Previously, it was believed that the leaf tissue might have higher
respiration since it contained most of N and is metabolically active. However, later
studies showed that leaf had lower respiration since the total N in leaves majorly
involve in photosynthesis and less in respiratory related components (Reich et al.
2006, 2008). But in shoots and roots they are involved in the storage of
non-structural carbohydrates, its conversion, nutrient uptake as well as transport.
Hence the respiration and N relationship among the organs is different. Next
generation sequencing through genome wide association studies, quantitative trait
loci mapping and mining of molecular markers could help in understanding the
interplay between respiration and nitrogen use efficiency.
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7.3.3 Grain Yield

Plant life cycle is divided into vegetative/pre-flowering phase and reproductive/post-
flowering phase. The requirement of N also changes accordingly during these phases
wherein during vegetative phase the N is allocated and sequestrated among leaves,
shoot and roots which are potential sink tissues during that phase. While in repro-
ductive phase the leaves act as source for both N and C and seeds and fruits are the
major sink tissues. So, the N uptake and NUE also change according to the phase of
the plant life cycle. According to the definition, the assimilation and remobilization
of plant nitrogen to produce grains/yield are one of the components of NUE. Thus,
the plants with better efficiency to remobilize plant N to seeds will be considered to
have better NUE. In case of N deficiency the yield and grain number was found to be
less in various crops including maize, wheat and rice (Uhart and Andrade 1995; Mae
1997; Sadras and Slafer 2012). There were a handful of studies which were benefited
from the advanced omics technologies and gene engineering wherein the NUE was
modulated and ultimately resulted in better growth and productivity. For instance,
the overexpression of OsENOD93-1 gene which is known to be responsive to
nitrogen in rice resulted in an increase in the grain yield (Bi et al. 2009). Similarly,
a transcription factor encoding gene Dof1 from maize when overexpressed in
Arabidopsis and grown under low nitrogen levels led to an increased nitrogen uptake
as well as increased levels of amino acid (Yanagisawa et al. 2004). Enhanced
biomass and seed yield were observed in rape seed upon overexpression of alanine
aminotransferase (AlaAT) gene from Barley (Good et al. 2007) The N deficiency
leads to lower growth rate which in turn affects flowering and consequently the
production of grain. The grain filling in plants in turn depends upon the remobiliza-
tion of C and N from vegetative phase and also post-flowering photosynthesis and
root N absorption (Gastal et al. 2015). Quantitative Trait Loci (QTLs) for NUE and
carbon assimilation were found to be co-localizing in maize thus representing an
enhanced utilisation of ‘C’ facilitated by N for filling the grains (Gallais and Coque
2005). Delay in leaf senescence can prolong photosynthesis and hence produce more
C which in turn will help in better N uptake. If the plant is better at N uptake and has
better growth rate the grain yield will also be optimum in which case, the legumes
will have strategic advantage. Cereals like wheat and rice require heavy N fertiliza-
tion to have high leaf N contents and persistent photosynthesis (Makino 2011). At
the same time nitrogen harvest index (NHI) is also important for crops that reflect the
protein content of grain which is an important nutritional quality.

7.4 Nitrogen Dynamics Under Changing Climatic Scenario

Climate change is one of the major factors that influence the plant productivity on a
global scale. Plants respond differently to these climatic changes depending on the
species, cultivar type and growth conditions and likewise NUE also. Elevated CO2

and drought stress are two scenarios which can interact with each other and influence
the plant growth, physiology and yield. Under elevated CO2 conditions, the shoot
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traits contribute for dynamics of NUE while under drought and oxidative stress
conditions, root or below ground tissues majorly contribute for altered NUE. The
effect of CO2 concentrations and drought stress on PNUE as a function of Pn is
depicted in Fig. 7.2.

7.4.1 Elevated CO2

Natural and anthropogenic mediated CO2 emissions can lead to change in the
climate wherein there is an alteration in the budget of earth’s energy. Elevated
atmospheric CO2 has significant effect on physiology, growth and yield of major
food crops as well as tree species. Elevated CO2 is known not only to stimulate
photosynthesis (A) but also the growth of most plants (Ainsworth and Rogers 2007;
Rogers et al. 2009; Sreeharsha and Reddy 2015). To understand the plant responses
to elevated CO2 and associated C and N dynamics, Free Air CO2 Enrichment
(FACE) and Open Top Chambers (OTCs) are highly useful. Various studies have
shown the differential responses of C3, C4 plants as well as legume, non-legumes
plants under elevated CO2 conditions (Sekhar et al. 2015; Kumar et al. 2017;
Sreeharsha et al. 2019). Generally, elevated CO2 enhances photosynthesis of plants
due to excessive C supply. However, most of the crop and tree species showed
photosynthetic acclimation (saturation and subsequent reduction in photosynthesis)
after certain period of growth due to N limitation. This could be due to feedback
regulation of Rubisco through increased sugars and saturated sink capacity. How-
ever, some other plants showed persistent stimulation of Pn despite an increase in
foliar starch under elevated CO2 conditions. For instance, mulberry grown under
elevated CO2 showed accumulation of starch and total sugars with respect to area

Pn

PNUE

Elevated CO2

Ambient CO2

Oxidative stress

Fig. 7.2 Relationship between nitrogen use efficiency and photosynthesis under ambient, elevated
CO2 and drought stress conditions in a model legume crop
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and mass whilst showed an enhancement of Pn by 40% (Sekhar et al. 2014, 2015).
So, there is no consensus phenomenon of high starch accumulation and photosyn-
thetic acclimation. Also, it was believed that a decline in Nm under elevated CO2

was associated with photosynthetic down regulation. However, the recent studies
showed the stimulation of photosynthesis nevertheless a reduction in Nm which
infers the responses of plants to elevated CO2 varies significantly from species to
species. The N demand can be met by supplying N2 fertilizers externally to balance
the excessive C supply. Hence, when growth occurs under elevated CO2 there is
decrease in soil nitrogen availability and there is increased C pool in the biomass
leading to lower leaf nitrogen (mass and area basis) which results in decrease of net
photosynthetic capacity and grain yield.

The phenomenon is somewhat different in legume crops when grown under
elevated CO2. There exists mutualism between the plant and the bacteroid in
the root nodules wherein the carbon supply which provides energy is received by
the bacteroid from the host in the form of sucrose and the bacteroid returns NH4

+ to
the host cells. Therefore, the increased carbon source in the legumes during elevated
CO2 may thus be diverted to other available sinks such as nodules for their growth
and productivity (Rogers et al. 2009; Cernusak et al. 2011). In legumes, the
responses of nodulation to elevated CO2 such as nodule size, number and specific
nitrogenase activity provide valuable information about the NUE. In several model
legume crops, the increased carbon source is invested in nodule development
thereby enhancing nodule number and nodule mass and subsequently increased
atmospheric nitrogen is being assimilated through the nitrogen-fixing bacteria.
Also, there is a positive correlation between nodule mass ratio and Pn values
substantiating the fact that more the number of nodules, there is increased mass
which indirectly promoted photosynthesis by overcoming the nitrogen limitation
and hence the plant escapes the photosynthetic acclimation. Due to their increased
nodule size, nodule number and total N contents, several legume crops including
Trifolium repens, Lupinus albus, Pisum sativum, Cajanus cajan and Glycine max
showed increased seed yields under high CO2. (Zanetti et al. 1996; Rogers et al.
2009; Butterly et al. 2016).

One of the primary components of NUE is the efficiency of nitrogen uptake.
Plants can uptake N in the form of both nitrates as well as ammonium. Interestingly,
there was a strong correlation between inhibition of nitrification and the ratio of
uptake of root ammonium to nitrate. Higher ammonium uptake can lead to higher
NUE of plant and this could be of significance in the context of adaptation to climate
change. Total protein and N content in plants generally reduce under elevated CO2,
especially when the nitrogen source is nitrate, its assimilation is slower under this
condition thus leading to harmful effects on food quality. Growth under elevated
CO2 decreases stomatal conductance and transpiration rates which potentially
decrease N uptake from the soil thus influencing the NUE. Elevated CO2 also
inhibits the photorespiration-dependent nitrate assimilation in shoot of many species.
Thus, it is highly relevant to focus on developing plants with higher NUE to cope
with the limiting N sources under future elevated CO2 conditions. Otherwise, the
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future agriculture demands excessive use of N fertilizers which in turn have delete-
rious effects on the environment.

7.4.2 Drought Stress

Drought and high temperature are two major environmental factors which limits the
growth and productivity by depressing carbon assimilation and nitrogen uptake.
Drought causes oxidative stress and decreases photosynthetic rates and interrupts
photosynthetic electron transport in plants. Root and nodule development are also
extremely sensitive to drought and decrease along with gas exchange parameters.
The imbalance in carbon sequestration and electron transport rates produces reactive
oxygen species (ROS) including methylglyoxalase (MG). Subsequently, ROS will
cause oxidative damage to photosynthetic apparatus and affect NUE. Plants evolved
various mechanisms to mitigate ROS which include Ascorbate-Glutathione path-
way, glyoxalase pathway and aldo-keto reductase mediated mechanisms (Mudalkar
et al. 2016; Mudalkar et al. 2017). Legumes can mediate improved mitigation of
ROS in drought stressed conditions when grown under elevated CO2 (Sreeharsha
et al. 2019). It was evident that optimum ROS concentrations play an important role
in nitrogen fixation process by activating the expression of nitrogenase enzyme
(Serraj et al. 1999; Streeter 2003). However, under oxidative stress excessive ROS
will be generated becoming detrimental to biomolecules and hamper the nodule
functionality. The efficiency of N acquisition and utilization of plant under oxidative
stress conditions could be related to the capacity of the plant to buffer excess ROS by
enzymatic and non-enzymatic antioxidative system thus minimizing the damage to
the root nodules and other tissues. In turn, RUBISCO carboxylation capacity and
kinetics are interrelated to plant performance under stress conditions since, higher
carboxylation efficiencies result in less photorespiration and subsequent ROS gen-
eration. So it is evident that plants with higher RUBISCO kinetics can show higher
PNUE especially under stress conditions.

High temperature stress leads to reduced photosynthesis which is caused due to
the disruptions in the structure and function of chloroplasts and hence reduced
chlorophyll content in leaves thereby decreasing the energy available for assimila-
tion of nitrate which could be negatively affecting the status of plant nitrogen.
Further, plant nitrogen uptake under these stress can be hampered by decreasing
the activity of enzymes involved in nitrogen metabolism (Prasad et al. 2008). The
assimilation of intracellular ammonium into organic compounds occurs majorly due
to the enzymes NR and GS. Combined heat and drought stress decreased the activity
of NR but increased the proteolytic enzyme activity suggesting a rapid mobilization
of nitrogen compounds to the grain (Prasad et al. 2008; Zinta et al. 2014). The
reduced nitrogen uptake of plants under heat and drought stress could be attributed to
the lower availability of nitrogen in the soil under drought and/or a decreased
capacity of root to uptake nitrogen and reduction in nitrogen demand by the plant.
Reports have shown that drought priming can enhance the uptake of the nitrogen to
the plants exposed to sole or combined drought and heat stress. The overall effect of

160 R. V. Sreeharsha et al.



drought on plant NUE showed that maximum fertilizer use efficiency can be
obtained with low N rates applied under well-watered conditions.

Each step of plant NUE including N uptake, transport, assimilation, and remobi-
lization is regulated by both genetic and environmental factors. The interactions
between genotype, soil N levels, moisture content and soil type define NUE. The
analysis of different plant genotypes under different environmental conditions for
their yield, total N uptake or NUE will demonstrate the genetic component of NUE
and gene, environment interaction for regulation of NUE. Clearly, the most impor-
tant environmental factor affecting NUE is water availability. In water scarce
conditions, plant faces difficulty in nutrient extraction from soil and the yield is
constrained by moisture availability not N availability. This sort of imbalance
between water supply and nitrogen fertilization under drought stress finally reduces
NUE. So there is an indirect negative correlation between drought and NUE. In turn,
a balanced N status in the plant can alleviate the effects of drought stress by
preventing cell membrane damage and enhancing osmoregulation. Sufficient N
nutrition resulted in higher water use efficiency (WUE) as most of the leaf N is
used to synthesize components of the photosynthetic apparatus in particular
RuBisCo thus playing a major role in carbon assimilation. Root morphology and
physiology are closely associated with soil resource acquisition and growth and
development of aboveground tissues (Lynch 2013). The nutrient acquisition
is effected by altered root architecture under stress conditions and for efficient N
acquisition, the plant has to develop deeper roots with vigorous lateral root growth
and strong responses of lateral roots to localized N supply. Alternatively, improving
the drought tolerance or selecting drought tolerant varieties can also enhance the
crop yield without application of additional N. Recent advanced technologies in
drought assessment of crop plants through hydraulic conductivity will help in
selecting elite accessions that can withstand the drought stress and mediate improved
NUE (Reddy et al. 2019)

7.5 Improving NUE of Crop Plants

Improving NUE of crop plants is crucial in obtaining targeted yields and to face the
future climate change scenarios with respect to the agricultural production and
protection of environment. Of late, several studies were successful in enhancing
the NUE of several model crop plants through breeding as well as advanced
biotechnological tools. Different approaches implemented so far in crop plants to
enhance NUE are summarized in Table 7.1. Under N stress condition,
overexpression of alflafa glutamine synthestase (GS1) in tobacco plants led to
enhanced NUE. Similarly, increase in biomass was observed when pea GS1 was
overexpressed under N stress and non-stressed conditions (Oliveira et al. 2002). One
of the traditional ways is to suppress nitrification and maintenance of N fertilizer in
the reduced form so that fertilizer-N retention will be more in the soils thus
improving the NUE. Sustainable primary production in agro ecosystems and fertility
enhancement can be done by inhibiting nitrification. Synthetic inhibitors such as
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nitrapyrin, dicyandiamide (DCD) and 3,4-dimethylpyrazole phosphate (DMPP) are
widely used to retard nitrification but their use is restricted due to higher cost,
unavailability, inconvenience of application and the risk of environmental contami-
nation. In particular, inhibitors which are water-soluble can cause contamination to
the surface and below-ground water (Huang et al. 2014; Cahalan et al. 2015; Sun
et al. 2015). Due to these drawbacks of synthetic inhibitors, it is important to develop
plant-derived nitrification inhibitors, which are termed as either natural nitrification
inhibitors (NNIs) or biological nitrification inhibitors (BNIs) (Subbarao et al. 2007;
Upadhyay et al. 2011; Subbarao et al. 2015). Some such environmentally friendly
and easily available compounds from plants have been reported which reduces the
nitrogen loss and enhances NUE of crops by controlling the leaching of nitrates into
the water bodies and emissions of N2O into the atmosphere. Nitrification inhibitory
potential has been identified in two plants, Brachiaria humidicola and Sorghum

Table 7.1 Various strategies employed in plants to enhance their NUE

Approach
Plant
species Underlying Mechanism References

Synthetic nitrification
inhibitors

Grasslands
and general
crop
application

Inhibiting nitrification thus
reducing nitrous oxide and
methane emissions and
increasing N use efficiency

Huang et al. (2014),
Cahalan et al.
(2015), Sun et al.
(2015)

Biological/natural
nitrification inhibitors

Wide range
application

Inhibiting nitrification and
increasing N use efficiency

Subbarao et al.
(2007), Upadhyay
et al. (2011),
Subbarao et al.
(2015)

Molecular approach Maize A single point mutation in
male sterility 44 (ms44) gene
increases N use and grain
yield

Fox et al. (2017)

Chlorophyll meter
technology (SPAD)
based Site Specific
Nutrient Management

Rice Optimum synchronization
between supply and demand
of N for plant growth

Dobermann et al.
(2004)

Genetic approach using
molecular mechanism

Maize Mapping of genes encoding
proteins and enzymes
involved in nitrogen
assimilation and recycling
for further QTL detection.

Hirel et al. (2001)

Transgenic approach Maize Expression of agrobacterium
isopentenyl transferase

Robson et al. (2004)

Transgenic approach Rice Overexpression of NADH-
GOGAT

Tabuchi et al. (2007)

Transgenic approach Arabidopsis Enhanced expression of
asparagine synthetase

Lam et al. (2003)

Transgenic approach Canola and
Rice

Overexpression of alanine
aminotransferase

Good et al. (2007)
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bicolor which are characterized for their effects and modes of inhibition on the
bacterium Nitrosomonas europaea, which oxidizes the ammonia (Gopalakrishnan
et al. 2007; Subbarao et al. 2007; Zakir et al. 2008). These inhibitors were known to
block either the ammonia monooxygenase (AMO) pathway or both the AMO and
hydroxylamine oxidoreductase (HAO) pathways which are involved in ammonia
oxidation. Cereal crops, especially rice, are not very efficient at absorbing the soil
nitrogen, since the ratio of absorption to the amount of nitrogen applied as fertilizer
is typically only 30–40%.

Another approach to improve NUE is to increase either uptake and assimilation or
partitioning of nitrogen to grain production. Numerous studies using transgenic
approaches have shown that improved NUE can be achieved by manipulating the
candidate genes that are involved in the uptake, assimilation and signalling of
nitrogen and also root development. Apart from overexpressing various structural
genes, an improved NUE can be achieved by expressing the regulatory genes. The
most advanced lead is that of alanine aminotransferase wherein the expression of this
gene from barley into canola and rice under low nitrogen conditions increased not
only the biomass but also the seed yield (Good et al. 2007). Improved nitrogen use
for grain production was observed in Ms44 wherein a single point mutation caused
male sterility. While this male sterility does not change the total content of nitrogen
but it improves the utilization efficiency by reducing the nitrogen use in tassel and
pollen development and allocating more nitrogen to immature ear development, as a
result there is an increase in the number of maize kernel (Fox et al. 2017).

7.6 Conclusions and Way Forward

The environmental foot print of nitrogen fertilizer and the cost to the grower can be
reduced along with increase in grain yields which is critical for food security, by
improving NUE. Many efforts have been made to breed crop varieties that grow well
under low nitrogen soil conditions. However, improving NUE in major crops
through genetic engineering is still in its initial stages and far from ready for
commercialization. Many studies have reported an improvement in NUE in
Arabidopsis, rice, wheat and maize using transgenic approaches, but the NUE of
the transgenic lines using elite germplasm has not been validated in fields. The
varietal development of crops with either efficient N acquisition from the soil or with
traits to use the acquired nitrogen more efficiently or with both traits would be
beneficial to improve NUE especially in the N-limited conditions. Also, genetic
mapping through QTLs of various traits linked to the physiological and biochemical
pathways would help in identifying the key genes involved in overall NUE of the
plants. Research and development in ‘omics’ including genomics, transcriptomics,
proteomics and metabolomics along with physiological data can be a way forward
for improving the NUE in crop plants.
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Omics Approaches for Elucidating Abiotic
Stress Responses in Plants 8
Israr Ahmed, Pawan Shukla, and Ranjana Gautam

Abstract

Abiotic stresses are the limiting factors that adversely affect the sustainable food
production to meet the global food demand. However, plant has evolved an
inbuilt mechanism to sense and respond these abiotic stresses. Unraveling these
mechanisms of abiotic response is important for developing climate resilient crop.
In last two decades, the advent of omics platform has made significant progress in
this direction. Omics technologies like Next Generation sequencing (NGS),
Transcriptomics, Proteomics, and Metabolomics have been used in crop plants
under abiotic stresses. The quantum of information generated through omics
platform has been utilized by plant breeders for quantitative trait loci (QTL)
analysis, marker development, and deciphering abiotic stress pathways. This
chapter focused on different omics technology has been adopted for understand-
ing abiotic stress response in agriculturally important crop.
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8.1 Introduction

Plants being sessile in nature have to endure various environmental cues. These
environmental cues may be biotic or abiotic in nature. Biotic stresses include
infestation by different insect pests and diseases caused by pathogens. Abiotic
stresses include water scarcity, salinity, temperature (high or low), nutrient limita-
tion, or heavy metal stress. These stresses together limit crop productivity. It is
estimated that in the next 30 years, global human population will increase by 25%
and reach 10 billion (Hickey et al. 2019). Drought alone affects 40% of global area,
whereas 7% of total area is affected by salinity (Rozema and Flowers 2008). The
decrease in arable land due to one or more abiotic stresses poses a serious threat to
food supply for ever increasing human population. To ensure enough food supply to
feed this huge population, agricultural production needs to be increased by two folds.
Climate change is further exacerbating the situation. Scientists need to develop
climate resilient crops that can sustain their yield under these adverse conditions.
To develop such climate resilient crop varieties, understanding of plants response to
different abiotic stresses is important.

During course of evolution, plants have developed an inbuilt mechanism to sense
and respond to different kind of abiotic stresses. They undergo various types of
changes at morphological, physiological, biochemical, and at molecular levels (Lata
2015). One of the key questions that remain important to plant biologists is to know
how plants perceive the stress, transduce the signal to reprogram the gene expres-
sion, and finally bring an adaptive response. Although the progress in plant molecu-
lar biology has helped in decoding the molecular mechanisms behind it, still we are
far behind the complete understanding of stress responses.

Conventional breeding approaches such as inbreeding, back crossing, mutational
breeding, distant hybridization, and marker assisted selections were successful in
developing crop varieties with enhanced stress tolerance. Moreover, most of the
stress responses were studied individually, but in field condition these stresses often
occur in combination. For example, salinity stress is often associated with osmotic
stress. Similarly, flooding stress is often associated with hypoxia. But in the post-
genomic era especially advent of omics, the breeding approaches were changed
substantially.

The term “omic” is derived from Latin suffix “ome” that means mass or many
(Lay et al. 2006). Progress in genome sequencing technologies and high throughput
data analysis has changed the approach to study stress responses. Now, it is easy to
study the change in transcriptome, proteome, or metabolome at given time period. In
this approach, first one has to understand at the molecular level how plants sense and
response to a particular stress. This can be facilitated by dissecting the response a
genomic, transcriptomic, proteomic, or metabolomics levels (Fig. 8.1). Recent
research has made efficient use of transcriptomic, proteomic, and molecular
approaches to identify the complex networks linked to stress perception and
response in the model and crop plants.

Abiotic stress signaling can be subdivided into four major steps: signal percep-
tion, signal transduction, transcriptional regulation of stress responsive genes, and
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finally expression of functional proteins that generate physiological and metabolic
responses (Wang et al. 2016). A general signal transduction pathway in response to
abiotic stresses has been shown in Fig. 8.2. Stress signals are perceived by receptors
or sensors present on plasma membrane or cell wall. For example, in Arabidopsis
OSCA1 (reduced hyperosmolality-induced calcium increase 1 (OSCA1), a plasma
membrane bound channel protein acts as a sensor for osmotic stress (Yuan et al.
2014). Another sensor, COLD1 senses cold stress in rice (Ma et al. 2015). Upon
stress perception, plant cells generate second messengers such as calcium Ca2+, ROS
Cyclic nucleotides (cAMP and cGMP), inositol tri phosphate, NO, and sugars. These
second messengers initiate a signaling cascade via series of phosphorylation and
dephosphorylation of proteins mediated by different types of kinases and
phosphatases. At the end of phosphorylation events, transcription factor or other
genes involved in stress acclimation gets activated. The transcription factors such as
DREB, NAC, MYB, and WRKY bind to the promoter region of stress responsive
proteins and regulate their transcription (Wang et al. 2016).

Phytohormones form an integral part of various signaling pathways activated in
response to abiotic stresses (Peleg and Blumwald 2011). These molecules are
synthesized at their site of action or reach to distant tissues by specific transporters
(Peleg and Blumwald 2011). These compounds form an integral part of the plant
signaling network. The mechanisms by which these signals are generated and
translated into adaptations to counter the unfavorable environment are being inten-
sively studied. Major class of phytohormones that are widely studied in stress
responses include abscisic acid (ABA), ethylene (ET), cytokinin (CK), auxin
(IAA), gibberellin (GA), jasmonate (JA), salicylic acid (SA), and strigolactone
(SL) (Peleg and Blumwald 2011). The signaling pathways mediated by these
phytohormones do not operate independently but crosstalk at several points (Peleg
and Blumwald 2011). Omics has been utilized to study this complex networking of
crosstalk among different signaling pathways.

Fig. 8.1 Omics approaches for studying abiotic stress responses in plants
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This chapter presents an overview of different omics technology like genomics,
transcriptomics, proteomics, and metabolomics which were utilized for understand-
ing abiotic stress response of the plants in the last two decades.

8.2 Genomics for Identification of Abiotic Stress
Related Genes

The availability of whole genome sequences of Arabidopsis and other crops made it
easy to study the expression profile of a large set of genes at a time in response to
different abiotic stresses. Transcription factors are proteins consisting of sequence
specific DNA binding domain that binds to the regulatory region of a gene and
controls their expression. In Arabidopsis, 1500 genes code for transcription factors
which constitute about 5% of the genome (Riechmann et al. 2000). In rice 1611
genes code for transcription factors (Xiong et al. 2005). These transcription factors

Fig. 8.2 Schematic representation of general signal transduction pathway in response to abiotic
stresses in plants
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play important role in plant abiotic stress responses. Major classes of transcription
factors involved in abiotic stress tolerance include AP2/ERF, MYB, WRKY, NAC,
and bZIP gene families (Wang et al. 2016). Genome wide identification and expres-
sion analysis of these transcription factors under different abiotic stresses have
helped in narrowing down the candidate genes that can be functionally characterized
for crop improvement. (Chen et al. 2014, Nakashima et al. 2012, Wang et al. 2018a,
Wang et al. 2015, Xie et al. 2019, Zhang et al. 2012). Genomics has been widely
used for identification of molecular marker, quantitative trait loci, and genomics
selection associated with abiotic stress.

8.2.1 Molecular Markers Linked with Abiotic Stress Response

Molecular breeding of crops for the development of elite varieties with enhanced
stress tolerance depends on the availability of molecular markers, genetic maps, and
sequence information (Lata 2015). The advancement in the sequencing technologies
and the availability of whole genome sequences of different crop germplasms
expedite identification of single nucleotide polymorphisms (SNP) and simple
sequence repeats markers (SSR). These polymorphisms within the germplasm are
responsible for genetic diversity. Rice SNP-Seek database was developed using
sequence information from 3000 Rice Genome Database containing 20 million
SNPs (Alexandrov et al. 2015). Rice stress resistant SNP database was developed
that focuses on SNPs related to biotic and abiotic stresses. It contains 9.5 million
SNPs that were obtained from more 400 stress resistant rice varieties (Woldegiorgis
et al. 2019).

8.2.2 Abiotic Stress Responsive Quantitative Trait Loci

Quantitative trait locus/loci are the locus in the genome which governs a particular
trait on a quantitative scale. Complex traits such as tolerance to drought, salt,
temperature, and other abiotic stresses are governed by a number of quantitative
trait loci (QTLs). Identification and manipulation of these QTLs are crucial for
successful implementation of genomic approaches for any marker assisted breeding
programs. The identification of QTLs governing abiotic stress tolerance relies on
combination of phenotypic data and genotypic data. QTLs can be identified using
genetic fingerprinting, linkage maps, and QTL mapping (Deshmukh et al. 2014).
These techniques need extensive genotypic information.

Smita et al. (2011) have developed a QlicRice database that can be used to
retrieve information about abiotic stress responsive quantitative trait loci (QTLs)
and genes present within that loci. SolQTL database was developed to upload raw
genotype and phenotype data to Sol genomics Network repository. This database
allows Solanaceae research community carry out QTL mapping and helps to identify
to candidate genes responsible for phenotypic variation. It can also be used to get
information about the markers more closely linked to QTLs (Tecle et al. 2010).
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Another crucial technique that has been used to associate the genetic variation to a
particular trait is genome-wide association studies (GWAS). The availability of
whole genome sequence information has enabled breeders to dissect the genetic
basis of agronomic traits such as drought, salt, and cold tolerance using GWAS
(Li et al. 2019a). It has been used for identifying the relevant genes in several crop
species like rice, wheat, maize, and barley (Guo et al. 2020, Li et al. 2019b, Mwando
et al. 2020, Yano et al. 2016, Zhang et al. 2020). Recently, Hazzouri et al. (2018)
have carried out a GWAS study comprising of 2671 barley lines and identified
HKT1.5 ion transporter as one of the candidate genes involved in salt tolerance.

8.2.3 Genomic Selection Strategy for Improving Abiotic Stress
Tolerance

Conventional marker assisted selection method makes use of molecular markers that
are closely linked to trait of interest and accordingly, plants with desirable alleles are
selected (Bhat et al. 2016). This method proved to be successful for the traits that are
controlled by few numbers of QTLs. However, complex traits such as yield, quality
and abiotic stress tolerance are governed by a large number of QTLs that may have
large or small effects on the trait of interest (Bhat et al. 2016). Identification and
quantification of the small QTLs with minor effects are not taken into consideration
in MAS. To overcome this shortcoming, an advanced method of MAS known as
Genomic Selection has been developed that takes into consideration all the molecu-
lar markers available across the genome affecting a trait of interest (Bhat et al. 2016;
Crossa et al. 2017).

Genomic selection method uses a training population that has been genotyped
and phenotyped to obtain the genomic estimated breeding values (GEBV) of
individuals in a testing population (Crossa et al. 2017, Wang et al. 2018b). It allows
one to identify the individuals based on its GEBV that can perform better as a parent
in hybridization or for next generation advancement in a breeding program.

This technique was initially proposed by (Meuwissen 2003) for breeding plants in
animals with desirable complex traits. But the major constraint associated with this
technique is the non-availability of extensive genotyping platforms. In recent years,
advances in next generation sequencing technologies have revolutionized the
sequencing of entire genome of large number of accessions of different crops. It
has significantly reduced the cost and time of sequencing different germplasms. This
has helped in the development of cost effective and high throughput genotyping
platforms for SNP discovery.

8.3 Depicting Transcriptome for Abiotic Stress Response

The study of total RNAs of a cell, tissue, or organism at a particular time is referred
as transcriptome and accordingly, the field of study that deals with the quantification
or abundance of the complete set of transcripts in a specific developmental,
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physiological, or stress condition is known as transcriptomics (Wang et al. 2009).
The study of whole transcriptome began in early 1990s and is continuously
transformed with parallel technological advancement. Broadly, there are two
techniques involved: microarrays, which depend on the availability of predetermined
sequences and RNA-Seq which involves the sequencing of all the transcripts.

Plants sense and respond to different kind of stresses by regulating the expression
of the different kind of genes. Initially, most of the transcriptome studies were
carried out using Sanger sequencing of expressed sequence tags or microarray-
based gene expression analysis. These techniques helped in the identification of a
number of candidate genes that are involved in salt, drought, temperature, or heavy
metal stress response (Ding et al. 2011, Fernandez et al. 2008, Luo et al. 2010,
Rabbani et al. 2003).

Genome wide expression profiling of genes under different kind of stresses such
as drought, salinity, temperature, and metal stress resulted in the identification of
different kind of stress responsive genes. Some of these get induced within the
second or minutes while others take several hours to get induced. Accordingly, these
genes are categorized as early responsive and late responsive genes, respectively
(Lata 2015, Ramanjulu and Bartels 2002). Early responsive genes generally include
sensors, protein kinases, and transcription factors which are involved in the stress
perception and transduce the signal to the downstream pathway to initiate the
response. Late responsive genes encode for ROS scavengers, transporters, heat
shock proteins, and late embryogenesis proteins. Together, these proteins help in
the maintenance of membrane integrity and ionic homeostasis within cell (Lata
2015, Ramanjulu and Bartels 2002). Transcriptomic changes vary with tissues in
response to a particular stress. It has been observed that under drought stress, there is
more reduction in the shoot growth, whereas the roots continue to grow in search of
water. This differential growth pattern is due to difference in the expression of genes
in these organs (Bashir et al. 2019). The tissues which perceive the stress undergo
rapid or fast transcriptomic changes compared to the tissues that sense them at later
stages (Bashir et al. 2019).

With the development of NGS, it is easy to study the whole transcriptomic
changes during a particular stress or a combination of stresses (Ma et al. 2012).
Comparative transcriptomic study of a tolerant and sensitive genotypes were carried
out to identify the genes that are differently expressed in these genotypes and how
they are linked to the tolerance level. This facilitates in the elucidation of molecular
mechanism of stress response. Apart from transcript quantification, new genes or
splice variants could be identified (Jain 2012, Ma et al. 2012).

Plants within a family differ in their response to abiotic stresses. For example, rice
and barley belong to same family Poaceae, but differs in their ability to salt stress.
Rice is salt susceptible while barley is tolerant. A microarray-based transcriptome
study revealed that gene inducibility is better in barley compared to rice within the
1 hour of salt stress treatment. Also, Na+ partitioning is better in barley compared to
rice (Ueda et al. 2006). The physiological response and partitioning of Na+ in the
roots are correlated with differences in transcript abundances of genes involved in
adaptive responses (Ueda et al. 2006). Similarly, various studies were carried out to
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get insight into the regulatory mechanisms that result in genotype dependent stress
tolerance. Lenka et al. (2011) carried out a comparative transcriptomic study in
indica rice genotypes, Nagina 22 (N22) and IR64 with contrasting drought tolerance.
Both genotypes exhibited different global transcript profile in response to drought
stress. Drought tolerance of N22 was attributed to enhanced expression of transcrip-
tion factors such as ZEF, MADS-box, LZP, WRKY, HSF, NAC, NFY, etc. (Lenka
et al. 2011). These transcription factors are involved in the activation of various
signaling cascades to generate abiotic stress induced adaptive responses in plants.
Examples of application of transcriptome technologies for studying abiotic stress
responses have been shown in Table 8.1.

In field condition, plants often encounter multiple stresses at a time such as heat
and drought together. It was observed that stress responses to a combination of
stresses may be agonistic or antagonistic to the responses of individual stresses
(Rasmussen et al. 2013) Transcriptome profiling under heat and drought stress
combination suggested that their responses are not simply additive but may be
synergistic in nature (Johnson et al. 2014, Wang et al. 2018c). Transcriptomic
studies in Arabidopsis suggested that they have delineated coexpression network
in response to single and stress combinations (Rasmussen et al. 2013).
Transcriptomic studies helped in the identification of various stress induced genes
and regulatory networks based on transcript quantification. However, many post-
transcriptional changes take place before translation to functional proteins. Hence,
studies at protein levels were focused to get clearer picture of abiotic stress response.

8.4 Proteomics Approaches Used in Abiotic Stress

Proteomics is more advanced and reliable technique compared to genomics or
transcriptomics as it deals with the study of functional molecules, proteins. Many
genes undergo posttranscriptional changes that could not be detected with
transcriptomic approaches. Hence, although the study of alterations in the transcript
levels gives ideas of the plant stress response, it could not detect the changes at post-
transcriptional and post-translational levels. Proteins are the functional molecules
that carry out various cellular processes. Hence, proteomics complement other omics
approaches in elucidating the more complex stress responses (Kosová et al. 2018,
Wu et al. 2016).

Like transcriptome, proteome is also dynamic and varies under different
conditions (Ghosh and Xu 2014). Proteomic approaches have allowed the identifi-
cation and quantification of novel stress related proteins (Kumar et al. 2014).
Understanding the function of these proteins, their interaction with other proteins
studies and post-translational modifications will help in elucidating the various stress
responsive pathways in plants (Ghosh and Xu 2014).

Rapid progress in proteome profiling technologies has revolutionized the field
which enabled us to compare stress induced responses in crop plants. Advanced
proteomic methodologies such as Isobaric tags for relative and absolute quantitation
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(iTRAQ), 2-dimensional difference gel electrophoresis method (2D-DIGE), and
high-resolution tandem mass spectroscopy provide faster and more reliable results.

Initially, the stress responsive proteins were identified by a comparative study of
the stressed and unstressed plant samples. In this approach, the stress responsive
proteins were identified by their relative abundance in the proteome. The study of
whole plant proteome at a time is complex, therefore gradually focus has been
shifted towards cell or tissue specific responses (Gong et al. 2015).

Plant proteome undergoes different types of changes in response to stresses. This
could change in the protein abundances or post-translation changes in the proteins
that affect protein stability, their localization and activity (Kosová et al. 2011). Post-
translational changes are often more important than protein abundance. Till date,
nearly 300 different types of post-translational modifications were reported. Among
these phosphorylation, ubiquitination, nitrosylation, glycosylation, and carbonyla-
tion are most commonly studied (Wu et al. 2016). There are several studies that were
carried out to find out how the proteins undergo post-translational changes under
abiotic stresses (Wu et al. 2016). ABA is one of the important hormones regulating
plant development and stress responses. Qiu et al. (2017) carried out a comprehen-
sive proteomic study to identify proteins that get phosphorylated in response to ABA
treatments in rice. They reported that 1060 proteins are differentially phosphorylated
in response to ABA. In another phosphoproteomic study, 482 proteins were found to
be differentially phosphorylated in response to Cd stress. The differentially
phosphorylated proteins belong to ABA signaling pathway, ROS scavengers, and
transcription factors (Zhong et al. 2017). A list of studies on application of proteo-
mics to study abiotic stress response in various plants has been shown in Table 8.2.

8.5 Role of Metabolomics in Mitigating Abiotic Stress

Abiotic stresses bring different kinds of metabolic changes in plants such as modifi-
cation in enzymatic activities, substrates scarcity for essential metabolic reactions,
increased ROS levels (Obata and Fernie 2012; Kumar et al. 2017). Most stress
conditions perturb the metabolic profile of plants. This is due to uncontrolled
production of reactive oxygen species (ROS) within cells which in turn oxidizes
and damages the cellular components and finally leads to cell death (Obata and
Fernie 2012). Plants produce different kinds of ROS as by-products of various
metabolic processes. These molecules are confined to specific cellular components
such as chloroplasts, mitochondria, and peroxisomes under optimal growth
conditions (Huang et al. 2019). Abiotic stresses perturb the cellular homeostasis
and negatively affect plant growth and development. In response to abiotic stresses,
plants reprogram its metabolic network to attain a new steady state. The metabolic
reprogramming ensures the production of various stress responsive compounds.
These are attributed to the change in the enzymatic activities, substrate concentra-
tion, or production of antioxidants to scavenge the excessive ROS produced as a
result of unfavorable growth conditions. ROS scavenging mechanisms could be
enzymatic or non-enzymatic antioxidant defense system (Huang et al. 2019). Both
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mechanisms work together to scavenge the ROS produced in plants. Enzymatic
method involves various enzymatic reactions catalyzed by super oxide dismutase
(SOD), catalase (CAT), ascorbate peroxidase (APX), and glutathione peroxidase
(GPX) (Apel and Hirt 2004). Non-enzymatic mechanism involves low molecular
weight antioxidants such as glutathione, ascorbic acid (AsA), amino acids (proline),
sugar, carotenoids, glucosinolates, and flavonoids (Nakabayashi and Saito 2015).

Metabolic adjustment in plants varies with genotype, duration, intensity, and type
of stress encountered (Obata and Fernie 2012). For example, salt tolerant genotypes
of rice and barley accumulate higher levels of sugars and amino acids compared to
salt sensitive genotype (Zhao et al. 2014; Shen et al. 2016). Similarly, stress type also
decides the metabolite accumulation. Higher proline accumulation favors tolerance
to salt, drought, cold, and heavy metal stress in many plant species. However, higher
temperature induced proline accumulation did not confer stress tolerance in
Arabidopsis (Lv et al. 2011).

Metabolomics is one of the omics approaches which give a snapshot of the
metabolite pool of the cell at a particular stage. The metabolic pool of a plant
determines its phenotype. Accumulation of various metabolites depends on the
expression of various genes in a particular condition. Plant metabolomics aims to
study the total metabolite present in a tissue at a particular developmental stage. The
metabolite content of the plants varies with external environment. Total metabolic
pool exhibits enormous diversity in the chemical nature; hence it is not possible to
study all the metabolites with a single technique. It is estimated that Arabidopsis may
contain around 5000 different metabolites. KNApSAcK database dedicated for
species metabolite relationship contains more than 51,000 metabolite entries (Afendi
et al. 2012). Most common techniques employed for metabolic profiling in plants
include gas chromatography mass spectrometry (GC-MS), liquid chromatography
mass spectrometry (LC-MS), capillary electrophoresis mass spectrometry (CE-MS),
Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS), and
nuclear magnetic resonance (NMR) (Jorge et al. 2016).

Abiotic stresses affect the metabolic networks in plants. There are numerous
efforts made to elucidate the effect of a stress on the metabolic state of crops. In rice,
potential metabolite markers associated with abiotic stress tolerance were identified
(Degenkolbe et al. 2013, Maruyama et al. 2014). Flavonoids are secondary
metabolites with strong in vitro antioxidant property. Integrated transcriptomic and
metabolic approaches proved the in vivo antioxidant property of flavonoids.
Arabidopsis transgenic lines accumulating flavonoids were tolerant to oxidative
and drought stress (Nakabayashi and Saito 2015). Another report, Pi et al. (2016)
used integrated phosphoproteomic and metabolic approach to study the salt stress
response in Soybean. They found that salt stress induces phosphorylation of tran-
scription factor GmMYB173 that regulates biosynthesis of dihydroxy B-ring
flavonoids which in turn contribute to salt tolerance.

Xiong et al. (2019) carried out a comprehensive proteomic and metabolic analysis
to dissect the drought and submergence response in rice during panicle differentia-
tion stage. They found that several metabolic pathways such as energy metabolism,
carbon fixation, ROS metabolisms are affected by drought and submergence stress.
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Drought and heat stresses affect the reproductive ability of crops. Using metabolic
and transcriptomic approaches, it was found that sugar starvation is the primary
determinant of reproductive success of crops (Li et al. 2015, Zhang et al. 2010).

Recently, integrated omics approaches were applied to understand the complex
genetic interaction that regulate plant metabolism. For example, transcriptomic and
metabolic approaches are integrated together. Recently, a study has been carried out
in sesame using a combination of transcriptomic and metabolomics approaches to
understand drought tolerance mechanism (You et al. 2019). Integrated omic
approaches suggested that ABA, amino acids (proline, arginine, lysine, and aromatic
branched amino acids) GABA, organic acids, and sugars are more abundant in
drought tolerant genotypes compared to drought sensitive genotype. Comparison
between transcriptome and metabolomics data suggests that there is a correlation
between the expression and metabolic profile of these metabolites (You et al. 2019).
Similarly there are several reports where proteomic and metabolomics were
integrated to understand the stress responses. Adaptive responses in response to
water deficit conditions have been studied in spring wheat using proteomic and
metabolomics approaches in two contrasting genotypes (Michaletti et al. 2018). It
was observed that leaf proteome of drought sensitive cultivar is severely affected by
water deficit conditions. Proteins involved in maintaining photosynthetic machinery,
ROS detoxification, and sugar and nitrogen metabolism were drastically reduced in
drought sensitive genotype. Metabolomics data revealed that metabolites such as
amino acids, organic acids, and sugars showed increased abundance in response to
water deficit (Michaletti et al. 2018).

A new approach called Metabolomic quantitative trait loci (mQTL) mapping is
being used to associate a genetic loci with the variability in the metabolic profile
(Abdelrahman et al. 2018). Linkage mapping of mQTL to the genetic variant is
essential component of metabolite assisted breeding as it helps in the identification of
genes that are associated with production of metabolites (Abdelrahman et al. 2018).
Mqtl mapping has been used for genotype to phenotype association in several cereal
crops (Gong et al. 2013, Lisec et al. 2011, Matsuda et al. 2012, Shi et al. 2020).

Integrated metabolic approaches and mQTL mapping will be of great use in crop
breeding. In conventional breeding programs, selection of individuals based on
genetic markers is affected by environmental factors.

8.6 Conclusions

Abiotic stresses severely reduce crop yields and serve as a major threat to food
security in future. Elucidation of abiotic stress response in crop plants is important to
develop climate resilient crop varieties to ensure enough food supply to the growing
population. Different omics tools like genomics, transcriptomics, proteomics, and
metabolomics have been employed to understand the molecular mechanism under-
lying the adaptive responses. The technological advances in various omics tools
have made them cost effective and easily accessible for different studies. Numerous
genes, proteins, and metabolites were identified that are involved in conferring stress
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tolerance in crops. Although there are several reports on effect of abiotic stresses on
particular tissues of the contrasting genotypes, studies with multi-tissue, develop-
mental stages, or at whole plant level are very limited. This is one of the major
limitations in understanding the complex nature of abiotic stress responses as it
varies with tissue, developmental stage, and at whole plant level. Abiotic stress
tolerance traits are complex and regulated at several levels like post-transcriptional,
translational, and post-translational levels. Hence, more integrated omics studies
should be undertaken for the better understanding of stress responses at molecular
level. In this chapter, we discussed role of different omics tools in understanding
abiotic stress responses.
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Integrating Omics Technologies
to Understand Microbial Systems 9
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Abstract

Microorganisms, an integral part of all ecological systems, with their unprece-
dented genetic and metabolic diversity influence all ecosystems. However, our
understanding of microbial cellular functions from a system perspective is lim-
ited. Thus, studying the different biological layers of a cell as a single integrated
system is crucial to unveil the microbial functions. To this end, omics approaches
have become an indispensable tool to study the microbial processes by profiling
the entire pool of DNA, RNA, proteins, and metabolites. Thanks to omics tools
for capturing the true snapshot of cellular events and multi-omics approaches are
far more powerful than any single omic study in deciphering the microbial
functions. The main advantage of the multi-omics approach is its inherent nature
of connecting the various biological layers and thereby uncovering the dynamic
interplay of the various cellular processes which governs the cellular phenotype.
Significance of multi-omics approaches is quite evident from the increasing
number of studies employing integrated omics in various areas of microbiology.
Integrated omics can resolve cellular events not only at the single cell or popula-
tion level but also at the community level(meta-omics). The multi-omics
approaches brought a paradigm shift from a tunnel view to a holistic view of
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microbial functions. The current chapter briefly describes different omics-
platforms and recent trends of omics in studying the microbes. The chapter
highlighted recent studies wherein integrated omics is employed to understand
the microbial systems. The chapter also briefly discusses the applications of
omics in various fields of microbiology and potential challenges and future
prospects.

Keywords

Microorganisms · Omics · Omics-platforms · Omics integration · Metabolism ·
Meta-omics

9.1 Introduction

Microorganisms are the most diverse and abundant life forms on planet earth. They
are widely distributed and thrive in some of the most inhospitable extreme ecological
niches. Rich genetic diversity and metabolic plasticity enable them to occupy diverse
niches and use various growth modes to survive. Microorganisms play a pivotal role
in shaping global ecosystems to human health and disease (Segata et al. 2013). They
cycle nutrients through biogeochemical cycles thereby sustaining the ecosystems
which are vital for the survival of life forms (Abram 2015). Recent studies have
highlighted the role of the microbiome in human health that was underappreciated
until now (Gilbert et al. 2018; Segata et al. 2013). Microorganisms are considered as
another organ of the human body and there are more number of microbes associated
with the human body than the total number of cells in a body (Abram 2015; Baquero
and Nombela 2012). Though microorganisms influence global ecosystems to human
health, yet our understanding of microbial systems from a systems perspective is
limited.

Traditionally microbial cellular processes and biochemical events were uncov-
ered by a reductionist approach wherein each cellular process is studied as an
individual entity (De Keersmaecker et al. 2006; Zhang et al. 2010). Although in
the early days the reductionist approach was successful in dissecting these microbial
systems to some extent, this approach underestimates the complexity of microbial
processes from a holistic point of view (De Keersmaecker et al. 2006; Zhang et al.
2010). Microorganisms are tiny and simple yet their cellular processes are highly
complex and dynamic. For example, an individual cell has many levels of regulatory
circuits at genome, transcriptome, proteome, and metabolic levels and a coordinated
symphony of these levels enables the optimum management of cellular resources
(Zhang et al. 2010). Thus deciphering such intricate systems requires a holistic
approach wherein all cellular events are studied as a single integrated system
(Zhang et al. 2010).

In the past decades, it was a daunting task to decipher the complex cellular
processes due to the lack of high-throughput platforms. However, the dawn of
new next-generation sequencing techniques and advancements in mass spectrometry
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led to the rapid development of high-throughput platforms such as genomics,
transcriptomics, proteomics, and metabolomics. These omic platforms captured the
complex cellular events at different layers of central dogma and these tools made it
possible to generate large datasets from biological systems (De Keersmaecker et al.
2006; Zhang et al. 2010). Advanced computational tools allowed the integration of
such large omics datasets thereby uncovering the underlying regulatory networks
and metabolic events associated with a phenotype (Segata et al. 2013). The recent
omics studies revealed that integration of multi-omics approaches has high potential
to dissect intricate biological systems than using a single omics tool
(De Keersmaecker et al. 2006; Zhang et al. 2010).

Integrated omics approach has made tremendous progress and emerged as a
powerful strategy enabling the scientific community to unravel the complex regu-
latory mechanisms and metabolic networks in microbial systems (Segata et al. 2013;
Teitzel 2014). Considering the pivotal role of the microorganisms in everyday life,
holistic understanding of these tiny life forms would have a greater impact in the
field of medicine, agriculture, biotechnology, and environmental sciences (Misra
et al. 2018; Teitzel 2014). In the present chapter, we reviewed the recent
advancements in the field and highlighted the application of the integrated omics
in understanding the intricate microbial systems at an organism and community
(meta-omics) level. The chapter also discussed briefly on various current omics
platforms.

9.2 Omic Tools: A Roadway to Uncover the Different
Functionalities of Cell

9.2.1 Genomic Approaches

Genome is the haploid set of DNA including all the genes present in a cell of an
organism. Genomics is the study of structure, function, mapping, editing, determi-
nation, and analysis of the sequence of the whole genome of a single organism.
Comparative study of whole genomes of different organisms using computational
tools constitutes comparative genomics. Functional genomics deals with the assign-
ment of function to genes mined from the whole-genome sequencing data through
gene expression analysis or mutational studies. The first DNA sequencing technique
used was Sanger’s chain termination method which was superseded by recent next-
generation sequencing (NGS) techniques which offer high-throughput large
sequencing data (Buermans and den Dunnen 2014). Different high-throughput
NGS platforms have been used catering to differing sequencing requirements such
as Roche-454, SOLiD, PacBio, Nanopore MinION, Ion Torrent, and Illumina
(Buermans and den Dunnen 2014). Out of these, the Illumina MiSeq and the Ion
Torrent are most suitable for amplicon sequencing, Illumina NextSeq 500 and the
Illumina HiSeq 2500 are useful for whole metagenome sequencing and
metatranscriptomics while the PacBio and MinION are suitable for de novo genome
sequencing as in case of microbial genomes. The availability of complete draft
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genomes of several microorganisms and the use of advanced bioinformatic
applications paved the way for comparative genomic approaches. Comparative
genomics studies of Pseudomonas syringae revealed the convergent gain of
virulence-associated effectors such as hopAB and hopC1 through horizontal gene
transfer and it was confirmed by in planta avirulence activity of these effector
proteins (Hulin et al. 2018). Genome mining approach followed by expression of
these genes in a surrogate host (Streptomyces lividans) and screening for potential
antimicrobial activity (Xu et al. 2016) lead to the discovery of two novel linear
lipopeptides 8D1–1 and 8D1–2 from Streptomyces rochei.

9.2.2 Transcriptomic Approaches

One of the main objectives of the genomic approaches is to infer the functional
potential of the microbial genomes; however, expression of genome or sub-set of
genome is true measure of function. Synthesis of all RNAmolecules is the first phase
of the gene expression and collection of a complete set of RNA molecules of a cell
constitutes transcriptome (Zhang et al. 2010). Transcriptomics refers to the study of
the transcriptome of a cell under a specific set of conditions. Using this approach, the
gene expression could be measured at different time points or in tissue types.
Transcriptomics study mainly captures the coding sequences (mRNA) and of late
it is possible to capture the non-coding sequences (snRNA) as well. Transcriptomics
has emerged as a powerful tool in the postgenomic era to validate the annotated
genes and assigning the gene functions of unannotated genes (Creecy and Conway
2015). Capturing both coding and non-coding RNAs would allow identification of
unknown gene functions and possible snRNA mediated regulatory mechanisms
(Wang et al. 2009). Various transcriptomic approaches could be broadly categorized
into two main categories: chip-based microarrays which require knowledge of
pre-determined gene sequences and most popular RNA sequencing (RNA-Seq)
which does not require the prior knowledge of gene sequences.

Microarray-based transcriptomics employs a DNA chip which is an ordered array
of probes designed from the gene sequences and gene expression is measured by
hybridizing the cDNA samples with the probes on the chip (Wang et al. 2009). The
raw data is normalized and analyzed for checking the relative gene expression.
Although microarray was popular method in early days, due to inherent limitations
such as low sensitivity, inability to detect the splice variants/novel transcripts and
regulatory RNAs nowadays it is not a preferred choice of the researchers (Wang
et al. 2009).

RNA-Sequencing based transcriptomics has emerged as a powerful tool to study
gene expression. It involves a combination of NGS approaches and computational
tools to identify and quantify the transcripts present in an RNA sample. This
technique has become a major success due to the advent of NGS approaches
which can sequence billions of bases as well as massively parallel sequencing in a
single day (Wang et al. 2009). Typical RNA-sequencing involves isolation of total
RNA from the samples, depletion of the rRNA fractions from the total RNA pool
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followed by library preparation, and RNA sequencing using any of the NGS
platforms. Postsequencing, these fragments are assembled into original RNA tran-
script either though computational tools by aligning to a reference genome or
through the de novo assembly. Finally, the RNA-Seq data analysis is carried out
utilizing bioinformatic tools in four sequential steps, viz. quality control, alignment,
quantification, and differential expression.

Using RNA-Seq it is possible to quantify even low abundance RNAs, requires a
lower quantity of input RNA, and generates lower background noise as compared to
the microarray (Creecy and Conway 2015; Wang et al. 2009). RNA-Seq helps in
analysis of different RNA isoforms which arise due to alternative splicing of the
same gene (Wang et al. 2009). It is possible to study gene expression patterns in
organisms whose genome sequence is known using the RNA-Seq technique (Wang
et al. 2009). Recent technologies employ direct RNA sequencing (DRS) such as
nanopore sequencing which offers direct sequencing of RNA without an intervening
cDNA synthesis step and helps in detection of modified bases in RNA which was
otherwise impossible through traditional NGS technologies (Zhang et al. 2010). The
RNA-Seq studies were beneficial in identifying SNPs associated with diseases,
splicing mechanisms, identification of transcription start sites, gene fusions, under-
standing of promoter and other regulatory mechanisms, resistance to drought and
biotic stress, biofilm formation (Creecy and Conway 2015; Wang et al. 2009).

9.2.3 Proteomics Capturing the Protein Dynamics of Microbial
Systems

The second phase of gene expression is translation wherein information of mRNA is
used to synthesize proteins. Proteins are one of the vital macromolecules of living
organisms which are involved in defining the cell structures, catalyzing biochemical
reactions and gene regulation and carry out different cellular functions (Zhang et al.
2010; Kumar et al. 2014). Therefore, the cumulative microbial proteins from a
microorganism should be the true potential of activity of the microorganisms in a
given environment (Chao and Hansmeier 2012). Proteome refers to the total com-
plement of proteins that are expressed by cell or tissue or organism. Proteomics
involves the use of systematic, high-throughput technologies for the identification
and quantification of total proteins present in a cell or tissue of an organism. Recent
advances in high-throughput technologies have enabled large scale identification and
measurement of protein molecules. Two major approaches employed in various
proteomic studies are (1) gel-based proteomics: 2-D PAGE for separation of proteins
based on their isoelectric point and mass followed by mass spectrometric analysis
and (2) gel-free proteomics: 2-D liquid chromatography (LC) for separation of
proteins or peptides followed by tandem mass spectrometric analysis (Zhang et al.
2010). The gel-based proteomics are employed for the identification of proteins from
low complexity proteomes. The gel-based approaches have been unsuccessful for
the detection of low abundance proteins and fail to resolve complex proteome
samples (Otto et al. 2014).
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The gel-free approaches are successful in detection of low abundance proteins
and membrane-spanning proteins besides detecting several thousands of proteins
from a sample in a single run. Both the above approaches are useful for the large
scale high-throughput detection of protein molecules but they fail to provide accu-
rate quantitative information of proteins. Recently advanced quantitative proteomic
approaches were developed wherein proteins are isotopically labeled in vivo or
in vitro for obtaining accurate quantitative measurements of proteins such as sta-
ble isotope labellled amino acid incorporation (SILAC), Isotope-coded affinity tags
(ICAT), Mass-Coded Abundance Tagging (MCAT), Isobaric tags for relative and
absolute quantitation (iTRAQ), Global internal standard technology (GIST), etc.
(Otto et al. 2014). Now it is possible to measure the proteins in the complex sample
without the use of the isotope labeling as well as absolute quantitation by using GIST
method (Otto et al. 2014). Quantitative proteomics is widely employed to capture the
protein dynamics of microbial systems and these approaches revolutionized the area
of proteomics thereby our understanding of microbial cellular functions in proteo-
mics context (Chao and Hansmeier 2012; Otto et al. 2014). Microbial proteomics is
extensively used to understand the host–pathogen interactions, bioremediation pro-
cess, new metabolic routes, molecular responses to changing environment, and
molecular physiology of microbes (Chao and Hansmeier 2012; Otto et al. 2014).

9.2.4 Metabolomics to Understand the Metabolisms of Microbial
Systems

Many of the proteins expressed by cell consist of catalytic domains indicating their
role in biochemical reactions and the ultimate products of these reactions are
metabolites, pivotal for cellular functions (Prosser et al. 2014). Complete set of
small molecules (<1Kd) of a biological sample constitutes metabolome and
metabolomics is a qualitative and quantitative analysis of a complete set of
metabolites. Metabolites constitute substrates and reaction products of biochemical
reactions of a cell and are end products of gene expression (Johnson et al. 2016;
Sharma et al. 2018). Thus metabolic profiling provides a snapshot of the biochemical
phenotype of the cell under a defined set of conditions (Prosser et al. 2014; Kumar
et al. 2017). Metabolomics has emerged as a powerful functional genomics tool and
an integral part of the systems biology. Typical metabolomic profiling is primarily
performed by employing mass spectrometry or NMR (nuclear magnetic resonance)
tools. Most commonly LC or GC-MS tools are widely used for the metabolomics
studies (Reaves and Rabinowitz 2010). Two metabolomic approaches which are
largely used are (1) untargeted profiling: measuring the abundance of metabolites
without any prior specification and (2) targeted approach: measuring the absolute
concentrations of a pre-defined set of metabolites (Johnson et al. 2016).

A typical metabolomics study involves the extraction of the metabolites, analysis
of sample on NMR or MS-based analytical tools and data curation/filtration, data
analysis (a multivariate/univariate statistical tool to identify the significant metabolic
features defining a group)(Reaves and Rabinowitz 2010). Finally, the metabolic
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features are identified by searching against spectral libraries followed by identifying
the metabolic pathway perturbations. Although metabolomics could be an excellent
tool in understanding the microbial systems still there are some inherent challenges
such as experimental design, extraction methods, analytical tools, data processing,
etc. which may bring a lot of heterogeneity in the data. However recent studies
demonstrated that metabolomics could be a potential tool to unravel the intricate
metabolisms of microbial systems, new metabolic routes, and novel enzyme systems
(Prosser et al. 2014; Sevin et al. 2017). Further, stable isotope assisted metabolomics
revealed metabolic flux (Reaves and Rabinowitz 2010) and differential metabolism
(Mekala et al. 2018) which otherwise is not possible to capture by other omics tools.
Hence, metabolomics has become an indispensable tool in understanding microbial
systems and their functions from a systems perspective. Microbial systems are
highly dynamic and their functions are regulated by different inherently connected
biological layers such as genome, transcriptome, proteome, and metabolome. Thus,
integrating all the omics has potential to reveal the true picture of dynamic microbial
cellular processes (Fig. 9.1) and would expand our knowledge on how microbial
systems function.

9.3 Meta-Omics: Linking Microbial Communities
and Ecological Functions

In natural environments, microorganisms exist in poly-microbial communities and
they thrive in diverse ecosystems ranging from marine sediments, hot springs to
human bodies. Their cooperative biochemical activities are essential for sustenance
of all the ecosystems (Abram 2015; Segata et al. 2013). These microbial
communities recycle the nutrients and sustain the ecosystems. In addition, they
interact with host systems including the human body and influence the host health
and disease (Abram 2015; Singer et al. 2017). In spite of their crucial role in the

Fig. 9.1 Schematic diagram
of multi-omics integration
(four principle biological
layers) revealing the complex
cellular processes and
inherent interplay of
biological layers to an
external cue
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sustenance of any ecosystem, capturing their biochemical activities has been a
challenging task in-situ (Abram 2015). Our understanding of microbial communities
structure and function was limited mainly because (1) much of our understanding of
microorganisms comes from studying them as monocultures under artificial
environments; (2) many of the members are unculturable under laboratory setup,
and (3) lack of high-throughput tools to capture the biochemical events in-situ.
However, the advancement of high-throughput sequencing and proteomic
technologies made it possible to capture microbial activities at the community
level under natural conditions using meta-omics studies (Abram 2015; Segata
et al. 2013). Meta-omics refers to the study of microbial activity at different levels
such as DNA (metagenomics), RNA (metatranscriptomics), protein
(metaproteomics), and metabolites (metametabolomics) in heterogenous microbial
communities (Abram 2015). A typical meta-omics study involves isolation of
DNA/RNA/Protein/metabolites from an environmental sample, analysis of the sam-
ple by sequencing or mass spectrometry tools, computational analysis of data (data
filtration, data interpretation, and data integration). With this advancement in the
recent past, a paradigm shift has come from studying monocultures to microbial
communities to better understand the concerted biochemical activities of microbes
vital for shaping the ecosystems. Here we briefly summarize different meta-omics
tools used in understanding microbial communities.

9.3.1 Metagenomic Approaches in Microbiology

The determination of DNA sequence information directly from the environmental
samples without culturing is known as metagenomics. This method removes culture-
based biases and provides an understanding of the microbial system in terms of its
diversity, population dynamics, and genetic potential (Abram 2015; Segata et al.
2013). Shotgun sequencing approaches are widely being utilized for metagenomics
studies wherein the DNA is sequenced directly from the samples after extraction
without cloning into libraries using various sequencing platforms. Mainly two
metagenomics approaches are practiced catering to different objectives: (1) 16s/
18s rRNA profiling to know the community structure and (2) shotgun sequencing to
profile entire DNA molecules of the sample which would reveal the genetic potential
of the community. The 16s and 18s rRNA profiling is carried out to determine the
different bacterial and eukaryotic diversity (Segata et al. 2013). A typical microbial
community profiling study involves isolation of DNA from the environment,
PCR-amplification of phylogenetic marker genes (16S/18S, ITS), and sequencing
of amplicons, the sequencing data is subjected to quality control to remove chimeras.
Finally, the clustering of sequences into operational taxonomic units (OTUs),
taxonomic classification, and statistical analysis are carried out (Abram 2015; Segata
et al. 2013). Microbial community profiling has emerged as a powerful tool in
deciphering the microbial community of natural habitats and these studies revealed
a hidden wealth of microbial diversity (Abram 2015; Cui et al. 2018; Grob et al.
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2015; Moitinho-Silva et al. 2017) which was not revealed by traditional culture-
based studies.

In shotgun sequencing approach, total DNA of the sample is sequenced and this
generates millions of reads depending upon the platform used for sequencing and
complexity of the sample. These reads are assembled using computational tools and
further analyzed for functional annotations. Computational tools specifically
designed for metagenomic applications are MG-RAST and RAMMCAP whereas
specific databases such as FOAM were built for functional analysis of metagenomic
data (Abram 2015). COG (cluster of orthologous groups) categories, eggNOG
orthologous groups, SEED subsystems, InterPro entries, etc. and BlastX tool of
NCBI are used to find its functional role in the microorganisms (Segata et al. 2013).
Shotgun sequencing would reveal both microbial diversity and potential functions of
a microbial community (Gilbert et al. 2018; Segata et al. 2013).

9.3.2 Metatranscriptomics

Metagenomics data provides insights into the genetic potential of a microbial
community; however, the expressed RNA and proteins are the true measure of
the community function and activity (Abram 2015). Metatranscriptome refers to
the complete set of expressed RNA molecules in the natural community and the
identification and quantification of expressed RNA are known as
metatranscriptomics. Though different approaches such as microarray-based,
Sanger-cDNA libraries sequencing are available, RNA sequencing is superior and
preferred tool for studying the metatranscriptomics (Bashiardes et al. 2016). The
typical metatranscriptomic study is similar to that of transcriptomics; however, the
RNA is isolated from environmental samples and requires deep sequencing. All the
sequencing reads are then assembled and annotated using various computational
tools similar to that of metagenomics (Bashiardes et al. 2016). Using
metatranscriptomics studies one can enumerate the active microbial communities
and their possible functions in-situ. However, extraction of RNA from environmen-
tal samples, data filtering and computational analysis of large datasets are some of
the challenges in metatranscriptomic studies (Bashiardes et al. 2016).

9.3.3 Metaproteomics and Metabolomics

The analysis of end products of gene expression, i.e., proteins and metabolites from a
microbial community would provide information about true microbial function and
activity in a given habitat (Abram 2015). Metaproteomics refers to the identification
and quantification of the entire set of proteins expressed by the microbial community
(Siggins et al. 2012) and it has become the main choice of microbial ecologists to
understand the community functions (Abram 2015; Siggins et al. 2012). Proteomic
tools and methodology that is used to study the pure cultures are applied for
metaproteomics studies. However computational tools and quantitation methods
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are less developed as compared to similar tools for metagenomics and
metatranscriptomics studies. Nonetheless, a number of studies demonstrated how
metaproteomics can link the community composition to function under diverse
ecosystems (Abram 2015; Siggins et al. 2012).

On the other hand, metabolomics is also used to study the microbial community
functions and identification of metabolites of a community would reveal active
metabolic pathways (Abram 2015). GC-MS or LC-MS based analytical tools are
used to analyze the community metabolomes. Although metabolomics is informa-
tive, it is impossible to assign metabolite productions to a species in a community
and this limitation can be partially resolved when metabolomics is combined with
metaproteomics/metatranscriptomics studies (Zhang et al. 2010). Metabolomics
integrated with the other meta-omics studies has high potential to capture the active
metabolic processes and thereby community functions in an ecosystem (Abram
2015; Bargiela et al. 2015; Cui et al. 2018). Integration of more than one meta-
omic tools will provide a more comprehensive understanding of microbial diversity
as well as potential functions and underpinning microbial processes of an ecosystem.
A typical integrated meta-omics workflow is illustrated (Fig. 9.2) using leaf litter
sample as an example.

9.3.4 Stable Isotope Probing (SIP) Approach: Capturing Active
Microbial Players

Although meta-omics has tremendously enhanced our understanding of microbial
diversity and potential genetic and metabolic diversity, the real potential of omic
tools is to understand the microbial functions in natural conditions. Combining the
stable isotope probing and meta-omic tools resulted in the development of SIP-based

Fig. 9.2 Integrated meta-omics workflows; uncovering the microbial diversity and underlying
cellular processes and functions of microbial community
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omics and it has emerged as an excellent tool to understand metabolically active
communities (Singer et al. 2017). SIP omics allows the capturing of the active
microbial members of the community and their functions responding to a particular
stimulus in-situ (Abram 2015). In a typical SIP approach, stable isotope labeled
substrates are added to the natural community and active microbes consume the
labeled substrates and thereby incorporate the labeled atoms into macromolecules
(DNA, RNA, proteins, and metabolites) (Berry and Loy 2018; Singer et al. 2017).
Finally labeled macromolecules are separated and subjected to conventional omics
tools (sequencing/mass spectrometry) to generate data followed by data analysis
(Singer et al. 2017). Depending upon the labeled macromolecule used for the
analysis, these are called as DNA-SIP, RNA-SIP, and Protein-SIP and DNA-SIP is
the most widely used SIP tool (Berry and Loy 2018). SIP tools brought a paradigm
shift from cataloging the microbial diversity and potential functions to capturing the
active microbial members and their ecological roles (Singer et al. 2017). Although
the concerted effort of microbial communities has long been appreciated, it is now
possible to capture their interplay in-situ. SIP approaches are extensively used to
unravel the active communities of contaminated sites, the human microbiome (Berry
and Loy 2018), animal microbiome (Berry and Loy 2018), the soil microbiome
(Pepe-Ranney et al. 2016), and aquatic sediment microbes(Fortunato and Huber
2016), etc.

9.4 Integrated Multi-Omics: Painting the Holistic Picture
of Microbial Systems

Recent advancement of high-throughput sequencing tools and hyphenated mass
spectrometry tools enabled the capturing of comprehensive genetic information
and expressed cellular entities (transcripts, proteins, and metabolites) (Misra et al.
2018). These revolutionary tools which are able to capture the different levels of
cellular functions have marked the beginning of the omics era. There has been an
upsurge in the number of studies employing omic tools to understand the functions
of microbial systems. Genomics is the first omics tool which rapidly expanded and
provided a wealth of information on microbial diversity, complex genetic make-up,
and potential functions (Zhang et al. 2010). With the advent of huge genomic
information, other functional omics tools such as transcriptomics, proteomics, and
metabolomics have gained importance in microbial studies for functional annotation
of genomic information (Prosser et al. 2014).

Although the single omic studies enhanced our understanding of microbial
systems, they could not provide a holistic snapshot of cellular functions
(De Keersmaecker et al. 2006; Zhang et al. 2010). Though it is convenient to
study RNAs, proteins, and metabolites as individual entities, in the real-time sce-
nario; these are intricately connected in biological systems. To paint a truly holistic
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picture, omics tools should be integrated to the extent possible (Reaves and
Rabinowitz 2010; Zhang et al. 2010) and it has already emerged as an indispensable
part of microbial systems biology (Abram 2015). This would be like, putting
together each piece of jigsaw puzzle to get a complete picture. Similarly, here each
omics study acts as a piece of jigsaw puzzles and provides crucial information on
cellular functions. In the recent past, realizing the potential of integrated omics, a
number of studies have emerged discovering the cellular functions of microbial
systems at an organism as well as community level.

To this date, there are many studies on integrated omics to understand the
microbial systems and the list is in-exhaustive, hence we highlighted a few of
these studies in this chapter (Table 9.1). These studies range from a single organism
to natural microbial communities and these have provided unprecedented knowledge
on microbial functions and hitherto unknown interplay at a community level, refer
Table 9.1 for more information. Understanding the microbial systems using
integrated omics will have a direct impact on health and disease (Khan et al.
2019), agriculture, ecology and environment, and biotechnology fields (Marco and
Abram 2019) and a snapshot of these application depicted in Fig. 9.3. These
applications include biomarker discovery, novel drug targets (Aderem et al. 2011),
increasing plant productivity (Meena et al. 2017) and discovery of novel antibiotics,
etc. (Genilloud 2018; Marco and Abram 2019).

The integration of omics is possible due to the advancements of computational
tools and currently there are number of integrating tools available both on private
and public domains. A recent review has extensively discussed the available tools for
the integration of different omics approaches, we recommend readers to read this
review for more information (Misra et al. 2018). Although there are many successful
omics integration studies, designing of omics studies, data acquisition, mining, and
interpretation of large datasets are still a big challenge (Misra et al. 2018). These
tools are constantly being evolved and improved upon to address these bottlenecks.
A typical omics integration workflow is illustrated here (Fig. 9.4) and integrated
omics reveals a holistic picture of microbial systems from a functional point of view.
The new working model or mechanism revealed by omics study must be validated
and tested whenever possible by other methods. The validation of omics data must
be an intrinsic part of the omics workflow and this would not only strengthen the
omics driven hypothesis but also highlight the importance of interconnecting the
disciplines to understand cellular functions.

9.5 Conclusions

Rapid advancements in sequencing technologies, mass spectrometry, and computa-
tional power have propelled the research in bio-sciences from reductionist to a
holistic systemic approach. These technological advancements brought a paradigm
shift in our understanding how microbial systems work. It is evident from increasing
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Table 9.1 Application of various integrated omics studies in microbial systems

Omics tools employed
Species/microbial
Community Goals and key findings References

Metagenomic,
metatranscriptomic

Marine benthic
group D (MBG-D)
archaea

Deciphering the ecological
roles of the uncultured
MBG-D archaea through
integrated meta-omics tools.
The study revealed the
mixotrophic metabolic
potential of the MBG-D and
possibility of transforming
organic matter in the
sediment and thereby
contributing to the global
sedimentary carbon cycle

Zhou et al.
(2018)

Sponge-
microbiome

Deciphering the metabolic
interactions between sponge
host and symbionts. The meta
omics tools unveiled the
unprecedented metabolic
potential and metabolic
interactions in sponge
Cymbastela concentrica
microbiome

Moitinho-
Silva et al.
(2017)

Metagenomic,
metaproteomic

Natural cellulolytic
microbial
consortium

Exploring the mechanism of
degradation of recalcitrant
biomass by natural soil
microbial community. The
study revealed the presence
of cooperative microbial
consortium expressing
complementary enzymes for
the deconstruction of
complex plant biomass

Zhou et al.
(2014)

Rat gut microbiota To study the effect of
polyphenol-hesperidin on the
gut microbiota of obese rats
and implication in disease
and health. Multi-omics data
revealed changes in gut
microbial diversity and
metabolic functions and these
complex changes may have
implications in host health

Guirro
et al.
(2018)

Metagenomic,
metabolomic

Chronic heart
failure (CHF)
patient gut
microbiota

Uncovering the metabolite
pattern and gut microbiota
dysbiosis of CHF patients.
Metagenomics revealed a
significant change in the gut
microbial community and
indicated an altered
metabolic profile in CHF

Cui et al.
(2018)

(continued)
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Table 9.1 (continued)

Omics tools employed
Species/microbial
Community Goals and key findings References

patients. The study also
highlighted the correlation of
altered metabolic pattern with
changes in the gut microbial
community

Microglena,
Chloromonas

To explore the red and green
snow microbial physiology
and ecology. Integrated
metagenomics and
metabolite profiling revealed
a change in the microbial
community and metabolic
profile of red and green snow
communities. Green snow is
a nutrient-rich environment
and metabolites present in
supports proliferation of
Microglena sp. conversely,
the red snow nutrient-poor
environment dominated by
Chloromonas sp. and it
survives severe conditions by
accumulating storage and
reserve metabolites

Lutz et al.
(2015)

Transcriptomic,
proteomic

Aeromonas
hydrophila

To gain insights into the role
of iron on the physiology of
Aeromonas hydrophila.
mRNA and protein profiles
obtained from iron
limting cultures using
RNA-seq and iTRAQ. The
study showed that iron
limitation leads to the
expression of genes related to
iron absorption and transport
and pathogenicity factors.
The study also demonstrated
that iron limitation enhanced
the virulence by activating
the enterobactin synthesis
and other virulence factors

Teng et al.
(2018)

Transcriptomic,
metabolomic

Saccharomyces
strains

To explore the association
between gene expression and
aroma related compounds
production during
fermentation of wine. The
integrated study revealed the
expression of genes such as
ADH6 and ADH7 involved

Mendes
et al.
(2017)

(continued)
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Table 9.1 (continued)

Omics tools employed
Species/microbial
Community Goals and key findings References

in the synthesis of higher
alcohols and other genes
related to aroma compound
synthesis. Expression of
these genes correlated to
increased levels of higher
alcohols, acetate esters and
ethyl esters required for the
better quality wines

Metaproteomic,
metabolomic

Petroleum-polluted
sediment microbial
community

To decipher the metabolic
processes of oxygen-depleted
petroleum-polluted
sediments microbiomes
across cost line of Italy.
Integrated omics study
revealed high metabolic
heterogeneity and the
prevalence of anaerobic
metabolism in oil-polluted
sites. The study also
suggested that suppression of
the hydrocarbon degradation
possible due to low oxygen
levels

Bargiela
et al.
(2015)

Rubrivivax
benzoatilyticus JA2

To decipher the systemic
responses of the
photosynthetic bacterium to
major environmental
pollutant, aniline. Integrated
proteomic and metabolomics
study revealed that strain
employs multiple stress
response mechanisms,
energy conservation and
metabolic remodeling to
combat aniline stress. Multi-
omics for the first time
revealed survival
mechanisms of an aniline
non-degrading bacterium

Mujahid
et al.
(2014)

Metagenomic,
metatranscriptomic,
metaproteomic

Bisphenol A (BPA)
degrading
microbial
community

To understand the microbial
interactions in a BPA
degrading model community.
Integrated multi meta-omics
revealed metabolic potential
at the community as well as
individual level. Interestingly
study also unraveled the
metabolic synergy in BPA

Yu et al.
(2019)

(continued)
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Table 9.1 (continued)

Omics tools employed
Species/microbial
Community Goals and key findings References

degrading microbial
community and metabolic
cooperation in BPA
degradation

Genomic, transcriptomic,
metabolomic

Propionibacterium
acidipropionici

To dissecting the acid stress
response mechanism in acid-
tolerant Propionibacterium
acidipropionici. The bacterial
cells showed modulation of
cellular pH by controlling
protons, ion transport, and by
activating the amino acid
metabolism. The
study indicated that down
regulation of lactate and
acetate synthesis leading to
increased production of
propionate

Guan et al.
(2018)

Genomic, proteomic,
metabolomic

Aspergillus
nidulans

Study of adaptive
mechanisms of A. nidulans in
space station conditions
revealed positive selection by
genome alterations through
missense and intergenic
mutations. There was loss of
stop codon in the lecA gene, a
key regulator of secondary
metabolites leading to
increased production of
asperthecin which shows a
protective role from ISS
radiations

Romsdahl
et al.
(2019)

Transcriptomic,
proteomic, metabolomic

Phaeodactylum
tricornutum
(diatom)

To decipher the molecular
mechanisms underlying lipid
accumulation under nitrogen
limiting conditions in
Phaeodactylum tricornutum.
The integrated multi-omic
study revealed nitrogen
limitation downregulated
photosynthesis, ribosomal
and protein synthesis thus
directly effecting the growth.
Further, the study indicated
that membrane lipid
rearrangement and
degradation of lipids possibly
lead to accumulation of
triacylglycerol

Remmers
et al.
(2018)

(continued)
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numbers of omics studies highlighting the significance of microbial dark matter
which is otherwise hidden. In the era of omics, microbiology has moved from single
omics to multi omics, from a single organism to community study and the most
significant of all is capturing the microbial functions from laboratory setup to natural
environments. Multi-omics based studies are rapidly expanding our understanding
of microbial function in different fields such as medicine, environment, ecology, and
biotechnology. Omics-based system approaches are highly promising in addressing
the pressing problems currently humanity is facing such as health and disease, fuel
and food, ecological and environmental sustenance.

Although omics approaches are highly promising, integrating and interpretation
of the large data sets to extract meaningful biological information is the biggest
challenge. Development of user-friendly integrating tools and building of mathe-
matical models are crucial to understand the complex biochemical processes. On the

Table 9.1 (continued)

Omics tools employed
Species/microbial
Community Goals and key findings References

RNA-stable isotope
probing and
metatranscriptomics.
DNA-SIP and
metaproteomics

Hydrothermal vent
microbial
community

To uncover the microbial
diversity and metabolic
potential of the hydrothermal
vent community. RNA-SIP
analysis revealed the change
in microbial diversity across
the temperature layers.
Metatranscriptomics
indicated activity of unique
chemolithoautotrophic
communities across the
thermal layers of the vent and
key autotrophic metabolism
operating in deep-sea
geothermal conditions

Fortunato
and Huber
(2016)

Uncultivated
marine
Methylotrophs

To characterize uncultivated
methylotrophic metabolism.
DNA-SIP based
metagenomic analysis
retrieved almost complete
genome of methanol
metabolizing uncultivated
Methylophaga species.
Metaproteome revealed
metabolic pathways involved
in methanol metabolism of
this naturally occurring
uncultivated bacterium

Grob et al.
(2015)
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other hand, experimental design, sampling methods, and quality control of data are
some of the factors which have the potential to introduce lots of heterogeneity in the
data. Although omics studies are exiting, some of the omics are highly challenging
compared to others such as meta-omics studies are highly challenging compared to
omics studies due to the complexity of microbial communities and highly diverse
habitats which poses major challenges.

However, integration of omics data, extraction and interpretation of data in a
biological context require a multidisciplinary approach. To fully extract meaningful
information from complex data sets, the data needs to be subjected to different tools
related to different layers of disciplines such as biology, mathematics/statistics, and
computational biology. Integrated omics generates huge data if interpreted correctly,
would provide novel mechanisms and biological functions which would help in
postulating new hypothesis. However, these newly generated hypotheses must be
validated by other classical tools such as biochemical and gene disruption studies.
On the contrary, mere cataloging the expressed entities (transcripts, proteins, and
metabolites) and their relative levels would have less significance and will not
enhance our understanding of microbial systems. The full potential and impact of
integrated omics tools in the understanding of the microbial systems can only be

Fig. 9.3 Potential
applications of integrated
microbial omics in various
fields
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appreciated when we move from descriptive omics to discovery and functional
omics and this trend has great potential in uncovering new microbial functionalities.
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Fig. 9.4 A complete integrated multi-omics workflow: A journey from biomolecules to complex
cellular events and discovery of new mechanisms
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Genome Editing Technologies for Plant
Improvement: Advances, Applications
and Challenges

10

Rakesh Kumar, Narasimha Rao Nizampatnam, Minhaj Alam,
Tarun K. Thakur, and Anirudh Kumar

Abstract

The current rate of genetic gains in crop improvement should rise to match
growing need for sustainable food production and environmental safety. Recent
years have seen genome editing being emerged as a promising tool to tailor a
variety of traits that improve plant performance. In the context, sequence-specific
nucleases like zinc finger nuclease (ZFN), transcription activator-like effector
nucleases (TALENs) and more recently, clustered regularly interspaced short
palindromic repeats (CRISPR/Cas) have enabled rapid and precise modification
of the genomes. The CRISPR/Cas system has revolutionized targeted gene
modification approaches owing of its capacity to produce allelic series with
high precision in both domesticated and crop wild species. Recent examples
demonstrating simultaneous mutagenesis of multiple genes lends credence to
targeted genome editing for tailoring complex quantitative traits. In parallel,
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oligogenic traits like disease resistance can be improved by precise base editing
by accurate protein remodelling. Notwithstanding encouraging results on plant
genome editing, adoption of gene-edited plants remains a moot point. To realize
immense potential of genome editing, emphasis should be given on resolving the
technical and regulatory apprehensions associated with the adoption of gene-
edited plant products. This article presents latest advances in techniques grouped
under “genome editing”, with a brief discussion on the current status of genome
edited plants. We also highlight current challenges that limit widespread
applications of targeted genome modification in crop improvement for sustain-
able food security.

Keywords

Genome editing · CRISPR/Cas · TALENs · ZFNs · Plant breeding · Intellectual
property rights

Abbreviations

CRISPR Clustered regularly interspaced short palindromic repeats
EU European union
FAO Food and agriculture organization
FTO Freedom to operate
GMO Genetically modified organism
IPR Intellectual property rights
NCA National competent authority
NPBTs New plant breeding techniques
NTWG New technique working group
SDN Site-directed nuclease
SG Synthetic genomics
TALEN Transcription activator-like effector nucleases
ZFN Zinc finger nuclease

10.1 Introduction

Practise of plant breeding started nearly 10,000 years ago that brought first grain
crops under domestication and selective breeding (Hickey et al. 2019). Subsequent
discovery of Mendel’s law, hybrid vigour and experimental designs not only
improved the understanding of genetic elements underlying various plant traits,
but also rendered plant breeding more systematic and efficient. Conventional plant
breeding remains a key technology to facilitate crop improvement; however, it has
limitations such as polyploidy, zygosity and longer generation time. Also, trait
introgression from wild to cultivated varieties through hybridization and selection
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is extremely difficult (Zamir 2001; Warschefsky et al. 2014). Similarly, utilization of
mutants generated through chemicals and/or irradiation is restricted either due to the
mutational load or low mutation frequency in the targeted genomic region
controlling trait(s) (Jung et al. 2018). Now molecular breeding approaches that
integrate genomics and high-throughput phenomics and multipotent genetic material
offer faster delivery of improved varieties (Varshney et al. 2009, 2018; Appels et al.
2013, 2015). Though biotechnological tools that could precisely engineer plant traits
are available such as genetic transformation, these face challenges from regulators
and policy makers. Furthermore, the cost of regulating GMOs is much higher than
non-GMO crops and the entire process consumes considerable time even after
developing improved products (Sprink et al. 2016). To address these challenges,
precise modification of crop genes and/or regulatory elements has now become
possible through genome editing. Recent years have seen genome editing gaining
attention of researchers because it offers predictable allelic series to optimize both
quantitative and qualitative traits (Kumar et al 2020; Scheben and Edwards 2018;
Biswal et al. 2019).

Domestication and modern breeding practices favouring certain genomic regions
have eroded genetic variation in current cultivated pools of different crop species.
For instance, transition of domesticated rice from prostrate (wild rice) to erect
growth (modern rice cultivars) resulted from the selection of an important single
mutation prostrate growth 1 (PROG1) gene (Jin et al. 2008; Tan et al. 2008).
Therefore, endeavouring precise modification of crop gene(s) by generating benefi-
cial alleles with site-specific nucleases for desire phenotype will make huge impact
on trait discovery and accelerate domestication of crop species (Scheben and
Edwards 2018; Nogué et al. 2016). And with genome editing tools in place, it is
possible to achieve this in much shorter duration (Scheben and Edwards 2018);
however, their acceptance is still in obscurity. The onus is thus on the scientific
community to provide ample evidences and generate awareness regarding techni-
cally different nature of genome editing products that lack foreign DNA, thus
rendering this similar to the plants improved using conventional breeding tools.
Researchers argue that the edited plants developed through genome editing should
not be treated as GMOs (Araki and Ishii 2015). These technologies should be kept
free from the hurdle of GMO legislation to allow their speedy adoption in routine
genetic improvement programmes not only in developed countries but also in
developing countries.

The present review aims to underscore the potential of modern genome editing
tools for developing improved crop varieties for sustainable food production. This
article evaluates genome editing with respect to environment and consumer risk.
Also, the constraints that limit adoption of the crops improved with genome editing
are briefly discussed.
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10.2 Introducing Mutations Through Advanced Genome
Editing Tools

10.2.1 Zinc Finger Nuclease (ZFN)

The term ZFN was initially used by Lusser et al. (2011) and successively by new
technique working group (NTWG) in 2012. In this technique, a synthetic restriction
endonuclease is customized to cut double-stranded deoxyribonucleic acid (DNA) at
specific sequences (Wyman and Kanaar 2006). It comprises a zinc finger domain
that allows recognition of a specific DNA sequence, enabling both site-specific
mutation and integration of gene(s) into the plant genome (Bibikova et al. 2002;
Wyman and Kanaar 2006). ZFN acts as a heterodimer, and therefore, ZFN transcrib-
ing genes are transported in a designed expression vector to plant cells (Söllü et al.
2010). The transfer of gene through ZFN technology involves electroporation
(Wright et al. 2005), transfection (Szczepek et al. 2007), whiskers (Shukla et al.
2009), microparticle bombardment (Ainley et al. 2013), and Agrobacterium
(De Pater et al. 2009). The viral vectors are also used for gene(s) transfer into the
plant genome. ZFN causes double strand breaks at unambiguous site in the genome,
which activate the repair mechanism of the host plant (Petolino 2015). Afterwards,
both homologous recombination (HR) and DNA inclusion take place (Fig. 10.1a, e).
This technique involves three artificial restriction enzymes, namely ZFN-1, ZFN-2
and ZFN-3 (Bibikova et al. 2001). (1) ZFN-1: Here ZFN is transported to the plant
genome without taking repair template. Once it reaches the plant genome, it creates
double-stranded breaks (DSB) to the host DNA that leads to non-homologous
end-joining (NHEJ) of DNA (Puchta 2005), which either generates site-specific
random mutations or small insertion or deletion. (2) ZFN-2: In contrast to ZFN1, a
homology-directed repair (HDR) along with short repair template is delivered to
plant genome along with ZFN enzyme (Lusser et al. 2011). The template DNA is
homologous to target DNA, which binds to specific sequence causing a double-
stranded break. The template starts repairing competing with endogenous repair
machinery which led to site-specific point mutations through homologous recombi-
nation (HR). (3) ZFN-3: When ZFN transcribing gene is transported to the plant
genome along with large repair template (for gene addition or replacement), it is
called ZFN3 (Lusser et al. 2011; Araki et al. 2014). It binds to double-stranded DNA
and causes site-specific double-stranded cleavage followed by HR. The end
sequence flanking the double-stranded cleavage is the homologous results insertion
of DNA stretch in a site-specific manner. ZFN-3 also helps in addition or replace-
ment of the gene of interest, and for trait stacking in crops, such as herbicide
resistance in plants (Townsend et al. 2009).

10.2.2 Transcription Activator-like Effector Nucleases (TALEN)

Transcription activator-like effector (TALE) proteins were discovered in the bacte-
rial Xanthomonas sp. (Bonas et al. 1989). Bacterial system utilizes this to infect
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plants through injecting TALE protein in plant cell via the Type III secretion system,
triggering effector specific genes in host (Römer et al. 2007). TALEs consist of
effector proteins, which facilitate localization, activation and specific DNA binding
(Miller et al. 2011). The DNA binding domain consists of TALE effector proteins
that are highly conserved, and possesses tandem repeats of 5–30 (average of 17.5)
amino acids which specifically recognizes target DNA sequences (Boch and Bonas
2010). The highly conserved domain shows variation at 12th and 13th position

Fig. 10.1 Structural representation of nucleases. (a) Structure of ZFN. ZFP represents zinc figure
protein. The ZFN recognizes target site by the left and right ZFPs, and each engineered ZFP can
recognize a target nucleotide. The ZFN monomer is contained a NLS (red) domain at N-terminal.
The C-terminal comprises the Fok I endonuclease. The target sequence recognized by the left and
right ZFPs which undergo for the dimerization of the Fok I endonuclease for activity. (b) TALEN
contains an N-terminal domain comprising a nuclear localization signal (NLS); an essential domain
typically formed of tandem TALE repeats to recognition a specific target DNA sequence; and a
C-terminal domain with functional endonuclease Fok I. Each TALE repeat consists of 34-amino-
acid with a variation at 12th and 13th amino acid position: NI (recognizes nucleotide A), NG
(recognizes T), HD (recognizes C) or NN (recognizes G) (marked in black box). (c) Mode of action
for TALEN. (d) Schematic representation of the CRISPR/Cas9 system structure and the principle
for mutation induced through CRISPR. The synthetic guide RNA (sgRNA) complementary to the
target DNA binding site and stem loops facilitates the binding of the Cas9 protein. The protospacer
adjacent motif (PAM, NGG) is required for DSB which facilitate genome editing through error
prone non-homologous end-joining (NHEJ) and homology-directed repair (HDR) repair pathway.
(e) Mode of action for nucleases. The DNA double-stranded break DSB is repaired through
HDR/NHEJ which causes base change or gene insertion or deletion in the target region (Adapted
from Kumar et al. 2021)
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called as “repeat variable di-residues” (RVDs); it primarily determines the DNA
specificity of TALE (Bogdanove and Voytas 2011). However, these tandem repeats
end abruptly, leading to truncated repeated are termed as “half repeats” (Boch and
Bonas 2010; Miller et al. 2011). The DNA binding efficacy of RVDs of TALEN to
nucleotides (A, C, G and T) depends upon the amino acids Asn-Ile, His-Asp,
Asn-Asn, Asn-Lys and Asn-Gly (Moscou and Bogdanove 2009). The deeper under-
standing of RVDs has allowed molecular biologist to modify naturally occurring
TALEs for genome editing (Römer et al. 2007). The fusion of nikase Fok I to the
C-terminus of TALEs results in development of specific TALEN for genome editing
(Fig. 10.1b, c, e). The Fok I enzymes work in a dimeric state, hence pair of TALENs
is required to facilitate DNA binding by Fok I heterodimer (Zu et al. 2013; Shin et al.
2014). Then the Fok I dimer cuts specific DNA region at the spacer site to create
DSB. These DSB are repaired through NHEJ, which often yield indels within the
target site of the genome. Further, the TALE protein can be fused with activator,
repressor, nuclease or methylase to improve TALE based proteins for genome
editing (Chen and Gao 2013). The application of TALENs was extended for—
(a) introduction of exogenous sequences, e.g. fluorescent tags, etc.; (b) conditional
gene expression and specific gene knockout; (c) controllable rearrangements of
genomic DNA through deletions, inversions/reversions (Quétier 2016). Though
widely used in animals, limited attempts have been reported so far in case of plant
system due to the complex nature of TALEN construct (Araki and Ishii 2015).

10.2.3 CRISPR: A Modern Editing Tool to Assist Plant Breeding

Bacterial and archaea genomes encode nucleases that trim invaders (bacteriophages)
DNA. These small segments of foreign DNA are incorporated into the host genome
as a long term permanent records of infectious genome (Barrangou and Doudna
2016). This yields direct repeats in bacterial genome intervened by short unique
sequences (proto-spacers, 32 nucleotides), indeed representing a short sequence of
foreign genome (Quétier 2016). The term CRISPR is an abbreviation for “clustered
regularly interspaced short palindromic repeats”, whereas Cas represents the nucle-
ase associated with CRISPRs assembly. Recent genome sequencing experiments
have revealed occurrence of CRISPRs in almost 40% of bacteria and 90% archaea
species (Horvath and Barrangou 2010). The bacterial genome encodes a range of
Cas proteins, of which Cas9 represents Type II CRISPR/Cas system (Song et al.
2016). The CRISPR/Cas system was initially discovered in 1987 by Ishino and
colleagues (Ishino et al. 1987). The principle that underlies CRISPR/Cas9 system
was elucidated later in 2011 (Fig. 10.1d). The Cas9 associates with trans-activator
crRNA (tracrRNA) and CRISPR RNA (crRNA, transcript of a protospacer) to create
a double strand break in foreign DNA that matches the crRNA (Fig. 10.1d)
(Deltcheva et al. 2011). Interestingly, these spacers are transcribed after each
invasion and aligned with complementary nucleotides bases present in the foreign
DNA, causing CRISPR/Cas mediated degradation of invaded DNA. The Cas9
protein consists of RuvC and HNH domains that create a blunt end DSB at the
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three base pairs upstream of protospacer at the 3´ end (Garneau et al. 2010). The
DSB is repaired by NHEJ or HDR (Fig. 10.1e) mechanism which often results
mutation such as indels (Xiong et al. 2015). Furthermore, the specificity of Cas9 also
depends on its three-dimensional conformation. The nuclear DNA regulates the
differential binding and residence time. For instance, extended binding time with
target DNA sequences, whereas a shorter period for off-targets (Knight et al. 2015).
To make this technique more robust, researcher fused the tracrRNA and crRNA to a
single guide RNA molecule (sgRNA) (Jinek et al. 2012). The Cas9 nuclease
specifically cleaves the RNA/DNA complex followed by DNA repair. With this
modification CRIPSR/Cas9 genome engineering is achieved with much higher
efficiency. A recent modification involves development of Cas9 variant using Fok
I (from Streptococcus pyogenes), Cpf1 (Cas12; from Francisella novicida U112)
and C2c2 (Cas13; from Alicyclobacillus acidoterrestris) nucleases (Tsai et al. 2015;
Shmakov et al. 2015; Zetsche et al. 2015). Genome editing CRISPR technology has
been extended beyond site-specific mutagenesis (Barrangou and Doudna 2016).
Recent research has shown transcriptional regulation by deactivating the Cas9, and
fusing the guide RNA with activator or repressor (Fig. 10.2) (Qi et al. 2013; Gilbert
et al. 2014). Likewise, fusion of fluorophores enables Cas9 sequence-specific DNA
visualization or chromatin imaging (Chen et al. 2012; Mao et al. 2016). Additionally,
RNA manipulation has been reported using CRISPR/Cas13 in eukaryotes, including
plants. RNA editing is a post-transcriptional mechanism, which converts adenosine
to inosine (A to I) (Matsoukas 2018). Cox et al. (2017) reported that CRISPR/Cas13
in a programmable manner to alter the coding potential in mammalian cells. Further,
Abudayyeh et al. (2017) and Aman et al. (2018) used Cas13 system to target
mammalian and plant cells to knockdown of either endogenous or reporter
transcripts and RNA virus, clearly indicating the potential applications in agricul-
tural biotechnology (Ali et al. 2018). In recent years, CRISPR application has been
extended to epigenetic modifications in genome to activate gene through promoters
and enhancers by fusing to acetyltransferases to Cas9 (Hilton et al. 2015; Kearns
et al. 2014). Unlike ZFNs and TALENs, CRISPR/Cas9 offers RNA guided genome
editing in an cost-efficient and user-friendly manner (Nagamangala Kanchiswamy
et al. 2015). These advancements have inspired increasing use of CRISPR/Cas9
technology in crop and animal breeding (Quétier 2016; Song et al. 2016).

10.3 Showcasing of the Candidate Genes Through Genome
Editing of Crop Plants

Site-specific nucleases have allowed the introduction of targeted sequence-specific
changes in both plant and animal system. Initially adopted in animal systems for
targeted genome modification, ZFN and TALEN protein-guided recognition tools
were later extended to create mutations or indels in the target gene of various plant
species (Table 10.1) (Gaj et al. 2013; Lor et al. 2014; Sawai et al. 2014). In model
plant Arabidopsis ZFN technique was employed to generate several mutants
(Qi et al. 2013). For instance, Arabidopsis loss of function mutant for endogenous
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gene aba-insensitive-4 (ABI4) was generated for ABA and glucose insensitivity
(Osakabe et al. 2010), deletion mutants for alcohol dehydrogenase-1(ADH1) and
transparent testa-4 (TT4) which have shown heritable behaviour (Zhang et al.
2010). In maize, ZFN technique conferred herbicide tolerance through disruption
of target gene IPK1, which alters inositol phosphate profile (Shukla et al. 2009). A
similar approach in tobacco demonstrated disruption of an endogenous
endochitinase gene CHN50 through a ZFN construct that consisted of a herbicide
resistance PAT gene flanked by short stretches of endochitinase (Cai et al. 2009).
Similarly, mutations in acetolactate synthase genes—SuRA and SuRB of tobacco
improved tolerance against herbicides (Townsend et al. 2009). The heritable nature
of the genetic modifications caused by gene editing was confirmed in soybean for
target 10 genes: a transgene “GFP transgene” and nine endogenous genes (DCL1a,
DCL1b, DCL2a, DCL2b, DCL4a, DCL4b, RDR6a, RDR6b and HEN1a) (Curtin
et al. 2011). Recent examples for ZFN mediated modifications in plants include
apple and fig (Peer et al. 2015), populus (Lu et al. 2016), tomato (Hilioti et al. 2016)
and tobacco (Schneider et al. 2016).

Like ZFNs, TALENs have also been implemented for the improvement of crop
species (Gaj et al. 2013). In monocot species, nearly 12 genes were targeted to
generate desirable knockout mutants through TALENs technique (Zhang et al.
2013). In rice,Os11N3 (OsSWEET14, member of SWEET sucrose-efflux transporter
family) gene is responsible for bacterial blight susceptibility (Antony et al. 2010;
Chen et al. 2012). This gene in rice was mutated through TALEN and thus trans-
genic plants gained desired resistance to bacterial blight disease (Li et al. 2012). In
barley, the promoter of HvPAPhy_a (from phytase gene family) was targeted as it
accounts for the maximum of the phytase activity during seed development (Wendt
et al. 2013). The mildew-resistance locus (MLO) gene was targeted which encodes
for a protein that suppresses defence against powdery mildew disease (Wang et al.
2014). With TALEN technology three homoeoalleles of MLO were disrupted in
bread wheat to confer heritable resistance against powdery mildew (Wang et al.
2014). In tomato DELLA protein is encoded by procera (PRO) gene (Carrera et al.
2012), and it negatively regulates the GA signalling pathway (Zentella et al. 2007).
Tomato pro mutant possesses enhanced levels of GA, but it partially retained some
GA response, suggesting a leaky phenotype of the mutant protein (Van Tuinen et al.
1999). In order to completely block the DELLA protein function, PRO gene mutants
of tomato were raised through TALEN, which displayed a similar phenotype as pro
mutant (Lor et al. 2014). TALENs have been implicated for improving postharvest
quality of potato. The cold storage of potato induces formation of reducing sugars,
which react with free amino acids at high temperature to form acrylamide (Kim et al.
2015). Recently, Clasen et al. (2016) obtained TALEN based knockout of the
vascular invertase gene, whose tuber produces negligible level of reducing sugars
and its processed chips consisted undetectable amount of acrylamide.

A growing body of literature indicate successful application of the CRISPR/Cas9
method in model and crop plants (Shan et al. 2014; Belhaj et al. 2015; Liu et al.
2017; Collonnier et al. 2017). This technique was effectively used to generate
mutants in both monocots (rice and sorghum), and dicots (Arabidopsis and tobacco)
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(Jiang et al. 2013). In wheat, CRISPR/Cas9 system is successfully applied for
mutating inositol oxygenase and phytoene desaturase (Upadhyay et al. 2013), and
MLO gene (Shan et al. 2013; Wang et al. 2014). Recently, IPK gene function was
neutralized in maize by using two sgRNA in the CRISPR/Cas9 (Liang et al. 2014).
Mutated chlorophyll a oxygenase 1 (CAO1) and LAZY1 gene in rice caused loss of
Chlorophyll b in the mutant leaf and noticeable tiller-spreading during the tillering
stage, respectively (Miao et al. 2013). Similar alterations in the promoter regions of
OsSWEET14 and OsSWEET11 genes in rice yielded resistance against bacterial
blight (Jiang et al. 2013).

The ARGONAUTE7 (AGO7) gene in tomato regulates biogenesis of a group of
sgRNAs which control the expression of auxin response factor gene (Husbands et al.
2009). Induction of mutations in tomato AGO7 through CRISPR/Cas9 system
resulted in leaf deformities and affected pollen viability (Brooks et al. 2014). Recent
work exploring CRISPR/Cas9 system in tomato involved mutagenesis genes such as
PDS and phytochrome interacting factor PIF4 (Pan et al. 2016), downy mildew
resistance 6 (de Thomazella et al. 2016) and ripening inhibitor (Ito et al. 2015). This
technique generates desired mutations at the specific site of interest that are inherit-
able. Mutagenesis of multiple genes by CRISPR/Cas9 through expressing more than
one sgRNAs suggests its immense implications for improving quantitative traits. For
example, 30% yield advantage was achieved in rice following CRISPR/Cas9-driven
manipulation of 13 genes associated with abscisic acid biosynthesis (Miao et al.
2018). CRISPR/Cas9 approach has been applied in the model plant Arabidopsis
(Upadhyay et al. 2013) and tomato (Brooks et al. 2014), and monocot plants like rice
(Zhang et al. 2014). Interestingly, a deletion of 10–1000 nucleotides can be created
through multiplexing the sgRNA (Belhaj et al. 2013), thus can also lead to deletion
of gene clusters due to chromosomal deletion (Zhou et al. 2014). Other examples of
CRISPR/CAS9 based modification in plants include targeting multiple loci in
Arabidopsis to enhance yield and resistance (Mao et al. 2016; Osakabe et al. 2016;
Peterson et al. 2016), gemini virus resistance in tobacco (Zaidi et al. 2016), disease
resistance in tomato (de Thomazella et al. 2016), starch modification and herbicide
resistance in rice (Baysal et al. 2016; Sun et al. 2016, Wang et al. 2017), improvised
fatty acid accumulation in Camelina (Jiang et al. 2016), resistance against
Phytophthora sojae in soybean (Fang and Tyler 2016), canker resistance in citrus
(Peng et al. 2017), starch modification in wheat (Liang et al. 2017), gibberellins
metabolism in rice (Lu et al. 2016), etc.

Change in the expression level and/or organization of the genes resulting from
mutations in cis-regulatory regions is known to create quantitative and qualitative
variation of the traits (Wittkopp and Kalay 2012). Gene expression is fine-tuned by
cis-regulatory elements (CREs) present in the promoter region. Recently, Rodriguez-
Leal et al. (2017) used the CRISPR/Cas9 to modify the CREs in the promoters of
tomato WUS (SlWUS) and CLV3 (SlCLV3) genes, that control fruit size, and
inflorescence architecture. The induced novel cis-regulatory mutant alleles increased
the tomato fruit size and locule number, similar to the natural QTL variants. Base-
editors (BEs) are another CRISPR/CAS9 technique, which enables direct, irrevers-
ible conversion of one base to another at a target locus. Given the majority of the
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agronomic traits are controlled by point mutations (Huang et al. 2010), recent
findings indicated that by fusing a nuclease-deactivated Cas9 (dCAS9) to a cytidine
deaminase or adenosine deaminase induces C.G and A.T base pairs (bps) to T.A and
G.C (Brooks and Gaj 2018). Though BEs approach was initially applied in mamma-
lian systems, and the same was successfully employed in rice, wheat, maize, and
tomato (Zong et al. 2017; Shimatani et al. 2017; Lu et al. 2016).

10.4 Challenges for Genome Editing

One of the major challenges in successfully achieving genome editing is plant
genetic transformation and regeneration, which are the bottlenecks in agriculture
biotechnology. Various technologies are available to improve plant transformation.
For example, floral dip transformation is an attractive solution, it eliminates the plant
tissue culture step, but the limitation is that not compatible to several crop plants,
except in Arabidopsis and Camelina sativa (Lu and Kang 2008) and its transforma-
tion efficiency is very low. Further, to improve plant transformation and regeneration
methods, high throughput, efficiency and novel transformation technologies are
required. Development of novel methodologies could dramatically enhance plant
genomics knowledge to feed the world (Altpeter et al. 2016).

Designing of ZFNs and TALENs is one of the most pain stacking jobs. The
commercially available ZFNs are more efficient, but very expensive, than the
publicly designed (Ramirez et al. 2008). In contrast, TALENs designing has become
easy and efficient by using Golden Gate cloning—a DNA assembly technique
(Engler et al. 2008). On the basis of available literature, some of the most important
problems associated with genome editing are their low efficacy, regulatory vague-
ness and social acceptance (Shukla et al. 2009). Yet, the accurate estimation of
efficiency is very difficult because efficiency depends on various factors such as the
crop plant selection, methodology used, target gene and marker genes. For example,
the efficiency of ZFN induced mutation in Arabidopsis is reported to be around 2%
(de Pater et al. 2009) whereas, in the case of tobacco, it is 40% (Townsend et al.
2009). Over and above, one of the problems associated with ZFN and TALENs
technologies is its non-specific binding which leads to create non-specific mutations
(Pattanayak et al. 2011). These off target effects are also associated with CRISPR/
Cas9 technology (Song et al. 2016). An improper concentration between Cas9 and
sgRNA, or promiscuous PAM sites, or poor codon optimization of Cas9 during
translation results off target/undesired cleavage of DNA sequence. It has been
reported that high off-targets were found in humans, but low in mice, zebrafish
and plants (Fu et al. 2013; Pan et al. 2016). Depending upon the species/cultivar the
efficiency of the technology shows discrepancy. At the same time, T-DNA (foreign
DNA) will be removed before proceeding for commercialization (Schaart et al.
2010). However, off target effects are expected with any genome editing tools as
these are driven by several factors including sequence similarities. Nevertheless,
researcher always selected the best phenotypic variants from genetically engineered
lines, ruling out off target effect.
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The regulatory cost of new plant breeding techniques is very high and the
regulatory process alone takes 5–7 years, hence the acceptance of these techniques
is low. When products become GMOs, it costs even higher and more time consum-
ing compared to non-regulated classical breeding techniques (Kalaitzandonakes
et al. 2007). Therefore, usage of these new techniques is limited. In particular,
small companies are using these techniques only for limited traits of high value
crops (Miller et al. 2011). Hence, it will be hard for plant breeders to invest in
ventures where regulatory cost has a direct impact on the economic potential of the
crops such as orphan crop and GM approaches-based product.

Once the plant is classified as GMOs, it has to be a method for identification and
actual quantification on the newly introduced gene/s and has to be mentioned before
going to the market (Kuzma and Kokotovich 2011). All contemporary available
standard methods for GMO detection basically depends on the quality of DNA and
efficiency of the techniques (PCR, qPCR, ELISA, etc.,). In order to evaluate the
changes brought about by these genomes editing, those are mostly monitored by an
expert committee, which is considered to be an important element of risk manage-
ment (Glandorf et al. 2011). The prior knowledge of DNA sequence has an impera-
tive role in the detection and identification of GMOs. The plant produced through
ZFN1, ZFN2 and ZFN3 techniques can be detected by DNA based approaches only
when there is prior information of flanking sequences of introduced modifications.

Genome editing has been mostly implemented in plant breeding to generate
disease resistance and yield advantage for crops. Its application has to widen such
as abiotic stress tolerance, nutritional quality enhancement and allergenicity elimi-
nation from various crops. There has been some report on RNAi based reduction of
allergens from apple (Gilissen et al. 2005). Similarly, peanut allergens and gluten
gene from various crops such as wheat, rye and barley can be reduced or abolished
using these techniques (Gilissen et al. 2014; Smulders et al. 2015). Now breeders are
opting for developing superior varieties through grafting. In case of grafting, plants
are produced by joining of scions and rootstocks. When a non-GM scion is attached
to the GM rootstocks, detection of scion derived products becomes impossible, but
rootstock can be identified using usual genomics tools used for GM crops.

10.5 Genome Edited Crop: Social Acceptance and Regulatory
Framework

Since the domestication of first agricultural plants nearly 10,000 years ago, plant
breeding techniques have tremendously improved crop yields that can feed more
than 70 million peoples (Palmgren et al. 2015). However, new breeding techniques
and agronomic practices are required for a sustainable food future of 10 billion
people by 2050. The unfavourable conditions like biotic and abiotic stress are
conspicuous factors which have increased the losses of crop productivity over the
years. Thus, the pressing demand for resilient crop species has invigorated
researchers to discover the possibility through reverse genetic or genome editing.
Although recent genetic engineering approaches in crop species have achieved
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considerable progress in crop improvement, its social acceptance is negligible due to
lack of strong global policies (Araki and Ishii 2015). Argument for the accepting
GMOs or genome edited plants occur not with the public; but surprisingly, it had
also created a debate between researchers (Tanaka 2012; Freedman 2013; Lucht
2015). It is projected that acceptance of these genome edited plants will adversely
affect the native crop germplasm resources and also human health. In order to
broaden the public acceptance, constant discussion with the society is a prerequisite
(Palmgren et al. 2015), excellent reviews have been published on regulatory vague-
ness and social acceptance (Jones 2015; Araki and Ishii 2015). In 2007, the
European Union commission and member states decided to set up an expert com-
mittee on NPBTs to evaluate these new techniques with respect to GMO legislation
(Schaart et al. 2016), and the commission highlighted an array of legal and social
issues associated with GMOs (Lusser et al. 2012). According to committee view,
these techniques may or may not involve genome alteration of the target plant
species given their heterogeneous nature. The EU declaration defines GMO as
“any organism having altered genetic material which does not occur by natural
mating or by natural recombination” (Directive 2001/18/EC 2001).

Anthropogenic activity has dramatically changed agricultural strategies such as
large-scale cultivation of new varieties in combination with affecting natural habitats
of ancestral wild species of crop plants (von Wettberg et al. 2018). Notably, the
important alleles and genetic variations present in the plant wild species allow
sustainable growth in extreme environmental conditions and distant geographical
regions (Hajjar and Hodgkin 2007; Lu 2013; Brozynska et al. 2016). Recent success
in the field of genetic engineering has also overlooked the huge potential of wild
species and their use in prebreeding for certain extent, as these modern techniques
have potential to improve elite crops or domestication of crop wild relatives in
shorter duration (Palmgren et al. 2015; Li et al. 2018). Numerous researchers believe
that worldwide acceptance of these genome edited plants can severely affect the
diversity of plant wild species, and even it could lead to extinction of some rare
species (Stewart et al. 2003; Castañeda-Álvarez et al. 2016). Questions remain on the
legal acceptance for the applied strategies, and also on the social, economic and
ethical acceptance of them (Tanaka 2012). Hence, the major concern with the release
of living modified organisms (LMOs) is their impact on the environment, biodiver-
sity conservation and a human health risk due to consistent consumption of GMOs
(Lucht 2015).

According to the Cartagena Protocol, plants raised using genome editing can be
out boxed from GMO regulation as they do not possess any transgene (http://bch.
cbd.int/protocol/text/). It is quite interesting that, the stringency of the regulation of
GMO or LMOs considerably varies within countries. For example, in New Zealand
and Europe, food obtained from the plants derived from the precision mutagenesis
techniques should be compared similar to the food derived from the traditional
mutagenic techniques (Lusser et al. 2011; Palmgren et al. 2015). However, the
foremost challenge for GMOs is acceptance of them in public domain, which greatly
relies on the mindset of citizen, farmers and decision makers (Araki and Ishii 2015).
The controversies related to transgenic have led to their widespread public
rejections, and limited commercialization. For instance, the expert committee of
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new plant biotechnology declares that ZFN-1 and 2 both create GMO and therefore,
both fall under the directive of 2001/18/EC or Directive 2009 41/EC 2009
(Schiemann et al. 2009; Sprink et al. 2016). Also, the plant produced using ZFN-3
technology is transgenic and therefore, comes under the directive of 2001/18/EC
(Schiemann et al. 2009; Araki et al. 2014). Similarly, several CRISPR/Cas9
mediated products including rice, maize, soybean, etc., are already developed and
waiting for the approval of government regulatory bodies. Very recently, the Court
of Justice of the European Union (ECJ) subjected CRISPR edited plants under tough
GM laws by subjecting these plants to a 2001 directive, previously developed to
control GM crops for food (Callaway 2018). However, researchers and plant
breeders argue that CRISPR/Cas9 edited plants should be treated same as irradiation
mutagenesis because it causes changes in DNA and does not involve the insertion of
foreign genes, thus they can be exempt from the directive. Currently, the adoption of
CRISPR system in agronomy has been remarkably increasing (Ricroch et al. 2017).
As a result, several countries like USA, Canada, China, etc., have showed positive
response towards CRISPR/Cas edited crop products (Lassoued et al. 2019); how-
ever, the developed edible food products from edited crops are of major concern. In
fact, globally, the impact of genetically modified crops has been realized, especially
due to the recent economic analysis obtained for the modified global crops such as
maize and cotton (Brookes and Gaj 2018). For instance, in Spain and Portugal, over
the 21-year period (1998 and 2018) the insect-resistant (IR) maize (aka corn) has
increased farmers income by €285.4 million (US$322.9 million) by saving money
on insecticides and producing more crop yields (Brookes and Gaj 2018). Addition-
ally, use of IR maize maintained the required production by using lesser arable land
because for the same production with conventional breeding material the farmers
would have required an additional 15,240 hectares in the two countries. In 2014, the
genetically modified soybean, cotton and canola saved 19, 9 and 1.5 million hectares
of land globally (https://www.pgeconomics.co.uk/pdf/2017globalimpactstudy.pdf).

Recent reports have suggested that the genome editing tools have faded the
boundaries between edited crops and regulatory bodies for social acceptance (Ishii
and Araki 2016). Many products delivered through TALEN approach has been
accepted (see Table 10.2). For instance, a TALEN mediated SU (sulfonylurea)
Canola launched by Cibus (https://www.cibus.com/products.php) was commercially
approved by the Canadian and United States governments in 2015 (Table 10.3). In
the next 5 years other products from TALENmediated genome edited products from
Cibus such as glyphosate tolerant flax, soybean and maize breeds are under evalua-
tion in the United States (Li et al. 2016) (Table 10.3). No wonder, more crop TALEN
mediated genome edited products would be pushed to the market, as TALEN has
proved its potential and critical role in genome editing breeding. It is obvious that the
growing demand of food supply coupled with agronomic losses due to increased
prevalence of diseases and abiotic stress needs supports of genome edited crops,
which can provide elite varieties in very short duration. We speculate, in next two
decades CRISPR/Cas9 mediated crop will have more products directly developed
from the domestication of crop wild relatives (Li et al. 2018), which known to have
several important features including higher nutritional quality and disease resistance,
these products should be globally accepted to fulfil hunger need.
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Table 10.2 Examples of genome edited crops approved through regulatory agency or are in
pipeline

Technology Crop Trait Developer
Current
status Reference

ZFN Maize Reduced
phytate
production

Dow
AgroSciences

USDA
approved

Wolt et al.
(2016)

TALENs Alfalfa Improved
quality alfalfa

Calyxt USDA
approved

http://www.
calyxt.com

Soybean High oleic Calyxt USDA
approved

http://www.
calyxt.com

Soybean High oleic/low
linolenic

Calyxt USDA
approved

http://www.
calyxt.com

Wheat Powdery
mildew resistant

Calyxt USDA
approved

http://www.
calyxt.com

Potato Cold storable Calyxt USDA
approved

http://www.
calyxt.com

Potato Reduced
browning

Calyxt USDA
approved

http://www.
calyxt.com

Rice Bacterial blight
resistance

Iowa state
university

No
information

Li et al.
(2012)

Potato Consumer
safety and
processing
attributes

Cellectis USDA
approved

Wolt et al.
(2016)

Potato Reduced
browning

Simplot plant
sciences

Health
Canada
approved

http://www.
simplot.com

Potato Late blight
resistance

Simplot plant
sciences

USDA
approved

Halterman
et al. (2016)

Wheat High fibre Calyxt USDA
approved

http://www.
calyxt.com

Rice Disease
resistance

Iowa state
university

USDA
approved

Wolt et al.
(2016)

Canola Herbicide
tolerant

Cibus Health
Canada
approved

Li et al.
(2016)

Flax Herbicide
tolerant

Cibus Under
pipeline

Li et al.
(2016)

Maize Herbicide
tolerant

Cibus Under
pipeline

Li et al.
(2018)

Soybean Herbicide
tolerant

Cibus Under
pipeline

Li et al.
(2018)

CRISPR/
CAS9

Camelina No information Yield
10 bioscience

USDA
approved

www.
yield10bio.
com

Button
mushroom

Non-browning Penn State
University

USDA
approved

Parrott
(2018), Waltz
(2018)

(continued)
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10.6 Intellectual Property Rights (IPRs) Protection and Freedom
to Operate (FTO)

Biotechnology research has increased the availability of crop plants that are high-
yielding, nutritious, stress tolerant, etc. (Díaz de la Garza et al. 2004; Vinocur and
Altman 2005; Storozhenko et al. 2007; Nunes et al. 2009; Tamás et al. 2009;
Varshney et al. 2011). However, the success of these genetically engineered plants

Table 10.2 (continued)

Technology Crop Trait Developer
Current
status Reference

Maize Improved waxy DuPont
Pioneer

USDA
approved

www.pioneer.
com; Waltz
(2018)

Maize Increase yield Benson Hill
biosystems

No
information

www.
bensonhillbio.
com

Green
foxtail

Flowering time Danforth No
information

Parrott
(2018), Waltz
(2018)

Maize Leaf blight
resistance

DuPont
Pioneer

No
information

Parrott (2018)

Soybean Drought
tolerance

USDA-ARS No
information

Waltz (2018)

Table 10.3 List of crop and traits targeted by commercial biotech company Cibus

Crop Trait Year

Canola MOA-2
Pod shatter reduction
Oil quality
Disease resistance

2020–2023
2020–2023
2020–2023
2020–2023
2020–2023

Rice MOA-1
MOA-2
Disease resistance

2020–2023
2020–2023
2023+

Flax MOA-1 2020–2023

Potato MOA-1
Disease resistance

2023+
2023+

Corn MOA-1
MOA-2
Disease resistance

2023+
2023+
2023+

Wheat MOA-1
MOA-2
Disease resistance

2023+
2023+
2023+

Peanut Aflatoxin 2023+

230 R. Kumar et al.

http://www.bensonhillbio.com
http://www.bensonhillbio.com
http://www.bensonhillbio.com


is greatly dependent on the inventor incentives because of IPRs. IPRs include a set of
laws to provide a legal protection to inventor or innovators for a fixed period of time
against direct exploitation of their product or method (Malik and Zafar 2005). IPRs
protect the biotechnology material through two major systems: patents and rights in
plant varieties, but for a limited period of time. Patents provide a wide range of legal
rights to retain, use, transfer it by sale or as a gift, and restrict others from similar
rights for a duration of 17–20 yrs. (Gold et al. 2002; Graff et al. 2003). According to
International Union for the Protection of New Varieties of plants (UPOV), a plant
variety can be protected only if it is unique, stable, uniform and fulfil the novelty
requirements (Jördens 2005). This grant provides an exclusive right to the owner to
sell the plant materials such as reproductive organ or whole plant, which can be up to
a period of 20–30 years. In the field of agro-biotechnology there is an exponential
increase of the counts for filed application patents in USA, Germany and Japan
(Graff et al. 2003). This surge was motivated by the royalties which can be obtained
from invention (Barrows et al. 2014). The seed companies protect their genetically
engineered seeds by IPRs (Oczek 2000; Frison et al. 2010), and sell their seed to
farmers at monopolistic prices. It has also affected the conventional plant breeding,
which is slow due to their need on the availability of the desired traits from the
ancestral or closely related species. However, the rapid increase of the advancement
in agricultural plant biotechnologies has increased the monitoring responsibility for
the crop biosecurity which protects from the bioterrorism, biopiracy, genetic erosion,
etc., (Evenson 1999; Chen and Puttitanun 2005). Furthermore, the surge of proprie-
tary protection in crop species has intricate the exchange of germplasm which are
required to develop new cultivars against destructive disease and environmental
stress (Graff et al. 2003; Luby and Goldman 2016). This has led to an inability of
researchers and breeders to obtain seed without acquiring permission through
entering into an agreement such as material transfer certificate, license, etc.
(Chi-Ham et al. 2012; Luby et al. 2015), hence, deprive researchers and breeders
from genetic gain. These circumstances restrict the reach of quantity breed from a
breeder and the researcher, and limit FTO for the purpose of crop breeding
(Binenbaum et al. 2003; Le Buanec 2005). FTO allows researcher/people to deter-
mine whether a commercialization or testing can be done without violating any valid
IPRs of others (Luby et al. 2015; Bjørnstad 2016; Zanga et al. 2016). To increase the
accessibility of germplasm to breeders and researcher several open resource centre
available such as an open source seed initiative (OSSI), Chinese crop germplasm
information system (CCGIS), national small grains collection (NSGC), USDA
soybean germplasm collection, tomato genetics resource centre (tgrc.ucdavis.edu/),
etc., (Sachs 2009). Recently, efforts have been made to enhance the FTO in corn and
carrot breeding through development of open source populations (Luby and
Goldman 2016; Zanga et al. 2016). Similar attempts are required for improving
the crop breeding because today crop genetics resources are intensely secure
with IPRs.
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10.7 Conclusion

The expectations of genome editing have risen that the technology would expedite
progress towards sustainable crop productivity. Some products are at the final stage
of development. The commercial use of the technology is relatively new in crop
improvement. Genome editing allows generation of superior plants rapidly with
higher efficiency and in an environmentally safe manner. Majority of the commercial
crop varieties developed over the last 20 years by transgenesis, conventional and
molecular breeding are now being explored through genome editing. Considering
wider applications, CRISPR/Cas9 has gained more attention from researchers and
breeders as compared to ZFNs, TALENs, grafting, reverse breeding, etc. As a result,
breeders are now encouraging CRISPR edited plants crops to combat climate change
and associated yield loss. The genome editing is accepted by the commercial sector
because of its impending financial gain over alternative traditional techniques.
However, a wider adoption of products derived from these techniques depends on
several factors, including regulatory jurisdiction, the efficiency of the techniques and
political expediency. Genome edited crop products are now available in a few
countries such as the U.S. and Canadian government has approved genome edited
canola and mushroom. We anticipate that CRISPR/Cas9 technology is likely to
bridge the gap between GMO and society. The genome editing will be instrumental
in meeting the challenge of feeding 12 billion people by the end of the twenty-first
century.
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Metabolomics-Assisted Breeding for Crop
Improvement: An Emerging Approach 11
Mohammed Jamaloddin, A. Maliha, C. G. Gokulan, Namami Gaur,
and Hitendra Kumar Patel

Abstract

The “omics” technologies, namely, genomics, transcriptomics, proteomics, and
metabolomics are pillars of modern molecular biology and biotechnology.
Metabolomics is a rapidly developing branch of “omics” and it involves the
detection and quantification of metabolites of cellular pathways in different
biological species. Metabolomics plays a vital role in discovering gene–environ-
ment interactions, characterization of mutants, phenotyping, and identification of
metabolic markers. Metabolomics is a favorable approach to decode various
metabolic networks that are linked with biotic and abiotic stress tolerance in
plants. In this context, metabolomics-assisted breeding allows efficient screening
for stress tolerance and yield of crops at the metabolic level. Advanced
metabolomics analytical tools, like mass spectroscopy (MS), nuclear magnetic
resonance spectroscopy (NMR), direct infusion mass spectroscopy (DIMS),
direct flow injection (DFI) mass spectrometry, high-resolution mass spectroscopy
(HRMS), Fourier transform ion cyclotron resonance mass spectroscopy
(FI-ICR-MS), high-performance thin-layer chromatography (HPTLC), ultra-
performance liquid chromatography (UPLC), capillary electrophoresis mass
spectroscopy (CE-MS), gas chromatography-mass spectroscopy (GC-MS), and
liquid chromatography-mass spectroscopy (LC-MS) have been developed for
speeding up metabolic profiling. Presently, with the development of genome
sequencing and metabolic profiling technologies, multi-omics integrative analy-
sis of genomes, transcriptomes, and metabolomes has enabled efficient dissection
of the genetic basis of metabolic pathways, diversity of nutrient metabolites, and
phenotypic association in crop plants. Here, we describe advanced metabolomics
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tools, methodologies, and application of multi-omics, metabolic engineering in
crop improvement.

Keywords

Biotic stress · Abiotic stress · Crop improvement · Analytical tools · Metabolic
profiling · Metabolomics · Metabolomics-assisted breeding

11.1 Introduction

The ability of crops to produce economically significant yields depends on multiple
internal and external factors. Plant architecture and cellular metabolism constitute
the internal factors while external factors include biotic and abiotic stresses as well as
climate change. The scientific community has majorly concentrated on optimization
of plant architecture (Jiang et al. 2013; Cai et al. 2016) and introgression of one or
more gene(s)/QTL(s) that confer resistance/tolerance against various biotic and
abiotic stresses (Limbalkar et al. 2018; van Zonneveld et al. 2019; Dixit et al.
2020) in order to improve yield. These approaches have certainly contributed
significantly to crop improvement but have not proved to be sufficient enough to
attain the desired yield quantum. One major reason to be borne in mind is that the
crops are capable of producing higher yields and combat various challenges as a
direct consequence of their metabolic activities that involve organic compounds
generally known as metabolites. Metabolites in general refer to organic substances or
compounds formed during and/or necessary to carry out biochemical reactions in a
living cell. They are broadly classified into primary and secondary metabolites.
Primary metabolites are compounds directly involved in plant growth, development,
and reproduction and are conserved across the plant kingdom (carbohydrates,
proteins, lipids, enzymes, vitamins, etc.). They conciliate Kreb’s cycle and glycoly-
sis during photosynthesis and thus any changes in the synthesis of primary
metabolites may be detrimental to the plants. Secondary metabolites are synthesized
by primary metabolites and may not be directly involved in growth and develop-
ment, but are important to plants for protection, competition, and species interaction
(Tissier and Ziegler 2015). Secondary metabolites are species-specific and are often
produced in smaller quantities during the time of need (essential oils, phenolics,
alkaloids, pigments, etc.). Some of the discovered secondary metabolites are so
unique that they are being used as biomarkers to assess plant performance under
stress in many crop improvement programs (Che-Othman et al. 2020). All
metabolites (both primary and secondary) present within an organelle or a cell or a
tissue or an organ or a whole organism constitute the metabolome and the scientific
study of a metabolome is called metabolomics.

Metabolomics found its application in plant biology during the mid-90s and was
extensively applied to model plant Arabidopsis thaliana due to the availability of
copious genome information and was later introduced to agriculture with an aim to
improve crops. Though gradually, metabolomics instituted itself as a crucial tool in
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understanding plant metabolic pathways. Metabolomics research majorly deals with
the recognition and quantum assessment of small molecules (<1500 Da), their
chemical structure, and interactions within an organism (Deborde et al. 2017).
Metabolomics is pivotal as it enables a comprehensive understanding of cellular
metabolites that ultimately are representative of the physiological state of a cell. It
not only allows the identification of genes involved in the metabolic network of a cell
but also helps understand their function and effect on linked pathways (Wen et al.
2015; Hong et al. 2016). Metabolomics also allows a better understanding of
environment–plant interactions as plant growth and development under varying
environmental conditions highly depends upon its metabolism (Han and Micallef
2016). Integration of metabolomics in crop improvement programs is salient as this
science in real essence fetches proper understanding of genotype–phenotype–envi-
ronment interactions at metabolite level because the plant metabolites are the
ultimate key players in these interactions (Carreno-Quintero et al. 2013).

Crops, like all other living organisms, are hosts to several pests and diseases
(biotic stress) and due to their sessile nature are affected adversely by various abiotic
factors, all of which result in yield losses. Rapid advances in genomics, high-
throughput methodologies, and next-generation sequencing have contributed signif-
icantly to the identification and introgression of the gene(s) and QTL(s) controlling
resistance/tolerance to major biotic and abiotic stresses in crops through marker-
assisted breeding (Perez-de-Castro et al. 2012). Though molecular markers have
become an integral part of breeding programs, they experience difficulty in crossing
hurdles faced due to polygenic traits, epistatic loci, and traits highly influenced by
the environment (Steinfath et al. 2010). Under such situations, integration of
metabolomics paves way for multifarious opportunities that enable decoding such
complexities (Carreno-Quintero et al. 2013). Moreover, metabolite based
biomarkers allow phenotype prediction irrespective of the availability of genomic
information (Che-Othman et al. 2020). An amalgamated approach considering
deductions from genomics, transcriptomics, proteomics, and metabolomics will
allow researchers to efficiently categorize and prioritize gene(s)/QTL(s) that will
consistently tackle biotic and abiotic stresses significantly (Piasecka et al. 2019).

Crop yields can be improved by combating various biotic and abiotic stresses and
by developing climate-resilient crop varieties. The objective of breeding programs so
far has been to improve yields but the importance of enhancing the nutrient status of
crops is being felt and acted upon only for the past few years. The present global
food scenario demands not just an increase in quantity but also an improvement in
the quality of food to address human nutritional requirements. The efficiency of
crops to accumulate nutrients solely depends upon the availability of nutrients and
the source-sink metabolism, complete knowledge of which is lacking (Rossi et al.
2015; Sonnewald and Fernie 2018). In other words, metabolomics plays a major role
in understanding metabolic pathways contributing to the quality parameters of crops
in terms of nutrient status (Alseekh and Fernie 2018). Thus, an integrated –omics
approach will help achieve food security not only in terms of improved yield but also
a better quality with enhanced nutrient index. This book chapter attempts to shed
light on the importance of metabolomics-assisted breeding in crop improvement and
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the applicability of various –omics technologies in an integrated manner. The
chapter also highlights the scope for the application of metabolite engineering and
the success of biofortification in crops.

11.2 Metabolomics: Tools and Methodologies

Past research experiences have led to the conception of various approaches to detect
and identify specific metabolites (Wishart 2011). Whole metabolome profiling using
a single metabolomics tool becomes difficult due to diverse chemical composition,
complex structure, and abundance of metabolites in cellular organelles. Apart from
being used for metabolite profiling, metabolomics is also used to examine the
prototype of a crucial gene to attain a genotype-metabolite-phenotype level of
knowledge (Yang et al. 2018). Plants, unlike most other living organisms, are
capable of synthesizing sundry metabolites varying in size, polarity, solubility,
volatility, adaptability, and stability (Hein et al. 2016; Ma et al. 2018; Kang et al.
2019). The metabolomics experiment may be targeted, semi-targeted, or untargeted
(Shulaev et al. 2008), but irrespective of the approach, factors like metabolite
detection and quantification, a protocol of sample preparation and assessment of
the desired metabolite decide the efficiency of metabolite profiling (Kumar et al.
2017; Sharma et al. 2018).

Over the last few years, plant metabolomics has made significant leaps forward in
terms of technical progress. These advances have increased the throughput of
metabolite profiling by allowing analysis of multiple (>200) known and unknown
metabolites in a single experiment and imaging of metabolites in a whole organ with
a spatial resolution (Bjarnholt et al. 2014). Despite these advances, no single
approach is sufficient to analyze all metabolites present in a metabolome, rather,
an approach combining multiple technologies is necessary to achieve a near-
complete metabolite coverage. The basic instrumental setup generally used to
carry out plant metabolite profiling includes spectroscopy and chromatography, or
high-performance chromatography combined with spectroscopy. Various
metabolomics techniques like mass spectroscopy (MS), nuclear magnetic resonance
spectroscopy (NMR), direct infusion mass spectroscopy (DIMS), high-resolution
mass spectroscopy (HRMS), Fourier transform ion cyclotron resonance mass spec-
troscopy (FI-ICR-MS), high-performance thin-layer chromatography (HPTLC),
ultra-performance liquid chromatography (UPLC), capillary electrophoresis mass
spectroscopy (CE-MS), gas chromatography-mass spectroscopy (GC-MS), and liq-
uid chromatography-mass spectroscopy (GC-MS) have been developed for various
experimental objectives and sample types (Razzaq et al. 2019).

The NMR-based approach is non-destructive and depends upon the magnetic
properties of nuclei of atoms under an imposed magnetic field. This approach is
effective in identifying metabolites having a lower molecular weight (< 50 kDa) and
can be used for deducing the atomic structure of compounds, measuring metabolic
flux, metabolite profiling, and metabolite fingerprinting (Winning et al. 2009). But,
poor sensitivity of this technique makes detection of low-abundance yet informative
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metabolites difficult, thus restricting its extensive use. This drawback of NMR is
efficiently addressed by MS, thus providing researchers with a broader metabolite
coverage resulting in the identification of novel and highly informative metabolites
crucial in the reconstruction of metabolic pathways. Combining chromatography
techniques with MS increases the throughput of analysis. Among all the available
techniques, CE-MS, GC-MS, LC-MS, and NMR-based approaches have been amply
used for analyses (Razzaq et al. 2019).

The analytical tool to be used to carry out metabolomics experiment is decided by
its sensitivity, selectivity, speed, accuracy, and precision. The NMR approach is
preferred to attain a comprehensive understanding of metabolites in many organisms
including plants. The NMR-based metabolite profiling is quick, convenient, and
competent and is often chosen because it is non-destructive, specific, highly repro-
ducible, and very efficient at delineating metabolite pathways (Boiteau et al. 2018).
NMR is a highly quantitative and impartial approach that does not require chroma-
tography separation. Recent technical advances have yielded more efficient tools
like multi-dimensional NMR, multi-coil NMR, and isotope-labeled NMR, which
address major limitations of this approach.

The integration of mass spectrometry with chromatography significantly
increases the throughput. The GC-MS approach is used for non-targeted analysis
(Dutta et al. 2012) and has a high sensitivity for metabolite profiling. It is counted
among high-throughput techniques owing to its efficiency in detection, separation,
and identification. However, the application of this technique is limited to the
detection of thermally unstable and volatile compounds (Jorge et al. 2016). This
technique was applied in Soybean along with DIMS to understand the regulation of
metabolism during Rhizoctonia solani infection (Aliferis et al. 2014), in Sorghum
along with FT-IR to assess the biochemical profile of few varieties under drought
stress (Ogbaga et al. 2016) and in Maize to understand the relationship between
metabolism and grain yield through metabolite profiling under drought, heat and
combined stress (Obata et al. 2015). Unlike GC-MS, LC-MS is used to analyze polar
and thermo-labile high molecular weight molecules (Turner et al. 2016). Though it
can be applied to both primary and secondary metabolites for targeted as well as
untargeted analysis, it has been largely used to analyze secondary metabolites. This
approach was used in Rice along with NMR to identify and assess the structure of
36 specialized metabolites (Yang et al. 2014). The UPLC-MS approach was applied
in Soybean to understand metabolite profile and tolerance mechanism under molyb-
denum toxicity (Xu et al. 2018) and in Wheat to carryout comparative metabolomics
of temperature-sensitive resistance to wheat streak mosaic virus in resistant and
susceptible cultivars (Farahbakhsh et al. 2019). In addition to these approaches,
CE-MS gives high-resolution separation of different groups of compounds (neutral,
charged, polar, and hydrophobic) through both targeted and untargeted approaches
(Ramautar and De Jong 2014). This technique was applied in Rice to study the
metabolome of two rice lines infected by Rhizoctonia solani (Suharti et al. 2016).

A metabolomics experiment is imposed with several challenges, overcoming
which decides the credibility of data. A separate set of hurdles are experienced in
the case of known and unknown metabolites. An untargeted approach yields

11 Metabolomics-Assisted Breeding for Crop Improvement: An Emerging Approach 245



metabolites most of which are either putatively identified or un-identified
(Weckwerth 2011), which is a significant hindrance in metabolomics studies
(Matsuda et al. 2009; Dunn et al. 2013). But, gradual congenial technical advances
in metabolomics tools have contributed to the ease and efficiency of this omics study
thus addressing most of the challenges experienced during the execution of
experiments. The general workflow of a metabolomics experiment from sample
preparation to data interpretation has been depicted in Fig. 11.1 (the steps may
slightly vary between targeted and untargeted approach).

Metabolomics is considered a data-rich technique as it generates humongous raw
data that needs to be processed (Kuhn et al. 2008). The handling of data of such
quantum requires highly accommodating and very efficient data processing
platforms. Few commonly used metabolomics data processing tools are
MET-COFEA (Zhang et al. 2014), XCMS (Chang et al. 2016), Met-Align (Lommen
and Kools 2012), MAVEN (Clasquin et al. 2012), ChromaTOF (Pegasus 2007), etc.
After data processing, identification of metabolites is possible using databases like
METLIN (Smith et al. 2005), CFM-ID (Allen et al. 2014), MMCD (Cui et al. 2008),
GOLM (Johnson and Lange 2015), etc. For further ascertainment, the identified
compounds are subjected to statistical analysis. This can be done using statistics
packages like MetaboAnalyst (Xia et al. 2009), COVAIN (Sun and Weckwerth
2012), Babelomics (Alonso et al. 2015), etc.

Fig. 11.1 Schematic representation of general metabolomics workflow. The prepared sample is
injected into the instrumental set up to procure raw data which is subjected to a quality control
process to remove false positives. Feature extraction aids in distinguishing co-eluting peaks.
Further, chemical compounds can be identified based on their structural and spectral data available
in databases. Statistical analysis tools assist in the identification of reliable and stable biomarkers
through correlation tests
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11.3 Metabolomics in Crop Improvement

11.3.1 Stress

The metabolome, the biochemical phenotype of a plant, is a quantitative and
qualitative measure to understand the genetic correlation of an organism with its
environment. Metabolomics-assisted breeding is a systematic screening of crops to
know metabolic and chemical footprints of plant regulatory processes to expedite
stress tolerance and high yield. Metabolomics can be integrated with other omics
tools such as proteomics, transcriptomics, and genomics, to study plant resistance
against the pathogen, tolerance against abiotic stresses, the richness of ecotypes and
to improvise breeding crops. It plays a significant role in linking the gene to its
function.

Biotic and abiotic stresses are the main cause of global annual crop yield loss
worldwide. Though the biochemical response against these stresses is different, the
way plants react to biotic and abiotic stress are metabolically relatable. In response to
the invading pathogen, plants activate innate immune response comprising pattern
triggered immunity (PTI) and effector-triggered immunity (ETI) whereas plants
synthesize various phytohormones, metabolites, and oxidative stress response
against abiotic stress. Advancements in the field of metabolomics can decipher
various metabolic networks that are linked to biotic and abiotic stresses in plants.

11.3.1.1 Biotic Stress
The crops are ceaselessly jeopardized by biotic stresses induced by pathogens such
as bacteria, fungi, viruses, and various pests which try to manipulate the host
metabolism and manifest diseases in plants. This reduces the productivity of crops,
leading to severe yield losses and ingenerate economic problems. There is always an
evolutionary arms race between the host and the pathogen. Pathogens exploit host
metabolisms to induce favorable conditions for their survival while plants recognize
these biochemical changes and activate their defense response. In addition to the
existing plant defense barriers such as the cell wall, plants also own highly efficient
biochemical and metabolic defense mechanisms such as primary and secondary
metabolites. Hence, metabolic profiling during host–pathogen and/or pest
interactions can serve as a base to understand the plant’s defense and physiology
for sustainable crop improvement.

Metabolic analysis in barley spotlighted 496 metabolites including kaempferol
and highlighted their pertinent role in enhanced plant defense in the resistant cultivar
of barley (BOLLINA et al. 2010). In wheat, metabolic pathways of
phenylpropanoid, terpenoid, and fatty acids were found to have a contributing role
in imparting resistance against F. graminearum (Gunnaiah et al. 2012).
Benzoxazinones such as 2,4-dihydroxy-7-methoxy-2H-1,4-benzoxazin-3(4H)
(DIMBOA), one of the effective biocidal metabolites has been established in the
resistance against setosphaeria turcica and aphids in maize (Ahmad et al. 2011). Erb
et al. (2009) also evaluated the metabolomic role of 2,4-dihydroxy-7-methoxy-2H-
1,4-benzoxazin-3(4H) (DIMBOA) in maize roots against western corn rootworm
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Diabrotica virgifera virgifera and insect pest, Spodoptera littoralis (Erb et al. 2009).
MS and nuclear magnetic resonance (NMR) based metabolomics was used to
analyze the plant response against Magnaporthe grisea at different time points.
Jones et al. (2011) proposed that excessive production of Alanine in the plant
might be responsible for induced cell death to inhibit fungal invasion (Balmer
et al. 2013). Oats (Avena sativa) react upon nematodes invasion of Pratylenchus
and Heterodera by inducing a metabolic pathway of O-methyl-apigenin-C-
deoxyhexoside-O-hexoside and protect the plant efficiently (Soriano et al. 2004).
Tissue-specific metabolomics analysis of maize infected with Ustilago maydis
revealed induction of flavonoid and shikimate pathways in response to fungal attack
(Doehlemann et al. 2008). Screening of elite barley crops resistant against
Gibberellazeae to identifies potential biomarkers against the fungi that have been
successfully done through the metabolomics approach (Kumaraswamy et al. 2011).
Constructed a model using GC/MS-based metabolomics approach to differentiate
non-infected cereals from naturally mycotoxic-contaminated cereals. The analysis
was done on cereals such as barley, oats, and rye (Perkowski et al. 2012). Accumu-
lation of momilactone A, major phytoalexin of rice provides an inhibitory effect
against Magnaporthe grisea and Xanthomonas oryzae (Sawada et al. 2004). Hence,
it has been shown that further advances in metabolomics tools combining other
“omics” will impart a better understanding of the role of metabolites during biotic
stresses.

11.3.1.2 Abiotic Stress
Plants thriving under abiotic stress conditions have stunted growth and turn down
metabolisms. Main abiotic stresses like waterlogging, drought, temperature extremes
such as freezing or high temperature, heavy metal soil contamination, high salinity,
mineral deficiency, or a combination of more than one stress negatively regulate a
plant’s development and physiology. Metabolomics is a budding tool which can help
in deciphering abiotic stress tolerance in plants, where the main objective is a
remodeling of plant homeostasis and normalization of metabolic pathways.

High salinity in barley has been shown to cause osmotic imbalance due to
excessive influx of Na + ions into the cell which deranges various physiological
conditions in plants (Wu et al. 2013). Time course metabolic profiling of
Arabidopsis thaliana suggests that salt stress induces various metabolic pathways
such as phenylpropanoid pathway for lignin production, methylation cycle, and
glycine-betaine biosynthesis (Kim et al. 2007). Osmotic stress in the shoots of Zea
mays shows the induction of various amino acids such as alanine, asparagine,
glutamate, and glycine-betaine in response to high salinity (Gavaghan et al. 2011).
Polyamines, salicylic acid, glycine-betaine, and brassinosteroids improve drought
tolerance in Oryza sativa L (Farooq et al. 2010). Several mechanisms exist by which
plants overcome stresses, for instance, accumulation of osmoprotectants such as
glycerol, proline synthesis, production of quaternary compounds such as glycine-
betaine and dimethylsulfoniopropionate (Rontein et al. 2002; Sharma et al. 2019).
The Waterlogging of soil is another challenging abiotic stress that halts the crop’s
metabolic pathway and affects crop yield. It creates a hypoxic condition for roots and
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inhibits photosynthesis in shoots (Wei et al. 2013). Against this, plants activate a
varied array of metabolic pathways to promote adaptation to the stress by altering
cellular functions. Biochemical pathways such as antioxidation upsurges when the
plant is under stress to provide tolerance against a chilling environment (Zhang et al.
2016). It has also been found that phytohormones such as abscisic acid (ABA)
impart drought tolerance to plants (Yamaguchi-Shinozaki and Shinozaki 2006).
Metabolomics study in Cyamopsis tetragonoloba (L.) Taub showed an upsurge of
carbohydrates under metal-induced stress of Zn and Cu (Manivasagaperumal 2011).
It was reported by (Kim et al. 2017) that a drought-responsive pathway is activated
during drought conditions wherein the metabolic pathway of glycolysis is converted
to acetate synthesis to stimulate the jasmonate signaling pathway to impart drought
tolerance. Also, wild species of barley have been screened through metabolomics
and proteomics approaches for tolerance against salt by (Shen et al. 2016). Hence,
metabolomics is one of the most promising approaches for the detection and
quantification of stress response in plants which in turn can help in better under-
standing plant physiology.

11.3.2 Metabolomics for Yield and Quality Improvement

Research is solemnly interested in selecting desirable phenotypes and genotypes
from a large crop population. Initial screening processes were based on phenotypic
appearances of the plant which was time-consuming. Furtherance in crop improve-
ment came with the emergence of marker-assisted selection and screening of crops
that shortened the time course of previous methods. Recent advancement in breeding
has brought about the concept of Genome-wide association studies (GWASs)
assisted by metabolomics techniques (mGWAS) and metabolic quantitative trait
loci (mQTLs) (Fernie and Schauer 2009). Metabolomics has the potential to expe-
dite the selection and improvement of superior traits and breeding materials.
Researchers are utilizing an effective combination of metabolomics with other
omics technologies to pinpoint the functional candidate genes and metabolites by
offering trait-specific markers to enhance the yield and growth of commercially
important traits of crops. Interestingly, it has been found that the nutritional status of
a crop depends on the metabolic composition of the plant which directly affects
human health. Identification of metabolomics markers can be an efficient tool for the
discovery of agronomic traits, for the detection of genetic variations linked to
metabolic traits, and for the investigation of biochemical pathways responsible for
various phenotypes.

(Chen et al. 2014) has analyzed about 840 metabolites in 524 rice cultivars and
pinpointed the potential of these metabolites in crop breeding for rice improvement.
(Rao et al. 2014) has generated a metabolic map by amalgamating transcriptomics,
metabolomics, and proteomic data for enhanced kernel quality and yield in maize. In
the study, compounds such as inositol, sorbitol, and hexaphosphate were reported in
high quantities that could be utilized for improved kernel quality and yield in the
future. Metabolomic techniques are applicable for studying mechanisms associated
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with enhanced photosynthesis and yield leading to biomass accumulation in many
agricultural important plants (Hu et al. 2014). Increased levels of oxylipins that are
responsible for rhizobial node factor in Medicago and that this pathway regulates
nod factor signaling during early states of legume-rhizobia symbiosis in a plant
(Zhang et al. 2012). Metabolomic analysis of 1181 metabolites in Sorghum bicolor
leaf tissue showed that shikimate might be associated with enhanced plant growth
and final biomass accumulation (Turner et al. 2016). A study by (Cañas et al. 2017)
identifies the role of chlorogenate content for high grain to yield quality of maize by
combining biochemical, fluxomic, and metabolic approaches. Hence, metabolomics
has been acknowledged as one of the breakthroughs in plant sciences, which pave
the way for better crop growth, improvement, and enhanced yield.

11.4 Application of Multi-Omics in Crop Improvement

The “omics” technologies, namely, genomics, transcriptomics, proteomics, and
metabolomics are pillars of modern molecular biology and biotechnology. Geno-
mics can further be divided into structural and functional genomics. Structural
genomics deals with initial genome analysis leading to the deduction of the complete
genome sequence of an organism, while functional genomics utilizes this sequence
information to assess the functions of various genes on a large scale (Leister 2005).
Transcriptomics, proteomics, and metabolomics together contribute to the functional
study of the genome. The advent of platforms like next-generation sequencing and
integrated mass spectroscopy and chromatography have led to the production of
voluminous high-throughput data (Fondi and Liò 2015). Though the individual—
omics technologies are producing humongous data, a comprehensive understanding
can only be achieved by correlating data of different—omics studies. In other words,
an integrated multi-omics approach is necessary to understand a biological system as
a whole and this can only be accomplished using a meticulously designed and well-
defined scheme as the biological systems in nature are very complex and so are the
omics datasets (Hughes 2015; Wang et al. 2018).

While the multi-omics approach has been extensively used in humans (Cho et al.
2019), animals (García-Sevillano et al. 2014), microbes (Gutleben et al. 2018) and
their combinations (Cavill et al. 2016; Pinu et al. 2019), its application to plants has
been limited due to their complex biology and interactions, diverse metabolomes,
and large genomes with incomplete annotation (in few crops). However, handling
large biological datasets can be overwhelming and requires highly experienced
researchers to obtain accurate results and interpretations. The researcher must be
experienced enough to be able to select the right combination of software from all
the available platforms (Pinu et al. 2019) in a way that ensures efficient and accurate
analysis of large-scale data. Owing to the limitations and drawbacks of earlier
“conceptual,” “statistical,” and “model-based” integration approaches (de Oliveira
Dal’Molin and Nielsen 2018; Seaver et al. 2018), the integration methodology has
been re-defined into three levels, namely “element-based approach,” “pathway-
based approach,” and “mathematical-based approach” (Jamil et al. 2020).
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11.4.1 Element-Based Approach

The unbiased element-based approach is very simple and intuitive and has three
subclasses, namely correlation, clustering, and multivariate analyses. Correlation
analysis allows the assessment of the correlation between two or more different
omics datasets. This analysis can be done using Pearson’s (Benesty et al. 2009) and
Spearman’s (Myers and Sirois 2006) correlation coefficients to assess linear and
ranked relationships, respectively. There have also been reports where Fisher’s
transformation has been applied to skewed datasets to make them normally
distributed and then assess the correlation (Mata et al. 2018). Correlation analysis
has been mostly preferred to assess the correlation between transcripts and their
cognate proteins on an assumption that a change in transcript level would correspond
with an increase in respective protein concentration, but this is not always the case.
For example, an insignificant correlation (r¼ 0.03) was reported between transcripts
and corresponding proteins under salt stress between salt-tolerant Earlistaple 7 and
salt-sensitive Nan Dan Ba Di Da Hua cultivars of cotton irrespective of the genetic
background (Peng et al. 2018).

Clustering analysis groups omics datasets based on a common characteristic such
as expression level or concentration to assess the underlying associations. Clustering
can further be hierarchical or non-hierarchical and the latter integrates data using
machine learning algorithms like k-means clustering and random forest (Silva et al.
2019). The k-means clustering categorizes data points into distinct groups based on
the common attribute (such as differential expression), while random forest sorts a
group of genes/proteins/metabolites based on the previous training datasets
(Ma et al. 2014).

Multivariate analysis is capable of handling more convoluted omics datasets
while permitting significant pliability in experimental design and metadata analysis
(Rai et al. 2017). This approach allows the researcher to predict various facets of the
datasets along with the assessment of variance or covariance associations as well as
to explore the relationships and dynamic conformational networks between
transcript-protein-metabolite components (Weckwerth 2019). The most commonly
used multivariate analysis techniques include principal component analysis (PCA),
partial least squares (PLS), and orthogonal projection to latent structures discrimi-
nant analysis (OPLS-DA). The success of this analysis is dictated by the selection of
different multivariate techniques, optimal parameters, and model validation and this
demands thorough knowledge and expertise. A different form of multivariate analy-
sis technique called MCIA (multiple co-inertia analysis) was used in a maize near-
isogenic line and its transgenic version (glyphosate-tolerant maize, NK603) to
integrate their proteome and metabolome. This study succeeded in identifying
metabolic differences in sugar metabolism and polyamine biosynthesis pathways
between these two lines (Mesnage et al. 2016). Yet another variation of multivariate
analysis called GFLASSO (graph-guided fused least absolute shrinkage and selec-
tion operator) was applied in maize to decode its lipid biosynthesis pathway by
integrating the transcriptome and metabolome (de Abreu e Lima et al. 2018).
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11.4.2 Pathway-Based Approach

This approach can be applied either through pathway mapping or co-expression
analysis. The objective of the former approach is to map the omics dataset to the
available metabolic pathway database. The database Kyoto Encyclopedia of Genes
and Genomes (KEGG; https://www.genome.jp/kegg/) is one of the most commonly
used databases, while other organism-specific databases like AraCyc for Arabidopsis
(https://www.arabidopsis.org/biocyc/), SolCyc for Solanaceae species (https://
solgenomics.net/tools/solcyc/index.pl), and CitrusCyc for citrus (https://www.
citrusgenomedb.org/node/1136703) are also available. However, it is also possible
to manually rebuild biochemical pathways without seeking help from complex
software tools. KEGG is a repository of established pathways that can be rebuilt
specifically for any desired species considering its annotated enzymes and/or
metabolites. KEGG database was used to analyze the transcriptome and metabolome
of soybean infected with fungus Phytophthora sojae (Zhu et al. 2018) and cyst
nematode (Kang et al. 2018) and the studies observed transcriptional and metabolic
modulation towards isoflavonoid and phenylpropanoid biosynthetic pathways,
respectively.

Co-expression analysis greatly depends on statistical correlations between differ-
ent omics datasets as discussed in the element-based approach, to assess the extent of
relatedness between the compounds. Such relationships are later transformed into a
weighted network and can be projected using a few tools including Weighted Gene
Coexpression Network Analysis (WGCNA) in R program or Cytoscape. This
approach has unraveled crucial clusters, modules, and hubs that aid in a better
understanding of specific pathways or regulatory molecules in various plant studies.
A study in maize development employed WGCNA to integrate data from
transcriptomics, proteomics, and phosphoproteomics. An expression atlas was
developed using 23 different maize tissues from vegetative to reproductive stage
and their relatedness was further assessed using weighted networks. This study also
utilized MapMan functional annotation to decode enriched pathways for their highly
connected co-expressed hubs (Walley et al. 2016). The same dataset was further
analyzed by Jiang et al. 2019, where a consensus network assisted by corroborations
from multiple omics studies was generated by amalgamating different weighted
networks from respective omics into a fused network. This exercise further
highlighted the constitutive role of various transcription factors in the molecular
regulation of maize development.

11.4.3 Mathematical-Based Approach

The mathematical-based approach further has two subclasses, namely differential
analysis, and genome-scale analysis. This is the most complex approach of all and
demands substantial omics data coverage and well-characterized plants. This analy-
sis starts with the development of a well-defined differential equation and modeling
for systems-level understanding. Differential analysis can be carried out in four
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steps: identification of systems components, determination of systems regulation and
topology, development of appropriate mathematical equations, and finally, parame-
ter selection and optimization (Voit 2017). Differential analysis can further be
classified into targeted and non-targeted pathway approaches. Differential analysis
by the targeted pathway approach can be employed to model a specific pathway for
its metabolic flux and dynamics. The success of integration using a targeted
approach is decided by the extent or completeness of annotation of a metabolic
pathway in the case of both model and non-model plant species. However, differen-
tial analysis studies aid in further omics integration using genome-scale analysis
(Cavill et al. 2016).

Differential analysis is a top-down approach where a stoichiometric equation is
developed with a specific objective like quantification of translation rate or meta-
bolic flux and the model is built based on the experimental results (Voit 2017). On
the contrary, genome-scale analysis is a bottom-up approach as the model is built
after exhaustive curation before validation (Goh 2018). This approach targets the
deduction of a metabolic pathway at the organism and cellular level to an extent that
every reaction can be considered for a comprehensive mathematical evaluation
(de Oliveira Dal’Molin and Nielsen 2018). This analysis can be completed in four
major steps: draft reconstruction using annotated genome, pathway refinement using
experimental results, network modeling in mathematical format, and validation and
iteration for model accuracy (Thiele and Palsson 2010). A genome-scale modeling
(GSM) database called PlantSEED is a repository of 10 well-annotated plant
genomes (Seaver et al. 2018) and this information can be used to annotate metabolic
pathways in new plants. However, this database can be used for genome-scale
reconstruction of primary metabolism, while the rebuilding of secondary metabolism
requires manual curation owing to species specificity and diversity (Pinu et al. 2019).
Since the plants need genome-wide metabolic reactions are mostly based on C3

plants such as Arabidopsis, a C4 GSM was developed to integrate omics data of C4

plants (de Oliveira Dal’Molin et al. 2016). GSM was also been employed in soybean
(Glycine max) using tools such as Plant/Eukaryotic and Microbial Metabolomics
Systems Resource (PMR, http://metnetweb.gdcb.iastate.edu/PMR/) and MetNetDB
(https://omictools.com/metnetdb-tool) to integrate transcriptomics and
metabolomics data sets to operationalize seed filling metabolic model including
starch utilization and fatty acid build-up (Li et al. 2015). GSM was developed in
rapeseed (Brassica napus) using flux variability analysis (FVA) and it was also
metabolically reconstructed through its Bna572+ database. Transcriptomics and 13C
metabolic flux experiments were used to construct and validate the model and higher
flux for fatty acid biosynthesis was observed in high oil plant genotype (Hay et al.
2014). Similarly in maize, GSM was updated and validated through transcriptomics
and biochemical assays for its leaf development (Bogart and Myers 2016).
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11.5 Metabolic Engineering and Applications

Metabolic engineering can be defined as the intentional modification of cellular
metabolism and assets through the manipulation of metabolic pathways to produce
desired compounds by using recombinant DNA technology, RNA, gene editing, and
other upcoming modern technologies (Fu et al. 2018). Plants themselves in their
native form constitute a remarkable feat of metabolic engineering and is composed
of over more than 200,000 metabolites (Fiehn 2002). The characterization of all
these molecules has been very crucial to study for plant growth and development
along with their response to external stimuli. Metabolomics is very crucial to
studying biotic resistance, abiotic tolerance, vigorous ecotype, and metabolomics-
assisted crop breeding (Razzaq et al. 2019). Over the last two decades, great research
strides have been made in plant metabolic engineering. A great deal comes together
with modern metabolic engineering and conventional breeding are exploited to
explain complex biological pathways and explore secretly hidden regulatory dis-
cover novel regulatory networks and pathways controlling crop growth, develop-
ment, productivity and enhance the fitness of plants (Dangl et al. 2013). Here we are
providing insight into recent metabolomics studies and application on biotic, abiotic
stress tolerance, and recent progress on GM crops (Table 11.1 and 11.2).

11.6 Biofortification

The nutrients required by a human body for proper growth and development can be
classified into two categories; macronutrients and micronutrients. Macronutrients, as
the name suggests are required in larger amounts as they are a major energy source
for the human body, while the micronutrients are often misunderstood by their name.
Though required in smaller or trace quantities, micronutrients are vital for proper
metabolism, growth, and development. Essential micronutrients include all vitamins
(A, B complex, C, D, E, and K) and minerals (Fe, Cu, Zn, Mn, I, Se, Co, Mo, and
Ni). Food is the major source of these nutrients but the global staple food crops fail to
satisfy the micronutrient requirement due to low concentration (Waters and Grusak
2008), while the natural micronutrient-rich foods are either unavailable or not
affordable. This leads to micronutrient deficiency in humans called “hidden hunger”
and affects every third person globally (FAO 2013) causing harmful and sometimes
lethal consequences (Tulchinsky 2010; Bailey et al. 2015).

The key objective of most of the crop improvement programs has been to increase
yield and to impart resistance/tolerance against biotic/abiotic stresses. The current
global malnutrition scenario has brought about changes in the breeders’ perspective
to produce nutrient-rich food crops sustainably than just producing more food. This
process of producing nutritionally enhanced food crops developed using agronomic
practices, conventional breeding, and biotechnology tools are called
“Biofortification.” This approach can efficiently be used to win the battle against
micronutrient malnutrition in a world where the staple food crops are
micronutrient-poor (Khush et al. 2012). From an economic perspective,
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biofortification is a single-time investment, and thus is a lucrative, durable, and
unceasing approach to tackle hidden hunger by cutting expenses on costly external
nutrient supplements and inputs (Meenakshi et al. 2010; Hefferon 2016).
Biofortification of crops can be achieved through three strategies, namely, agro-
nomic, conventional breeding, and biotechnology/transgenics.

11.6.1 Agronomic Approach

The agronomic approach involves the application of mineral fertilizers (containing
essential minerals) to soil or foliage and inoculation of beneficial microbes in soil.
The success of fortifying crops using mineral fertilizers is dictated by solubility and
mobility (in soil) and phytoavailability of the concerned minerals (White and
Broadley 2009). However, factors like environmental pollution, soil composition,
varying mineral mobility, presence of anti-nutrient compounds, and antagonistic
effect on other minerals are significant hindrances in this approach (Frossard et al.
2000; White and Broadley 2009). Alternatively, foliar application of mineral
fertilizers is resorted to when the mineral elements are not easily available through
soil or cannot easily perfuse to edible plant parts (White and Broadley 2009). For
certain minerals, a foliar application has been more effective than soil application
(Shivay et al. 2015). On the other hand, plant rhizosphere symbiotic microbes like
rhizobia, mycorrhizal fungi, actinomycetes, and diazotrophic bacteria contribute to
plant growth and development by aiding in mineralization and availability of
nutrients and also by producing various plant growth hormones (FAO 2019). In
spite of their natural presence in soil, these beneficial microorganisms are often used
as seed inoculants to produce growth hormones, plant protection substances and for
nutrient mineralization (Mahaffee and Kloepper 1994). Owing to the natural pres-
ence and beneficial nature of these microbes, this approach is innocuous both to the
plant and soil and thus the safest agronomic strategy for the fortification of crops.
The agronomic approach of biofortification has been tested and proved to be
effective in cereals (rice, wheat, maize, and barley), millets (sorghum), legumes
(soybean, chickpea, peas, and common bean), and oilseeds (canola and mustard)
(Garg et al. 2018).

11.6.2 Conventional and Molecular Breeding Approach

Biofortification through conventional breeding is another cost-efficient and sustain-
able approach that has been used to address the deficiency of micronutrients like
carotenoids, Fe, and Zn (White and Broadley 2005). Products achieved through this
approach are a one-time investment, thus can be cultivated by farmers throughout the
year at a comparatively lower production cost and also fetch a better price. The
presence of significant genetic diversity in the gene pool is a vital pre-requisite for
this approach (White and Broadley 2009). Screening of a wide range of germplasm
yields competent genotypes that can be used in crossing programs, genetic studies
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and to map genetic loci that can be used in marker-assisted breeding. Outperformers
can be shortlisted for multi-location trials over seasons to assess the environmental
effect on the trait and after thorough testing can be released for cultivation by farmers
(Bouis and Saltzman 2017). Many products have been delivered by this approach by
exploiting genetic diversity present in the primary secondary and tertiary gene pools
of major staple food crops and are being commercially cultivated by farmers
worldwide (Table 11.3). The accessibility and easy exchange of international germ-
plasm of most agriculture crops have fetched significantly to product achievement
(Nestel et al. 2006; Bouis et al. 2011). However, conventional breeding approaches
fail when diversity for the desired trait is not naturally found in the gene pool or
when the desired nutrient does not exist naturally in the concerned crop species.

11.6.3 Genetic Engineering and Gene-Editing Approach

Biofortification through genetic engineering/transgenic approach is often resorted to
when the desired outcome cannot be achieved using conventional breeding (Pérez-
Massot et al. 2013). The availability and accessibility to whole-genome sequences of
crops have contributed significantly to this approach. This approach enables the
fortification of crops not only in terms of enhanced nutrient status but also can be
used to eliminate or suppress anti-nutritional factors in some crops (Garg et al.
2018). The transgenic approach for biofortification has exploited genes from across
genera and also across kingdoms (Newell-McGloughlin 2008). To add to the success
of this approach, a recent discovery of site-specific gene-editing tools like zinc finger
nucleases (ZFNs), transcription-activator like effector nucleases (TALENs), clus-
tered regularly interspaced short palindromic repeat (CRISPR) – CRISPR associated
protein 9 (CRISPR-Cas9) have enabled precise modification of desired gene
(s) (Jaganathan et al. 2018). Though voluminous research has been done, this
approach is commercially under-utilized as only a few products are being commer-
cially cultivated (Table 11.3) and most of them remain in the pipeline due to political
and societal non-acceptance in many countries (Watanabe et al. 2005).

11.7 Conclusion and Future Prospects

Metabolomics has successfully carved its path into agricultural sciences by
contributing significantly to research towards understanding responses to various
stresses, pivotal metabolic pathways, deciphering gene functions, improving crop
quality, and a better understanding of the genotype-metabolome-phenotype relation-
ship. The gradual advent of new and high-throughput metabolomics tools has
enabled more efficient metabolome profiling in plants that have a complex
metabolome. The pace of development in this field has brought about a major shift
in the approach from analysis of a single metabolite to generating footprints of
multiple metabolites in a single assay. It has also allowed the researchers to precisely
target a specific metabolite through metabolic engineering. The metabolomics tools
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have yielded many mQTLs and metabolite markers that have been utilized in
breeding programs. A significant amount of credit for this success goes to the
cost-effective NGS techniques that contribute largely to understanding the
metabolomes. Further, the integration of metabolomics with other omics tools has
added to the pace of progress by providing a holistic understanding of plants as a
living system.

In spite of all these developments, there is still a lot of scope for exploiting more
areas of metabolomics. Identification and development of more and more metabolite
markers and mQTLs would aid in the success of metabolomics-assisted breeding
with a perspective of imparting tolerance to stresses, improving yields, and crop
quality. In the future, new technologies like CRISPR – Cas9 can also be utilized for
metabolite profiling of genome-edited plants or to edit the genes involved in
metabolic pathways. The application of metabolomics to agriculture has more
scope of extension and expansion in the future to address challenges posed to
agriculture.
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Abstract

The recent advances in “omics” technologies have impacted biological science
research in many ways. This includes the realm diversity studies, physiological,
biochemical, and molecular level researches to the development of breakthrough
products and approaches. They are strengthening our attempts to fight with
emerging diseases, global food crisis, environmental degradation, production of
quality value-added products values, and in better understanding of the underly-
ing mechanism(s) of host–pathogen interactions and stress (both biotic and
abiotic) tolerance in plants and microbes. However, many of these techniques
are still under refinement and resulting data need careful integration for attending
meaningful conclusions. Although not a big concern, but we must be attentive to
some of the biosafety measures and ethical concerns associated with these
techniques, which we have tried to discuss in this chapter.
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12.1 Introduction: The Omics and Emergence of Omics
Technologies

The suffix “omics” is derived from Latin Suffix “ome” meaning mass or many and
“omics” in biological sciences loosely implies a comprehensive, or global, assess-
ment of a set of molecules (http://omics.org/). Table 12.1 summarizes various
“omics” approaches and related sub-fields for each case. Genomics was the first
member of the “omics” family. Subsequent technological advances have led to the
rapid diversification of the “omics” field, which has grown both in type as well as in
quality and application of data. The variety of data generated by multiple “omics”
approaches (multi-omics) had led to the establishment of an inter-disciplinary field
study known as Systems Biology (Breitling 2010) that creates holistic understanding
of biological organization and its function.

Rapid advancements in genomics are based on techniques such as next-
generation sequencing (NGS), also known as high-throughput sequencing (Mardis

Table 12.1 Types and subtypes of omics

Omics type Study of sub-fields

Genomics Structure and function of organism’s DNA sequence,
including coding and non-coding part of gene and
regulatory regions. Also include evolution, mapping,
and editing of genomes

Structural genomics
Functional genomics
Comparative
genomics
Mutation genomics

Transcriptomics Complete set of RNA transcripts that are produced
by the genome, snapshot of expression of genes in a
biological system at a specific point in time

Proteomics All the proteins produced or modified in biological
system at a specific point in time

Protein mining
Expression profiling
Functional
proteomics
Structural
proteomics
Protein networks
Post translational
modifications

Metabolomics Systematic identification and quantification of the
metabolic products of a biological system at a
specific point in time

Exometabolomics
Metabonomics

Epigenomics Complete set of epigenetic modifications on the
genetic material of a biological system at a specific
point in time

DNA modifications
Histone
modifications

Ionomics Quantitative measurement of the total elemental
composition (metals, metalloids, non-metals, etc.) in
a living organism, and subsequent changes in their
production under varied external stimuli using
techniques such as Inductively Coupled Plasma-
Mass Spectrometry (ICP-MS) and ICP-Atomic
Emission Spectrometry (ICP-AES) (Salt et al. 2008)

Physiology and
molecular
mechanisms
Ecological functions
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2008). This encompasses various sequencing technologies allowing rapid and cost-
effective sequencing of DNA and RNA over the previous techniques (e.g., Sanger
sequencing). The NGS technologies include Illumina sequencing, Pyrosequencing,
and Ion torrent Sequencing. The analyses of NGS data by bioinformatics tools allow
discovering new genes and regulatory sequences. The RNA-Seq (abbreviation of
RNA sequencing) (Wang et al. 2009) is another technique with multiple applications
such as in gene expression profiling, spliced variants of transcripts, post-translational
modifications, SNPs, and quantity of RNA.

Proteomics is a relatively new approach to that of the genomics, but historically
protein sequencing is older than the DNA sequencing. These sequencing
technologies are comparatively slow, labor intensive and require a lot of starting
material. During the last 50 years, mass spectroscopy was the choice for proteome
analysis, but had its own limitations and challenges. Subsequently, the proteome
analysis was greatly supported by the development of MALDI (Matrix-assisted laser
desorption/ionization), which made mass spectrometry suitable for high-throughput
proteomic studies. The recent development in the field of proteomics analysis is
represented by SWATH MS based proteomics, which is a data independent acquisi-
tion (DIA) method, complementing traditional mass spectrometry-based proteomics
techniques. This allows a complete recording of all detectable peptides present in a
biological sample (Ludwig et al. 2018).

The study of complete set of epigenetic modifications called epigenomics is
largely based on the genomic and proteomic tools (Wang and Chang 2018). Other
epigenomic tools are - Chromatin immuno-precipitation (ChIP), ChIP sequencing
(ChIP-seq), DNase-seq, fluorescent in situ hybridization (FISH), chromosome con-
formation capture (3C), chromatin interaction analysis by paired-end tag sequencing
(ChIA-PET) and single cell RNASequencing (scRNA-seq), etc. (McKeown and
Spillane 2014; Sati and Cavalli 2017).

Metabolomics is for comprehensive analysis of metabolites in a biological speci-
men, is a technology of an enormous economic value. Traditional analysis of
metabolites depended on the chromatographic and spectrometry techniques. The
current high-throughput technologies associated with metabolomics include liquid
chromatography–mass spectrometry (LC-MS), UPLC-MS, and GC-MS (Nassar
et al. 2017; Beale et al. 2018; Pinu et al. 2019). These techniques can measure
tens to hundreds of metabolites with excellent precision. Besides quantifying the
amount of a compound in a sample, these technologies have the capacity of
identifying unknown molecules and determining the structure of molecules.

The rapid development in the field of omics could not be possible without the
incredible advancement in the computational capability that included both storage,
processing and phenomenal growth in bioinformatics. Large-scale data acquisition,
storage, integration, and analysis have been made possible by these developments.
Although the enhanced availability and accessibility of large-scale omics datasets
have revolutionized our understanding of biological systems and processes, but it
has also generated newer opportunities and challenges for biologists to ponder upon.
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12.2 Uses and Achievements of Plant Omics

Like any other system in biological sciences the Omics approach has enhanced our
understanding of plant systems, even in non-model species (Zhang et al. 2018). The
resulting advancements in these technologies have created new datasets for plant
species, which would be helpful in supporting food, health, energy securities, while
preserving and remediating the environment on the other hand. Hittalmani et al.
(2017) suggested for the use of Omics in enhancing the nutritional values of food.
Besides, these technologies could assist in learning more about the genetic and
biochemical pathways to be used for production of beneficial metabolites (Deborde
et al. 2017). Genetic analysis of stilbenoid profiles in grapevine stems revealed a
major mQTL hotspot on chromosome 18 associated with disease-resistance motifs
(Teh et al. 2019). Integration of omics data may contribute to the identification of
genes and pathways responsible for important agronomic phenotypes (Zhu et al.
2018) and disease resistance (Bhadauria 2016). Omics technologies could also be
harnessed for novel insight into the origin of well-known domesticate plants as well
as potential targets for further improvement of crops by pin pointing underutilized
genetic traits in highly domesticated plants (Giovannoni 2018). Application of high-
throughput genotyping technologies to large germplasm collections may contribute
immensely in identification of novel alleles from diverse sources for effective use to
breeding purposes (Dwivedi et al. 2017). Furthermore, omics technologies may be
applied for identifying abiotic stress tolerance, genetic loci characterization, mecha-
nism elucidation in varieties, landraces, and wild relatives of crops for genetic
modification (GM) of current, high yielding elite cultivars (Rabara et al. 2014;
Chaudhary et al. 2019).

Applications of omics may facilitate the analysis of non-model organisms and
rapidly generate a large amount of novel data. This makes them an attractive option
for studying poorly characterized interactions (Windram et al. 2014) such as various
host–pest and host–pathogen interactions (Barah and Bones 2015; Mishra et al.
2019). Single nucleotide polymorphisms (SNPs) markers were used in 341 tropical
maize lines to test the genetic basis of resistance of maize against the multiple insect
pests. Similarly, a multi-locus genome-wide association study (GWAS) revealed that
multiple quantitative trait nucleotides (QTNs) are responsible for the resistance.
Such studies may contribute to the development of combined insect resistance in
maize (Badji et al. 2020 and references therein).

The whole genome analysis of endophytic microbes could provide a greater
understanding of their ecology and evolution, identifying the factors influencing
their growth and survival and other related metabolic mechanisms (Kaul et al. 2016).
An understanding of the impacts of beneficial microbes and the associated mecha-
nism on crop plants is much required to enhance food production. Likewise, the
therapeutic potential of plants is well known, but initially there was an apparent lack
of interest from pharmaceutical industry due to a lengthy and tedious process of
discovering, isolating, and characterizing the lead molecules/products. But, since
early 2000, use of techniques such as LC-MS, ultra-high-performance liquid chro-
matography (UHPLC), NMR, and associated bioinformatics has fueled up the
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discovery of such molecules and products. Apart from metabolic profiling, genome
data may also be used to evaluate the biosynthetic potential of any organism. The
combined use of genomic and metabolomic methods has led to the identification of
natural products from cyanobacteria to angiosperms (e.g., Arabidopsis thaliana,
Oryza sativa, and Catharanthus roseus) (Wolfender et al. 2019).

A Search of “Plant AND Omics” in PubMed® for the last 1 year (2019 – 2020,
i.e., up to the writing of this chapter) revealed that majority of publications in the
field are following the same pattern as discussed above. Few important
developments in the field of database, web resource, and other bioinformatic tools
are listed in Table 12.2. A search of literature database also suggested that most of
the researches in the field of plant omics are directed towards understanding the
metabolic pathways, elucidation of the effect of various stresses (both biotic and
abiotic), nutritional state and hormonal signaling on plant proteome and
metabolome, and transcriptional control mechanisms (refer Table 12.3). Other
major applications of omics included analysis of food microbial ecology (Xie et al.
2019), understanding of evolutionary metabolic divergence (Xu et al. 2019; Levsh
et al. 2019), accessing the effect and mode of temperature dependent virulence and
pathogenicity (Félix et al. 2019), bioprospecting of plants for medicinal use
(Gonulalan et al. 2020), and understanding the role of non-coding RNA in fruit
ripening (Wang et al. 2020b).

12.3 Challenges and Issues

The “Arabidopsis Research and Training for the 21st Century” (ART-21) funded by
the National Science Foundation (NSF), USA, conducted a series of workshops to
explore the areas/issues that are important for research and training in plant biology.
The outcome presented in the form of a white paper (Argueso et al. 2019) suggested
the directions for research and training in plant omics also. The white paper lays out
certain “Big question” that could coalesce future research in plant biology. Such as (a)
understanding the mechanism of receptor and ligand interactions and their role in
regulating plant transcriptome activity, (b) use of omics to understand the programmed
development in plant system and (c) finding out the underlying cause of variation
within the plant species. The white paper should be adopted as trendsetter for future
plant omics research. Although the knowledge and insights gained from omics studies
have facilitated many discoveries and conceptual advancements in plant biology,
however, just like any other technology this field also offers some challenges too. A
few of them need immediate attention such as reproducibility of omics data acquisi-
tion, data analysis and to define the best practices (Buesen et al. 2017).

12.3.1 Challenges in Data Integration

The appropriate integration of datasets obtained from high-throughput omics
research is the first and major problem associated with these technologies

12 Safety and Ethics in Omics Biology 285



Table 12.2 Recently developed plant “omics” web resources, databases, frameworks, and other
tools

Name Web address References

TPIA (tea plant information archive) http://tpia.teaplant.org/ Xia et al.
(2019)

Knowledge Base commons
(KBCommons) v1.1
(multi-level OMICS web resource for
data retrieval, sharing, analysis and
visualization)

http://kbcommons.org/ Zeng et al.
(2019)

Plant Regulomics
(Interface for retrieving upstream
regulators from plant multi-omics data)

http://bioinfo.sibs.ac.cn/plant-
regulomics

Ran et al.
(2020)

AppleMDO (A multi-dimensional
Omics database for apple
co-expression networks and chromatin
states)

http://bioinformatics.cau.edu.cn/
AppleMDO/

Da et al.
(2019)

Plant Reactome (knowledgebase and
resource for comparative pathway
analysis)

https://plantreactome.gramene.org Naithani
et al.
(2020)

JCDB: (knowledge base for Jatropha
curcas)

http://jcdb.xtbg.ac.cn. Zhang
et al.
(2019a)

QTL.gCIMapping.GUI v2.0 (software
packages to identify all kinds of omics
QTLs.)

https://cran.r-project.org/web/
packages/ or https://bigd.big.ac.cn/
biocode/tools/7078/releases/27

Zhang
et al.
(2019c)

MaGenDB (A functional genomics hub
for Malvaceae plants)

http://magen.whu.edu.cn Wang et al.
(2020c)

MBKbase-rice
(Rice sub-database of an integrated
omics knowledgebase)

www.mbkbase.org/rice Peng et al.
(2020)

MAPPS (metabolic network analysis
and pathway prediction server)

https://mapps.lums.edu.pk Riaz et al.
(2020)

GOMCL (lightweight python toolkit,
identifies clusters within a list of GO
terms using the Markov clustering
(MCL) algorithm, based on the overlap
of gene members between GO terms

https://github.com/Guannan-Wang/
GOMCL and www.lsugenomics.org.

Wang et al.
(2020a)

ZEAMAP (comprehensive database
adapted to the maize multi-Omics era

http://www.zeamap.com/ Gui et al.
(2020)

RGPDB (database of root-associated
genes and promoters in maize,
soybean, and sorghum)

https://crri.unl.edu/databases and
http://sysbio.unl.edu/RGPDB.

Moisseyev
et al.
(2020)

LeGOO (knowledge database for the
model legume Medicago truncatula)

https://www.legoo.org Carrï Re
et al.
(2020)
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Table 12.3 Representative recent achievements in the field of plant “omics”

Achievements References

Assembly of a draft genome of Polygonum cuspidatum (Japanese
knotweed) producer of Stilbenes and quinones using Illumina sequencing
technology

Zhang et al.
(2019b)

Assembled and annotated draft genome of Pleurozium schreberi: A
Pleurocarpous feather Moss

Pederson et al.
(2019)

eQTL analyses of genes affecting cadmium content in cultivated rice Lee et al. (2019)

Study of regulatory mechanism of secondary metabolites production
during the flowering stages of Lonicera japonica Thunb., a native of East
Asia

Yang et al. (2019)

Host-targeted transcriptomics detected the taxonomic and functional
diversity of root microbiota in tomato (Solanum lycopersicum) growing on
different native soils

Chialva et al.
(2019)

DNA methylation associates with the expression of the epialleles
AT2G34100, AT4G09360, LSU4, and AT5G56910 regulate the resistance
of Arabidopsis thaliana to local pests and diseases, and help in the
adaptation to local environments

Mei et al. (2020)

Phosphoproteomic analysis of plant DNA damage signaling pathways
finds a functional role of histone H2AX phosphorylation in plant growth
under genotoxic stress

Waterworth et al.
(2019)

Hexaploid monocot wheat responds to beneficial or pathogenic
microorganisms and prolongs the onset of take-all disease through
modulation of cell reprogramming and signaling events

Kang et al. (2019)

Sugar cane treated with GA3, a growth hormone revealed total 1516
differentially expressing transcripts in bottom internodes and 1589 in top
internodes. KEGG (enrichment) analysis grouped theses transcripts into
153 plant-related functional categories. Starch and sucrose metabolizing
genes showed maximum fold change of 5.0 and 3.0 among top and bottom
internodal samples

Chandra et al.
(2019)

Label-free quantitative proteomics and metabolomics data (GC-TOF-MS),
using a network-based approach, tested leaf from two contrasting
commercial varieties of sugarcane, CTC15 (tolerant) and SP90–3414
(susceptible), to observe changes metabolism in response to drought

Budzinski et al.
(2019)

The metabolome and transcriptome of 11 tea cultivars were profiled and
then illustrated by a weighted gene co-expression network analysis
(WGCNA) to interpret metabolomic flux, prediction of gene functions, and
mine key regulators involved in the flavonoid biosynthesis pathway

Zheng et al. (2019)

A tandem mass tag (TMT)-labeled mass spectrometry-based quantitative
proteomic analysis of Capsicum frutescens leaves and apical meristems in
healthy and broad mite infcted condition demonstrated differential
regulation of 1677 proteins

Patavardhan et al.
(2020)

Plant derived smoke promotes soybean growth. The proteomic and
metabolomic analysis revealed importance of arginine metabolism and
ubiquitin proteasome pathway

Zhong et al. (2020)

Cause of post-harvest disorders in blackberries was illustrated by using
metabolomics

Kim et al. (2019)

Deciphering of sub-cellular plant metabolism (chloroplast, cytosol,
vacuole, and mitochondria) in A. thaliana

Fürtauer et al.
(2019)
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(Fukushima et al. 2009; Tardieu et al. 2017). Development of various omics domains
has created a layered architecture in omics research. A single-omic technique is one
layer, which captures data for a small subset of the components of any particular
pathway. Evolution of the layered system has created a necessity for integrating
different omics layers in order to have proper meaningfulness and seamless use of
data. Since omics layers are inherently variable, distinguishing the signal from the
noise in datasets requires reproducible results as well as advanced statistical/
machine-learning approaches for analyses (Yuan et al. 2017).

The data integration problem can further be appreciated from the fact that changes
in the transcriptome or proteome do not always reciprocated to the results obtained
from metabolomic findings (Ryan and Robards 2006). The interlinked nature of
physiological processes (Kohl et al. 2010), feedback regulations, epistatic and
hypostatic nature of gene interactions, epigenetic processes modulating gene expres-
sion are some of the other sources of “uncertainty” operating at different levels of
plant organization. This creates a blur to the predictability from single and lower
level results (do Amaral and Souza 2017). In many cases, expression of nuclear
genes can be altered without altering the total concentration of the signaling mole-
cule in the cell as a whole (Tuteja and Mahajan 2007).

Apart from the above-mentioned concerns integration across the time is another
challenge known as the fourth dimension. During the integration of resulting data, it
is not necessary that the sampled system be/was in a steady state at a given moment,
as each physiological process is a dynamic metabolic network (Toubiana et al.
2013). Use of data from such system and its/their integration based on static
networks mathematical models that often bypass the network modulation over
time is likely to be error prone. Thus, it is necessary to develop new methods to
allow investigations of dynamic aspects of large-scale models (Medeiros et al.
2015).

12.3.2 Challenges and Issues with Individual Techniques

Our ability to characterize proteomes in a comprehensive and quantitative manner
lags far behind to that of the genome and transcriptome. The principle bottleneck is
isolation and low quantity of samples and lack of proper enrichment methods prior to
the analysis. The proteome analysis further gets compromised due to the complexity
created by post-translational modifications (PTM), including less understanding of
the types and their spatio-temporal differences in expression and change in protein
mass due to modifications. Developing robust methods to monitor the protein
function at the sub-cellular level would provide important additional information
particularly for building networks of activities (Alvarez and Naldrett 2016; Argueso
et al. 2019).

Due to the uniqueness in the number and diversity of metabolites produced by
plants, metabolomics is an exciting frontier in plant omics. Metabolites are not only
the products useful for their commercial values, but also serve as regulatory
molecules during metabolism and physiology. Functional characterization of even
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a single metabolite is a time-consuming task, undertaking this task at omics level
makes it further difficult. This difficulty is not only due to the number of molecules
but in many cases also because of lack of information concerning their regulation by
signaling system, spatio-temporal distribution, and impact of various biotic and
abiotic factors; all impacting the quantity and quality of sample to be analyzed
(do Amaral and Souza 2017; Argueso et al. 2019).

The building blocks of metabolites are diverse, hence causing further complica-
tion in the metabolome analysis (a disadvantage). The identification and quantifica-
tion of a given metabolite require a matching standard molecule with same
chromatographic profile and mass spectrum. If a metabolite is novel or modified
by a novel mechanism, standards for its identification and characterization are
commercially unavailable. This requires custom syntheses, which is a major finan-
cial hurdle. To overcome/bypass this, metabolites are often matched with “finger-
print” obtained through LC-MS. The approach may computationally identify “test”
metabolites, but lack explicit identification of their chemical/molecular structure,
which can be elucidated by NMR. However, the low sensitivity and low throughput
of NMR preclude its application in large-scale investigations (Argueso et al. 2019).

12.4 Ethics in Omics

The majority of new ideas often met with controversy and omics technologies and
their applications are no exception. Though, they are simply a tool to understand the
biological system at the molecular level, but ultimately this omics-generated knowl-
edge has to be integrated into the broader understanding about the plants and their
different level of assemblages. For too many people (super-skeptics) any advance-
ment in science is alarming (no matter how much unfounded it may appear to a
scientific mind), with the potential to do great harm to people and societies. They
argue for and are much concerned about the wise and just use of new discoveries
(including technologies). For such willful super-skeptics/denialists (make no confu-
sion they are good in number fairly distributed in both vertical and horizontal layers
of the societies) any form of science is a threat, and opposition of technology is
merely part of a broader philosophy that science is bad. However, for majority
people concerns are based on well-reasoned arguments, therefore, these views are
important.

Ethics is a branch of philosophy dealing with values related to human conduct
with respect to the rightness and wrongness of actions, the goodness and badness of
motives and ends, and the moral principles of an individual (Reynnells 2004). The
term bioethics used first in relation to ethical issues including policy and practice
emerging from advances in biology and medicine. Different theories, principles, and
approaches applied as a measure to bioethics are given in Table 12.4. For a
researcher, aside major ethical concerns related to the use of organisms and the
resulting socio-ecological impacts, other ethical issues such as adherence to the good
research practice; a sense of social responsibility, observance of all regulatory
frameworks, integrity, honesty, respect, fairness, etc., also deserve due to attention.
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For one and all sections of society (both, general public and scientists), one major
concern against the omics research is that the data obtained from the wide use of
these technologies may be used to alter naturalness of the environment and the
system studied (say, for example, plants). In general, be naturalists, environmental-
ist, and policy makers (hopefully so) their ethical considerations revolve largely
around the impact of these technologies on biodiversity and ownership of resources.

Out of the three subdivisions of bioethics, i.e., medical, animal, and environmen-
tal ethics, the third one (i.e., environmental ethics) deals with moral dimension of
relationship between human beings and non-human nature (i.e., animals, plants,
natural resources, ecosystem, landscape as well as biosphere and cosmos) (https://
iep.utm.edu/bioethic/). This suggests that an ethical concern regarding plants is very
much a part of environmental ethics also. The concept of “plant ethics” first appeared
in the Swiss constitution dealing about the dignity or integrity of plants. This still
dominates the philosophical discussions centered on the subject (Pouteau 2014). But
so far, we do not have any regulatory mechanism for ethics relating to plant based
research as we see for animal research or medical research like animal ethics
committees or human ethical committees, which are there to validate and approve
the study protocols based on ethical considerations.

Table 12.4 Theories in bioethics (https://iep.utm.edu/bioethic/#SH5a: after Jahn 2011)

Theory/approach Features

Deontological Based on application of strict moral rules or norms, includes both
religious and non-religious approach

Utilitarianism Based on (1) the consequences of a given action are the measure
of its moral quality, (2) the moral rightness and wrongness of
actions are determined by the greatest possible utility for the
greatest possible number of all sentient beings, (3) the
consequences of a given action are evaluated with reference to a
particular value. This particular prime value can be as follows:
(a) promoting pleasure, or (b) avoiding pain, or (c) satisfaction of
interests or considered preferences, or (iv) satisfaction of some
objective criteria of Well-being, and so forth, and (4) maximize
the total utility for all sentient beings affected

The four principle approach
(Principlism)

Based on four ethical principles: (1) autonomy (acting
independently without the influence or distortion of others),
(2) non-maleficence (there is an obligation not to inflict harm on
others), (3) beneficence (moral obligation to act for the benefit of
others), and (4) justice (equitably distribute benefits, risks, costs,
and resources)

Virtue ethics The action is morally good if the person in question acts on the
basis of the right motive as well as his or her action is based on a
firm and good character or disposition

Casuistry Based on depiction of the case, classification of the case and moral
judgment

Feminist bioethics Make a well-informed ethical decision that is not gender biased
and appeal to important core values
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For example, historically the plant resources, particularly agricultural resources
have been treated as a global public good. This notion continued up to the mid of
twentieth century thereafter, use of breeding technologies has resulted in spectacular
gains, which nevertheless came forth with their own problems. The selective breed-
ing of plants aimed to develop resistance varieties against pests or diseases, also lead
to the rapid development of resistance amongst pests and disease-causing organisms.
To avoid such problems the breeders always have to create new genetic variations by
introgressive hybridization. The main source of genetic variation is either different
populations of the crop in question or wild plants. The omics has potential to find out
such variations in large quantity and more quickly than the traditional genetic
techniques. Greater emphasis is being given to the use of metabolomics to screen
out the important metabolites as well as to gather information about the new sources.
If the sources of such variations are wild or endemic species and intended to be used
for commercial gain, this poses a problem of ownership. Easy access to bioresources
is important for the socio-economic growth of a country. Therefore, implementation
of existing international legal frameworks (and subsequent modifications) be given
highest priority and be followed in letter and spirit in plant omics research also.
These frameworks are necessary to ensure adequate recognition of the contributions
of different stockholders.

The Food and Agriculture Organization (FAO) in the year 1983 promulgated the
International Undertaking on Plant Genetic Resources. It was revised several times,
resulting in the International Treaty on Plant Genetic Resources for Food and
Agriculture (http://www.fao.org/plant-treaty/overview/texts-treaty/en/) and came
into effect from 2006. In 1993, the Convention on Biological Diversity (CBD)
also created a legal binding framework for the access and benefit-sharing (ABS)
related to biological resources. It accepted the sovereign rights of nations over their
biological resources and reaffirmed that the nations have the authority to determine
access norms to their genetic resources. The Nagoya Protocol on ABS was adopted
on 29th October 2010, and entered into force on 12th October 2014, is a supplemen-
tary agreement to the CBD. It provides legal framework for the effective implemen-
tation of the fair and equitable sharing of benefits arising out of the utilization of
genetic resources (https://www.cbd.int/abs/about/default.shtml/#objective). The
existing rules and regulations apply over national and international levels, but little
legal and ethical guidance exists on how individual researchers ought to deal with
local communities. Researchers are often under pressure to speedily produce results
and thus might not exercise appropriate levels of ethical scrutiny; they need to be
aware of the potentially far-reaching impact of their actions (Engels et al. 2011).

12.4.1 Associated Risk and Ethics Considerations Regarding Use
of the Omics Technology

One of the theories in bioethics is virtue ethics, which is a part of moral philosophy.
It states that an action is morally right if it is performed by adhering to the ethical
virtues that promote human flourishing and well-being. The action is morally good if
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the person in question acts with right motive as well as his/her action is based on a
firm and good character or disposition (Internet Encyclopedia of Philosophy https://
iep.utm.edu/bioethic/).

The ultimate goal of omics research is gathering knowledge and applies the same
for human well-being. One of the applications of genomics is to alter the gene pool
of a target species in favor of the good traits. The consequence of this alteration may
be predicted, but its real effect on that species in natural habitat remains unknown for
a very long time. Therefore, it asks for a moral obligation on a researcher to tread
cautiously for such activities. The risk associated with the release of thus modified
species in nature also includes large-scale changes in biotic component of ecosystem
(s).

Transgenic plants showing resistance against a pest though appear to be a
promising, cost-effective, and safe alternative over the application of chemical
dependent processes. However, there is insufficient information on the unintended
consequences of such modifications. This raises public concerns on the safety of
genetically modified organisms. For example, in the case of genetically modified
(GM) foods the fear includes chances of allergenicity, antibiotic resistance, and
toxicity. Often assessment of these side effects is very complicated (Kiran et al.
2017). This fear regarding GM plants is not limited to edible plants only. Rather,
what if the pest resistant characteristics of GM plants escaping to their weedy
relatives and causing resistance in weeds thereby increasing their (weeds) popula-
tion. Consequent death of pests caused by pest resistance plants and dominance of
new pest(s), resulting due to the decreased competition may have unforeseen adverse
consequences for the crop as well as for the entire ecosystem. Further, the expression
of the transgene and its downstream products may lead to secondary and pleotropic
effects of gene expression; and insertional mutagenesis could also result from gene
integration. Many transgenes encode an enzyme that could alter biochemical
pathways leading to change in metabolic profile and nutritional value of the plant
(Conner and Jacobs 1999). Use of information obtained from the transcriptome
analysis and RNA interference have been under trial for improving the crop output.
The gene expression regulation through Exogenous RNA interference (exo-RNAi)
could trigger unintended alterations, resulting in epigenetic modification in plants
and cross kingdom nucleic acid trafficking (Wang et al. 2016; Dalakouras and
Papadopoulou 2020).

An important part of bioethics is risk assessment and risk management. Risk
assessment is an analysis and prediction of risks using scientific data and estimation
of the effects of exposure to hazardous materials or conditions. Whereas risk
management is the process of weighing alternatives and selection of most suitable
strategy to reduce the risk (Macer 1997). Based on the above-cited examples, it may
be concluded here that the application of these technologies without proper risk
assessment may cause unintentional changes in genome and general structure and
function, as well as risk to the organism, biodiversity, and ecosystem. However,
information and knowledge gained through these approaches observing strict regu-
latory framework will be perfectly ethical. It will strengthen the global food security,
reduce the need of agrochemicals, enhance nutritional status, broaden plant tolerance
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to stress, and may also help in the plants’ growth in previously inhospitable
environments.

12.5 Concluding Remarks

There cannot be two opinions that advancement in “omics” technologies is a
welcome step. As a set of techniques, they have wide use in diverse areas of research,
notably in agriculture, health sciences to environmental protection. Many of these
techniques are still under refinement therefore, in order to draw meaningful
conclusions; the resulting data need careful integration. We do not subscribe to the
exaggeration that the techniques per se possess any kind of threat. But we must be
attentive to some of the biosafety measures and ethical concerns associated with
these techniques. Therefore, formulation of a necessary regulatory framework shall
be a welcome step in the right direction.
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