
Chapter 3
Regression Analysis for Imbalanced
Binary Data: Multi-dimensional Case

Tomonari Sei

Abstract We consider regression models for binary response data and study their
behavior when the response is highly imbalanced. Previous studies have shown that
if the logistic regression model is adopted, the likelihood function tends to that of an
exponential family under the imbalance limit. This phenomenon is closely related to
extreme value theory. In this paper, we discuss amulti-dimensional analogue of these
results. First, we examine quasi-linear logistic models, where the binary outcome is
explained by the log-sum-exp function of several linear scores. Then, we define a
generalized model called a detectable model, and derive its imbalance limit using
multivariate extreme value theory. The max-stability of the copulas corresponds to
an equivariant property of the predictors.

Keywords Copula · Detectable model · Extreme value theory · Imbalanced data ·
Log-sum-exp function · Logistic regression · Max-stability · Quasi-linear
predictor · Semi-copula

3.1 Introduction

The logistic regression model is defined by

P(Y = 1 | X = x) = G(z) = ez

1 + ez
, z = a + b�x,

where Y is a binary response variable, X is a p-dimensional explanatory variable,
and a ∈ R and b ∈ R

p are regression coefficients. The function G(z) = ez/(1 + ez)
is the logistic distribution function, and its inverse G−1(u) = log(u/(1 − u)) is the
logit link function.
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Now, consider the imbalanced case; that is, the probability of Y = 1 is very small.
In the same fashion as Poisson’s lawof rare events,we assume that the true parameters
depend on the sample size n. Specifically, let the true parameters be an = − log n + α

and bn = β. Then, we obtain

P(Y = 1 | X = x) =
1
n e

α+β�x

1 + 1
n e

α+β�x

= 1

n
eα+β�x + O(n−2),

as n → ∞. If the marginal distribution F(dx) of X does not depend on n and its
support is compact, then the weak limit of the conditional distribution of X given
Y = 1 is, by Bayes’ theorem,

lim
n→∞ P(X ∈ dx | Y = 1) = eβ�x F(dx)

∫
eβ�x F(dx)

, (3.1)

which is an exponential family [13]. Furthermore, the joint distribution of X and
Y converges to an inhomogeneous Poisson point process with intensity measure
eα+β�x F(dx); see [17] for details. We call the limit of a regression model under the
imbalance assumption the imbalance limit.

There are other binary regressionmodelswith the same imbalance limit. For exam-
ple, the complementary log-log link, which corresponds to G(z) = 1 − exp(−ez),
has the same imbalance limit as the logit link. In this case, G(z) is the negative
Gumbel distribution function, one of the min-stable distributions.

Similarly, the limit of a binary regression model with a cumulative distribution
functionG(z) is characterized by extreme value theory [15].Modelswith distinct link
functions have the same imbalance limit if the corresponding distribution functions
belong to the same domain of attraction. Here, min-stability corresponds to stability
with respect to a resolution change of the explanatory variables [2].

In this study,we develop amultivariate analogue of the above facts. The functionG
is generalized to include multi-dimensional functions. A practical class is the quasi-
linear logistic regression model proposed by [12], which combines several linear
predictors using the log-sum-exp function. See Sect. 3.2 for a precise definition. We
define a generalized class, called a detectable model. The imbalance limit of the
model is obtained using the multivariate extreme value theory (e.g., [4, 14, 16]).
Here, the max-stability of the copulas corresponds to an equivariant property of the
detectable predictors.

The rest of the paper is organized as follows. In Sect. 3.2, we review the quasi-
linear logistic regression model. The model is further generalized in Sect. 3.3, and
the imbalance limit is studied in Sect. 3.4. Examples of equivariant predictors are
provided in Sect. 3.5. Finally, Sect. 3.6 concludes the paper.
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3.2 Quasi-linear Logistic Regression Model and Its
Imbalance Limit

In this section, we first define the quasi-linear logistic regression model, and then
derive its imbalance limit, as in (3.1).

3.2.1 The Quasi-linear Logistic Regression Model

Omae et al. [12] define a quasi-linear logistic regression model as follows:

P(Y = 1 | X = x) = eQ

1 + eQ
, (3.2)

Q = 1

τ
log

(
K∑

k=1

eτ(ak+b�
k x)

)

, (3.3)

where X is a p-dimensional explanatory variable, ak ∈ R and bk ∈ R
p are regression

coefficients for each k = 1, . . . , K , and τ > 0 is a tuning parameter. It is also possible
to define (3.3) for τ < 0 (see [11]), but we restrict τ to be positive, owing to a property
discussed later (Lemma 3.1 in Sect. 3.3). We assume K ≥ 2, unless otherwise stated.

The model reduces to the logistic regression model if K = 1, but is not even
identifiable with respect to the regression coefficients if K ≥ 2. Therefore, some
restrictions and regularizations are imposed in practice. For example, the explana-
tory variable X is partitioned into K subvectors X(1), . . . , X(K ) using a clustering
method such as the K -means method. Then, the coordinates of bk , except for those
corresponding to X(k), are set to zero for each k.

Denote the K linear predictors by zk = ak + b�
k x . Then, the right-hand side of

(3.3) is written as

Q(z1, . . . , zK ) = 1

τ
log

(
∑

k

eτ zk

)

,

which we call the quasi-linear predictor or the log-sum-exp function (refer to [3]).
The log-sum-exp function tends to the simple sum

∑
k zk as τ → 0 up to a constant

term, and tends to max(z1, . . . , zK ) as τ → ∞ for fixed (z1, . . . , zK ).
Reference [12] proposed the following generalized class:

Q = φ−1

(
∑

k

φ(zk)

)

, (3.4)
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where φ is an invertible function. The log-sum-exp function is a particular case of
φ(z) = eτ z . Further generalization is discussed in the next section. In what follows,
we call (3.4) the generalized quasi-linear predictor with the generator φ.

Remark 3.1 In [11], a slightly different definition is used,

Q = φ−1

(
1

K

∑

k

φ(zk)

)

,

and is called the generalized average or the Kolmogorov–Nagumo average. The
difference is the factor 1/K . In this study, we adopt the form in (3.4) because we
focus on a property shown in Lemma 3.1, later.

3.2.2 Imbalance Limit

We derive the imbalance limit of the quasi-linear logistic regression model. Suppose
the true parameters ak and bk in (3.3) are given by

ak,n = − log n + αk, bk,n = βk,

which depend on the sample size n. Then, we have

Q = − log n + 1

τ
log

(
K∑

k=1

eτ(αk+β�
k x)

)

,

and obtain the asymptotic form

P(Y = 1 | X = x) = eQ

1 + eQ
= 1

n

(
∑

k

eτ(αk+β�
k x)

)1/τ

+ O(n−2).

The conditional distribution of X , given Y = 1, is

P(X ∈ dx | Y = 1) = P(Y = 1 | X = x)F(dx)
∫
P(Y = 1 | X = x)F(dx)

(Bayes’ theorem)

→ {∑k e
τ(αk+β�

k x)}1/τ F(dx)
∫ {∑k e

τ(αk+β�
k x)}1/τ F(dx)

,

where F(dx) is the marginal distribution of X . In particular, the distribution is
reduced to a mixed exponential family if τ = 1.

Remark 3.2 In [12], the authors note that the quasi-linear logistic model with τ = 1
is Bayes optimal if the conditional distribution of X , given Y , is mixture normal.
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Specifically, suppose that the ratio of the conditional distributions of X is a mixture
exponential family

P(X ∈ dx | Y = 1)

P(X ∈ dx | Y = 0)
= 1

Z

∑

k

eαk+β�
k x ,

where αk and βk are parameters, and Z is a normalization constant. Then, the logit
of the predictive distribution is

log
P(Y = 1 | X = x)

P(Y = 0 | X = x)
= log

(
∑

k

eα∗
k+β�

k x

)

,

where α∗
k = αk − log Z + log(π1/π0) and πy = P(Y = y). This is the quasi-linear

predictor.

3.3 Extension of the Model and Its Copula Representation

In this section, we extract several features of the quasi-linear logistic model, and
use these to define a generalized class of regression models. We also discuss the
relationship between this class of models and copula theory.

3.3.1 Detectable Model

We first focus on the following property of the generalized quasi-linear predictor
(3.4), with generator φ.

Lemma 3.1 Suppose φ : R → (0,∞) is continuous, strictly increasing, and has
boundary values φ(−∞) = 0 and φ(∞) = ∞. Then, the generalized quasi-linear
predictor (3.4) satisfies

Q(z1, . . . , zk, . . . , zK ) is increasing in zk, (3.5)

Q(−∞, . . . , zk, . . . ,−∞) = zk, (3.6)

for each k and (z1, . . . , zK ) ∈ R
K .

Properties (3.5) and (3.6) are also satisfied by Q(z1, . . . , zK ) = max(z1, . . . , zK ),
where the increasing property in (3.5) is interpreted as nondecreasing. In a sense,
property (3.6) respects the maximum of the K linear scores (p. 4 of [12]).

In general, we call a function Q : RK → R a detectable predictor if it sat-
isfies (3.5) and (3.6). Note that the quantity Q(−∞, . . . , zk, . . . ,−∞) does not
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depend on the choice of the diverging sequence of (z1, . . . , zk−1, zk+1, . . . , zK ) to
(−∞, . . . ,−∞) under the monotonicity condition (3.5).

Remark 3.3 The term “detectable” is borrowed from the neural network literature
(e.g., Chaps. 6 and 9 of [8]), where a number of compositions of one-dimensional
nonlinear functions and multi-dimensional linear functions are applied. In contrast,
we focus on the properties of the multi-dimensional nonlinear function Q using the
copula theory.

Then, we define a model class, as follows.

Definition 3.1 (Detectable model) Let Q be a detectable predictor, and let G1 be a
strictly increasing continuous distribution function. Then, a detectable model with
G1 and Q is defined by

P(Y = 1 | X = x) = G1(Q), (3.7)

Q = Q(a1 + b�
1 x, . . . , aK + b�

K x). (3.8)

We call G1 the inverse link function.

For example, the quasi-linear logistic model is a detectable model with G1(Q) =
eQ/(1 + eQ) and Q(z1, . . . , zK ) = τ−1 log(

∑
k e

τ zk ). Similarly to the quasi-linear
model, the detectable model aggregates K linear predictors into a quantity Q.

We give two properties of detectable predictors. The proofs are easy, and thus are
omitted.

Lemma 3.2 Any detectable predictor Q satisfies an inequality

Q(z1, . . . , zK ) ≥ max(z1, . . . , zK ).

Lemma 3.3 Let Q1 and Q2 be detectable predictors. Then, (Q1 + Q2)/2,max(Q1,

Q2) and min(Q1, Q2) are also detectable. More generally, if a function f : R2 →
R is increasing in each argument and satisfies f (x, x) = x, for all x ∈ R, then
f (Q1, Q2) is detectable.

The generalized average mentioned in Remark 3.1 is an example of f in which
f (x, x) = x .

3.3.2 Copula Representation

The detectable model has a copula representation. Consider a detectable model with
an inverse link function G1, and a detectable predictor Q. Denote the composite map
of G1 and Q by
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G(z1, . . . , zK ) = G1(Q(z1, . . . , zK )).

Then, G is increasing in each variable and satisfies

G(−∞, . . . , zk, . . . ,−∞) = G1(zk).

Next, define a dual of G by

H(w1, . . . ,wK ) = 1 − G(−w1, . . . ,−wK ), (w1, . . . ,wK ) ∈ R
K ,

and

H1(w) = 1 − G1(−w), w ∈ R. (3.9)

Then, H is increasing in each variable and satisfies

H(∞, . . . ,wk, . . . ,∞) = H1(wk).

Thus, H1 is considered the kth marginal distribution function of H . Note that H itself
may not be a multivariate distribution function because the K -increasing property
may fail. Recall that a function H is said to be K-increasing if �1 · · · �K H ≥ 0,
where �k is the difference operator with respect to the kth argument.

Finally, as with Sklar’s theorem, we define

C(u1, . . . , uK ) = H(H−1
1 (u1), . . . , H

−1
1 (uK )). (3.10)

Then, C satisfies the following conditions:

C(1, . . . , uk, . . . , 1) = uk,

C(u1, . . . , uK ) is increasing in uk,

for each k. A function C : [0, 1]K → [0, 1] satisfying the two conditions is called a
semi-copula (see Chap.8 of [5]). Any copula is a semi-copula, but the converse is
not true. The K th-order difference �1 · · · �KC of a semi-copula, which measures a
rectangular region, may be negative.

We summarize this result as follows.

Theorem 3.1 (Copula representation) A detectable model specified by an inverse
link function G1 and a detectable predictor Q is represented as

G1(Q(z1, . . . , zK )) = G(z1, . . . , zK )

= 1 − H(−z1, . . . ,−zK )

= 1 − C(H1(−z1), . . . , H1(−zK )),
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where C is a semi-copula, and H1 is a univariate continuous distribution function.
The correspondence

{G1, Q} ↔ {H1,C}

is one-to-one.

Proof It is sufficient to prove the one-to-one correspondence. Indeed, if G1 and Q
are given, then H1 andC are determined by (3.9) and (3.10), respectively. Conversely,
if H1 and C are given, then we have G1(z) = 1 − H1(−z) by (3.9), and

Q(z1, . . . , zK ) = −H−1
1 (C(H1(−z1), . . . , H1(−zK )))

holds. �

Consider again the quasi-linear logistic regression model with the log-sum-exp
predictor, which corresponds to (3.2) and (3.3). Then, the functions H1 and C in
Theorem 3.1 are the logistic distribution function and

C(u1, . . . , uK ) = 1

1 + (
∑K

k=1(
1−uk
uk

)τ )1/τ
, (3.11)

respectively. The function C is a copula if τ ≥ 1, as shown in Example 4.26 of [10].
In particular, if τ = 1, then

C(u1, . . . , uK ) = 1

1 + ∑K
k=1

1−uk
uk

,

which belongs to the Clayton copula family [10]. If τ → ∞, then C converges to
mink uk , the upper Fréchet–Hoeffding bound. If 0 < τ < 1, C is not a copula, in the
strict sense, because it is not K -increasing.

We say that a semi-copula C is Archimedean if it is written as

C(u1, . . . , uK ) = ψ−1(ψ(u1) + · · · + ψ(uK )),

with a decreasing function ψ : (0, 1) → (0,∞) called the generator (e.g., [10]).
For example, the semi-copula in (3.11) is Archimedean with the generator ψ(u) =
( 1−u

u )τ .
Archimedean semi-copulas characterize the generalized quasi-linear models as

stated in the following theorem. The proof is straightforward.

Theorem 3.2 (Archimedean case) Let {G1, Q} be a detectable model and {H1,C}
be the corresponding pair determined by Theorem 3.1. Then, Q is a generalized
quasi-linear predictor (3.4) with a generator φ if and only if C is an Archimedean
semi-copula with a generator ψ . The relation between the generators φ and ψ is
given by φ(z) = ψ(H1(−z)).
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Note that ψ depends not just on φ, but also on the inverse link G1.

Remark 3.4 Here, we briefly discuss the merit of having a genuine copula in the
copula representation of a detectable model, where a genuine copula means a semi-
copula with the K -increasing property. If C is a genuine copula, then the detectable
model P(Y = 1 | X = x) = G1(Q(z1, . . . , zK )) has the following latent variable
representation. Take a randomvectorU = (U1, . . . ,UK ), distributed according to the
copula C . Then, G1(Q(z1, . . . , zK )) = 1 − C(H1(−z1), . . . , H1(−zK )) coincides
with the probability of an event, such thatUk > H1(−zk) for at least one k. Now, the
response variable Y can be assumed to be the indicator function of that event. The
random vectorU is seen as a latent variable. Once a latent variable representation is
obtained, we can also consider a state-space model for time-dependent data. This is
left to future research.

3.4 The Imbalance Limit of Detectable Models

In this section, we characterize the imbalance limit of detectable models using the
copula representation in Theorem 3.1 and the multivariate extreme value theory [4,
14, 16].

Recall that detectablemodels are specified by a univariate distribution function H1

and a semi-copula C . Throughout this section, we fix H1 as the Gumbel distribution
function

H1(w) = exp(−e−w),

and focus on the semi-copulas C . In this case, the inverse link function is G1(z) =
1 − exp(−ez), which corresponds to the complementary log-log link function. The
relation between C and the detectable predictor Q is given by

C(u1, . . . , uK ) = exp(−eQ(z1,...,zK )), uk = exp(−ezk ), (3.12)

by Theorem 3.1.
A semi-copula C is said to be extreme if there exists a semi-copula C0 such that

C(u1, . . . , uK ) = lim
n→∞Cn

0 (u
1/n
1 , . . . , u1/nK ), u ∈ [0, 1]K . (3.13)

In this case, we say that C0 belongs to the domain of attraction of C . A semi-copula
C is said to be max-stable if, for all n ≥ 1,

C(u1, . . . , uK ) = Cn(u1/n1 , . . . , u1/nK ), u ∈ [0, 1]K . (3.14)

The following lemma is widely known for copulas.

Lemma 3.4 A semi-copula C is extreme if and only if it is max-stable.
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Proof It is obvious that any max-stable semi-copula is also extreme. Conversely,
assume that C is extreme. Let C0 be a semi-copula that satisfies (3.13). Then, we
have

Cm(u1/m1 , . . . , u1/mK ) = lim
n→∞Cnm

0 (u1/nm1 , . . . , u1/nmK )

= C(u1, . . . , uK ),

for all m ≥ 1, which means C is max-stable. �

Max-stability is reflected in detectable models as follows.

Lemma 3.5 Consider a detectable model specified by the Gumbel distribution func-
tion H1 and a semi-copula C. Then, C is max-stable if and only if the detectable
predictor Q is equivariant with respect to location; that is,

Q(z1 + α, . . . , zK + α) = Q(z1, . . . , zK ) + α, α ∈ R. (3.15)

Proof Let C be max-stable. Then, by (3.12) and (3.14), we have

Q(z1, . . . , zK ) = log(− logC(exp(−ez1), . . . , exp(−ezK )))

= log

(

− logCn

(

exp

(

−1

n
ez1

)

, . . . , exp

(

−1

n
ezK

)))

= log n + Q(− log n + z1, . . . ,− log n + zK ),

for all n ≥ 1. Then, (3.15) is proved for α = log x , with positive rational numbers x .
The result follows from the monotonicity of Q. The converse is proved in a similar
manner. �

Remark 3.5 According to extreme value theory, the stable tail dependence function
corresponding to a max-stable copula C is defined by

l(x1, . . . , xK ) = − logC(e−x1 , . . . , e−xK ), (x1, . . . , xK ) ∈ [0,∞)K ,

which satisfies a homogeneous property l(t x1, . . . , t xK ) = tl(x1, . . . , xK ) (see [6]).
The equivariance of Q in Lemma 3.5 is interpreted as another representation of the
max-stable property. Note that l is not suitable for constructing predictors because
its domain is not the whole space.

The imbalance limit of detectable models is characterized as follows. The result
is an analogue of that in extreme value theory (e.g., Corollary 6.1.3 of [4]).

Theorem 3.3 (Imbalance limit) Consider a detectable model specified by the Gum-
bel distribution function H1 and a semi-copula C. Let G1, Q, and G be the functions
determined by Theorem 3.1. Then, the following three conditions are equivalent,
where Q̄ denotes an equivariant predictor:
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1. The predictor Q admits a limit

lim
n→∞{Q(z1 − log n, . . . , zK − log n) + log n} = Q̄(z1, . . . , zK ).

2. The function G admits a limit

lim
n→∞{n G(z1 − log n, . . . , zK − log n)} = eQ̄(z1,...,zK ).

3. The semi-copula C belongs to the domain of attraction of

C̄(u1, . . . , uK ) = exp(−eQ̄(z1,...,zK )), uk = exp(−ezk ).

Under these conditions, if the true regression coefficients are ak,n = − log n + αk

and bk,n = βk , then the weak limit of the conditional distribution of X is

lim
n→∞ P(X ∈ dx | Y = 1) = eQ̄(α1+β�

1 x,...,αK+β�
K x)F(dx)

∫
eQ̄(α1+β�

1 x,...,αK+β�
K x)F(dx)

whenever the support of F(dx) = P(X ∈ dx) is compact.

Proof The equivalence of conditions 1 and 3 follows immediately from the relation
(3.12). We prove the equivalence of conditions 1 and 2. Because

G(z1, . . . , zK ) = 1 − exp(−eQ(z1,...,zK )),

condition 2 is written as

lim
n→∞ n{1 − exp(−eQ(z1−log n,...,zK−log n))} = eQ̄(z1,...,zK ),

which is also equivalent to

lim
n→∞ neQ(z1−log n,...,zK−log n) = eQ̄(z1,...,zK ).

The logarithm of both sides yields condition 1.
Next, we show the convergence of the conditional distribution. Note that the

convergence of G in condition 2 is locally uniform with respect to (z1, . . . , zK )

becauseG ismonotone in each argument. Then, Bayes’ theorem and the compactness
of the support of F imply

P(X ∈ dx | Y = 1) = G(− log n + α1 + β�
1 x, . . . ,− log n + αK + β�

K x)F(dx)
∫
G(− log n + α1 + β�

1 x, . . . ,− log n + αK + β�
K x)F(dx)

→ eQ̄(α1+β�
1 x,...,αK+β�

K x)F(dx)
∫
eQ̄(α1+β�

1 x,...,αK+β�
K x)F(dx)

,
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Fig. 3.1 Classification of
detectable models, where H1
is fixed to be Gumbel

as stated. �

For example, consider the semi-copula in (3.11), which is derived from the log-
sum-exp logistic model. Here, the extreme semi-copula C̄ in Theorem 3.3 is

C̄(u1, . . . , uK ) = lim
n→∞Cn(u1/n1 , . . . , u1/nK )

= lim
n→∞

(
1

1 + (
∑K

k=1(u
−1/n
k − 1)τ )1/τ

)n

= exp

⎛

⎝−
(

K∑

k=1

(− log uk)
τ

)1/τ
⎞

⎠ ,

which is called theGumbel–Hougaard copula [10] if τ ≥ 1. In particular, it reduces to
the independent copula if τ = 1. The Gumbel–Hougaard copula is an Archimedean
copula with generator ψ(u) = (− log u)τ . In fact, this class is characterized by the
max-stable Archimedean property [7].

The detectable predictor Q corresponding to the Gumbel–Hougaard copula when
H1 is Gumbel is the log-sum-exp

Q(z1, . . . , zK ) = log(− log C̄(exp(−ez1), . . . , exp(−ezK )))

= 1

τ
log

(
K∑

k=1

eτ zk

)

.

As a result, the generalized quasi-linear predictor with the equivariant property
(3.15) is limited to be the log-sum-exp predictor. This fact is directly confirmed in
Lemma 3.6 in Sect. 3.5. Note too that the independent copula corresponds to τ = 1.

Figure3.1 classifies the detectable models.
If H1 is not Gumbel, the imbalance limit depends on the domain of attraction to

which H1 belongs. For example, the logistic distribution belongs to the domain of
attraction of the Gumbel. For such a case, the statements in Theorem 3.3 still hold.
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3.5 Examples of Equivariant Predictors

In this section,we provide examples of equivariant predictors,where the equivariance
is defined by (3.15). Recall that equivariant predictors correspond tomax-stable semi-
copulas if H1 is Gumbel (Lemma 3.5). In the following, we construct the predictors
directly and do not use the copula representations (except for Lemma 3.7).

It is obvious that, by definition, the log-sum-exp predictor is equivariant. Con-
versely, the log-sum-exp predictor is characterized as follows.

Lemma 3.6 Let Q be a generalized quasi-linear predictorwith a generatorφ, where
φ : R → (0,∞) is continuous and strictly increasing, φ(−∞) = 0, and φ(∞) =
∞. Then, Q is equivariant if and only if it is the log-sum-exp predictor for some
τ > 0.

Proof We prove the “only if” part. It is enough to consider the case K = 2, because
we can set φ(zk) = 0 for 3 ≤ k ≤ K by letting zk → −∞. Because Q is equivariant,
we have

φ−1(φ(z1 + α) + φ(z2 + α)) = φ−1(φ(z1) + φ(z2)) + α,

for any α ∈ R. Applying φ to the both sides and putting zk = φ−1(xk), we obtain

φ(φ−1(x1) + α) + φ(φ−1(x2) + α) = φ(φ−1(x1 + x2) + α).

This is Cauchy’s functional equation (Theorem 2.1.1 of [1]) on η(x) := φ(φ−1(x) +
α). Because η is increasing, the solution has to be η(x) = φ(φ−1(x) + α) = σαx ,
for some σα > 0. Put z = φ−1(x) to obtain φ(z + α) = σαφ(z). By letting z = 0,
we have σα = φ(α)/φ(0) and, therefore,

φ(z + α) = φ(α)φ(z)

φ(0)
.

By putting ψ(z) = logφ(z) − logφ(0), we have ψ(z + α) = ψ(z) + ψ(α). Again,
because ψ is increasing, we have ψ(z) = τ z, for some τ > 0, which means φ(z) =
φ(0)eτ z . Hence, φ is the generator of the log-sum-exp predictor. �

For other examples, consider

Q(z1, z2) = z1 + z2 + √
(z1 − z2)2 + 4ε2

2
, (3.16)

where ε > 0 is a fixed constant. This is actually an equivariant detectable predictor.
Indeed, it satisfies the conditions ∂Q/∂zk > 0, Q(z,−∞) = Q(−∞, z) = z, and
Q(z1 + α, z2 + α) = Q(z1, z2) + α. The function Q in (3.16) is quite different from
the log-sum-exp function when |z1 − z2| is large. Indeed, if z1 > z2 and z1 is fixed,
then

Q(z1, z2) = z1 + O((z1 − z2)
−1),
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as z1 − z2 → ∞, whereas

1

τ
log(eτ z1 + eτ z2) = z1 + O(e−τ(z1−z2)).

The case of z1 < z2 is derived in a similar manner. The behavior for large |z1 − z2|
may affect the numerical stability of the parameter estimation. This is left to future
work.

A multivariate extension of (3.16) is the unique solution of

K∏

k=1

(Q − zk) = εK , Q > max(z1, . . . , zK ), (3.17)

which we call an algebraic predictor. The tail behavior is given by

Q = z(1) + O((z(1) − z(2))
−(K−1)),

as z(1) − z(2) → ∞, where z(1) ≥ · · · ≥ z(K ) is the order statistic of z1, . . . , zK .
We can construct a broad class of equivariant predictors using a direct consequence

of extreme value theory, as follows.

Lemma 3.7 Let μ be a (nonnegative) measure on the simplex � = {s | ∑K
k=1 sk =

1, s1, . . . , sK ≥ 0}, such that
∫
skμ(ds) = 1 for all k. Then,

Q(z1, . . . , zK ) = log
∫

max(s1e
z1 , . . . , sK e

zK )μ(ds) (3.18)

is an equivariant detectable predictor. Conversely, if Q is equivariant and the semi-
copula C determined by Theorem 3.1 with the Gumbel marginal H1 is a (genuine)
copula, then there exists such a unique measure μ.

Proof It is easy to see that Q in (3.18) is actually an equivariant predictor. To prove
the converse, suppose that Q is equivariant and C determined by Theorem 3.1, with
the Gumbel marginal H1, is a copula. Lemma 3.5 implies that C is a max-stable
copula and, therefore, H in Theorem 3.1 is a max-stable distribution function with
the Gumbel marginal H1. Then, by Proposition 5.11′ of [14], H has the spectral
representation

H(x1, . . . , xK ) = exp

{

−
∫

�

max(s1e
−x1 , . . . , sK e

−xK )μ(dx)

}

,

with a measure μ on � such that
∫
skμ(dx) = 1, for all k. Equation (3.18) follows

from the representation Q(z1, . . . , zK ) = log(− log H(−z1, . . . ,−zK )). �

The measure μ is called the spectral measure. For example, let K = 3 and μ =
(δ(1/2,1/2,0) + δ(1/2,0,1/2) + δ(0,1/2,1/2))/2, where δ denotes the Dirac measure. Then,
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Q(z1, z2, z3) = log

(
emax(z1,z2) + emax(z1,z3) + emax(z2,z3)

2

)

.

Using the order statistic z(1) ≥ z(2) ≥ z(3) of (z1, z2, z3), we have

Q(z1, z2, z3) = log

(

ez(1) + ez(2)

2

)

,

which, in particular, depends only on the top two scores (z(1), z(2)). More generally,

Q(z1, . . . , zK ) = 1

τ
log

(

eτ z(1) +
K∑

k=2

λke
τ z(k)

)

is equivariant for any positive τ and nonnegative λk . The log-sum-exp function is
the special case λ2 = · · · = λK = 1.

Note that Q defined by (3.18) must satisfy

Q(z1, . . . , zK ) ≤ log(ez1 + · · · + ezK ),

which follows from maxk(skezk ) ≤ ∑
k ske

zk . In particular, employing the lower
bound in Lemma 3.2, we can prove that the tail behavior of Q is restricted to

Q(z1, . . . , zK ) = z(1) + O(e−(z(1)−z(2))),

as z(1) − z(2) → ∞. Thus, the algebraic predictor (3.17) cannot be expressed as (3.18)
with a (nonnegative) spectral measure μ.

3.6 Conclusion

In this paper, we introduced detectable models as generalizations of the quasi-linear
logistic models, and then derived the imbalance limit (Theorem 3.3). A key property
is that of equivariance (3.15). The log-sum-exp function is characterized as a unique
equivariant quasi-linear predictor (Lemma 3.6); see Sect. 3.5 for examples of other
equivariant predictors.

We have not conducted any simulation results. Thus, future work should investi-
gate the numerical stability of themaximum likelihood estimatorwhen an equivariant
predictor such as the algebraic predictor (3.17) is adopted.

The generalized average of the form in Remark 3.1 can be extended to functions
with the property Q(z, . . . , z) = z instead of (3.6). Regression models with such a
property may exhibit different behaviors.

Lastly, we have implicitly assumed that the conditional probability P(Y = 1 |
X = x) ranges from zero to one. However, this assumption may be relaxed. In fact,
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[9] suggests an asymmetric logistic regressionmodel that usesG(z) = (ez + κ)/(1 +
ez + κ), for κ > 0, as the inverse link function. This function is not even a distribution
function becauseG(−∞) > 0. Therefore, it would be interesting to investigate what
happens if κn → 0 as n → ∞ under the imbalance limit.
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