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Preface

Amid the COVID-19 pandemic, we all recognize that an extreme event can be fatal in
life. Extreme value theory is undeniably vital. This book aims to present its frontier
to an audience who is never satisfied with the pure theory. Refereed articles, ranging
from theory to practice, have been compiled into this volume dedicated to Professor
Masaaki Sibuya.

He is among the key founders of the Japanese Society of Applied Statistics and has
always been advancing theory for practice. His pioneering attitude can be discerned
in his seminal paper on the bivariate extreme value distribution published in 1960.
He conceptualized the dependence of extreme events, the negligence of which results
in a catastrophe historically. Extreme events do simultaneously occur. For example,
bankruptcy is usually regarded as an extreme event. However, we observe serial
bankruptcies under the current pandemic, not to mention the global financial crisis
in 2008. Floods, earthquakes, and tsunamis, the geographical dependence of these
extremal issues have been crucial in the fight against natural disasters. Professor
Sibuya induced the decisive factor of practice antecedently.

Initiating this commemorative volume, his other contribution against a tsunami is
presented in Chapter 1. Premodern tsunamis were recorded in various ways such as
remains, a monument, and a diary. These historical records, however, would neglect
small tsunamis. In other words, an unknown infimum should exist in tsunami records.
The supremum magnitude of a tsunami is obviously unknown. The generalized beta
distribution has the parameters of the infimum and the supremum,which can describe
tsunami records. However, the unknown support invalidates the regular asymptotics
of the maximum likelihood estimation. Professors Mano and Sibuya proposed a
new method to estimate the parameters of the generalized beta distribution notwith-
standing the irregularity. The editors would also remind readers of the presented
application to the Japanese historical data of tsunamis.

The dependence of events can be flexibly modeled through a copula. In 2017,
Professor Sibuya proposed the empirical beta copula, a nice smoother of the empir-
ical copula, jointlywith Professors Segers andTsukahara. Chapter 2 confirms that the
empirical beta copula provides expedient resampling procedures. Professors Kiril-
iouk, Segers, and Tsukahara showed the asymptotic equivalence of several boot-
strapped processes related to the empirical and empirical beta copulas. Moreover,
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vi Preface

they clarified the finite sample properties of these resampling schemes by extensive
simulations.

Chapter 3 employs a copula and extreme value theory in an interesting way. A
binary regression model, such as logistic regression, explains the probability of an
event bymapping a real number to a unit interval [0,1] using a cumulative distribution
function. In this case, there exists a limiting argument to let the probability of an event
be very small so that the extreme value distributions appear through themin-stability,
depending on the distribution function used formapping. Professor Sei noted this fact
in his previous study; the distribution function was currently generalized to include
multi-dimensional functions. He obtained the corresponding limit, exploiting the
max-stability of a copula.

The estimation of the support is revisited in Chapter 4, where Doctor Ozeki and
Professor Doksum consider a semiparametric regression model. In their argument,
the conditional distribution of a response variable given a covariate vector is unknown
as well as the upper boundary of its support. However, the boundary is assumed to
be a function, say g, of the linear combination of covariates. The coefficients of this
combination are boundary regression parameters to be estimated. After Le Cam’s
asymptotic theory for the irregular estimation was reshaped to include semipara-
metric models, they constructed a consistent and efficient estimator for the known
function g. Also for the unknown g in a parametric class, a consistent estimator was
obtained.

The remaining two chapters focus on the hydrological practice, in particular, the
analysis of extreme rainfalls for the flood control of Japanese rivers. They are short
and steep, owing to themountainous land. These characters have fostered the specific
adoption of statistics.

The frequency analysis of extremes usually discards non-extreme observations.
However, the definition of extreme events varies. For time-series observations, the
whole duration is first partitioned into short periods (blocks), and extremes are
extracted as samples in each block. These extremes may be limited to the maximum
or all instances over a threshold. The latter carries more information but may be
sensitive to the selection of a threshold. Professor Tanaka, in Chapter 5, performed
the sensitivity analysis of this phenomenon based on past observations since 1876
and future simulation data. The necessity of sensitivity analysis is described from a
more general viewpoint in Chapter 6. Professor Takara reviewed the past develop-
ment of hydrologic frequency analysis in Japan, providing a valuable summary of
his long experience. Diverse goodness-of-fit criteria and resampling schemes have
been compared to yield a robust conclusion.

Chapter 1 was prepared exclusively for this volume. Other chapters are based
on presentations at the Pioneering Workshop on Extreme Value and Distribution
Theories in Honor of Professor Masaaki Sibuya held at the Institute of Statistical
Mathematics (ISM), Tokyo, Japan from March 21–23, 2019. This workshop was
sponsored by Kanazawa University and the ISM and co-sponsored by the Advanced
Innovation powered by the Mathematics Platform and Japanese Society of Applied
Statistics. This workshop and the editing process for this volume and one more
volume entitled “Pioneering Works on Distribution Theory: In Honor of Masaaki
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Chapter 1
Parameter Estimation of Generalized
Beta Distributions and Its Application to
a Historical Tsunami Magnitude Dataset

Shuhei Mano and Masaaki Sibuya

Abstract For estimating the generalized (four-parameter) beta distributions,
Nagatsuka-Balakrishnan-Kamakura transformation and Hall and Wang’s empirical
Bayesian likelihood are applied to the shape parameter and the location-scale param-
eter, respectively.With this procedure and a smoothing, a newestimator of parameters
is proposed in this paper. Some non-normal limit distributions of the estimators of
the location-scale parameter are discussed, and the performance of the proposed
estimator is evaluated with the estimator by Hall and Wang’s method and that by
Kachiashvili et al.’s method. The proposed method is applied to a historical dataset
of tsunami magnitude scales.

Keywords Four-parameter beta distributions · Hall and Wang’s empirical
Bayesian likelihood · Location-scale parameters ·
Nagatsuka-Balakrishnan-Kamakura transformation · Non-regular estimation ·
Non-standard beta distributions · Non-standard estimation · Reverse Weibull
distributions · Smoothing · Tsunami scale

1.1 Introduction

Let the pdf of the three-parameter gamma distribution with a threshold be denoted
by

f1(x; θ, c) = g1(x − c; θ), c < x < ∞,
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2 S. Mano and M. Sibuya

where g1(x; θ), θ = (a, h), a, h > 0 is the standard gamma distribution with the
shape parameter a and scale parameter h. Since the support depends on the thresh-
old c, the classical asymptotic properties of the maximum likelihood estimation fail
to apply in this case [19]. In order to solve the non-regular estimation of (θ, c),
Nagatsuka, Balakrishnan, and Kamakura [22] used the order statistics of a sam-
ple from f1(x; θ, c) for eliminating c from the estimation of θ . They were mainly
concerned with the estimation of θ , and a moment estimator was used for c. They
also discussed parameter estimation of the three-parameter Weibull distribution in a
similar way [21].

On the other hand, Hall and Wang [14] examined the estimation of the threshold
c of the pdf of the form

f2(x; θ, c) = (x − c)γ−1g2(x; θ, c), c < x < ∞, (1.1)

where γ > 0, g2(x; θ, c) → g0 > 0, (x ↓ c) for a constant g0, and θ denotes a vec-
tor of parameters other than c. The form includes the three-parameter gamma and
Weibull distributions. For the joint estimation of (γ, c), the pdf is unbounded and the
global maximum does not exist; if c � x(1), where x(1) is the smallest observation,
the pdf diverges as γ goes to infinity. However, when γ > 1, there exists a local
maximum, which is used as a consistent estimator of c [26]. For γ > 2, although the
usual regularity conditions for the maximum likelihood estimation are not satisfied,
the less-stringent conditions of Le Cam [18] are satisfied for the local maximum
likelihood estimator. The estimator has the same asymptotic properties as in usual
regular cases; the asymptotic normality holds with the usual convergence rate of
Op(n−1/2) [28], where n is the sample size, and the variance asymptotically equal to
the Cramér-Rao lower bounds. For γ = 2, the asymptotic normality holds, but the
convergence rate is Op{(n log n)−1/2} [4, 28]. For 1 < γ < 2, the local maximum
likelihood estimators have a non-normal limit distribution with a convergence rate
of Op(n−1/γ ) [29]. In contrast to these cases, for γ ≤ 1, the local maximum does
not exist and the maximum likelihood estimation fails to produce a solution other
than ĉ = x(1), which is clearly biased. To overcome the non-availability of the max-
imum likelihood estimator, Hall and Wang [14] proposed the maximum Bayesian
likelihood estimation with an empirical prior

p1(c) = x(1) − c

x(2) − c
, (1.2)

using the first two order statistics x(1) and x(2) of a sample from f2(x; θ, c). The prior
is multiplied to the likelihood

∏n
i=1 f2(xi ; θ̂c, c), where θ̂c is the maximum profile-

likelihood estimate, and the product, called the Bayesian likelihood, is maximized
with respect to c.

The ideas are extended to the family of finite interval densities

f (x; θ, c, d) = 1

d − c
g

(
x − c

d − c
; θ

)

, c < x < d, (1.3)
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where g(y; θ), 0 < y < 1 is a pdf independent of the location-scale parameter (c, d).
We are interested in the beta distribution

g(y; θ) = 1

B(a, b)
ya−1(1 − y)b−1, 0 < y < 1, (1.4)

with the shape parameter θ = (a, b), a > 0, b > 0. The family of densities

f (x; θ, c, d) = 1

d − c
g

(
x − c

d − c
; θ

)

= 1

B(a, b)

(
(x − c)a−1(d − x)b−1

(d − c)a+b−1

)

, c < x < d, (1.5)

with c > −∞ and d < ∞, is called generalized beta distributions (or four-parameter
beta distributions). Johnson, Kotz and Balakrishnan [15] called (1.5) beta distribu-
tions, while they called (1.4) the standard form. Since the beta distribution is a
commonly used model of distributions over a finite interval, the parameter estima-
tion of generalized beta distributions has been discussed by many authors. Carnahan
[6] discussed the local maximum likelihood estimation for the restricted case of
min(a, b) > 2, where the conditions of Le Cam [18] are satisfied for the local maxi-
mum likelihood estimators. Based on a numerical study, he showed that it is only for
very large samples that the bias becomes small and the Cramér–Rao bound becomes
a good approximation of the variance. Cheng and Iles [7] suggested the use of a
corrected likelihood, which require c being estimated by x(1) if a < 1 and d by x(n)

if b < 1.
Wang [27] proposed the use of two priors:

p1(c), and p2(d) = d − x(n)

d − x(n−1)
(1.6)

and discussed parameter estimation based on the Bayesian likelihood. Previous stud-
ies on the generalized beta distributions have discussed joint estimation of the four
parameters. Based on a numerical study, Wang [27] observed that (i) the correlation
between the estimators of c and d are weak, and (ii) the estimators of c are more
correlated to the estimator of a than to that of b, and the estimator of d is more
correlated to the estimator of b than to that of a.

As we have seen so far, the shape parameter θ and the location-scale parameter
(c, d) have quite different properties: θ determines regularity of the estimation prob-
lem, while (c, d) does not. In the joint estimation, we can expect that the information
of θ will help in the estimation of (c, d) and vice versa, but the sharing of infor-
mation could cause biases to the estimates. In the joint estimation, the likelihood is
unbounded and the global maximum does not exist. Nevertheless, once θ is fixed,
the estimation of (c, d) is more straightforward; the likelihood is bounded and the
global maximum likelihood estimator is useful. Given these reasons, the separate
estimation of θ and (c, d) is worth investigation.



4 S. Mano and M. Sibuya

In the context of parameter estimation of the generalized beta distribution, the idea
of separating the estimations of θ and (c, d) was recently employed by Kachiashvili
et al. [16, 17]. Given (c, d), a moment estimator of θ can be computed, while given
θ , an unbiased estimator of (c, d) can be computed. Kachiashvili et al. proposed joint
estimation of θ and (c, d) by iterating these two steps. Their method demands few
computations, because these two estimators have simple expressions. However, they
reported that their estimator is significantly biased [17].

In Sect. 1.2, we combine the above-mentioned two ideas: the estimation of
shape parameter θ is separated from the estimation of the location-scale parame-
ter (c, d) by using the transformation proposed by [21, 22], which will be called the
NagaBalaKama transform, and then (c, d) is estimated based on the Bayesian likeli-
hood with the empirical prior (1.6) [14, 27]. With this procedure and a smoothing, a
new estimator of parameters of generalized beta distributions with pdf (1.5) is pro-
posed. In Sect. 1.3, non-normal limit distributions of the estimators of the location-
scale parameter are discussed, the performance of the estimator is evaluated numer-
ically, and the estimator is applied to a historical dataset of tsunami magnitudes.

1.2 Estimation Methods

1.2.1 NagaBalaKama Transform for Estimating Shape
Parameters

Let us assume the location-scale parameter (c, d) is known and fixed. Let X =
(X1, . . . , Xn) be an iid sample from the generalized beta distribution of pdf (1.3),
i.e., Y := (X − c)/(d − c) is an iid sample from the beta distribution of pdf (1.4).
Define W1, . . . ,Wn by

Wi := X(i) − X(1)

X(n) − X(1)
= Y(i) − Y(1)

Y(n) − Y(1)
, 0 = W1 < W2 < · · · < Wn−1 < Wn = 1,

where X(1) < · · · < X(n) and Y(1) < · · · < Y(n) are the order statistics of X and Y,
respectively. Note that (W2, . . . ,Wn−1) is independent of (c, d), because (Y(1), ...,

Y(n)) is independent of (c, d). Moreover, (Y(1), . . . ,Y(n)) is the type-II censored sam-
ple from the pdf (1.4). The joint distribution of (W2, ...,Wn,Y(1),Y(n)) is given as

P(W2 < w2, ...,Wn−1 < wn−1,Y(1) < u,Y(n) < v)

= P(Y(2) < u + w2(v − u), ...,Y(n−1) < u + wn−1(v − u),Y(1) < u,Y(n) < v)

= n!
n∏

i=1

G(u + wi (v − u); θ),
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where in the last equation we used the fact that Y is an iid sample from the pdf (1.4)
and

G(u; θ) =
∫ u

0
g(y; θ)dy.

The joint density is given as

n!(v − u)n−2
n∏

i=1

g(u + wi (v − u); θ).

Integrating out (u, v) with u < v, we obtain the likelihood of (w2, . . . ,wn−1):

lN BK (w2, ...,wn−1; θ) = n!
∫ 1

0

∫ v

0
(v − u)n−2

(
n∏

i=1

g(u + (v − u)wi ; θ)

)

dudv,

(1.7)
wherew1 = 0 andwn = 1.We shall call themap (X(1), . . . , X(n)) −→ (W1, . . . ,Wn)

as the NagaBalaKama transform. The expression (1.7) makes it possible to estimate
the shape parameter θ = (a, b) apart from (c, d), based onW or X. The separations
of the estimation of the shape parameter from the estimation of the location-scale
parameter were demonstrated for the three-parameter gamma distribution [22] and
the three-parameterWeibull distribution [21].Moreover, it should be stressed that the
separation is applicable to generic location-scale families, because, in the derivation
of (1.7), we did not use specific properties of the (generalized) beta distributions.

Given the estimate of θ , say θ̂ = (â, b̂), a simple estimate of (c, d) is the moment
estimate. Note that

E(X) = c + (d − c)E(Y ) and SD(X) = (d − c)SD(Y ),

where E denotes expectation and SD denotes standard deviation. Replacing E(X)

and SD(X) with the sample mean and standard deviation μ̂X and σ̂X , we have the
moment estimators

ĉ = μ̂X − σ̂X

√
â

b̂
(â + b̂ + 1), and d̂ = μ̂X + σ̂X

√

b̂

â
(â + b̂ + 1).

An apparent problem with the moment estimate is that the interval (ĉ, d̂) does not
always cover the range of a sample (x(1), x(n)). Hence, the moment estimators are
defective.
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1.2.2 Hall and Wang’s Empirical Prior for Estimating
Location-Scale Parameters

Hall and Wang [14] explained the nice properties of the empirical prior p1(c), (1.2);

1. p1(c) > 0 implies c < x(1).
2. p1(c) ≈ 1 implies c � x(1) or x(1) ≈ x(2) and the prior is non-informative.
3. When x(1) � x(2), p1(c) rises slowly from 0 to 1 as c decreases, indicating that

c is not near x(1).
4. When x(1) ≈ x(2), p1(c) rises sharply to 1 as c decreases, indicating that c is close

to x(1).

Hence, log p1(c) works as a penalty to avoid c coming close to x(1) and keeps the
information on c.

In the family of generalized beta distributions, if d is known, then the pdf
of the family reduces to the form of (1.1), and our concern is the left tail. The
right tail behaves similarly because of the symmetry of the density (1.5) under
(x − c) �→ (d − x) by exchanging a and b. Further, if (X(1), . . . , X(n)) is the order
statistics of a random sample of a pdf, (X(1), X(2)) and (X(n−1), X(n)) are asymp-
totically independent (see Lemma1.1). Hence, Hall and Wang’s empirical Bayes
estimation is applicable to the generalized beta distributions with the empirical pri-
ors (1.6) [27]. The Bayesian log-likelihood to be minimized is

lkh(x; θ, c, d) = log(p1(c)) + log(p2(d)) − n log(B(a, b)) − n(a + b − 1) log(d − c)

+ (a − 1)
n∑

i=1

log(x(i) − c) + (b − 1)
n∑

i=1

log(d − x(i)). (1.8)

Wang [27] considered the joint estimation of the four parameters. She proposed the
use of the stepwise ascent. It starts with some rough estimates of the parameters,
followed by improving one parameter at a time while keeping the other parameters
fixed, and increasing the posterior density at each step by using the Newton–Raphson
method. The steps will eventually converge to the posterior local mode, and the
resulting parameters will give the local maximum likelihood estimates. Although
she did not mention it, the parameter space should be restricted, since the likelihood
is unbounded and the global maximum does not exist; if c � x(1) and d 	 x(n), the
likelihood diverges as either of a or b goes to infinity. For small n, the search tends to
seek the global maximum which produces nonsense estimates. Based on numerical
studies, Carnahan [6] reported this tendency for the case of min(a, b) > 2. See Table
IV of [6].
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1.2.3 Kachiashvili’s Iteration for Joint Estimation

At the end of Sect. 1.2.1, we pointed out that the moment estimators of the location-
scale parameter (c, d) given the shape parameter θ is not useful. In contrast, the
moment estimator of θ given (c, d) is useful. Kachiashvili and Prangishvili [16]
pointed out that the iterative use of the moment estimator and an unbiased esti-
mator of (c, d) given θ provides a joint estimate of θ and (c, d). Kachiashvili and
Melikdzhanjan [17] investigated the performance of the method based on numerical
studies.

Kachiashvili et al.’s method consists of the following steps.

1. c = x(1) and d = x(n).
2. Compute

a = x̄ − c

d − c
{(x̄ − c)(d − x̄)s−1 − 1}, b = d − x̄

d − c
{(x̄ − c)(d − x̄)s−1 − 1},

if (x̄ − c)(d − x̄) > s, where x̄ = ∑
xi , s = ∑

(xi − μ)2/(n − 1).
3. Compute

c = x(1) − (x(n) − x(1))
h(1)

1 − h(1) − h(n)

, d = x(n) + (x(n) − x(1))
h(n)

1 − h(1) − h(n)

,

where h(1) = ∫ 1
0 {1 − G(y; θ)}ndy, h(n) = ∫ 1

0 {G(y; θ)}ndy, and G(y; θ) is the
distribution function of the beta distribution.

4. Stop if the Kolmogorov–Smirnov statistic supx |Fn(x) − F(x; θ, c, d)| takes the
minimum, where Fn(x) is the empirical distribution function of the generalized
beta distribution. Else, go to Step 2.

It can be seen that Step 2 computes a moment estimator of θ = (a, b) given (c, d),
and Step 3 computes an unbiased estimator of (c, d) given θ . Step 2 demands the
condition (x̄ − c)(d − x̄) > s, and there is no proof of convergence of the iteration.
In fact, in the following numerical studies by the authors, either of the condition or
the convergence sometimes fails.

1.2.4 A New Estimator of the Generalized Beta Distributions

Nagatsuka, Balakrishnan, and Kamakura [21, 22] proposed the NagaBalaKama
transform introduced in Sect. 1.2.1, but they used a conventional moment estima-
tor for the location parameters. Hall and Wang [14] and Wang [27] proposed the use
of empirical priors (1.2) and (1.6) for the estimation of the threshold, as we have
seen in Sect. 1.2.2.

Our new estimator is based on a small modification of the empirical priors for
the estimation of the location parameters. As seen, Hall and Wang’s empirical prior
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Fig. 1.1 Plots of
p = (p1(c))λ1 for different
λ1 with x(1) = 0 and
x(2) = 0.1. Solid line:
λ1 = 1; broken line:
λ1 → 0; dotted line:
λ1 = 0.5; chain: λ1 = 2
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(1.2) acts as a penalty depending on observations and the other parameters. We may
further introduce a smoothing (or regularization) parameter λ1 > 0 such that the
penalty becomes λ1 log(p1(c)), where if λ1 → 0, the estimation problem reduces to
the original irregular case, while λ1 = 1 gives the Hall and Wang’s empirical prior.
Note that (p1(c))λ1 can still be regarded as a prior distribution. Figure1.1 depicts
(p1(c))λ1 as a function of c for different λ1.

Let l(x; θ, c, d, λ), θ = (a, b), λ = (λ1, λ2), be our Bayesian log-likelihood,
which is obtained from (1.8) by replacing the penalty terms log(p1(c)) + log(p2(d))

with λ1 log(p1(c)) + λ2 log(p2(d)), i.e.,

l(x; θ, c, d, λ) = λ1 log(p1(c)) + λ2 log(p2(d)) + (the other four terms). (1.9)

From the estimating equations for the location-scale parameter (c, d), ∂l/∂c = 0 and
∂l/∂d = 0, we obtain

a = 1 +
nb
d−c − λ1

(
1

x(1)−c − 1
x(2)−c

)

∑n
i=1

(
1

x(i)−c − 1
d−c

) , b = 1 +
na
d−c − λ2

(
1

d−x(n)
− 1

d−x(n−1)

)

∑n
i=1

(
1

d−x(i)
− 1

d−c

) ,

(1.10)
respectively. Note that, when λ1 = λ2 = 0, a > 1 and b > 1. Hence, as we have
seen in Sect. 1.1, if the local maximum likelihood estimate exists, say (θ̂ , ĉ, d̂), then
both of the estimates of the shape parameter θ̂ = (â, b̂) must be greater than 1.
The Eq. (1.10), being combined with a > 0 and b > 0, constrain the location-scale
parameter:
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d − c

n

n∑

i=1

1 − λ2(δi,n − δi,n−1)

d − x(i)
> a + 1,

d − c

n

n∑

i=1

1 − λ1(δi,1 − δi,2)

x(i) − c
> b + 1.

In fact, it can be seen that if λ1 > 1, then c cannot be close to x(1), and if λ2 > 1,
then d cannot be close to x(n) (see the chain in Fig. 1.1).

Our new estimator is obtained by the following two steps.

1. The shape parameter θ is estimated solely by the NagaBalaKama transform just
once. The estimates θ̂ are the maximizers of the likelihood (1.7) free from the
location-scale parameters (c, d).

2. The estimate of the location-scale parameter, say (ĉ, d̂), is obtained by maxi-
mizing the Bayesian log-likelihood (1.9). The smoothing parameter λ̂ can be
determined by usual leave-one-out cross-validation, where we choose the mini-
mizer of the empirical cross-entropy (or the Kolmogorov–Smirnov statistics, as in
[17]) between the predictive distribution with estimated parameters and the true
distribution (deviance of the predictive distribution):

(λ̂1, λ̂2) = argmax
λ1,λ2

{

−1

n

n∑

i=1

log f (xi ; θ̂ , ĉ−i (λ), d̂−i (λ))

}

,

where (ĉ−i (λ), d̂−i (λ)) is the maximum likelihood estimate obtained by the sam-
ple with the i th observation being removed.

1.3 Evaluation and Application to a Historical Tsunami
Dataset

1.3.1 Evaluation of the New Estimator

The estimate of the shape parameter θ̂ = (â, b̂) maximizes the likelihood (1.7).
Although the authors do not have a rigorous proof of the existence, according to their
experience of numerical studies, the existence seems to hold for a large n. Once the
shape parameter is estimated, the estimate of the location-scale parameter, (ĉ, d̂),
is obtained by maximizing the Bayesian log-likelihood (1.9). In this subsection,
we discuss the step of estimation of the location-scale parameter. For simplicity of
notation, we omit hats from the shape parameter. In other words, we assume the
shape parameter is known.

Existence
We have

∂l

∂c
= − f (c) + n(a + b − 1)

d − c
,

∂l

∂d
= g(d) − n(a + b − 1)

d − c
,
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and

∂2l

∂c2
= − f ′(c) + n(a + b − 1)

(d − c)2
,

∂2l

∂d2
= g′(d) + n(a + b − 1)

(d − c)2
,

∂2l

∂c∂d
= −n(a + b − 1)

(d − c)2
,

where

f (c) =
n∑

i=1

a − 1 + λ1(δi,1 − δi,2)

x(i) − c
, (1.11)

g(d) =
n∑

i=1

b − 1 + λ2(δi,n − δi,n−1)

d − x(i)
. (1.12)

The estimating equations ∂l/∂c = ∂l/∂d = 0 demand

f (ĉ) = g(d̂) = n(a + b − 1)

d̂ − ĉ
, ĉ < x(1), d̂ > x(n). (1.13)

There are somany possible cases for the joint region of parameters (a, b) and (λ1, λ2)

which should be treated separately. There are two cases that the global maximum of
the Bayesian log-likelihood (1.9) satisfying (1.13) exists: i) a + b < 1 and “a >

max(0, 1 − λ1) or b > max(0, 1 − λ2)”; ii) max(a, b) > 2, a > max(0, 1 − λ1),
and b > max(0, 1 − λ2). They are demonstrated as Propositions 1.3 and 1.4, respec-
tively, in Appendix.

Remark The global maximum of the Bayesian log-likelihood (1.9) may satisfy
neither of (1.13) nor ĉ ∈ (−∞, x(1)) and d̂ ∈ (x(n),∞). A well-known example is
that for a, b ≤ 1 and λ1 = λ2 = 0, we have ĉ = x(1) and d̂ = x(n).

Limit distributions

Let us consider the limit distribution of the estimator of the location-shape parameter
(ĉ, d̂) with known shape parameter θ = (a, b). If min(a, b) > 2, the estimators of
the location-scale parameters have the same asymptotic properties as in usual regular
cases, since the smoothing terms in Bayesian log-likelihood (1.9) do not alter first-
order asymptotic properties of the maximum likelihood estimator. Since the case of
min(a, b) > 2 without the smoothing terms was discussed thoroughly by Carnahan
[6],wemay concentrate on the caseswithmax(a, b) ≤ 2. In this paper,we discuss the
cases of (a, b) ∈ (0, 1)2 and (a, b) ∈ (1, 2)2 by followingHall andWang’s arguments
[14]. Other cases can be discussed similarly. The extremes X(1) and X(n) of an iid
sample from the generalized beta distribution of pdf (1.5) are in the domain of
attraction of the reverse Weibull distribution [10], whose distribution function is
�α(x) = e−(−x)α , x < 0. In fact, it can be seen that

η1 = (c − X(1))n1/a

(B(a, b)a)1/a(d − c)
and ζ1 = (X(n) − d)n1/b

(B(a, b)b)1/b(d − c)
(1.14)
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follow �a(·) and �b(·), respectively. The following theorem by Hall [12] is useful
to discuss the limit distribution of the estimator of the location-scale parameter.

Theorem 1.1 ([12]) Suppose an iid sample (X1, ..., Xn) from a distribution which
is in the domain of attraction of the reverse Weibull distribution, whose distribution
function is �α(x). Let the limit of the random vector

((X(n) − bn)/an, ..., (X(n−r+1) − bn)/an)

be (ξ1, ..., ξr ), r ≥ 1, where an and bn are sequences of constants chosen such that
the vector has a non-degenerate limit. Define the random variables ξ̃i by

ξ̃
(α)
i = − exp

⎡

⎣− 1

α

⎧
⎨

⎩

∞∑

j=i

E j − 1

j
+ γ −

i−1∑

j=1

1

j

⎫
⎬

⎭

⎤

⎦ , i ≥ 1, (1.15)

where the second summation is 0 if i = 1. Then, (ξi ; i ≥ 1)
d= (ξ̃

(α)
i ; i ≥ 1). Here,

E1, E2, ... are independent exponential random variables with mean 1, and γ is the
Euler–Mascheroni constant.

Next, we prepare the following lemma on the asymptotic independence of the r -
maxima and the r -minima of an iid sequence for each r ≥ 1. Although the assertion
is elementary, the authors could not find it in the literature. The case of r = 1 for an
iid sequence was discussed in, for example, [24], and that for a stationary sequence
was considered by Davis [8, 9] and a sufficient condition was given as Proposition
3.1 of [9].

Lemma 1.1 For an iid sequence (X1, ..., Xn) following a continuous distribution,
the random vectors

((X(n) − bn)/an, ..., (X(n−r+1) − bn)/an), ((X(1) − b′
n)/a

′
n, ..., (X(r) − b′

n)/a
′
n)

for each r ≥ 1, where an, bn, a′
n, and b′

n are sequences of constants chosen such
that each vector has the non-degenerate limit, are asymptotically independent as
n → ∞.

Proof The independence of the two random vectors means

P(X(n) ∈ I1, ..., X(n−r+1) ∈ Ir , X(1) ∈ J1, ..., X(r) ∈ Jr )

= P(X(n) ∈ I1, ..., X(n−r+1) ∈ Ir )P(X(1) ∈ J1, ..., X(r) ∈ Jr ),

for all sets of intervals Ii = (x (L)
i , x (R)

i ) with x (R)
i+1 ≤ x (L)

i and Jj = (y(L)
j , y(R)

j ) with

y(R)
j ≤ y(L)

j+1. We will consider the case that x (R)
i+1 = x (L)

i = xi , i ∈ {0, ..., r}, with
x (R)
1 = ∞ and x (L)

r = xr , and y(R)
j = y(L)

j+1 = y j , j ∈ {0, ..., r}, with y(L)
1 = −∞ and
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y(R)
r = yr . Other cases can be shown in a similar manner. Let us introduce the counts
of (X(n), ..., X(n−r+1)) and (X(1), ..., X(r)):

Ci = #{ j : vi = vn(xi ) > X j ≥ vn(xi+1) = vi+1, j ∈ {1, ..., n}}
Di = #{ j : ui+1 = un(yi+1) ≥ X j > u(yi ) = ui , j ∈ {1, ..., n}}, i ∈ {0, ..., r − 1},

where un(x) = anx + bn and vn(y) = a′
n y + b′

n . To establish the asymptotic inde-
pendence, it is sufficient to show that

P(C0 = c0, ...,Cr−1 = cr−1, D0 = d0, ..., Dr−1 = dr−1)

→ P(C0 = c0, ...,Cr−1 = cr−1)P(D0 = d0, ..., Dr−1 = dr−1), n → ∞.

(1.16)

The left-hand side of (1.16) leads to

[n]∑
i (ci+di )

∏r−1
i=0 ci !di !

(F(ur ) − F(vr ))
n−∑

i (ci+di )
r−1∏

i=0

(F(ui ) − F(ui+1))
di (F(vi+1) − F(vi ))

ci

→ G(xr )(1 − G ′(yr ))
∏r−1

i=0 ci !di !
r−1∏

i=0

log
G(xi )

G(xi+1)
log

1 − G ′(yi )
1 − G ′(yi+1)

,

where [n]i = n(n − 1) · · · (n − i + 1) and F(x) = P(X < x). To derive the limit,
n{1 − F(un(x))} → − logG(x) with G(x) = P(X(n) < x) and −nF(vn(y)) → −
log(1 − G ′(y)) with G ′(y) = P(X(1) < y) are used (see, for example, Sect. 1.1 of
[11]). The second factor of the right-hand side of (1.16) leads to

[n]∑
i di

∏r−1
i=0 di !

(F(ur ))
n−∑

i di
r−1∏

i=0

(F(ui ) − F(ui+1))
di → G(xr )

∏r−1
i=0 di !

r−1∏

i=0

log
G(xi )

G(xi+1)
.

The product of this limit and the limit of the first factor of the right-hand side of
(1.16) equal the limit of the left-hand side of (1.16). �

The following proposition holds if (a, b) ∈ (0, 1)2.

Proposition 1.1 For the Bayesian log-likelihood (1.9) of an iid sample from the
generalized beta distribution of the density (1.5) with a known shape parameter θ =
(a, b) ∈ (0, 1)2, the maximum likelihood estimate of the location-scale parameter
(ĉ, d̂) satisfies

(
(c − ĉ)n1/a

(B(a, b)a)1/a(d − c)
,

(d̂ − d)n1/b

(B(a, b)b)1/b(d − c)

)
d→ (η, ζ ),

where (η, ζ ) is the solutions of the random equations f̃1(η) = g̃1(ζ ) = 0, which
maximize (1.9) with
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f̃1(η) =
∞∑

i=1

a − 1 + λ1(δi,1 − δi,2)

ηi − η
, g̃1(ζ ) =

∞∑

i=1

b − 1 + λ2(δi,1 − δi,2)

ζ − ζi
.

Here, the sequences of random coefficients (ηi ; i ≥ 1) and (ζi ; i ≥ 1) satisfy (ηi ; i ≥
1)

d= (ξ̃
(a)
i ; i ≥ 1) and (ζi ; i ≥ 1)

d= (ξ̃
(b)
i ; i ≥ 1) independently.

Proof The estimating equations are asymptotically equivalent to

n∑

i=1

(B(a, b)a)1/a(d − c){a − 1 + λ1(δi,1 − δi,2)}
{(c − ĉ) + (x(i) − c)}n1/a = 0

and
n∑

i=1

(B(a, b)b)1/b(d − c){b − 1 + λ2(δn−i+1,n − δn−i+1,n−1)}
{(d̂ − d) + (d − x(n−i+1))}n1/b

= 0

with n → ∞. The solutions of truncated equations

r∑

i=1

(B(a, b)a)1/a(d − c){a − 1 + λ1(δi,1 − δi,2)}
{(c − ĉ) + (x(i) − c)}n1/a = 0 (1.17)

and

r∑

i=1

(B(a, b)b)1/b(d − c){b − 1 + λ2(δn−i+1,n − δn−i+1,n−1)}
{(d̂ − d) + (d − x(n−i+1))}n1/a

= 0 (1.18)

are asymptotically independent for r ≥ 1, since (x(1), ..., x(r)) and (x(n), ..., x(n−r+1))

are asymptotically independent byvirtue ofLemma1.1. Theorem1.1 and (1.14) show
that the distributions of the solutions of (1.17) and (1.18) converge to those of the
solutions of the random equations f̃ (r)

1 (η) = 0 and g̃(r)
1 (ζ ) = 0, respectively, where

f̃ (r)
1 (η) =

r∑

i=1

a − 1 + λ1(δi,1 − δi,2)

ηi − η
, g̃(r)

1 (ζ ) =
r∑

i=1

b − 1 + λ2(δi,1 − δi,2)

ζ − ζi
,

ηi = (c − x(i))n1/a

(B(a, b)a)1/a(d − c)
, ζi = (x(n−i+1) − d)n1/b

(B(a, b)b)1/b(d − c)
,

η = (c − ĉ)n1/a

(B(a, b)a)1/a(d − c)
, ζ = (d̂ − d)n1/b

(B(a, b)b)1/b(d − c)
,

and (ηi ; i ≥ 1)
d= (ξ̃

(a)
i ; i ≥ 1) and (ζi ; i ≥ 1)

d= (ξ̃
(b)
i ; i ≥ 1). Finally, let r → ∞.

For the case of (a, b) ∈ (1, 2)2, a useful fact is that the random variable 1/X ,
where X follows the generalized beta distribution of pdf (1.5), is in the domain of
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attraction of the stable distribution. In fact, it can be seen that

(B(a, b)a)1/a
d − c

a − 1

{

−
n∑

i=1

a − 1

(x(i) − c)n1/a
+ a + b − 1

(d − c)n1/b−1

}
d→ Za (1.19)

and

(B(a, b)b)1/b
d − c

b − 1

{
n∑

i=1

b − 1

(d − x(n−i+1))n1/b
− a + b − 1

(d − c)n1/b−1

}
d→ Zb, (1.20)

where Zα denotes the stable distribution of parameter α. The following proposition
gives the asymptotic distribution of the estimator of the location-scale parameter. It
can be proved in a similar way as Proposition 1.1, but the joint convergence of the
sequence in Theorem 1.1, (1.19), and (1.20) is needed. See [5, 13, 14]. �

Proposition 1.2 For the Bayesian log-likelihood (1.9) of an iid sample from the
generalized beta distribution of the density (1.5) with a known shape parameter θ =
(a, b) ∈ (1, 2)2, the maximum likelihood estimate of the location-scale parameter
(ĉ, d̂) satisfies

(
(c − ĉ)n1/a

(B(a, b)a)1/a(d − c)
,

(d̂ − d)n1/b

(B(a, b)b)1/b(d − c)

)
d→ (η, ζ ),

whereη and ζ are themaximum likelihood solutions of the randomequations f̃2(η) =
g̃2(ζ ) = 0 which maximize (1.9) with

f̃2(η) = a − 1 + λ2

η1 − η
+ a − 1 − λ2

η2 − η
+ (a − 1)

(

−η−1
1 − η−1

2 +
∞∑

i=3

η

ηi (ηi − η)
+ Za

)

.

g̃2(ζ ) = b − 1 + λ2

ζ − ζ1
+ b − 1 − λ2

ζ − ζ2
+ (b − 1)

(

ζ−1
1 + ζ−1

2 +
∞∑

i=3

ζ

ζi (ζ − ζi )
+ Zb

)

.

Here, Za and Zb are independent random variables following the stable distribution
of parameters a and b, respectively, and the sequences of random coefficients (ηi ; i ≥
1) and (ζi ; i ≥ 1) satisfy (ηi ; i ≥ 1)

d= (ξ̃
(a)
i ; i ≥ 1) and (ζi ; i ≥ 1)

d= (ξ̃
(b)
i ; i ≥ 1)

independently.

Remark Based on a numerical study, Wang [27] anticipated that “we may expect
that they (ĉ and d̂) are asymptotically independent”. Propositions 1.1 and 1.2 confirm
the anticipation. Note that if min(a, b) > 2, ĉ and d̂ are dependent [6].

Numerical Evaluation

The estimates of parameters (θ̂ , ĉ, d̂) with the empirical priors (1.6) were computed
for simulated data from the beta distribution with various shape parameter θ . The
location-scale parameter was fixed as (c, d) = (0, 1) and the smoothing parameter
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was fixed as (λ1, λ2) = (1, 1). To obtain the estimates of the shape parameter θ̂ ,
we used the Nelder–Mead optimization, where the likelihood (1.7) was evaluated
numerically in each iteration by the Gaussian quadrature implemented integral2
in pracma package of R with some modification. The search was restricted to be
(â, b̂) ∈ (0, 100)2. To obtain the estimate of the location-scale parameter, (ĉ, d̂), we
used the L-BFGS-B algorithm implemented in optim of R, where the search was
restricted to be ĉ ∈ (−5, x(1)) and d̂ ∈ (x(n), 6). Initial values were set to be the true
values. The bias and root mean squared errors (RMSE) of the estimators are tabulated
in Tables1.1 (n = 30) and 1.2 (n = 100). We also implemented Wang’s method
introduced in Sect. 1.2.2 and Kachiashvili et al.’s method introduced in Sect. 1.2.3.
The new method and Kachiashvili et al.’s method are indicated as NBK and Kach,
respectively. As previously mentioned, Wang’s method frequently fails to yield the
estimates for small n (see Sect. 1.2.2) and Kachiashvili et al.’s method also some
times fails (see Sect. 1.2.3). Table1.3 shows the frequency with which the estimates
were not available. Due to the poor property of Wang’s method, comparison of the
performance of the methods including Wang’s method was quite fragile. Therefore,
for each simulated data, we firstly applied Wang’s method, and if Wang’s method
successfully found the estimates, then we applied Kachiashvili et al.’s method. If
Kachiashvili et al.’s method also founds the estimates, the new method was applied.
The new method also failed in some instances, but the frequency was significantly
smaller than that of Wang’s method and Kachiashvili et al.’s method. The number
of replicates, 1000, in Tables1.1 and 1.2 is the number of simulated data for which
all of the three methods successfully gave the estimates. From these results, we note
the following.

• For the estimation of the location-scale parameter, the new estimator almost always
overperformed Wang’s estimator in terms of both the bias and RMSE. For the
shape parameter, the new estimator overperformed Wang’s estimator if either a or
b was large (larger than or equal to 2). The latter trend on the shape parameter is
consistent with the observations by Nagatsuka et al. in the three-parameter gamma
and Weibull distributions [21, 22].

• For n = 30 if either a or b was large (larger than or equal with 2), the RMSE
of Wang’s estimator and that of Kachiashvili et al.’s estimator were huge. This
observation is consistent with the finding by Carnahan [6] for min(a, b) > 2 (the
limit distribution of Wang’s estimator is identical to that of Carnahan’s estimator).
Carnahan concluded that “only for large samples (n ≥ 1000), the bias in the esti-
mates becomes small and the Cramér–Rao bound gives a good approximation for
their variance”.

• Kachiashvili et al.’s estimator is significantly biased if either a or b was large
(equal with 5), as was reported in Fig. 1 and Table2 of [17].

Note that the results displayed in Tables1.1 and 1.2 are conditional; they are based
on simulated data for which all of Wang’s method, Kachiashvili et al.’s, and the new
method successfully provided the estimates. In addition, the actual performance of
Wang’s estimator and the new estimator could be worse if local maxima appear,
because their iterations started from the true value. As Table1.3 shows, a significant
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Table 1.1 Bias and RMSE of estimates with c = 0, d = 1, n = 30. Number of replications: 1000

â b̂ ĉ d̂

(a, b) Method Bias RMSE Bias RMSE Bias RMSE Bias RMSE

(0.5, 0.5) Kach 0.008 0.176 0.005 0.201 -0.003 0.015 0.003 0.021

Wang 0.048 0.170 0.044 0.175 0.001 0.012 -0.001 0.014

NBK 0.073 0.199 0.069 0.220 0.000 0.013 -0.000 0.019

(1, 1) Kach 0.162 1.105 0.187 1.664 -0.002 0.084 0.020 0.132

Wang 0.188 1.647 0.235 2.360 -0.005 0.094 0.011 0.213

NBK 0.251 0.895 0.288 2.426 -0.010 0.077 0.011 0.177

(2, 2) Kach 1.505 7.433 1.592 8.198 -0.074 0.334 0.076 0.346

Wang 1.713 6.743 1.938 7.835 -0.077 0.389 0.089 0.445

NBK 0.754 4.533 0.681 3.689 -0.029 0.277 0.023 0.232

(5, 5) Kach 1.853 11.281 1.630 11.347 -0.051 0.421 0.031 0.415

Wang 4.975 16.440 4.638 16.016 -0.140 0.644 0.118 0.603

NBK 0.050 2.119 -0.100 0.887 -0.003 0.183 -0.013 0.110

(1, 0.5) Kach 0.194 2.706 0.020 0.239 -0.040 0.336 0.002 0.009

Wang 0.165 0.818 0.044 0.180 -0.009 0.144 -0.000 0.006

NBK 0.380 2.033 0.066 0.198 -0.044 0.333 -0.000 0.006

(2, 0.5) Kach 0.932 5.759 0.017 0.195 -0.222 1.294 0.001 0.004

Wang 0.739 3.030 0.033 0.142 -0.141 0.720 -0.000 0.002

NBK 0.472 2.061 0.038 0.148 -0.072 0.484 -0.000 0.002

(5, 0.5) Kach -0.267 10.070 -0.038 0.164 0.093 1.301 0.000 0.001

Wang 0.927 8.315 0.010 0.119 -0.035 1.090 -0.000 0.001

NBK 0.062 1.216 0.033 0.125 0.032 0.277 -0.000 0.001

(2, 1) Kach 0.961 5.593 0.108 0.772 -0.120 0.685 0.007 0.038

Wang 1.303 5.779 0.117 0.763 -0.139 0.683 -0.000 0.034

NBK 0.959 4.267 0.138 0.563 -0.093 0.505 -0.000 0.027

(5, 1) Kach 0.852 10.804 -0.041 0.625 -0.058 1.276 0.002 0.015

Wang 1.566 9.859 -0.001 0.866 -0.096 1.035 -0.001 0.019

NBK 0.159 2.987 0.090 0.641 0.024 0.293 -0.001 0.014

(5, 2) Kach 2.125 12.041 0.161 1.903 -0.130 1.006 0.007 0.073

Wang 5.203 17.713 0.570 3.352 -0.254 1.068 0.006 0.094

NBK 0.095 2.570 0.225 1.453 0.025 0.189 0.000 0.056

proportion of simulated data were discarded, especially if either a or b is large (larger
than or equal to 2). Therefore, the actual performance of these estimators should
be worse than the results displayed in Tables1.1 and 1.2. In fact, the performance
observed in Tables1.4 and 1.5 for the cases of (λ1, λ2) = (1, 1) are worse than that
in Tables1.1 and 1.2.

To see the influence of the choice of the smoothing parameterλ on the performance
of the new estimator, the estimates of parameters (θ̂ , ĉ, d̂) with the Bayesian log-
likelihood (1.9) were computed for simulated data from the beta distribution with
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Table 1.2 Bias and RMSE of estimates with c = 0, d = 1, n = 100. Number of replications: 1000

â b̂ ĉ d̂

(a, b) Method Bias RMSE Bias RMSE Bias RMSE Bias RMSE

(0.5, 0.5) Kach 0.001 0.084 0.001 0.084 -0.000 0.001 0.000 0.001

Wang 0.016 0.069 0.016 0.069 0.000 0.001 -0.000 0.001

NBK 0.016 0.074 0.017 0.074 0.000 0.001 -0.000 0.001

(1, 1) Kach 0.007 0.182 0.004 0.184 -0.001 0.012 0.001 0.012

Wang -0.004 0.161 -0.008 0.167 0.004 0.011 -0.004 0.012

NBK 0.045 0.181 0.040 0.184 0.002 0.012 -0.002 0.012

(2, 2) Kach 0.006 0.659 -0.011 0.641 -0.004 0.055 0.001 0.053

Wang 0.002 0.695 -0.018 0.652 0.005 0.058 -0.008 0.053

NBK 0.045 0.631 0.025 0.585 0.003 0.055 -0.005 0.049

(5, 5) Kach 1.358 8.757 1.354 9.552 -0.033 0.274 0.031 0.287

Wang 0.829 5.034 0.780 5.049 -0.014 0.205 0.011 0.199

NBK 0.130 3.507 0.104 4.210 -0.002 0.151 -0.002 0.173

(1, 0.5) Kach 0.001 0.185 0.004 0.084 -0.002 0.024 0.000 0.001

Wang 0.019 0.175 0.016 0.066 0.006 0.024 -0.000 0.000

NBK 0.049 0.194 0.018 0.072 0.004 0.025 -0.000 0.000

(2, 0.5) Kach -0.005 0.826 -0.009 0.089 -0.010 0.173 0.000 0.000

Wang 0.191 1.078 0.016 0.065 -0.020 0.252 0.000 0.000

NBK 0.214 1.180 0.009 0.068 -0.036 0.284 -0.000 0.000

(5, 0.5) Kach -0.132 6.214 -0.022 0.094 -0.004 0.965 -0.000 0.000

Wang 1.957 6.721 0.026 0.065 -0.247 1.001 0.000 0.000

NBK 0.186 2.428 0.011 0.058 -0.014 0.297 -0.000 0.000

(2, 1) Kach 0.050 0.713 0.010 0.200 -0.009 0.102 0.001 0.007

Wang 0.008 0.685 -0.006 0.173 0.009 0.104 -0.002 0.006

NBK 0.118 0.753 0.031 0.180 -0.003 0.114 -0.002 0.006

(5, 1) Kach 2.014 11.312 -0.032 0.221 -0.256 1.406 0.000 0.003

Wang 0.681 5.201 -0.029 0.166 -0.076 0.651 -0.001 0.002

NBK 0.506 5.025 0.008 0.144 -0.042 0.516 -0.001 0.002

(5, 2) Kach 2.253 11.004 0.028 0.753 -0.184 0.908 0.002 0.025

Wang 0.843 6.044 -0.053 0.644 -0.059 0.500 -0.005 0.023

NBK 0.271 3.850 -0.014 0.537 -0.014 0.312 -0.003 0.022

various shape parameter θ and smoothing parameter λ. The bias and RMSE of the
estimators are tabulated in Tables1.4 ((a, b) = (5, 5), (2, 2), (1, 1), (0.5, 0.5)) and
Table1.5 ((a, b) = (2, 1)).

In the last column, the bias is the sum of absolute values of the biases of (ĉ, d̂),
and the RMSE is the square root of the sum of MSEs of (ĉ, d̂). From these results,
we note the following.



18 S. Mano and M. Sibuya

Table 1.3 Frequencywithwhich the parameter estimateswere not available in producingTables1.1
and 1.2

n 30 100

(a, b) Wang Kach NBK Wang Kach NBK

(0.5, 0.5) 9 0 0 2 0 0

(1, 1) 4 0 9 2 0 0

(2, 2) 13 9 15 1 1 0

(5, 5) 91 43 20 49 22 8

(1, 0.5) 6 1 0 1 0 0

(2, 0.5) 81 5 3 0 0 0

(5, 0.5) 337 14 0 163 14 1

(2, 1) 31 9 11 2 0 0

(5, 1) 213 66 31 47 26 8

(5, 2) 111 53 28 10 54 6

Table 1.4 Bias and RMSE of estimates with c = 0, d = 1, n = 100. Number of replications: 1000

â b̂ ĉ d̂ Loc.-Scale

(a, b) (λ1, λ2) Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE

(5, 5) (2, 2) 0.380 6.002 0.307 4.977 -0.014 0.197 -0.007 0.237 0.022 0.308

(1, 1) -0.012 0.197 -0.009 0.236 0.022 0.307

(0.5, 0.5) -0.010 0.196 -0.012 0.236 0.022 0.307

(0, 0) -0.008 0.196 -0.014 0.235 0.022 0.306

Cramér-
Rao

3.033 3.033 0.143 0.143 0.202

(2, 2) (2, 2) 0.040 0.642 0.042 0.624 -0.009 0.055 0.007 0.063 0.016 0.084

(1, 1) -0.005 0.055 0.004 0.063 0.009 0.083

(.5, .5) -0.001 0.054 -0.000 0.062 0.001 0.082

(0, 0) 0.004 0.054 -0.005 0.062 0.009 0.082

(1, 1) (2, 2) 0.046 0.178 0.044 0.177 -0.007 0.015 0.005 0.015 0.012 0.022

(1, 1) -0.004 0.014 0.003 0.014 0.007 0.019

(0.5, 0.5) -0.001 0.012 0.000 0.013 0.002 0.018

(0, 0) 0.002 0.011 -0.003 0.012 0.005 0.017

(0.5, 0.5) (2, 2) 0.017 0.076 0.013 0.070 -0.001 0.002 0.001 0.002 0.001 0.002

(1, 1) -0.000 0.001 -0.000 0.001 0.001 0.002

(0.5, 0.5) -0.000 0.001 0.000 0.001 0.000 0.002

(0, 0) 0.000 0.001 -0.000 0.001 0.000 0.002
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Table 1.5 Bias and RMSE of estimates with (a, b, c, d) = (2, 1, 0, 1), n = 100. Number of repli-
cations: 1000. Bias and RMSE of â is 0.114 and 0.693, respectively, and Bias and RMSE of b̂ is
0.030 and 0.186, respectively

ĉ d̂ Loc.-Scale

(λ1, λ2) Bias RMSE Bias RMSE Bias RMSE

(2, 2) -0.022 0.107 0.002 0.033 0.024 0.111

(2, 1) -0.022 0.106 0.001 0.032 0.022 0.111

(2, 0.5) -0.021 0.105 -0.001 0.032 0.022 0.110

(2, 0) -0.020 0.105 -0.002 0.032 0.022 0.110

(1, 2) -0.017 0.106 0.002 0.033 0.019 0.110

(1, 1) -0.017 0.105 0.001 0.032 0.017 0.110

(1, 0.5) -0.016 0.104 -0.001 0.032 0.017 0.109

(1, 0) -0.015 0.104 -0.002 0.032 0.017 0.109

(0.5, 2) -0.012 0.105 0.002 0.033 0.014 0.110

(0.5, 1) -0.011 0.104 0.001 0.032 0.012 0.109

(0.5, 0.5) -0.010 0.104 -0.001 0.032 0.011 0.109

(0.5, 0) -0.010 0.103 -0.002 0.032 0.012 0.108

(0, 2) -0.005 0.105 0.002 0.033 0.007 0.110

(0, 1) -0.005 0.104 0.001 0.032 0.005 0.109

(0, 0.5) -0.004 0.104 -0.001 0.032 0.004 0.109

(0, 0) -0.003 0.103 -0.002 0.032 0.005 0.108

• When a = b, the RMSE of the location-scale parameter increases with increase
of λ, while the bias once decreases and then increases. Without smoothing (λ =
(0, 0)), ĉ has positive bias and d̂ has negative bias when a = b ≤ 2. This trend is
anticipated since ĉ = x(1) and d̂ = x(n) if a = b ≤ 1.

• When (a, b) = (2, 1), the RMSE of the location-scale parameter increases with
increase in λ. For each fixed λ1 (λ2), the bias of location-scale parameter once
decreases and then increases with increase in λ2 (λ1). The bias of d̂ is negative if
λ2 is small and positive if λ2 is large, while that of ĉ is always negative.

The behavior of bias of the location-scale parameter is anticipated from the prop-
erty of the smoothing terms observed in Fig. 1.1 (see Sect. 1.2.4), but we did not
expect RMSEs to increase with the increase of the smoothing parameters λ. The
empirical prior (1.6) resolves the bias coming from the non-regularity of the esti-
mation, but it would not be optimal from the viewpoint of prediction. This finding
strongly motivates us to choose the optimal smoothing parameter λ.



20 S. Mano and M. Sibuya

1.3.2 Fitting the Generalized Beta Distribution to a Historical
Tsunami Dataset

Seismic magnitude scales measure the strength of earthquakes, and several scales are
used according to the purpose of the scale used and the method of measurement. The
Richter magnitude scale was once dominant; it is based on the maximum amplitude
of horizontal ground-shaking. Recent magnitude scales tend to measure the energy
of earthquakes, however, their values are still close to the Richter scale to match the
shaking.

Abe considered measuring the scale of earthquakes that caused a large tsunami,
and proposed the tsunami magnitude scale Mt , based on the tsunami-wave amplitude
caused by an ocean bed earthquake, measured by tide gauges, [1]. His catalog of
tsunami magnitudes, [2], contained 160 tsunamis observed in Japan from 1894 to
2006. They were all available data since the start of daily tide level measurement
at regular times. The dataset was analyzed by Sibuya and Takahashi [25] fitting the
generalized Pareto distribution, based on the extreme value statistics theory.

Later, Abe [3] remarked that run-up height, i.e., the height reached by a tsunami
on the ground above sea level, can replace the tsunami-wave amplitude, and he
extended his catalog to an earlier time, surveying documents, monuments, ruins, and
geological layers. The new catalog contained 21 records and went back to 1498.

In reality, the data from the earlier period of his"modern" catalog (1894–2006) are
incomplete; the number of tide gauges is less, and missing data are not negligible.
Hence, the “historical" period includes 1498–1920, and the number of records is
augmented to 31 with the range Mt , (6.7, 8.6). The year-Mt pairs are plotted in
Fig. 1.2, which suggests that records of smaller magnitudes disappear faster from
people’s memory.

An advanced approach to natural disasters assumes time-position pair of an event,
{(t, x)}, as the Poisson point process, homogeneous or nonhomogeneous, and the
loss or size of the event Y , as the marked point process {Y (t, x)}. See Ogata (2015).

Fig. 1.2 Historical
Tsunami-Magnitude dataset:
Mt versus years before 1920
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Fig. 1.3 Years |t | of the
historical dataset, t : years
before 1920

Fig. 1.4 Histogram of
tsunami magnitude, y = Mt ,
of historical dataset, and the
fitted generalized beta
density

Here, for simplicity, we assume the year and tsunami magnitude pair, (t, y = Mt ), is
a Poisson point process, which is t-homogeneous, and that t and y are independent.
The availability wi of the event (ti , yi ) at time t = 0 is TRUE(= 1) or FALSE(= 0),
and we assume the probability P{wi = TRUE|ti , yi } =: p(ti , yi ) to decrease to 0
when |ti | → ∞ and increase to 1 when yi → ∞. That is, the historical dataset is
the conditional process (t, y|w = 1) of the marked Poisson point process. Figure1.3
suggests the exponentiality of |t |, and in fact all q-values of the exponentiality tests
in the R package are not small (it appears that tsunamis with smaller magnitude
are intentionally or unintentionally neglected). Hence, the question is the marginal
distribution of y = Mt . See, its histogram, Fig. 1.4.

Further,we assume the persisting probability is factorized p(ti , yi )=pt (ti )pM(yi ).
Then, the marginal distribution P{wi = 1|yi } = pM(yi ) can be analyzed disregard-
ing the othermarginal P{wi = 1|ti } = pt (ti ). Themissing data is time-homogeneous
Poisson process, with intensity per year, say, η, and 1/η̂ = ¯|t | = 132.6, which
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means the half-life-period is log(2)/η̂ = 91.9, which looks plausible. Compared
with modern-time data of the same range of tsunami magnitude, the intensity is
5.3%.

In the modern tsunami magnitude dataset, the threshold excess x = y − c of
the tsunami magnitude y with a large enough threshold c can be modeled by the
generalized Pareto distributions [25]. Their distribution function with the restricted
parameter is

GP(y; ξ, σ ) = 1 −
(
1 + ξ

x

σ

)−1/ξ
, ξ < 0, 0 < x < −σ/ξ,

= 1 −
(

1 − y − c

d − c

)b

, b = −1/ξ, d = c − σ/ξ.

It is reasonable to assume the range of pM(y) equal to (c, d), and the following is
adopted as a simple candidate:

pM(y) = a

(d − c)a
(y − c)a−1, c < y < d, a > 0.

Hence, by Bayes’ rule, a tsunami magnitude in a historical record f (y|w = 1) ∝
pM(y)dGP/dy follows the generalized beta distribution (1.5).

By the method developed in Sect. 1.3.2, the parameters (a, b) and (c, d) were
estimated, with λ=(0.9, 0.0). The estimated values were (â, b̂)=(2.885, 1.317) and
(ĉ, d̂) = (6.253, 8.618). We used (a, b) = (2, 2) and (c, d) = (x(1) − 1, x(n) + 1) as
the initial values, but the estimated values did not depend on the initial values. The
pdf of the generalized beta distribution with these parameters is shown along with
the histogram of the dataset; see Fig. 1.4. Let Q denote the probability of the tsunami
of the magnitude over the experienced ones

Q := P{Y > y(n); a, b, c, d} = P

{

X >
y(n) − c

d − c
; a, b

}

.

The plug-in estimate of Q, at 1920, over the record Mt = 8.6 was Q̂ = 0.0057, a
small but non-negligible value.

Let us see the confidence interval of (ĉ, d̂). In Sect. 1.3.1, we have discussed the
asymptotic distribution of the estimator of the location-scale parameter (ĉ, d̂) when
the shape parameter θ = (a, b) are known. Here, we are interested in the confidence
interval when θ are unknown.Moreover, the asymptotic distributions displayed there
are too complicated for actual use. A practical alternative is the use of the bootstrap.
Figure1.5 shows (ĉ, d̂) obtained by the parametric bootstrap with 500 resamplings.
The double bootstrap has an advantage in terms of asymptotic convergence rate [20].
The double bootstrap estimates of the marginal confidence intervals of ĉ and d̂ were
[−2.912, 7.201] and [8.388, 8.842], respectively, where 200 bootstrap resamplings
were conducted for each of the samples obtained by the 500 bootstrap resamplings
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Fig. 1.5 Plot of (ĉ, d̂)

obtained by 500 bootstrap
resamplings
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to calibrate the confidence levels. The long confidence interval of ĉmay come from a
property of historical data,where the threshold to be recorded is generally ambiguous.

Acknowledgements The authors would like to thank the referee for drawing their attention to
Kachiashvili et al. works [16, 17].

Appendix

Proposition 1.3 For the Bayesian log-likelihood (1.9) of an iid sample (x1, ..., xn)
from the generalized beta distribution of the density (1.5) with shape parameter θ =
(a, b), a + b < 1, and “a > max(0, 1 − λ1) or b > max(0, 1 − λ2)” known, there
exists the red global maximum likelihood estimate of the location-scale parameter
(ĉ, d̂) such that ĉ ∈ (−∞, x(1)) and d̂ ∈ (x(n),∞) for large n.

Proof Let us consider the continuous function (1.11), that is,

f (c) = a − 1 + λ1

x(1) − c
+ a − 1 − λ1

x(2) − c
+

n∑

i=3

a − 1

x(i) − c
.

Since f (c) ∼ (a − 1 + λ1)/(x(1) − c) → +∞ as c ↑ x(1) and f (c) ∼ n(1 − a)/

c → −0 as c → −∞, there exists a solution of f (c) = 0 in c ∈ (−∞, x(1)). The
solution is unique as follows. Suppose we have two solutions of f (c) = 0, say c1
and c2. Since
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a − 1 + λ1 = (1 + λ1 − a)
x(1) − c1
x(2) − c1

+ (1 − a)

n∑

i=3

x(1) − c1
x(i) − c1

= (1 + λ1 − a)
x(1) − c2
x(2) − c2

+ (1 − a)

n∑

i=3

x(1) − c2
x(i) − c2

,

we observe
{

(1 + λ1 − a)(x(2) − x(1))

(x(2) − c1)(x(2) − c2)
+

n∑

i=3

(1 − a)(x(i) − x(1))

(x(i) − c1)(x(i) − c2)

}

(c2 − c1) = 0,

which holds if and only if c1 = c2. Let us denote the unique solution of f (c) = 0 as
c0. In the samemanner, we can show that the solution of f ′(c) = 0 in c ∈ (−∞, x(1))

is also unique. Let us denote the solution as c′. Since

f ′(c0) = a − 1 + λ1

(x(1) − c0)2
+ a − 1 − λ1

(x(2) − c0)2
+

n∑

i=3

a − 1

(x(i) − c0)2

>
1 − a

a − 1 + λ1

{
2(1 + λ1 − a)

(x(2) − c0)2
+

n∑

i=3

1

x(i) − c0

(
2 − λ1 − 2a

x(i) − c0
+ 2(1 + λ1 − a)

x(2) − c0

)}

>
1 − a

a − 1 + λ1

{
2(1 + λ1 − a)

(x(2) − c0)2
+

n∑

i=3

1

x(i) − c0

( −λ1

x(i) − c0
+ 2(1 + λ1 − a)

x(2) − c0

)}

>
1 − a

a − 1 + λ1

{
2(1 + λ1 − a)

(x(2) − c0)2
+

n∑

i=3

2 + λ1 − 2a

(x(i) − c0)(x(2) − c0)

}

> 0,

wehave c′ ∈ (−∞, c0)with f (c′) < 0. In the samemanner, it can be seen that g(d) =
0 has the unique solution d0 ∈ (x(n),∞), and g′(d) = 0 has the unique solution
d ′ ∈ (d0,∞) with g(d ′) < 0. By using the properties of the functions f (c) and g(d)

we have seen so far, we can choose (c̃, d̃) such that

f (c̃) = g(d̃) = n(a + b − 1)

d̂ − ĉ
< 0, f ′(c̃), g′(d̃) > 0

with c̃ ∈ (c′, c0) and d̃ ∈ (d ′,∞). The Hessian is negative definite at (c̃, d̃), because
the determinant is negative:

− f ′(c̃)g′(d̃) + n(a + b − 1)

(d̃ − c̃)2
{g′(d̃) − f ′(c̃)} < 0

for large n. Here, the first term dominates since f ′(c̃) = O(n2/a) and g′(d̃) =
O(n2/b) (see Theorem1.1). Hence, (c̃, d̃) is a maximum of the Bayesian log-
likelihood (1.9) for large n.
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Likewise, we have another maximum (c̃′, d̃ ′) with f ′(c̃′), g′(d̃ ′) < 0, and either
of (c̃, d̃) or (c̃′, d̃ ′) is the global maximum likelihood estimate of the location-scale
parameter. �

Proposition 1.4 For the Bayesian log-likelihood (1.9) of an iid sample (x1, ..., xn)
from the generalized beta distribution of the density (1.5) with shape parameter θ =
(a, b), max(a, b) > 2, a > max(0, 1 − λ1), and b > max(0, 1 − λ2) known, there
exists the global maximum likelihood estimate of the location-scale parameter (ĉ, d̂)

such that ĉ ∈ (−∞, x(1)) and d̂ ∈ (x(n),∞) for large n.

The proof is omitted since this proposition can be shown in a similar manner to
the proof of Proposition 1.3.
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Chapter 2
Resampling Procedures with Empirical
Beta Copulas

Anna Kiriliouk, Johan Segers, and Hideatsu Tsukahara

Abstract The empirical beta copula is a simple but effective smoother of the empir-
ical copula. Because it is a genuine copula, from which it is particularly easy to
sample, it is reasonable to expect that resampling procedures based on the empirical
beta copula are expedient and accurate. In this paper, after reviewing the literature
on some bootstrap approximations for the empirical copula process, we first show
the asymptotic equivalence of several bootstrapped processes related to the empiri-
cal and empirical beta copulas. Then we investigate the finite-sample properties of
resampling schemes based on the empirical (beta) copula by the Monte Carlo simu-
lation. More specifically, we consider interval estimation for functionals such as the
rank correlation coefficients and dependence parameters of several well-known fam-
ilies of copulas. Here, we construct confidence intervals using several methods and
compare their accuracy and efficiency. We also compute the actual size and power of
symmetry tests based on several resampling schemes for the empirical and empirical
beta copulas.
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2.1 Introduction

Let X i = (Xi1, . . . , Xid), i ∈ {1, . . . , n}, be independent and identically distributed
(i.i.d.) random vectors, and assume that the cumulative distribution function, F , of
X i is continuous. By Sklar’s theorem [20], there exists a unique copula, C , such that

F(x) = C
(
F1(x1), . . . , Fd(xd)

)
, x = (x1, . . . , xd) ∈ R

d ,

where Fj is the j th marginal distribution function of F . In fact, in the continu-
ous case, we have C(u) = F

(
F−
1 (u1), . . . , F

−
d (ud)

)
for u = (u1, . . . , ud) ∈ [0, 1]d ,

where H−(u) = inf{t ∈ R : H(t) � u} is the generalized inverse of a distribution
function H . The empirical copula Cn [3] is defined by

Cn(u) := Fn
(
F

−
n1(u1), . . . ,F

−
nd(ud)

)
,

where, for j ∈ {1, . . . , d},

Fn(x) := 1

n

n∑

i=1

1 {Xi1 � x1, . . . , Xid � xd} , Fnj (x j ) := 1

n

n∑

i=1

1
{
Xi j � x j

}
.

For i ∈ {1, . . . , n} and j ∈ {1, . . . , d}, let Ri j,n be the rank of Xi j among
X1 j , . . . , Xnj ; namely,

Ri j,n =
n∑

k=1

1{Xkj � Xi j }. (2.1)

A frequently used rank-based version of the empirical copula is given by

C̃n(u) := 1

n

n∑

i=1

d∏

j=1

1

{
Ri j,n

n
� u j

}
. (2.2)

In the absence of ties, we have

‖C̃n − Cn‖∞ := sup
u∈[0,1]d

|C̃n(u) − Cn(u)| � d

n
. (2.3)

The functionsCn and C̃n are both piecewise constant and cannot be genuine copulas.
When the sample size is small, they suffer from the presence of ties when used in
resampling.

The empirical beta copula [18], defined in Sect. 2.3, is a simple but effective
way of correcting and smoothing the empirical copula. Even though its asymptotic
distribution is the same as that of the usual empirical copula, its accuracy in small
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samples is usually better, partly because it is itself always a genuine copula.Moreover,
drawing random samples from the empirical beta copula is quite straightforward.

Because of these properties, it is reasonable to expect that simple and accurate
resampling schemes for the empirical copula process can be constructed based on
the empirical beta copula. For tail copulas, which are limit functions describing the
asymptotic behavior of a copula in the corner of the unit cube, a simulation study in
[12] shows that a bootstrap based on the empirical beta copula performs significantly
better than the direct multiplier bootstrap of [1]. The purpose of this study is to further
investigate the finite-sample and the asymptotic behavior of this resampling method
for general copulas.

The paper is structured as follows. In Sect. 2.2, we review and discuss the literature
on resampling methods for the empirical copula process. The asymptotic properties
of two resampling procedures based on the empirical beta copula are investigated
in Sect. 2.3. In Sect. 2.4, extensive simulation studies are conducted to demonstrate
the effectiveness of resampling procedures based on the empirical beta copula to
construct confidence intervals for several copula functionals and to test the shape
constraints on the copula. We conclude the paper with some discussion and open
questions in Sect. 2.5. All proofs are relegated to the appendix.

2.2 Review on Bootstrapping Empirical Copula Processes

In this section, we give a short review on bootstrapping empirical copula processes,
incorporating several newer improvements. We limit ourselves to i.i.d. sequences.
Note that extensions to stationary time series are considered in [2], among others.

First, we recall a basic result on the weak convergence of the empirical copula
process. Let �∞([0, 1]d) be the Banach space of real-valued, bounded functions
on [0, 1]d , equipped with the supremum norm ‖ · ‖∞. The arrow � denotes weak
convergence in the sense used in [23]. The following is the only condition needed
for our convergence results.

Condition 2.2.1 For each j ∈ {1, . . . , d}, the copula C has a continuous first-order
partial derivative Ċ j (u) = ∂C(u)/∂u j on the set {u ∈ [0, 1]d : 0 < u j < 1}.
The next theorem is proved in [17]. Let UC denote a C-pinned Brownian sheet, that
is, a centeredGaussian process on [0, 1]d with continuous trajectories and covariance
function

Cov
{
U

C(u),UC (v)
} = C(u ∧ v) − C(u)C(v), u, v ∈ [0, 1]d . (2.4)

Theorem 2.2.2 Suppose Condition 2.2.1 holds. Then we have

Gn := √
n(Cn − C) � G

C , n → ∞,

in �∞([0, 1]d), where
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G
C(u) := U

C(u) −
d∑

j=1

Ċ j (u)UC (1, u j , 1),

with u j appearing at the j th coordinate.

Next, we introduce notation for the convergence of conditional laws in probability
given the data as defined in [14]; see also [23, Sect. 2.9]. Let

BL1 := {h : �∞([0, 1]d) → R | ‖h‖∞ � 1 and |h(x) − h(y)| � ‖x − y‖∞
for all x, y ∈ �∞([0, 1]d)}.

(2.5)
If X̂n is a sequence of bootstrapped processes in (�∞([0, 1]d), ‖ · ‖∞) with random
weights W , then the notation

X̂n
P�
W

X, n → ∞ (2.6)

means that

sup
h∈BL1

|EW [h(X̂n)] − E[h(X)]| −→ 0 in outer probability,

EW [h(X̂n)
∗] − EW [h(X̂n)∗] P−→ 0 for all h ∈ BL1 .

⎫
⎬

⎭
(2.7)

Here, the notation EW indicates conditional expectation over the weights W given
the data X1, . . . , Xn , and h(X̂n)

∗ and h(X̂n)∗ denote the minimal measurable majo-
rant and maximal measurable minorant, respectively, with respect to the joint data
X1, . . . , Xn,W .

In the following, the randomweightsW can signify different things: amultinomial
random vector when drawing from the data with replacement; i.i.d. multipliers in
the multiplier bootstrap; or vectors of order statistics from the uniform distribution
when resampling from the empirical beta copula. In (2.6), the symbol W will then
be changed accordingly.

2.2.1 Straightforward Bootstrap

Let (Wn1, . . . ,Wnn) be a multinomial random vector with probabilities
(1/n, . . . , 1/n), independent of the sample X1, . . . , Xn . Set

C
∗
n(u) = F

∗
n

(
F

∗−
n1 (u1), . . . ,F

∗−
nd (ud)

)
,

where
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F
∗
n(x) := 1

n

n∑

i=1

Wni

d∏

j=1

1{Xi j � x j },

F
∗
nj (x j ) := 1

n

n∑

i=1

Wni1{Xi j � x j }, j ∈ {1, . . . , d}.

We can also define the bootstrapped version of the rank-based empirical copula

C̃
∗
n(u) = 1

n

n∑

i=1

Wni

d∏

j=1

1

{
R∗
i j,n

n
� u j

}
, (2.8)

where

R∗
i j,n =

n∑

k=1

Wnk1
{
Xkj � Xi j

}
. (2.9)

Since a bootstrap sample will have ties with a (large) positive probability, the bound
(2.3) is no longer valid for C∗

n and C̃
∗
n . However, we can prove the following.

Proposition 2.2.3

‖C∗
n − C̃

∗
n‖∞ = Op

(
n−1 log n

)
, n → ∞. (2.10)

The proof of Proposition 2.2.3 is given in the appendix. Convergence in probability
of the conditional laws

√
n(C∗

n − Cn)
P�
W

G
C , n → ∞,

in the space �∞([0, 1]d) is shown in [5] under the condition that all partial derivatives
Ċ j exist and are continuous on [0, 1]d , and in [2] under the weaker Condition 2.2.1.
From (2.3) and Proposition 2.2.3, we also have

α̃n := √
n(C̃∗

n − C̃n)
P�
W

G
C , n → ∞. (2.11)

2.2.2 Multiplier Bootstrap with Estimated Partial Derivatives

The multiplier bootstrap for the empirical copula, proposed by [16], has proved
useful in many problems. In [1], this method is found to exhibit better finite-sample
performance than other resampling methods for the empirical copula process. Here,
we present a modified version proposed by [1], which we employ in the simulation
studies in Sect. 2.4.
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Let ξ1, . . . , ξn be i.i.d. nonnegative random variables, independent of the data,
with E(ξi ) = μ, Var(ξi ) = τ 2 > 0, and ‖ξi‖2,1 := ∫ ∞

0

√
P(|ξi | > x) dx < ∞. Put

ξ n := n−1 ∑n
i=1 ξi , and set

C
◦
n(u) := 1

n

n∑

i=1

ξi

ξ n

d∏

j=1

1
{
Xi j � F

−
nj (u j )

}
,

C̃
◦
n(u) := 1

n

n∑

i=1

ξi

ξ n

d∏

j=1

1
{
Fnj (Xi j ) � u j

}
.

Define β◦
n := √

n(μ/τ)(C◦
n − Cn) and β̃◦

n := √
n(μ/τ)(C̃◦

n − C̃n). Using Theo-
rem 2.6 in [14] and the almost sure convergence ‖F−

nj − I‖∞ → 0, where I is the
identity function on [0, 1], we can show that

β◦
n

P�
ξ

U
C and β̃◦

n
P�
ξ

U
C , n → ∞.

Hence, if ˆ̇C j (u) is an estimate for Ċ j (u), where finite differencing is applied to the
empirical copula at a spacing proportional to n−1/2, then the processes

⎧
⎨

⎩

αpdm◦
n (u) := β◦

n (u) − ∑d
j=1

ˆ̇C j (u) β◦
n (1, u j , 1)

α̃pdm◦
n (u) := β̃◦

n (u) − ∑d
j=1

ˆ̇C j (u) β̃◦
n (1, u j , 1)

yield conditional approximations ofGC , where “pdm” stands for “partial derivatives
multiplier”. That is, we have

αpdm◦
n

P�
ξ

G
C and α̃pdm◦

n
P�
ξ

G
C , n → ∞.

2.3 Resampling with Empirical Beta Copulas

The empirical beta copula [18] is defined as

C
β
n (u) = 1

n

n∑

i=1

d∏

j=1

Fn,Ri j,n (u j ), u ∈ [0, 1]d ,

where Ri j,n denotes the rank, as in (2.1), andwhere, for u ∈ [0, 1] and r ∈ {1, . . . , n},

Fn,r (u) =
n∑

s=r

(
n

s

)
us(1 − u)n−s (2.12)
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is the cumulative distribution function of the beta distribution B(r, n + 1 − r). Note
that P(U � u) = P(S � r), for U ∼ B(r, n + 1 − r) and S ∼ Bin(n, u). In this
section, we examine the asymptotic properties of two resampling procedures based
on the empirical beta copula.

2.3.1 Standard Bootstrap for the Empirical Beta Copula

Let (Wn1, . . . ,Wnn) be a multinomial random vector with success probabilities
(1/n, . . . , 1/n), independent of the original sample. Set

C
β∗
n (u) = 1

n

n∑

i=1

Wni

d∏

j=1

Fn,R∗
i j,n

(u j ),

where R∗
i j,n are the bootstrapped ranks in (2.9). Let Sj ∼ Bin(n, u j ), for j =

1, . . . , d, be d independent binomial random variables. Let ES denote the expec-
tation with respect to (S1, . . . , Sd), conditional on the sample and the multinomial
random vector. It then follows that

C
β∗
n (u) = 1

n

n∑

i=1

Wni

d∏

j=1

ES

[
1

{
R∗
i j,n

n
� Sj

n

}]
= ES

[
C̃

∗
n(S1/n, . . . , Sd/n)

]
,

where C̃
∗
n is the bootstrapped rank-based empirical copula in (2.8). Similarly, the

empirical beta copula is

C
β
n (u) = 1

n

n∑

i=1

d∏

j=1

Fn,Ri j,n (u j ) = ES

[
C̃n(S1/n, . . . , Sd/n)

]
,

where C̃n is the rank-based empirical copula in (2.2). Consider the bootstrapped
processes α̃n defined in (2.11) and α

β
n := √

n(C
β∗
n − C

β
n ). We find

αβ
n (u) = ES[α̃n(S1/n, . . . , Sd/n)]. (2.13)

Using the weak convergence of the bootstrapped process α̃n , we prove the following
proposition. As a result, the consistency of the bootstrapped process α̃n of the (rank-
based) empirical copula in (2.11) entails consistency of the one for the empirical beta
copula.
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Proposition 2.3.1 Under Condition 2.2.1, we have

sup
u∈[0,1]d

|αβ
n (u) − α̃n(u)| = op(1), n → ∞, (2.14)

and thus α
β
n

P�
W

G
C as n → ∞.

2.3.2 Bootstrap by Drawing Samples from the Empirical Beta
Copula

The original motivation of [18] was resampling; the uniform random variables gen-
erated independently and rearranged in the order specified by the componentwise
ranks of the original sample might, in some sense, be considered a bootstrap sample.
Although this idea turned out to be not entirely correct, it still led to the discovery
of the empirical beta copula. In the same spirit, it is natural to study the bootstrap
method using samples drawn from the empirical beta copula Cβ

n .
It is in fact very simple to generate a random variate V from C

β
n .

Algorithm 2.3.2 Given the ranks Ri j,n = ri j , j = 1, . . . , d, of the original
sample:

1. Generate I from the discrete uniform distribution on {1, . . . , n}.
2. Independently generate V #

j ∼ B(rI j , n + 1 − rI j ), j ∈ {1, . . . , d}.
3. Set V # = (V #

1 , . . . , V #
d ).

Repeating the above algorithm n times independently, we get a sample of n inde-
pendent random vectors drawn from C

β
n , conditional on the data X1, . . . , Xn . Let

this sample be denoted by V #
i = (V #

i1, . . . , V
#
id), i = 1, . . . , n. This procedure can be

viewed as a kind of smoothed bootstrap (see [4], [19, Sect. 3.5]) because the empirical
beta copula may be thought of as a smoothed version of the empirical copula.

The joint and marginal empirical distribution functions of the bootstrap sample
are

G
#
n(u) = 1

n

n∑

i=1

d∏

j=1

1{V #
i j � u j } and G

#
nj (u j ) = 1

n

n∑

i=1

1{V #
i j � u j },

respectively. The ranks of the bootstrap sample are given by

R#
i j,n = nG#

nj (V
#
i j ) =

n∑

k=1

1{V #
k j � V #

i j }. (2.15)
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These yield bootstrapped versions of the Deheuvels empirical copula [3], rank-based
empirical copula (2.2), and empirical beta copula:

C
#
n(u) := G

#
n

(
G

#−
n1 (u1), . . . ,G

#−
nd (ud)

)
, C̃

#
n(u) := 1

n

n∑

i=1

d∏

j=1

1{R#
i j,n/n � u j },

C
β#
n (u) := 1

n

n∑

i=1

d∏

j=1

Fn,R#
i j,n

(u j ),

respectively.

Proposition 2.3.3 Assume Condition 2.2.1. Then, as n → ∞, we have conditional
weak convergence in probability, as defined in (2.6), with respect to the random
vectors V #

1, . . . , V
#
n of the bootstrapped empirical copula processes

α#
n := √

n(C#
n − Cn), α̃#

n := √
n(C̃#

n − C̃n), αβ#
n := √

n(Cβ#
n − C

β
n ),

to the limit process GC defined in Theorem 2.2.2.

2.3.3 Approximating the Sampling Distributions of Rank
Statistics by Resampling from the Empirical Beta
Copula

Statistical inference for C often involves rank statistics. One way to justify this is to
appeal to the invariance of C under coordinatewise, continuous, strictly increas-
ing transformations. Hence, we consider a rank statistic T (R1, . . . , Rn), where
Ri := (Ri1,n, . . . , Rid,n) is a vector of the coordinatewise ranks of X i . Below, we
suggest a way of approximating its distribution by drawing a sample from C

β
n , and

then computing the “bootstrap replicates”. This also avoids problems with the ties
encountered when drawing with replacement from the original data. The procedure
is as follows.

Algorithm 2.3.4 (Smoothed beta bootstrap) Given R1, . . . , Rn:

1. Apply Algorithm 2.3.2 n times independently to obtain a bootstrap sample
V #

1, . . . , V
#
n drawn from C

β
n , compute their ranks R#

1, . . . , R
#
n as in (2.15),

and put T # := T (R#
1, . . . , R

#
n).

2. Repeat Step 1 a moderate-to-large number of times, B, to obtain the boot-
strap replicates T #

1 , . . . , T #
B .

3. UseT #
1 , . . . , T #

B to approximate the samplingdistributionofT (R1, . . . , Rn).
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The validity of this procedure follows from our claim in the preceding subsection.
Because the related empirical copula processes are all asymptotically equivalent,
we need to examine the small-sample performance of the methods. In Sect. 2.4.2,
we construct confidence intervals for several copula functionals using popular rank
statistics.

2.4 Simulation Studies

We assess the performance of the bootstrap methods presented in Sects. 2.2 and 2.3
in a wide range of applications. In all of the experiments below, the number of Monte
Carlo runs and the number of bootstrap replications are both set to 1000. We use
Clayton, Gumbel–Hougaard, Frank, and Gauss copula families; see, for example,
[15]. Most simulations are performed in R using the package copula [9]; however,
the simulation described in Sect. 2.4.2 uses MATLAB.

2.4.1 Covariance of the Limiting Process

We compare the estimated covariances of the limiting process G
C based on the

standard and smoothed beta bootstrap methods with those of the partial deriva-
tives multiplier method. In [1], the latter is shown to outperform the straightforward
bootstrap and the direct multiplier method. We follow the setup in [1], evaluat-
ing the covariance at four points {(i/3, j/3)} for i, j ∈ {1, 2} in the unit square.
The variables ξ1, . . . , ξn for the partial derivatives multiplier method are such that
P[ξi = 0] = P[ξi = 2] = 1/2 for i ∈ {1, . . . , n}. For the bivariate Clayton copula
with parameter θ = 1, Table2.1 shows the mean squared error of the estimated
covariance based on the partial derivatives multiplier method α

pdm◦
n , standard beta

bootstrapα
β
n , and smoothed beta bootstrapα

β#
n , for n = 100 and n = 200. The results

for αpdm◦
n are copied from Tables3 and 4 in [1]. Both methods based on the empirical

beta copula outperform the multiplier method for all points other than (1/3, 1/3) and
(2/3, 2/3).

2.4.2 Confidence Intervals for Rank Correlation Coefficients

Here, we assess the performance of the straightforward bootstrap and the smoothed
beta bootstrap (Sects. 2.2.1 and 2.3.3) for constructing confidence intervals for two
popular rank correlation coefficients for bivariate distributions, namely, Kendall’s
τ and Spearman’s ρ, which are known to depend only on the copula C associated
with F .
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The population Kendall’s τ is defined by

τ(C) := 4
∫ 1

0

∫ 1

0
C(u1, u2) dC(u1, u2) − 1.

In terms of

Qk,i := sign[(Xk,1 − Xi,1)(Xk,2 − Xi,2)] = sign[(Rk1,n − Ri1,n)(Rk2,n − Ri2,n)],

and

K :=
n−1∑

i=1

n∑

k=i+1

Qk,i ,

the sample Kendall’s τ is given by τ̂ := 2K/[n(n − 1)]. Its asymptotic variance can
be estimated by

σ̂ 2
τ := 2

n(n − 1)

[
2(n − 2)

n(n − 1)2

n∑

i=1

(Ci − C)2 + 1 − τ̂ 2

]

,

where Ci := ∑n
k=1, k �=i Qk,i , i ∈ {1, . . . , n} and C = n−1 ∑n

i=1 Ci = 2K/n (see
[10]). Thus, an asymptotic confidence interval for τ is given by τ̂ ± zα/2σ̂τ , where
zα/2 is the usual standard normal tail quantile.

This interval can be compared with the confidence intervals obtained using our
resampling methods. Table2.2 shows the coverage probabilities and the average
lengths of the estimated confidence intervals based on the asymptotic distribution,
straightforward bootstrap, and smoothed beta bootstrap for the independence copula
(τ = 0) and the Clayton copula with θ = 2 (τ = 0.5) and θ = −2/3 (τ = −0.5).
The nominal confidence level is 0.95. The smoothed beta bootstrap gives the most
conservative coverage probabilities, but has the shortest length of the three.

The population Spearman’s ρ and the sample Spearman’s ρ are given by

ρ(C) := 12
∫ 1

0

∫ 1

0

[
C(u1, u2) − u1u2

]
du1du2,

ρ̂ := 12

n(n2 − 1)

n∑

i=1

(
Ri1,n − n + 1

2

) (
Ri2,n − n + 1

2

)
,

respectively.The limitingdistributionof ρ̂ is equal to that of 12
∫∫

G
C(u1, u2)du1du2;

thus, in principle, it is possible to construct confidence intervals based on the asymp-
totics. However, unlike the case of τ̂ , this procedure is cumbersome and involves
partial derivatives of C , which must be estimated. Therefore, we omit it from our
study. We continue to set the nominal confidence level to 0.95 in the experiment.
Table2.3 shows that the coverage probabilities for the smoothed beta bootstrap are
more conservative than those for the straightforward bootstrap; however, the average
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lengths of the estimated confidence intervals are very similar in the two methods.
This could be due to the fact that ρ(C

β
n ) = [(n − 1)/(n + 1)]ρ̂, as can be computed

directly.

2.4.3 Confidence Intervals for a Copula Parameter

Suppose that the copula of F is parametrized by θ ∈ � ⊂ R, such that F(x1, x2) =
Cθ (F1(x1), F2(x2)).When the Fj ’s are unknown, the resulting problem of estimating
θ is semiparametric; see [6, 21].Assume thatCθ is absolutely continuouswith density
cθ , which is differentiable with respect to θ . Replacing the unknown Fj ’s in the score
equationwith their (rescaled) empirical counterparts, one gets the estimating equation

n∑

k=1

ċθ [Fn1(Xk,1),Fn2(Xk,2)]
cθ [Fn1(Xk,1),Fn2(Xk,2)] = 0, (2.16)

where ċθ = ∂cθ /∂θ . The solution θ̂ to (2.16) is called the pseudo-likelihood estima-
tor.

We compare the confidence intervals for θ estimated using the pseudo-likelihood
estimator θ̂ based on the asymptotic variance given in [6], straightforward boot-
strap, smoothed beta bootstrap, and classic parametric bootstrap. We set the nominal
confidence level equal to 0.95. Tables2.4 and 2.5 show the estimated coverage prob-
abilities and average interval lengths of the confidence intervals for the Clayton,
Gauss, Frank, and Gumbel–Hougaard copula families, respectively. For the Clayton
copula, the smoothed beta bootstrap gives the shortest intervals, both for θ = 1 and
θ = 2, but for θ = 2, the coverage probabilities are too liberal, which is somewhat
puzzling. For the Frank andGumbel–Hougaard copulas, the smoothed beta bootstrap
gives the most conservative coverage probabilities, but has the shortest length of the
four. For the Gauss copula, the asymptotic approximation gives significantly smaller
coverage probabilities than the nominal value of 0.95.

2.4.4 Testing the Symmetry of a Copula

For a bivariate copula C , consider the problem of testing the symmetry hypothesis
H0 : C(u1, u2) = C(u2, u1) for all (u1, u2) ∈ [0, 1]2. We focus on the following two
test statistics proposed in [7]:



42 A. Kiriliouk et al.

Ta
bl
e
2.
4

C
ov
er
ag
e
pr
ob
ab
ili
tie
s
an
d
av
er
ag
e
le
ng
th
s
of

th
e
co
nfi

de
nc
e
in
te
rv
al
s
fo
r
th
e
pa
ra
m
et
er

of
th
e
C
la
yt
on

co
pu
la
,w

ith
θ

=
1
(τ

=
1/
3)

an
d

θ
=

2
(τ

=
1/
2)
.I
nt
er
va
ls
ar
e
co
m
pu
te
d
us
in
g
th
e
as
ym

pt
ot
ic
no
rm

al
ap
pr
ox
im

at
io
n,

st
ra
ig
ht
fo
rw

ar
d
bo
ot
st
ra
p,

sm
oo
th
ed

be
ta
bo
ot
st
ra
p,

an
d
pa
ra
m
et
ri
c
bo
ot
st
ra
p

θ
=

1
θ

=
2

n
40

60
80

10
0

40
60

80
10
0

C
ov
er
ag
e
pr
ob

ab
ili
ty

as
ym

p
0.
95
4

0.
96
9

0.
96
0

0.
96
5

0.
95
1

0.
94
0

0.
94
0

0.
94
6

bo
ot

0.
95
3

0.
94
3

0.
94
4

0.
94
3

0.
96
8

0.
95
2

0.
95
3

0.
95
1

be
ta

0.
95
3

0.
96
4

0.
95
7

0.
95
2

0.
93
3

0.
90
4

0.
90
8

0.
90
6

pa
ra
m

0.
92
4

0.
92
3

0.
93
3

0.
94
8

0.
95
7

0.
95
1

0.
95
5

0.
95
3

A
ve
ra
ge

le
ng
th

as
ym

p
2.
01
1

1.
63
2

1.
35
4

1.
23
7

2.
76
4

2.
14
2

1.
82
1

1.
61
5

bo
ot

1.
89
4

1.
44
9

1.
19
8

1.
04
6

2.
99
1

2.
20
5

1.
84
1

1.
62
6

be
ta

1.
51
7

1.
22
5

1.
05
0

0.
93
5

1.
95
7

1.
61
2

1.
42
0

1.
29
6

pa
ra
m

1.
91
4

1.
44
8

1.
22
2

1.
07
0

2.
82
1

2.
15
0

1.
82
9

1.
61
7



2 Resampling Procedures with Empirical Beta Copulas 43

Ta
bl
e
2.
5

C
ov
er
ag
e
pr
ob
ab
ili
tie
s
an
d
av
er
ag
e
le
ng
th
s
of

co
nfi

de
nc
e
in
te
rv
al
s
fo
r
th
e
pa
ra
m
et
er

of
th
e
G
au
ss
ia
n
co
pu
la

w
ith

θ
=

1/
√ 2,

th
e
Fr
an
k
co
pu
la

w
ith

θ
=

5.
75
,
an
d
th
e
G
um

be
l–
H
ou
ga
ar
d
co
pu
la

w
ith

θ
=

2.
A
ll
co
pu
la
s
ha
ve

τ
≈

1/
2.

In
te
rv
al
s
co
m
pu
te
d
vi
a
th
e
as
ym

pt
ot
ic

no
rm

al
ap
pr
ox
im

at
io
n,

th
e

st
ra
ig
ht
fo
rw

ar
d
bo
ot
st
ra
p,

th
e
sm

oo
th
ed

be
ta
bo
ot
st
ra
p,

an
d
th
e
pa
ra
m
et
ri
c
bo
ot
st
ra
p

G
au
ss

Fr
an
k

G
um

be
l–
H
ou
ga
ar
d

n
40

60
80

10
0

40
60

80
10
0

40
60

80
10
0

C
ov
er
ag
e
pr
ob

ab
ili
ty

as
ym

p
0.
88
1

0.
89
5

0.
91
0

0.
92
8

0.
94
1

0.
95
0

0.
94
8

0.
96
5

0.
95
4

0.
94
0

0.
94
0

0.
95
5

bo
ot

0.
94
2

0.
94
4

0.
94
7

0.
95
0

0.
95
7

0.
95
6

0.
94
6

0.
96
3

0.
96
5

0.
95
1

0.
95
3

0.
96
5

be
ta

0.
96
8

0.
96
2

0.
97
0

0.
95
3

0.
96
5

0.
96
1

0.
95
2

0.
96
5

0.
97
0

0.
95
1

0.
95
2

0.
95
4

pa
ra
m

0.
90
3

0.
92
1

0.
92
3

0.
93
0

0.
93
8

0.
95
6

0.
94
1

0.
96
2

0.
92
4

0.
92
6

0.
93
2

0.
94
5

A
ve
ra
ge

le
ng
th

as
ym

p
0.
30
3

0.
27
4

0.
21
3

0.
19
3

5.
69
9

4.
48
7

3.
82
1

3.
39
1

1.
42
5

1.
08
2

0.
92
9

0.
81
6

bo
ot

0.
31
9

0.
25
7

0.
21
9

0.
19
7

6.
13
9

4.
67
7

3.
94
9

3.
46
4

1.
57
2

1.
16
2

0.
96
8

0.
85
5

be
ta

0.
34
1

0.
26
9

0.
22
8

0.
20
3

5.
36
7

4.
33
5

3.
73
5

3.
32
9

1.
17
0

0.
94
7

0.
82
6

0.
74
7

pa
ra
m

0.
29
2

0.
24
2

0.
21
0

0.
19
1

5.
72
9

4.
49
4

3.
84
8

3.
38
9

1.
54
6

1.
17
0

0.
98
3

0.
86
9



44 A. Kiriliouk et al.

Sn =
∫

[0,1]2
[Cn(u1, u2) − Cn(u2, u1)]

2 dCn(u1, u2),

Rn =
∫

[0,1]2
[Cn(u1, u2) − Cn(u2, u1)]

2 du1 du2,

and include versions based on the empirical beta copula; that is,

Sβ
n =

∫

[0,1]2
[
C

β
n (u1, u2) − C

β
n (u2, u1)

]2
dCβ

n (u1, u2),

Rβ
n =

∫

[0,1]2
[Cβ

n (u1, u2) − C
β
n (u2, u1)]2 du1 du2.

Similarly, as in Proposition 1 in [7], the statistic Rβ
n can be computed as

Rβ
n = 2

n2

n∑

i=1

n∑

j=1

{Bn(Ri1,n, R j1,n)Bn(Ri2,n,R j2,n)

− Bn(Ri1,n, R j2,n)Bn(Ri2,n, R j1,n)},

with Bn(r, s) = ∫ 1
0 Fn,r (u)Fn,s(u) du for r, s ∈ {1, . . . , n} and Fn,r (u) as in (2.12).

For fixed n, the matrix Bn can be precomputed and stored, which reduces the com-
putation time for the resampling methods. Similarly, Sβ

n can be written as

Sβ
n = n−3

n∑

i=1

n∑

j=1

n∑

k=1

{
Cn(Ri1,n, R j1,n Rk1,n)Cn(Ri2,n, R j2,n Rk2,n)

− Cn(Ri1,n, R j2,n Rk1,n)Cn(Ri2,n, R j1,n Rk2,n)

− Cn(Ri2,n, R j1,n Rk1,n)Cn(Ri1,n, R j2,n Rk2,n)

+ Cn(Ri2,n, R j2,n Rk1,n)Cn(Ri1,n, R j1,n Rk2,n)
}
,

with Cn(r, s, t) = ∫ 1
0 Fn,r (u)Fn,s(u) dFn,t (u) for r, s, t ∈ {1, . . . , n}.

In order to compute the p-values, we need to generate bootstrap samples from
a distribution that fulfills the restriction specified by H0. A natural candidate is a
“symmetrized” version of the empirical beta copula

C
β,sym
n (u1, u2) := 1

2
C

β
n (u1, u2) + 1

2
C

β
n (u2, u1).

When resampling, this simply amounts to interchanging the two coordinates at ran-
dom in step 3 ofAlgorithm 2.3.2.We employ the following three resampling schemes
to compare the actual sizes of the tests.

• The symmetrized smoothed beta bootstrap: we resample from C
β,sym
n to obtain

bootstrap replicates of Rn , R
β
n , Sn , and Sβ

n ;
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• The symmetrized version of the straightforward bootstrap for Rn and Sn;
• exchTest in the R package copula [9], which implements the multiplier bootstrap
for Rn and Sn , as described in [7] and in Sect. 5 of [13]. For Rn , the grid length in
exchTest is set to m = 50.

We use the nominal size α = 0.05 throughout the experiment. Tables2.6 and 2.7
show the actual sizes of the symmetry tests for the Clayton andGauss copulas. On the
whole, the smoothed beta bootstrap works better than exchTest, and works equally
well as Rn and Sn , except when the dependence is strong (τ = 0.75) and the sample
size is small (n = 50). However, no method produces a satisfying result in the latter
case. The smoothed beta bootstraps with Rβ

n and Sβ
n produce actual sizes similar

to those based on Rn and Sn . The statistic Sn performs slightly better than Rn on
average, especially for strong positive dependence. The straightforward bootstrap
performs poorly in all cases, as expected [16].

To compare the power of the tests, the Clayton and Gauss copulas are made
asymmetric usingKhoudraji’s device [11]; that is, the asymmetric version of a copula
C is defined as

Kδ(u1, u2) = uδ
1C(u1−δ

1 , u2), (u1, u2) ∈ [0, 1]2.

Table2.8 shows the empirical power of Rn and Rβ
n for δ ∈ {0.25, 0.5, 0.75} for the

three resampling methods. As shown, the smoothed beta bootstraps with Rn and Rβ
n

have higher power than exchTest for almost all sample sizes and parameter values
considered; furthermore, the smoothed beta bootstrap with Rβ

n has slightly higher
power in almost all cases.

2.5 Concluding Remarks

We have studied the performance of resampling procedures based on the empirical
beta copula and proved that all related empirical copula processes exhibit asymp-
totically equivalent behavior. A comparative analysis based on the Monte Carlo
experiments shows that, on the whole, the smoothed beta bootstrap works fairly
well, providing a useful alternative to existing resampling schemes. However, we
also find that its effectiveness varies somewhat between copulas.

Higher-order asymptotics for the various nonparametric copula estimators might
improve our understanding of the various resampling procedures [8, 19], although
calculating such expansions seems a formidable task.

Acknowledgements The research of H. Tsukahara was supported by JSPS KAKENHI Grant
Number 18H00836. The authors wish to thank an anonymous reviewer for his/her careful reading
of the manuscript and helpful comments.
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Appendix: Mathematical Proofs

Proof of Proposition 2.2.3 Let Nn = {i = 1, . . . , n : Wni � 1} be the set of indices
that are sampled at least once. Then, F∗

nj is a discrete distribution function with atoms
{Xi j : i ∈ Nn} and probabilities n−1Wni .

Since n−1R∗
i j,n = F

∗
nj (Xi j ), we have

∣∣
∣C∗

n(u) − C̃
∗
n(u)

∣∣
∣ � 1

n

∑

i∈Nn

Wni

∣∣∣∣
∣∣

d∏

j=1

1{Xi j � F
∗−
nj (u j )} −

d∏

j=1

1{F∗
nj (Xi j ) � u j }

∣∣∣∣
∣∣

� 1

n

∑

i∈Nn

Wni

d∑

j=1

∣∣∣1{Xi j � F
∗−
nj (u j )} − 1{F∗

nj (Xi j ) � u j }
∣∣∣

= 1

n

∑

i∈Nn

Wni

d∑

j=1

∣∣∣1{Xi j = F
∗−
nj (u j )} − 1{F∗

nj (Xi j ) = u j }
∣∣∣ .

In the last equality, we use the fact that x < G−(u) if and only if G(x) < u for
any (right-continuous) distribution function G, any real x , and any u ∈ [0, 1]. For
each j ∈ {1, . . . , d}, F∗

nj (Xi j ) = u j implies Xi j = F
∗−
nj (u j ) since F∗

nj jumps at Xi j ,
i ∈ Nn , and there is at most a single i ∈ Nn such that Xi j = F

∗−
nj (u j ). Thus, we have

∣∣∣C∗
n(u) − C̃

∗
n(u)

∣∣∣ � d

n
max

i=1,...,n
Wni .

By coupling the multinomial random vector (Wn1, . . . ,Wnn) to a vector of inde-
pendent Poisson(1) random variables (W ′

n1, . . . ,W
′
nn), as in [23, pp. 346–348], it can

be shown that maxi=1,...,n Wni = Op(log n) as n → ∞. Equation (2.10) follows. �
Proof of Proposition 2.3.1 Fix ε > 0. We know from (2.11) that α̃n converges
weakly in �∞([0, 1]d) to a Gaussian process with continuous trajectories. Write
S = (S1, . . . , Sd) and for a point x ∈ R

d , put |x|∞ = max(|x1|, . . . , |xd |). Further-
more, put ‖ f ‖∞ = sup{| f (u)| : u ∈ [0, 1]d} for f : [0, 1]d → R. Then,

|αβ
n (u) − α̃n(u)| � ES

[|α̃n(S1/n, . . . , Sd/n) − α̃n(u)|]
� 2‖α̃n‖∞ PS[|S/n − u|∞ > ε] + sup

v,w∈[0,1]d
|v−w|∞�ε

|α̃n(v) − α̃n(w)|,

where ES and PS denote the expectation and probability, respectively, with respect to
S, conditional on the sample and themultinomial randomvector. LetYn(ε) denote the
supremum on the right-hand side. By Tchebysheff’s inequality, the probability in the
first termon the right-hand side is boundedby a constantmultiple ofn−1/2ε−1 and thus
tends to zero uniformly in u ∈ [0, 1]d . Since ‖α̃n‖∞ = Op(1), we get ‖αβ

n − α̃n‖∞ =
op(1) + Yn(ε) as n → ∞. By the weak convergence of α̃n in �∞([0, 1]) to a process
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with continuous trajectories, we can find, for any η > 0, a sufficiently small ε > 0
such that lim supn→∞ P[Yn(ε) > η] � η. Equation (2.14) follows. �
Proof of Proposition 2.3.3 Step 1. Recall the C-pinned Brownian sheet UC defined
prior to Theorem 2.2.2. We show that

γ #
n := √

n(G#
n − C

β
n )

P�
V

U
C , n → ∞. (2.17)

From (2.7), two claims need to be shown: convergence in the bounded Lipschitz
metric (Step 1.1), and asymptotic measurability (Step 1.2).

Step 1.1. Let P denote the set of all Borel probability measures on [0, 1]d .
For P ∈ P, let UP denote a tight, P-Brownian bridge on [0, 1]d . Specifically,
U

P is a centered Gaussian process with covariance function E[UP(u)UP(v)] =
F(u ∧ v) − F(u)F(v), where F is the cumulative distribution function associated
with P , and whose trajectories are uniformly continuous, almost surely with respect
to the standard deviation semimetric [23, Example 1.5.10]:

dP(u, v) = (
E[{UP(u) − U

P(v)}2])1/2 = (
F(u) − 2F(u ∧ v) + F(v)

)1/2
. (2.18)

Furthermore, for P ∈ P, letUn,P denote the empirical process based on indepen-
dent random sampling from P . We view Un,P as a random element of �∞([0, 1]d)
from the empirical and true cumulative distribution functions. Let Pβ

n ∈ P be the
(random) probability measure associated with the empirical beta copula Cβ

n . Recall
BL1 in (2.5).

We need to show that, as n → ∞,

sup
h∈BL1

∣∣∣E∗
Pβ
n
[h(Un,Pβ

n
)] − E[h(UC)]

∣∣∣ −→ 0 in outer probability.

By the triangle inequality, it is sufficient to show the pair of convergences

sup
h∈BL1

∣∣∣E∗
Pβ
n
[h(Un,Pβ

n
)] − E[h(UPβ

n )]
∣∣∣ −→ 0, (2.19)

sup
h∈BL1

∣∣
∣E[h(UPβ

n )] − E[h(UC)]
∣∣
∣ −→ 0, (2.20)

as n → ∞, in outer probability. We do so in Steps 1.1.1 and 1.1.2, respectively.
Step 1.1.1. Identify a point u ∈ [0, 1]d with the indicator function 1(−∞,u] on

R
d . The resulting class F = {1(−∞,u] : u ∈ [0, 1]d}, being bounded (by 1) and VC

[23, Example 2.6.1], it satisfies the uniform entropy condition (2.5.1) in [23]; see
Theorem 2.6.7 in the same book. From their Theorem 2.8.3, we obtain the uniform
Donsker property

sup
P∈P

sup
h∈BL1

∣∣E∗
P [h(Un,P)] − E[h(UP)]∣∣ → 0, n → ∞. (2.21)
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The supremum over h in (2.19) is bounded by the double supremum over P and h
in (2.21). The convergence in (2.19) is thus proved.

Step 1.1.2. We need to show that, almost surely, UPβ
n � U

C as n → ∞. All
processes involved are tight, centered Gaussian processes, with covariance functions
determined in (2.4) using C

P
n or C . The strong consistency of the empirical copula,

together with [18, Proposition 2.8], yields

‖Cβ
n − C‖∞ → 0, n → ∞, a.s. (2.22)

This property implies (2.20). First, (2.22) implies the almost sure convergence of the
covariance function ofUPβ

n to that ofUC , and thus the almost sure convergence of the
finite-dimensional distributions. Second, the asymptotic tightness a.s. follows from
the uniform continuity of the trajectories with respect to their respective intrinsic
standard deviation semimetrics (2.18) and the uniform convergence a.s. of these
standard deviation semimetrics, again by (2.22).

Step 1.2. The asymptotic measurability of γ #
n follows from the unconditional (i.e.,

jointly in X1, . . . , Xn, V #
1, . . . , V

#
n) weak convergence γ #

n � U
C as n → ∞. These

claims can be divided into the convergence of the finite-dimensional distributions
and asymptotic tightness. The former can be shown using the Lindeberg central limit
theorem for triangular arrays conditional on X1, . . . , Xn , using a similar method to
that in the proof of Theorem 23.4 in [22]. The latter follows as in Theorems 2.5.2
and 2.8.3 in [23, p. 128 and 171], conditional on X1, . . . , Xn using the fact that the
class of indicator functions of cells in R

d is a VC-class [23, Example 2.5.4].
Step 2. Consider a map � that sends a cumulative distribution function H

on [0, 1]d whose marginals do not assign mass at zero to the function u �→
H(H−

1 (u1), . . . , H
−
d (ud)). We have C

#
n = �(G#

n) and C
β
n = �(C

β
n ). By [2, The-

orem 2.4], the map � is Hadamard differentiable at the true copula C tangentially
to a certain set D0 at which the distribution of UC is concentrated. By (2.17), the
form of the Hadamard derivative �′

C of � at C together with the functional delta
method for the bootstrap [23, Theorem 3.9.11] yield conditional weak convergence
in probability of α#

n = √
n{�(G#

n) − �(C
β
n )} to GC = �′

C(UC).
Since |C̃n − Cn| � d/n and |C̃#

n − C
#
n| � d/n by (2.3), we obtain the conditional

weak convergence in probability of α̃#
n to G

C .
Finally, since α

β#
n (u) = ES[α̃#

n(S1/n, . . . , Sd/n)] as in (2.13), we arrive at the
conditional weak convergence in probability of α

β#
n to G

C in a way similar to the
proof of Proposition 2.3.1. �
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Chapter 3
Regression Analysis for Imbalanced
Binary Data: Multi-dimensional Case

Tomonari Sei

Abstract We consider regression models for binary response data and study their
behavior when the response is highly imbalanced. Previous studies have shown that
if the logistic regression model is adopted, the likelihood function tends to that of an
exponential family under the imbalance limit. This phenomenon is closely related to
extreme value theory. In this paper, we discuss amulti-dimensional analogue of these
results. First, we examine quasi-linear logistic models, where the binary outcome is
explained by the log-sum-exp function of several linear scores. Then, we define a
generalized model called a detectable model, and derive its imbalance limit using
multivariate extreme value theory. The max-stability of the copulas corresponds to
an equivariant property of the predictors.

Keywords Copula · Detectable model · Extreme value theory · Imbalanced data ·
Log-sum-exp function · Logistic regression · Max-stability · Quasi-linear
predictor · Semi-copula

3.1 Introduction

The logistic regression model is defined by

P(Y = 1 | X = x) = G(z) = ez

1 + ez
, z = a + b�x,

where Y is a binary response variable, X is a p-dimensional explanatory variable,
and a ∈ R and b ∈ R

p are regression coefficients. The function G(z) = ez/(1 + ez)
is the logistic distribution function, and its inverse G−1(u) = log(u/(1 − u)) is the
logit link function.
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Now, consider the imbalanced case; that is, the probability of Y = 1 is very small.
In the same fashion as Poisson’s lawof rare events,we assume that the true parameters
depend on the sample size n. Specifically, let the true parameters be an = − log n + α

and bn = β. Then, we obtain

P(Y = 1 | X = x) =
1
n e

α+β�x

1 + 1
n e

α+β�x

= 1

n
eα+β�x + O(n−2),

as n → ∞. If the marginal distribution F(dx) of X does not depend on n and its
support is compact, then the weak limit of the conditional distribution of X given
Y = 1 is, by Bayes’ theorem,

lim
n→∞ P(X ∈ dx | Y = 1) = eβ�x F(dx)

∫
eβ�x F(dx)

, (3.1)

which is an exponential family [13]. Furthermore, the joint distribution of X and
Y converges to an inhomogeneous Poisson point process with intensity measure
eα+β�x F(dx); see [17] for details. We call the limit of a regression model under the
imbalance assumption the imbalance limit.

There are other binary regressionmodelswith the same imbalance limit. For exam-
ple, the complementary log-log link, which corresponds to G(z) = 1 − exp(−ez),
has the same imbalance limit as the logit link. In this case, G(z) is the negative
Gumbel distribution function, one of the min-stable distributions.

Similarly, the limit of a binary regression model with a cumulative distribution
functionG(z) is characterized by extreme value theory [15].Modelswith distinct link
functions have the same imbalance limit if the corresponding distribution functions
belong to the same domain of attraction. Here, min-stability corresponds to stability
with respect to a resolution change of the explanatory variables [2].

In this study,we develop amultivariate analogue of the above facts. The functionG
is generalized to include multi-dimensional functions. A practical class is the quasi-
linear logistic regression model proposed by [12], which combines several linear
predictors using the log-sum-exp function. See Sect. 3.2 for a precise definition. We
define a generalized class, called a detectable model. The imbalance limit of the
model is obtained using the multivariate extreme value theory (e.g., [4, 14, 16]).
Here, the max-stability of the copulas corresponds to an equivariant property of the
detectable predictors.

The rest of the paper is organized as follows. In Sect. 3.2, we review the quasi-
linear logistic regression model. The model is further generalized in Sect. 3.3, and
the imbalance limit is studied in Sect. 3.4. Examples of equivariant predictors are
provided in Sect. 3.5. Finally, Sect. 3.6 concludes the paper.
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3.2 Quasi-linear Logistic Regression Model and Its
Imbalance Limit

In this section, we first define the quasi-linear logistic regression model, and then
derive its imbalance limit, as in (3.1).

3.2.1 The Quasi-linear Logistic Regression Model

Omae et al. [12] define a quasi-linear logistic regression model as follows:

P(Y = 1 | X = x) = eQ

1 + eQ
, (3.2)

Q = 1

τ
log

(
K∑

k=1

eτ(ak+b�
k x)

)

, (3.3)

where X is a p-dimensional explanatory variable, ak ∈ R and bk ∈ R
p are regression

coefficients for each k = 1, . . . , K , and τ > 0 is a tuning parameter. It is also possible
to define (3.3) for τ < 0 (see [11]), but we restrict τ to be positive, owing to a property
discussed later (Lemma 3.1 in Sect. 3.3). We assume K ≥ 2, unless otherwise stated.

The model reduces to the logistic regression model if K = 1, but is not even
identifiable with respect to the regression coefficients if K ≥ 2. Therefore, some
restrictions and regularizations are imposed in practice. For example, the explana-
tory variable X is partitioned into K subvectors X(1), . . . , X(K ) using a clustering
method such as the K -means method. Then, the coordinates of bk , except for those
corresponding to X(k), are set to zero for each k.

Denote the K linear predictors by zk = ak + b�
k x . Then, the right-hand side of

(3.3) is written as

Q(z1, . . . , zK ) = 1

τ
log

(
∑

k

eτ zk

)

,

which we call the quasi-linear predictor or the log-sum-exp function (refer to [3]).
The log-sum-exp function tends to the simple sum

∑
k zk as τ → 0 up to a constant

term, and tends to max(z1, . . . , zK ) as τ → ∞ for fixed (z1, . . . , zK ).
Reference [12] proposed the following generalized class:

Q = φ−1

(
∑

k

φ(zk)

)

, (3.4)
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where φ is an invertible function. The log-sum-exp function is a particular case of
φ(z) = eτ z . Further generalization is discussed in the next section. In what follows,
we call (3.4) the generalized quasi-linear predictor with the generator φ.

Remark 3.1 In [11], a slightly different definition is used,

Q = φ−1

(
1

K

∑

k

φ(zk)

)

,

and is called the generalized average or the Kolmogorov–Nagumo average. The
difference is the factor 1/K . In this study, we adopt the form in (3.4) because we
focus on a property shown in Lemma 3.1, later.

3.2.2 Imbalance Limit

We derive the imbalance limit of the quasi-linear logistic regression model. Suppose
the true parameters ak and bk in (3.3) are given by

ak,n = − log n + αk, bk,n = βk,

which depend on the sample size n. Then, we have

Q = − log n + 1

τ
log

(
K∑

k=1

eτ(αk+β�
k x)

)

,

and obtain the asymptotic form

P(Y = 1 | X = x) = eQ

1 + eQ
= 1

n

(
∑

k

eτ(αk+β�
k x)

)1/τ

+ O(n−2).

The conditional distribution of X , given Y = 1, is

P(X ∈ dx | Y = 1) = P(Y = 1 | X = x)F(dx)
∫
P(Y = 1 | X = x)F(dx)

(Bayes’ theorem)

→ {∑k e
τ(αk+β�

k x)}1/τ F(dx)
∫ {∑k e

τ(αk+β�
k x)}1/τ F(dx)

,

where F(dx) is the marginal distribution of X . In particular, the distribution is
reduced to a mixed exponential family if τ = 1.

Remark 3.2 In [12], the authors note that the quasi-linear logistic model with τ = 1
is Bayes optimal if the conditional distribution of X , given Y , is mixture normal.
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Specifically, suppose that the ratio of the conditional distributions of X is a mixture
exponential family

P(X ∈ dx | Y = 1)

P(X ∈ dx | Y = 0)
= 1

Z

∑

k

eαk+β�
k x ,

where αk and βk are parameters, and Z is a normalization constant. Then, the logit
of the predictive distribution is

log
P(Y = 1 | X = x)

P(Y = 0 | X = x)
= log

(
∑

k

eα∗
k+β�

k x

)

,

where α∗
k = αk − log Z + log(π1/π0) and πy = P(Y = y). This is the quasi-linear

predictor.

3.3 Extension of the Model and Its Copula Representation

In this section, we extract several features of the quasi-linear logistic model, and
use these to define a generalized class of regression models. We also discuss the
relationship between this class of models and copula theory.

3.3.1 Detectable Model

We first focus on the following property of the generalized quasi-linear predictor
(3.4), with generator φ.

Lemma 3.1 Suppose φ : R → (0,∞) is continuous, strictly increasing, and has
boundary values φ(−∞) = 0 and φ(∞) = ∞. Then, the generalized quasi-linear
predictor (3.4) satisfies

Q(z1, . . . , zk, . . . , zK ) is increasing in zk, (3.5)

Q(−∞, . . . , zk, . . . ,−∞) = zk, (3.6)

for each k and (z1, . . . , zK ) ∈ R
K .

Properties (3.5) and (3.6) are also satisfied by Q(z1, . . . , zK ) = max(z1, . . . , zK ),
where the increasing property in (3.5) is interpreted as nondecreasing. In a sense,
property (3.6) respects the maximum of the K linear scores (p. 4 of [12]).

In general, we call a function Q : RK → R a detectable predictor if it sat-
isfies (3.5) and (3.6). Note that the quantity Q(−∞, . . . , zk, . . . ,−∞) does not
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depend on the choice of the diverging sequence of (z1, . . . , zk−1, zk+1, . . . , zK ) to
(−∞, . . . ,−∞) under the monotonicity condition (3.5).

Remark 3.3 The term “detectable” is borrowed from the neural network literature
(e.g., Chaps. 6 and 9 of [8]), where a number of compositions of one-dimensional
nonlinear functions and multi-dimensional linear functions are applied. In contrast,
we focus on the properties of the multi-dimensional nonlinear function Q using the
copula theory.

Then, we define a model class, as follows.

Definition 3.1 (Detectable model) Let Q be a detectable predictor, and let G1 be a
strictly increasing continuous distribution function. Then, a detectable model with
G1 and Q is defined by

P(Y = 1 | X = x) = G1(Q), (3.7)

Q = Q(a1 + b�
1 x, . . . , aK + b�

K x). (3.8)

We call G1 the inverse link function.

For example, the quasi-linear logistic model is a detectable model with G1(Q) =
eQ/(1 + eQ) and Q(z1, . . . , zK ) = τ−1 log(

∑
k e

τ zk ). Similarly to the quasi-linear
model, the detectable model aggregates K linear predictors into a quantity Q.

We give two properties of detectable predictors. The proofs are easy, and thus are
omitted.

Lemma 3.2 Any detectable predictor Q satisfies an inequality

Q(z1, . . . , zK ) ≥ max(z1, . . . , zK ).

Lemma 3.3 Let Q1 and Q2 be detectable predictors. Then, (Q1 + Q2)/2,max(Q1,

Q2) and min(Q1, Q2) are also detectable. More generally, if a function f : R2 →
R is increasing in each argument and satisfies f (x, x) = x, for all x ∈ R, then
f (Q1, Q2) is detectable.

The generalized average mentioned in Remark 3.1 is an example of f in which
f (x, x) = x .

3.3.2 Copula Representation

The detectable model has a copula representation. Consider a detectable model with
an inverse link function G1, and a detectable predictor Q. Denote the composite map
of G1 and Q by
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G(z1, . . . , zK ) = G1(Q(z1, . . . , zK )).

Then, G is increasing in each variable and satisfies

G(−∞, . . . , zk, . . . ,−∞) = G1(zk).

Next, define a dual of G by

H(w1, . . . ,wK ) = 1 − G(−w1, . . . ,−wK ), (w1, . . . ,wK ) ∈ R
K ,

and

H1(w) = 1 − G1(−w), w ∈ R. (3.9)

Then, H is increasing in each variable and satisfies

H(∞, . . . ,wk, . . . ,∞) = H1(wk).

Thus, H1 is considered the kth marginal distribution function of H . Note that H itself
may not be a multivariate distribution function because the K -increasing property
may fail. Recall that a function H is said to be K-increasing if �1 · · · �K H ≥ 0,
where �k is the difference operator with respect to the kth argument.

Finally, as with Sklar’s theorem, we define

C(u1, . . . , uK ) = H(H−1
1 (u1), . . . , H

−1
1 (uK )). (3.10)

Then, C satisfies the following conditions:

C(1, . . . , uk, . . . , 1) = uk,

C(u1, . . . , uK ) is increasing in uk,

for each k. A function C : [0, 1]K → [0, 1] satisfying the two conditions is called a
semi-copula (see Chap.8 of [5]). Any copula is a semi-copula, but the converse is
not true. The K th-order difference �1 · · · �KC of a semi-copula, which measures a
rectangular region, may be negative.

We summarize this result as follows.

Theorem 3.1 (Copula representation) A detectable model specified by an inverse
link function G1 and a detectable predictor Q is represented as

G1(Q(z1, . . . , zK )) = G(z1, . . . , zK )

= 1 − H(−z1, . . . ,−zK )

= 1 − C(H1(−z1), . . . , H1(−zK )),
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where C is a semi-copula, and H1 is a univariate continuous distribution function.
The correspondence

{G1, Q} ↔ {H1,C}

is one-to-one.

Proof It is sufficient to prove the one-to-one correspondence. Indeed, if G1 and Q
are given, then H1 andC are determined by (3.9) and (3.10), respectively. Conversely,
if H1 and C are given, then we have G1(z) = 1 − H1(−z) by (3.9), and

Q(z1, . . . , zK ) = −H−1
1 (C(H1(−z1), . . . , H1(−zK )))

holds. �

Consider again the quasi-linear logistic regression model with the log-sum-exp
predictor, which corresponds to (3.2) and (3.3). Then, the functions H1 and C in
Theorem 3.1 are the logistic distribution function and

C(u1, . . . , uK ) = 1

1 + (
∑K

k=1(
1−uk
uk

)τ )1/τ
, (3.11)

respectively. The function C is a copula if τ ≥ 1, as shown in Example 4.26 of [10].
In particular, if τ = 1, then

C(u1, . . . , uK ) = 1

1 + ∑K
k=1

1−uk
uk

,

which belongs to the Clayton copula family [10]. If τ → ∞, then C converges to
mink uk , the upper Fréchet–Hoeffding bound. If 0 < τ < 1, C is not a copula, in the
strict sense, because it is not K -increasing.

We say that a semi-copula C is Archimedean if it is written as

C(u1, . . . , uK ) = ψ−1(ψ(u1) + · · · + ψ(uK )),

with a decreasing function ψ : (0, 1) → (0,∞) called the generator (e.g., [10]).
For example, the semi-copula in (3.11) is Archimedean with the generator ψ(u) =
( 1−u

u )τ .
Archimedean semi-copulas characterize the generalized quasi-linear models as

stated in the following theorem. The proof is straightforward.

Theorem 3.2 (Archimedean case) Let {G1, Q} be a detectable model and {H1,C}
be the corresponding pair determined by Theorem 3.1. Then, Q is a generalized
quasi-linear predictor (3.4) with a generator φ if and only if C is an Archimedean
semi-copula with a generator ψ . The relation between the generators φ and ψ is
given by φ(z) = ψ(H1(−z)).
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Note that ψ depends not just on φ, but also on the inverse link G1.

Remark 3.4 Here, we briefly discuss the merit of having a genuine copula in the
copula representation of a detectable model, where a genuine copula means a semi-
copula with the K -increasing property. If C is a genuine copula, then the detectable
model P(Y = 1 | X = x) = G1(Q(z1, . . . , zK )) has the following latent variable
representation. Take a randomvectorU = (U1, . . . ,UK ), distributed according to the
copula C . Then, G1(Q(z1, . . . , zK )) = 1 − C(H1(−z1), . . . , H1(−zK )) coincides
with the probability of an event, such thatUk > H1(−zk) for at least one k. Now, the
response variable Y can be assumed to be the indicator function of that event. The
random vectorU is seen as a latent variable. Once a latent variable representation is
obtained, we can also consider a state-space model for time-dependent data. This is
left to future research.

3.4 The Imbalance Limit of Detectable Models

In this section, we characterize the imbalance limit of detectable models using the
copula representation in Theorem 3.1 and the multivariate extreme value theory [4,
14, 16].

Recall that detectablemodels are specified by a univariate distribution function H1

and a semi-copula C . Throughout this section, we fix H1 as the Gumbel distribution
function

H1(w) = exp(−e−w),

and focus on the semi-copulas C . In this case, the inverse link function is G1(z) =
1 − exp(−ez), which corresponds to the complementary log-log link function. The
relation between C and the detectable predictor Q is given by

C(u1, . . . , uK ) = exp(−eQ(z1,...,zK )), uk = exp(−ezk ), (3.12)

by Theorem 3.1.
A semi-copula C is said to be extreme if there exists a semi-copula C0 such that

C(u1, . . . , uK ) = lim
n→∞Cn

0 (u
1/n
1 , . . . , u1/nK ), u ∈ [0, 1]K . (3.13)

In this case, we say that C0 belongs to the domain of attraction of C . A semi-copula
C is said to be max-stable if, for all n ≥ 1,

C(u1, . . . , uK ) = Cn(u1/n1 , . . . , u1/nK ), u ∈ [0, 1]K . (3.14)

The following lemma is widely known for copulas.

Lemma 3.4 A semi-copula C is extreme if and only if it is max-stable.
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Proof It is obvious that any max-stable semi-copula is also extreme. Conversely,
assume that C is extreme. Let C0 be a semi-copula that satisfies (3.13). Then, we
have

Cm(u1/m1 , . . . , u1/mK ) = lim
n→∞Cnm

0 (u1/nm1 , . . . , u1/nmK )

= C(u1, . . . , uK ),

for all m ≥ 1, which means C is max-stable. �

Max-stability is reflected in detectable models as follows.

Lemma 3.5 Consider a detectable model specified by the Gumbel distribution func-
tion H1 and a semi-copula C. Then, C is max-stable if and only if the detectable
predictor Q is equivariant with respect to location; that is,

Q(z1 + α, . . . , zK + α) = Q(z1, . . . , zK ) + α, α ∈ R. (3.15)

Proof Let C be max-stable. Then, by (3.12) and (3.14), we have

Q(z1, . . . , zK ) = log(− logC(exp(−ez1), . . . , exp(−ezK )))

= log

(

− logCn

(

exp

(

−1

n
ez1

)

, . . . , exp

(

−1

n
ezK

)))

= log n + Q(− log n + z1, . . . ,− log n + zK ),

for all n ≥ 1. Then, (3.15) is proved for α = log x , with positive rational numbers x .
The result follows from the monotonicity of Q. The converse is proved in a similar
manner. �

Remark 3.5 According to extreme value theory, the stable tail dependence function
corresponding to a max-stable copula C is defined by

l(x1, . . . , xK ) = − logC(e−x1 , . . . , e−xK ), (x1, . . . , xK ) ∈ [0,∞)K ,

which satisfies a homogeneous property l(t x1, . . . , t xK ) = tl(x1, . . . , xK ) (see [6]).
The equivariance of Q in Lemma 3.5 is interpreted as another representation of the
max-stable property. Note that l is not suitable for constructing predictors because
its domain is not the whole space.

The imbalance limit of detectable models is characterized as follows. The result
is an analogue of that in extreme value theory (e.g., Corollary 6.1.3 of [4]).

Theorem 3.3 (Imbalance limit) Consider a detectable model specified by the Gum-
bel distribution function H1 and a semi-copula C. Let G1, Q, and G be the functions
determined by Theorem 3.1. Then, the following three conditions are equivalent,
where Q̄ denotes an equivariant predictor:
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1. The predictor Q admits a limit

lim
n→∞{Q(z1 − log n, . . . , zK − log n) + log n} = Q̄(z1, . . . , zK ).

2. The function G admits a limit

lim
n→∞{n G(z1 − log n, . . . , zK − log n)} = eQ̄(z1,...,zK ).

3. The semi-copula C belongs to the domain of attraction of

C̄(u1, . . . , uK ) = exp(−eQ̄(z1,...,zK )), uk = exp(−ezk ).

Under these conditions, if the true regression coefficients are ak,n = − log n + αk

and bk,n = βk , then the weak limit of the conditional distribution of X is

lim
n→∞ P(X ∈ dx | Y = 1) = eQ̄(α1+β�

1 x,...,αK+β�
K x)F(dx)

∫
eQ̄(α1+β�

1 x,...,αK+β�
K x)F(dx)

whenever the support of F(dx) = P(X ∈ dx) is compact.

Proof The equivalence of conditions 1 and 3 follows immediately from the relation
(3.12). We prove the equivalence of conditions 1 and 2. Because

G(z1, . . . , zK ) = 1 − exp(−eQ(z1,...,zK )),

condition 2 is written as

lim
n→∞ n{1 − exp(−eQ(z1−log n,...,zK−log n))} = eQ̄(z1,...,zK ),

which is also equivalent to

lim
n→∞ neQ(z1−log n,...,zK−log n) = eQ̄(z1,...,zK ).

The logarithm of both sides yields condition 1.
Next, we show the convergence of the conditional distribution. Note that the

convergence of G in condition 2 is locally uniform with respect to (z1, . . . , zK )

becauseG ismonotone in each argument. Then, Bayes’ theorem and the compactness
of the support of F imply

P(X ∈ dx | Y = 1) = G(− log n + α1 + β�
1 x, . . . ,− log n + αK + β�

K x)F(dx)
∫
G(− log n + α1 + β�

1 x, . . . ,− log n + αK + β�
K x)F(dx)

→ eQ̄(α1+β�
1 x,...,αK+β�

K x)F(dx)
∫
eQ̄(α1+β�

1 x,...,αK+β�
K x)F(dx)

,
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Fig. 3.1 Classification of
detectable models, where H1
is fixed to be Gumbel

as stated. �

For example, consider the semi-copula in (3.11), which is derived from the log-
sum-exp logistic model. Here, the extreme semi-copula C̄ in Theorem 3.3 is

C̄(u1, . . . , uK ) = lim
n→∞Cn(u1/n1 , . . . , u1/nK )

= lim
n→∞

(
1

1 + (
∑K

k=1(u
−1/n
k − 1)τ )1/τ

)n

= exp

⎛

⎝−
(

K∑

k=1

(− log uk)
τ

)1/τ
⎞

⎠ ,

which is called theGumbel–Hougaard copula [10] if τ ≥ 1. In particular, it reduces to
the independent copula if τ = 1. The Gumbel–Hougaard copula is an Archimedean
copula with generator ψ(u) = (− log u)τ . In fact, this class is characterized by the
max-stable Archimedean property [7].

The detectable predictor Q corresponding to the Gumbel–Hougaard copula when
H1 is Gumbel is the log-sum-exp

Q(z1, . . . , zK ) = log(− log C̄(exp(−ez1), . . . , exp(−ezK )))

= 1

τ
log

(
K∑

k=1

eτ zk

)

.

As a result, the generalized quasi-linear predictor with the equivariant property
(3.15) is limited to be the log-sum-exp predictor. This fact is directly confirmed in
Lemma 3.6 in Sect. 3.5. Note too that the independent copula corresponds to τ = 1.

Figure3.1 classifies the detectable models.
If H1 is not Gumbel, the imbalance limit depends on the domain of attraction to

which H1 belongs. For example, the logistic distribution belongs to the domain of
attraction of the Gumbel. For such a case, the statements in Theorem 3.3 still hold.
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3.5 Examples of Equivariant Predictors

In this section,we provide examples of equivariant predictors,where the equivariance
is defined by (3.15). Recall that equivariant predictors correspond tomax-stable semi-
copulas if H1 is Gumbel (Lemma 3.5). In the following, we construct the predictors
directly and do not use the copula representations (except for Lemma 3.7).

It is obvious that, by definition, the log-sum-exp predictor is equivariant. Con-
versely, the log-sum-exp predictor is characterized as follows.

Lemma 3.6 Let Q be a generalized quasi-linear predictorwith a generatorφ, where
φ : R → (0,∞) is continuous and strictly increasing, φ(−∞) = 0, and φ(∞) =
∞. Then, Q is equivariant if and only if it is the log-sum-exp predictor for some
τ > 0.

Proof We prove the “only if” part. It is enough to consider the case K = 2, because
we can set φ(zk) = 0 for 3 ≤ k ≤ K by letting zk → −∞. Because Q is equivariant,
we have

φ−1(φ(z1 + α) + φ(z2 + α)) = φ−1(φ(z1) + φ(z2)) + α,

for any α ∈ R. Applying φ to the both sides and putting zk = φ−1(xk), we obtain

φ(φ−1(x1) + α) + φ(φ−1(x2) + α) = φ(φ−1(x1 + x2) + α).

This is Cauchy’s functional equation (Theorem 2.1.1 of [1]) on η(x) := φ(φ−1(x) +
α). Because η is increasing, the solution has to be η(x) = φ(φ−1(x) + α) = σαx ,
for some σα > 0. Put z = φ−1(x) to obtain φ(z + α) = σαφ(z). By letting z = 0,
we have σα = φ(α)/φ(0) and, therefore,

φ(z + α) = φ(α)φ(z)

φ(0)
.

By putting ψ(z) = logφ(z) − logφ(0), we have ψ(z + α) = ψ(z) + ψ(α). Again,
because ψ is increasing, we have ψ(z) = τ z, for some τ > 0, which means φ(z) =
φ(0)eτ z . Hence, φ is the generator of the log-sum-exp predictor. �

For other examples, consider

Q(z1, z2) = z1 + z2 + √
(z1 − z2)2 + 4ε2

2
, (3.16)

where ε > 0 is a fixed constant. This is actually an equivariant detectable predictor.
Indeed, it satisfies the conditions ∂Q/∂zk > 0, Q(z,−∞) = Q(−∞, z) = z, and
Q(z1 + α, z2 + α) = Q(z1, z2) + α. The function Q in (3.16) is quite different from
the log-sum-exp function when |z1 − z2| is large. Indeed, if z1 > z2 and z1 is fixed,
then

Q(z1, z2) = z1 + O((z1 − z2)
−1),
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as z1 − z2 → ∞, whereas

1

τ
log(eτ z1 + eτ z2) = z1 + O(e−τ(z1−z2)).

The case of z1 < z2 is derived in a similar manner. The behavior for large |z1 − z2|
may affect the numerical stability of the parameter estimation. This is left to future
work.

A multivariate extension of (3.16) is the unique solution of

K∏

k=1

(Q − zk) = εK , Q > max(z1, . . . , zK ), (3.17)

which we call an algebraic predictor. The tail behavior is given by

Q = z(1) + O((z(1) − z(2))
−(K−1)),

as z(1) − z(2) → ∞, where z(1) ≥ · · · ≥ z(K ) is the order statistic of z1, . . . , zK .
We can construct a broad class of equivariant predictors using a direct consequence

of extreme value theory, as follows.

Lemma 3.7 Let μ be a (nonnegative) measure on the simplex � = {s | ∑K
k=1 sk =

1, s1, . . . , sK ≥ 0}, such that
∫
skμ(ds) = 1 for all k. Then,

Q(z1, . . . , zK ) = log
∫

max(s1e
z1 , . . . , sK e

zK )μ(ds) (3.18)

is an equivariant detectable predictor. Conversely, if Q is equivariant and the semi-
copula C determined by Theorem 3.1 with the Gumbel marginal H1 is a (genuine)
copula, then there exists such a unique measure μ.

Proof It is easy to see that Q in (3.18) is actually an equivariant predictor. To prove
the converse, suppose that Q is equivariant and C determined by Theorem 3.1, with
the Gumbel marginal H1, is a copula. Lemma 3.5 implies that C is a max-stable
copula and, therefore, H in Theorem 3.1 is a max-stable distribution function with
the Gumbel marginal H1. Then, by Proposition 5.11′ of [14], H has the spectral
representation

H(x1, . . . , xK ) = exp

{

−
∫

�

max(s1e
−x1 , . . . , sK e

−xK )μ(dx)

}

,

with a measure μ on � such that
∫
skμ(dx) = 1, for all k. Equation (3.18) follows

from the representation Q(z1, . . . , zK ) = log(− log H(−z1, . . . ,−zK )). �

The measure μ is called the spectral measure. For example, let K = 3 and μ =
(δ(1/2,1/2,0) + δ(1/2,0,1/2) + δ(0,1/2,1/2))/2, where δ denotes the Dirac measure. Then,



3 Regression Analysis for Imbalanced Binary Data: Multi-dimensional Case 69

Q(z1, z2, z3) = log

(
emax(z1,z2) + emax(z1,z3) + emax(z2,z3)

2

)

.

Using the order statistic z(1) ≥ z(2) ≥ z(3) of (z1, z2, z3), we have

Q(z1, z2, z3) = log

(

ez(1) + ez(2)

2

)

,

which, in particular, depends only on the top two scores (z(1), z(2)). More generally,

Q(z1, . . . , zK ) = 1

τ
log

(

eτ z(1) +
K∑

k=2

λke
τ z(k)

)

is equivariant for any positive τ and nonnegative λk . The log-sum-exp function is
the special case λ2 = · · · = λK = 1.

Note that Q defined by (3.18) must satisfy

Q(z1, . . . , zK ) ≤ log(ez1 + · · · + ezK ),

which follows from maxk(skezk ) ≤ ∑
k ske

zk . In particular, employing the lower
bound in Lemma 3.2, we can prove that the tail behavior of Q is restricted to

Q(z1, . . . , zK ) = z(1) + O(e−(z(1)−z(2))),

as z(1) − z(2) → ∞. Thus, the algebraic predictor (3.17) cannot be expressed as (3.18)
with a (nonnegative) spectral measure μ.

3.6 Conclusion

In this paper, we introduced detectable models as generalizations of the quasi-linear
logistic models, and then derived the imbalance limit (Theorem 3.3). A key property
is that of equivariance (3.15). The log-sum-exp function is characterized as a unique
equivariant quasi-linear predictor (Lemma 3.6); see Sect. 3.5 for examples of other
equivariant predictors.

We have not conducted any simulation results. Thus, future work should investi-
gate the numerical stability of themaximum likelihood estimatorwhen an equivariant
predictor such as the algebraic predictor (3.17) is adopted.

The generalized average of the form in Remark 3.1 can be extended to functions
with the property Q(z, . . . , z) = z instead of (3.6). Regression models with such a
property may exhibit different behaviors.

Lastly, we have implicitly assumed that the conditional probability P(Y = 1 |
X = x) ranges from zero to one. However, this assumption may be relaxed. In fact,
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[9] suggests an asymmetric logistic regressionmodel that usesG(z) = (ez + κ)/(1 +
ez + κ), for κ > 0, as the inverse link function. This function is not even a distribution
function becauseG(−∞) > 0. Therefore, it would be interesting to investigate what
happens if κn → 0 as n → ∞ under the imbalance limit.
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Chapter 4
An Analysis of Extremes:
Semiparametric Efficiency in Regression

Akichika Ozeki and Kjell Doksum

Abstract Let Y denote a response variable and X denote a covariate. We consider
statistical inferences in semiparametric regression models, where the parameter of
interest is the upper boundary θ(x) = g(xβ) of the support [0, θ(x)] of the condi-
tional distribution of Y , given X = x , where the boundary structure g(·) is known.
By extending Le Cam’s theory of limits of experiments to include semiparametric
models, we construct estimators of the boundary parameter θ(x), with bias correc-
tion. The risk of each estimator reaches a lower bound for the one-sample problem,
two-sample problem, and one continuous covariate (predictor) case. When g(·) is
unknown with one continuous predictor X , we propose a selection method for the
boundary structure g(·) under regularity conditions. This yields consistent estima-
tors of g(·) and β, although efficiency is not proved under this general model. We
conclude with a real-data study on the longevity of lung cancer patients.

Keywords Adaptive estimators · Boundary parameters · Continuous predictor ·
Extreme values · Limits of experiments · Semiparametric efficiency

4.1 Introduction

Extremes are the smallest and largest possible values of a response variable Y and,
in many cases, may depend on a covariate X . Such extremes are of interest in studies
on earthquakes, radiation, floods, wind, breaking strength, rare events, and longevity,
among others. In this study, extremes are modeled as the upper boundary θ(x) of
the support [0, θ(x)] of the conditional distribution of a response Y , given X = x ,
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where X ∈ R is a covariate. We assume θ(x) is of the form θ(x) = g(xβ), for some
function g (the boundary structure). We develop efficient estimators of θ(x) for
semiparametric models when the boundary structure is known. When the boundary
structure is unknown, we propose a consistent estimator.

Such models with parameter-dependent support are irregular, because they do
not satisfy the usual regularity conditions that much of statistical asymptotic theory
is built on. A popular approach used for irregular models is Le Cam’s asymptotic
theory based on limits of experiments [18]. We apply the results reported by van
der Vaart [25, 26], who gives a general development of the theory and applies it
to the UN I F[0, θ ] model. In this approach for parametric models, a local limit
of a likelihood ratio provides a limit distribution that represents the limits of the
experiments. By determining the optimal estimators of the parameters in this limit
distribution, we obtain a lower bound on the asymptotic mean squared error (AMSE;
or more generally, the asymptotic risk) of the estimators in the original experiment.

Estimators with an AMSE equal to the lower bound are said to be asymptoti-
cally efficient. We extend this approach to semiparametric models with an unknown
parameter (θ, H), where θ ∈ Rd and H is a function. Here, we say estimators are
semiparametrically adaptive and efficient if their asymptotic risk is equal to the
lower bound on the asymptotic risk of the estimators in models in which the func-
tional parameter H is known. This extension is used to develop semiparametrically
adaptive and efficient estimators for boundary parameters.

Hirano and Porter [13] established a lower bound on the risk of parameter esti-
mators in a parametric model, showing that a Bayes estimator is asymptotically
efficient in the sense that the AMSE of the estimator reaches the lower bound.
Other parametric or semiparametric methods for extremes include those of [7–9,
11, 12, 15, 22, 25, 27]. In economics, such boundary models are often referred
to as parameter-dependent support models, and are used to study parametric auc-
tion models, search models, and production frontier models; see [13] and the ref-
erences therein. Another approach is the quantile regression technique [17]. The
quantile F−1(τ = 1) (extremal quantile τ = 1) is considered by [6, 16, 21, 24],
although they do not examine efficiency. Here, F(·) is the distribution function of Y ,
F(y) = P(Y ≤ y), and F−1(τ ) = inf{y : F(y) ≥ τ }.

The extreme value theorem can also be used to estimate the upper boundary. As
stated in [10], one of the most obvious estimators of the upper boundary for the one-
sample case is the sample maximum. In fact, [14] (Remark 4.5.5) point out that using
the samplemaximum to estimate the boundarywhen the extreme value index satisfies
ξ < −1/2 (ourmodel has ξ = −1) is approximately equivalent to using themoment-
related estimator for the endpoint. However, such a simple estimator produces a bias,
and can be improved upon by using our approach. Another approach is to use the
generalized Pareto distribution [23]. However, this approach converges more slowly
thanour approachdoes, anddoes not produce semiparametrically efficient estimators.

The remainder of the paper proceeds as follows. Section4.2 introduces a boundary
support model. Section4.3 develops the concept of efficiency for both parametric
and semiparametric models. The main result of the semiparametrically adaptive and
efficient estimator when the boundary structure is known is described in Sect. 4.4 (see
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[20] for the proof). Then, in Sect. 4.5, we propose a selectionmethod for the boundary
structure when this structure is unknown. Here, we also prove the consistency of the
estimator. Real-data examples are presented in Sect. 4.6, and 4.7 concludes the paper.

4.2 Modeling Extremes

We start with a one-sample framework, where we assume that a random variable Y
has an arbitrary continuous distribution function of the form H(y)/H(θ) on [0, θ ],
for H(·) continuous and increasing. Thus, we assume thatY1, . . . ,Yn are independent
and identically distributed (iid) as Y , with density

f (y; θ) = h(y)

H(θ)
1(0 ≤ y ≤ θ), θ ∈ � = (0,∞), H ∈ H, (4.1)

whereH = {H : H(y) = ∫ y
0 h(t)dt, h(·) is a positive function on [0,∞), with 0 <

h(0) < ∞} and
∫ y
0 h(t)dt < ∞, for each y < ∞. The model given in (4.1) is a

nonregular semiparametric model with parameter (θ, H). Here, H is unidentifiable
because H1 ≡ H(y) and H2 ≡ cH(y), for c > 0, yield the same model (4.1); that is,
H1 �= H2 ⇒ PH1 = PH2 , for fixed θ . However, f (y; θ) = h(y)/H(θ) is identifiable
on 0 ≤ y ≤ θ .

When a covariate vector X = (X1, . . . , Xd)
T is available, we model the condi-

tional distribution of Y |X = x as having the form (4.1), with

θ = θ(x) = g(xTβ),

where g is a known function, and β ∈ Rd is a vector of boundary regression
parameters. For example, a two-sample model can be modeled as d = 2 and
g(xTβ) = x1β1 + x2β2,where (x1, x2) are dummyvariables equal to (1, 0) and (0, 1)
for sample 1 and sample 2, respectively.

4.3 Adaptive and Efficient Estimation

The usual results for efficient estimation do not apply to the nonregular model (4.1).
It is nonregular in the sense that the density f (y; θ) is not differentiable in θ . Thus,
we turn to asymptotic theory for such models. First, we introduce parametric models
for which efficient estimators are defined. Next, we extend the parametric case to
include semiparametric models and an “adaptive and efficient” estimator.
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4.3.1 Parametric Models and Efficient Estimators

Let
Pn

θ ≡ the distribution of Y1, . . . ,Yn iid as Y ∼ Pθ ,

where Pθ is a distribution of Y ∈ R, and θ ∈ Rd is a parameter. Consider a collection
of probability distributions

M ≡ {Pn
θ : θ ∈ � ⊆ Rd},

which serve as parametric models for the random vector Y = (Y1, . . . , Yn)T ∈ Rn .
When estimating a parameterψ ≡ ψ(θ) : Rd �→ R, an estimator T ≡ T (Y) : Rn �→
R is said to be cn-regular (denoted as T ∈ REG) if there exists a sequence of positive
numbers cn , with cn → ∞ as n → ∞, and a distribution Qθ , such that for each θ ∈ �

and each sequence θn = θ − γ /cn , for γ ∈ Rd ,

cn[T − ψ(θn)] θn� Qθ , (4.2)

where γ /cn ≡ (γ1/cn, . . . , γd/cn), Qθ does not involve γ (denoted as Qθ ⊥ γ ), and

� denotesweak convergence. Specifically,
θn� or

γ� denotesweak convergence under
Pn

θn
.
We define the risk of T as the AMSE

R(T ;ψ) = EQθ
[S2],

where the random variable S ∼ Qθ represents the in-law limit of cn[T − ψ(θn)]
under Pn

θn
, defined in (4.2).

We say T1 ∈ REG is asymptotically efficient if

R(T1;ψ) = inf
T∈REG

R(T ;ψ).

Le Cam’s approach to asymptotics is as follows: Pθn with θn = θ − γ /cn is a local
approximation to Pθ , with parameter γ = −cn(θn − θ). Under certain conditions,
there exists a probability distribution P (0)

γ such that the “distance” between Pn
θ−γ /cn

and Pn
θ−γ0/cn converges to the “distance” between P (0)

γ and P (0)
γ0

. If we consider an
experiment in which we draw one observation from P (0)

γ0
, the optimal risk of the

procedures for this experiment provides a lower bound for the asymptotic risk of the
procedures in the original experiment with distribution Pn

θ . Our boundary parameter
results carry over to general decision-theoretic procedures and risks.

Next, we examine this approach in greater detail. An experimentE = (Z,A, Pγ :
γ ∈ 	) is a collection of probability measures {Pγ : γ ∈ 	} on the sample space
(Z,A). The experiment is interpreted as representing a model for a random variable
Z on (Z,A), distributed as Pγ , for some γ that denotes a local parameter. This



4 An Analysis of Extremes: Semiparametric Efficiency in Regression 75

model is related to the original model by θn = θ − γ /cn , for some fixed θ in the
original parameter space.

A sequence of experiments En = (Zn,An, Pn,γ : γ ∈ 	) converges to a limit
experiment E = (Z,A, P (0)

γ : γ ∈ 	) if the sequence of likelihood ratio processes
converges marginally in distribution to the likelihood ratio process of the limit exper-
iment. More precisely, define

Pn,γ ≡ Pn
θ−γ /cn ,

where θ ∈ Rd is a constant and γ ∈ Rd is the parameter. The likelihood ratio for the
local parameter γ converges to that of an experiment with one observation Z iff, for
every finite subset I ⊂ Rd and every γ0 ∈ Rd , we have

(
dPn

θ−γ /cn

d Pn
θ−γ0/cn

(Y1, . . . Yn)

)

γ∈I

γ0�
(
dP (0)

γ

dP (0)
γ0

(Z)

)

γ∈I
,

where Z ∼ P (0)
γ0

. When the P has density p, we have

dPn
θ−γ /cn

d Pn
θ−γ0/cn

= pnθ−γ /cn

pnθ−γ0/cn

,

which makes the computation of the limit manageable.
Next, define a functional κ(Pn,γ ) ≡ ψ(θn), where ψ(θn) is given in (4.2). We say

κ(Pn,γ ) is differentiable in the limit with derivative κ ′(γ ) if there exists κ ′(γ ) such
that, as n → ∞,

cn[κ(Pn,γ ) − κ(Pn,γ0)] n→ κ ′(γ ) − κ ′(γ0). (4.3)

Using [25] (Theorems 3.1, 4.1, and 5.1), we have the following theorem.

Theorem 4.1 Suppose T ∈ REG and (4.3) holds, and let Z be a random variable
with distribution P (0)

γ , where we have simplified the notation by writing γ instead of
γ0. Assume that the distribution of Z can be written as the distribution of V + �γ ,
for some nonsingular matrix� ∈ Rd×d and some random variable V on Rd that has
an absolutely continuous distribution that does not involve γ . Write L for “law” or
“distribution of.”

Then, the limit distribution of T in (4.2) can be written as

Qθ = L(S) = L(κ ′(�−1V ) + W ), (4.4)

where W is a random variable on R independent of V .

In (4.4), we can regardW as a noise variable that contributes to the risk.We get rid
of W by noting that for each W in (4.4), EQθ

[S2] is bounded below by VarQθ
[S2].
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Corollary 4.1

inf
T∈REG

R(T ;ψ) ≥ E[κ ′(�−1V ) − Eκ ′(�−1V )]2.

4.3.2 Semiparametric Models and Adaptive and Efficient
Estimators

Here, we extend the theory in Sect. 4.3.1 to include semiparametric models of the
form

M = {Pn(·|θ, H) : θ ∈ � ⊆ Rd , H ∈ H},

where Y = (Y1, . . . ,Yn)T ∼ Pn(·|θ, H), Y1, . . . ,Yn iid as Y ∼ P(·|θ, H), andH is
a class of functions satisfying regularity conditions that are specified for each specific
model considered. The goal is to estimate

ψ ≡ ψ(θ) : Rd �→ R.

Assume, temporarily, that H is known, and let R(T ;ψ |H) denote the AMSE of the
estimator T of ψ , where R(T ;ψ |H) can involve H . From the parametric model
discussion, we have

R(T ;ψ |H) = EQθ
[S2],

where the random variable S represents the in-law limit of cn[T − ψ(θn)] under
Pn(·|θn, H), with θn = θ − γ /cn . Here, T ∈ REG and Qθ are defined as in (4.2),
where Qθ does not involve γ , but may involve H .

We say that ψ̂ , an estimator of ψ(θ), is semiparametrically adaptive and efficient
(see [1, 3] (Sect. 6.2.2), and [4] for adaptive estimation) if ψ̂ ∈ REG, ψ̂ does not
involve H , and ψ̂ reaches the asymptotic lower bound on the risk for the case of
known H ; that is,

R(ψ̂;ψ) = inf
T∈REG

R(T ;ψ |H).

Note that R(·;ψ) is theAMSE riskwhen H is unknown, and R(·;ψ |H) is theAMSE
risk when H is known. In other words, the estimation of ψ under a semiparametric
model (H unknown) can be performed as though we know H .

4.4 Semiparametric Boundary Parameter Regression with
a Known Boundary Structure

In this section, we introduce a semiparametrically adaptive and efficient estimator.
Consider a random design for the response variable Yi , where (Xi ,Yi ) are iid as
(X,Y ), with conditional density
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f (y|x;β) = h(y)

H(g(xβ))
· 1(0 ≤ y ≤ g(xβ)), (4.5)

and a cumulative distribution function (CDF)

F(y|x;β) =
{ H(y)

H(g(xβ))
(0 ≤ y ≤ g(xβ))

1 (g(xβ) < y).
(4.6)

Here, the boundary parameter β ∈ R is unknown, H is unknown, and the boundary
structure g(·) is known.

We assume the following regularity conditions:

[C1] x ∈ �X ≡ [a, b], for 0 < a < b < ∞, the density of X , fX (x) > 0 on �X .
[C2]β ∈ �β ≡ (a1, b1), for 0 < a1 < b1 < ∞, the secondderivatived2 h(y)/dy2

≡ h′′ is continuous and bounded on [0,∞), and 0 < ε < inf y>0 h(y), for some
ε > 0.
[G1] 0 < infβ∈�β,x∈�X g(xβ).
[G2] 0 < inf y>0 g′(y); that is, g(·) is strictly increasing, where dg(y)/dy = g′(y).
[G3] d3g(xβ)/dβ3 ≡ g′′′ is continuous in β and sup |g′| < ∞, sup |g′′| < ∞, and
sup |g′′′| < ∞ on the set {β ∈ �β, x ∈ �X }, where g′ and g′′ are first and second
derivatives, respectively, of g with respect to β.
[G4] The inverse function satisfies g(−1)(0) = 0.

Theorem 4.2 Assume the semiparametricmodel (4.6) (knownboundary structure g)
and the regularity condition above. Using Le Cam’s limits of experiments approach,
we can construct an n-regular β̂ with an AMSE that achieves the lower bound

R(β̂;β) = inf
T∈REG

R(T ;β|H) =
(

EX

[
h(g(βX))g′(βX)X

H(g(βX))

])−2

.

Hence, β̂ is semiparametrically adaptive and efficient.

Proof See [20]. �

The estimator β̂ is constructed as follows: Set

Vi = g(−1)(Yi )

Xi
, i = 1, . . . , n. (4.7)

Then, V1, . . . , Vn are iid. Let fV (v;β) and FV (v;β) denote the density of Vi and
the CDF, respectively. Note that fV has support [0, β]. This is a boundary support
model. Therefore, we can use the framework described in Sects. 4.2 and 4.3 with Yi
replaced with Vi and θ replaced with β. Let V(n) be the largest order statistic. Then,
V(n) is a negatively biased estimator of β. Ozeki [20] found that

V(n) + 1

n fV (β;β)
(4.8)
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is asymptotically unbiased. Therefore, a consistent estimator of the density of V at
the right boundary β is an asymptotically unbiased estimator of β.

Viewing fV (β;β) as the derivative of the distribution function FV (v;β) at the
boundary leads to the estimator

f̂δ ≡ n2

n2 − 1
· F̂(V(n)) − F̂(V(n) − δ)

δ

= n

n2 − 1

1

δ

[
n−1∑

i=1

1(V(n) − δ < V(i)) + 1

]

,

(4.9)

where F̂ is the empirical distribution of V1, . . . , Vn , and δ is a small positive constant
that depends on n. By investigating the asymptotic distribution of f̂δ , we find that f̂δ
is a consistent estimator of fV (β;β), provided that δ → 0 and nδ → ∞ as n → ∞.
In addition, we find that the optimal choice of δ is δ0 = cn−1/3, where the constant
c depends on fV . In the simulation studies described in [20], c = 1 is identified as a
good choice. We use this setting in Sect. 4.6.

From (4.8) and (4.9), we have the following estimator:

β̂ ≡ V(n) + 1

n f̂δ
. (4.10)

This estimator is n-regular, β̂ � β, and it achieves the AMSE lower bound, as
stated in Theorem4.2, provided that δ → 0 and nδ → ∞ as n → ∞. See [20] for
a detailed discussion of the properties of the maximum likelihood estimator (MLE)
β̂MLE ≡ V(n).

4.5 Semiparametric Boundary Parameter Regression with
an Unknown Boundary Structure

In this section, we propose a consistent estimator for a semiparametric boundary
parameter regression with an unknown boundary structure under regularity condi-
tions. Note that efficiency is not proved.

Sometimes, it is too optimistic to assume that the boundary structure g(·) is known.
Consider a more general boundary structure g(x, β). Then, the conditional density
(4.5) and the CDF (4.6) become

f (y|x;β) = h(y)

H(g(x, β))
1(0 ≤ y ≤ g(x, β)), (4.11)

and
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F(y|x;β) =
{ H(y)

H(g(x,β))
(0 ≤ y ≤ g(x, β))

1 (g(x, β) < y),
(4.12)

respectively. Suppose the true boundary structure g is unknown, but that it lies in a
certain parametric class g ∈ G. Then, the following criteria can be used to identify
the best model within the class:

FitT est = min
m∈G

n∑

i

m(Xi , β̂m), such that m(Xi , β̂m) ≥ Yi for all i,

ĝ = argmin
m∈G

n∑

i=1

m(Xi , β̂m), such that m(Xi , β̂m) ≥ Yi for all i,

(4.13)
where β̂m is in (4.10) for the model with the boundary structurem(·, ·). More specif-
ically, m(·, ·) is the boundary structure if the model is based on (4.11), where g(·, ·)
is replaced with m(·, ·); ĝ minimizes the FitTest in (4.13). Our final estimator is

β̂ĝ. (4.14)

The FitTest tries to find the smallest boundarym that encloses all Y . This is related
to the methods proposed by [2, 5], who introduce a model parameter λ and use a
maximum likelihood or robust estimation approach to estimate β and λ. Thus, we
assume that the boundary structure is of the form gλ(x, β), and that the data are
generated using model (4.11), where g is replaced with gλ. Here, (β0, λ0) denotes
the true model parameters. In this setting, the likelihood is proportional to

L(β, λ) =
n∏

i=1

h(Yi ) · 1(0 ≤ Yi ≤ gλ(Xi , β))

H(gλ(Xi , β))
.

In the approach of [5], they first fix λ and find the “MLE” β̂(λ) of β as

β̂(λ) = argmax
β

L(β, λ).

We refer to this estimator as a profile-MLE (PMLE), and denote it as β̂m,PMLE in
(4.19). This leads to the profile likelihood

L(λ) =
n∏

i=1

h(Yi ) · 1(0 ≤ Yi ≤ gλ(Xi , β̂(λ)))

H(gλ(Xi , β̂(λ)))
.

In our case, let β̂(λ) be defined as in (4.10), with gλ used in place of g. The next step
is to let
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λ̂ = argmax
λ

L(λ) = argmax
λ

log L(λ) = argmax
λ

∑

i

log
1(0 ≤ Yi ≤ gλ(Xi , β̂(λ)))

H(gλ(Xi , β̂(λ)))

= argmin
λ

∑

i

log H(gλ(Xi , β̂(λ))), such that gλ(Xi , β̂(λ)) ≥ Yi for all i,

(4.15)
yielding the final estimator

β̂ = β̂(λ̂).

The properties of these profile estimators have been studied extensively for regular
models; see [2, 5], among others. However, the properties of nonregular models
remain an interesting open problem. In practice, we can restrict λ to be in a discrete
set of values {λ1, . . . , λK } to ease the computation burden.

Note that the profile likelihood approach in (4.15) has an additional monotone
transformation log H(·) in the objective function to those of the FitTest in (4.13).
The profile likelihood approach is difficult because it involves the unknown H(·).
We prove that the best model selected by the FitTest is the true model as n → ∞
when G is “small”; this is stated as the regularity condition [M7] below.

Let m(·, ·), g(·, ·) ∈ G, where g is the true model and m is a wrong model (i.e.,
a misspecification). Define the inverse function of y = mx (β) as m(−1)

x (y) = β. For
simplicity, we may write m(x, β) = mx (β), ∂mx(v)/∂v = m ′

x(v), ∂2mx (v)/∂v2 =
m ′′

x (v), and ∂3mx (v)/∂v3 = m ′′′
x (v).

Define
sup
x∈�X

m(−1)
x (gx(β)) ≡ Bm, (4.16)

and the following regularity conditions of G:
[M1] inf x∈�X ,β∈�β

mx (β) > 0.
[M2] infv m ′

x (v) > 0. Here, inf is taken over {v ∈ [0, Bm];β ∈ �β, x ∈ �X },
where Bm is defined in (4.16); m(x, β) is a strictly increasing continuous function
in x and in β.
[M3] m ′′′

x (v) is continuous in v and sup |m ′
x(v)| < ∞, sup |m ′′

x (v)| < ∞, and
sup |m ′′′

x (v)| < ∞. Here, sup is taken over {v ∈ [0, Bm], x ∈ �X ;β ∈ �β}, where
Bm is defined in (4.16).
[M4] m(−1)

x (0) = 0.
[M5] m(−1)

x (y) is continuous in x .
[M6] P(mX (β1) �= gX (β)) = 1, for any β1 ∈ �β .
[M7]G is a finite set. That is,G = {g,m1,m2, . . . ,mK }, for some positive integer
K .

Note that [M1], [M2], [M3], and [M4] contain the true model g’s regularity
conditions [G1], [G2], [G3], and [G4], respectively, in Sect. 4.4.

Define a transformed random variable under the model misspecification as

Zi = m(−1)
Xi

(Yi ), i = 1, . . . , n.
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This is the counterpart of the transformation under the true boundary structure g(·)
in (4.7). Let Z1, . . . , Zn be iid as Z . After some algebra with (4.11) and (4.12), the
density and the CDF of Z are shown to be

fZ (v;β) = EX

[
h(mX (v))m ′

X (v)

H(gX (β))
· 1(0 ≤ v ≤ m(−1)

X (gX (β)))

]

,

FZ (v;β) = EX

[
H(mX (v0))

H(gX (β))

∣
∣
∣
∣
v0=min{v,m(−1)

X (gX (β))}

]

,

respectively. The supremum support of the random variable Z is defined as Bm in
(4.16). We have

|Bm | < ∞, (4.17)

from [C1], [M2], and [M5], which guarantees m(−1)
x (gx(β)) is continuous on the

compact set x ∈ �X .Note that the support ofV = g(−1)
X (Y ) is [0, β]with FV (β;β) =

1, and the support of Z = m(−1)
X (Y ) is [0, Bm] with FZ (Bm;β) = 1. We assume

Bm ∈ �β , without loss of generality.
Now, define the best estimator under the wrong modelm. Based on (4.9), we have

the boundary density estimator

f̂m,δ ≡ n2

n2 − 1
· F̂Z (Z(n)) − F̂Z (Z(n) − δ)

δ

= n

n2 − 1

1

δ

[
n−1∑

i=1

1(Z(n) − δ < Z(i)) + 1

]

,

(4.18)

for fZ (Bm;β). Here, F̂Z is the empirical distribution of Zi , for i = 1, . . . , n, and
δ = cn−1/3.

Lemma 4.1
1

n f̂m,δ

� 0.

Proof From (4.18), we have

f̂m,δ ≥ n

n2 − 1

1

δ
(0 + 1) = n

n2 − 1
· 1

cn−1/3
,

with probability one. Hence,

1

n f̂m,δ

≤ n2 − 1

n2
c

n1/3
� 0. �
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Next, observe that FZ (v;β) < 1 for v < Bm , because h(·) andm ′
x (·) in the expec-

tation are strictly positive on the support of v, from [C1] and [M2]. Hence using a
well-know result, we can show the convergence

β̂m,PMLE ≡ Z(n) → Bm, (4.19)

almost surely.
Considering Lemma4.1 with Slutsky’s Theorem, Lemma4.2 shows the asymp-

totics of the efficient estimator under the wrong model m.

Lemma 4.2

β̂m ≡ β̂m,PMLE + 1

n f̂m,δ

� Bm . (4.20)

Note that β̂ in (4.10) (under the true model) is a special case of β̂m in (4.20).

Lemma 4.3
P(mX (Bm) > gX (β)) = 1.

Proof Use contradiction. Because mx (·) is a wrong model, there exists an x0 ∈
�X such that mx0(Bm) �= gx0(β), by [M6]. Suppose mx0(Bm) < gx0(β). Because
mx0(Bm) and gx0(β) are continuous in x0, by [M2], there exist constants a′, b′,
where 0 < a ≤ a′ < x0 < b′ ≤ b < ∞ and

0 < inf
x∈[a′,b′](gx(β) − mx (Bm)).

Define the area

A(x,y) ≡ {(x, y) : mx(Bm) ≤ y ≤ gx(β), a′ ≤ x ≤ b′}.

Then, by (4.11), [C1], and [C2],

PX,Y ((X,Y ) ∈ A(x,y)) =
∫ b′

a′

∫ gx (β)

mx (Bm )

f (y|x, β)dydPX (x) > 0.

On the other hand, by definition, P(Y ≤ mX (Bm)) = 1, which is a
contradiction. �

Lemma 4.4 As n → ∞,

P

(
1

n

n∑

i=1

(mXi (β̂m) − gXi (β̂)) > 0

)

→ 1. (4.21)

Proof For simplicity, write mXi (β̂m) ≡ m̂i , gXi (β̂) ≡ ĝi , mXi (Bm) ≡ mi , gXi (β) ≡
gi , ∂mXi (v)/∂v ≡ m ′

i (v), and ∂gXi (v)/∂v ≡ g′
i (v). Then, (4.21) becomes
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1

n

n∑

i=1

(m̂i − ĝi ) = 1

n

n∑

i=1

(m̂i − mi ) + 1

n

n∑

i=1

(mi − gi ) + 1

n

n∑

i=1

(gi − ĝi ) ≡ K1 + K2 + K3.

(4.22)
For K1 and K3, Taylor’s Theorem yields

m̂i = mi + m ′
i (B

∗
i )(β̂m − Bm),

ĝi = gi + g′
i (β

∗
i )(β̂ − β),

where B∗
i is between β̂m and Bm , and β∗

i is between β̂ and β. We have

|K1| ≤∣
∣β̂m − Bm

∣
∣
∣
∣
∣
∣

∑
m ′

i (B
∗
i )

n

∣
∣
∣
∣ ≤∣

∣β̂m − Bm

∣
∣
∣
∣
∣
∣

∑
supx∈�X ,β∈�β

m ′
x (β)

n

∣
∣
∣
∣

≤ |β̂m − Bm

∣
∣
∣
∣
∣
∣

∑
G1

n

∣
∣
∣
∣ = |β̂m − Bm

∣
∣ · G1,

|K3| ≤∣
∣β̂ − β

∣
∣
∣
∣
∣
∣

∑
g′
i (β

∗
i )

n

∣
∣
∣
∣ ≤∣

∣β̂ − β
∣
∣
∣
∣
∣
∣

∑
supx∈�X ,β∈�β

g′
x(β)

n

∣
∣
∣
∣

≤ |β̂ − β
∣
∣
∣
∣
∣
∣

∑
G2

n

∣
∣
∣
∣ = |β̂ − β

∣
∣ · G2,

from [M3] and (4.17). Here, G1,G2 are positive constants. By Lemma4.2, |K1| =
oP(1) and |K3| = oP(1). Here, oP(1) means convergence in probability to zero.

For K2, the strong law of large numbers and Lemma4.3 give almost sure conver-
gence,

K2 = 1

n

n∑

i=1

(mi − gi ) → EX [mX (Bm) − gX (β)] > 0.

Here, the expectation is finite, by [C1] and [M2]. Hence, by Slutsky’s Theorem,
(4.22) becomes

1

n

n∑

i=1

(m̂i − ĝi ) = K1 + K2 + K3 � EX [mX (Bm) − gX (β)] > 0.

This proves (4.21).

Theorem4.3 combines these results.

Theorem 4.3 Consider a semiparametric boundary support model with distribution
function (4.12), where the boundary structure g(·, ·) is unknown, but belongs to a
parametric class G. Suppose the regularity conditions [C1], [C2], and [M1]-[M7]
hold. Define the estimator β̂m under a model m ∈ G as in (4.20). As n → ∞, the
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FitTest (4.13) chooses the true boundary model g with probability tending to one.
Moreover, the estimator (4.14) is consistent,

β̂ĝ � β.

Proof Consider the minimization problem (4.13). From Lemma4.4, for mk ∈ G,
k = 1, . . . , K , by [M7], we have for any 0 < ε1, there exists N0 such that for all
N0 < n and all k ∈ {1, . . . , K },

P

(
n∑

i=1

mk(Xi , β̂mk ) ≤
n∑

i=1

g(Xi , β̂)

)

≡ P(Sk) ≤ ε1.

By De Morgan’s Laws, we have

{ĝ = g} =
{ n∑

i=1

mk(Xi , β̂mk ) >

n∑

i=1

g(Xi , β̂), for all k ∈ {1, . . . , K }
}

= S1 ∩ · · · ∩ SK ,

{ĝ �= g} = ∪K
k=1Sk .

Then, for all N0 < n, by Boole’s Inequality,

P(ĝ �= g) = P(∪K
k=1Sk) ≤

K∑

k=1

P(Sk) = K ε1.

By setting ε2/2 = K ε1, we have

P(ĝ �= g) ≤ ε2/2.

In addition, by Lemma4.2 (under the true model), for any 0 < ε, there exists Ng

such that for all Ng < n, P(|β̂ − β| > ε) ≤ ε2/2. Let N ≡ max(N0, Ng). Then, for
all N < n, we have

P(|β̂ĝ − β| > ε) = P(|(β̂ĝ − β̂) + (β̂ − β)| > ε, {ĝ = g})
+ P(|(β̂ĝ − β̂) + (β̂ − β)| > ε, {ĝ �= g})
≤ P(|0 + (β̂ − β)| > ε, {ĝ = g}) + ε2/2

≤ ε2/2 + ε2/2 = ε2.

Hence β̂ĝ is consistent. �
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4.6 Real-Data Analysis

4.6.1 Example 1: Survival Time of Lung Cancer Patients
(Two-Sample Models)

The data describe the survival of patientswith advanced lung cancer, and are provided
by theNorthCentralCancerTreatmentGroup (Rpackage survival.cancer [19]).Here,
we examine whether a significant difference exists between males and females in
terms of longevity (the longest survival time). We fit a semiparametric two-sample
boundary support model as a special case of the semiparametric regression model
in which two independent samples of nonnegative responses, X1, . . . , Xm iid as X
(male), and Z1, . . . , Zn iid as Z (female), have densities

f1(x; θ1) = h1(x)

H1(θ1)
· 1(0 ≤ x ≤ θ1), f2(z; θ2) = h2(z)

H2(θ2)
· 1(0 ≤ z ≤ θ2),

where Hj (·), for j = 1, 2, are unknown continuous increasing functions on R+ =
[0,∞), with derivatives h j (·). To compare the extremes of the X and Z populations,
we consider the shift parameter ς ,

ς = θ1 − θ2.

We estimate the difference (male–female) of the extreme quantiles. Figure4.1 shows
the density plots for 112 males and 53 females. Except for the right tail, the males
density is shifted left comparedwith that of the females. The summary statistics are as
follows: first quartile (118, 167), mean survival time (263, 326), median (209, 293),
third quartile (363, 444), and maximum (883, 765), where the values in parentheses
represent males and females, respectively.

Based on the adaptive and efficient estimator in Theorem4.2, the maximum sur-
vival time is estimated as 910 days for males and 782 days for females. Furthermore,
we apply the adaptive and efficient estimator for the difference between the two.
The male extreme survival is 127 days longer than that of females, with 95% con-
fidence interval = (75, 205). Thus, there is a significant difference between males
and females in terms of longevity. Note that the confidence interval is based on
Theorem4.1; see [20] for further details.

4.6.2 Example 2: Survival Time of Lung Cancer Patients
(calorie)

We use the same data as in Example 1. Loprinzi et al. [19] shows that caloric intake is
correlatedwith patient survival; that is, appetite is an indicator of howwell a patient is
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Fig. 4.1 Density plots for male and female survival time

doing. We are interested in how a patient’s caloric intake relates to his/her survival at
the extreme quantile τ = 1; that is, F−1(τ = 1) = g(x, β), where F−1(τ ) = inf{y :
F(y|x;β) ≥ τ }. Here, F is a distribution function in (4.12). In other words, we want
to estimate the longest survival time Y (in days), given a certain meal intake X (in
calories). We use patients who have both survival time and calorie data (n = 134).
As a preliminary, we fit a simple linear regression (Fig. 4.2). The straight line is
the regression line, and the shaded area is the 95% predictive interval. Figure4.2
suggests a positive trend. That is, on average, increased calorie intake is associated
with a longer survival time.

We fit a semiparametric boundary support model with one covariate, and apply
Theorem4.3. In this model, we assume the boundary structure is unknown, but that
it belongs to the class

G = {g(x, β) = xCβ; C ∈ {1/10, 1/5, 1/2, 1, 2}}.

Weassume the true boundary structure g(·, ·) lies within this class.We use the criteria
(4.13) to identify the best model. The regularity conditions of G in Theorem4.3 can
be checked as follows.

Define the true boundary structure g(x, β) and a wrong model m(x, β), and its
related functions, as follows:
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Fig. 4.2 Survival time of lung cancer patients. The straight line is a linear regression with a shaded
95% prediction interval. Patients with the longest and second-longest survival times (calories, time)
= (513, 814), (768, 791) are denoted by an ×

g(x, β) = xC0β,

m(x, β) = mx (β) = xCβ,

m(−1)
x (y) = y/xC ,

m(−1)
x (gx(β)) = xC0−Cβ,

m ′
x (v) = xC ,

m ′′
x (v) = m ′′′

x (v) = 0.

We assume [C1] x ∈ �X ≡ [1, 3000], and [C2] β ∈ �β ≡ (a1, b1), for 0 < a1 <

b1 < ∞. We assume the other conditions in [C2]. [M1]–[M5] can be easily checked.
For example, in [M5],m(−1)

x (y) = y/xC is continuous in x ∈ �X . For [M6], we solve
the equation xCβ1 = xC0β with respect to β1. This yields β1 = x−C+C0β. Therefore,
when C = C0, we have an identifiability problem. Any combination of sets in G
can clear this condition. Lastly, [M7] is K = 4 (including the true g, we have five
elements in G.)

We estimate the extreme quantile using four methods: the consistent estimator
β̂ĝ in Theorem4.3 (95% confidence interval); β̂ĝ,PMLE (PMLE under model ĝ in
(4.19); 0.99 quantile regression (original scale); and 0.99 quantile regression on the
transformed scale (quantile regression on given C) (see Fig. 4.3).

Here, the 95% confidence interval of β̂ĝ is based on the asymptotics. We can show
by Theorems4.2 and 4.3 that on the set {ĝ = g},
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Fig. 4.3 Two estimators for the τ = 0.99 quantile regression (long-dash line from the usual quantile
regression, dotted-line curve from the quantile regression on the transformed scale [17]), and two
estimators for τ = 1 (ĝ(X, β̂ĝ,PMLE ) = X0.1β̂ĝ,PMLE , with a dotted diamond, and ĝ(X, β̂ĝ) =
X0.1β̂ĝ with a solid-line curve (dashed 95% C.I.)); β̂ĝ is based on the FitTest in (4.14)

−n(β̂ĝ − β) = −n(β̂g − β) � W − α, (4.23)

where W ∼ EX P[0, α] (exponential distribution with shift = 0, scale = α), with
α = 1/ fV (β;β). Using (4.18), we substitute α̂ = 1/ f̂ ĝ,δ into the right-hand side
(RHS) of (4.23). Then, we generate random variables W1, 107 times, where W1 ∼
EX P[0, α̂]. Then, we compute the lower and upper 2.5% quantiles,

βL = β̂ĝ + (RHS of (4.23) lower 2.5% quantile)/n,

βU = β̂ĝ + (RHS of (4.23) upper 2.5% quantile)/n.

For the 0.99 quantile regression on the transformed scale, we have the boundary
condition {y ≤ g(x, β)} = {y ≤ xCβ}. This leads to a transformed model, defined
as the response variable Y and a predictor variable XC . We fit the quantile regression
using an intercept and XC as covariates. The quantile regression on the original
scale (the response Y and the predictor variable X ) is a straight line. However, the
quantile regression on the transformed scale is a curve, because it is transformed
back to the original scale. On the semiparametric boundary support model, the best
model is selected as C = 0.1. That is, the best model is ĝ(X, β) = X0.1β, with
FitT est = 117859 and β̂ĝ = 447.6(436.42, 478.45).
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Fig. 4.4 The estimators after deleting the two observations with the longest and second-longest
survival times. The notation is the same as that in Fig. 4.3

The consistent estimators β̂ĝ and β̂ĝ,PMLE both show a positive trend as a function
of calorie intake, whereas the two quantile regression estimators suggest a negative
trend. To understand this phenomenon, we delete the two observations with the
longest survival times (see Fig. 4.4). The best model is selected as C = 0.5, with
FitT est = 91297 and β̂ĝ = 23.08(22.74, 24.04). Now, all four estimators are very
close and indicate a positive trend, suggesting that quantile regressions are very
sensitive to outliers near the extreme quantile. On the other hand, the boundary
support model estimates yield relatively similar curves, with or without the outliers.

4.7 Conclusion

In this paper, we have examined a semiparametric boundary support model with one
covariate. A semiparametrically adaptive and efficient estimator is given in Theo-
rem4.2 when the boundary structure is known. The adaptive estimator and its con-
fidence interval estimation based on limits of experiments framework were applied
to a real-data analysis for the two-sample case.

Next, we proposed a selection method for the boundary structure when the struc-
ture with one continuous covariate is unknown. We also proved its consistency when
the set of boundary structures is a finite set. Themethodwas applied to investigate the
relation between themaximum survival times of lung cancer patients and their calorie
intake. Here, a quantile regression (quantile τ = 1) cannot give a confidence region,



90 A. Ozeki and K. Doksum

and is sensitive to outliers near the boundary. In contrast, our consistent estimator is
shown to be more robust.

Several questions remain. We have not discussed the efficiency of the consistent
estimator or the consistency of its confidence interval when the boundary structure
is not within a finite set. If the boundary structure is bigger than a finite set, then we
do not even know its consistency. In addition, we have not discussed multivariate
continuous covariate cases. These topics are left to future research.
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Chapter 5
Comparison of AMS and POT Analysis
with Long Historical Precipitation and
Future Change Analysis Using “d4PDF”

Shigenobu Tanaka

Abstract This paper assesses extreme precipitation events, which are one of the
most impactful hydrological circulation events for policy decisions. In extreme anal-
ysis, samples of block maxima or peaks over threshold (POT) are used. However,
annual maximum series (AMS), a type of block maxima, has been employed more
often than POT. This study deals with problems that often occur in extreme anal-
ysis with long historical records and large ensembles of climate simulations. The
following work is carried out: (1) AMS analysis is compared with POT analysis
using long-term historical precipitation records at meteorological stations in Tokyo
and Nagoya. With a carefully selected threshold, the generalized Pareto distribution
keeps a more stable shape parameter than the generalized extreme value (GEV) dis-
tribution for AMS and gives relatively reliable return levels along with accumulated
observation; and (2) a method using 60-year maxima is introduced to manage a very
large set of AMS samples to which both the Gumbel distribution and the GEV distri-
bution cannot fit well. Figures to obtain the 100-year return level are prepared based
on the Gumbel distribution through the examination of relationships among past and
future statistics of 1- to 3-day precipitation with a large ensemble of climate simula-
tions called d4PDF. It is interesting that there are common statistical characteristics
among the 1-day, 2-day, and 3-day precipitations.
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5.1 Introduction

Let us begin with a quotation from UNESCO [13]:

Hydrology is the sciencewhichdealswith thewaters of the earth, their occurrence, circulation
and distribution on the planet, their physical and chemical properties and their interactions
with the physical and biological environment, including their responses to human activity.
Hydrology is a field which covers the entire history of the cycle of water on the earth.

Precipitation is one of the most important components of hydrological circulation
and is directly connected to surface runoff. The effective duration of precipitation
depends on the spatial characteristics of the drainage area. The total amount of pre-
cipitation in the effective duration is generally used to design flood control structures
for the target drainage area. In Japanese river basins, effective durations range from
several hours to three days. The design of flood control plans reflects historical data
extremes. The period from the planning until the completion of flood control struc-
tures presently requires a longer time than in the past. The assessment of future
precipitation increases and their impact on basins is urgently required.

In many floods, severe damage results not only from high water levels and flood-
ing, but also from large-scale debris flows and sedimentation, impacting the lives
of the population long after the hazards are gone. The Intergovernmental Panel on
Climate Change Assessment Report 5 [3] warned that, in the future, “extreme pre-
cipitation events over most of the mid-latitude land masses and wet tropical regions
will very likely becomemore intense andmore frequent.” In many reports on climate
change monitoring [5] and the risk of occurrence of very large disasters [8], the same
concerns have been raised and confirmed.

Flood and debris-flow disasters are generally caused by extreme rainfall. Flood
risk management requires an adequate understanding of relationships between haz-
ardous events and their frequency.

Historically, observational data have been used for extreme analysis. However,
because observation periods are generally short, additional data tend to affect return
levels, based on which the design rainfall of a flood control plan is determined. From
the perspective of infrastructure construction, a high priority should be placed on the
stability of return levels so that these levels will not be largely affected by additional
data.

In this study, the performance of extreme distributions is examined with long-
term precipitation observation records. Additionally, the impact of climate change on
extreme precipitation events is studied using a large ensemble of climate simulations
with a 20km regional climate model focusing on six major river basins.
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5.2 Data Used

In this study, two kinds of precipitation data are analyzed; one is long daily precipi-
tation at Tokyo and Nagoya, and the other is a large ensemble of climate simulations
for both past and future climate conditions.

5.2.1 Historical Precipitation Observations

To examine the performance of the extrapolated return levels, we employ daily pre-
cipitation data observed at a meteorological station in Tokyo and another in Nagoya.
Among the oldest meteorological stations in Japan, these two stations have observed
daily precipitation since 05 June 1875 and 01 July 1890, respectively. Figure 5.1
shows the time series of annual maximum daily precipitation at these stations. The
records of the first year were excluded, because of the short periods of observation.
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Fig. 5.1 Time series of annual maximum daily precipitation at a meteorological station in Tokyo
(top) and one in Nagoya (bottom), Japan
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The Mann–Kendall test for both sites shows that the time series do not change with
time.

In both sites, the level of daily rainfall is not very remarkable, except for historical
high records. Tokyo has one rainfall event of over 200 mm/day before 1958, and
Nagoya has two rainfall events of over 200 mm/day before 2000. The historical
maximum record is 371.9 mm/day for Tokyo and 428 mm/day for Nagoya.

5.2.2 Large Ensemble of Climate Simulations

A large ensemble of climate simulations with a 60km atmospheric general circula-
tion model and dynamical downscaling with a 20km regional climate model (RCM)
were prepared to obtain probabilistic future projections of low-frequency local-scale
rainfall events [9]. The simulation outputs are available in the “Database for Policy
Decision-Making for Future Climate Change” (d4PDF), which is intended to be uti-
lized for impact assessment studies and adaptation planning for global warming. The
RCM simulations consist of historical climate simulations (1951–2010, 50 ensemble
members) and future climate simulations (2051–2110, 90 ensemble members). The
90 ensemble members for future climate simulations include six types of 15-member
simulations corresponding to different climatological sea surface temperature (SST)
warming patterns such as CCSM4, GFDL-CM3, HadGEM2-AO, MIROC5, MPI-
ESM-MR, and MRI-CGCM3 (CC, GF, HA, MI, MP, MR, respectively). Continuous
daily and hourly precipitation in the simulation periods are available on the d4PDF
website.

In this paper, 1-day, 2-day, and 3-day annualmaximum series (AMS) are extracted
from the daily precipitation of 99 grids in the six major river basins around the three
megacities of Tokyo, Nagoya, and Osaka, Japan; the rivers are the Tone, Ara, Kiso,
Nagara, Shonai, and Yodo (see Fig. 5.2). Although 2-day or 3-day annual maximum
precipitation data are not often used and many studies deal with daily products,
statistics for these periods are considered to be important for developing flood control
plans in Japan.

Fig. 5.2 Locations of six
major river basins in Japan.
The number in each grid
shows in which river basin
the grid is located
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5.3 Frequency Analysis

Extreme value distributions are applied to estimate very infrequent quantiles [1, 12].
The generalized extreme value distribution (GEV) is used for block maxima while
the generalized Pareto distribution (GP) is used for peaks over threshold (POT). Both
GEV and GP are three-parameter distributions; however, when the shape parameters
of GEV and GP are zero, they become two-parameter distributions (see Table 5.1).
GEVbecomes theGumbel distribution (Gumbel) andGP the exponential distribution
(Exp). When dealing with block maxima, the simplest distribution is the Gumbel
distribution, which has two parameters closely related to block maxima statistics,
namely the location parameter ξ and the scale parameter α; these parameters have
the following relationship with the mean μ and standard deviation σ :

α = √
6σ/π, ξ = μ − γα, (5.1)

where γ is the Euler–Mascheroni constant; γ = 0.5772 · · · . To estimate α and ξ ,
μ and σ of (5.1) are replaced with the sample mean x̄ and standard deviation s,
respectively. The corresponding estimates are denoted by α̂ and ξ̂ . One can estimate
the non-exceedance probability F and a return period with cumulative distribution
function, or a return level using Eq. (5.2) or (5.3)

xF = ξ̂ − α̂ log(− log(F)). (5.2)

xF = Ax̄, A = 1 − (γ + log(− log(F)))

√
6

π

s

x̄
. (5.3)

For independent events, F(x) for AMS analysis is connected with G(x) for POT
analysis by the Poisson distribution

F(x) = exp (−λ(1 − G(x))) , (5.4)

where λ is the arrival rate, which is equal to the average number of events per year
larger than a threshold value [12].

Table 5.1 The cumulative distribution functions of extreme value distributions

Data Three parameters distribution Two parameters distribution

AMS GEV: F(x) =
exp

(
−

(
1 − κ

x−ξ
α

)1/κ) Gumbel:
F(x) = exp

(
− exp

{
− x−ξ

α

})

POT GP:

G(x) = 1 −
(
1 − κ

x−ξ
α

)1/κ Exp: G(x) = 1 − exp
{
− x−ξ

α

}

(ξ :location parameter, α:scale parameter, κ:shape parameter)
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5.3.1 Block Size of Block Maxima

AMS has been conventionally used as a kind of block maxima, and its block size
is one year. However, in the case of large data ensembles, the selection of a block
size requires careful considerations. The d4PDF is a large database that has 50 or
15 ensemble members of 60-year simulations. As a serial simulation, this will be
converted to 3,000-yearAMS for the historical climate simulation and 900-yearAMS
for the future simulation. On the other hand, if the 60-year period is considered a
block, there are 50 samples of “60-year maxima.” If a sample comes from a common
Gumbel distribution, the points will be placed on an almost straight line on the
Gumbel probability paper. Different block sizes show different locations, however,
they have the same scale parameter, which corresponds to the slope of the plots. We
observe that slopes are very similar between the 100-year return period of the AMS
plot and the 60-year maxima plot in Fig. 5.3. In the probability plot of AMS, the
lower part is different from the upper part. Regarding the 100-year return period,
the plotted points show a return level that disagrees with those of the Gumbel and
GEV distributions. In the AMS plots, precipitation of less than 90 mm occupies half
of the sample and shows a different tendency from that of the upper part, which
might be a reason for the disagreement. On the other hand, the minimum value of
the 60-year maxima is 191.2 mm, and the 60-year maxima series does not include
very small values of less than 90 mm. Both the Gumbel and GEV distributions
adequately fit the probability plot of the 60-year maxima. To compare the 100-year
return level ofAMSwith the 60-yearmaxima, different non-exceedance probabilities
are needed; F = 0.99 for AMS and F = 0.9960 = 0.5472 for the 60-year maxima.
Akaike’s Information Criterion (AIC) recommends the GEV distribution for AMS
and theGumbel distribution for the 60-yearmaxima. Considering the 100-year return
level, there is a discrepancy between the AMS probability plots and the fitted GEV
distribution and an agreement between the probability plots of the 60-year maxima
and both distributions. For all of the 99 grids, the probability plots of the 60-year
maxima and the Gumbel distribution are in good agreement at F = 0.5472. Based
on these observations, in this study, the 60-year maxima are used to estimate the 100-
year return level. However,AMS is essential in practical situations, and consequently,
in this study, the relationship between AMS and the 60-year maxima is prepared.

5.3.2 Threshold Selection

The threshold selection is crucial in POT analysis because POT samples depend
heavily on a threshold. The sample mean excess function (SMEF) is a traditional
tool for selecting a threshold. The threshold selection method using SMEF is based
on the fact that, if the excesses of a threshold follow the Exp distribution, the mean
of the excesses is equal to the scale parameter [10]. In practice, a threshold candidate
range where SMEF is constant is determined, and the smallest point of the range is
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Fig. 5.3 A comparison of
the probability plots and fits
of annual maximum series
(AMS) with the 60-year
maxima of grid 47 of the Ara
river basin in Fig. 5.2. The
dotted line shows the
100-year return period for
AMS and the dot-dashed line
shows the 100-year return
period for the 60-year
maxima. The vertical solid
line indicates the 100-year
return level of the Gumbel
distribution for the 60-year
maxima
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selected. However, this method is subjective. Figure 5.4 shows an example of the
SMEFgraph for Tokyo andNagoya. The threshold is evident in the case of Tokyo, but
is unclear in the case of Nagoya. This shows the importance of setting an appropriate
threshold so that the extracted POT data can be adequately fitted with the GP or
Exp distribution. Thus, the SMEF method to determine a candidate threshold for the
Exp distribution can potentially lead the shape parameter of the GP distribution to
be around 0, which is mostly not appropriate. Therefore, in this study, the author
proposes an automatic objective method using the L-moment relationship to address
this issue.

The maximum likelihood estimation is generally used for parameter estimation
in extreme analysis; however, the L-moment method is less affected by outliers [2].
When probability weighted moments are expressed by Eq. (5.5), L-moments λi are
expressed by Eq. (5.6)

βr =
∫ 1

0
x(u)ur du . (5.5)
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Fig. 5.4 The sample mean
excess function (SMEF) of
the daily precipitation at the
Tokyo and Nagoya stations.
The threshold for Tokyo is
easily determined, but the
one for Nagoya is difficult to
select merely by looking
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λ1 = β0

λ2 = 2β1 − β0

λ3 = 6β2 − 6β1 + β0

τ3 = λ3/λ2

(5.6)

where x(u) is the quantile function or inverse function of the distribution function.
In the case of analysis using the Exp distribution, x(u) is replaced by the quantile

function of the Exp distribution. Then, the distribution parameters have the following
relationships with the first L-moment and the second L-moment:

{
λ1 = ξ + α

λ2 = α/2
(5.7)

where ξ is the location parameter and α is the scale parameter. Equations (5.7) yield
Eq. (5.8) as a fraction of them. When Eq. (5.8) is equal to one, the scale parameter
value derived from the mean of the excesses of the threshold candidate is equal to
that from the variance of the excesses of the threshold candidate, and the independent
peaks over the threshold can be fitted by the Exp distribution. Thus, Eq. (5.8) can be
considered as a “fidelity index” for the Exp distribution. If there are several threshold
candidates that make Eq. (5.8) equal to one, the smallest candidate should be selected
to obtain a larger sample size.

Fidelity index for Exp: (λ1 − ξ)/(2λ2) . (5.8)

Similarly, from the relationships among the first, second, and third L-moments
and the parameters of the GP distribution shown in Eq. (5.9), Eq. (5.10) is given as
an index that shows fidelity for the GP distribution.
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Fig. 5.5 Examples of the proposed threshold selection method for Tokyo (left) and Nagoya (right)
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λ1 = ξ + α/(1 + κ)

λ2 = α/((2 + κ)(2 + κ))

τ3 = (1 − κ)/(3 + κ)

(5.9)

Fidelity index for GP:
(λ1 − ξ)/λ2 − 1

2(1 − τ3)/(1 + τ3)
. (5.10)

Figure 5.5 shows the detected thresholds for the Exp and GP distributions for
Tokyo and Nagoya. For Tokyo, the threshold is 78 mm for Exp and 15 mm for GP.
GP may also fit POT data over 78 mm, but with a shape parameter very close to
0; however, Exp no longer fits at a threshold smaller than 78 mm. For Nagoya, the
threshold is 100 mm for Exp and 18 mm for GP.

5.3.3 AMS and POT Analysis of Long Historical
Precipitation

To examine the performance of the AMS and POT analysis for estimating extrapo-
lated return levels, daily precipitation data from Tokyo and Nagoya were used.

First, the AMS analysis was conducted using 141 years of data from Tokyo. The
whole AMS record was divided into three periods with the same length, and the
AMS of each period was plotted and fitted with the Gumbel and GEV distributions.
Figure 5.6 plots the three data periods with AIC recommendations. The GEV distri-
bution has an upper bound for the first period; it has a very thick tail with a very large
record for the second period, in which the maximum historical record was observed,
but the tail becomes thinner in the third period. The GEV and Gumbel distributions
are preferred by AIC for the second and third periods, respectively.

Second, the block size was changed. The maximum values were extracted with
different block sizes from the whole record. Figure 5.7 shows a comparison of the
plots of the AMS, 2-year maxima, and 3-year maxima. The Gumbel and GEV distri-
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Fig. 5.6 Probability plots of the three divided periods with fits for the Tokyo data.AIC : distribution
recommended using Akaike’s Information Criterion
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Fig. 5.7 Probability plots of m-year maxima with fits for Tokyo

butions differ by a large amount at large return levels with AMS, but the discrepancy
becomes small with the 2- and 3-year maxima. One-quarter of the AMS samples are
less than 80 mm and their plots have different tendencies from the others. These rel-
atively small data show a smaller return level of the Gumbel distribution and a larger
return level of the GEV distribution for a longer return period. In Fig. 5.7, the GEV
distribution is recommended by AIC for the AMS case, but the Gumbel distribution
is recommended for the 2-year and 3-year maxima. Regarding the 2-year and 3-year
maxima, small-value data in AMS have disappeared, and the GEV distribution looks
very similar to the Gumbel distribution. However, neither the Gumbel distribution
nor the GEV distribution fits the outliers. This situation is different from Sect. 5.3.1
and requires further examination.

Third, both AMS and POT analyses were applied. Figure 5.8 shows the evolution
of the 200-year return level of the Gumbel, GEV, Exp, and GP distributions along
with data accumulation (top graph). Daily precipitation has been recorded at the
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Fig. 5.8 The evolution during 1920–2016 of the 200-year return level (top), thresholds of POT
(middle), and shape parameters of GEV and GP (bottom), along with data accumulation from 1876
at Tokyo

Tokyo meteorological station since 1876; 200-year return levels for the observation
period from 1876 to any year (which appears in the horizontal axis) are plotted in
Fig. 5.8. The Gumbel and GEV distributions were applied to AMS data while the
Exp and GP distributions were applied to POT data. To extract the POT data, the
thresholds for both Exp and GP distributions were selected for each set of samples
using the method introduced in the previous section (middle graph of Fig. 5.8).
There are small variations in the threshold for both the Exp and GP distributions
while the threshold of GP is almost constant after 1970. The bottom graph shows the
evolution of the shape parameter of the GEV and GP distributions. The GEV’s shape
parameter changes from 0.1 to −0.1, and sharp drops appear at every critical event
in 1938 and 1958. On the other hand, the GP’s shape parameter is always negative
and settles at around −0.2 after 2000. It may be possible to say that Exp estimates
the most stable return level, and Gumbel estimates the second-most stable return
level. However, their return levels are moderate, and this trend does not change, even
after the occurrence of the historical maximum event in 1958. The return level of
GEV changes in response to the large rainfall event, but it is too small before 1938.
With the effect of the large rainfall events in 1938, GEV’s return level becomes very
similar to those of Gumbel and Exp; however, it drops again to the lowest among the
four distributions just before the largest event in 1958. GP always yields the highest
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return level. It should be noted that GP yields probable return levels even before the
historical maximum event.

Figure 5.9 shows the four distributions fitting to AMS and POT samples for
Tokyo on Gumbel probability papers for four different periods: (a) 1876–1920, (b)
1876–1955, (c) 1876–1960, and (d) 1876–2016. In period (a), GEV fits best to the
larger part of the sample and has an upper bound. The shape parameter of GEV
is 0.095 while that of GP is −0.164. AIC recommends the Gumbel distribution.
Period (b) includes the second largest event, which occurred in 1938. In this period,
GEV’s shape parameter nearly reaches 0, and GEV almost overlaps with the Gumbel
distribution. AIC recommends Gumbel. GP’s shape parameter is −0.166. Period (c)
includes the largest historical event of 371.9 mm/day, which occurred in 1957. In this
period, GEV’s shape parameter reaches −0.151. GP’s shape parameter is −0.178,
and GP has a thicker tail than GEV. Due to its long length, period (d) has several
large extreme events, resulting in a rather smooth probability plot. In this period,
GEV’s shape parameter is−0.102, and GP’s is−0.2. Exp and GEV obtain better fits
for the higher part of the sample. The Gumbel distribution estimates smaller than the
higher part of the sample F > 0.95, and its return level is the smallest among the
four distributions. GP’s return level exceeds the larger part of the sample.

The GP distribution always shows the highest 200-year return level and tends to
have a thick tail. In period (a), GP estimates a 100-year return level at 280 mm/day,
although the maximum in the period is less than 200 mm/day. However, the second
largest event, with a rainfall of 278.3 mm/day, occurred in 1938. In periods of (a) and
(b), only GP estimates a 200-year return level of over 300mm/day, although a rainfall
event of 371.9 mm/day occurred in 1958. In period (c), GP obtains a very close fit
to the sample plots. In period (d), GP estimates a much higher return level than the
sample. At present, rainfall of more than 400 mm/day is not rare in Japan. In this
research, a threshold of 80 mm/day was selected by SMEFwith the data of the whole
period (see Fig. 5.4). When it is used for different periods, GP estimates 200-year
return levels at around 300 mm/day, which is the largest among the four distributions
before 1970 and the second largest after 1970. From this analysis, it is clear that the
threshold should be obtained separately for each sample and distribution.

Although the sample does not include large extremes and GEV’s shape parameter
is positive, as seen from the top left graph in Fig. 5.9, GP estimates a high return
level. Figure 5.10 shows the performance of GP for Nagoya, comparable to the same
analysis for Tokyo (Fig. 5.8). The top figure shows that only GP constantly estimates
a rainfall of more than 300 mm/day for a 200-year return level, even before 2000,
in which a record-breaking event of 428 mm/day occurred. The threshold of GP’s is
more stable than that of Exp, and the former’s shape parameter maintains at around
−0.2. (middle and bottom). The return levels of GEV, Gumbel, and Exp almost
coincide, however, only GP shows more than 300 mm in 1935 (top).

The author has checked the performance of the proposed threshold selection
method for rainfalls of 1 to 96 hours for 17 meteorological stations in Japan, whose
observation periods are longer than 80 years. The results show that GP’s thresholds
are very small in most cases and that the shape parameters stay at around −0.2.
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Fig. 5.9 Four distributions fitting to AMSandPOT samples for Tokyo onGumbel probability papers
for four different periods: a 1876–1920, b 1876–1955, c 1876–1960, and d 1876–2016
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Fig. 5.10 The evolution during 1920–2019 of the 200-year return level (top), thresholds of POT
(middle), and shape parameters of GEV and GP (bottom), data accumulation from 1891 at Nagoya

5.3.4 Considerations Regarding AMS and POT Analyses

The above analyses show the following for the extreme analysis of precipitation:
When both AMS and POT analyses are available,

1. POT data should be prepared with a well-checked threshold.
2. A high priority should be placed on GP estimates.
3. It is recommended not to judge indiscreetly on the fitness of the higher return

period range.
4. For a small sample size, GEV may have an upper bound; however, as the sample

size grows, it may become thick-tailed.
5. For a small sample size, while the Gumbel distribution may estimate a higher

return level than the sample plot, its higher return level often becomes lower as
the sample size grows. Thus, the return level estimate of the Gumbel distribution
should be taken as a lower reference value.

6. The performance of Exp depends on the threshold. Return levels obtained using
the Exp distribution are slightly larger than those of the Gumbel distribution
mostly in the examples of Sect. 5.3.3 (Figs. 5.8, 5.9 and 5.10).

When only AMS analysis is available,
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1. According to AIC, GEV or Gumbel should be selected.
2. For a small sample size, when GEV has an upper bound, Gumbel should be

selected.
3. When the probability plot is almost linear around the target return period but

not well fitted with both GEV and Gumbel, n-year maxima may be able to fix
the discrepancy, though the discrepancy with outliers may not be fixed. In this
scenario, Gumbel andGEVare no longer useful, and it is better tomake judgments
based on the sample probability plot.

5.4 Analysis of Climate Simulations

Disaster countermeasures, such as flood control structures, are generally planned to
prevent frequent disasters based on past events. The impact of climate change on the
probability of extreme precipitation exceeding the design precipitation for disaster
countermeasures raises the question of their capacity against flood risks. If riverwater
overflows an embankment, the main structures, which are usually constructed from
soil, will be at higher risk of breach. Therefore, it is crucially important to calculate
the occurrence probability of extreme precipitation exceeding the design level for
flood control plans.

Large ensemble climate simulations, such as the d4PDF, are used to assess the
impact of climate changeon extremeprecipitation.Thed4PDF is a database for policy
decision-making to cope with future climate change and allows users to explicitly
investigate the probability density function of extreme events. However, if large
ensemble climate simulations are regarded as continuous serial data of 3000 years
or 5400 years, the Gumbel distribution forms a straight line, as shown in Sect. 5.3.1.
The results of this research were analyzed using the Gumbel distribution with the
60-year maxima (as stated in Sect. 5.3.1) since it is common to use a 100-year return
level when developing flood control plans in Japan.

Figure 5.11 shows the relationship between the mean of the 60-year maxima and
the 100-year return level for 1-day, 2-day, and 3-day precipitation in 99 grids in the
six major river basins in Japan for the past climate. The slope of the regression line is
0.988, which is equal to A in Eq. (5.3). The reason why A is so close to 1 is that the
second term of A is - 0.056 s/x̄ with s/x̄ being around 0.2–0.3 in the past climate
and 0.1–0.4 in the future climate. Thus, the 100-year return level for 1-day, 2-day,
and 3-day precipitation is considered to be roughly the same as the ensemble mean
of the 60-year maxima.

Figure 5.12 shows a comparison of the ensemble mean of the 60-year maxima of
1-day, 2-day, and 3-day precipitation in the past climate and the future climate for
each of the six river basins. This figure also shows the average future change ratio of
each basin. They range from 1.16 to 1.32 and the average slope of all the 99 grids is
1.26. The range of the variation of the future 60-year maxima in the 99 grids is 1 to
1.7 times that of the past 60-year maxima except for the SST warming pattern MI,
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Fig. 5.11 The relationships between the 100-year return level and the ensemble mean of the 60-
year maxima for 1-, 2-, and 3-day precipitation for each of the 99 grids in the six river basins in
Japan under the past climate

Fig. 5.12 Comparisons of the ensemble means of the 60-year maxima in the past climate and the
future climate
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whose range is 0.87–1.84. Only the Kiso River basin includes decreasing grids, and
the Tone River basin includes extremely increasing grids in the MI SST.

Finally, the relationship between the ensemble mean of the 60-year maxima and
the mean of AMS was analyzed. Figure 5.13 shows the relationship between the
1-day, 2-day, and 3-day precipitation in the past climate for each river basin. The
ratio is slightly different from basin to basin, ranging from 2.15 to 2.48. Interestingly,
the regression lines of the 1-day, 2-day, and 3-day precipitation are almost the same
for each river basin. In the Kiso and Tone River basins, there are several grids where
the ensemble mean of the 60-year maxima is greater than 600 mm: Four grids in the
Kiso River basin and eight grids in the Tone River basin for the 3-day precipitation
and one grid in the Kiso River basin and two grids in the Tone River basin for the

Fig. 5.13 Comparisons of the mean of AMS and the ensemble mean of the 60-year maxima in the
past climate
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2-day precipitation. These very large precipitation values will be multiplied in the
future climate.

More detailed information is needed in order to analyze how much precipitation
will fall in the drainage basin upstream of the flood control reference point, in which
the precipitationwithin the duration of rainfall, which is used to develop flood control
plans, is strongly related to the peak flood discharge.

5.5 Discussion

The original motivation for this study came from the author’s experience of draw-
ing probability plots of AMS or AMS and POT together. “An applied hydrological
statistics” [4], a legendary textbook for engineers in Japan, states that POT analysis
requires much time and effort to prepare, resulting in almost the same return levels as
AMS for long return periods. The textbook also states that the skewness of samples
tends to approach the skewness of theGumbel distribution and recommends using the
Gumbel distribution when the shape parameter of GEV is positive. Kadoya [7] also
makes a similar observation. Consequently, AMS analysis is often applied without
carefully choosing between AMS or POT analysis, and in very few cases a thor-
ough investigation is carried out for POT analysis. Although AMS and POT analyses
using the same time series should theoretically yield almost the same results, they
often produce remarkably different results. The Gumbel distribution is widely rec-
ognized for its high performance, especially with small or medium sample sizes, for
which the shape parameter of GEV is often far from 0. However, POT analysis has
been found to perform better with a properly selected threshold, for example, by the
analysis of long records from Tokyo and Nagoya. When the observation period is
short, a well-fit distribution is selected and applied to review flood control plans. The
Japanese Ministry of Land, Infrastructure, Transport and Tourism modifies its flood
control plans after every large-scale disaster caused by an extreme flood event. At
present, there are no other ways when observation periods are short; however, POT
analysis may be a better solution to estimate more probable rainfall extremes when
the observation period is 50 years or longer.

The Automated Meteorological Data Acquisition System, better known as
AMeDAS, currently has 1300 rain gauges at average intervals of 17km nationwide,
and the data are available from 1976 in the website of the JMA [6].

Recently, disasters have occurred every year in Japan due to heavy rain, setting
new historical records in some cases. The flood control plans developed in the last
century should be modified or revised considering new knowledge and increasingly
more intense hydrometeorological events. In particular, since flood control plans are
the most important and basic countermeasure to prevent or mitigate the damage to
urban areas from rainfall, hydrological extreme analysis is more important than ever.
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In order to use d4PDF in flood control planning, it is necessary to carry out a more
detailed examination and bias correction using observed data. Further investigation
of bias correction is required; however, as shown in Figs. 5.12 and 5.13, the common
statistical characteristics among 1-day, 2-day, and 3-day precipitation may be useful
information for checking biases.

5.6 Conclusion

This research presents findings on extreme analysis using long-term observational
data. When data are available only for a short period, the analysis needs to rely on
a goodness-of-fit index, such as AIC. However, with long accumulated records, this
research has found that a goodness-of-fit index does not necessarily perform well
for extrapolation, possibly due to smaller extremes, outliers, or both. For such cases,
the GP distribution with POT exceeding a carefully selected threshold may give
superior results compared to other distributions. When only AMS is available, either
the GEV or Gumbel distributions should be selected according to AIC. The Gumbel
distribution with m-year maxima is a possible alternative to the GP distribution;
however, if outliers exist with m-year maxima, the Gumbel and GEV distributions
are no longer useful, and it is better to judge based on sample probability plots.

Many researchers in the field of climate change impact assessment have been
tackling bias correction [11, 14]. In the past, a quantile mapping correction method,
which compares the quantile of a set of observation with that of a simulation, was
widely applied for correcting biases. However, with the advent of very large ensemble
databases such as the d4PDF, the conditions of bias recognition have significantly
changed. No one knows which ensemble product among large ensemble members
should be comparedwith observation. The ensemblemean also cannot be appropriate
for comparison. This situation looks as if this field has lost its compass for the truth,
unable to find a standard tool yet. The findings of this research, particularly Figs. 5.12
and 5.13, are still unsatisfactory, but that the statics in many locations keep showing
similar characteristics may shed new light on bias correction for the large ensemble
of climate simulations.
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Chapter 6
History and Perspectives of Hydrologic
Frequency Analysis in Japan

Kaoru Takara

Abstract Hydrologic frequency analysis provides basic information for the plan-
ning, design, and management of hydraulic and water resources systems for pro-
moting the river basin quality and human health. It uses meteorological/hydrological
extreme-value data and probability distribution functions to estimate T -year events
(quantiles). Reviewing the history of hydrologic frequency analysis in Japan, this
study describes goodness-of-fit criteria such as the standard least-squares criterion
and Akaike information criterion and their applications. The jackknife and bootstrap
methods are introduced as useful resamplingmethods for bias correction and quantile
variability estimation. As future directions, this study proposes the incorporation of
(1) partial duration series or peaks-over-threshold series, if available, instead of the
annual maximum series; (2) a nonparametric method using empirical distributions
for larger samples with more than 100-year observation period; and (3) probable
maximum precipitation or probable maximum flood into frequency analysis.

Keywords Bootstrap · Extreme values · Flood · Goodness-of-fit · Jackknife ·
Nonparametric · Precipitation · Probable maximum values · Return period

6.1 Introduction

In hydrological research, significant effort has been aimed toward analyzing flood
hazards and establishing countermeasures for predicting extreme weather/flood
events and coping with resultant flood disasters in river basins. River engineers
and managers are interested in estimating reasonable flood discharges to improve
the design and planning of flood control and water resources management. Before
the implementation of systematic and continuous meteorological and hydrological
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observations such as rain gauges and water stage observatories, historical maximum
events were used for flood control practices. Such historical maxima, however, were
often broken by bigger flood events that took place later. Probabilistic analysis of
river discharge was initiated in the US in the 1910s [14, 15] and further developed
in the 1930s by Gumbel [11].

In Japan, such probabilistic analysis was introduced by Iwai [22] in the 1940s
and was officially implemented when a river management manual of the Japanese
Ministry of Construction [32] was established, followed by the amendment of a river
law in 1964. Hydrologic frequency analysis (HFA) has since played an important
role in river engineering, flood control, urban storm drainage, and water resource
management in Japan [46, 55]. The manual established in 1958 was revised in 1976.
Currently, the Japanese Ministry of Land, Infrastructure, Transport and Tourism
translated it into English as “Technical Criteria for River Works” and made various
kinds of revisions. Table 6.1 summarizes the history of Japanese frequency analysis
research.

6.2 Hydrologic Frequency Analysis Method

Hydrological frequency analysis includes the following steps:

Step 1: Evaluate data homogeneity and its independence.
Step 2: Enumerate several distributions as candidates for quantile estimation.
Step 3: Estimate parameters for each distribution.
Step 4: Screen the distributions to assess goodness of fit.
Step 5: Analyze the variability of quantile estimates for distributions that have not

been excluded in the prior step, by using a resampling method such as the
jackknife or the bootstrap.

Step 6: Select a distribution that fits data well and exhibits the smallest variability
for quantile estimators.

InHFA,we usually use the annualmaximumseries (AMS) of rainfall or discharge.
The annual maxima are basically well recorded in meteorological/hydrological sta-
tions in each country. So does Japan. We assume that the data (annual maxima)
are independent of each other and follow an identical distribution. Annual second
maxima may be larger than annual maxima in other years. It is unclear whether we
can ignore such large annual second and third maxima that are larger than annual
maxima in other years. Partial duration series (PDS) or peaks-over-threshold (POT)
analysis may also be useful for addressing this problem, which is discussed in detail
later.

The generalized extreme-value (GEV) distribution is often used for the frequency
analysis of hydrological extremes worldwide. In Japan, however, HFA has been
developed with normal (Gaussian) distribution theory; the lognormal distribution has
been used with lognormal probability paper. The extreme-value distributions were
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Table 6.1 History of hydrologic frequency analysis (HFA) in Japan

Publication Brief notes

Iwai [22] Introduced overseas research in HFA

Iwai [23] Analytical solutions of the Slade-type lognormal distribution

Iwai [24] Applied lognormal distributions to Japanese rivers

Ishihara and Iwai [19] Proposed to introduce probabilistic methods for river planning

Kadoya [27] A solution for extreme-value distribution

Ishihara and Takase [21] Method of moments for lognormal distribution

Takase [54] Order statistics analysis for the lognormal distribution

Ministry of Const. [32] Established a manual applying probabilistic methods in practice

Kadoya [28] Analyzed the lognormal distribution and its parameters

Kadoya [29] A seminar textbook for hydrological statistics

Iwai and Ishiguro [25] A textbook “Applied Hydrological Statistics”

Nagao and Kadoya [33] Two-variate exponential distribution and its numerical table

Hashino [12] A maximum likelihood method for the lognormal distribution

Kanda [30]* Proposed a new extreme-value distribution with an upper bound

Kanda and Fujita [31] A textbook for probabilistic methods in hydrology

Etoh and Murota [6] Proposed SQRT-k distribution

Hoshi et al. [18] Monte Carlo experiments for lognormal distribution

Hoshi and Leeyavanija
[17]

Introduced the sextile method to Pearson III distributions

Sogawa et al. [38] Proposed a multivariate maximum entropy distribution

Takasao et al. [53] Proposed the Standard Least-Square Criterion (SLSC)

Etoh et al. [7, 8] Proposed and applied SQRT-ET-max (SQET) distribution

Hashino [13] Rainfall intensity-duration curve for design floods

Takara and Takasao [47,
48]

Applied SLSC and jackknife in HFA

Takara and Loebis [45] Applied probable maximum events to HFA

Takara et al. [49] Applied Slade-type distribution with upper and lower bounds

Takara and Tosa [50, 51] Used distributions with PMP/PMF as upper bound

Tanaka and Takara [56] Applied SLSC and the jackknife to river discharges in Japan

Tanaka and Takara [57] Considered AMS and PDS (POT) in flood frequency

Takara et al. [43] Applied radar data to depth-area-duration (DAD) analysis

Tanaka and Takara [58,
59]

Further considered the compatibility of AMS and PDS

Takara [40, 41] Nonparametric analysis using the empirical distribution

Ishihara and Nakaegawa
[20]

Applied nonparametric analysis of 51 Japanese rain gauges

Takara and Kobayashi
[44]

Parametric and nonparametric depending on sample size

Takara [42] Nonparametric analysis using PMP as an upper bound
∗Applied to earthquake motions and wind speeds, not hydrology
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also used in parallel as an alternative method. In the United States, Pearson Type
III (Gamma) and log-Pearson Type III distributions were also recommended. Then
Japanese researchers and practitioners have introduced Pearson Type III distributions
aswell. Other distributionswere also proposed by Japanese researchers, as detailed in
the next section. In addition, sometimes the GEV distribution does not fit better with
extreme-value data than other distributions. There are many candidate distributions
used in Japan; thus, we required criteria to assess and determine the best distribution
among them.

6.3 Various Probability Distribution Functions

In Japan, various types of probability distribution functions have been extensively
investigated since the 1950s. Takeuchi et al. [55] summarized some distribution func-
tions proposed by Japanese researchers: (1) the SQRT-exponential-type distribution
of maxima (SQET) by Etoh et al. [8]; (2) bivariate gamma and binomial distributions
by Nagao et al. [33]; and (3) the maximum entropy distribution by Sogawa et al. [38].
This section covers commonly used single-variate probability distribution functions
such as lognormal and extreme-value distributions and SQET.

Lognormal distribution: The lognormal distribution with three parameters is
described as a probability density function:

f (x) = 1

(x − a)σy

√
2π

exp

[
−1

2

{
ln(x − a) − μy

σy

}2
]

, (6.1)

where x is a hydrologic variate, and a, μy , and σy are parameters; its reduced
variate and transformed variate are, respectively, given as follows:

s = ln(x − a) − μy

σy
and y = ln(x − a). (6.2)

GEV distribution: Jenkinson [26] found that variates that follow the maximum
value distribution can be expressed as a unified cumulative distribution function as
follows:

F(x) =
{
exp[−{1 − k(x − x0)/α}1/k], k �= 0,
exp[− exp{−(x − x0)/α}], k = 0,

(6.3)

where k, α, and x0 are parameters of this distribution.

This is called theGEVdistribution. Since theNatural Environment Research Council
adopted this distribution to annual maximumdaily discharges in rivers in theUK, this
distribution plays an important role in the UK. Prescott andWalden [36] applied it to
extreme values of sea water levels in the UK. Arnell et al. [2] proposed an unbiased
plotting position formula for the GEV distribution.
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If the parameter k equals 0, the GEV distribution is equivalent to the Gumbel
distribution (type I extreme-value distribution formaximumvalues). If k < 0 (k > 0),
it is called a type II distribution (type III distribution). If k �= 0, F(x) can be written
as

F(x) = exp{− exp(−s)}, (6.4)

where

s = −1

k
ln

[
−

{
x −

(
x0 + α

k

)}
/
(α

k

)]
. (6.5)

Kadoya [27, 29] called it a log-extreme-value distribution type A and type B when
k < 0, k > 0, respectively.

SQRT-ET-max distribution (SQET): Etoh et al. [8] proposed the following
equation based on their analysis considering rainfall intensity during a storm event.

F(x) =
{
0 , x < 0,
exp[−λ(1 + √

βx) exp(−√
βx)], x ≥ 0,

(6.6)

where β and λ are parameters.

6.4 Goodness of Fit

To select the best probability distribution function, we usually evaluate the good-
ness of fit of various distribution functions to extreme-value datasets. Takara and
Takasao [47] introduced four goodness-of-fit criteria. See also Takara and
Stedinger [46].

Suppose that s is the reduced or standardized variate for x : s = g(x). Let q be the
non-exceedance probability. For q∗, a specific value of q, define s∗ as

s∗ = g(F−1(q∗)), (6.7)

where q = F(x) and F is a cumulative probability distribution function. Let
y1, . . . , yN be the order statistics of the original observations x1, . . . , xN (y1 is the
smallest value), and qi be the non-exceedance probability assigned to yi . Using the
transformation function g above, we obtain

si = g(yi ) (6.8)

and
ri = g(F−1(qi )). (6.9)

Before introducing the following quantitative goodness-of-fit criteria, probability
distributions were traditionally evaluated (or screened) by the so-called visual con-
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sistency based on graphical analysis, which may have subjective judgment by the
analysts.

6.4.1 SLSC

Takasao et al. [53] proposed the Standard Least-Squares Criterion (SLSC) based on
probability paper analysis to evaluate the linearity of the data (order statistics) plotted
on the probability paper:

SLSC =
√

ξ 2
min / |s∗

1−q − s∗
q |, (6.10)

where s∗
1−q and s∗

q are specific values of the reduced variates that correspond to the
non-exceedance probability 1 − q andq, respectively; ξ 2

min is obtained byminimizing

ξ 2 = 1

N

N∑
i=1

(si − ri )
2. (6.11)

This minimization corresponds to the so-called least-squares method (or one of the
graphical fitting methods) based on a plotting position formula such as

qi = i − α

N + 1 − 2α
, (6.12)

where α is a constant. Takasao et al. [53] recommend the use of Hazen’s formula
(α = 0.5) to give qi .

The denominator in Eq. (6.10) was introduced to standardize the square root of
ξ 2
min. Thus, the SLSC can be used to compare the goodness of fit across distributions.
Since most of the meteorological/hydrological annual maximum samples had less
than 100 data points, almost all the plots fell within a range of non-exceedance
probabilities 0.01 and 0.99. Then, the value q is typically taken as q = 0.99.

Smaller SLSC values imply better fits. We can compare the goodness of fit of
different probability distribution functions based on their SLSC values. If we use
SLSC, we can judge the goodness of fit by the SLSC value itself without plotting data
on probability paper or without drawing both the histogram and probability density
function. This is an advantage of SLSC. When using the maximum likelihood (ML)
method instead of the least-squares method, we substitute ξ 2 obtained by the ML
method into Eq. (6.10).

Takasao et al. [53] fitted five two-parameter distributions (the normal, lognormal,
exponential, Gumbel, and log-Gumbel distributions) by the least-squares method
to samples in the Lake Biwa Basin: the monthly and yearly precipitation and
inflow, and the annual maximum m-day precipitations (m = 1, 2, and 3). They con-
cluded that SLSC ≈ 0.02 corresponds to a good fit; if SLSC > 0.03, other dis-
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tributions should be tried. They also compared six plotting position formulas: the
Weibull (α = 0.0), Adamowski (α = 0.25), Blom (α = 0.375), Cunnane (α = 0.4),
Gringorten (α = 0.44), and Hazen (α = 0.5) formulas. For the 70-year datasets of
annual maximum m-day precipitations (m = 1, 2, and 3), Hazen’s formula yielded
better quantile estimates than the other five formulas for the lognormal and Gumbel
distributions (Here, “better” means “nearest to those obtained by the ML method.”),
so it was recommended for graphical frequency analysis using lognormal and Gum-
bel probability papers and the least-squares method.

6.4.2 COR, MLL, and AIC

Other goodness-of-fit criteriawere also considered: the correlation coefficient (COR),
maximum log-likelihood (MLL), and Akaike information criterion (AIC).

COR: Write the order statistics of observation as yi , i = 1, 2, . . . , N . The theo-
retical quantile of the i-th (plotting) position is denoted by ri . Then the correlation
coefficient (COR) between yi and ri is

COR =
∑N

i=1(yi − ȳ)(ri − r̄)

[{∑N
i=1(yi − ȳ)2} · {∑N

i=1(ri − r̄)2}]1/2 , (6.13)

where ȳ and r̄ are the means of yi and ri , respectively.
The value of COR closer to unity corresponds to a better fit. This probability

plot correlation coefficient test has been applied to the normal, lognormal, Gumbel
distributions [61], and the Pearson Type III distribution [62]. This approach is often
used in ocean wave analysis in Japan [9, 10].

MLL:When fitting a probability distribution function to an extreme-value dataset
by the ML method, we usually maximize the log-likelihood function obtained by
taking logarithms of the likelihood function owing to computational tractability. For
N data x1, x2, . . . , xN , the MLL is given by

MLL = ln L(θ̂) =
N∑
i=1

ln f (xi ; θ̂ ), (6.14)

where f (x; θ) is the probability density function and θ̂ is the ML estimator of the
parameter vector θ . When several distributions are fitted to a sample, the distribution
that gives the greatest MLL value can be regarded as fitting the best. The MLL is
not only the maximum of the log-likelihood; it has some interpretation from the
viewpoint of information theory. If the population distribution is known, then the
Kullback–Leibler (KL) information is used as an evaluation criterion for the models
that approximate the population distribution. In general, it is unknown, then theMLL
can be used as an alternative criterion instead of the KL information [37].
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AIC: In general, distributions with three free parameters fit better than those
with two free parameters. As the number of parameters increases, goodness of fit
should appear to improve: the SLSC values decrease and the COR and MLL values
increase. Consequently, as long as the SLSC, COR, or MLL is used, distributions
having more parameters tend to be evaluated as “better.” In the evaluation of models,
we must consider model simplicity as well as the goodness of fit. The AIC proposed
by Akaike [1] balances the number of parameters and the quality of fit using

AIC = −2MLL + 2Np, (6.15)

whereMLL is the maximum log-likelihood and Np is the number of free parameters.
As Np increases, the second termofEq. (6.15) increases,while thefirst termdecreases
because the goodness of fit improves (the MLL increases). Akaike [1] suggested that
the model that minimizes the AIC is best. The AIC has been effectively applied
to hydrological research, for example, in the determination of the optimal order of
time-series models [16] and in the evaluation of runoff models [52].

6.4.3 Comparison of Goodness-of-Fit Criteria

Takara and Takasao [48] compared these goodness-of-fit criteria values for several
extreme-value datasets. Table 6.2 shows four goodness-of-fit criteria for annual max-
imum daily precipitation in Osaka, Japan, given in Kanda and Fujita [31]. The values
of SLSC, COR, MLL, and AIC are given to 11 distributions.

Table 6.2 Comparison of goodness-of-fit criteria of distributions fitted by the ML method for
annual maximum daily precipitation at Osaka (1889–1980)

Distribution Np SLSC COR MLL AIC

Normal 2 0.07937 0.9312 −450.15 904.30

Lognormal 2 0.02996 0.9902 −434.91 873.83

Lognormal 3 0.01666*** 0.9970*** −432.82*** 871.64**

Pearson III 2 0.06116 0.9685 −438.17 880.34

Log-Pearson
III

3 0.01749** 0.9967** −432.91* 871.82

Pearson III 3 0.03765 0.9865 −432.90** 871.80*

SQET 2 0.02423 0.9932 −433.09 870.18***

Gumel 2 0.04769 0.9846 −434.41 872.83

GEV 3 0.02124 0.9944 −433.17 872.34

Log-Gumel 2 0.03496 0.9895 −434.53 873.06

Log-Gumel 3 0.01858* 0.9960* −433.17 872.34

Np: Number of parameters; ∗∗∗ indicates the best for each criterion;
∗∗ and ∗ the second and the third, respectively
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Fig. 6.1 Three distributions fitted by the ML method to the annual maximum daily precipitations
at Osaka (1889–1980)

Based on Table 6.2, the three-parameter lognormal distribution is the best for the
SLSC, COR, and MLL, while the SQET distribution, which has two parameters, is
the best in terms of AIC. The goodness-of-fit criteria can indicate better distributions
based on their values. Figure 6.1 shows the histogram of annual maximum daily
precipitation at Osaka and the probability distribution functions of three distributions
(lognormal, Pearson Type III, and SRET) that indicated better fits in Table 6.2. We
could not identify which distribution was the best with these criteria and with visual
evaluation such as given in Fig. 6.1.

Takara and Takasao [48] verified an almost one-to-one correspondence between
SLSCandCORusing theMLmethod, as shown inFig. 6.2. SLSC≈0.02 corresponds
to COR ≈ 0.995, and SLSC >0.03 corresponds to COR < 0.990. Since the SLSC
and COR criteria give almost the same rankings, COR is to be recommended because
it is simpler than SLSC. However, SLSC provides a direct understanding that SLSC
= 0.02 which means approximately 2% error is there between plots and a theoretical
line on a probability paper. Therefore, SLSC is often used as a standard method in
Japan.

MLL and AIC exhibit the following disadvantages: (1) They are dependent on the
ML estimation method, which yields better parameter estimates for larger samples.
(2) Their values can be used for comparison, but the values do not have meanings and
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Fig. 6.2 Relationship between SLSC and COR obtained using annual maximum rainfall datasets

thus cannot be used for absolute evaluation. For this sample (annual maximum daily
precipitation in Osaka), the best in terms of AIC is the SQET distribution, because it
has only two free parameters. AIC has an advantage in that it evaluates simpler (less
parameter) distributions. SQET is the fifth in SLSC, the fifth in COR, and the fourth
in MLL.

The Japanese river law was amended in 1997. Under this new law, it is necessary
for the government to explain the reason for selecting probability distributions to
estimate 100-year rainfall and decision-making of design floods based on it. To
explain this, they required objective criteria for selecting probability distributions
and determining 100-year floods for river planning. Then, the SLSC was adopted as
an objective criterion that could be easily applied in practice and easily explain the
goodness of fit of the probability distributions considered. SLSC is currently used in
almost all river basins in Japan.

There are many types of parameter estimation methods that fit the probability
distribution functions to extreme-value datasets. Takara and Stedinger [46] reviewed
MonteCarlo experiments reported in the literature, discussing the evaluation of fitting
methods for the lognormal (LN), Pearson Type III, log-Pearson Type III, Gumbel,
and GEV distributions. Most of the Monte Carlo experiment papers recommended
the ML estimation method for two-parameter distributions such as LN(2) and Gum-
bel distributions. For most of the three-parameter distributions, a combination of the
lower bound estimator and the method of moments is useful. For the GEV distribu-
tion, the probability weighted moment or L-moments method is useful, see Takara
and Stedinger [46] for more details.
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6.5 Resampling Methods for Bias Correction and Stability
Analysis

Resampling methods such as the jackknife and the bootstrap methods are useful
for quantifying the variability (estimation error) of quantile estimators. Resampling
methods correct the bias of the statistics obtained from the original dataset and
estimate statistical variance, producing many datasets by repeatedly sampling a part
of the data from the original set or by repeatedly drawing samples of the same
size as the original set with replacement [5]. The datasets produced in this way are
relatively easily generated using computers. Examples of these resampling methods
are provided by Bardsley [3], Tung and Mays [60], Cover and Unny [4], and Potter
and Lettenmaier [34].

A cumulative distribution function F(x) is given by the integration of a density
function f with a parameter vector θ :

F(x) =
∫ x

−∞
f (t; θ)dt. (6.16)

Using F , we obtain the quantile xq for a non-exceedance probability q:

xq = F−1(q), (6.17)

where the return period (recurrence interval) T years for annual maxima is

T = 1

1 − q
. (6.18)

Focusing on the quantile xq (T -year event) in the jackknife (or bootstrap) algorithm,
we can easily quantify the variability of quantile estimators. The proposed procedure
for selecting a quantile estimation method in Step 5 compares the variability of the
quantile estimate for each distribution obtained by this method.

For the same annualmaximumdaily precipitation atOsaka above, Table 6.3 shows
the jackknife estimates and standard error for three T -year events (T = 50, 100, and
200) with regard to distributions selected by the goodness-of-fit criteria. Table 6.3
indicates the following:

(1) The SQET distributionwas ranked as the best for the dataset of annual maximum
precipitation in Osaka in terms of the smallest variation of the quantile estimates.

(2) The variations (standard errors) of the T -year precipitations for T = 50, 100,
and 200 for the SQET distribution were about 6.2, 6.7, and 7.1 %, respectively.

(3) Three-parameter distributions tend to give larger variability of quantile estimates.
In general, three-parameter distributions fit each dataset well, but larger quantile
variation in a penalty results from such flexibility.

Although the maximum likelihood values obtained by the ML method can com-
pare different distributions, the values cannot indicate absolute goodness of fit. Con-
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Table 6.3 The jackknife estimates and standard error for T -year daily precipitation at Osaka (in
mm, T = 50, 100, and 200)

Distribution Np T = 50 T = 100 T = 200

SQET 2 180.46 [11.25] 203.56 [13.58] 227.85 [16.08]

Pearson III 3 172.82 [14.68] 189.34 [17.34] 205.51 [20.36]

Lognormal 3 179.94 [17.83] 201.66 [23.69] 224.17 [30.44]

Log-Pearson III 3 181.99 [19.56] 205.69 [27.06] 230.87 [36.13]

Log-Gumbel 3 182.95 [21.07] 207.62 [30.35] 233.86 [43.03]

GEV 3 183.10 [21.19] 207.83 [30.42] 234.15 [42.13]

The value in the square brackets is the standard error obtained by the jackknife

versely, SLSC and COR can indicate the absolute goodness of fit by the values SLSC
< 0.03 or COR> 0.995, although these values are dependent on the plotting position
formula used. The SQET distribution, which was ranked as the best in terms of AIC
in Table 6.2, showed superior performance in terms of the T -year quantile variability,
as shown in Table 6.3. We can verify that it was not ranked within the best three in
terms of SLSC in Table 6.2 but showed a good result (SLSC = 0.02423).

Tanaka and Takara [56] applied SLSC to annual maximum discharge data at
99 locations (gauging stations) in the 64 major rivers in Japan. They fitted several
frequency analysis models (distribution functions) and evaluated the goodness of fit
using SLSC. The stability of quantile estimates is also assessed in terms of estimation
error obtained by jackknife resampling, which can be used for bias correction and
the quantification of estimation error. Based on the application results for 99 samples
of annual maximum river discharges, they revealed (1) the goodness of fit of various
models; (2) that SLSC = 0.04 could be a threshold for well-fitted models for river
discharges; and (3) that the jackknife estimation error can be used as an index to
evaluate model stability.

6.6 Future Perspectives

6.6.1 AMS or PDS

The frequency analysis method usually uses the AMS. Tanaka and Takara [57] first
dealt with the partial duration series (PDS) in Japan, instead of the AMS. The PDS
is also called the POT series. The theoretical relationship between AMS and PDS
and their analytical methods is described in the Handbook of Hydrology [39].

For the time-series data that exceed a threshold value x0, the generalized Pareto
(GP) distribution can be used. The GP’s cumulative distribution function G(x) is
defined as follows:
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G(x) = 1 −
[
1 − κ

(
x − x0

a

)]1/κ

, κ �= 0, (6.19)

where κ, α, and x0 are parameters of this distribution. If κ = 0, Eq. (6.19) is simplified
as an exponential distribution:

G(x) = 1 − exp

[
− x − x0

a

]
. (6.20)

The Gumbel and GEV distributions are basically used for the AMS, while the
exponential and GP distributions are for the PDS. It is known that the GEV shape
parameter k in Eq. (6.3) is theoretically compatible with the GP’s shape parameter
κ in Eq. (6.19) such that k and κ can take the same value.

Tanaka and Takara [57] compared quantile estimates for the AMS and PDS at 79
gauging stations where river discharge is observed in A-class rivers in Japan. They
used many traditional probability distributions such as the Gumbel, GEV, and Pear-
son Type III distributions. They verified the similarity of the AMS-based 100-year
quantile estimated by the traditional distributions and PDS-based quantile estimated
by the GP distribution. They also confirmed that the jackknife performs well in
correcting bias and quantifying the estimation error.

Tanaka and Takara [58] applied the same method to flood peak discharges at
105 locations in A-class rivers in Japan. The average record length was 42 years
(maximum length of 67 years and minimum length of 27 years). They focused on
the compatibility between the GP (exponential) and GEV (Gumbel) distributions
and the shape parameters κ and k. Among the 105 datasets, 17 had similar values
of κ and k. For these 17 datasets, the same values of κ and k are obtained, and the
quantiles estimated by both are similar to each other.

The other 88 datasets did not exhibit this compatibility. Figure 6.3 shows one of
the results that did not indicate compatibility as an example that obtained different
values of κ(= −0.017) and k(= −0.209). As indicated in Fig. 6.3, the GEV follows
the historical maximum value, while GP keeps almost the straight line, which results
in the difference between 100-year quantiles obtained by each distribution fitted. The
SLSC values for these are also given in the figure (GEV: SLSC = 0.029, GP: SLSC
= 0.037), both of which indicate good fit with the river discharge.

Using the exponential and GP distributions for the POT datasets, Tanaka and
Takara [59] examined several indices to identify the best method for determining
the number of upper extremes best for POT analysis. They revealed the optimum
number of upper extremes for 3-, 6-, 12-, and 24-hour rainfalls in two river basins in
Japan.

Consequently, through the analyses done in these studies, the PDS is recom-
mended in terms of the shape parameter, quantile estimates, SLSC goodness of fit,
and quantile variability. The PDS analysis has the possibility to provide better solu-
tions than the AMS. The data processing to keep such PDS (POT) is necessary in
practice.
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Fig. 6.3 Comparison of GEV and Gumbel distributions fitted to AMS and the GP and exponential
distributions fitted to PDS [58]

6.6.2 Nonparametric Analysis for Large Samples

Meteorological and hydrological observations have been developed and modernized
systematically, and many data have been accumulated at many observatories of the
Japan Meteorological Agency. Fifty years ago, HFA was an extrapolation problem
to be solved by using some probability distribution and datasets with records of
less than 100 years. Those observatories now have records of more than 100 years.
Usually flood control planning is designed to cope with a 100-year flood. This means
that estimating 100-year events is now an interpolation problem.
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6.6.2.1 Parametric Analysis and Empirical Distribution on the Gumbel
Paper

In graphical analysis, we simply connect order statistics as shown in Fig. 6.4. This is
an empirical distribution. Takara [40–42], Ishihara and Nakaegawa [20], and Takara
and Kobayashi [44] applied such an empirical distribution method to meteorological
samples in Japan with a sample size of more than 100.

Figure 6.4 shows an empirical distribution for annual maximum 2-day precipi-
tation in the Ane River Basin. Figure 6.4 also shows the straight solid line, which
is a Gumbel distribution fitted by the least-squares method. Focusing on the non-
exceedance probability 0.990, which corresponds to the 100-year return period, we
obtain 440 mm 2-day precipitation by the empirical distribution method, while we
obtain 360 mm by the Gumbel distribution by graphical analysis (the least-squares
method). If we apply the Gumbel and GEV distributions fitted by the L-moment

Fig. 6.4 Empirical distribution for annual maximum 2-day precipitations in the Ane River Basin
for 108 years (the straight solid line is Gumbel distribution fitted by the least-squares method)
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Table 6.4 100-year precipitations (mm) estimated by the empirical distribution compared with the
parametric methods: Gumbel and GEV distributions

Distribution Gumbel (probability paper) Gumbel GEV

Fitting
method

Least-
squares

Empirical L-
moments

SLSC L-
moments

SLSC

Ane River
(2 day)

360 440 290 0.033 298 0.026

Amano River
(daily)

330 380 250 0.032 281 0.021

Seri River
(daily)

430 480 313 0.149 401 0.039

Yogo River
(daily)

260 285 195 0.035 177 0.020

Toyo River
(daily)

302 285 302 0.021 300 0.021

Hikone City
(daily)

335 380 231 0.181 292 0.044

method, the 100-year 2-day precipitations are estimated as 290 mm (SLSC = 0.033)
by the Gumbel distribution and 298 mm (SLSC = 0.026) by the GEV distribution.

Table 6.4 shows similar results for daily precipitation in the other four river basins
and in Hikone City. The Gumbel distribution did not fit well to the Seri River Basin
and Hikone City; SLSC values were poor: 0.149 and 0.181, respectively. At many
locations, themaximumvalue tends to be plotted far right, as shown in Fig. 6.4. Then,
100-year quantiles obtained by the empirical method tended to be larger than the
Gumbel and GEV estimates. In the Toyo River, however, the maximum and second-
maximum values are close, which derives a smaller 100-year daily precipitation than
that obtained by the Gumbel and GEV distributions, as shown in Table 6.4.

Note that the results shown in Fig. 6.4 and Table 6.4 depend on the Gumbel
distribution paper. To be nonparametric, we should use other methods that do not
depend on any probability distributions.

6.6.2.2 Nonparametric Method for Estimating Quantiles

Wemay use the empirical distribution (order statistics) to estimate quantiles (T -year
events) by the following method:

Step 1: Give non-exceedance probability qi to each extreme order statistics xi
from a large sample (the sample size N > 100) by a plotting position formula.

Step 2: Obtain quantiles that correspond to non-exceedance probabilities 1 − 1/T
(T = 10, 20, . . . , 100) by the interpolation between (xi−1, qi−1) and (xi , qi ).
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Step 3: Apply these steps (Step 1 to Step 2) by using the bootstrap method for
a number of iterations. Then, obtain the bootstrap estimate and variance of the
quantiles. This step corrects bias and quantifies the estimation error.

As a plotting position formula in Step 1, we recommend the Cunnane formula
(i − 0.4)/(N + 0.2), which is often used in practice recently. The Weibull formula
i/(N + 1) is used for comparison in this study, see Eq. (6.5).

In particular, for flood control practices, the estimation of 100-year flood is very
important. For a large sample with a size of more than 100, the 100-year estimate
x0.99 is obtained by the interpolation between (xN−1, qN−1), and (xN , qN ). If we use
linear interpolation for a sample with a size of N (100 < N < 200), the 100-year
estimate is given by

x0.99 = xN − qN − 0.99

qN − qN−1
(xN − xN−1). (6.21)

When N = 108 as an example case, if we use the Cunnane formula, qN−1 =
q107 = 0.9852126 and qN = q108 = 0.9944547:

x0.99 = xN − 0.9944547 − 0.99

0.9944547 − 0.9852126
(xN − xN−1) = 0.518xN + 0.482xN−1.

(6.22)
The annual maximum 2-day precipitation in the Ane River Basin is xN = 554.5mm,
while the second-maximum xN−1 = 364.4mm. Substituting these into Eq. (6.22),
we obtain x0.99 = 463mm. Using theWeibull formula, we can obtain537mm. These
values are the same as those in Table 6.5.

Using thismethod and the same dataset as in Table 6.4, Takara andKobayashi [44]
obtained the results in Table 6.5. The Weibull plotting formula overestimates 100-
year quantiles. T -year quantiles estimated by using the Cunnane plotting formula
are bias-corrected by the bootstrap, as shown in Table 6.5. Note that the results of
empirical distribution (Table 6.4) are similar to the bootstrap results in Table 6.5. This
indicates that the proposed new nonparametric method provides reasonable results.

Ishihara and Nakaegawa [20] followed this nonparametric method and applied
it to 51 meteorological observatories in Japan with a sample size of 106 (1901–
2006). Comparing it with the traditional parametric method, they revealed that the
correlation between nonparametric-based 100-year quantile and parametric-based
100-year quantile was 0.98, and the former gives 3 % larger values. The bootstrap
method was also useful for this analysis.
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Table 6.5 100-year precipitations (mm) estimated by the nonparametric method with the empirical
distribution using different plotting positions and the bootstrap estimates [44]

Method Sample size Weibull plotting Cunnane plotting Cunnane
Location (years) with bootstrap

Ane River (2 day) 108 537 463 426

Amano River
(daily)

107 517 413 383

Seri River (daily) 107 735 541 494

Yogo River
(daily)

106 413 315 288

Toyo River
(daily)

104 286 284 280

Hikone City
(daily)

100 560 436 381

6.6.3 Probability Distribution Functions with Lower and
Upper Bounds

A probability distribution may not have a finite lower bound and/or upper bound. For
example, the Gaussian (or normal) and Gumbel distributions have no finite bound.
Meanwhile, the three-parameter lognormal and log-Pearson Type III distributions
have a finite lower bound and no finite upper bound. All these distributions are
mathematically relevant and play important roles in practical problems.

From the perspective of scientific rationality, physical variates such as river dis-
charge and rainfall should take positive values (non-negative lower bounds) and have
a finite physical maximum limit as an upper bound. Traditionally, however, the neg-
ative lower bound has often been accepted even if it is applied to physical variates
that cannot be negative because the lower bound is regarded as a location parameter
(a free parameter) used to achieve a better fit to the data.

Takara and Tosa [50, 51] addressed two probability distributions that have lower
and upper bounds. One is the extreme-value distributionwith lower and upper bounds
(EVLUB or EV4) distribution used for earthquake motion and wind speed in archi-
tectural engineering [30], and the other is a Slade-type lognormal distribution that
was introduced to Japan by Iwai in the 1940s [22].

After the tsunami in East Japan in March 2011, possible large events became one
of the main concerns of disaster managers and people. The flood analysis is now
being implemented by river managers by using possible maximum rainfall with a
return period of 1,000 years. The probable maximum precipitation (PMP), probable
maximum flood (PMF), and probable maximum tsunami (see Prasad et al. [35]) are
now considered by them, although these are not incorporated in frequency analysis
practice yet. The author believes the idea to incorporate these probable maximum
values, which was proposed in the 1990s by Takara and Loebis [45] and Takara and
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Tosa [50, 51], will be used in the future. Such a method can also be linked with the
nonparametric method [42].

6.7 Conclusions

This study reviewed the HFA of extreme-value series of precipitations and river
discharges in Japan. The review summarized the following:

1. Its history begins with the lognormal distribution applications, because the Gaus-
sian (or normal) distribution was often used in various statistical analyses. The
extreme-value distributions are used after it.

2. The goodness-of-fit criteria SLSC, COR, MLL, and AIC were introduced in
hydrological frequency analysis. The SLSC is currently a standard goodness-
of-fit criteria in practice in Japan.

3. New probability distributions such as SQET and EVLUBwere developed by Etoh
et al. [8] and Kanda [30], respectively.

4. Computer-aided frequency analysis was initiated by Takasao et al. [53] in themid-
dle of 1980s, including the usage of computer graphics, and computer-intensive
statistics using the jackknife and bootstrap resampling methods [47]. The resam-
pling methods are useful in frequency analysis to correct bias and quantify the
estimation errors of quantile (T -year event) estimates both in parametric and
nonparametric methods.

This study also suggested future directions for frequency analysis in Japan:

(1) Tanaka and Takara [58] compared the AMS and the PDS or POT series. The
Gumbel and GEV distributions are generally good for the AMS, while the expo-
nential and GP distributions are suited for the PDS. They recommend the PDS
analysis if such PDS (POT) data are available.

(2) Extreme-value datasets are growing. The sample size of many sets exceeds
100. For such large samples, the nonparametric method given by Takara and
Kobayashi [44] is recommended because it is fitting method free, goodness of
fit free, and reasonable in terms of the theory of order statistics. When using this
empirical method, the author recommends reviewing the extreme values plot-
ted on the Gumbel probability paper as well as checking the quantile estimates
obtained by the Gumbel and GEV distributions and by the empirical distribution
method. This is crucial for verifying the results.

(3) After the tsunami in March 2011, possible large events became one of the main
concerns of disaster managers and people. The author believes that the idea of
incorporating probable maximum values such as PMP and PMF will be used in
practice in the future.
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