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Guide to This Chapter
The continuous development and progress of biotechnology and information tech-
nology provides data for pharmaceutical research and application. It is difficult to
fully utilize large-scale data with simple statistical analysis methods. In order to
improve data utilization, pharmaceutical research must be promoted using advanced
information analysis. Artificial intelligence has experienced half a century of devel-
opment since its inception and has been successfully applied to many industrial and
technological fields. Recently, breakthroughs in machine learning represented by
deep learning have made artificial intelligence one of the most popular research
directions. Artificial intelligence algorithms use different types of data based on
various strategies to do multiple tasks such as search and discrimination, and are
suitable for solving massive data analysis problems faced in network pharmacolog-
ical research. This chapter briefly introduces artificial intelligence algorithms and
their applications in network pharmacology research, and provides references for
researchers to better understand and apply artificial intelligence.
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2.1 Introduction to Artificial Intelligence Methods
in Network Pharmacology

Network pharmacology [1] is a research method based on systems biology. The
concept includes recognizing and discovering drugs based on the overall relationship
between an organism and drugs. In recent years, the growth of high-throughput
omics data and the accumulation of pharmacological knowledge have promoted the
rapid development of network pharmacology. With the accumulation of different
types of data resources and knowledge bases, mining effective information like drug
targets, mechanism of action, and drug and organism interaction from massive,
heterogeneous data has become increasingly important in network pharmacology
research. Therefore, the demand for more accurate and efficient analysis algorithms
has also increased [2].

There are three common problems that may be encountered in network pharma-
cology research: ① Optimal solution search; ② prediction and classification; ③
automatic construction of networks and pathways. Artificial intelligence can effec-
tively perform feature extraction and potential relationship mining from complex big
data, and is beneficial for solving common problems in network pharmacology.
Combining artificial intelligence and network pharmacology has great potential to
overcome the problems faced in the latter field.

Since the emergence of network pharmacology research, artificial intelligence has
been closely integrated with it and widely applied. For example, when the drug–
target interaction is evaluated using simulation, it is necessary to perform optimal
solution search operation, such as genetic algorithm [3] or simulated annealing
algorithm [4], as the core of molecular docking and molecular dynamics simulation
technology to implement the conformation search strategy. During network analysis
and prediction, classification and prediction are required, hence unsupervised learn-
ing clustering algorithms (Affinity propagation clustering algorithm, K-means clus-
tering algorithm) and supervised learning are widely used. In mechanism research, it
is necessary to construct the network and path automatically, hence various network
construction-related artificial intelligence algorithms such as the Bayesian network
algorithm are often applied.

This chapter briefly reviews the development history of artificial intelligence, and
the classification and characteristics of the main algorithms applied in network
pharmacology, in order to promote the better understanding of the applications
and evaluation methods for researchers.

2.1.1 Introduction to Artificial Intelligence Algorithms

Artificial intelligence is an important branch of computer science. The definition of
artificial intelligence has not yet been unified, but it can be summarized as studying
the laws of human intelligence activities and constructing artificial systems with
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certain intelligent behavior [5]. Thanks to high-performance scale computing equip-
ment, big data accumulation, and algorithm innovation, artificial intelligence has
been widely applied in image recognition [6, 7], speech recognition [8, 9], medical
diagnosis [10], drug R&D [11], and many other fields, and its achievements cover all
aspects of human life. Artificial intelligence algorithms that widely used in network
pharmacology can be divided into three types: heuristic algorithms, machine learn-
ing, and network construction algorithms according to their problem-solving scope
and application characteristics.

1. Introduction to Heuristic Algorithms

Heuristic algorithms are based on intuitive or empirically constructed algorithms
that give feasible solutions to problems in acceptable time and space. Its classic
algorithms include: simulated annealing algorithm [4], genetic algorithm [3], etc.
Heuristic algorithms perform optimal solution search with limited computational
cost and time. The optimal solution search often be applicable to specific problems
such as sub-network, optimal conformation, and specific sequence search.

Network pharmacology problems using heuristic algorithms usually have two
basic characteristics. First, the search results can be measured by quantitative index;
second, the search target can be constructed in a certain way. Taking optimal
conformation as an example, the change in binding free energy is used as the
quantitative index, and new binding conformations can be constructed through
operations such as translation and rotation of chemical bonds and atoms in
molecules.

2. Introduction to Machine Learning

Machine learning is currently the most rapidly developing artificial intelligence
algorithm. For large and high-dimensional complex data, machine learning method
can effectively perform data classification, data fitting, prediction model establish-
ment, feature selection, and other tasks.

Supervised machine learning methods mainly include two categories: regression
and classification [12], by which the mapping relationship could be established from
input Xi to output Yi from a large amount of input data, to construct a prediction
model or analyze the weight of input features. The commonly used regression
algorithms include: LASSO (Least Absolute Shrinkage and Selection Operator)
regression, ridge regression, and elastic net. Classification algorithms include logis-
tic regression, Bayesian classifier algorithm, support vector machine, K-nearest
neighbor, random forest, and artificial neural network. Additionally, deep learning
[13] is a rapidly developing supervised learning method in recent years, which is an
improvement of the artificial neural network structure. It is characterized by more
hidden layer structures between the input and output layers. Its classic structure
includes: Convolutional neural networks (CNN) and recurrent neural network
(RNN).

Unsupervised machine learning methods include clustering [14] and dimension
reduction [15], which do not rely on input data labels to establish the feature-to-label
mapping, but focus on the characteristics and interrelationships of a large amount of
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data. Based on various measurement relations, the input data is divided into different
categories (clustering), or the dimension of input feature vector is reduced, to remove
noise and reduce redundant features (dimension reduction). Commonly used clus-
tering algorithms include K-means clustering algorithm, hierarchical clustering, and
affinity propagation clustering algorithm. Commonly used dimension reduction
algorithms include principal component analysis (PCA) and factor analysis.

3. Introduction to Network Generation Method

Network generation method can be divided into network construction and sub-net
extraction methods based on new network connection relationships and their
generation.

In network pharmacology research, the network nodes are composed of elements
related to Drug property such as compounds, targets, genes, and diseases. Networks
related to biological processes are usually the most complex. For example, gene
expression regulation is a dynamic process involving time and space factors. Static
networks often cannot effectively reflect the temporal and spatial specificity of
biological processes [16]. However, to achieve a relatively accurate characterization
of the dynamic regulation of biological networks, a large amount of data with
temporal and spatial differences is required. Therefore, limited data volume, and
uncertain knowledge expression and reasoning can be used to make predictions and
generate new network connection relations. Network construction methods include
association, Boolean model, dynamic Bayesian network, and differential equation.

The sub-net extraction method does not aim at discovering new network relation-
ships, but can extract the most relevant sub-nets from the known background
network, and is often used to explain the effects of drugs or disease mechanisms.
Extracting key sub-networks and identifying overlapping networks from complex
relationships are important components of network analysis. Identifying key
sub-networks is often closely related to the discovery of drug targets, and identifi-
cation of pathways and key regulatory factors. Heuristic algorithms such as simu-
lated annealing algorithm, genetic algorithm, and Steiner's forest algorithm [17] are
often used to find the sub-net with the highest score.

2.1.2 Performance Evaluation Method for Artificial
Intelligence Algorithms

Although artificial intelligence algorithms solve specific problems in network phar-
macology research through a reasonable computational model, blindly trusting the
computational results of artificial intelligence algorithms is detrimental. The perfor-
mance of artificial intelligence algorithms to solve problems needs to be systemat-
ically evaluated by scientific metric or measures in order to effectively reduce errors
caused by various risks such as low data quality or overfittings.
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To evaluate the performance and generalization ability of artificial intelligence
algorithms, some performance evaluation methods are required. The most well-
known “Turing test” [18] is the first evaluation method proposed to gauge whether
a machine is intelligent. However, it has limitations and a smaller application scope.
There are several different methods or metrics could be adopted according to the
algorithm and data characteristics.

Different artificial intelligence methods need to use different performance eval-
uation metrics and approach to evaluate the performance of the methods. General
evaluation indexes include loss value, accuracy, etc., and there are also commonly
used evaluation indexes for different algorithms and data characteristics. Relevant
evaluation indexes are briefly summarized in Table 2.1.

1. Heuristic Algorithm Evaluation

Multiple solutions may be obtained by heuristic algorithm due to its characteris-
tics, hence evaluation metrics could be set according to different purposes. For
example, in order to save time in large-scale calculations, genetic algorithm can
involve relatively few iterations and use shorter convergence time as indexes while
searching for feasible solutions, whereas higher global search ability can be used as
the evaluation index to get better solutions.

2. Machine Learning Algorithms Evaluation

The evaluation metrics of machine learning are applied to different algorithms,
purposes, and data characteristics. The essence is to evaluate the gap between

Table 2.1 Evaluation indicators of typical artificial intelligence methods

Artificial
intelligence
methods Introduction to the methods

Performance evaluation
method and evaluation index

Heuristic
algorithm

Based on the specific construction algorithm,
artificial intelligence is used to search an
optimal solution within a certain calculation
consumption. The representative algorithms
include annealing algorithm, genetic algo-
rithm, etc.

Number of iterations, conver-
gence time, etc.

Machine
learning
algorithm

A class of algorithms for knowledge learning
and acquisition by simulating human learning
behavior is usually used for prediction and
classification in pharmacological research.
Representative algorithms include deep learn-
ing algorithm and clustering algorithm.

Precision rate, recall rate, ROC
curve, mutual information,
contour coefficient, etc.

Network gen-
eration
algorithm

The method of comprehensively generating
the network using multidisciplinary analysis
methods such as probability theory and graph
theory is mostly used in molecular network
construction and drug mechanism analysis.
Representative algorithms include Bayesian
network algorithm and shortest path method.

Precision rate, recall rate, etc.
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predicted and actual values through biased functional loss, and later by optimizing
the parameters. This part mainly introduces the evaluation metrics of supervised
classification algorithm, regression algorithm, and clustering algorithm.

Supervised classification algorithm can divide a given object X into a predefined
category Y. In supervised classification, all samples can be divided into a training set,
validation set, and test set. The training and validation set data are used to train the
prediction model. The trained model then uses the test set to test its accuracy and
generalization ability. Additionally, k-fold cross-validation method can be used to
divide the training data into two parts based on the ratio of (k � 1)/K and 1/K. The
former is used for model training, and the latter is used to evaluate model perfor-
mance and generalization ability. The most common evaluation index in supervised
classification algorithm is accuracy, to predict the proportion of accurate classifica-
tion in all samples. However, due to “imbalanced data” [19] problems, evaluation
indicators with characteristics such as precision and recall indicators are often used.
The former is focused on the correct proportion of positive samples predicted by the
classifier, while the latter is more concerned with whether it is possible to predict
more positive samples. The two evaluation indexes are applicable to various scenar-
ios. For example, when predicting effective drugs from large amount of unrelated
molecules, less false positive predictions are better for researchers in order to avoid
subsequent invalid biological experiments. Therefore, the accuracy rate is often used
as the classification index. However, when constructing a global network regulation
relationship, it is more important to cover all targets nodes, so it has greater tolerance
for false positive results, and the recall rate can be used as a classification index. In
addition, there are also evaluation metrics that consider both accuracy rate and recall
rate, such as F1 score, receiver operating characteristic curve (ROC curve),
precision-recall curve, and confusion matrix.

The regression algorithm is a statistical analysis method to determine the
interdependent quantitative relationship between two or more variables. The com-
monly used evaluation indicators of regression algorithm include: Mean absolute
deviation (MAE), root mean squared error (RMSE), mean-square error (MSE),
Huber loss, log-cosh loss, etc. Using different evaluation indicators may have a
greater impact on constructing prediction models. For example, “mean absolute
deviation” (also known as L1 loss) is less sensitive to the output error and is
relatively more stable when an abnormal point exists. At the same time, the regres-
sion model is not unique, and there may be multiple optimal solutions. Whereas, the
mean-square error (also known as L2 loss) squares the output error, so the error can
be optimized to a greater extent, and it is easier to obtain a stable regression model.
Also, it may be more sensitive to the response of abnormal points with lower
robustness.

Clustering is an important representative of unsupervised learning. They can
divide samples into different categories according to similarity measures. When
the sample data has a given label, a matching degree of the real label and clustering
can be calculated. Mutual information, Rand index, and other indicators are com-
monly used. When the sample data does not have a given label, a silhouette
coefficient can be used to evaluate the rationality of the clustering division.
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3. Network Generation Algorithm Evaluation

In case the complete regulatory network is known, the constructed network can be
compared with the complete network to calculate the precision rate, recall rate, and
other indicators. The evaluation method is the same as that of the classification
algorithm in machine learning.

Several network pharmacology studies using artificial intelligence use individual
case verification, such as comparing model results with literature or conducting
experimental verification, instead of the above evaluation indicators. This approach
is usually feasible, and combined with systematic validation can be persuasive and
the result can be more reliable.

2.1.3 Applications of Artificial Intelligence

Network pharmacology research involves several application requirements such as
optimal solution search, target and drug prediction, and regulatory network con-
struction. Artificial intelligence can play a key role in solving various application
needs of network pharmacology. Different artificial intelligence methods can solve
problems and satisfy different needs. Therefore, it is important to determine whether
the algorithms suit for research problem. The following helps classify and introduce
the applied fields of artificial intelligence methods.

1. Applications of Heuristic Algorithm

The main application of the commonly used heuristic algorithm is optimal
solution search, which is widely used in biology and pharmacy. For example, the
heuristic algorithm based tool Blast (Basic Local Alignment Search Tool) [20] is
used for protein or gene sequence matching, and Open Babel [21] uses the genetic
algorithm to generate small molecule conformations that are used for searching in
molecular docking [22] and molecular dynamics simulation [23], heuristic algorithm
is also the core algorithms in the sub-net extraction process. If the problems in
network pharmacology research have the following characteristics, heuristic algo-
rithm can be applied: ① Quantifiable scoring system: The generated results of the
heuristic algorithm can judge whether calculations meet the requirements of certain
scoring indicators. ② New scheme generation based on current optimal solutions:
Based on the known optimal solution, a new feasible solution is generated by
evaluating the distance between the calculation and the optimal solution. ③ There
are corresponding convergence or termination conditions. Taking Open Babel as an
example, when generating small molecule conformations, to determine whether the
conformation is stable, it can either use a quantitative scoring system such as the
energy of the generated conformation, or by evaluating the RMSD (Root Mean
Square Deviation) coordinate deviation between the generated conformation and
natural conformation.
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2. Applications of Machine Learning

There are differences in the application scope and analysis between unsupervised
and supervised learning methods. The purpose of unsupervised learning is to explore
the relationship between input data, while supervised learning establishes mapping
from input to output data from the training data, to achieve the learning purpose.

Unsupervised learning can be divided into clustering, dimension reduction,
association, and other types, in which clustering and dimension reduction algorithms
are widely used in network pharmacology research. Commonly used clustering
algorithms include K-means clustering algorithm, AP clustering algorithm, and
hierarchical clustering. Input data can be divided into various categories according
to the measurement relationships. For example, Iorio et al. [24] evaluated the
similarity of gene expression profiles between pairs of 1309 drugs, and used the
AP clustering algorithm to construct a drug–drug similarity network for drug
repurposing.

Commonly used linear dimension reduction algorithms include principal compo-
nent analysis (PCA), factor analysis, etc. In the analysis of high-dimensional data,
the problem of “dimension disaster” is often encountered, hence the dimension
reduction algorithm is often needed to reduce the dimensionality of feature vectors,
so as to reduce noise and redundant features. For example, Subramanian et al. [25]
used PCA and clustering algorithm to reduce the dimension of the transcriptome
data, and compressed the expression data of more than 12,000 genes to 978 landmark
genes. Moreover, the 978 landmark genes can be used to infer 80% of the network
regulatory relationship at the transcription level, thereby greatly reducing the cost of
transcriptome data measurement.

Since linear dimension reduction algorithm often cannot meet the analytical
needs when processing complex data, nonlinear dimension reduction algorithm is
also widely used. For example, the t-SNE [26] algorithm, which is often used for
data visualization, can retain the proximity characteristics of high-dimensional data
and reduce it to two-dimensional or three-dimensional space, which plays an intu-
itive role in the systematic research of complex omics data [27, 28].

The supervised learning method commonly used in network pharmacology [29]
includes two main types: regression and classification, both of which are used to
establish the mapping relationship between input Xi and output Yi. The output Y of
regression is continuous quantitative data, such as blood pressure, blood drug
concentration, while the output of classification is often qualitative data, such as
negative/positive diagnosis results, tumor classification. This indicates that different
types of functional losses need to be used in the calculations; however, regression
and classification problems can often occur simultaneously. Supervised learning
helps establish a reliable prediction model, and the model is used to predict new
potential relationships.

Regression algorithms can quantitatively describe the mapping relationship
between variables, so they are widely used in omics analysis and network pathway
inference. For example, Gamazon et al. [30] used linear regression to infer gene
expression from single nucleotide polymorphisms and predicted biological
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phenotypes. Xiong and Zhou [31] used linear regression to infer the regulatory
network relationship of genes from the biological experimental data level. The
classification algorithm is often used in the qualitative prediction of drug–target
interactions. For example, Yamanishi et al. [32] integrated multiple types of biolog-
ical data (such as chemical structures, drug side effects, amino acid sequences, and
protein domains), and used machine learning to train user-submitted data and to
predict unknown drug–target interaction network.

Deep learning [13], as an extension of artificial neural networks, is the most
rapidly developing and applied artificial intelligence algorithm in recent years. It has
similar functions to traditional machine learning methods, but also has new charac-
teristics: ① Deep neural network structure is conducive to expressing complex
mapping relationships: Traditional machine learning algorithms are mostly shallow
structures, hence it is difficult to display highly complex functions, whereas deep
learning introduces multiple hidden layers between the input and output ends to
achieve a nonlinear network structure, thus, it has the ability to express complex
functions. ② Multi-hidden layer structure is capable of autonomously extracting
features: Traditional machine learning algorithms rely on humans to manually
extract features, while deep learning can autonomously extract features. Due to the
emergence of deep structures, the input features may be transformed into new feature
space, whereas the hidden layers and irrelevant features are suppressed. The above
two points ensure that deep learning has better performance in processing complex
big data.

3. Applications of Network Generation

Network construction is the first step in the study of network pharmacology. The
commonly used methods are association, Boolean model, Bayesian network, differ-
ential equation. Artificial intelligence algorithms in network construction lay more
emphasis on logical reasoning and relationship discovery, which is different from
deep learning and other predictive models.

High false positive rate often occurs in the process of network construction, the
complex and huge networks are not conducive to further identification of key
components in the network. Therefore, it is important to extract key sub-networks
from complex relationships and identify overlapping networks [34]. For example,
Steiner's forest algorithm can be used to extract protein and gene–gene interaction
networks from complex networks and quickly identify key interaction pathways and
factors.

2.1.4 Frontiers and Prospects of Artificial Intelligence

Artificial intelligence technology has penetrated all aspects of network pharmacol-
ogy research. From molecular docking, function, and target prediction, to network
construction and analysis, artificial intelligence is playing an increasingly important
role. On the other hand, the molecular structure of drugs, therapeutic uses, clinical
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response, and multi-latitude omics data obtained from laboratory measurements
constitute big data in the research field, which also brings opportunities for the
application of new artificial intelligence technologies [34].

Among all types of artificial intelligence algorithms, the one with the most
noticeable development in recent years is undoubtedly the deep learning algorithm
[6]. Its outstanding performance in large-scale data analysis and in solving a variety
of computing problems has rendered it the research frontier of artificial intelligence.
In the performance evaluation and comparison of large-scale training of pharmaceu-
tical data, deep learning surpasses traditional machine learning algorithms
[35, 36]. The feature extraction ability of deep learning is convenient for analyzing
complex high-dimensional data. Although it has become an emerging research
direction in various industries, its application in many specific directions is still a
question worth exploring.

However, the application of artificial intelligence in network pharmacology
research also has corresponding technical and application problems. The most
common one is over-fitting problems in the training process [37]; it is usually
necessary to ensure sufficient sample amount of training data, and adopt appropriate
training parameters and reliable performance evaluation methods to reduce the over-
fitting problem. In addition, the deep learning algorithm also brings about the
interpretability of predictive models and the computational efficiency of the big
data fitting process. In order to solve these potential problems, possible future
research directions include studying and understanding the function of each layer
of the neural network in deep learning, optimizing deep neural network training
methods to ensure efficiency and speed, introducing time and space information to
achieve complex data as input, and carrying out application research.

2.2 Application of Artificial Intelligence in Network
Pharmacology Research

Network pharmacology aims to promote research by using network tools. Artificial
intelligence in network pharmacology plays an important role in solving drug target
discovery, Drug property mechanism determination, discovery of new uses of
compounds, and research on Traditional Chinese Medicine. Artificial intelligence
technology is used in target discovery based on analysis methods such as structural
docking, structural comparison, network simulation, and machine learning. Artificial
intelligence is also used in mechanism research such as pathway and molecular
function prediction and Drug property pattern analysis. In terms of discovery of new
uses, artificial intelligence is used in the prediction of new uses based on multiple
phenotypes and molecular data after drug perturbation. In terms of TCM research,
artificial intelligence is used in the research of Chinese medicine targets, mecha-
nisms, and syndrome theories. The following sections introduce the application
status of artificial intelligence in these aspects.
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2.2.1 Prediction and Discovery of Drug Targets

The discovery of drug targets is a long-standing topic in network pharmacology
research. According to the strategy and data differences in the discovery of drug
targets using artificial intelligence, the analysis can be divided based on ligand
structure similarity and quantitative structure–activity relationship, reverse molecu-
lar docking, action network simulation, and machine learning.

1. Analysis Based on Ligand Structure Similarity and Quantitative Structure–Activ-
ity Relationship

Structural data of drugs/compounds is easily available and not only fully reflects
the basic characteristics of molecules, but can also be easily counted and compared.
It was used earlier in network pharmacology research. Many artificial intelligence
algorithms such as intelligent search and classification are used in structural com-
parison analysis methods. According to the research characteristics, the analysis can
be divided into structural similarity comparison method, quantitative structure–
activity relationship analysis method, and docking method. They are as follows:

The importance of structural similarity mainly comes from the similar property
principle [38]: molecules with similar structures may bind to the same target and
have similar biological functions. By comparing the chemical similarity of ligands, it
can be inferred that they may have similar targets and pharmacological effects. New
pharmacological effects can be found through this method. Also,
biomacromolecules (targets) with different functions may have similar drug binding
domains. Therefore, the similarity between the chemical characteristics of a drug that
binds to a target and the structure of the target molecule can be used to predict the
unknown target of drugs [39]. Similarity measurement includes three parts: struc-
tural characterization, weight calculation, and similarity coefficient [40]. Vilart et al.
[41] proposed a method to identify new DDI (Drug–Drug Interactions) based on the
similarity of molecular structures of drugs involved in the established DDI. The
basic assumption is that if drug A and drug B interact to produce a specific biological
effect, a drug similar to drug A (or drug B) may interact with drug B (or drug A) to
produce the same effect. This study collected 9454 pairs of known DDI resources,
and identified DDI candidates [41] by calculating the structural similarity of all drug
pairs in DrugBank. Yan et al. [42] proposed a SDTRLS (substructure-drug-target
Kronecker product kernel regularized least squares) method based on sub-structure
similarity, Gaussian interaction profile (GIP), similarity network fusion (SNF),
RLS-Kron classifier, and other technologies. In the independent verification of G
protein-coupled receptors (GPCRs), the predictions are better than in the SDTNBI
algorithm (substructure-drug-target network-based inference) [42]. Keiser et al. [43]
compared 3665 drugs approved by the US FDA (Food and Drug Administration)
and drugs that still in the research stage, with hundreds of drug targets. By compar-
ing the chemical similarity between the drug and the ligand set, they predicted
thousands of new associations. Thirty of these associations were experimentally
verified, and 23 new drug–target associations were confirmed, of which 5 have
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higher binding strength with the predicted target. In addition, there is a compound N,
and the physiological significance of the interaction between n-dimethyltryptamine
and 5-hydroxytryptamine receptor has been verified in gene knockout mice [43].

In addition to structural similarities, quantitative structure–activity relationship
(QSAR) is another commonly used research method based on structural data. It
refers to a quantitative relationship that links the structural parameters of a com-
pound with its biological activity data through a corresponding algorithm. The basic
idea is that similar molecules usually bind to similar proteins. The interaction is
predicted by comparing new ligands with known protein ligands [40, 44]. The
predictive ability of the QSAR model depends largely on the structural similarity
between the training set and the test set molecules [45]. Zhang et al. [46] used a data
set of 3133 compounds to build a QSAR model. The model was built using dragon
descriptors (0D, 1D, and 2D), ISIDA-2D fragment descriptors, and support vector
machine (SVM) method. In the QSAR modeling and verification process, the data
set is randomly divided into modeling and external evaluation sets; and the sphere
exclusion algorithm is used in the training set and the test set to divide the modeling
set multiple times. Then, using the consensus approach, the QSAR model is applied
to the VS (virtual screening) of the ChemBridge database. The 42 inactive com-
pounds predicted by the model have been experimentally verified [46]. Melo-Filho
et al. [47] developed a continuous combi-QSAR model for the oxadiazole inhibitor
data set of smTGR, and further evaluated the top 10 compounds in vitro on
Schistosoma japonicum and adult worms, and found that two compounds containing
new chemical scaffolds had high activity in various life stages of parasites at low
molecular concentrations [47]. Marcelo et al. [48] combined QSAR to develop SAR
rules and a binary QSAR model of antituberculosis compounds based on chalcone.
Then, these models were used to conduct synthesis and biological evaluation of
33 compounds, and candidate drugs [48] with low activity to symbiotic bacteria,
good selectivity to mycobacterium tuberculosis, and low cytotoxicity to Vero cells
were found.

Comparison of structural similarity and QSAR is based on the hypothesis that
similar structures correspond to similar activities, and molecular docking is the most
intuitive application of receptor–ligand hypothesis. Molecular docking is a tradi-
tional method for evaluating the chemical complementarity of small molecules and
target molecules based on the three-dimensional (3D) structure of the target. DTIs
(drug target interactions) were evaluated by using a scoring function to provide a
quantitative docking score associated with binding affinity [49]. Molecular docking
has a wide range of applications in DTI prediction. Starting from known target
proteins, screening ligands with the best affinity from many known three-
dimensional structure molecules are suitable for large-scale screening of candidate
ligand compounds after obtaining disease targets. Ordinarily, for one or several
given targets, such as estrogen receptor [50], HIV-1 integrase [51], potential active
compounds can be prioritized by molecular docking. Web applications based on
molecular docking, such as TarFisDock [52], DRAR-CPI [53], rDock [54], are all
built for target search based on docking. Although molecular docking is widely used,
it still has its limitations, such as not being suitable for situations where the number
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of proteins is large and the three-dimensional structure is not available, it cannot be
applied to membrane proteins with complex structures, such as ion channels and G
protein-coupled receptors (GPCRs), and the extremely low efficiency of docking
computing due to the huge consumption of computing resources [45].

The key assumption of drug target analysis based on calculation of similarities is
that similar drugs tend to share similar targets [29]. Thus, internationally, Yamanishi
et al. [30, 31] proposed a method to predict drug target relationship by combining
chemical drug similarity and genetic similarity; Keiser et al. [32] compared the
chemical structure of the drug with ligands known to regulate the function of protein
receptors, and obtained indirect connections between the drug and the target through
these ligands. In addition, there are methods to predict drug targets based on
chemical similarity [33, 34] and side effect similarity [35].

Another type of method focuses on indirect drug–gene relationships and uses
additional similarity measures to obtain drug-related genes. For example, Hansen
et al. [36] used the similarity of protein–protein interaction networks to predict the
drug–gene genetic association, and combined the gene expression data with the drug
response data provided by Kutalik et al. [37] to infer the common module relation-
ship between genes and drugs.

In China, Cheng et al. [38] developed three supervised inference models to
predict the interactions between drugs and targets, namely drug similarity inference,
target-based similarity inference, and network-based inference. Li et al. [39] devel-
oped the target prediction algorithm drugCIPHER based on the overall association of
“drug network–molecular network.” In this method, the authors developed a com-
putational framework called drugCIPHER, based on the interrelationships observed
in the fields of pharmacology and genomics, to infer drug target interactions on a
genome-wide scale. Based on the protein–protein interaction network, three linear
regression models are proposed, which connect the drug treatment similarity, chem-
ical similarity, and the correlation between the combination of the two and the target,
respectively. Experiments have shown that the model (drugCIPHER-MS) that com-
bines drug treatment similarity and chemical similarity has achieved good results on
the training set and test set. The model process is shown in Fig. 2.1.

2. Reverse Molecular Docking

In recent years, with the development of computer-aided drug design, a reverse
molecular docking based on the “lock-key theory” has become a new means of drug
target discovery in network pharmacology [55]. For a drug or new chemical entity,
reverse molecular docking works opposite to molecular docking. Small molecular
compounds are used as probes to search for biomacromolecules that may be com-
bined with them in the database of candidate targets with known structures. Possible
molecular complexes can be identified using space and energy matching and poten-
tial drug targets can then be predicted [56–58].

The concept of reverse molecular docking was proposed by researcher Chen
Yuzong from the National University of Singapore. Chen connected a single small
molecule with multiple biological targets by means of molecular docking and by
downloading the protein structure of a biomolecule in the PDB database and the
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INVDOCK platform. He then evaluated the binding energy of the ligand-compound,
and preliminarily evaluated potential biological targets [59] of smaller active mol-
ecules. Subsequently, more convenient and rapidly reversing molecular docking
network platforms have been developed, such as TarFisDock [60], PharmMapper
[61], Reverse Screen 3D [62], and idTarget [63].

Guo et al. demonstrated that ganoderic acid D exerts an anti-cervical cancer effect
[64] through the direct binding of 14-3-3 protein using bidirectional gel electropho-
resis technology and INVDOCK. Subsequently, they used a similar method to
clarify that the cardioprotective action of salvianolic acid B is through direct binding
with human epidermal growth factor receptor (EGFR) [65]. Park et al. investigated
potential biological targets of ginsenoside based on reverse molecular docking with
their own protein target database, and found that dozens of biological targets such as
MEK1 and EGFR could be directly regulated by ginsenoside [66].

3. Analysis Based on Action Network Simulation

The analysis based on interaction network simulation is different from the one
based on structural comparison. It relies on an interaction database presented in the
form of a network. Therefore, the advantage of this analysis is that it makes more
extensive use of the observed interaction network to find targets. These network-
based methods are usually based on algorithms in recommendation systems and
relational algorithms in complex networks, which cover a larger target space and can
predict potential DTIs by executing simple physical processes such as “resource
diffusion,” “collaborative filtering,” and “random walk” on the network [67]. Topo-
logical similarity reasoning of drug target bipartite network and in vitro experiments
have also been conducted. Cheng et al. [68] confirmed that five kinds of old drugs
had multi-directional pharmacological properties on human estrogen receptor or
dipeptidyl protease IV, and found that simvastatin and ketoconazole showed strong
antiproliferative activity on human MDA-MB-231 breast cancer cell line [68]. The
MD-Miner (Mechanism and Drug Miner) method proposed by Wu et al. [69] has
found potentially effective drug candidates by constructing a patient-specific signal
transduction network that integrates known disease-related genes with patient-
derived gene expression profiles. This is based on the number of common genes
between the patient-specific dysfunction signal transduction and the Drug property
network, and also by a drug mechanism of action network, which integrates drug
target and drug-induced expression profile data. This method has been evaluated on
PC-3 prostate cancer cell line, which shows that compared to random selection, the
success rate of finding effective drugs is significantly improved, and can provide
in-depth understanding of potential mechanisms of action [69]. Isik et al. [70]
studied whether biological responses and protein interaction networks of drug
interference with cancer cells could reveal drug targets and key pathways. Through
systematic analysis of more than 500 drugs in cMAP (connectivity map, gene
expression profile database), it has been proven that drug interference usually has
no significant effects on the expression of drug target genes, hence the changes in
expression after drug treatment are insufficient to identify drug targets. However,
network topology measurement and local radiance measurement that combine
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perturbed gene and functional interaction network information are conducive to
discovering cancer-specific pathways [70].

Link prediction in the network refers to predicting the possibility of a connection
between two nodes in the network that have not yet been connected through
information, such as known network nodes and structures [40]. This prediction
includes both the prediction of unknown connections and the possibility of possible
new connections.

Chen et al. [41] developed a rebooted random walk model—NRWRH, based on
heterogeneous networks, to predict potential drug–target interactions by
implementing random walks on heterogeneous networks. This work assumes that
similar drugs often interact with similar targets and integrate the drug–drug similar-
ity network, protein–protein similarity network, and known drug–target interaction
network, into a heterogeneous network. In this work, NRWRH was used to predict
potential drug–target interaction by integrating drug-related information. The orig-
inality of this method lies in the integration of three different networks (drug
similarity network, target similarity network, and known drug–target interaction
network) into a heterogeneous network. NRWRH is applied to four target proteins,
including enzymes, ion channels, GPCR, and nuclear receptors, using cross-
validation to predict potential drug–target interactions, and demonstrated superior
performance of NRWRH over previous methods.

Abhik et al. [42] extended the experimental data set on the basis of NRWRH. This
method also integrates the three networks of drug–drug similarity network, protein–
protein similarity network, and known drug–target interaction network into a het-
erogeneous network, and expands relevant drug–target network data and uses
external data sets for verification.

This section follows a brief demonstration of the link prediction analysis steps in
the Python language.

(1) Description of Question

Let G (V, E) be an undirected graph network, where V is a set of nodes and E is a
set of edges. Given the link prediction method, assign a score value “S” to each pair
of unconnected node pairs, and then sort all pairs according to the score value from
the largest to smallest, with the first node pair having the highest probability of
connecting edges [40].

(2) Link Prediction Method

Common link prediction methods are based on similarity, maximum likelihood
estimation, and probability model [43, 44]. The similarity-based link prediction
methods are divided into three main categories [45]—similarity based on nodes,
pathways, and random walks. The concept of the method based on node similarity is:
the greater the similarity between two nodes, greater the possibility of links between
them. Therefore, there are many definitions of node similarity, including common
neighbor index [46], Salton index [47], Jaccard index [48], HDI [49], etc. Based on
the similarity index of pathways, there are mainly local path index [50], Katz index
[51], and LHN-II index [56]. Similarity indexes based on random walk include
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average commute time [56], restarted random walk [57], Cos+ index [58], and
SimRank index [52].

(3) Algorithm Implementation Case

In this paper, the Jaccard coefficient in network topology similarity [48] and PPI
network data have been used as inputs for predicting links to unconnected nodes in
the PPI network.

Jaccard coefficient definition: Given two sets A and B, Jaccard coefficient is the
ratio of the size of the intersection of A and B to the size of the union of A and B,
which is defined as follows:

J A,Bð Þ ¼ A \ Bj j
A [ Bj j ¼

A \ Bj j
Aj j þ Bj j � A \ Bj j

The implementation of Python core code is shown in Table 2.2. The program
input is PPI network data (the node number represents the number corresponding to
the protein), and the results are shown in Fig. 2.2.

The number of nodes in the above figure represents the number of nodes in the
PPI network in this program. We retained the mapping relationship between the
numbers and protein molecules. As observed, using Jaccard coefficient, we calcu-
lated the relationship index between ATP6V1B1 (node 17) and ATP6V1A (node
1546) as 0.75.

(4) Application of Link Prediction in Network Pharmacology

Link prediction is not limited to social networks, but also has great application
value in the biomedical field. With the development of network medicine,
researchers have begun to analyze and predict the interaction between proteins,

Table 2.2 Code implementation

Core codes

import networkx as nx # Import networkx toolkit

data ¼ open(“ppi.txt”) # Load PPI data

G ¼ nx.Graph() # Create empty graph, G network undirected graph

for i, line in enumerate(data):

line ¼ line.split(“\t”)

G.add_edge(line[0], line[1]) # Add data to undirected graph

preds ¼ nx.jaccard_coefficient
(G,[(0,1),(2,3)])

# Calculate the Jaccard coefficients of all the unconnected
nodes

for u, v, p in preds: # Triple iterator in the form of (u,v,p), wherein print (% D,%
d) -> %.8f' % (u, v, p)

P(u,v) ¼ preds(u,v) # (u, v) is a pair of nodes and P is their Jaccard coefficient.

>>> # Program running results

(ATP6V1B1, ATP6V1A) ->
0.75000000

(17, 1546) -> 0.75000000
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drugs, and targets at the molecular level [53]. There are links between nodes of
protein interaction and the metabolic network [54, 71], which indicates that there is
an interaction between them. The prediction of missing drug–target network and
suspicious link is helpful to explore the mechanism of action of different drugs and
to predict and evaluate drug efficacy. However, revealing the hidden interaction in
such networks increases the cost of biological experiments, while the results of link
prediction guide these experiments, improving the success rate of experiments, and
thus reducing experimental costs. In addition, link prediction can also be used to find
similar drugs in the drug network, as well as to find new drug targets, opening up a
new path for the research and development of new drugs [72].

4. Analysis Based on Machine Learning

This analysis is different from analytical strategies based on structural compari-
son or action network simulation. Machine learning-based analytical methods have a
more flexible database. It can be a structure, a network, or any other detection index
that can be quantified. Many machine learning-based methods have been used to
identify relationships between drugs and targets. Machine learning is an analysis
method that generates prediction models based on some underlying algorithms and
given data sets. It can be divided into unsupervised learning methods (clustering,
dimension reduction, association, etc.), supervised learning methods (regression,
classification, etc.), and semi-supervised learning methods. In most machine
learning-based approaches, biological data sets from multiple sources are integrated,
such as chemical structures of drugs, target protein sequences, and known drug–
target interactions.

In terms of supervised learning, Yamanishi et al. [31] proposed a nuclear-
regression-based method to infer drug target interaction by integrating chemical
structure information of compounds, sequence information of target proteins, and
topology of known drug target interaction network, to study the interaction of four
kinds of drug targets in humans. Bleakley and Yamanishi [30] developed a super-
vised learning approach based on a two-part local model (BLM) to predict unknown

Fig. 2.2 Effect diagrams before and after operation of link prediction program
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drug–target interactions, by transforming the edge prediction problem into a binary
classification problem. Further, Yamanishi et al. [67] believed that pharmacological
action similarity was related more to drug–target interaction than chemical structure
similarity, so they further proposed a correlation-based model to infer the unknown
drug–target relationship based on chemical structure information, genome sequence
information, and large-scale pharmacological action information.

In terms of semi-supervised learning, Xia et al. [73] developed NetLapRLS, a
semi-supervised learning method that combines chemical space, genomic space, and
known drug–protein interaction network information into a heterogeneous biosphere
to predict potential drug–target interactions.

In terms of deep learning, Wang and Zeng [74] proposed a method based on
restricted Boltzmann machine (RBM). This framework of multidimensional drug
target network not only predicts the binary interaction between drugs and targets, but
also predicts the interactions between different types of drugs (i.e., how drugs
interact). Ramsundar et al. integrated millions of data points, representing both
positive and negative examples of DTI with more than 200 specific goals
[34]. They used a multi-tasking framework in which each target prediction is
considered a separate task that requires its own (linear) classifier. The AUC (area
under the receiver operation curve) of the maximum cross-validation achieved by the
deep learning method is 0.87, and it is proven that the multi-tasking aspects of their
method always provide slight improvement (AUC increases about 0.01) with the
same amount of data compared with the same single task analysis. Wen et al. [59]
proposed Deep DTIs, a drug target prediction algorithm framework based on Deep
Learning. This method first uses unsupervised pre-training to extract the character-
ization from the original input descriptor, and then uses the known drug target
relationship tags to construct a classification model. Compared to other methods,
DeepDTIs perform better and can be further used to predict whether a new drug
target is associated with other existing targets or whether a new target interacts with
some existing drugs. In addition to improving the prediction performance of deep
learning models, the analysis of key chemical characteristics learned by machine
learning models for predicting drug activity is also important for understanding the
performance of the model, screening models with better generalization ability, and
for further protein-compound binding modes. Ding et al. proposed a method to
analyze the chemical characteristics learned from the QSAR model based on the
neural network hidden layer functions and backtracking gradients. They then devel-
oped an interactive tool to identify the molecular characteristics of the GPCR family
protein targets binding to compounds, which can be verified by eutectic structural
analysis.

In DTI prediction, the general machine learning process is divided into three
steps. Firstly, the input data of drugs and targets are preprocessed. The underlying
model is then trained based on a set of learning rules. Finally, the test data set is
predicted by using the prediction model [45]. Kumari et al. [95] developed a
sequence-based prediction method to identify and distinguish human non-drug and
drug target proteins. Training features include amino acid sequence characteristics,
composition, and dipeptide compositions used to produce prediction models.
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Through 10-fold cross-validation and leave-one-out validation tests, the sensitivity,
specificity, and accuracy of the model (above 80%), and the Matthews correlation
coefficient (above 0.7), can help in evaluating the composition pattern of human
drug targets [75]. Zhang et al. [76] proposed a clustering-based multi-view DTI
prediction method to achieve more accurate DTI predictions by integrating drug and
target data from different views and maximizing clustering consistency in each view,
to predict 54 kinds of potential DTI [76]. Jamali et al. [77] used machine learning
method to analyze 443 sequence-derived protein features to predict whether proteins
had drug properties, and compared the properties of different machine learning
methods and conducted feature selection. New drug targets have been identified in
cell signaling pathways, gene expression, and signal transduction [77].

In addition, this section provides a description of HTINet [78], a TCM target
prediction method based on representation learning. In recent years, with the con-
tinuous development of network medicine and pharmacology, multi-source biolog-
ical network data and databases have been widely accumulated, providing adequate
data support for researchers. Meanwhile, representation learning [79] is developing
rapidly in the field of deep learning. It is a method that learns the feature represen-
tation of each node in the network through the network structure and makes the node
feature representation fit the original network structure. This method has been
applied in many fields (image, video, and natural language understanding) and
achieved good results. The HTINet model integrates TCM and Western medicine
data (including Traditional Chinese Medicine, disease, symptoms, Western medi-
cine, and targets) based on symptoms, and integrates a multi-source heterogeneous
data network. It also obtains feature representations of Chinese medicine and genes
based on the network representation method and finally builds a supervised classi-
fication model obtained from previous learning to predict the interaction relationship
between Chinese medicine targets. The method flow is shown in Fig. 2.3.

The HTINet model has achieved a maximum of 95% AUC and 94% AUPR on
the test set, and its performance has been greatly improved compared with the
baseline model, indicating its potential in the prediction of TCM targets. In addition,
this work also carried out external validation on some experimental results, ran-
domly selected three Traditional Chinese Medicines (Polygonum bistorta, flos
farfarae, and Rhododendron dauricum), and predicted its targets through the HTINet
model and effectively verified the predicted targets in external databases and
literature.

2.2.2 Study on the Drug Property Mechanism

One of the central research objectives of network pharmacology is to completely
characterize the biological process under Drug property, i.e. to clarify the mecha-
nism of Drug property. The clarification of intracellular chemical reactions and
pathways is the most challenging issue in this field. Common biological pathways
are related to metabolism, gene expression regulation, and molecular signaling.
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Pathways play a key role in the advanced research of functional genomics. For
example, identifying disease-related pathways can lead to effective strategies for
diagnosis, treatment, and prevention of disease. In addition, researchers can discover
the root cause of diseases and use the information obtained from pathway analysis to
develop new and better drugs by comparing the differences in some pathways
between healthy people and patients. Mapping the dysfunctional pathways associ-
ated with various diseases is essential for a comprehensive understanding of these
diseases.

One of the common problems in drug research is the accurate prediction of
pathways and molecular functions. Pireddu et al. [80] proposed a model for
predicting catalytic proteins in important reactions, and integrated these into a
prototype system of previously proven metabolic pathways. Finally, 10 metabolic
pathways were cross-validated for 13 organisms, and the results showed a 71.5%
cross-validation accuracy and 91.5% recall rate [80] in the prediction of catalytic
proteins of all reactions. In order to find a quantitative verification method for
pathway prediction, Joseph et al. [81] developed a large gold standard data set that
contained data on the presence or absence of 5610 metabolic pathways in various
organisms. They also defined a set of 123 pathway characteristics and evaluated the
information according to the gold standard. This data is used as input in various
machine learning (ML) methods to achieve accurate prediction of metabolic path-
ways [81]. Boudellioua et al. [82] proposed a system that uses “rule mining
techniques” to predict the metabolic pathways of prokaryotes. They used cross-
validation technology to evaluate the performance of the system and achieved good
results in identifying pathways [82]. Fan et al. used the Agilent LitSearch tool [67] to
dig deeper into the Pubmed database from 1950 to 2014, for genes that regulate
angiogenesis related to ischemia and lung cancer. They then constructed the disease
target network for ischemia combined with lung cancer. Verification with molecular
biology revealed that the mechanism of bidirectional vascular regulation in animal
models of ischemia in lung cancer is related to the abnormal expression of elastase in
centrioles [73].

Torcetrapib can inhibit the activity of cholesteryl ester transfer protein and
increase high density lipoprotein in vivo. It could have been used as a new anti-
lipid drug; however, phase III clinical trials have shown that torcetrapib can induce a
fatal hypertensive response [51]. Understanding the molecular mechanisms that
induce lethal reactions can help to avoid such situations in the future and clarify
whether other CETP inhibitors, such as Anacetrapib and Dalcetrapib should con-
tinue to be used. Chang et al. constructed a specific renal metabolic network model
through in-depth mining of GEO gene expression data [44]. Combined with the
off-target effects of known drugs, CETP inhibitors and renal function were evalu-
ated. At the same time, Fan et al. mapped the gene signaling network of human
diseases by integrating the interactions of biomacromolecules in four databases
including BioCarta, literature-mined network, Cancer Cell Map, and the HPRD
database [45]. Torcetrapib-specific regulation network module was mined by ana-
lyzing the GEO database, and the abnormal gene set regulation of torcetrapib was
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drawn. The possible explanation of torcetrapib-induced hypertension was thus
clarified from a systematic view point.

Drug property model is the key to drug development. It usually involves a target
through which a drug can induce pharmacological effects, including understanding
the drug influence pathway and biological processes. This information can be used to
support treatment hypotheses in animal models, clinical indications, and patient
selection. It is also important to distinguish new drugs from current standards,
treatments, and competing molecules. Although the mode of action of drugs is not
necessary for FDA approval, most researchers hope to understand the function of
drugs at the molecular level. There are already some examples of artificial intelli-
gence usage to solve the discovery of Drug property patterns. Pang et al. [83] used
“random forests” to analyze gene expression data and established a path based
classification and regression method. This approach allows researchers to sequence
important pathways from externally available databases, and identify important
genes to take advantage of a continuous outcome variable in regression settings
[83]. Hancock et al. [84] proposed a new classification model, HME3M. This
probabilistic model is a combination of a mixed Markov model, which is used to
identify frequently observed path clusters in a specific network structure, and proves
that the HME3M algorithm is superior to the comparison method in the case of
increasing network complexity and path noise. It is an accurate and reliable classi-
fication of metabolic pathways [84].

Carfilzomib is a conventional drug for treating multiple myeloma. However,
clinical studies have found that long-term use of Carfilzomib can induce drug
resistance in multiple myeloma. Zheng et al. analyzed KMS-11 cell lines that are
resistant and sensitive to Carfilzomib in the GEO database, through a string biolog-
ical macromolecule interaction platform [52]. This helped to model a gene regula-
tory network related to Carfilzomib resistance. The enrichment analysis results
showed that abnormal changes in cytokine and receptor, autophagy, ErbB signaling,
microRNA, and fatty acid metabolism pathways may be related to drug resistance
exhibited in patients treated with Carfilzomib for multiple myeloma [53].

2.2.3 Discovery of New Drug Uses

Network pharmacology is not only used for drug target discovery and mechanism
interpretation, but also for the discovery of new drug uses. Phenotypic and omics
data generated in drug experiments and clinical applications provide important clues
for the discovery of new drug uses. Artificial intelligence plays an important role in
the use of this data.

1. Analysis of Drug-Phenotype Data

Drug phenotypic analysis is a method for analyzing the phenotypic changes in an
organism after Drug property. It identifies the effects of a drug by analyzing cell and
animal models in a disease state. Although drug discovery based on drug targets
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once dominated the scene, several new disease targets determined by genomics and
systems biology methods are categorized as non-usable [85]. Moreover, the function
of these new targets is unclear. These issues have prompted researchers to refocus on
the discovery of drug phenotypes as a complement to target-based drug discovery
[86]. The phenotype of the drug includes characteristics of the drug's indications,
side effects, etc., which are reflected at the individual level. Drug phenotypes can be
attributed to many molecular interactions, including on-target or off-target binding,
drug–drug interactions, dose-dependent pharmacokinetics, metabolic activity,
downstream pathway interference, aggregation effects, and irreversible target bind-
ing. Although certain drug phenotypes such as side effects are unexpected results of
drug intervention, they help in understanding the physiological changes caused by
drugs. Phenotype-based methods for discovering new uses of drugs are being valued
increasingly by researchers.

PubChem's bioassay function contains more than 740 million data points from
biochemistry and phenotypic screening, covering more than 1 million biologically
active molecules. Several compounds have hundreds or even thousands of analysis
results [21, 22]. ChEMBL contains biometric data with more than 12 million data
points. NPCPD29 contains a drug-phenotype matrix of nearly 35 clinically approved
compounds, covering cardiovascular disease, diabetes, and cancer. In addition, the
Center for Chemical Genomics of the National Institutes of Health has compiled a
data set of approximately 2500 approved compounds that are screened in approxi-
mately 200 phenotypic and target-based tests, focusing on various cancers, malaria,
nuclear receptors, and signal pathways [23].

Research on the sensitivity of cancer cell lines is the most important task in
network pharmacology based on cell phenotype screening. The Cancer Therapeutic
Response Portal assessed the sensitivity of 242 cancer cell lines with genetic
characteristics to 354 types of small molecule probes and drugs [16]. The GDSC
(Genomics of Drug Sensitivity in Cancer) database measured 138 anticancer drugs
in 700 cell lines [18]. The Cancer Cell Line encyclopedia provides detailed genetic
characterization of 1000 cancer cell lines and can be used to assess cell line similarity
and predict drug perturbation growth rates in other cell lines [24].

SIDER (Side Effects Resources) is a public side effect database that contains
compiled information from FDA package specifications, linking 888 drugs with
1450 side effects [27]. The OFFSIDES database analyzed more than 400,000
adverse reactions not listed on the official FDA drug labels, and determined that
each drug had an average of 329 off-label ADEs [28]. Finally, the FDA Adverse
Event Reporting System (FAERS) is the database of information on adverse event
and drug error reports submitted to the FDA by manufacturers, health-care pro-
fessionals, and the public [29, 30].

Relationships between drugs and phenotypes can be used to identify shared target
proteins among chemically different drugs and to infer new indications using their
phenotypic similarities [87]. One of the underlying principles behind this theory and
related approaches is that drugs that share a large number of similar phenotypes may
be associated with common mechanisms of action associated with the treatment of a
disease, and may serve as phenotypic biomarkers for specific diseases
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[88]. Currently, several new indications and targets have been found by using drug
phenotypes using artificial intelligence methods. For example, Dimitri et al. devel-
oped DrugClust [89], a machine learning algorithm for drug side effects prediction.
According to the Bayesian score, the first batch of drugs was clustered based on their
characteristics, and then the side effects were predicted. Biological validation of the
clustering can be completed using enrichment analysis. The process of drug discov-
ery is realized by verifying obtained clusters and possible new interactions between
some side effects and non-targeted pathways. Luo et al. [90] constructed a drug side
effect network based on SIDER2 (Side Effect Resource 2) database, and introduced
the link prediction method into the network to develop and evaluate the framework
of drug side effect prediction. Ferrero et al. [91] developed the drug re-positioning
hypothesis on the basis of disease genetics by mining the public repository and
transcriptome profiles of GWAS (Genome-Wide Association Studies) data [91]. Yin
et al. [92] used the drug indications in the Medicine Indications Resource (MEDI) as
the gold standard to evaluate whether the drug indications found from GWAS and
Phewa (Phenome-Wide Association Studies) have clinical indications [92]. Yang
et al. [88] extracted the relationship between 3175 diseases and SEs (Side Effects). A
naive Bayesian model was then established based on SEs’ features to predict the
indications of 145 diseases. In addition, the QSAR model of SEs was used to predict
the indications of 4200 clinical molecules [88]. Ye et al. [93] constructed a drug–
drug network based on the similarity of clinical side effects. The indication of a drug
can be inferred by enriching the function of its neighboring FDA-approved drug in
the network. It has high accuracy in drug prediction for diabetes, obesity, laxatives,
and mycobacteria infection. A large number of predicted results were approved by
the FDA or supported by preclinical/clinical studies [93]. Previous studies have
shown that chemical structure, target protein, and side effects can provide rich
information for drug similarity evaluation. However, each individual data source
plays an important role on its own, and data integration is expected to reposition
drugs more accurately. Wang et al. [94] established a new drug re-positioning
method (predicted drug re-positioning) by integrating the molecular structure,
molecular activity, and phenotypic data, and by characterizing drugs by analyzing
their chemical structure, target proteins, and side effect data, and defining their
disease-related core functions. Then, an SVM was trained to calculate and predict
new drug–disease interactions, which has advantages over other methods in terms of
accuracy and coverage rate [94].

Scheiber et al. used the known drug–ADE (adverse drug event) association, and
the extension of NaïveBayes modeling to connect specific chemical characteristics
of drugs with 4210 ADE terms [56]. Liu et al. used the causal relationship analysis
based on Bayesian network structure to connect the chemical and biological char-
acteristics of drugs with ADE, which can be interpreted as causality [57]. Vilar et al.
used the GBA method in large insurance claims databases to estimate drug associ-
ations with four different ADE: acute kidney failure, acute liver failure, acute
myocardial infarction, and upper gastrointestinal ulcer [58].
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2. Transcriptome Data Analysis

The omics data generated from drug trials undoubtedly provides valuable infor-
mation for the discovery of new uses of drugs. Compared with other omics data such
as proteomics and metabolomics, transcriptome data have many advantages such as
high throughput, low cost, precise quantification, and sufficient complexity. There-
fore, the large-scale use of transcriptome data for drug discovery is the most rapidly
developed and mature method.

(1) Integrated Library Project Based on Network Cellular Response Imprinting
(LINCS) [95]

The CMap project [96] and LINCS (The Library of Integrated Network-Based
Cellular Signatures) project [97] promoted the development of a comprehensive and
large-scale transcriptome database with drug research as an important goal. Drugs
and target perturbation data collected and recorded have been used to determine the
connections, similarities, or differences between diseases, drugs, genes, and path-
ways, which provide great opportunities for computational pharmacogenomics and
drug design. Unlike classic pharmacology that only focuses on one target at a time,
the transcriptomics data provided by CMap and LINCS opens the door for systems
biology methods at the pathway and network level [98]. The LINCS project high-
lights the potential of gene transcription analysis as a universal language for linking
chemistry, biology, and clinical practice by inferring genome-wide similarities or
differences [99]. In recent years, several studies have used various machine learning
methods to analyze Cmap data and LINCS data for target discovery and drug
re-positioning. For example, Xie et al. [100] systematically explored and predicted
the re-positioning of 480 marketed drugs with other therapeutic attributes using
LINCS drug-induced transcript level data, which was based on the machine learning
algorithm Softmax for multiple classification problems. Young et al. [101] used the
gene silencing perturbation data in LINCS, adopted the linear regression model, and
combined the prior and posterior probability to infer the regulatory relationship in
genes, thus verifying the relationship identified in the TRANSFAC (TRANScription
FACtor database) and JASPAR. Lee et al. [102] used LINCS data to evaluate the
ability to predict novel re-positioning of drugs based on several perturbations in four
cancer types [102]. Sawada et al. [103] proposed a new computational method for
predicting inhibition and activation targets of drug candidate compounds. Integrat-
ing chemical induction and gene interference with the gene expression profile of
human cell lines helps avoid excessive dependence on the chemical structure of
compounds or proteins. Based on the transcriptomic changes of the overall gene
expression profile after chemical treatment, as well as the transcriptomic changes
after gene knockout and overexpression, the combined learning algorithm was used
to build a prediction model of a single target protein. This method can distinguish
inhibition targets from activation targets, and can accurately identify therapeutic
effects [103]. Liu et al. analyzed the CMap transcription profile and revealed its
hidden factors by weighted gene co-expression network analysis (WGCNA). Simul-
taneously, seven common modules associated with protein binding, extracellular
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matrix tissue, and translation were identified. Finally, the drugs were clustered by
module expression, and the mechanism of action (MoA) was inferred according to
their common activity profiles. Sirota et al. systematically compared the gene
expression profiles of 164 small molecule compounds from CMAP with a set of
expression profiles derived from the GEO database for 100 different diseases. Based
on this model, more than 1000 drug repurposing predictions were generated, linking
at least one of 164 compounds to each of the 53 diseases [48].

(2) Gene Expression Omnibus (GEO) [104, 105]

The Gene Expression Omnibus (GEO) is a public information storage platform
managed and maintained by the National Center for Biotechnology Information
(NCBI) of the United States. The database mainly provides gene expression data
retrieval, browsing, query, and download services, and is an important source for
obtaining high-throughput chip expression profiles data. GEO includes two
sub-databases: Datasets and Profiles database. The Datasets database stores the
data of gene chip centered on experiments. The Profiles database stores gene-centric
chip data. Currently, GEO has more than 900 drug perturbation experiments and can
be another direct source of drug–target perturbations in network pharmacology
research.

(3) ArrayExpress Database [106]

The ArrayExpress database is a microarray common repository of gene expres-
sion data developed and operated by the European Bioinformatics Institute (EMBI).
Its main purpose is to store and record annotated high-throughput data sets and
original image sets from all over the world. The ArrayExpress interface is simple and
supports multiple retrieval methods. So far, the database includes more than 6000
sets of high-throughput experimental data, including expression data such as
RNA-seq, ChIP-seq, GRO-seq, epigenetic profiles, and FAIRE-seq.

3. Docking Profiles Data Analysis

The combination of listed drug targets that are not thoroughly studied with
different targets leads to a wide range of side effects. Hence, the cost of screening
all potential molecular targets in biological experiments is high. The “molecular
docking profiles” using virtual large-scale molecular docking is helpful to study the
drug–target relationship, and plays an important role in the development of new
clinical indications of drugs. Yang et al. [107] used molecular docking and logistic
regression to construct a real-time prediction server DPDR-CPI based on small
molecular structures. When a user submits a molecule, the server docks it with
611 human proteins to generate predictive CPI (chemical–protein interactome)
characteristic profiles. It shows the correlation between the input molecules and
about 1000 human diseases, and gives the highest prediction results [107]. Chen
et al. [108] proposed a new ligand-based pipeline: given a set of experimental data,
first, use principal component analysis (PCA) and genetic algorithm (GA) to estab-
lish a segment descriptor with the signature of the SVMmodel, and then the pipeline
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develops QSARs in the form of the SVM prediction model, and applies the model in
virtually screen compound databases [108].

Chavali et al. used the metabolic model to generate lists of 15 genes and 8 dual-
gene combinations that were predicted to be relevant targets for neglected tropical
diseases (mainly Leishmaniasis) [70]. By associating these genes with
254 FDA-approved compounds based on drug–target interactions, it was found
that 14% (10 of 71) of these compounds were validated in overlapping with high
content screening data for leishmaniasis. In addition, Chen et al. integrated infor-
mation such as drug–target interaction, disease–gene association, and protein–pro-
tein interaction networks into heterogeneous networks (DrugNet, linking drugs,
targets, and diseases) [35]. Using the ProphNet network propagation algorithm, we
can define the input query node, drug, or disease, and rank the remaining nodes of
other types, that is, the drug for the disease query, and vice versa.

4. Web-Based Drug Indication Analysis

With advancement in the interaction group detection methods and the accumu-
lation of data resources, the discovery of drug indications based on network analysis
is widely used in network pharmacology. Relevant studies have shown that drug–
target network, drug–drug, drug–disease, protein–protein interaction, transcrip-
tional, and signal transduction networks can be used to identify the efficacy charac-
teristics of drugs, thus providing new opportunities for drug discovery or indication
discovery.

Li et al. [109] developed a binary drug–target network approach to identify
potential new indications for existing drugs through their relationship with similar
drugs. In the bipartite network model, drug pair similarity integrates chemical
structure similarity, common drug targets, and protein interactions. The author
established a causal network (CauseNet) [110] based on the previous work, which
is based on a multi-layered approach to genes, diseases, and drug targets to deter-
mine new therapeutic uses of existing drugs. In the causal network, the transition
probability of each chain is estimated based on the known drug–disease treatment
association.

Wu et al. [111] used the known relationship between disease genes and drug
targets in the KEGG database to construct a heterogeneous drug network. Nodes
represent drugs or diseases, and edges represent shared genes, biological processes,
pathways, phenotypes, or combinations of these characteristics. The network is then
clustered to identify modules that can be used to extract potential drug–disease pairs
for drug re-positioning. This method not only considers genes, but also other features
of constructing disease drug networks.

Chen et al. [68] developed a method based on functional linkage network (FLN)
to find modules negatively related to drugs. FLN is a network in which nodes
(proteins or genes) are connected by weighted edges to measure the probability of
sharing a common biological function. The network is constructed by using different
biological information sources (such as mutation and transcription level). These
information sources act as the features of a Bayesian classifier, and calculate the
possibility of each edge. FLN’s filtering method is to remove all genes that are not
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within the user-specified genetic distance from the disease mutation and display
differential expression below a certain threshold. Such networks are processed to
determine the extent to which drugs and disease-related genes are associated with
possible re-positioning of candidate genes.

Ali et al. [69] used centrality measurement commonly used in social network
analysis to identify drugs with better positioning in the side effect and drug indica-
tion networks. The basic assumption of this work was that drugs with similar
phenotype profiles (e.g., side effects) can share similar therapeutic properties
based on relevant mechanisms of action and vice versa. The development of side
effect resources includes unique drugs with side effects and indications. Drugs are
ranked according to their centrality scores, thus identifying 18 major drugs from the
drug side effect network and 15 major drugs from the drug indication network.
Indications and side effects of prominent drugs were inferred from profiles of their
network neighbors and compared with existing clinical studies, while seeking
optimal similarity threshold values between drugs. Threshold values can then be
used to predict indications and side effects for all drugs. The similarities are
measured by the extent to which they share a phenotypic profiles and neighbors.

Campillos proposed in 2008 that drug–target interaction networks using the
principle of side-effect similarity might be overlooked in new drug discovery. By
analyzing the side effects of 746 drugs already in the market, his team constructed a
drug-side-target network with 1018 nodes, and found some new activities and new
indications of some drugs through biological verification [87].

5. Analysis of Drug Indication Based on Machine Learning

The prediction of drug indication is also a typical machine learning problem
[70]. Specifically, the interaction between drugs and the human body can be gauged
and predicted through a series of clinical and biological characteristics. In this
section, we summarize the general principles and types of drug indication analysis
algorithms based on machine learning.

An important advantage of machine learning algorithm is its richness and rapid
development. Any existing or new algorithm can be applied to drug indication
analysis with some modification. In this section, the drug expression profile data
combined with the machine learning algorithm is taken as an example to predict its
indications, i.e. drug expression profile is used as a predictor (i.e., feature) for the
therapeutic potential of drugs. The resulting variable can be a drug, for example,
cardiovascular or anticancer drug or a drug targeted at a specific disease like
diabetes. In the former case, consideration may be given to the classification of a
drug in a category other than its own indications, for re-positioning. In the latter case,
a drug with a high predictive probability but not shown as a disease, may be a
candidate for re-positioning. Existing indications for drugs are readily available from
public web resources such as the Anatomical Therapeutic Chemistry (ATC) classi-
fication system. The following is a detailed introduction of different types of drug
indication prediction methods:

In terms of the prediction of drug indications, a linear model has advantages of
rapid calculation speed, intuitiveness, and can be easily realized by a variety of
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programming languages and statistical software. For example, the glmnet package in
R language supports rapid implementation of normalized linear models and has
detailed documentation available online [112]. Linear models are also easy to
explain, as the importance of features can be gauged from the size of the regression
coefficient, and methods have recently been developed to assess statistical signifi-
cance [113]. However, linear models capture only linear relationships between input
characteristics and output variables, which may not be the case in many real-world
scenarios, including biomedical applications. A recent study [114] identified tran-
scriptional response as a multi-label classification problem, identified novel thera-
peutic properties of drugs, and pointed out that multi-label logistic regression is
superior to other methods such as random forest and convolutional neural networks.

In terms of drug indication prediction methods based on classification and
regression models, Napolitano et al. [115] integrated a variety of drug characteris-
tics, including chemical structure and proximity of targets in the interaction network
and expression profiles, and used support vector machine (SVM) to predict the
treatment category. Menden et al. [116] developed a machine learning model to
predict the response of cancer cell lines to drug treatment, which was quantified by a
semi-inhibitory concentration (IC50) value. In this model, the feed-forward
perceptron neural network model and random forest regression model were
established using the oncogenome characteristics and chemical properties (such as
structural fingerprints) of the cell line. The predicted IC50 value was further cross-
validated and independent blind tests were done. Gottlieb et al. [117] integrated
various disease-related characteristics (such as phenotype and genetic characteris-
tics), calculated the similarity of drugs and diseases, constructed classification
features and further used logistic regression classifiers to predict new drug
indications.

In terms of predicting drug indications based on collaborative filtering technol-
ogy, Zhang et al. [118] proposed a unified calculation framework for integrating the
multidimensional features of drug similarity and disease similarity. Simply put, drug
similarity matrix and disease similarity matrix are extracted by integrating genome
(e.g., drug target protein, disease gene), phenotype (e.g., disease phenotype, drug
side effect), and chemical structure (e.g., drug chemical structure). Based on this
information, this author turns the drug–disease network analysis into an optimization
problem. This computational framework shows the effectiveness of exploring new
indications for drugs. Yang et al. [119] used causal inference probability matrix
factorization to infer drug–disease correlation. In this model, they integrate multi-
level relationships, construct causal networks linking drug–target–pathway–gene–
disease and learn PMF patterns based on known interactions. This approach can
predict new drug–disease associations and thus be of value for drug indication
analysis.
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2.2.4 Traditional Chinese Medicine and Its Therapeutic
Theory

The composition of TCM prescriptions is complex, and research on its ingredients
and treatment is more complex than that of chemical drugs. Network pharmacology
plays an important role in revealing the material basis of TCM and the theoretical
research of treatment with TCM. Researchers are increasingly using artificial intel-
ligence to solve important problems such as prediction of Chinese medicine target in
theoretical research of TCM, molecular mechanism of Chinese medicine prescrip-
tions, and molecular mechanism of syndrome theory.

1. TCM Target Prediction

The determination of drug targets is the key to drug R & D. TCM usually needs to
have a synergistic effect between different ingredients due to its complex compound
composition, resulting in the complex TCM mechanism of action. In terms of actual
target prediction, Zhang et al. [120] proposed a systematic pharmacology method to
predict the complexity of compound components and related multiple targets. This
was done by identifying bioactive compounds of TCM, to clarify its molecular
mechanism of action. System pharmacology method also helps to understand the
complex interactions between biological systems, drugs, and diseases from a net-
work perspective. Modern technologies such as drug screening (high-throughput
screening, high content screening, and virtual screening) and omics methods (pro-
teomics, genomics, metabolomics) have also been widely used in the identification
of bioactive ingredients and drug targets in TCM. Wang et al. [121] introduced high
content screening technology and used the HCS instrument to screen TCM-derived
compounds and promoted technology development. In order to promote research on
the function and mechanism of TCM, ETCM [122] provides the predicted target
genes of Chinese medicine ingredients, TCM, and prescriptions according to the
similarity of chemical fingerprints between TCM ingredients and known drugs. In
the ETCM system, researchers also explored the relationship between TCM, for-
mula, ingredients, gene target, and related pathways or diseases, to finally establish a
network structure.

With the development of artificial intelligence, especially the progress made in
natural language processing, drug target prediction and discovery have been com-
bined to greatly improve research efficiency. Biomedical literature information can
be obtained from the network. Sometimes the abstracts of these literatures contain
important frontier research information of drugs and targets. If we can capture the
latest research trends of drug targets on time, it will help to advance the process of
target prediction. Extracting valuable information from massive amount of literature
is the main aim of natural language processing. Real-time literature is collected
through web crawler technology, and then large-scale distributed storage is carried
out, which can be cleaned by data extraction, exchange, and loading, to preprocess
structured data. Then, by using methods such as part-of-speech analysis, grammat-
ical analysis, and semantic analysis in natural language processing technology,
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combined with the similarity analysis, cluster analysis, topic mining, and relation-
ship extraction in machine learning, the relationship between drugs and targets is
established. Combined with the database of known drug targets, the knowledge
mining system is conversely applied to improve the accuracy of drug target knowl-
edge, thus further improving the efficiency of drug target prediction and reducing
costs.

2. Study on the Molecular Mechanism of TCM Prescriptions

TCM and its formulations contain many active molecules with complex ingredi-
ents, resulting in complex interactions and mechanisms of action. Only by further
understanding the mechanism of action and clinical efficacy can we help users. The
basic form of TCM for disease prevention and treatment is TCM compound pre-
scription, which is a quantitative mixture of several specific Chinese herbal medic-
inal plants. There are a lot of chemical substances in TCM compound prescriptions,
which may interact with multiple disease-related targets. Therefore, at the molecular
level, the TCM compound mechanism used for disease treatment is like that of
multi-directional pharmacology or network pharmacology. TCM has existed since
ancient times in China. Molecular biology originated in modern times, and its
effective combination with TCM is a topic that needs to be explored. If we can
prove the rationality of TCM prescriptions and formulas at the molecular level, it
will help to integrate modern science and technology with ancient Chinese medicine
prescriptions, which will not only provide a more reasonable scientific basis for
further optimization of TCM prescriptions, but also provide a solid backing for
TCM’s growth in the international market. At present, many pharmacological
studies have been used to reveal the mechanism of action of TCM and its molecular
mechanism. For example, research in the field of aging shows that hemopoietic stem
cell autophagy has anti-aging effects, and there are many new discoveries in the field
of plant extracts and Chinese herbal medicine [123]. Among them, Chinese herbal
medicine extracts represented by curcumin and resveratrol, some single Chinese
medicine extracts, and classical Chinese medicine prescriptions have partial anti-
aging effects by regulating the molecular mechanism of aging in vivo and in vitro.
Research on the molecular mechanism of TCM prescriptions can be carried out with
the help of the TCM information database TCM-ID [124], which provides compre-
hensive information on TCM, including prescription ingredients, molecular struc-
ture, and functional characteristics of TCM ingredients and active ingredients, TCM
formula, clinical indications, and application of each Chinese herbal medicine. Zhu
et al. designed the framework of the TCM prescription analysis system based on
existing TCM prescription data resources and TCM prescription analysis systems,
using artificial intelligence and data mining technology. This system assists in
various applications, such as knowledge extraction and knowledgebase construction,
establishment and improvement of prescription database, medication experience
sorting and mining, and new drug development [125].
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3. Study on Biomolecular Network Mechanism of TCM Syndromes

The biological basis of syndromes is the key to modernizing TCM. Currently,
research is being conducted on blood stasis, cold syndrome, heat syndrome, etc.
Research on syndromes includes several aspects such as the nature and essence of
the syndrome and micro-syndrome differentiation [126]. The syndrome usually
refers to the overall physiological and pathological state of the human body and
diagnosis based on it. The TCM theory of disease treatment has gradually developed
on the basis of syndrome differentiation. Syndrome theory has accompanied the
development of TCM and has been guiding clinical work as well. However, syn-
dromes and their classification have not been effectively developed in recent years.
The main reason lies in the lack of appropriate supportive scientific data, and what
information exists, is often obtained through subjective inquiry from TCM doctors.
In recent years, the basic research of syndrome biology has shifted from inquiry to
theoretical research and has made a lot of progress. Some studies have tried to
correlate the phenotype of the syndrome with the microbiological molecules, and
then studied the syndrome. They have further combined it with modern scientific
means to prove some of the already existing syndrome theories. Domestically, some
scholars have studied the theory of syndrome biology from the perspective of
biomolecular network [126], and have established a multi-layer architecture from
phenotypic network, biomolecular network to drug network. Based on this network
framework, some typical syndromes such as cold and heat syndromes were studied,
which laid a good foundation for the scientific theoretical research of syndromes. At
the same time, the characteristics of diseases and syndromes on the biological
molecular network were studied, thus providing additional means of finding
methods and drugs for systematic intervention of these disease syndromes. There-
fore, the old topic of TCM syndrome differentiation and treatment has been extended
to the modern field of molecules.

2.3 Application of Artificial Intelligence

This chapter briefly introduces the application of artificial intelligence technology in
network pharmacology. With the rapid accumulation of effective data in the life
science and pharmaceutical research fields, it has led to unique perspectives on the
application of machine learning in new drug development or drug re-positioning.
Information on the structure of small drug molecules is available on the PubChem
[127] and drug bank [128] databases. These databases contain information of listed
drugs, and QSAR is often used to study drugs with annotated information, to find
potential new drugs [44]. The PDB (Protein Data Bank archive) [129] database
reveals drug–target interaction relationship, based on ligand–target structure related
data, information on side effects from Sider [130], and vector data for drug–target
interaction relationships. These can be used to predict potential new targets for drugs
[45]. In terms of omics data, there is a GEO (Gene Expression Omnibus) database
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that stores high-throughput chip data [131], TCGA (The Cancer Genome Atlas)
[132], etc. There are databases on expression profile based on cell response to drugs
under different conditions, used to predict drug interactions/indications [100, 133]
and side effects [134]. In summary, these expansive, high-dimensional databases
provide relevant information on artificial intelligence, which plays an important role
in drug research. The use of artificial intelligence to guide drug screening and
discovery in future drug development may become the norm and bring revolutionary
changes to the pharmaceutical industry.
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