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Foreword

With the advancement of medical science, the research on diseases and medicine in
Western medicine is changing from “reductionist theory” to “systems theory,” and
from a single and isolated model to a multi-faceted and systematically researched
one. A considerably important development in this transformation involves the use
of a biomolecular network to analyze the relationship between disease and drugs,
which is a breakthrough in drug research on systems biology and also brings in new
changes and challenges to the medical research model.

Conversely, Traditional Chinese Medicine (TCM) has always been based on
holistic analysis and treatment of patients, and overall systematic adjustment of the
disease is its advantages and characteristics. However, a vital concern for the
development of TCM is to surmise how to associate medicine with the complex
human body, to carry out qualitative and quantitative analysis. Based on the biomo-
lecular network, network pharmacology analyzes the relationship between diseases
and medicine, which is in line with the needs of TCM development, thereby
initiating the innovation of TCM research methods.

The biomolecular network is the basis of complex biological systems, and reflects
the interrelationships of various biomolecules within organisms, such as the gene
regulation network, protein interaction network, signal transduction network, meta-
bolic network, etc. At the same time, it can also describe the associations between
medicine, medicine and functions, medicine and diseases at distinct levels, such as
TCM component network, phenotype and drug component network, biological
function network, etc. It is a link between micro and micro, micro and macro, as
well as unit and system. Owing to these features, network pharmacology based on
biomolecular networks materialized. Since China possesses thousands of years of
TCM theories and practices, and as TCM involves the holistic observation and
analysis of people, the country took the lead in the inception of the idea of a
relationship between diseases and biological molecular network in the field of
network pharmacology. As early as 1999, before the name network pharmacology
appeared internationally, Professor Shao Li and his research group propounded the
hypothesis that TCM syndromes are related to biomolecular networks, and also
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discovered an interconnection between biomolecular networks and cold and heat
syndromes. In 2011, they presented the concept of network target, which identifies
the relationship between medicine and disease syndromes at the level of biomolec-
ular networks, and in addition elucidated the systemic regulation of medicine on
disease syndromes. On this premise, the system analysis method based on network
target was proposed, including the construction of biomolecular network, network
target analysis method, network target analysis of drug action mechanism, and
network target verification. These concepts and methods are highly esteemed by
scholars in China and overseas. Thanks to network pharmacology, which is based on
the correlation between biological molecular network and disease syndrome, the
effect of TCM can be explained by the effect on the human body’s biomolecular
network. By virtue of the biomolecular network of the human body, the effect of
TCM on the human body has changed from qualitative analysis and quantitative
testing in the past, to the stage where quantitative analysis can be implemented. This
was indubitably a breakthrough in TCM development, in view of the fact that it
provided a scientific basis for explaining its principles and mechanisms. This
significant progress typically, attracted the attention of the TCM community and
was effectuated actively, which allowed network pharmacology develop fervidly in
China and led to a succession of gratifying accomplishments. This is a very
important and outstanding contribution made by Chinese scholars to the world of
network pharmacology.

Contemporarily, with the augmentation of network pharmacology, innovative
techniques and applications have come to light, thereby making it imperative to
recapitulate and meliorate them eventually to make their development and applica-
tion more standardized and effective. On the other hand, big data, artificial intelli-
gence, complex system theory, and other technologies are rapidly developing and
inevitably playing a role in network pharmacology, resulting in new concepts,
models, and methods. Thus, we are able to conduct more in-depth analysis, and
create more accurate and effective methods. These aspects also require our timely
guidance and progression. For instance, the core of network pharmacology is
analysis and inference of drug targets; primarily the analysis of the relationship
between nodes of complex networks and disease treatment. In this respect, the
understanding and application of “relationship inference” (belonging to the category
of artificial intelligence) between nodes of complex networks and treatment of
diseases plays a vital role.

Tsinghua University, Beijing, China

Chinese Academy of Sciences
Beijing, China
19 January 2020

Yan-da Li
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Foreword

Network pharmacology is a discipline which developed on the basis of the theories
of systems biology and bioinformatics. After Hopkins’s first proposal of the concept
in 2007, it has attracted the attention of academic circles around the world and has
been applied and developed by pharmacologists and drug researchers and developers
in China. In the same year, Professor Shao Li of Tsinghua University proposed the
research model and practice of prescriptions based on biological network regulation
in the Journal of Chinese Integrative Medicine. Since 2008, a large number of
research reports have been published in the world, and the application value of
network pharmacology in the research of TCM pharmacology and innovative
medicine is progressively emerging.

In order to meet the pressing requirements of systematic research methods of
TCM, procure development opportunities, and to be completely integrated with
TCM, the arrival of the new trend of biomedical systematic research in the era of
big data and artificial intelligence has become a frontier and hot spot in the field of
TCM research in recent years. With respect to safety, network toxicology proposed
by us in 2011 is also based on the “gene–protein–drug–toxicity” interaction network,
which helps to explain the mechanism of action of TCM and compound prescrip-
tions, interpret the scientific connotation of contraindications, promote the rational
use of medicine in clinical practice, and reduce the occurrence of adverse reactions,
and is similar to network pharmacology. In recent years, I proposed the concept of
Q-Marker, which has now become a new model of quality control in TCM. Network
pharmacology and network toxicology are effective methods in the discovery and
confirmation of quality markers of TCM.

In the midst of a new cycle of scientific and technological revolution and
industrial transformation, the new generation of information technology represented
by the Internet, big data, and artificial intelligence is constantly changing. TCM
research must forge ahead with the times, make headway perspicuously, revise and
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innovate, and promote its modernization and internationalization. Comprehension of
the integrated regulation of TCM’s “multi-component, multi-channel, and multi-
target” approach has always been a challenge. Perception of the complexity of TCM
and the material basis and action mechanism of Chinese medicine is a challenging
quandary, and the means to establish a scientific evaluation system of effective
efficacy and safety of TCM is the key. Therefore, we can say that network pharma-
cology is another key to understand the value of TCM. Based on the unique TCM
theories, such as “Four Qi” and “Five Flavors,” “Floating,” and “Sinking,” the key of
science is to inherit the essence, observe innovation, and establish new modes and
techniques that are in line with the TCM theories and scientific connotations.
Therefore, network pharmacology has also opened another research path for the
creation of a unique academic system.

Network pharmacology came into being based on the modern research of TCM.
In 1999, Professor Shao Li, the Chief Editor of the book, took the lead in proposing
the scientific hypothesis of the correlation between TCM and molecular networks
and put forward the core theory of network target for the first time, and created a
series of techniques that made outstanding contributions to the exploration and
development of network pharmacology. Efficacy, safety, and quality control are
the basic attributes of medicine. Network pharmacology has the characteristics of
network regulation and integrality. Based on the interaction network of “disease–
gene–target–medicine” and in terms of effectiveness, it can more notably interpret
the intervention and regulation effect of TCM on the syndrome or disease network at
the molecular level of the system, reveal the mystery of the medicine’s synergistic
action on the human body, and competently predict the effective components and
effect targets of the medicine.

Professor Shao Li, the Chief Editor of this book, is a leading figure in network
pharmacology. He was the first to systematically discuss the development process of
network pharmacology, and the core theory, main research methods, and research
results of network target. At the same time, the author also arranged many famous
experts in the related fields of network pharmacology to discuss and summarize the
methods, application, and practice of network pharmacology in various aspects. The
book takes into account the theory and application of network pharmacology, and is
well-organized with a plethora of deep insights, which are concurrently substantiated
by a great number of established cases.

In my opinion, with the development of modern science and technology, people
in the industry will have a more detailed understanding of the vital role of network
pharmacology in TCM development, and its application in the systematic research of
TCM will definitely make expansive contributions to the modernization of Tradi-
tional Chinese Medicine.

I would like to thank the author for his contribution to the development of
network pharmacology in China, and I wish the publication of this book will

viii Foreword



contribute to the development of a new discipline. I trust this book will also be
salubrious to its readers.

Drug Evaluation Research Center
Tianjin Institute of Pharmaceutical
Research, Tianjin, China

Chinese Academy of Engineering
Beijing, China
12 April 2020

Changxiao Liu
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Foreword

The development of Traditional Chinese Medicine is at a critical historical node in
our country: how to promote the innovative development of traditional Chinese
medicine in modern society and make it better for the people of our country and the
world is not only the mission of the times of all traditional Chinese medicine
workers, but also is a historical examination placed to the vast number of scientific
research and clinical frontline traditional Chinese medicine workers. Therefore, in
the front of this book, I have two thoughts to share with you.

First, stick to the origin, inherit the tradition, and dare to innovate. The traditional
Chinese medicine has been passed down for thousands of years, and it is an
important part of China's excellent traditional culture, and it is also a treasure of
the Chinese nation. At all times, we must carry forward and carry forward the cause
of traditional Chinese medicine. I have been engaged in clinical and research in
Xin’an Medicine for more than 70 years. I put forward the view of “originated from
Xin’an, based on clinical practice, based on traditional Chinese culture and moving
towards science,” and realized that traditional Chinese medicine needs to be
inherited, innovated, and developed. We must be aware that, our interpretation of
the complex mechanism of action of traditional Chinese medicine is not clear up to
now, and this is the root cause of hindering the further innovation and development
of traditional Chinese medicine. As an emerging discipline, network pharmacology
highlights the new thinking of combining system theory and reduction theory,
combining macro and micro, and combining inheritance and development. It com-
bines artificial intelligence, big data, and medical life sciences and is also in line with
the characteristics of the holistic view of traditional Chinese medicine. It is undoubt-
edly an important theoretical breakthrough and method innovation in assisting
traditional Chinese medicine workers in interpreting the human body that has been
unable to “see through” for thousands of years.

Second, focus on scientific research, ensure accurate data, and return to the clinic.
The majority of researchers should pay equal attention to theoretical research and
clinical practice. Traditional Chinese medicine has been abolished, but can still be
passed down to today, relying on its clinical efficacy. Therefore, when using network
pharmacology to analyze the complex mechanism of traditional Chinese medicine, it
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is necessary to continuously improve the accuracy of research methods and research
technologies, continuously explore the thinking characteristics and practical experi-
ence of traditional Chinese medicine, and continuously improve the scientificity and
effectiveness of traditional Chinese medicine for disease prevention and treatment.
Simultaneously, no matter how accurate the data is obtained in the research, the final
conclusion must be returned to the clinic for reverification to promote its clinical
applications and achieve the goal of better disease prevention and treatment and
benefit the people. The so-called benevolence of doctors, humble self-herd, careful
beginning, and respecting the end, that is the case.

Back to this book. To enable readers to have a deeper understanding of the overall
thinking and methods of network pharmacology research, the editor systematically
introduces the core content, research tools and methods, representative achieve-
ments, and typical cases of network pharmacology for the first time. I hope that by
reading this book, more talents will join the network pharmacology research team.
Combine young and modern thinking with the ancient and profound wisdom of the
Chinese nation to bring the great cause of traditional Chinese medicine bloom again
with dazzling light.

Nowadays, Chinese researchers and international peers are leading the rapid
development of the emerging discipline of network pharmacology. This has set up
a bridge for the modernization and internationalization of traditional Chinese med-
icine to communicate ideals and reality, and has an important exemplary role. Future
inheritors of traditional Chinese medicine will also shoulder a more important
historical mission while continuously learning and inheriting the classic academic
ideas and diagnosis experience of traditional Chinese medicine for thousands of
years, sharping our minds, and ability to talk to modern technology and the world. In
this way, the modern rejuvenation of traditional Chinese medicine will be smoother
and the prospects will be brighter.

This is the preface.

The First Affiliated Hospital of Wannan
Medical College, Anhui, China

China Academy of Chinese Medical
Sciences, Beijing, China
April 5, 2020

Jiren Li
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Preface

The current research model of “single gene, single target, and single drug” has been
created based on the concept of “reductionism.” This research model has made great
progress and great contribution to the scientification, modernization, and changing
of modern medicine and pharmacy. However, this research model faces challenges
when it comes to explaining the scientific basis of TCM characterized by its holistic
feature, and it is also difficult to systematically open the “black box” of the human
body in the process of diagnosis and treatment. At the same time, the incidence of
major diseases such as cancer remains high, and unanticipated diseases such as
COVID-19 are sweeping the world. It can be seen that in the face of the common
enemy—the disease, Chinese and Western medicine are not yet perfect and need to
join hands for common development. It is exigent for medical research to explore
new ideas and techniques that not only conform to the overall characteristics of
TCM, but also adapt to the characteristics of the diagnosis and treatment of complex
disease systems. TCM and modern medicine jointly look towards the innovation of
research models and research methods.

On the one hand, the holistic characteristics of the treatment process and rich
experience in Chinese medicine diagnosis highlight the limitations of the reduction-
ist medicine research model. On the other hand, it has nurtured the emergence of a
new generation of research models featuring networks and systems. Among them, an
important aspect is to understand the internal mechanism of complex diseases and
drug action mechanism from the overall perspective of complex biological network,
which provides unprecedented opportunities and challenges for the profound trans-
formation of the medical research model. As a breakthrough point for cross-
innovation between Chinese and Western medicine and intelligent information, the
study of biological networks is expected to build a new model of intelligent disease
prevention and control, and thus network pharmacology emerged in the framework
of new science and technology.

Network pharmacology is a new frontier discipline of systematic drug research in
the era of artificial intelligence and big data. It is also an original discipline
integrating systems biology, bioinformatics, network science, multidirectional phar-
macology, systems pharmacology, and other related disciplines. It emphasizes the
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analysis of molecular association between medicine and their therapeutic objects
from the perspective of system level and biological network, reveals the systematic
pharmacological mechanism of medicine, and guides the research and development
of new medicine and clinical treatment. The so-called network, on the one hand,
refers to the description and analysis methods to describe the relationship between
elements in the biological system. As a case in point, the theory and method in
complex network science are used to promote the research of biological networks.
Conversely, it refers to the basis of construction of complex biological systems,
which has different biological networks at different levels, including the gene
regulation network, protein interaction network, signal transduction network, metab-
olism network, etc. In a broad sense, there are—biological function networks, cell–
cell networks, TCM component networks, compatibility networks of TCM, disease–
disease networks, and TCM–disease networks.

In order to systematically reveal the biological basis of TCM and modern medical
diagnosis and treatment, we first put forward a new concept of network target, which
has become the core theory of network pharmacology. Network target refers to the
theory that systematically establishes the mechanism relationship between drugs and
diseases at the level of the biological network, and explains the interaction between
drugs and diseases through multiple targets and forms the overall regulatory effect.
In TCM studies, network target theory can explain how many components of
Traditional Chinese Medicine cooperate with each other in the biological network
and play an overall regulatory role.

With the development of network pharmacology and the progress of calculational
and experimental methods, the progress in this field is expected to provide additional
reliable information for the systematic understanding of the interaction between
drugs and diseases, and provide key technical support for drug research and devel-
opment, mechanism interpretation, efficacy evaluation, and precise drug use. It is
expected to promote the innovation of research methodology from “reductionism” to
“system theory” and provide strong impetus for the popularization and application of
“next generation medicine research model.”

Network pharmacology has widespread prospects, yet it is paramount to ensure
its benign and rapid development. On the one hand, the development of network
pharmacology requires the integration of information science, life science, modern
medicine, and Traditional Chinese Medicine, and the use of modern technology to
promote the objectification and precision of network pharmacology research. In
contrast, network pharmacology research also needs to break across the limitations
of basic theoretical knowledge from basic information science, life science, medi-
cine, pharmacy, and other disciplines.

This book is devoted to systematically introducing the research progress of the
theories, methods, and applications of network pharmacology, and mainly includes
four parts: (1) Concepts and Theories Involved in Network Pharmacology (Chap. 1);
(2) Common Analysis Methods, Database, and Analysis Software (Chaps. 2, 3, and
4); (3) Typical Cases of TCMModernization and Modern Medicine Research Based
on Network Pharmacology (Chaps. 5 and 6); and (4) Disease-medicine-based
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Network Pharmacology Practice Process (Chaps. 7, 8, and 9). The core contents and
principal authors of each chapter are as follows:

Chapter Content Principal Authors

1 “Network Target” Theory and Network Pharmacology Shao Li, Qingyang Ding,
Xin Wang

2 Application of Network Pharmacology Based on Arti-
ficial Intelligence Algorithm in Drug Development

Wenxia Zhou, Xuejun Li, Lu
Han, Shengjun Fan

3 Common Network Pharmacology Databases Haiyu Xu, Yangiong Zhang,
Feifei Guo

4 Common Network Pharmacology Software Xuezhong Zhou, Ning
Wang, Xing Zhai

5 Case Study of Network Pharmacology and Moderni-
zation of Traditional Chinese Medicine

Shibing Su, Yuanjía Hu,
Huali Zuo

6 Network Pharmacology and Modern Drug R&D Cases Weidong Zhang, Jing Zhao

7 Drug-Based Network Pharmacology Practice Process Xiaobo Sun, Xiaoyan Xing,
Min Wang

8 Disease-Based Network Pharmacology Practice
Process

Xiaohui Fan, Xiang Li

9 Drug-Disease-Based Network Pharmacology Practice
Process

Weiwei Su, Panlin Li

Finally, I sincerely extend my gratitude to Academician Li Yanda and Academi-
cian Liu Changxiao for taking the time out to write the preface for this book; their
astute insights were veracious, encouraging and filled with foresight. I would also
like to thank Professor Yuanjia Hu, Dr. Kuo Yang and the students (e.g., Wuai Zhou,
Siqin Zhang, Ziyi Wang and Lan Wang) for their assistance in compilation of this
book, alongside the students who gave affable attention and effervescent support to
the writing of this book, and to editor Kai Zhao and Dr. Bo Zhang for their efforts in
publishing this book.

In particular, it should be pointed out that the Network Pharmacology Profes-
sional Committee of the World Federation of Chinese Medicine Societies, together
with Tsinghua University, China Academy of Chinese Medical Sciences, and other
institutions, launched the Network Pharmacology Standards of the World Federation
of Chinese Medicine Societies (Guidelines for Evaluation Methods of Network
Pharmacology), which is also the first international standard in the field of network
pharmacology (see Appendix A). This standard specifies the principles, processes,
and evaluation indicators for data collection, network analysis, and experimental
verification in the process of network pharmacology research and is applicable to
researchers and assessors engaged in network pharmacology.

Beijing, China Shao Li
April 2020
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Chapter 1
“Network Target” Theory and Network
Pharmacology

Shao Li, Qingyang Ding, and Xin Wang

Guide to This Chapter
In the biomedical big data and artificial intelligence era, pioneering interdisciplinary
information science research, life science, and medicine represent a complex bio-
logical network which has attracted increasing attention from researchers. Complex
biological network includes qualitative and quantitative description of the relation-
ship between tissues, cells, and molecules in an organism. It lays the foundation for
constructing complex biological systems, and is also an important bridge connecting
information science, life science, and medicine. Network pharmacology has two
distinct characteristics regarding current scientific and technological background.
Firstly, it promotes the moving from “reductionism” to “system-based theory,”
which is widely considered as “the next generation medicine research mode.”
Secondly, the accumulation of modern biomedical big data and the development
of artificial intelligence as well as other computing methods provide an important
driving force for the development of network pharmacology.

Traditional Chinese Medicine (TCM) plays a key role in the origin and develop-
ment of network pharmacology. As an integral treasure of China, Chinese medicine
offers a holistic approach, puts forth characteristic theories of syndrome differenti-
ation and treatment, and showcases rich experience in clinical practice. Many pre-
scriptions used in long-term TCM clinical practices are the basis for holistic
treatment in TCM. Network pharmacology focuses on understanding the internal
mechanism and drug action of complex diseases and syndromes (referred to as
disease-syndrome) including our biological network, thus conforming to the holistic
concept and clinical practice of TCM. Network target is the core theory of network
pharmacology. It comes from the modern exploration of TCM. Its hypothesis,
practice and concept have existed prior to the concept of network pharmacology.

S. Li (*) · Q. Ding · X. Wang
Institute of TCM-X/Department of Automation, Tsinghua University, Beijing, China
e-mail: shaoli@tsinghua.edu.cn

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2021
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Network target aims to establish the relationship between medicine and diseases at
the systematic level, and to explain the theory of drug interactions on biological
networks through multiple targets and has a holistic regulatory effect overall on the
body. Network pharmacology with network targets as the core is an important
symbol of the original development of TCM research ideas and methods, and is
expected to become a significant and innovative breakthrough of modern times.

This chapter introduces the main content and history of network pharmacology
and research based on the core theory of network target.

1.1 Network Pharmacology: Next Generation Medicine
Research Mode

With the gradual rise of cross-disciplines such as computational biology, bioinfor-
matics, artificial intelligence, and big data science, medical and life science research
has entered the era of big data. Globally, researchers have moved from the “reduc-
tionist theory” to a “system theory,” from a single, isolated research mode to a multi-
faceted and systematic one. An important facet of this approach is to analyze the
association between disease occurrence and mechanism of drug action from the
biomolecular network perspective, and to use the network to regain the “whole.”
This has lead to major changes and new challenges in medical research [1]. In this
era, systematic medicine [2], network biology [3], and the theme of this book—
network pharmacology [4] came into being, bringing unprecedented opportunities
for systematic research of TCM.

Network pharmacology is an emerging discipline, integrating systems biology,
multi-directional pharmacology, computational biology, network science, and other
related disciplines. It analyzes the molecular association between drugs and diseases
in a holistic manner, thus revealing the systematic pharmacological mechanism of
drugs through scientific verification. This ultimately guides research and develop-
ment of new drugs and clinical treatment. Globally, network pharmacology is
regarded as the “Next Generation Medicine Research Mode.” [5] Network pharma-
cology is characterized by calculation and experimentation and aims at systematic
treatment. This coincides with the characteristics of holistic treatment with TCM,
and also creates favorable conditions for exploring the characteristics of TCM.

Network pharmacology is not only a breakthrough in the interdisciplinary
research of systems biology and network medicine, but also a breakthrough in the
cross-functional research of artificial intelligence and medicine. For example, the
concept of new drug research and development based on network pharmacology is
exactly in line with the TCM prescriptions. This provides an opportunity to explain
the mechanism of action and rationale for TCM prescriptions. The chemical com-
ponents contained in TCM formulae are bound to the target protein in an instanta-
neous and low-affinity form, and the whole disease network is used as the target for
systematic intervention. The desired therapeutic effect is achieved when each
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component interacts with the network, to increase efficacy and reduce toxicity. Also,
based on the key technology in network pharmacology, it is possible to analyze the
distribution of targets affected by the ingredients contained in the prescriptions, thus
helping to explore the network characteristics of prescriptions, such as drug proper-
ties, TCM formulation, Qiqing Hehe, etc. Furthermore, network characteristics are
used to predict clinical biomarkers of prescription drugs and the rationale for the
prescription, and are being used to promote new technology groups in China and
integrate with Western drug R&D groups studying network pharmacology. This
would lay a foundation for industrial innovation and technological transformation
for the entire pharmaceutical industry.

Network pharmacology and related research fields such as bioinformatics, sys-
tems biology, systems pharmacology, network medicine, artificial intelligence, and
big data science are emerging and developing simultaneously. Systems biology
understands organisms holistically rather than as an isolated part, and studies the
overall relationship between macroscopic and microscopic behaviors of organisms
through mathematical modeling, while exploring theories and methods for designing
and controlling cellular or multicellular systems. Systems pharmacology [6] empha-
sizes that under a unified time–space multi-scale framework, the research of body
function changes from the macro to the micro level and is caused by the treatment of
diseases and syndromes with these drugs, and lays emphasis on the integration of
multiple sets of scientific data from a holistic perspective, while correlating at all
levels. The concept of network medicine [7] derives from complex networks in a
broad sense, including social networks, etc. It is believed that diseases with similar
phenotypes or coexisting ailments have common components in biological net-
works. The description and verification of compound intervention in multiple targets
have laid the foundation for network pharmacology and several powerful analytical
tools and research methodology. The above related fields collectively reflect the
innovative and systematic thinking of researchers on drug and syndrome interac-
tions, and have made great contributions to the development of network pharmacol-
ogy in terms of research ideas, algorithms, and data. Compared to traditional drug
research strategies, network pharmacology is an innovative new discipline, and has
its own originality that analyzes the interaction between drugs and complex biolog-
ical systems from the biological network perspective and emphasizes on the trans-
formation from a single target to a network target.

Recently, a variety of high-throughput and multi-component experimental tech-
nologies have evolved. Rapid computing methods and technologies represented by
big data and artificial intelligence have also effectively promoted the development
and wider application of network pharmacology. Furthermore, network pharmacol-
ogy provides new ideas and methods for analyzing massive amounts of biomedical
data and has established the process transformation from data to knowledge. Net-
work pharmacology has developed rapidly, and its influence has also expanded
gradually. As shown in Fig. 1.1, subject retrieval and statistics in network pharma-
cology were conducted on Web of Science and in the CNKI database, and it was
found that the number of articles published on network pharmacology both in China
and overseas has been steadily and rapidly increasing. The term “network
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pharmacology” was first proposed by British scholar Hopkins in October 2007
[4]. He believed that drug intervention in disease can be achieved through multi-
target interactions in biological networks. In 2009, Chinese researchers published a
Chinese paper titled “Network Pharmacology” in the Chinese Journal of New Drugs
and Clinical Remedies [8].

However, as an emerging research area with a little more than a decade’s
development history, network pharmacology still faces several challenges in terms
of theory, methods, and application. On the one hand, these challenges come from
the limitations of basic biological, medical, and pharmaceutical knowledge, while,
on the other hand, they come from insufficient data accumulation in network
pharmacology, imperfect calculation methods, and unclear research systems. Public
databases provide vital information on network pharmacology. However, there are
still some shortcomings in existing public databases, such as the quality of the data
and the quantum of data that needs to be expanded, and brings challenges for
researchers in integrating the information from multiple data sources comprehen-
sively and systematically to obtain reliable results. Network-based computational
methods provide key technical support for objective scientific pharmacological
research. For related algorithms, however, highlighting the holistic characteristics
of network pharmacology based on methodology, building a quantitative and
dynamic network model, and application of network pharmacology methods to
solve burning issues such as complex diseases and drug research still need more
in-depth thinking and exploration. In terms of research, we have noticed that high-
level research on network pharmacology indicates an in-depth integration of calcu-
lations and experiments of multi-component data and an interdisciplinary integration
of mathematics and biology. Further exploration of network pharmacology in the
study of complex diseases, syndrome mechanisms, and drug action through in-depth
analysis of various cross-functions is also a breakthrough worth exploring. The
hypothesis of relationships between TCM and biological network was originally
proposed by Shao Li [9], which was 8 years ahead of the proposing of the term
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“network pharmacology” by Hopkins [4] (see 1.2). Development of network phar-
macology and progress of research in this field are expected to provide more reliable
information to study the interaction between diseases, syndromes, and drugs, as also
to provide key technical support for drug R&D, mechanism interpretation, efficacy
evaluation, drug dosage, and the wider application of “Next Generation Medicine
Research Mode.”

1.2 Key Role of TCM in the Origin and Development
of Network Pharmacology

TCM is a treasure of the Chinese nation and the essence of Chinese people’s
experience in fighting diseases for thousands of years. Medical research is important
to the national economy and people’s livelihood. It has long been an important
driving force for promoting scientific and technological innovation and revolution.
TCM has accumulated many treatments from long-term clinical practice. TCM
prescriptions contain many natural chemical components, such as artemisinin and
arsenic trioxide, which are also valuable sources of original drug research in China.
It is worth noting that TCM is a traditional systematic medicine, and the holistic
nature is a distinctive feature common in TCM diagnosis and treatment. Complex
diseases need to develop from single-target treatment to holistic and systematic
network regulation. However, research methods that accord with the holistic char-
acteristics of TCM have not yet been established. The methods of reduction and trial-
and-error analysis commonly used in modern science are quite different from the
holistic treatment characteristics of TCM. Also, the current medical research mode
of “single target, single disease and single drug” results in increasing costs and lower
success rate, which makes it difficult to adapt to the treatment demands of complex
diseases. Therefore, TCM and modern medicine both look forward to the innovation
of research models and methods.

Holistic practices in TCM also highlight the limitations of reductionist medicine
and research mode. To systematically reveal the biological basis of the overall
diagnosis and treatment of TCM, Professor Shao Li of Tsinghua University took
the lead in proposing a new concept of “network target.” The hypotheses, methods,
and case studies related to network target were prior to the introduction of network
pharmacology and were proposed internationally, and several Chinese and US
invention patents have been awarded in this field, as shown in Fig. 1.2. In 1999,
Professor Li put forward a hypothesis of the association between biomolecular
networks and TCM [9], and thus began a series of exploratory studies on the overall
analysis of the complex system of TCM. In 2002, the functional gene network was
used to depict the overall regulatory effect of TCM prescriptions on complex
diseases and syndromes. It was observed that TCM prescriptions intervened in
diseases and syndromes through network regulation of “multi-cause and micro-
effect,” and finally achieved an “emerging” effect [10]. In January 2007, Professor

1 “Network Target” Theory and Network Pharmacology 5



Sh
ao

 L
i. 

Fi
rs

t 
A

nn
ua

l 
A

ca
de

m
ic

 
M

ee
tin

g 
of

 C
hi

na
 

A
ss

oc
ia

tio
n 

fo
r 

Sc
ie

nc
e 

an
d 

Te
ch

no
lo

gy
19

99

In
te

rn
at

io
na

l 
A

dv
an

ce
m

en
t

D
om

es
tic

 
A

dv
an

ce
m

en
t

19
99

20
07

Sh
ao

 L
i e

t. 
al

.
IE

T 
Sy

st
 B

io
 

20
07

.1

Sh
ao

 L
i.

Jo
ur

na
l 

of
 C

hi
ne

se
 

In
te

gr
at

iv
e 

M
ed

ic
in

e
20

07
.9

H
op

ki
ns

. 
N

at
 B

io
te

ch
20

07
.1

0

H
yp

ot
he

si
s

C
as

e
M

et
ho

d
C

on
ce

pt

N
et

w
or

k 
Ph

ar
m

ac
ol

og
y

N
et

w
or

k 
Ta

rg
et

N
et

w
or

k 
Ph

ar
m

ac
ol

og
y

N
ex

t-g
en

er
at

io
n 

m
ed

ic
in

e 
di

sc
ov

er
y 

m
od

el
H

op
ki

ns
.

N
at

 C
he

m
 B

io
l 2

00
8

Sh
ao

 L
i e

t. 
al

. 
U

S 
Pa

te
nt

, 
C

hi
ne

se
 

Pa
te

nt

20
08

Sh
ao

 L
i.

C
hi

na
 J

ou
rn

al
 

of
 C

hi
ne

se
 

M
at

er
ia

 
M

ed
ic

a 
20

11

20
11

Te
rm

 p
ro

po
se

d

20
02

Sh
ao

 L
i e

t. 
al

. 
Jo

ur
na

l o
f 

Sy
st

em
 

Si
m

ul
at

io
n 

 
20

02

F
ig
.1

.2
O
ri
gi
n
an
d
de
ve
lo
pm

en
t
of

ne
tw
or
k
ph

ar
m
ac
ol
og

y

6 S. Li et al.



Li first published relevant research results in the international community, depicting
the biological molecular network of cold and heat syndromes, and described the
regulatory effects of cold–heat prescriptions on the network [11]. In September of
the same year, a research framework of TCM prescriptions based on biological
network was established [12], and a method for determining the synergistic effect of
drug combinations based on network pharmacology was developed, and was
awarded both Chinese and American invention patents. In April 2009, the internal
network system of TCM syndromes and prescriptions was explained. In September
2009, the concept and research of TCM syndrome biomarkers was proposed. The
concept of network target was then formally proposed in 2011 [13]. The hypotheses,
cases, concepts, and methods related to network target originated from TCM
research have played a key role in the origin and development of network pharma-
cology (as shown in Table 1.1).

Since 2007, the concept of network target has continuously explored new fron-
tiers and applications, explained the original advantages of TCM, identified a series
of innovative methods and applications, injected new impetus and vitality into the
coordinated development of network pharmacology in Chinese and Western medi-
cine. Based on the network target theory, a series of high-precision intelligent
algorithms were established, as well as new experimental methods created for both
the detection of intervention intensity of TCM network target and the synergistic
effects of TCM (as shown in Table 1.2). Importantly, Shao Li’s research group
revealed the overall associated modular rules of the relationship between “Chinese
and Western medicine phenotypes-biomolecules-Chinese and Western medicines,”
and thus took a lead in modeling and realizing genome-wide disease-causing genes
and medicine target predictions, achieving the highest precision globally at that time.
It also realized for the first time the whole genome de novo prediction of TCM
syndrome-related gene profiles and TCM component target profiles, to establish a
series of high-precision intelligent algorithms such as large-scale prediction of the
synergistic effect of medicine (TCM components) based on biological networks.
Further, Shao Li et al. introduced a variety of network-level high-throughput,
parallel experimental methods and multinomial detection methods. Furthermore, a
key technology platform (Using Network target for Intelligent and Quantitative
analysis on drug actions, UNIQ) for network pharmacology with independent
intellectual property rights was proposed based on the network target theory,
which led to the construction of a disease/biological network of TCM syndromes,
disease biomarker discovery, drug–drug combination discovery, network regulation
mechanism of TCM prescriptions and new indication discovery, qualitative and
quantitative analysis of drug–gene–disease coordination modules, etc., providing
new support for the precise prevention and treatment of major diseases and innova-
tive development of TCM (as shown in Fig. 1.3).

For example, as shown in Table 1.3, with reference to network pharmacology
essentially being termed a reinforcer by Chinese and Western medicine for the
precise prevention and control of major diseases such as the regulatory issues of
gastric cancer with a long occurrence time, tedious monitoring, and difficulties in
early warning, the research group of Shao Li employed the CIPHER algorithm along

1 “Network Target” Theory and Network Pharmacology 7
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Table 1.2 Methods constructed based on network target and network pharmacology

Category Timeline Name Introduction Journal

Disease/TCM
Syndrome Bio-
logical Network

2006 LMMA Disease-specific Molecu-
lar Network Construction
Algorithm Combining
Articles and Omics Data

Bioinformatics, 2006,
22(17):2143–2150

2008 CIPHER Prediction Algorithm of
Pathogenic Genes Based
on “Phenotype Network-
Molecular Network”

Molecular Systems
Biology, 2008, 4:189

2010 CSPN Disease Signaling Path-
way Network Construc-
tion Algorithm

BMC Bioinformatics,
2010, 11(Suppl 1):S32

2010 ClustEx Disease-specific Gene
Module Identification
Algorithm

BMC Systems Biol-
ogy, 2010, 4:47

2011 CIPHER-
HIT

Disease Gene Prediction
Based on Modularization

BMC Systems Biol-
ogy, 2011, 5:79

2013 sGSCA Pathway Crosstalk Net-
work Analysis Algorithm

Molecular
BioSystems, 2013, 9
(7):1822–1828

2017 Multiscale
modeling

Molecular-cell-system
Multi-scale Network
Computational Model for
Inflammation-Cancer
Transformation

Cancer Research,
2017, 77
(22):6429–6441

Drug/TCM Tar-
get Network

2010 drugCIPHER Target Prediction Algo-
rithm Based on the Over-
all Association of “Drug
Network-Molecular
Network”

PLoS ONE, 2010, 5
(7):e11764

2010 DMIM Network Construction
Algorithm of Chinese
Medicine Compatibility

BMC Bioinformatics,
2010, 11(Suppl 11):S6

2010 NADA Network-based Drug
(Chinese Medicine
Ingredient) Action Eval-
uation Algorithm

Chinese Science Bul-
letin, 2010,
55:2974–2980

2010 SAF Synergy Evaluation Fac-
tor of Drug Combination

BMC Systems Biol-
ogy, 2010, 4:50

2011 NIMS Combined Prediction
Algorithm of Network-
based Synergistic Drugs
(Chinese Medicine
Ingredient)

BMC Systems Biol-
ogy, 2011, 5(Suppl 1):
S10

2015 SidePro Network-based Algo-
rithm for Inferring the
Relationship Between
Protein and Drug Side
Effects

Quantitative Biology,
2015, 3(3):124–134

(continued)
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with other network pharmacology methods, in combination with experiments and
clinical multi-omics detection to divulge the multi-level biological network associ-
ated with gastritis-cancer transformation, and established the biological molecular
network of cold and heat syndrome in TCM; they further investigated the biological
basis of the phenomena of stomach heat and cold, as well as tongue coating flora
markers, in an attempt to augment the process of integration and innovation of
Chinese and Western medicine in the biological network mechanism. Furthermore,
based on the multi-level biological framework of gastritis-cancer transformation, the
evolution law emerging from molecular to clinical phenotype of gastritis-cancer
transformation was discovered, leading to the development of the first intelligent
early warning system of traditional Chinese and Western medicine for gastric health.
For the first time, a single-cell network of gastritis-cancer transformation was
constructed in patients suffering from TCM’s stomach heat-related manifestations,
and this unprecedented step led to the breakthrough discovery of “extremely early”
gastric cancer cells, facilitating a new staging and target method for the prevention
and control of gastric cancer. Besides, the network pharmacology method was
upgraded to predict the prognosis of the biological framework associated with
pancreatic cancer, and after clinical verification through a multi-center large sample,
it was ascertained that the pancreatic cancer precise chemotherapy markers,

Table 1.2 (continued)

Category Timeline Name Introduction Journal

2015 GIFT Prediction Algorithm of
Drug Substructure-
Protein Domain
Relationship

Bioinformatics, 2015,
31(15):2523–2529

2019 UNIQ Network Pharmacology
Computing Platform
Based on Network
Targets

Chinese Patent
CN201910902205.1

2020 VISAR Algorithm and Visualiza-
tion Tool for Analyzing
Drug-Protein Binding
Patterns Based on Neural
Networks

Bioinformatics, 2020,
36(11):3610–3612

Drug-Gene-Dis-
ease Synergy

Module

2008 dbNEI Construction Algorithm
of Drug-NEI-disease
Multi-level Networks

Bioinformatics, 2008,
24(20):2409–2411

2012 comCIPHER Drug-Gene-Disease
Related Common Mod-
ule Analysis Algorithm

Bioinformatics, 2012,
28(7):955–961

2014 DGPsubNet Drug-Gene-Disease
Related Sub-Network
Analysis Algorithm

CPT: Pharmacometrics
and Systems Pharma-
cology, 2014, 3(11):
e146

10 S. Li et al.



constituting of five network key node molecules, were significantly finer than the
existing markers.

Considering the network pharmacology analysis of classic, famous, and proven
prescriptions from credible doctors, pertaining to network target theory and method
with disease-syndrome biological network as the intervention target, traditional
efficacy, modern indications, effective substances, and action mechanism of Liuwei
Dihuang prescription (nourishing Yin, enhancing body’s disease resistance or
immunity) and Gegen Qinlian Decoction (clearing heat and removing dampness)
were elucidated. Additionally, several latest activities of Chinese medicine ingredi-
ents, for body heat and cold, were discovered (as shown in Table 1.3). Targeting the
molecular network of cold–heat syndrome and related diseases and employing the
“core prescription of Traditional Chinese Medicine-molecular network-indications”
co-module analysis, Traditional Chinese Medicine prescriptions and constituents
combination for angiogenesis regulation were discovered. Furthermore, a series of
investigations were conducted on the clinical prescriptions of various eminent
doctors. For example, the compatibility law of 871 Anti-rheumatism Clinical Pre-
scriptions by Professor Li Jiren, the first Master of Traditional Chinese Medicine,

Fig. 1.3 Key technology platform of network pharmacology based on network target (UNIQ)

1 “Network Target” Theory and Network Pharmacology 11



Table 1.3 Application of network target theory and methods in Chinese and Western medicine

Category Timeline Research object
Discovery of network
target analysis Journal

Diagnosis
and Treat-

ment
BioMarkers

2006 Biological pro-
cesses or diseases
related to cold or
heat

Angiogenic network Bioinformatics,
2006, 22(17):2143-
2150

2010 Patients with cold
syndrome

Characteristics of net-
work biology

Molecular
BioSystems, 2010, 6
(4):613-619

2010 Biological pro-
cesses or diseases
related to cold or
heat

Pathway networks
related to inflamma-
tion, angiogenesis, and
cancer

BMC Bioinformat-
ics, 2010, 11(Suppl
1):S32

2012 Tongue coating of
atrophic gastritis
patients with cold
or heat syndrome

Cold and heat micro-
bial network

Scientific Reports,
2012, 2:936

2013 Different stages of
gastritis patients
with cold or heat
syndrome

Metabolism-immune
imbalance, network
biomarkers

Scientific Reports,
2013, 3:1543

2019 Inflammation
induced
tumorigenesis

Gene collaboration
module based on bio-
molecular networks

ACS Synthetic Biol-
ogy, 2019, 8(3):482-
490

2019 Tongue coating in
patients with atro-
phic gastritis at
different stages

Tongue coating flora
network of atrophic
gastritis

Protein & Cell, 2019,
10(7):496-509

2019 Cell network of
gastric cancer

Cell network of
gastritis-cancer
transformation

Cell Reports, 2019,
27(6):1934-1947

2020 Patients with pan-
creatic cancer

Network markers of
precise chemotherapy
for pancreatic cancer

EBioMedicine, 2020,
55:102767

Drug/Drug
Combination
Discovery

2011 TCM Ingredients
in Qingluo
Decoction

Screening of anti-
angiogenesis synergis-
tic combination

BMC Systems Biol-
ogy, 2011, 5(Suppl
1):S10

2013 Vitexicarpin New anti-tumor
angiogenesis activity

Evidence-based
Complementary and
Alternative Medi-
cine, 2013:278405

2015 Ligustrazine Alleviate oxidative
organ damage caused
by methotrexate

Journal of
Ethnopharmacology,
2015, 175:638-647

2016 Nuciferine Anti-tumor activity
and mechanism

Acta Pharmacologica
Sinica, 2016, 37
(7):963-972

2018 Matrine, the main
ingredient of
Qingluo
Decoction

New activity that
induces
macropinocytosis

Frontiers in Pharma-
cology, 2018, 9
(10):1-11

(continued)
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was taken into consideration. Core prescriptions such as “Qingluo Decoction” were
examined. The network regulatory mechanism of Traditional Chinese Medicine
formulation of Qingluo Decoction was analyzed. The combination of matrine with
other anti-cancer drugs exhibiting anti-angiogenesis effect was discovered.
(as shown in Fig. 1.4). The following chapters of this book feature the research
methods and representative cases in detail.

The original theory, method, and application of network target technique have
promoted extensive international research on network pharmacology. The theory
and methodology of network target being at the core of network pharmacology
influences the field of modern and traditional medicine immensely. The representa-
tive paper was published in the English version of the Chinese Journal of Natural
Medicines [14] (According to statistics by scholars in Taiwan, it was considered to

Table 1.3 (continued)

Category Timeline Research object
Discovery of network
target analysis Journal

2018 Qingluo Decoc-
tion and
methotrexate

Network regulation
mechanism of anti-
rheumatoid arthritis

Frontiers in Pharma-
cology, 2018, 9
(1472):1-17

2019 Tanshinol borneol
ester

New synthetic small
molecules promote
angiogenesis

British Journal of
Pharmacology, 2019,
176(17):3143-3160

Prescription
mechanism/
Precision

prescription

2010 Liuwei Dihuang
Pill

TCM network and
collaboration modules
for the treatment of
different diseases

BMC Bioinformat-
ics, 2010, 11(Suppl
11):S6

2013 Qingluo
Decoction

Network regulation
mechanism of Tradi-
tional Chinese Medi-
cine formulation

Evidence-based
Complementary and
Alternative Medi-
cine, 2013:456747

2014 Liuwei Dihuang
Pill

Anti-tumor network
regulation mechanism,
potential new activity
of active ingredients

Molecular
BioSystems, 2014,
10(5):1014-1022

2014 Gegen Qinlian
Decoction

Network regulation
mechanism of type
2 diabetes mellitus

Evidence-based
Complementary and
Alternative Medi-
cine, 2014:138460

2015 Discovering
Qingluo Decoc-
tion from
871 proven
prescriptions

Network regulation
effect on rheumatoid
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be the most cited paper in PubMed’s “Traditional Chinese Medicine” themed articles
from 2013 to 2017) [15] and remained highly acclaimed by peers in China and
researchers abroad (see Appendix B). According to the statistical analysis conducted
in 2019, the theory, methods and cases of network targets were cited by 609 syn-
drome studies and 728 prescription studies internationally, leading to the global
acknowledgement of the Chinese medicine; simultaneously, it was cited by
researchers from almost 73 countries and regions, demonstrating substantial support
for the innovative development of the 16 kinds of traditional medicines and charac-
teristic diagnosis and treatment worldwide, especially in countries situated along the
“One Belt and One Road,” making the network target theory and method with the
original characteristics of Traditional Chinese Medicine a global phenomenon with a
widespread international influence.

Fig. 1.4 Cases of network pharmacology analysis of Liuwei Dihuang Pill, Gegen Qinlian Decoc-
tion, and Qingluo Decoction
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The original theory and methods of network target have made pioneering contri-
butions to the evolving research of Traditional Chinese Medicine. In 2017, the three
research results of network target model, cold–heat syndrome biomolecular network,
and Liuwei Dihuang network pharmacology analysis were utilized as representative
examples in the White Paper on Cancer Complementary and Alternative Medicine
Research Strategy issued by the National Institute of Health (NIH)/National Cancer
Institute (NCI), signifying that Network Pharmacology is a “crucial” paradigm for
revealing complex mechanisms of Traditional Chinese Medicine and designing
effective integrative clinical trials [16]. Academician Boli Zhang and others
commented in the Twenty Years of Modernization of Chinese Medicine: “In 2007,
Shao Li from Tsinghua University first proposed a research framework for TCM
prescriptions based on biological networks. By constructing a key technological
platform for network pharmacology, it has broken through key technologies such as
network-based disease gene and Chinese medicine target prediction, Chinese med-
icine discovery and combination screening of Chinese medicine compatibility, as
well as the construction and analysis of biological network of disease-syndrome-
prescription.” In recent years, Professor Shao Li has been appraised as the pioneer
and forerunner of TCM network pharmacology time and again by domestic and
overseas peers (see Appendix B). The above deduction illustrates that network
pharmacology with the network target methodology at its core has not only emerged
as an original scientific research technique of Chinese medicine and modern med-
icine research, but also as an academic progressive juncture capable of being a
vanguard of international science setup in the context of contemporary science and
technology.

1.2.1 Original Method of Network Target Analysis

It is essential to understand the “relationship” between the key elements to infer the
micro pathogenic genes, drug targets, etc., from large-scale complex biological
networks. The discovery of the law of “relationship,” along with qualitative and
quantitative description plays a significant role in studying the mechanism of
complex diseases and the revealing of the scientific connotation of TCM. By
learning from and exploring the TCM holism and based on the network target
theory, Shao Li’s research group skillfully expressed the disease phenotype, bio-
molecules, drugs, and their interactions as “relationships” with multilevel biological
networks, and created “relationship inference” analysis methods for prediction of
pathogenic genes and drug targets, e.g., CIPHER, drugCIPHER, comCIPHER, and
CIPHER-SC [17–20], revealed the modular coding rule of “Phenotype of Traditional
Chinese and Western Medicine-Biomolecules-Traditional Chinese and Western
Medicine” on the network, realized the quantitative description of diseases and
syndromes (diseases and syndromes) and the overall effect of TCM according to
biomolecular network, and established a new model of TCM holistic view and
biological basic research of syndrome differentiation and treatment as shown in
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Fig. 1.5. Compared with the best international methods at that time, the series of
“relational inference” methods have increased the prediction enrichment of patho-
genic genes by 2 times and the drug target prediction enrichment by 6 times. The
purpose of cipher algorithm, a typical method of “relationship inference,” is looking
for related intervention genes from a group of candidate genes based on a given
phenotype. CIPHER algorithm has established a mathematical model of “relation-
ship inference” on the basis of multilevel biological network and quantitative
inference of pathogenic genes from an overall picture. It has realized the whole-
genome prediction of disease pathogenic genes and the prediction of TCM syndrome
concerned biomolecules for the first time, been successfully applied to the research
of complex diseases, TCM syndromes and TCM prescriptions, and has made a series
of original discoveries.

The “relationship inference” analysis method is divided into three main steps:

1. Relationship network construction, i.e., to obtain the relationship between com-
plex biosystem elements from literature, experiment, or genomics data, including
the relationship between macro level elements, micro level elements, and macro–
micro level elements. Relational network is a common way to show the relation-
ship of complex biosystem elements.

2. Relationship representation and modeling, i.e., to conduct mathematical model-
ing of macro micro elements of complex systems, including the definition of
module local and the mathematical presentation of the correlation between
modules. What is worthwhile to be paid attention to is that the established
model needs to indicate the relationship between macro and micro element
modules in the whole complex system, that is to say, it needs to reflect the overall
nature of inference. This is the core of relation inference method which can reflect
the integrity of complex system.

3. Inference of unknown relations, i.e., to present with the model established in (2),
and take full advantage of the known relations of complex system elements to
infer the pending key elements. Taking inferring phenotype related pathogenic
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genes as an example, for a given phenotype, we initially start with the known
pathogenic gene nodes close to the phenotype, and regard them as the seed node
module of prior knowledge, and then determine the candidate node modules
which are close to the phenotype as per the relationship obtained from big data.
It is presumed that there is a certain “relationship” (model representation)
between a given phenotype and a known close phenotype, as well as between
the seed node and the node to be found. We can find the pathogenic gene of a
given phenotype from the known phenotype and the seed node by making use of
this relationship.

1.2.2 Common Methods of Network Target Analysis

As a common method in network target analysis, the enrichment of functional
modules uses the enrichment of network nodes and known functional gene sets to
study the correlation between the network and the known biological processes. (The
following is the original content of the second section.)

1.3 Core Theory of Network Pharmacology: Network
Target

1.3.1 Proposal and Development of Network Target Theory

Network pharmacology has not only triggered major alterations to drug research, but
also created some major opportunities and challenges for Chinese and Western
medicine research. The opportunities emerge with the anticipation of network
pharmacology leading to innovative ideas in drug research and development, sys-
tematically comprehending and dealing with the complexity of chemical and bio-
logical systems, and accomplishing the transformation of modern drug research from
description to prediction. However, the challenges lie in organic integration of the
ideas and techniques of network pharmacology with the internal mechanisms and
system interventions of complex diseases, as well as the complex system of TCM
prescriptions with long-term clinical practices, in order to achieve a major break-
through in the field of Chinese and Western medicine research on complex diseases.
In response to the aforementioned requirements and challenges, the network target
theory abolishes the limitations of the long-term “single target, partial confrontation”
research mode. The research mode and method of “network target and system
regulation” dispensed a novel approach of thinking and comprehensive methodol-
ogy for interpreting the interactions between complex chemical and biological
systems of the human body, which has transpired as the core theory originating
from Traditional Chinese Medicine and unraveling new frontiers for network
pharmacology.
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1.3.2 The Concept of Network Target

The core theory of network pharmacology is network target, which was first
proposed by Shao Li [13]. This section firstly introduces the concept of biological
network in network pharmacology, and then the concept of network target. Further,
adopting the perspective of concept definition and qualitative and quantitative
analysis, it evaluates and compares the concept of network target with that of the
single and multiple targets, with the aim of further accentuating the readers’ under-
standing of the network target concept.

1. Biological Network
Biological network not only serves as the foundation for the establishment of
complex biological systems of an organism, but also as a vital method that aids in
describing the relationship between elements in biological systems. Being at the core
of the essence for the construction of biological systems, biological networks present
diverse manifestations in a narrow and a broad sense. In a narrow sense, there are
gene regulatory networks, protein interaction networks, signal transduction net-
works, metabolic networks, etc.; whereas a broader sense encompasses systems
like biological function networks, TCM ingredient networks, TCM compatibility
networks, disease-disease networks, and TCM-disease networks. Being pivotal in
describing the relationship between elements in biological systems, biological net-
works can be described and analyzed by employing complex network theory and
methods with respect to the calculations. For example, taking cognizance of the
topology of a biological network by examining properties such as node degree,
degree distribution, intermediate number, and shortest path of biological network;
identifying the key regulation links of network by studying the network phantom and
network module of the biological network, and simulating the evolution in time and
space by performing network dynamics analysis on biological networks via differ-
ential equations.

2. Network Target
Network target refers to key links in network which can associate drug and diseases
from mechanism and quantitatively represent the holistic regulatory mechanism,
including key molecules, key pathways or key modules, etc. [12]. Network target
can be understood from a narrow and a broad sense. From a narrow sense, network
target appears as a key link in the disease-syndrome biological network intervenable
by drugs. In a broad sense, network target can be acknowledged as a research mode
that make the association between drugs and disease-syndromes. In other words,
qualitative and quantitative analysis of the network topology and dynamic charac-
teristics of the local biological network modules related to the disease-syndrome
phenotype in the disease-syndrome biological network, identifying its key mecha-
nisms, and then designing the key link of drug intervention in the disease-syndrome
biological network leads to the realization of the overall regulation of disease-
syndrome phenotype. Noticeably, the network target concept appears essentially
distinct from that of single target and multi-target. The single target concept refers to
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the drug with high affinity and high selectivity for a single target, treating a disease
by intervening with a target. Multi-target concept refers to a method that administers
the drug onto two or more related targets in the disease-syndrome biological network
at the same time, generating a synergistic effect on the action of each target, hence,
the total effect is greater than the sum of all individual effects. The differences
between network target, single target, and multi-target are as follows: Firstly, single
target and multi-target concepts are defined from the perspective of the nature of
drug action, while network target is defined from the perspective of drug interaction
with the organism, taking into account the drug action mechanism and molecular
mechanism of the disease and syndrome. In addition, the concepts of single target
and multi-target are explanatory and descriptive, with a lack of clear quantification,
while the hypothesis of network target emphasizes on the qualitative as well as
quantitative analysis of the mechanism of action meant to comprehend the holistic
effect of drugs.

The research theory of network pharmacology outlines the mapping of drug
targets and disease-syndrome related molecules to biological molecular networks,
establishing the association mechanism between drugs and disease-syndromes
derived from the biological molecular networks, and analyzing the network target-
system regulation mechanism of drugs administered. Considering the network
pharmacology research on TCM intervention of a disease and syndrome as an
example, the intervention effect of TCM on a disease and syndrome is characterized
by the complex chemical composition of Traditional Chinese Medicine, diverse
compound combination forms, relatively mild biological activity of each effective
ingredient of Traditional Chinese Medicine, and the synergistic effect of “multi-
cause and micro-effect” comprehensive regulation. The curative effect mechanism
of Traditional Chinese Medicine is the novel emerging system based on “multi-cause
and micro-effect.” [10] The applications of computer simulation, system modeling,
and experimental verification to the study of the nonlinear, open, and complex
system of Traditional Chinese Medicine seem highly beneficial in elucidating the
mechanism of network target-system regulation in TCM, comprehending the nature
of complex biological network imbalance, and deciphering the mechanism of
curative and toxic effect of Traditional Chinese Medicine. For example, the ingre-
dients of Traditional Chinese Medicine can intervene onto a set of targets with
specific associations on the network, and utilize the network connection of the target
effect in time and space such as to generate the holistic effect in an “on and off”
manner [17].

Ideally, the target effect of the optimized TCM prescription ingredient is bound to
superimpose or synchronize with the disease and syndrome biological network, and
spread through this network, exceeding the threshold of the desired effect, so that the
holistic effect “turns on,” which is manifested as a curative effect. Simultaneously,
the target effect is dispersed or antagonized in the biological network related to
toxicity and other side effects, which seem to be lower than the effect threshold, so
that the overall holistic effect “turns off” without toxicity or with minimal toxicity.
Specifically, on a time scale, differential equations and other methods are utilized in
order to simulate the variation shown in the effects of drug targets on disease and
syndrome biological networks over time. On a space scale, the key links of drug
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treatment are illustrated by measuring the topological properties of drug targets
distributed on the disease-syndrome biological network and by obtaining other
details. Finally, the effects of time and space scales are integrated to form a
comprehensively holistic effect, and the relationship between the comprehensive
effect and the threshold of the effect is investigated. If the threshold of the effect is
exceeded, the holistic effect is “turned on” and manifested as “emerging.” By means
of this time–space multi-scale, biomolecule-biological function module-multilevel
phenotype simulation, qualitative and quantitative analyses of the variations of
biomolecules at the micro level affecting the dynamic process of drug treatment at
the macro level [18] become feasible.

1.4 Overview of Network Pharmacology Research Methods
and Characteristics

1.4.1 Characteristics of “Single Target-Partial
Confrontation” Research Mode

The research mode in traditional pharmacology is determined from a single drug
ingredient to the determined target of action, then to the downstream signaling
pathway and finally to the disease-related phenotype. The disease-related phenotype
here often manifests as an abnormal increase or decrease of certain macroscopic
indicators. In actual research, it is characterized by substitute indicators in an animal,
at the cellular or molecular level. This mode studies the process from the drug
molecules to a determined molecular target then to the drug’s actions.This is
known as linear transmission process.

The “Single Target-Partial Confrontation” research mode is based on the theo-
retical hypothesis of “one gene, one drug, one disease.” The main aim of traditional
drug discovery is to find specific ligands. The theory of “one gene, one drug, one
disease” contains two implicit hypotheses. One includes a single target that is
connected with a phenotype through a mechanical process, and the activity of the
target is strongly in line with the effects of the target phenotype. Secondly, the main
drug action is only on a single target—stronger the drug selectivity, more specific the
mechanism of action and higher the degree of correlation with the target phenotype.
Based on these two hypotheses, specific ligands can selectively interfere with the
target at very low concentrations to achieve effective control. Therefore, discovering
specific ligands plays a vital role in drug design.

However, with advancing pharmacological research, these implicit hypotheses
were found to have limitations, and use of specific traditional ligands as candidate
drugs has also been questioned by researchers. Using drugs administered in schizo-
phrenia, for example, the first generation of antipsychotic drugs was mostly dopa-
mine receptor inhibitors that alleviated symptoms of schizophrenia by blocking
dopamine binding with the respective receptors. However, these drugs have serious
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and even life-threatening side effects, including agranulocytosis, epilepsy, weight
gain, diabetes, etc. The side effects are caused by four dopamine receptor
involved pathways—midbrain-limbic system, midbrain-cortical system, nodule-
infundibulum, and substantia-nigra striatum, in the central nervous system (CNS).
Highly selective inhibition of dopamine receptors can affect many of the physiolog-
ical functions related to these four pathways, therefore, although they can alleviate
the symptoms of schizophrenia to a certain extent, they also cause severe side
effects. Studies on a new generation of antipsychotics have shown that drugs with
more complex target spectrum on the CNS may have better efficacy. Many updated
research findings also highlight that specific target spectrum binding characteristics
are better than strong selectivity for a single target [19].

Common diseases and TCM-defined syndromes belong to a category of complex
diseases, which are collectively referred to as those occurring in organisms with
complex interactions due to environmental exposure, genetic susceptibility, age, and
other factors. The eight-cardinal syndrome differentiation, viscera differentiation,
qi-blood differentiation, etc., summarized by TCM doctors based on long-term
diagnosis and treatment practices still have significant application in current clinical
practices. Complex diseases and TCM syndromes are difficult to describe and study
using the “Single Target-Partial Confrontation” research mode. The problem of drug
action calls for a new and more holistic research mode, and development of a
suitable research mode is important in the innovation and development of modern
Chinese medicine.

1.4.2 Characteristics of “Network Target-System Regulation”
Research Mode

Compared to the “Single Target-Partial Confrontation” mode, in the “Network
Target-System Regulation” mode, the drugs act on a certain phenotype-related
network target, and then affect the static key structure or dynamic balance of the
network target, thus regulating diseases in a systematic manner. The “Network
Target-System Regulation” research mode comprehensively and systematically
considers many phenotype-related molecules and their relationships. It also
describes and establishes the network target model in a network format, and then
analyzes the mechanism of action of drugs, while predicting the intervention results
on the phenotype, based on the network target. The following describe key links and
common methods involved in “Network Target-System Regulation” research mode.

1. Constructing a Biological Network
The construction of a biological network is the basis of network pharmacology. At
the molecular level, traditional biological networks include gene regulatory net-
works, protein interaction networks, signal transduction networks, and metabolic
networks. With the development of technology and enrichment of data, hierarchical
network construction including the interaction networks between organisms and the
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environment is being constantly developed and updated. Biological networks are
being constructed based on literature mining, omics technology, and global associ-
ation analysis. The following are some representative construction methods.

Data sources for biological network construction based on literature mining
include Medical Subject Headings (MeSH), biomedical literature database
(PubMed), National Knowledge Infrastructure (CNKI), and Online Mendelian
Inheritance in Man (OMIM) [20]. MeSH provides a standardized description of a
disease phenotype, biomedical literature databases can be used to retrieve literature
and information on molecules related to diseases and syndromes, and OMIM can
provide related information on phenotypes and genotypes. Commonly used biomed-
ical literature mining methods include co-occurrence, natural language processing,
etc. The co-occurrence method checks biomedical entities based on whether they are
in the same sentence, number of separated words, co-occurrences, etc. These are
indicators to determine the strength of correlation between biomedical entities, and
help to construct a disease-syndrome biological network. In addition to the
co-occurrence method, natural language processing in artificial intelligence also
helps in literature mining in biomedicine. Currently, there are several online resource
platforms such as the STRING data platform that can realize biomedical data
integration, and provide multi-faceted evidence for constructing various disease
and syndrome biological networks through literature mining.

The data sources used in biological network construction methods based on
omics technology include Gene Expression Omnibus (GEO) [21] and The Cancer
Genome Atlas (TCGA). GEO mainly includes high-throughput gene expression
data, while TCGA provides a large number of genomic data helpful for cancer
research. Biological network of disease-syndrome can be constructed based on the
literature and omics database, and supported by various interaction data (such as
protein interaction data), thus fully integrating the relationship between disease-
syndrome and currently existing biomolecular information.

Global association is based on literature and omics data, and is an emerging
method to predict pathogenic genes and construct disease syndrome-related biolog-
ical networks. Similar to TCM, global association analysis mainly considers the
relationship between two phenotypes, phenotype and molecule, and between two
molecules, based on all phenotypes and whole genomes. It uses a specific calculation
model to score and evaluate the correlation between phenotypes and genes, and gene
products at the genome-wide level. This helps in systematic prediction and sorting of
disease-syndrome phenotype-related genes and gene products, thus building a
disease-syndrome biological network. The commonly used indicators for evaluating
prediction accuracy include fold enrichment, accuracy rate, and recall rate.

2. Network Target Analysis Method
2.1 Original Method of Network Target Analysis

It is essential to understand the “relationship” between the key elements to infer
the micro pathogenic genes, drug targets, etc., from a large-scale complex biological
network. The discovery of the law of “relationship,” along with qualitative and
quantitative description plays a significant role in studying the mechanism of
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complex diseases and the revealing of the scientific connotation of TCM. By
learning from and exploring the TCM holism and based on the network target
theory, Shao Li’s research group skillfully expressed the disease phenotype, bio-
molecules, drugs, and their interactions as “relationships”with multi-level biological
networks, and created “relationship inference” analysis methods for prediction of
pathogenic genes and drug targets, e.g., CIPHER, drugCIPHER, comCIPHER, and
CIPHER-SC [22–25], revealed the modular coding rule of “Phenotype of Traditional
Chinese and Western Medicine-Biomolecules-Traditional Chinese and Western
Medicine” on the network, realized the quantitative description of diseases and
syndromes (diseases and syndromes) and the overall effect of TCM according to
biomolecular network, and established a new model of TCM holistic view and
biological basic research of syndrome differentiation and treatment as shown in
Fig. 1.6. Compared with the best international methods at that time, the series of
“relational inference” methods have increased the prediction enrichment of patho-
genic genes by 2 times and the drug target prediction enrichment by 6 times. The
purpose of cipher algorithm, a typical method of “relationship inference,” is looking
for related intervention genes from a group of candidate genes based on a given
phenotype. Cipher algorithm has established a mathematical model of “relationship
inference” on the basis of multi-level biological network and quantitative inference
of pathogenic genes from an overall picture. It has realized the whole genome
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Fig. 1.6 Schematic diagram of related concepts of static network topology attribute analysis [34]
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prediction of disease pathogenic genes and the prediction of TCM syndrome
concerned biomolecules for the first time, been successfully applied to the research
of complex diseases, TCM syndromes and TCM prescriptions, and has made a series
of original discoveries.

The “relationship inference” analysis method is divided into three main steps:

(1) Relationship network construction, i.e., to obtain the relationship between com-
plex biosystem elements from literature, experiment, or genomics data, includ-
ing the relationship between macro level elements, micro level elements, and
macro-micro level elements. Relational network is a common way to show the
relationship of complex biosystem elements.

(2) Relationship representation and modeling, i.e., to conduct mathematical model-
ing of macro-micro elements of a complex system, including the definition of
module local and the mathematical presentation of the correlation between
modules. What is worthwhile to be paid attention to is that the established
model needs to indicate the relationship between macro and micro element
modules in the whole complex system, that is to say, it needs to reflect the
overall nature of inference. This is the core of relation inference method which
can reflect the integrity of complex system.

(3) Inference of unknown relations, i.e., to present with the model established in (2),
and take full advantage of the known relations of complex system elements to
infer the pending key elements. Taking inferring phenotype-related pathogenic
genes as an example, for a given phenotype, we initially start with the known
pathogenic gene nodes close to the phenotype, and regard them as the seed node
module of prior knowledge, and then determine the candidate node modules
which are close to the phenotype as per the relationship obtained from big data. It
is presumed that there is a certain “relationship” (model representation) between
a given phenotype and a known close phenotype, as well as between the seed
node and the node to be found. We can find the pathogenic gene of a given
phenotype from the known phenotype and the seed node by making use of this
relationship.

2.2 Common Methods of Network Target Analysis
As a common method in network target analysis, the enrichment of functional

modules uses the enrichment of network nodes and known functional gene sets to
study the correlation between the network and the known biological processes.
Network target aims to analyze the biological processes involved in the disease
syndrome-related biological network, and the key static and dynamic characteristics
in the network. This is helpful in describing and predicting the mechanism of drug
intervention. Table 1.4 shows a comparison between several representative network
target analysis methods. The processes, hypothesis, advantages, and limitations of
these analytical methods are described in detail below.

The enrichment of functional modules uses the enrichment of network nodes and
known functional gene sets to study the correlation between the network and the
known biological processes. If there is significant enrichment, there is a strong
correlation between the network target and biological process. Commonly used
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enrichment analysis tools include DAVID, GSEA, Enrichr, etc. DAVID [28] is a
commonly used web application for enrichment analysis. The statistical method used
is Fisher’s exact test and p-value correction. The functional module gene set uses genes
collected and labeled by authorities such as KEGG, BioCarta, Gene Ontology, and
Reactome; GSEA [27] calculates the position of the maximum enrichment score of the
functional gene set in Molecular Signatures Database (MSigDB). This shows the
correlation of the gene set with the tested functional gene set. The Enrichr [29] method
collects a large number of gene sets from different sources (not limited to diseases or
biological processes, but also gene sets such as cell lines and changes after drug
intervention). On the other hand, it introduces a fuzzy enrichment analysis method
that considers the weight of each gene in the enrichment gene set in the calculation.

Static network topology attribute analysis involves statistical descriptors of
network topology, including the following types of commonly used descriptors
[34], as shown in Fig. 1.6.

(1) The distance between nodes is frequently measured by the shortest path.
(2) The clustering coefficient of a node represents the ratio of the actual number of

edges to the total number of possible edges between the node sets connected

Table 1.4 Representative network target analysis methods

Analysis
methods

Calculation methods
involved Analysis goals

Representative
works

Relationship
inference

Multi Level Network Corre-
lation Analysis

Disease gene prediction, drug
target prediction, biomarker
discovery, TCM Mechanism
Analysis, etc.

CIPHER [22]
drugCIPHER
[23]
comCIPHER
[24]
CIPHER-SC
[25]
NIMS [26]

Enrichment
analysis of
functional
modules

(1) Fisher’s exact test,
chi-square test, and binomial
distribution test; (2) Non-
parametric test

Analyze or verify the relation-
ship between the constructed
network targets and known
biological processes

GSEA [27]
DAVID [28]
Enrichr [29]
clusterProfiler
[30]

Static topol-
ogy attribute
analysis

Complex network theory Predict or verify which of the
constructed network targets
may be the key drug interven-
tion action points

MCODE [31]
Barabasi et al.
[32]
Li et al.

Effect signal
switching
analysis

Random walk on the net-
work, network analysis
theory

Predict or semi-quantitatively
describe the effect switch
changes of constructed net-
work targets after drug
intervention

Li et al. [21]

Dynamic
balance
analysis

Differential equation
method; stochastic simula-
tion method; rule-based
method

Predict or quantitatively
describe dynamic system
changes of the constructed
network targets after drug
intervention

Zhang et al.
[33]
Guo et al. [18]

1 “Network Target” Theory and Network Pharmacology 25



with the node. The clustering coefficient of the network is the mean value of the
clustering coefficient of all nodes.

(3) Degree is an important description of the statistical characteristics of node
interconnection and reflects important network evolution characteristics. The
degree of a node represents the sum of edges connected to the node, while the
distribution of the degree represents the probability of distribution of degrees in
the network.

(4) Centrality analysis refers to adopting the quantitative method to depict the extent
of each node in the center of the network so as to describe whether the core exists
and which kind of core that exists in the whole network. “Degree centrality”
analysis assumes that the node with the largest degree is the central point.
“Closeness centrality” analysis considers the central point to be the least total
distance of all other nodes to this point, and the “betweenness centrality”
analysis assumes that the central point is the node with the heaviest load when
information, substance, or energy are transferred on the network, which is the
node with the largest number of shortest paths through this point. Centrality
means that each node is arranged outward from the center according to the size
of centrality to get a “centrality” network.

(5) “Network motif” refers to subnets with significantly higher occurrence in com-
plex networks than in random networks. “Network module” refers to a collection
of nodes that implement specific functions. The network module reflects the
topology of the complex network, and the functional characteristics of the
complex network.

(6) Biological networks also have some important topological properties, such as
“scale-free network” and “small-world network”. Scale-free network means that
the degree of distribution of the network is a power law distribution, i.e., most of
the nodes are low degree nodes, while only some are high degree nodes (central
nodes). Small-world network refers to a network with large clustering coeffi-
cients. Each node in the network can reach other nodes through a small number
of steps.

Static network topology attribute analysis focuses on the key links of biological
networks related to drug intervention, such as the following three types of targets or
sets: ① targets or sets with high degree and significant affect on network connec-
tivity; ② targets or sets of key regulatory links; ③ targets or sets on series and
feedback channels. The analysis of network phantoms and network modules can
identify the key regulatory links of disease-related biological networks from struc-
tural and functional perspectives. This provides guidance for drug intervention.
Researchers also continue to discover, design, and innovate better indicators to
depict the topological characteristics of key nodes, to improve prediction accuracy,
and explain the network intervention of drugs more clearly.

As a natural extension of static network topology analysis, the signal switching
analysis can be performed on a more clearly defined network target (usually
presented as a specific local network structure). The steps of such an analysis method
include: ① Defining the rules of signal transmission at the network level, the
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measurement index of output, and the initial effects of network intervention;② Use
random walk and other computational methods to simulate the diffusion of signals
within the network, and observe the ON/OFF effect, synergy, and superposition.
This analysis method has gained importance in the intervention network target of
TCM prescriptions [24]. In the biological molecular network of disease and syn-
drome, TCM ingredients exert synergistic or superimposed effects by acting on a
group of interrelated target combinations on the disease and syndrome biological
network, and this can spread through the network in time and space, to produce a
curative effect. Finally, a collection of TCM ingredients with weak effects emerges,
having significant curative effects. For biomolecular networks related to toxicity and
side effects, TCM ingredients acting on network targets produce antagonistic effects,
or the targets of TCM ingredients are relatively dispersed, which does not cause an
effect.

Contrary to the above semi-quantitative analysis methods based on constraints in
the network targets, dynamic balance analysis is quantitative and provides an
accurate modeling analysis of network targets. The usual analysis steps are:

(1) Use differential equations or rules to describe the relationship between nodes in
the network continuously or discretely.

(2) Set and adjust the initial state of each node in the network and the parameters of
each differential equation/rule and conduct a computer simulation.

(3) Observe the network dynamics and the impact of interventions used.

Like the effect signal switching analysis, dynamic balance analysis also needs a
defined local network structure as the network target. Also, due to quantitative
calculation, several parameters are often introduced and a large number of time-
series quantitative data are required for verification, which is difficult using an
ordinary experimental system. These requirements limit the application of such
analytical methods.

3. Network Target Analysis of Drug Action
Network target analysis of drug action mechanism is roughly divided into two links:
the first link that determines or predicts drug action target, and the second link that
analyzes drugs in the network target (as shown in Fig. 1.7). The first link relies on the
identification of drug ingredients and the accumulation of drug–target data. The
former is particularly important in the analysis of Chinese medicine ingredients,
involving a series of processes such as extraction, separation, and identification of
active ingredients. The latter can be mined from a large number of public databases,
and can also be collected and accumulated through high-throughput experimental
methods. There are also several published and newly developed drug–target predic-
tion tools available based on reliable information on ingredients. Information about
related databases and software tools are introduced in subsequent chapters.

Research methods for the second link are highly flexible and constitute active
fields in network pharmacology research. In addition to the continued use of network
target analysis methods described in the previous section, newer methods are also
being developed. It is worth noting that the analysis of TCM syndromes and
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prescriptions and the design and prediction of optimal drug intervention constitute
the network target analysis of the drug action mechanism by these network targets,
specifically: ① Considering disease-syndrome biomolecular network links as the
target, the relationship between the target spectrum of the prescription ingredients of
medicinal substances can be measured and the action mechanism of TCM pre-
scriptions can be understood; ② By analyzing the distribution pattern of targets in
the ingredients on the biological network, characteristics such as medicinal proper-
ties, Traditional Chinese Medicine formulation, and Qiqing Hehe can be explored;
③ Prescription drugs can be rationally designed using the network to predict their
clinical biomarkers. In the following chapters, several excellent studies on the
mechanism of network pharmacology of drugs are analyzed in detail. The following
only briefly introduces some representative analytical methods and tools.

(1) Network target-based multi-ingredient synergistic identification method (NIMS)
mainly evaluates the synergistic effects of TCM ingredients, by measuring the
interaction between the targets of different TCM ingredients on the biological
network. A specific algorithm integrates the network topology between the
targets and also maps similarities between target-related phenotypes. It further
calculates and screens out ingredient combinations with potential synergistic
effects from large-scale TCM ingredient combinations.

A
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Important target nodes

Targeting related functional modules 
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Fig. 1.7 Schematic diagram—drug mechanism analysis in network target
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(2) Efficient screening methods of synergistic anti-cancer drug combinations
(RACS) [35] are mainly based on the network effects of multi-ingredient and
multi-target drugs, combined with the characteristics of cancer gene expression
profiles. They then use machine learning algorithms to extract the network
targeting characteristics of synergistic anti-cancer drug combinations and use it
for sorting and screening potential synergistic drug combinations.

(3) The three-node enzymatic network was used to study the combined effects of the
two drugs [36]. It also helped to determine and analyze the basic model of
synergistic or antagonistic drug action and clarify the relationship between the
topology of drug–target network and drug combination, which then helps in
designing a new type of drug combination based on network topology;

(4) A network-based method for analyzing the compatibility of Traditional Chinese
Medicine prescriptions [37] explores the network characteristics of the featured
connotations such as “Traditional Chinese Medicine formulation,” “Qiqing
Hehe,” and other prescriptions by analyzing the distribution pattern of the targets
contained in these prescriptions and their effects on the disease-syndrome
biomolecular network. This ultimately helps in designing holistic prescriptions.

4. Network Target Analysis and Verification
Researchers can obtain prediction results of key targets, key modules, key pharma-
codynamic components, together with key biological pathways through the above
network pharmacology analysis method. The next step is to verify the prediction
results. It is urgent to establish a rigorous, standardized, scientific, and unified
evaluation system in order to ensure the healthy development of the discipline due
to the uneven quality of network pharmacology research, lack of standardized data,
inadequate scientific testing, and other phenomena. In February 2021, the World
Federation of Chinese Medicine Societies approved the first international Guideline
on Evaluation Methods of Network Pharmacology (hereinafter referred to as the
Guideline) compiled by Shao Li [38]. The Guideline specifies that the evaluation
shall be conducted from three aspects: reliability, normalization, and rationality.
Specifically, the main evaluation contents of reliability include whether the data are
accurate, complete, and publicly available, the accuracy and stability of network
analysis methods, the reliability and validity of experimental verification methods
and repeatability of results; The normalization mainly covers the complete descrip-
tion of data information, whether the description of data collection and processing
methods is clear, whether the algorithm design or network analysis process is clear,
whether the algorithm development has rigorous methodology evaluation, whether
the analysis methods and technical indicators can be traced, whether the adopted
models and operation processes are vividly described, and whether the evaluation
index and result description are clear and objective; The rationality mainly comes to
whether the data extraction and screening conform to the research purpose and
screening requirements, whether the selected network analysis method and indicator
can meet the requirements, and whether the models and indicators adopted for
verification are suitable for the research content.
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1.4.3 Typical Scenarios of Network Pharmacology Analysis

A summary of typical application scenarios of network pharmacology analysis is
shown in Table 1.5. Among them, the drug/single herbal medicine treatment of
specific indications, the material basis and mechanism of TCM prescriptions are
commonly used application scenarios of network pharmacology, embodying the
advantages of network pharmacology in practice. The research on the material basis
and mechanism of action of TCM prescriptions is mainly for the analysis of the

Table 1.5 Some typical scenarios of network pharmacology analysis

Category Typical analysis objectives Typical analysis modules

Drug–target prediction Identify drug intervention
targets

Based on ligand structure data
analysis, interaction network
analysis

Mechanism of action of single
medicinal materials of medi-
cine/single medicinal materials
of TCM in the treatment of
specific indications

Identify the key ingredients in
medicinal materials, indica-
tions, related key targets, and
biological mechanisms

Chemical composition identi-
fication, target prediction,
enrichment analysis, network
construction, topological
structure analysis of network

Analysis of materials and
action mechanism of TCM
syndromes and prescriptions

Identify the key active ingre-
dient groups in the prescrip-
tions and identify syndrome-
related network targets

Chemical composition identi-
fication, omics data analysis,
target prediction, enrichment
analysis, network construc-
tion, topological structure
analysis of network

Analysis of TCM quality
markers

Analyze the effective material
basis of TCM and quality
control marker ingredients

Chemical composition identi-
fication, target prediction,
network construction, net-
work analysis

Analysis of biological basis of
disease and syndrome

Identify disease-related phe-
notypes or biomarkers related
to TCM syndromes and West-
ern medicine

Omics data analysis, network
construction, network
analysis

Study on the compatibility
laws of TCM prescriptions

Identify the law of action of
each active ingredient of the
prescription “Traditional Chi-
nese Medicine formulation” on
network targets

Compatibility analysis, target
prediction, network construc-
tion, network analysis

Drug relocation Identify new uses of known
drugs

Chemical structure analysis,
omics data analysis, target
prediction, network construc-
tion, network analysis

Combinatorial drug
development

Identify drug combinations
with synergistic effects

Target prediction, cluster
analysis, network construc-
tion, network analysis

Analysis of indications for
drugs

Identify diseases or clinical
phenotypes that drugs can
effectively treat

Omics data analysis, target
prediction, network construc-
tion, network analysis
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target and biological function of each component in the prescription, and to measure
the relationship between the target and the key modules of disease and syndrome
biomolecular network through the combination of calculation and experiment. The
scientific connotation of the compatibility law of TCM prescriptions can be
explored, the therapeutic mechanism of traditional Chinese medicine prescriptions
can be explained, and new indications can be found with the analysis of the
distribution of these targets in the biological molecular network. More and more
research cases are in other types of application scenarios, while new methods are still
being explored and developed. The determination of drug targets is a key step in
drug discovery, and many drug–target interaction prediction algorithms have been
developed for drug–target prediction. Drug–target interaction, combined with dis-
ease gene relationship, can be employed to find drug indications and provide
guidance for drug relocation. More and more attention has been paid to the research
of network pharmacology which combines experimental and clinical research to help
people deepen their understanding of the occurrence and development of diseases
and the mechanism of drug action.

1.4.4 Characteristics, Advantages, Challenges,
and Developmental Direction of Network
Pharmacology Research

Network pharmacology emphasizes on multi-channel regulation of biological sys-
tems based on a holistic concept. Network pharmacology can be used to understand
and deal with the complexity of pharmaceutical and biological systems, to under-
stand the mechanism of disease and syndrome development, and evaluate the overall
drug intervention to restore the biological network balance.

Network pharmacology research is a systematic, relevant, and predictable
approach. Biological molecular network and its relatedness to disease and syndrome
is understood from this research. This approach indicates a shift from reductionism
to a more holistic system. In terms of relevance, it maps drug targets and disease-
syndrome phenotype-related molecules to biomolecular networks, and then analyzes
the interactions and correlation between the two. Qualitative and quantitative anal-
ysis can be done by observing the combined effects of drugs, based on the biomo-
lecular network of disease and syndrome, thus predicting the action mechanism of
drugs.

The advantages of network pharmacology in understanding the biological mech-
anism of disease and syndrome, studying pharmacodynamic substances and their
action mechanisms, and developing new drugs are as follows: ① Network pharma-
cology organically combines the macro phenotype and microbiological indicators,
thus making research on the biological mechanism of complex diseases and syn-
drome more predictive than descriptive, and from entity research to relationship
inference, to provide insights into biological mechanisms of complex diseases and

1 “Network Target” Theory and Network Pharmacology 31



syndromes. ② Network pharmacology adopts the “Network Target-System Regu-
lation” mode, and breaks through the limitation of “Single Target-Partial Confron-
tation” mode, by conducting integrated research on the pharmacodynamics,
biological effects, and action mechanism of drugs. This is done by predictive
analysis calculations based on experiments and clinical practice. The research
hypothesis is generated by analysis and calculations derived from experiments and
uses this approach to overcome shortcomings of more traditional research methods,
thus providing a new method in line with the holistic characteristics of TCM. This
method can significantly shorten the R & D cycle and save costs.

One key challenge in network pharmacology is to integrate a massive amount of
clinical and experimental data, to promote precision-oriented diagnosis and treat-
ment, as well as promote innovation and development of Traditional Chinese
Medicine. At the same time, uncontrollable data quality, heterogeneous processing,
network-level system analysis, calculation and experimental methods pose some
issues that need to be resolved urgently. Network pharmacology understands com-
plex biological systems from a network perspective. Thoroughly understanding the
network regulation mechanism of disease and syndrome, drug efficacy and its action
mechanism, and to evaluate the overall effects of drugs is also challenging in theory,
algorithm development, and practical application.

With its increasing influence, network pharmacology is being applied more
frequently. However, the quality of research lacks standardization and there is an
urgent need to establish unified norms and rigorous scientific standards to ensure
appropriate development of this emerging discipline. In view of the above chal-
lenges and limitations, the World Federation of Chinese Medicine Societies has
developed the first international standard of network pharmacology, Network Phar-
macology Evaluation Method Guidance [33]. This guideline aims at the main stages
of the research process: data collection, network analysis, and experimental verifi-
cation, and standardizes the principles, procedures, and evaluation indexes to pro-
mote the healthy development of network pharmacology. Also, the core theory and
method of network target needs to be explored and improved. For example, finding
the efficacy indicators of drugs acting on specific diseases and syndromes based on
“Network Target-System Regulation,” discovering effective substances of Tradi-
tional Chinese Medicine based on network target system, discovering new drugs and
their combinations. In order to establish a new evaluation and optimization method
of drug effectiveness and safety based on network target, extensive efforts are
required in network pharmacology to accelerate the pace of exploration and inno-
vation, jointly promote the progress of this discipline and usher in a new generation
Chinese and Western medicine research paradigm.

Network pharmacology related research is on the rise due to increasing use of big
data and artificial intelligence in the biomedicine field. “Network Target-System
Regulation” has received increasing attention and application and is of great signif-
icance to modern Chinese and Western medicine research. This chapter introduces
the basic ideas and development network pharmacology, focuses on the theory of
network targets, and introduces “Network Target-System Regulation.” Network
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pharmacology and network target theory will continue to lead the development of
new drug design and the modernization of Chinese medicine.
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Chapter 2
Application of Network Pharmacology
Based on Artificial Intelligence Algorithms
in Drug Development

Wenxia Zhou, Xuejun Li, Lu Han, and Shengjun Fan

Guide to This Chapter
The continuous development and progress of biotechnology and information tech-
nology provides data for pharmaceutical research and application. It is difficult to
fully utilize large-scale data with simple statistical analysis methods. In order to
improve data utilization, pharmaceutical research must be promoted using advanced
information analysis. Artificial intelligence has experienced half a century of devel-
opment since its inception and has been successfully applied to many industrial and
technological fields. Recently, breakthroughs in machine learning represented by
deep learning have made artificial intelligence one of the most popular research
directions. Artificial intelligence algorithms use different types of data based on
various strategies to do multiple tasks such as search and discrimination, and are
suitable for solving massive data analysis problems faced in network pharmacolog-
ical research. This chapter briefly introduces artificial intelligence algorithms and
their applications in network pharmacology research, and provides references for
researchers to better understand and apply artificial intelligence.
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2.1 Introduction to Artificial Intelligence Methods
in Network Pharmacology

Network pharmacology [1] is a research method based on systems biology. The
concept includes recognizing and discovering drugs based on the overall relationship
between an organism and drugs. In recent years, the growth of high-throughput
omics data and the accumulation of pharmacological knowledge have promoted the
rapid development of network pharmacology. With the accumulation of different
types of data resources and knowledge bases, mining effective information like drug
targets, mechanism of action, and drug and organism interaction from massive,
heterogeneous data has become increasingly important in network pharmacology
research. Therefore, the demand for more accurate and efficient analysis algorithms
has also increased [2].

There are three common problems that may be encountered in network pharma-
cology research: ① Optimal solution search; ② prediction and classification; ③
automatic construction of networks and pathways. Artificial intelligence can effec-
tively perform feature extraction and potential relationship mining from complex big
data, and is beneficial for solving common problems in network pharmacology.
Combining artificial intelligence and network pharmacology has great potential to
overcome the problems faced in the latter field.

Since the emergence of network pharmacology research, artificial intelligence has
been closely integrated with it and widely applied. For example, when the drug–
target interaction is evaluated using simulation, it is necessary to perform optimal
solution search operation, such as genetic algorithm [3] or simulated annealing
algorithm [4], as the core of molecular docking and molecular dynamics simulation
technology to implement the conformation search strategy. During network analysis
and prediction, classification and prediction are required, hence unsupervised learn-
ing clustering algorithms (Affinity propagation clustering algorithm, K-means clus-
tering algorithm) and supervised learning are widely used. In mechanism research, it
is necessary to construct the network and path automatically, hence various network
construction-related artificial intelligence algorithms such as the Bayesian network
algorithm are often applied.

This chapter briefly reviews the development history of artificial intelligence, and
the classification and characteristics of the main algorithms applied in network
pharmacology, in order to promote the better understanding of the applications
and evaluation methods for researchers.

2.1.1 Introduction to Artificial Intelligence Algorithms

Artificial intelligence is an important branch of computer science. The definition of
artificial intelligence has not yet been unified, but it can be summarized as studying
the laws of human intelligence activities and constructing artificial systems with
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certain intelligent behavior [5]. Thanks to high-performance scale computing equip-
ment, big data accumulation, and algorithm innovation, artificial intelligence has
been widely applied in image recognition [6, 7], speech recognition [8, 9], medical
diagnosis [10], drug R&D [11], and many other fields, and its achievements cover all
aspects of human life. Artificial intelligence algorithms that widely used in network
pharmacology can be divided into three types: heuristic algorithms, machine learn-
ing, and network construction algorithms according to their problem-solving scope
and application characteristics.

1. Introduction to Heuristic Algorithms

Heuristic algorithms are based on intuitive or empirically constructed algorithms
that give feasible solutions to problems in acceptable time and space. Its classic
algorithms include: simulated annealing algorithm [4], genetic algorithm [3], etc.
Heuristic algorithms perform optimal solution search with limited computational
cost and time. The optimal solution search often be applicable to specific problems
such as sub-network, optimal conformation, and specific sequence search.

Network pharmacology problems using heuristic algorithms usually have two
basic characteristics. First, the search results can be measured by quantitative index;
second, the search target can be constructed in a certain way. Taking optimal
conformation as an example, the change in binding free energy is used as the
quantitative index, and new binding conformations can be constructed through
operations such as translation and rotation of chemical bonds and atoms in
molecules.

2. Introduction to Machine Learning

Machine learning is currently the most rapidly developing artificial intelligence
algorithm. For large and high-dimensional complex data, machine learning method
can effectively perform data classification, data fitting, prediction model establish-
ment, feature selection, and other tasks.

Supervised machine learning methods mainly include two categories: regression
and classification [12], by which the mapping relationship could be established from
input Xi to output Yi from a large amount of input data, to construct a prediction
model or analyze the weight of input features. The commonly used regression
algorithms include: LASSO (Least Absolute Shrinkage and Selection Operator)
regression, ridge regression, and elastic net. Classification algorithms include logis-
tic regression, Bayesian classifier algorithm, support vector machine, K-nearest
neighbor, random forest, and artificial neural network. Additionally, deep learning
[13] is a rapidly developing supervised learning method in recent years, which is an
improvement of the artificial neural network structure. It is characterized by more
hidden layer structures between the input and output layers. Its classic structure
includes: Convolutional neural networks (CNN) and recurrent neural network
(RNN).

Unsupervised machine learning methods include clustering [14] and dimension
reduction [15], which do not rely on input data labels to establish the feature-to-label
mapping, but focus on the characteristics and interrelationships of a large amount of
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data. Based on various measurement relations, the input data is divided into different
categories (clustering), or the dimension of input feature vector is reduced, to remove
noise and reduce redundant features (dimension reduction). Commonly used clus-
tering algorithms include K-means clustering algorithm, hierarchical clustering, and
affinity propagation clustering algorithm. Commonly used dimension reduction
algorithms include principal component analysis (PCA) and factor analysis.

3. Introduction to Network Generation Method

Network generation method can be divided into network construction and sub-net
extraction methods based on new network connection relationships and their
generation.

In network pharmacology research, the network nodes are composed of elements
related to Drug property such as compounds, targets, genes, and diseases. Networks
related to biological processes are usually the most complex. For example, gene
expression regulation is a dynamic process involving time and space factors. Static
networks often cannot effectively reflect the temporal and spatial specificity of
biological processes [16]. However, to achieve a relatively accurate characterization
of the dynamic regulation of biological networks, a large amount of data with
temporal and spatial differences is required. Therefore, limited data volume, and
uncertain knowledge expression and reasoning can be used to make predictions and
generate new network connection relations. Network construction methods include
association, Boolean model, dynamic Bayesian network, and differential equation.

The sub-net extraction method does not aim at discovering new network relation-
ships, but can extract the most relevant sub-nets from the known background
network, and is often used to explain the effects of drugs or disease mechanisms.
Extracting key sub-networks and identifying overlapping networks from complex
relationships are important components of network analysis. Identifying key
sub-networks is often closely related to the discovery of drug targets, and identifi-
cation of pathways and key regulatory factors. Heuristic algorithms such as simu-
lated annealing algorithm, genetic algorithm, and Steiner's forest algorithm [17] are
often used to find the sub-net with the highest score.

2.1.2 Performance Evaluation Method for Artificial
Intelligence Algorithms

Although artificial intelligence algorithms solve specific problems in network phar-
macology research through a reasonable computational model, blindly trusting the
computational results of artificial intelligence algorithms is detrimental. The perfor-
mance of artificial intelligence algorithms to solve problems needs to be systemat-
ically evaluated by scientific metric or measures in order to effectively reduce errors
caused by various risks such as low data quality or overfittings.
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To evaluate the performance and generalization ability of artificial intelligence
algorithms, some performance evaluation methods are required. The most well-
known “Turing test” [18] is the first evaluation method proposed to gauge whether
a machine is intelligent. However, it has limitations and a smaller application scope.
There are several different methods or metrics could be adopted according to the
algorithm and data characteristics.

Different artificial intelligence methods need to use different performance eval-
uation metrics and approach to evaluate the performance of the methods. General
evaluation indexes include loss value, accuracy, etc., and there are also commonly
used evaluation indexes for different algorithms and data characteristics. Relevant
evaluation indexes are briefly summarized in Table 2.1.

1. Heuristic Algorithm Evaluation

Multiple solutions may be obtained by heuristic algorithm due to its characteris-
tics, hence evaluation metrics could be set according to different purposes. For
example, in order to save time in large-scale calculations, genetic algorithm can
involve relatively few iterations and use shorter convergence time as indexes while
searching for feasible solutions, whereas higher global search ability can be used as
the evaluation index to get better solutions.

2. Machine Learning Algorithms Evaluation

The evaluation metrics of machine learning are applied to different algorithms,
purposes, and data characteristics. The essence is to evaluate the gap between

Table 2.1 Evaluation indicators of typical artificial intelligence methods

Artificial
intelligence
methods Introduction to the methods

Performance evaluation
method and evaluation index

Heuristic
algorithm

Based on the specific construction algorithm,
artificial intelligence is used to search an
optimal solution within a certain calculation
consumption. The representative algorithms
include annealing algorithm, genetic algo-
rithm, etc.

Number of iterations, conver-
gence time, etc.

Machine
learning
algorithm

A class of algorithms for knowledge learning
and acquisition by simulating human learning
behavior is usually used for prediction and
classification in pharmacological research.
Representative algorithms include deep learn-
ing algorithm and clustering algorithm.

Precision rate, recall rate, ROC
curve, mutual information,
contour coefficient, etc.

Network gen-
eration
algorithm

The method of comprehensively generating
the network using multidisciplinary analysis
methods such as probability theory and graph
theory is mostly used in molecular network
construction and drug mechanism analysis.
Representative algorithms include Bayesian
network algorithm and shortest path method.

Precision rate, recall rate, etc.
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predicted and actual values through biased functional loss, and later by optimizing
the parameters. This part mainly introduces the evaluation metrics of supervised
classification algorithm, regression algorithm, and clustering algorithm.

Supervised classification algorithm can divide a given object X into a predefined
category Y. In supervised classification, all samples can be divided into a training set,
validation set, and test set. The training and validation set data are used to train the
prediction model. The trained model then uses the test set to test its accuracy and
generalization ability. Additionally, k-fold cross-validation method can be used to
divide the training data into two parts based on the ratio of (k � 1)/K and 1/K. The
former is used for model training, and the latter is used to evaluate model perfor-
mance and generalization ability. The most common evaluation index in supervised
classification algorithm is accuracy, to predict the proportion of accurate classifica-
tion in all samples. However, due to “imbalanced data” [19] problems, evaluation
indicators with characteristics such as precision and recall indicators are often used.
The former is focused on the correct proportion of positive samples predicted by the
classifier, while the latter is more concerned with whether it is possible to predict
more positive samples. The two evaluation indexes are applicable to various scenar-
ios. For example, when predicting effective drugs from large amount of unrelated
molecules, less false positive predictions are better for researchers in order to avoid
subsequent invalid biological experiments. Therefore, the accuracy rate is often used
as the classification index. However, when constructing a global network regulation
relationship, it is more important to cover all targets nodes, so it has greater tolerance
for false positive results, and the recall rate can be used as a classification index. In
addition, there are also evaluation metrics that consider both accuracy rate and recall
rate, such as F1 score, receiver operating characteristic curve (ROC curve),
precision-recall curve, and confusion matrix.

The regression algorithm is a statistical analysis method to determine the
interdependent quantitative relationship between two or more variables. The com-
monly used evaluation indicators of regression algorithm include: Mean absolute
deviation (MAE), root mean squared error (RMSE), mean-square error (MSE),
Huber loss, log-cosh loss, etc. Using different evaluation indicators may have a
greater impact on constructing prediction models. For example, “mean absolute
deviation” (also known as L1 loss) is less sensitive to the output error and is
relatively more stable when an abnormal point exists. At the same time, the regres-
sion model is not unique, and there may be multiple optimal solutions. Whereas, the
mean-square error (also known as L2 loss) squares the output error, so the error can
be optimized to a greater extent, and it is easier to obtain a stable regression model.
Also, it may be more sensitive to the response of abnormal points with lower
robustness.

Clustering is an important representative of unsupervised learning. They can
divide samples into different categories according to similarity measures. When
the sample data has a given label, a matching degree of the real label and clustering
can be calculated. Mutual information, Rand index, and other indicators are com-
monly used. When the sample data does not have a given label, a silhouette
coefficient can be used to evaluate the rationality of the clustering division.
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3. Network Generation Algorithm Evaluation

In case the complete regulatory network is known, the constructed network can be
compared with the complete network to calculate the precision rate, recall rate, and
other indicators. The evaluation method is the same as that of the classification
algorithm in machine learning.

Several network pharmacology studies using artificial intelligence use individual
case verification, such as comparing model results with literature or conducting
experimental verification, instead of the above evaluation indicators. This approach
is usually feasible, and combined with systematic validation can be persuasive and
the result can be more reliable.

2.1.3 Applications of Artificial Intelligence

Network pharmacology research involves several application requirements such as
optimal solution search, target and drug prediction, and regulatory network con-
struction. Artificial intelligence can play a key role in solving various application
needs of network pharmacology. Different artificial intelligence methods can solve
problems and satisfy different needs. Therefore, it is important to determine whether
the algorithms suit for research problem. The following helps classify and introduce
the applied fields of artificial intelligence methods.

1. Applications of Heuristic Algorithm

The main application of the commonly used heuristic algorithm is optimal
solution search, which is widely used in biology and pharmacy. For example, the
heuristic algorithm based tool Blast (Basic Local Alignment Search Tool) [20] is
used for protein or gene sequence matching, and Open Babel [21] uses the genetic
algorithm to generate small molecule conformations that are used for searching in
molecular docking [22] and molecular dynamics simulation [23], heuristic algorithm
is also the core algorithms in the sub-net extraction process. If the problems in
network pharmacology research have the following characteristics, heuristic algo-
rithm can be applied: ① Quantifiable scoring system: The generated results of the
heuristic algorithm can judge whether calculations meet the requirements of certain
scoring indicators. ② New scheme generation based on current optimal solutions:
Based on the known optimal solution, a new feasible solution is generated by
evaluating the distance between the calculation and the optimal solution. ③ There
are corresponding convergence or termination conditions. Taking Open Babel as an
example, when generating small molecule conformations, to determine whether the
conformation is stable, it can either use a quantitative scoring system such as the
energy of the generated conformation, or by evaluating the RMSD (Root Mean
Square Deviation) coordinate deviation between the generated conformation and
natural conformation.
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2. Applications of Machine Learning

There are differences in the application scope and analysis between unsupervised
and supervised learning methods. The purpose of unsupervised learning is to explore
the relationship between input data, while supervised learning establishes mapping
from input to output data from the training data, to achieve the learning purpose.

Unsupervised learning can be divided into clustering, dimension reduction,
association, and other types, in which clustering and dimension reduction algorithms
are widely used in network pharmacology research. Commonly used clustering
algorithms include K-means clustering algorithm, AP clustering algorithm, and
hierarchical clustering. Input data can be divided into various categories according
to the measurement relationships. For example, Iorio et al. [24] evaluated the
similarity of gene expression profiles between pairs of 1309 drugs, and used the
AP clustering algorithm to construct a drug–drug similarity network for drug
repurposing.

Commonly used linear dimension reduction algorithms include principal compo-
nent analysis (PCA), factor analysis, etc. In the analysis of high-dimensional data,
the problem of “dimension disaster” is often encountered, hence the dimension
reduction algorithm is often needed to reduce the dimensionality of feature vectors,
so as to reduce noise and redundant features. For example, Subramanian et al. [25]
used PCA and clustering algorithm to reduce the dimension of the transcriptome
data, and compressed the expression data of more than 12,000 genes to 978 landmark
genes. Moreover, the 978 landmark genes can be used to infer 80% of the network
regulatory relationship at the transcription level, thereby greatly reducing the cost of
transcriptome data measurement.

Since linear dimension reduction algorithm often cannot meet the analytical
needs when processing complex data, nonlinear dimension reduction algorithm is
also widely used. For example, the t-SNE [26] algorithm, which is often used for
data visualization, can retain the proximity characteristics of high-dimensional data
and reduce it to two-dimensional or three-dimensional space, which plays an intu-
itive role in the systematic research of complex omics data [27, 28].

The supervised learning method commonly used in network pharmacology [29]
includes two main types: regression and classification, both of which are used to
establish the mapping relationship between input Xi and output Yi. The output Y of
regression is continuous quantitative data, such as blood pressure, blood drug
concentration, while the output of classification is often qualitative data, such as
negative/positive diagnosis results, tumor classification. This indicates that different
types of functional losses need to be used in the calculations; however, regression
and classification problems can often occur simultaneously. Supervised learning
helps establish a reliable prediction model, and the model is used to predict new
potential relationships.

Regression algorithms can quantitatively describe the mapping relationship
between variables, so they are widely used in omics analysis and network pathway
inference. For example, Gamazon et al. [30] used linear regression to infer gene
expression from single nucleotide polymorphisms and predicted biological
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phenotypes. Xiong and Zhou [31] used linear regression to infer the regulatory
network relationship of genes from the biological experimental data level. The
classification algorithm is often used in the qualitative prediction of drug–target
interactions. For example, Yamanishi et al. [32] integrated multiple types of biolog-
ical data (such as chemical structures, drug side effects, amino acid sequences, and
protein domains), and used machine learning to train user-submitted data and to
predict unknown drug–target interaction network.

Deep learning [13], as an extension of artificial neural networks, is the most
rapidly developing and applied artificial intelligence algorithm in recent years. It has
similar functions to traditional machine learning methods, but also has new charac-
teristics: ① Deep neural network structure is conducive to expressing complex
mapping relationships: Traditional machine learning algorithms are mostly shallow
structures, hence it is difficult to display highly complex functions, whereas deep
learning introduces multiple hidden layers between the input and output ends to
achieve a nonlinear network structure, thus, it has the ability to express complex
functions. ② Multi-hidden layer structure is capable of autonomously extracting
features: Traditional machine learning algorithms rely on humans to manually
extract features, while deep learning can autonomously extract features. Due to the
emergence of deep structures, the input features may be transformed into new feature
space, whereas the hidden layers and irrelevant features are suppressed. The above
two points ensure that deep learning has better performance in processing complex
big data.

3. Applications of Network Generation

Network construction is the first step in the study of network pharmacology. The
commonly used methods are association, Boolean model, Bayesian network, differ-
ential equation. Artificial intelligence algorithms in network construction lay more
emphasis on logical reasoning and relationship discovery, which is different from
deep learning and other predictive models.

High false positive rate often occurs in the process of network construction, the
complex and huge networks are not conducive to further identification of key
components in the network. Therefore, it is important to extract key sub-networks
from complex relationships and identify overlapping networks [34]. For example,
Steiner's forest algorithm can be used to extract protein and gene–gene interaction
networks from complex networks and quickly identify key interaction pathways and
factors.

2.1.4 Frontiers and Prospects of Artificial Intelligence

Artificial intelligence technology has penetrated all aspects of network pharmacol-
ogy research. From molecular docking, function, and target prediction, to network
construction and analysis, artificial intelligence is playing an increasingly important
role. On the other hand, the molecular structure of drugs, therapeutic uses, clinical
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response, and multi-latitude omics data obtained from laboratory measurements
constitute big data in the research field, which also brings opportunities for the
application of new artificial intelligence technologies [34].

Among all types of artificial intelligence algorithms, the one with the most
noticeable development in recent years is undoubtedly the deep learning algorithm
[6]. Its outstanding performance in large-scale data analysis and in solving a variety
of computing problems has rendered it the research frontier of artificial intelligence.
In the performance evaluation and comparison of large-scale training of pharmaceu-
tical data, deep learning surpasses traditional machine learning algorithms
[35, 36]. The feature extraction ability of deep learning is convenient for analyzing
complex high-dimensional data. Although it has become an emerging research
direction in various industries, its application in many specific directions is still a
question worth exploring.

However, the application of artificial intelligence in network pharmacology
research also has corresponding technical and application problems. The most
common one is over-fitting problems in the training process [37]; it is usually
necessary to ensure sufficient sample amount of training data, and adopt appropriate
training parameters and reliable performance evaluation methods to reduce the over-
fitting problem. In addition, the deep learning algorithm also brings about the
interpretability of predictive models and the computational efficiency of the big
data fitting process. In order to solve these potential problems, possible future
research directions include studying and understanding the function of each layer
of the neural network in deep learning, optimizing deep neural network training
methods to ensure efficiency and speed, introducing time and space information to
achieve complex data as input, and carrying out application research.

2.2 Application of Artificial Intelligence in Network
Pharmacology Research

Network pharmacology aims to promote research by using network tools. Artificial
intelligence in network pharmacology plays an important role in solving drug target
discovery, Drug property mechanism determination, discovery of new uses of
compounds, and research on Traditional Chinese Medicine. Artificial intelligence
technology is used in target discovery based on analysis methods such as structural
docking, structural comparison, network simulation, and machine learning. Artificial
intelligence is also used in mechanism research such as pathway and molecular
function prediction and Drug property pattern analysis. In terms of discovery of new
uses, artificial intelligence is used in the prediction of new uses based on multiple
phenotypes and molecular data after drug perturbation. In terms of TCM research,
artificial intelligence is used in the research of Chinese medicine targets, mecha-
nisms, and syndrome theories. The following sections introduce the application
status of artificial intelligence in these aspects.
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2.2.1 Prediction and Discovery of Drug Targets

The discovery of drug targets is a long-standing topic in network pharmacology
research. According to the strategy and data differences in the discovery of drug
targets using artificial intelligence, the analysis can be divided based on ligand
structure similarity and quantitative structure–activity relationship, reverse molecu-
lar docking, action network simulation, and machine learning.

1. Analysis Based on Ligand Structure Similarity and Quantitative Structure–Activ-
ity Relationship

Structural data of drugs/compounds is easily available and not only fully reflects
the basic characteristics of molecules, but can also be easily counted and compared.
It was used earlier in network pharmacology research. Many artificial intelligence
algorithms such as intelligent search and classification are used in structural com-
parison analysis methods. According to the research characteristics, the analysis can
be divided into structural similarity comparison method, quantitative structure–
activity relationship analysis method, and docking method. They are as follows:

The importance of structural similarity mainly comes from the similar property
principle [38]: molecules with similar structures may bind to the same target and
have similar biological functions. By comparing the chemical similarity of ligands, it
can be inferred that they may have similar targets and pharmacological effects. New
pharmacological effects can be found through this method. Also,
biomacromolecules (targets) with different functions may have similar drug binding
domains. Therefore, the similarity between the chemical characteristics of a drug that
binds to a target and the structure of the target molecule can be used to predict the
unknown target of drugs [39]. Similarity measurement includes three parts: struc-
tural characterization, weight calculation, and similarity coefficient [40]. Vilart et al.
[41] proposed a method to identify new DDI (Drug–Drug Interactions) based on the
similarity of molecular structures of drugs involved in the established DDI. The
basic assumption is that if drug A and drug B interact to produce a specific biological
effect, a drug similar to drug A (or drug B) may interact with drug B (or drug A) to
produce the same effect. This study collected 9454 pairs of known DDI resources,
and identified DDI candidates [41] by calculating the structural similarity of all drug
pairs in DrugBank. Yan et al. [42] proposed a SDTRLS (substructure-drug-target
Kronecker product kernel regularized least squares) method based on sub-structure
similarity, Gaussian interaction profile (GIP), similarity network fusion (SNF),
RLS-Kron classifier, and other technologies. In the independent verification of G
protein-coupled receptors (GPCRs), the predictions are better than in the SDTNBI
algorithm (substructure-drug-target network-based inference) [42]. Keiser et al. [43]
compared 3665 drugs approved by the US FDA (Food and Drug Administration)
and drugs that still in the research stage, with hundreds of drug targets. By compar-
ing the chemical similarity between the drug and the ligand set, they predicted
thousands of new associations. Thirty of these associations were experimentally
verified, and 23 new drug–target associations were confirmed, of which 5 have
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higher binding strength with the predicted target. In addition, there is a compound N,
and the physiological significance of the interaction between n-dimethyltryptamine
and 5-hydroxytryptamine receptor has been verified in gene knockout mice [43].

In addition to structural similarities, quantitative structure–activity relationship
(QSAR) is another commonly used research method based on structural data. It
refers to a quantitative relationship that links the structural parameters of a com-
pound with its biological activity data through a corresponding algorithm. The basic
idea is that similar molecules usually bind to similar proteins. The interaction is
predicted by comparing new ligands with known protein ligands [40, 44]. The
predictive ability of the QSAR model depends largely on the structural similarity
between the training set and the test set molecules [45]. Zhang et al. [46] used a data
set of 3133 compounds to build a QSAR model. The model was built using dragon
descriptors (0D, 1D, and 2D), ISIDA-2D fragment descriptors, and support vector
machine (SVM) method. In the QSAR modeling and verification process, the data
set is randomly divided into modeling and external evaluation sets; and the sphere
exclusion algorithm is used in the training set and the test set to divide the modeling
set multiple times. Then, using the consensus approach, the QSAR model is applied
to the VS (virtual screening) of the ChemBridge database. The 42 inactive com-
pounds predicted by the model have been experimentally verified [46]. Melo-Filho
et al. [47] developed a continuous combi-QSAR model for the oxadiazole inhibitor
data set of smTGR, and further evaluated the top 10 compounds in vitro on
Schistosoma japonicum and adult worms, and found that two compounds containing
new chemical scaffolds had high activity in various life stages of parasites at low
molecular concentrations [47]. Marcelo et al. [48] combined QSAR to develop SAR
rules and a binary QSAR model of antituberculosis compounds based on chalcone.
Then, these models were used to conduct synthesis and biological evaluation of
33 compounds, and candidate drugs [48] with low activity to symbiotic bacteria,
good selectivity to mycobacterium tuberculosis, and low cytotoxicity to Vero cells
were found.

Comparison of structural similarity and QSAR is based on the hypothesis that
similar structures correspond to similar activities, and molecular docking is the most
intuitive application of receptor–ligand hypothesis. Molecular docking is a tradi-
tional method for evaluating the chemical complementarity of small molecules and
target molecules based on the three-dimensional (3D) structure of the target. DTIs
(drug target interactions) were evaluated by using a scoring function to provide a
quantitative docking score associated with binding affinity [49]. Molecular docking
has a wide range of applications in DTI prediction. Starting from known target
proteins, screening ligands with the best affinity from many known three-
dimensional structure molecules are suitable for large-scale screening of candidate
ligand compounds after obtaining disease targets. Ordinarily, for one or several
given targets, such as estrogen receptor [50], HIV-1 integrase [51], potential active
compounds can be prioritized by molecular docking. Web applications based on
molecular docking, such as TarFisDock [52], DRAR-CPI [53], rDock [54], are all
built for target search based on docking. Although molecular docking is widely used,
it still has its limitations, such as not being suitable for situations where the number
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of proteins is large and the three-dimensional structure is not available, it cannot be
applied to membrane proteins with complex structures, such as ion channels and G
protein-coupled receptors (GPCRs), and the extremely low efficiency of docking
computing due to the huge consumption of computing resources [45].

The key assumption of drug target analysis based on calculation of similarities is
that similar drugs tend to share similar targets [29]. Thus, internationally, Yamanishi
et al. [30, 31] proposed a method to predict drug target relationship by combining
chemical drug similarity and genetic similarity; Keiser et al. [32] compared the
chemical structure of the drug with ligands known to regulate the function of protein
receptors, and obtained indirect connections between the drug and the target through
these ligands. In addition, there are methods to predict drug targets based on
chemical similarity [33, 34] and side effect similarity [35].

Another type of method focuses on indirect drug–gene relationships and uses
additional similarity measures to obtain drug-related genes. For example, Hansen
et al. [36] used the similarity of protein–protein interaction networks to predict the
drug–gene genetic association, and combined the gene expression data with the drug
response data provided by Kutalik et al. [37] to infer the common module relation-
ship between genes and drugs.

In China, Cheng et al. [38] developed three supervised inference models to
predict the interactions between drugs and targets, namely drug similarity inference,
target-based similarity inference, and network-based inference. Li et al. [39] devel-
oped the target prediction algorithm drugCIPHER based on the overall association of
“drug network–molecular network.” In this method, the authors developed a com-
putational framework called drugCIPHER, based on the interrelationships observed
in the fields of pharmacology and genomics, to infer drug target interactions on a
genome-wide scale. Based on the protein–protein interaction network, three linear
regression models are proposed, which connect the drug treatment similarity, chem-
ical similarity, and the correlation between the combination of the two and the target,
respectively. Experiments have shown that the model (drugCIPHER-MS) that com-
bines drug treatment similarity and chemical similarity has achieved good results on
the training set and test set. The model process is shown in Fig. 2.1.

2. Reverse Molecular Docking

In recent years, with the development of computer-aided drug design, a reverse
molecular docking based on the “lock-key theory” has become a new means of drug
target discovery in network pharmacology [55]. For a drug or new chemical entity,
reverse molecular docking works opposite to molecular docking. Small molecular
compounds are used as probes to search for biomacromolecules that may be com-
bined with them in the database of candidate targets with known structures. Possible
molecular complexes can be identified using space and energy matching and poten-
tial drug targets can then be predicted [56–58].

The concept of reverse molecular docking was proposed by researcher Chen
Yuzong from the National University of Singapore. Chen connected a single small
molecule with multiple biological targets by means of molecular docking and by
downloading the protein structure of a biomolecule in the PDB database and the
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INVDOCK platform. He then evaluated the binding energy of the ligand-compound,
and preliminarily evaluated potential biological targets [59] of smaller active mol-
ecules. Subsequently, more convenient and rapidly reversing molecular docking
network platforms have been developed, such as TarFisDock [60], PharmMapper
[61], Reverse Screen 3D [62], and idTarget [63].

Guo et al. demonstrated that ganoderic acid D exerts an anti-cervical cancer effect
[64] through the direct binding of 14-3-3 protein using bidirectional gel electropho-
resis technology and INVDOCK. Subsequently, they used a similar method to
clarify that the cardioprotective action of salvianolic acid B is through direct binding
with human epidermal growth factor receptor (EGFR) [65]. Park et al. investigated
potential biological targets of ginsenoside based on reverse molecular docking with
their own protein target database, and found that dozens of biological targets such as
MEK1 and EGFR could be directly regulated by ginsenoside [66].

3. Analysis Based on Action Network Simulation

The analysis based on interaction network simulation is different from the one
based on structural comparison. It relies on an interaction database presented in the
form of a network. Therefore, the advantage of this analysis is that it makes more
extensive use of the observed interaction network to find targets. These network-
based methods are usually based on algorithms in recommendation systems and
relational algorithms in complex networks, which cover a larger target space and can
predict potential DTIs by executing simple physical processes such as “resource
diffusion,” “collaborative filtering,” and “random walk” on the network [67]. Topo-
logical similarity reasoning of drug target bipartite network and in vitro experiments
have also been conducted. Cheng et al. [68] confirmed that five kinds of old drugs
had multi-directional pharmacological properties on human estrogen receptor or
dipeptidyl protease IV, and found that simvastatin and ketoconazole showed strong
antiproliferative activity on human MDA-MB-231 breast cancer cell line [68]. The
MD-Miner (Mechanism and Drug Miner) method proposed by Wu et al. [69] has
found potentially effective drug candidates by constructing a patient-specific signal
transduction network that integrates known disease-related genes with patient-
derived gene expression profiles. This is based on the number of common genes
between the patient-specific dysfunction signal transduction and the Drug property
network, and also by a drug mechanism of action network, which integrates drug
target and drug-induced expression profile data. This method has been evaluated on
PC-3 prostate cancer cell line, which shows that compared to random selection, the
success rate of finding effective drugs is significantly improved, and can provide
in-depth understanding of potential mechanisms of action [69]. Isik et al. [70]
studied whether biological responses and protein interaction networks of drug
interference with cancer cells could reveal drug targets and key pathways. Through
systematic analysis of more than 500 drugs in cMAP (connectivity map, gene
expression profile database), it has been proven that drug interference usually has
no significant effects on the expression of drug target genes, hence the changes in
expression after drug treatment are insufficient to identify drug targets. However,
network topology measurement and local radiance measurement that combine
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perturbed gene and functional interaction network information are conducive to
discovering cancer-specific pathways [70].

Link prediction in the network refers to predicting the possibility of a connection
between two nodes in the network that have not yet been connected through
information, such as known network nodes and structures [40]. This prediction
includes both the prediction of unknown connections and the possibility of possible
new connections.

Chen et al. [41] developed a rebooted random walk model—NRWRH, based on
heterogeneous networks, to predict potential drug–target interactions by
implementing random walks on heterogeneous networks. This work assumes that
similar drugs often interact with similar targets and integrate the drug–drug similar-
ity network, protein–protein similarity network, and known drug–target interaction
network, into a heterogeneous network. In this work, NRWRH was used to predict
potential drug–target interaction by integrating drug-related information. The orig-
inality of this method lies in the integration of three different networks (drug
similarity network, target similarity network, and known drug–target interaction
network) into a heterogeneous network. NRWRH is applied to four target proteins,
including enzymes, ion channels, GPCR, and nuclear receptors, using cross-
validation to predict potential drug–target interactions, and demonstrated superior
performance of NRWRH over previous methods.

Abhik et al. [42] extended the experimental data set on the basis of NRWRH. This
method also integrates the three networks of drug–drug similarity network, protein–
protein similarity network, and known drug–target interaction network into a het-
erogeneous network, and expands relevant drug–target network data and uses
external data sets for verification.

This section follows a brief demonstration of the link prediction analysis steps in
the Python language.

(1) Description of Question

Let G (V, E) be an undirected graph network, where V is a set of nodes and E is a
set of edges. Given the link prediction method, assign a score value “S” to each pair
of unconnected node pairs, and then sort all pairs according to the score value from
the largest to smallest, with the first node pair having the highest probability of
connecting edges [40].

(2) Link Prediction Method

Common link prediction methods are based on similarity, maximum likelihood
estimation, and probability model [43, 44]. The similarity-based link prediction
methods are divided into three main categories [45]—similarity based on nodes,
pathways, and random walks. The concept of the method based on node similarity is:
the greater the similarity between two nodes, greater the possibility of links between
them. Therefore, there are many definitions of node similarity, including common
neighbor index [46], Salton index [47], Jaccard index [48], HDI [49], etc. Based on
the similarity index of pathways, there are mainly local path index [50], Katz index
[51], and LHN-II index [56]. Similarity indexes based on random walk include
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average commute time [56], restarted random walk [57], Cos+ index [58], and
SimRank index [52].

(3) Algorithm Implementation Case

In this paper, the Jaccard coefficient in network topology similarity [48] and PPI
network data have been used as inputs for predicting links to unconnected nodes in
the PPI network.

Jaccard coefficient definition: Given two sets A and B, Jaccard coefficient is the
ratio of the size of the intersection of A and B to the size of the union of A and B,
which is defined as follows:

J A,Bð Þ ¼ A \ Bj j
A [ Bj j ¼

A \ Bj j
Aj j þ Bj j � A \ Bj j

The implementation of Python core code is shown in Table 2.2. The program
input is PPI network data (the node number represents the number corresponding to
the protein), and the results are shown in Fig. 2.2.

The number of nodes in the above figure represents the number of nodes in the
PPI network in this program. We retained the mapping relationship between the
numbers and protein molecules. As observed, using Jaccard coefficient, we calcu-
lated the relationship index between ATP6V1B1 (node 17) and ATP6V1A (node
1546) as 0.75.

(4) Application of Link Prediction in Network Pharmacology

Link prediction is not limited to social networks, but also has great application
value in the biomedical field. With the development of network medicine,
researchers have begun to analyze and predict the interaction between proteins,

Table 2.2 Code implementation

Core codes

import networkx as nx # Import networkx toolkit

data ¼ open(“ppi.txt”) # Load PPI data

G ¼ nx.Graph() # Create empty graph, G network undirected graph

for i, line in enumerate(data):

line ¼ line.split(“\t”)

G.add_edge(line[0], line[1]) # Add data to undirected graph

preds ¼ nx.jaccard_coefficient
(G,[(0,1),(2,3)])

# Calculate the Jaccard coefficients of all the unconnected
nodes

for u, v, p in preds: # Triple iterator in the form of (u,v,p), wherein print (% D,%
d) -> %.8f' % (u, v, p)

P(u,v) ¼ preds(u,v) # (u, v) is a pair of nodes and P is their Jaccard coefficient.

>>> # Program running results

(ATP6V1B1, ATP6V1A) ->
0.75000000

(17, 1546) -> 0.75000000
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drugs, and targets at the molecular level [53]. There are links between nodes of
protein interaction and the metabolic network [54, 71], which indicates that there is
an interaction between them. The prediction of missing drug–target network and
suspicious link is helpful to explore the mechanism of action of different drugs and
to predict and evaluate drug efficacy. However, revealing the hidden interaction in
such networks increases the cost of biological experiments, while the results of link
prediction guide these experiments, improving the success rate of experiments, and
thus reducing experimental costs. In addition, link prediction can also be used to find
similar drugs in the drug network, as well as to find new drug targets, opening up a
new path for the research and development of new drugs [72].

4. Analysis Based on Machine Learning

This analysis is different from analytical strategies based on structural compari-
son or action network simulation. Machine learning-based analytical methods have a
more flexible database. It can be a structure, a network, or any other detection index
that can be quantified. Many machine learning-based methods have been used to
identify relationships between drugs and targets. Machine learning is an analysis
method that generates prediction models based on some underlying algorithms and
given data sets. It can be divided into unsupervised learning methods (clustering,
dimension reduction, association, etc.), supervised learning methods (regression,
classification, etc.), and semi-supervised learning methods. In most machine
learning-based approaches, biological data sets from multiple sources are integrated,
such as chemical structures of drugs, target protein sequences, and known drug–
target interactions.

In terms of supervised learning, Yamanishi et al. [31] proposed a nuclear-
regression-based method to infer drug target interaction by integrating chemical
structure information of compounds, sequence information of target proteins, and
topology of known drug target interaction network, to study the interaction of four
kinds of drug targets in humans. Bleakley and Yamanishi [30] developed a super-
vised learning approach based on a two-part local model (BLM) to predict unknown

Fig. 2.2 Effect diagrams before and after operation of link prediction program
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drug–target interactions, by transforming the edge prediction problem into a binary
classification problem. Further, Yamanishi et al. [67] believed that pharmacological
action similarity was related more to drug–target interaction than chemical structure
similarity, so they further proposed a correlation-based model to infer the unknown
drug–target relationship based on chemical structure information, genome sequence
information, and large-scale pharmacological action information.

In terms of semi-supervised learning, Xia et al. [73] developed NetLapRLS, a
semi-supervised learning method that combines chemical space, genomic space, and
known drug–protein interaction network information into a heterogeneous biosphere
to predict potential drug–target interactions.

In terms of deep learning, Wang and Zeng [74] proposed a method based on
restricted Boltzmann machine (RBM). This framework of multidimensional drug
target network not only predicts the binary interaction between drugs and targets, but
also predicts the interactions between different types of drugs (i.e., how drugs
interact). Ramsundar et al. integrated millions of data points, representing both
positive and negative examples of DTI with more than 200 specific goals
[34]. They used a multi-tasking framework in which each target prediction is
considered a separate task that requires its own (linear) classifier. The AUC (area
under the receiver operation curve) of the maximum cross-validation achieved by the
deep learning method is 0.87, and it is proven that the multi-tasking aspects of their
method always provide slight improvement (AUC increases about 0.01) with the
same amount of data compared with the same single task analysis. Wen et al. [59]
proposed Deep DTIs, a drug target prediction algorithm framework based on Deep
Learning. This method first uses unsupervised pre-training to extract the character-
ization from the original input descriptor, and then uses the known drug target
relationship tags to construct a classification model. Compared to other methods,
DeepDTIs perform better and can be further used to predict whether a new drug
target is associated with other existing targets or whether a new target interacts with
some existing drugs. In addition to improving the prediction performance of deep
learning models, the analysis of key chemical characteristics learned by machine
learning models for predicting drug activity is also important for understanding the
performance of the model, screening models with better generalization ability, and
for further protein-compound binding modes. Ding et al. proposed a method to
analyze the chemical characteristics learned from the QSAR model based on the
neural network hidden layer functions and backtracking gradients. They then devel-
oped an interactive tool to identify the molecular characteristics of the GPCR family
protein targets binding to compounds, which can be verified by eutectic structural
analysis.

In DTI prediction, the general machine learning process is divided into three
steps. Firstly, the input data of drugs and targets are preprocessed. The underlying
model is then trained based on a set of learning rules. Finally, the test data set is
predicted by using the prediction model [45]. Kumari et al. [95] developed a
sequence-based prediction method to identify and distinguish human non-drug and
drug target proteins. Training features include amino acid sequence characteristics,
composition, and dipeptide compositions used to produce prediction models.
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Through 10-fold cross-validation and leave-one-out validation tests, the sensitivity,
specificity, and accuracy of the model (above 80%), and the Matthews correlation
coefficient (above 0.7), can help in evaluating the composition pattern of human
drug targets [75]. Zhang et al. [76] proposed a clustering-based multi-view DTI
prediction method to achieve more accurate DTI predictions by integrating drug and
target data from different views and maximizing clustering consistency in each view,
to predict 54 kinds of potential DTI [76]. Jamali et al. [77] used machine learning
method to analyze 443 sequence-derived protein features to predict whether proteins
had drug properties, and compared the properties of different machine learning
methods and conducted feature selection. New drug targets have been identified in
cell signaling pathways, gene expression, and signal transduction [77].

In addition, this section provides a description of HTINet [78], a TCM target
prediction method based on representation learning. In recent years, with the con-
tinuous development of network medicine and pharmacology, multi-source biolog-
ical network data and databases have been widely accumulated, providing adequate
data support for researchers. Meanwhile, representation learning [79] is developing
rapidly in the field of deep learning. It is a method that learns the feature represen-
tation of each node in the network through the network structure and makes the node
feature representation fit the original network structure. This method has been
applied in many fields (image, video, and natural language understanding) and
achieved good results. The HTINet model integrates TCM and Western medicine
data (including Traditional Chinese Medicine, disease, symptoms, Western medi-
cine, and targets) based on symptoms, and integrates a multi-source heterogeneous
data network. It also obtains feature representations of Chinese medicine and genes
based on the network representation method and finally builds a supervised classi-
fication model obtained from previous learning to predict the interaction relationship
between Chinese medicine targets. The method flow is shown in Fig. 2.3.

The HTINet model has achieved a maximum of 95% AUC and 94% AUPR on
the test set, and its performance has been greatly improved compared with the
baseline model, indicating its potential in the prediction of TCM targets. In addition,
this work also carried out external validation on some experimental results, ran-
domly selected three Traditional Chinese Medicines (Polygonum bistorta, flos
farfarae, and Rhododendron dauricum), and predicted its targets through the HTINet
model and effectively verified the predicted targets in external databases and
literature.

2.2.2 Study on the Drug Property Mechanism

One of the central research objectives of network pharmacology is to completely
characterize the biological process under Drug property, i.e. to clarify the mecha-
nism of Drug property. The clarification of intracellular chemical reactions and
pathways is the most challenging issue in this field. Common biological pathways
are related to metabolism, gene expression regulation, and molecular signaling.
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Pathways play a key role in the advanced research of functional genomics. For
example, identifying disease-related pathways can lead to effective strategies for
diagnosis, treatment, and prevention of disease. In addition, researchers can discover
the root cause of diseases and use the information obtained from pathway analysis to
develop new and better drugs by comparing the differences in some pathways
between healthy people and patients. Mapping the dysfunctional pathways associ-
ated with various diseases is essential for a comprehensive understanding of these
diseases.

One of the common problems in drug research is the accurate prediction of
pathways and molecular functions. Pireddu et al. [80] proposed a model for
predicting catalytic proteins in important reactions, and integrated these into a
prototype system of previously proven metabolic pathways. Finally, 10 metabolic
pathways were cross-validated for 13 organisms, and the results showed a 71.5%
cross-validation accuracy and 91.5% recall rate [80] in the prediction of catalytic
proteins of all reactions. In order to find a quantitative verification method for
pathway prediction, Joseph et al. [81] developed a large gold standard data set that
contained data on the presence or absence of 5610 metabolic pathways in various
organisms. They also defined a set of 123 pathway characteristics and evaluated the
information according to the gold standard. This data is used as input in various
machine learning (ML) methods to achieve accurate prediction of metabolic path-
ways [81]. Boudellioua et al. [82] proposed a system that uses “rule mining
techniques” to predict the metabolic pathways of prokaryotes. They used cross-
validation technology to evaluate the performance of the system and achieved good
results in identifying pathways [82]. Fan et al. used the Agilent LitSearch tool [67] to
dig deeper into the Pubmed database from 1950 to 2014, for genes that regulate
angiogenesis related to ischemia and lung cancer. They then constructed the disease
target network for ischemia combined with lung cancer. Verification with molecular
biology revealed that the mechanism of bidirectional vascular regulation in animal
models of ischemia in lung cancer is related to the abnormal expression of elastase in
centrioles [73].

Torcetrapib can inhibit the activity of cholesteryl ester transfer protein and
increase high density lipoprotein in vivo. It could have been used as a new anti-
lipid drug; however, phase III clinical trials have shown that torcetrapib can induce a
fatal hypertensive response [51]. Understanding the molecular mechanisms that
induce lethal reactions can help to avoid such situations in the future and clarify
whether other CETP inhibitors, such as Anacetrapib and Dalcetrapib should con-
tinue to be used. Chang et al. constructed a specific renal metabolic network model
through in-depth mining of GEO gene expression data [44]. Combined with the
off-target effects of known drugs, CETP inhibitors and renal function were evalu-
ated. At the same time, Fan et al. mapped the gene signaling network of human
diseases by integrating the interactions of biomacromolecules in four databases
including BioCarta, literature-mined network, Cancer Cell Map, and the HPRD
database [45]. Torcetrapib-specific regulation network module was mined by ana-
lyzing the GEO database, and the abnormal gene set regulation of torcetrapib was
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drawn. The possible explanation of torcetrapib-induced hypertension was thus
clarified from a systematic view point.

Drug property model is the key to drug development. It usually involves a target
through which a drug can induce pharmacological effects, including understanding
the drug influence pathway and biological processes. This information can be used to
support treatment hypotheses in animal models, clinical indications, and patient
selection. It is also important to distinguish new drugs from current standards,
treatments, and competing molecules. Although the mode of action of drugs is not
necessary for FDA approval, most researchers hope to understand the function of
drugs at the molecular level. There are already some examples of artificial intelli-
gence usage to solve the discovery of Drug property patterns. Pang et al. [83] used
“random forests” to analyze gene expression data and established a path based
classification and regression method. This approach allows researchers to sequence
important pathways from externally available databases, and identify important
genes to take advantage of a continuous outcome variable in regression settings
[83]. Hancock et al. [84] proposed a new classification model, HME3M. This
probabilistic model is a combination of a mixed Markov model, which is used to
identify frequently observed path clusters in a specific network structure, and proves
that the HME3M algorithm is superior to the comparison method in the case of
increasing network complexity and path noise. It is an accurate and reliable classi-
fication of metabolic pathways [84].

Carfilzomib is a conventional drug for treating multiple myeloma. However,
clinical studies have found that long-term use of Carfilzomib can induce drug
resistance in multiple myeloma. Zheng et al. analyzed KMS-11 cell lines that are
resistant and sensitive to Carfilzomib in the GEO database, through a string biolog-
ical macromolecule interaction platform [52]. This helped to model a gene regula-
tory network related to Carfilzomib resistance. The enrichment analysis results
showed that abnormal changes in cytokine and receptor, autophagy, ErbB signaling,
microRNA, and fatty acid metabolism pathways may be related to drug resistance
exhibited in patients treated with Carfilzomib for multiple myeloma [53].

2.2.3 Discovery of New Drug Uses

Network pharmacology is not only used for drug target discovery and mechanism
interpretation, but also for the discovery of new drug uses. Phenotypic and omics
data generated in drug experiments and clinical applications provide important clues
for the discovery of new drug uses. Artificial intelligence plays an important role in
the use of this data.

1. Analysis of Drug-Phenotype Data

Drug phenotypic analysis is a method for analyzing the phenotypic changes in an
organism after Drug property. It identifies the effects of a drug by analyzing cell and
animal models in a disease state. Although drug discovery based on drug targets
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once dominated the scene, several new disease targets determined by genomics and
systems biology methods are categorized as non-usable [85]. Moreover, the function
of these new targets is unclear. These issues have prompted researchers to refocus on
the discovery of drug phenotypes as a complement to target-based drug discovery
[86]. The phenotype of the drug includes characteristics of the drug's indications,
side effects, etc., which are reflected at the individual level. Drug phenotypes can be
attributed to many molecular interactions, including on-target or off-target binding,
drug–drug interactions, dose-dependent pharmacokinetics, metabolic activity,
downstream pathway interference, aggregation effects, and irreversible target bind-
ing. Although certain drug phenotypes such as side effects are unexpected results of
drug intervention, they help in understanding the physiological changes caused by
drugs. Phenotype-based methods for discovering new uses of drugs are being valued
increasingly by researchers.

PubChem's bioassay function contains more than 740 million data points from
biochemistry and phenotypic screening, covering more than 1 million biologically
active molecules. Several compounds have hundreds or even thousands of analysis
results [21, 22]. ChEMBL contains biometric data with more than 12 million data
points. NPCPD29 contains a drug-phenotype matrix of nearly 35 clinically approved
compounds, covering cardiovascular disease, diabetes, and cancer. In addition, the
Center for Chemical Genomics of the National Institutes of Health has compiled a
data set of approximately 2500 approved compounds that are screened in approxi-
mately 200 phenotypic and target-based tests, focusing on various cancers, malaria,
nuclear receptors, and signal pathways [23].

Research on the sensitivity of cancer cell lines is the most important task in
network pharmacology based on cell phenotype screening. The Cancer Therapeutic
Response Portal assessed the sensitivity of 242 cancer cell lines with genetic
characteristics to 354 types of small molecule probes and drugs [16]. The GDSC
(Genomics of Drug Sensitivity in Cancer) database measured 138 anticancer drugs
in 700 cell lines [18]. The Cancer Cell Line encyclopedia provides detailed genetic
characterization of 1000 cancer cell lines and can be used to assess cell line similarity
and predict drug perturbation growth rates in other cell lines [24].

SIDER (Side Effects Resources) is a public side effect database that contains
compiled information from FDA package specifications, linking 888 drugs with
1450 side effects [27]. The OFFSIDES database analyzed more than 400,000
adverse reactions not listed on the official FDA drug labels, and determined that
each drug had an average of 329 off-label ADEs [28]. Finally, the FDA Adverse
Event Reporting System (FAERS) is the database of information on adverse event
and drug error reports submitted to the FDA by manufacturers, health-care pro-
fessionals, and the public [29, 30].

Relationships between drugs and phenotypes can be used to identify shared target
proteins among chemically different drugs and to infer new indications using their
phenotypic similarities [87]. One of the underlying principles behind this theory and
related approaches is that drugs that share a large number of similar phenotypes may
be associated with common mechanisms of action associated with the treatment of a
disease, and may serve as phenotypic biomarkers for specific diseases
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[88]. Currently, several new indications and targets have been found by using drug
phenotypes using artificial intelligence methods. For example, Dimitri et al. devel-
oped DrugClust [89], a machine learning algorithm for drug side effects prediction.
According to the Bayesian score, the first batch of drugs was clustered based on their
characteristics, and then the side effects were predicted. Biological validation of the
clustering can be completed using enrichment analysis. The process of drug discov-
ery is realized by verifying obtained clusters and possible new interactions between
some side effects and non-targeted pathways. Luo et al. [90] constructed a drug side
effect network based on SIDER2 (Side Effect Resource 2) database, and introduced
the link prediction method into the network to develop and evaluate the framework
of drug side effect prediction. Ferrero et al. [91] developed the drug re-positioning
hypothesis on the basis of disease genetics by mining the public repository and
transcriptome profiles of GWAS (Genome-Wide Association Studies) data [91]. Yin
et al. [92] used the drug indications in the Medicine Indications Resource (MEDI) as
the gold standard to evaluate whether the drug indications found from GWAS and
Phewa (Phenome-Wide Association Studies) have clinical indications [92]. Yang
et al. [88] extracted the relationship between 3175 diseases and SEs (Side Effects). A
naive Bayesian model was then established based on SEs’ features to predict the
indications of 145 diseases. In addition, the QSAR model of SEs was used to predict
the indications of 4200 clinical molecules [88]. Ye et al. [93] constructed a drug–
drug network based on the similarity of clinical side effects. The indication of a drug
can be inferred by enriching the function of its neighboring FDA-approved drug in
the network. It has high accuracy in drug prediction for diabetes, obesity, laxatives,
and mycobacteria infection. A large number of predicted results were approved by
the FDA or supported by preclinical/clinical studies [93]. Previous studies have
shown that chemical structure, target protein, and side effects can provide rich
information for drug similarity evaluation. However, each individual data source
plays an important role on its own, and data integration is expected to reposition
drugs more accurately. Wang et al. [94] established a new drug re-positioning
method (predicted drug re-positioning) by integrating the molecular structure,
molecular activity, and phenotypic data, and by characterizing drugs by analyzing
their chemical structure, target proteins, and side effect data, and defining their
disease-related core functions. Then, an SVM was trained to calculate and predict
new drug–disease interactions, which has advantages over other methods in terms of
accuracy and coverage rate [94].

Scheiber et al. used the known drug–ADE (adverse drug event) association, and
the extension of NaïveBayes modeling to connect specific chemical characteristics
of drugs with 4210 ADE terms [56]. Liu et al. used the causal relationship analysis
based on Bayesian network structure to connect the chemical and biological char-
acteristics of drugs with ADE, which can be interpreted as causality [57]. Vilar et al.
used the GBA method in large insurance claims databases to estimate drug associ-
ations with four different ADE: acute kidney failure, acute liver failure, acute
myocardial infarction, and upper gastrointestinal ulcer [58].
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2. Transcriptome Data Analysis

The omics data generated from drug trials undoubtedly provides valuable infor-
mation for the discovery of new uses of drugs. Compared with other omics data such
as proteomics and metabolomics, transcriptome data have many advantages such as
high throughput, low cost, precise quantification, and sufficient complexity. There-
fore, the large-scale use of transcriptome data for drug discovery is the most rapidly
developed and mature method.

(1) Integrated Library Project Based on Network Cellular Response Imprinting
(LINCS) [95]

The CMap project [96] and LINCS (The Library of Integrated Network-Based
Cellular Signatures) project [97] promoted the development of a comprehensive and
large-scale transcriptome database with drug research as an important goal. Drugs
and target perturbation data collected and recorded have been used to determine the
connections, similarities, or differences between diseases, drugs, genes, and path-
ways, which provide great opportunities for computational pharmacogenomics and
drug design. Unlike classic pharmacology that only focuses on one target at a time,
the transcriptomics data provided by CMap and LINCS opens the door for systems
biology methods at the pathway and network level [98]. The LINCS project high-
lights the potential of gene transcription analysis as a universal language for linking
chemistry, biology, and clinical practice by inferring genome-wide similarities or
differences [99]. In recent years, several studies have used various machine learning
methods to analyze Cmap data and LINCS data for target discovery and drug
re-positioning. For example, Xie et al. [100] systematically explored and predicted
the re-positioning of 480 marketed drugs with other therapeutic attributes using
LINCS drug-induced transcript level data, which was based on the machine learning
algorithm Softmax for multiple classification problems. Young et al. [101] used the
gene silencing perturbation data in LINCS, adopted the linear regression model, and
combined the prior and posterior probability to infer the regulatory relationship in
genes, thus verifying the relationship identified in the TRANSFAC (TRANScription
FACtor database) and JASPAR. Lee et al. [102] used LINCS data to evaluate the
ability to predict novel re-positioning of drugs based on several perturbations in four
cancer types [102]. Sawada et al. [103] proposed a new computational method for
predicting inhibition and activation targets of drug candidate compounds. Integrat-
ing chemical induction and gene interference with the gene expression profile of
human cell lines helps avoid excessive dependence on the chemical structure of
compounds or proteins. Based on the transcriptomic changes of the overall gene
expression profile after chemical treatment, as well as the transcriptomic changes
after gene knockout and overexpression, the combined learning algorithm was used
to build a prediction model of a single target protein. This method can distinguish
inhibition targets from activation targets, and can accurately identify therapeutic
effects [103]. Liu et al. analyzed the CMap transcription profile and revealed its
hidden factors by weighted gene co-expression network analysis (WGCNA). Simul-
taneously, seven common modules associated with protein binding, extracellular
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matrix tissue, and translation were identified. Finally, the drugs were clustered by
module expression, and the mechanism of action (MoA) was inferred according to
their common activity profiles. Sirota et al. systematically compared the gene
expression profiles of 164 small molecule compounds from CMAP with a set of
expression profiles derived from the GEO database for 100 different diseases. Based
on this model, more than 1000 drug repurposing predictions were generated, linking
at least one of 164 compounds to each of the 53 diseases [48].

(2) Gene Expression Omnibus (GEO) [104, 105]

The Gene Expression Omnibus (GEO) is a public information storage platform
managed and maintained by the National Center for Biotechnology Information
(NCBI) of the United States. The database mainly provides gene expression data
retrieval, browsing, query, and download services, and is an important source for
obtaining high-throughput chip expression profiles data. GEO includes two
sub-databases: Datasets and Profiles database. The Datasets database stores the
data of gene chip centered on experiments. The Profiles database stores gene-centric
chip data. Currently, GEO has more than 900 drug perturbation experiments and can
be another direct source of drug–target perturbations in network pharmacology
research.

(3) ArrayExpress Database [106]

The ArrayExpress database is a microarray common repository of gene expres-
sion data developed and operated by the European Bioinformatics Institute (EMBI).
Its main purpose is to store and record annotated high-throughput data sets and
original image sets from all over the world. The ArrayExpress interface is simple and
supports multiple retrieval methods. So far, the database includes more than 6000
sets of high-throughput experimental data, including expression data such as
RNA-seq, ChIP-seq, GRO-seq, epigenetic profiles, and FAIRE-seq.

3. Docking Profiles Data Analysis

The combination of listed drug targets that are not thoroughly studied with
different targets leads to a wide range of side effects. Hence, the cost of screening
all potential molecular targets in biological experiments is high. The “molecular
docking profiles” using virtual large-scale molecular docking is helpful to study the
drug–target relationship, and plays an important role in the development of new
clinical indications of drugs. Yang et al. [107] used molecular docking and logistic
regression to construct a real-time prediction server DPDR-CPI based on small
molecular structures. When a user submits a molecule, the server docks it with
611 human proteins to generate predictive CPI (chemical–protein interactome)
characteristic profiles. It shows the correlation between the input molecules and
about 1000 human diseases, and gives the highest prediction results [107]. Chen
et al. [108] proposed a new ligand-based pipeline: given a set of experimental data,
first, use principal component analysis (PCA) and genetic algorithm (GA) to estab-
lish a segment descriptor with the signature of the SVMmodel, and then the pipeline
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develops QSARs in the form of the SVM prediction model, and applies the model in
virtually screen compound databases [108].

Chavali et al. used the metabolic model to generate lists of 15 genes and 8 dual-
gene combinations that were predicted to be relevant targets for neglected tropical
diseases (mainly Leishmaniasis) [70]. By associating these genes with
254 FDA-approved compounds based on drug–target interactions, it was found
that 14% (10 of 71) of these compounds were validated in overlapping with high
content screening data for leishmaniasis. In addition, Chen et al. integrated infor-
mation such as drug–target interaction, disease–gene association, and protein–pro-
tein interaction networks into heterogeneous networks (DrugNet, linking drugs,
targets, and diseases) [35]. Using the ProphNet network propagation algorithm, we
can define the input query node, drug, or disease, and rank the remaining nodes of
other types, that is, the drug for the disease query, and vice versa.

4. Web-Based Drug Indication Analysis

With advancement in the interaction group detection methods and the accumu-
lation of data resources, the discovery of drug indications based on network analysis
is widely used in network pharmacology. Relevant studies have shown that drug–
target network, drug–drug, drug–disease, protein–protein interaction, transcrip-
tional, and signal transduction networks can be used to identify the efficacy charac-
teristics of drugs, thus providing new opportunities for drug discovery or indication
discovery.

Li et al. [109] developed a binary drug–target network approach to identify
potential new indications for existing drugs through their relationship with similar
drugs. In the bipartite network model, drug pair similarity integrates chemical
structure similarity, common drug targets, and protein interactions. The author
established a causal network (CauseNet) [110] based on the previous work, which
is based on a multi-layered approach to genes, diseases, and drug targets to deter-
mine new therapeutic uses of existing drugs. In the causal network, the transition
probability of each chain is estimated based on the known drug–disease treatment
association.

Wu et al. [111] used the known relationship between disease genes and drug
targets in the KEGG database to construct a heterogeneous drug network. Nodes
represent drugs or diseases, and edges represent shared genes, biological processes,
pathways, phenotypes, or combinations of these characteristics. The network is then
clustered to identify modules that can be used to extract potential drug–disease pairs
for drug re-positioning. This method not only considers genes, but also other features
of constructing disease drug networks.

Chen et al. [68] developed a method based on functional linkage network (FLN)
to find modules negatively related to drugs. FLN is a network in which nodes
(proteins or genes) are connected by weighted edges to measure the probability of
sharing a common biological function. The network is constructed by using different
biological information sources (such as mutation and transcription level). These
information sources act as the features of a Bayesian classifier, and calculate the
possibility of each edge. FLN’s filtering method is to remove all genes that are not
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within the user-specified genetic distance from the disease mutation and display
differential expression below a certain threshold. Such networks are processed to
determine the extent to which drugs and disease-related genes are associated with
possible re-positioning of candidate genes.

Ali et al. [69] used centrality measurement commonly used in social network
analysis to identify drugs with better positioning in the side effect and drug indica-
tion networks. The basic assumption of this work was that drugs with similar
phenotype profiles (e.g., side effects) can share similar therapeutic properties
based on relevant mechanisms of action and vice versa. The development of side
effect resources includes unique drugs with side effects and indications. Drugs are
ranked according to their centrality scores, thus identifying 18 major drugs from the
drug side effect network and 15 major drugs from the drug indication network.
Indications and side effects of prominent drugs were inferred from profiles of their
network neighbors and compared with existing clinical studies, while seeking
optimal similarity threshold values between drugs. Threshold values can then be
used to predict indications and side effects for all drugs. The similarities are
measured by the extent to which they share a phenotypic profiles and neighbors.

Campillos proposed in 2008 that drug–target interaction networks using the
principle of side-effect similarity might be overlooked in new drug discovery. By
analyzing the side effects of 746 drugs already in the market, his team constructed a
drug-side-target network with 1018 nodes, and found some new activities and new
indications of some drugs through biological verification [87].

5. Analysis of Drug Indication Based on Machine Learning

The prediction of drug indication is also a typical machine learning problem
[70]. Specifically, the interaction between drugs and the human body can be gauged
and predicted through a series of clinical and biological characteristics. In this
section, we summarize the general principles and types of drug indication analysis
algorithms based on machine learning.

An important advantage of machine learning algorithm is its richness and rapid
development. Any existing or new algorithm can be applied to drug indication
analysis with some modification. In this section, the drug expression profile data
combined with the machine learning algorithm is taken as an example to predict its
indications, i.e. drug expression profile is used as a predictor (i.e., feature) for the
therapeutic potential of drugs. The resulting variable can be a drug, for example,
cardiovascular or anticancer drug or a drug targeted at a specific disease like
diabetes. In the former case, consideration may be given to the classification of a
drug in a category other than its own indications, for re-positioning. In the latter case,
a drug with a high predictive probability but not shown as a disease, may be a
candidate for re-positioning. Existing indications for drugs are readily available from
public web resources such as the Anatomical Therapeutic Chemistry (ATC) classi-
fication system. The following is a detailed introduction of different types of drug
indication prediction methods:

In terms of the prediction of drug indications, a linear model has advantages of
rapid calculation speed, intuitiveness, and can be easily realized by a variety of
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programming languages and statistical software. For example, the glmnet package in
R language supports rapid implementation of normalized linear models and has
detailed documentation available online [112]. Linear models are also easy to
explain, as the importance of features can be gauged from the size of the regression
coefficient, and methods have recently been developed to assess statistical signifi-
cance [113]. However, linear models capture only linear relationships between input
characteristics and output variables, which may not be the case in many real-world
scenarios, including biomedical applications. A recent study [114] identified tran-
scriptional response as a multi-label classification problem, identified novel thera-
peutic properties of drugs, and pointed out that multi-label logistic regression is
superior to other methods such as random forest and convolutional neural networks.

In terms of drug indication prediction methods based on classification and
regression models, Napolitano et al. [115] integrated a variety of drug characteris-
tics, including chemical structure and proximity of targets in the interaction network
and expression profiles, and used support vector machine (SVM) to predict the
treatment category. Menden et al. [116] developed a machine learning model to
predict the response of cancer cell lines to drug treatment, which was quantified by a
semi-inhibitory concentration (IC50) value. In this model, the feed-forward
perceptron neural network model and random forest regression model were
established using the oncogenome characteristics and chemical properties (such as
structural fingerprints) of the cell line. The predicted IC50 value was further cross-
validated and independent blind tests were done. Gottlieb et al. [117] integrated
various disease-related characteristics (such as phenotype and genetic characteris-
tics), calculated the similarity of drugs and diseases, constructed classification
features and further used logistic regression classifiers to predict new drug
indications.

In terms of predicting drug indications based on collaborative filtering technol-
ogy, Zhang et al. [118] proposed a unified calculation framework for integrating the
multidimensional features of drug similarity and disease similarity. Simply put, drug
similarity matrix and disease similarity matrix are extracted by integrating genome
(e.g., drug target protein, disease gene), phenotype (e.g., disease phenotype, drug
side effect), and chemical structure (e.g., drug chemical structure). Based on this
information, this author turns the drug–disease network analysis into an optimization
problem. This computational framework shows the effectiveness of exploring new
indications for drugs. Yang et al. [119] used causal inference probability matrix
factorization to infer drug–disease correlation. In this model, they integrate multi-
level relationships, construct causal networks linking drug–target–pathway–gene–
disease and learn PMF patterns based on known interactions. This approach can
predict new drug–disease associations and thus be of value for drug indication
analysis.
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2.2.4 Traditional Chinese Medicine and Its Therapeutic
Theory

The composition of TCM prescriptions is complex, and research on its ingredients
and treatment is more complex than that of chemical drugs. Network pharmacology
plays an important role in revealing the material basis of TCM and the theoretical
research of treatment with TCM. Researchers are increasingly using artificial intel-
ligence to solve important problems such as prediction of Chinese medicine target in
theoretical research of TCM, molecular mechanism of Chinese medicine prescrip-
tions, and molecular mechanism of syndrome theory.

1. TCM Target Prediction

The determination of drug targets is the key to drug R & D. TCM usually needs to
have a synergistic effect between different ingredients due to its complex compound
composition, resulting in the complex TCM mechanism of action. In terms of actual
target prediction, Zhang et al. [120] proposed a systematic pharmacology method to
predict the complexity of compound components and related multiple targets. This
was done by identifying bioactive compounds of TCM, to clarify its molecular
mechanism of action. System pharmacology method also helps to understand the
complex interactions between biological systems, drugs, and diseases from a net-
work perspective. Modern technologies such as drug screening (high-throughput
screening, high content screening, and virtual screening) and omics methods (pro-
teomics, genomics, metabolomics) have also been widely used in the identification
of bioactive ingredients and drug targets in TCM. Wang et al. [121] introduced high
content screening technology and used the HCS instrument to screen TCM-derived
compounds and promoted technology development. In order to promote research on
the function and mechanism of TCM, ETCM [122] provides the predicted target
genes of Chinese medicine ingredients, TCM, and prescriptions according to the
similarity of chemical fingerprints between TCM ingredients and known drugs. In
the ETCM system, researchers also explored the relationship between TCM, for-
mula, ingredients, gene target, and related pathways or diseases, to finally establish a
network structure.

With the development of artificial intelligence, especially the progress made in
natural language processing, drug target prediction and discovery have been com-
bined to greatly improve research efficiency. Biomedical literature information can
be obtained from the network. Sometimes the abstracts of these literatures contain
important frontier research information of drugs and targets. If we can capture the
latest research trends of drug targets on time, it will help to advance the process of
target prediction. Extracting valuable information from massive amount of literature
is the main aim of natural language processing. Real-time literature is collected
through web crawler technology, and then large-scale distributed storage is carried
out, which can be cleaned by data extraction, exchange, and loading, to preprocess
structured data. Then, by using methods such as part-of-speech analysis, grammat-
ical analysis, and semantic analysis in natural language processing technology,
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combined with the similarity analysis, cluster analysis, topic mining, and relation-
ship extraction in machine learning, the relationship between drugs and targets is
established. Combined with the database of known drug targets, the knowledge
mining system is conversely applied to improve the accuracy of drug target knowl-
edge, thus further improving the efficiency of drug target prediction and reducing
costs.

2. Study on the Molecular Mechanism of TCM Prescriptions

TCM and its formulations contain many active molecules with complex ingredi-
ents, resulting in complex interactions and mechanisms of action. Only by further
understanding the mechanism of action and clinical efficacy can we help users. The
basic form of TCM for disease prevention and treatment is TCM compound pre-
scription, which is a quantitative mixture of several specific Chinese herbal medic-
inal plants. There are a lot of chemical substances in TCM compound prescriptions,
which may interact with multiple disease-related targets. Therefore, at the molecular
level, the TCM compound mechanism used for disease treatment is like that of
multi-directional pharmacology or network pharmacology. TCM has existed since
ancient times in China. Molecular biology originated in modern times, and its
effective combination with TCM is a topic that needs to be explored. If we can
prove the rationality of TCM prescriptions and formulas at the molecular level, it
will help to integrate modern science and technology with ancient Chinese medicine
prescriptions, which will not only provide a more reasonable scientific basis for
further optimization of TCM prescriptions, but also provide a solid backing for
TCM’s growth in the international market. At present, many pharmacological
studies have been used to reveal the mechanism of action of TCM and its molecular
mechanism. For example, research in the field of aging shows that hemopoietic stem
cell autophagy has anti-aging effects, and there are many new discoveries in the field
of plant extracts and Chinese herbal medicine [123]. Among them, Chinese herbal
medicine extracts represented by curcumin and resveratrol, some single Chinese
medicine extracts, and classical Chinese medicine prescriptions have partial anti-
aging effects by regulating the molecular mechanism of aging in vivo and in vitro.
Research on the molecular mechanism of TCM prescriptions can be carried out with
the help of the TCM information database TCM-ID [124], which provides compre-
hensive information on TCM, including prescription ingredients, molecular struc-
ture, and functional characteristics of TCM ingredients and active ingredients, TCM
formula, clinical indications, and application of each Chinese herbal medicine. Zhu
et al. designed the framework of the TCM prescription analysis system based on
existing TCM prescription data resources and TCM prescription analysis systems,
using artificial intelligence and data mining technology. This system assists in
various applications, such as knowledge extraction and knowledgebase construction,
establishment and improvement of prescription database, medication experience
sorting and mining, and new drug development [125].
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3. Study on Biomolecular Network Mechanism of TCM Syndromes

The biological basis of syndromes is the key to modernizing TCM. Currently,
research is being conducted on blood stasis, cold syndrome, heat syndrome, etc.
Research on syndromes includes several aspects such as the nature and essence of
the syndrome and micro-syndrome differentiation [126]. The syndrome usually
refers to the overall physiological and pathological state of the human body and
diagnosis based on it. The TCM theory of disease treatment has gradually developed
on the basis of syndrome differentiation. Syndrome theory has accompanied the
development of TCM and has been guiding clinical work as well. However, syn-
dromes and their classification have not been effectively developed in recent years.
The main reason lies in the lack of appropriate supportive scientific data, and what
information exists, is often obtained through subjective inquiry from TCM doctors.
In recent years, the basic research of syndrome biology has shifted from inquiry to
theoretical research and has made a lot of progress. Some studies have tried to
correlate the phenotype of the syndrome with the microbiological molecules, and
then studied the syndrome. They have further combined it with modern scientific
means to prove some of the already existing syndrome theories. Domestically, some
scholars have studied the theory of syndrome biology from the perspective of
biomolecular network [126], and have established a multi-layer architecture from
phenotypic network, biomolecular network to drug network. Based on this network
framework, some typical syndromes such as cold and heat syndromes were studied,
which laid a good foundation for the scientific theoretical research of syndromes. At
the same time, the characteristics of diseases and syndromes on the biological
molecular network were studied, thus providing additional means of finding
methods and drugs for systematic intervention of these disease syndromes. There-
fore, the old topic of TCM syndrome differentiation and treatment has been extended
to the modern field of molecules.

2.3 Application of Artificial Intelligence

This chapter briefly introduces the application of artificial intelligence technology in
network pharmacology. With the rapid accumulation of effective data in the life
science and pharmaceutical research fields, it has led to unique perspectives on the
application of machine learning in new drug development or drug re-positioning.
Information on the structure of small drug molecules is available on the PubChem
[127] and drug bank [128] databases. These databases contain information of listed
drugs, and QSAR is often used to study drugs with annotated information, to find
potential new drugs [44]. The PDB (Protein Data Bank archive) [129] database
reveals drug–target interaction relationship, based on ligand–target structure related
data, information on side effects from Sider [130], and vector data for drug–target
interaction relationships. These can be used to predict potential new targets for drugs
[45]. In terms of omics data, there is a GEO (Gene Expression Omnibus) database

2 Application of Network Pharmacology Based on Artificial Intelligence. . . 67



that stores high-throughput chip data [131], TCGA (The Cancer Genome Atlas)
[132], etc. There are databases on expression profile based on cell response to drugs
under different conditions, used to predict drug interactions/indications [100, 133]
and side effects [134]. In summary, these expansive, high-dimensional databases
provide relevant information on artificial intelligence, which plays an important role
in drug research. The use of artificial intelligence to guide drug screening and
discovery in future drug development may become the norm and bring revolutionary
changes to the pharmaceutical industry.
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Chapter 3
Common Network Pharmacology
Databases

Haiyu Xu, Yanqiong Zhang, and Feifei Guo

Guide to This Chapter
Network pharmacology research is set against the background of vast biological
databases and artificial intelligence. Traditional Chinese Medicine (TCM) involves
ancient manuscripts, documents, and innumerable prescriptions belonging to various
dynasties. Modern research implements many prescriptions or Chinese medicinal
resources for ingredient separation method and analysis, especially in contemporary
molecular pharmacological research. This implementation has taken place due to the
fact that TCM in itself serves as a huge holistic database and currently aids in
systematically sorting out a number of authoritative databases. Majority of these
databases are predicated on the ingredients suggested by TCM compound prescrip-
tions or medicinal resources; the association between TCM and the diseases or
syndromes is established by employing network pharmacology to potential drug
targets. These databases provide valuable input and resources, which are not only
instrumental for the comprehension of the TCM treatment mechanism for diseases
but also strengthen the understanding of TCM theories.

In addition to TCM databases, network pharmacology research is highly depen-
dent on various prominent international public databases. For example, the drug and
chemical databases equip us with valuable data to recognize the physical and
chemical properties, biological activities, targets of action, and druggability of
natural products such as TCM ingredients. Additionally, the statistics of
FDA-approved drugs listed in these databases furnishes the gold standard for
pharmaceutical informatics research. Furthermore, various disease databases like
OMIM, HPO, DisGeNet, etc., endow researchers with ample and reliable annotation
details meant for exploring disease-related genes and disease pathogenesis. The
protein–protein interaction database, including STRING, provides a bridge for
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establishing the correlation between drugs and diseases, as well as for the construc-
tion of a drug intervention disease network.

Therefore, this chapter meticulously explains the databases commonly used in
network pharmacology from three major aspects: Chinese medicine database, chem-
ical and drug database, and disease and protein interaction database.

3.1 TCM Databases Commonly Used in Network
Pharmacology

A typical TCM compound prescription comprises various Chinese herbal medicines,
each of which further contains multiple active ingredients, leading to an extensive
target range of TCM. However, this “multi-ingredient, multi-target and multi-path-
way” approach is precisely the reason for superior efficacy of TCM in treating some
complex diseases such as cancer and diabetes. Based on the above characteristics of
Chinese medicine, the idea of network pharmacology framework proves to be
efficacious in studying the mechanism of action of Chinese medicine. The research
of network pharmacology is an amalgamation of many entities such as Chinese
medicine ingredients, targets, pathways, phenotypes, syndromes, and diseases.
ETCM [1], TCMID [2, 3], and several other databases concentrate on the collection
of data about various chemical ingredients and targets of TCM, whereas SymMap
[4] and TCMGeneDIT [5] focus on the relationship between TCM entities. Among
them, SymMap collects and evaluates the correlation between TCM syndromes,
western medicine symptoms, and TCM ingredients and targets. TCMGeneDIT
creates and investigates the relationship between Chinese medicine, genes, and
diseases via literature mining. TCMSP [6] and BATMAN-TCM [7] aim at the
ingredient-based target prediction and network analysis. Hence, these databases
serve as the major reservoir of vital data and resources for the mechanism research
of TCM. This chapter briefly introduces the network pharmacology related databases
and analysis platforms set up in recent years, with the aim to get familiar with the
Traditional Chinese Medicine database analogous to network pharmacology, so as to
efficiently comprehend the TCM data resources and data platforms crucial to
network pharmacology research. This chapter introduces each of the TCM databases
from the aspects of database introduction, database structure, main functions, data-
base characteristics, etc.

3.1.1 ETCM: Encyclopedia of Traditional Chinese Medicine

ETCM [1] is an all-inclusive resource database of TCM designed and developed in
2018 by Xu Haiyu’s team, Institute of Chinese Materia Medica, China Academy of
Chinese Medical Sciences and Professor Liu’s team from the State Key Laboratory
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of Natural and Biomimetic Drugs, and Peking University School of Pharmaceutical
Sciences. The main purpose of ETCM includes: I. Providing comprehensive and
standardized information about commonly used Chinese herbal medicines, Chinese
herbal compound prescriptions and their ingredients, and making available conve-
nient resources to cater to the users’ need of acquiring inclusive information about
various Chinese medicines and prescriptions; II. Considering the resemblance of
chemical fingerprints between TCM ingredients and several known drugs, carry out
target prediction of TCM ingredients; III. System analysis function—enables the
users to establish a network within the website in order to explore the relationship
between TCM, compound prescriptions, distinct ingredients, gene targets, and
related pathways or diseases. According to the network pharmacology strategies,
ETCM seeks to clarify the potential relationship between TCM, targets, and modern
diseases, as well as reveal the action mechanism of this traditional system of health
and well-being. ETCM has become instrumental in promoting basic research,
clinical application, and drug development of TCM.

3.1.1.1 Data Structure

ETCM exhibits 402 Traditional Chinese Medicines (origin, flavor and meridian
tropism, indications, ingredients, quality control standards, etc.), 3959 TCM com-
pound prescriptions (name, dosage form, composition, indications, ingredients, etc.),
7284 chemical ingredients of TCM, 2266 effective or predicted drug targets, and
3027 related diseases (as shown in Fig. 3.1 [1]). Besides, the Traditional Chinese
Medicines are further classified according to their taste (acid, bitter, sweet, pungent,
and salty), medicinal properties (chilly, hot, warm, cold, and steady), and meridian
tropism (lung meridian, liver meridian, etc.). By analyzing the pie chart of each
category above, users can obtain a complete list of Chinese herbal medicines
belonging to each category. The details of each listed Chinese herbal medicine can
be retrieved by clicking on its Chinese or Pinyin name, including origin, best harvest
time, flavor, meridian tropism, indications and chemical ingredients, images of each
herb, its distribution in China, and quality control standards. The TCM information
page also dispenses the names of all compound prescriptions containing the medi-
cine. Click on each name of the compound prescription to directly access the link to
the information page of a particular compound prescription. Gene Ontology (GO) or
pathways enriched by specific ingredients, Traditional Chinese Medicines, and
compound prescriptions or genes related to certain distinctive diseases remain
incorporated in ETCM.
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3.1.1.2 Function Introduction

(1) Target Prediction of Traditional Chinese Medicine Ingredients

This database employs the MedChem Studio (version 3.0) to predict the potential
targets of TCM ingredients. MedChem Studio—a drug similarity search tool, is
utilized to find known drugs that possess high structural similarity (Tanimoto > 0.8)
with TCM ingredients, facilitating target prediction. The value range of Tanimoto or
Jaccard coefficient is set within the scope of [0,1], where “0” indicates that the
structure of the ingredient is completely different from that of the known drug, and
“1” indicates that the two ingredients possess the same structure. Based on the TCM
ingredients inserted by users, MedChem Studio generates a list of target candidates
of Tanimoto > 0.8 after screening. Physiological functions and participation path-
ways of drug target candidates are retrieved from Gene Ontology and KEGG
databases.

(2) Network Analysis

In a bid to competently decipher the relationship among ingredients, Traditional
Chinese Medicines, compound prescriptions, targets, pathways involved in targets
and diseases, ETCM provides a system analysis function, enabling users to establish
networks linking two or more of the items mentioned above. By inputting query
items and selecting one or more categories, users can construct TCM–ingredient–
target, compound prescription–TCM–pathway, compound prescription–TCM–

target–disease, and other networks in the system, as shown in Fig. 3.2 [1]. The
nodes and edges of a network can also be marked or modified to facilitate supple-
mental research.

(3) Prediction and Evaluation of Drug-like Properties of Ingredients Based on
Compound ADMET

To conduct the investigation of drug-like properties of each concerned ingredient,
the pharmacokinetic parameters calculated by the ADMET module based on the
Pipeline Pilot platform are also provided in ETCM, including water solubility,
permeability of blood–brain barrier, CYP450 2D6 inhibition rate, hepatotoxicity,
human intestinal absorption, and plasma protein binding rate. The QED (Quantita-
tive Estimate of Drug-Likeness) was used to quantitatively analyze the drug-like
properties of the ingredient. The value range of QED is set to (0,1), where a 0 QED
value indicates that all the properties of the compound are not conducive to the
preparation of a medicine; and a 1 QED value indicates that the compound has
excellent druggability. Various investigations have shown that the average QED
value of attractive ingredients in drug development is 0.67, and that of unattractive
ingredients is 0.49. According to the QED values (i.e., druggability), all 7274 TCM
ingredients assembled by ETCM were divided into three groups ranging by their
attractiveness: good (QED > 0.67), medium (0.49 � QED � 0.67), and weak
(QED < 0.49), providing a certain basis for the follow-up study of the ingredients.
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3.1.1.3 Characteristics

(1) The signs and symptoms provided in the 2015 edition of Chinese Pharmaco-
poeia appear different from modern diseases. Therefore, ETCM strives to
exploit the genetic relationship between TCM ingredients and modern diseases
so as to establish the relationship between TCM indications and modern
diseases.

(2) Network analysis: For a proficient understanding of the correlation between
ingredients, TCM, compound prescriptions, targets, gene-related channels, and
diseases, ETCM employs the dynamic browser-based visualization library vis.js
(4.21.0) network module, which allows users to create a multi-level interaction
network between Traditional Chinese Medicine, compound prescriptions, tar-
gets, and diseases.

(3) Compared to other TCM-related databases, ETCM has upgraded itself with
several innovative modules and functions, including: origin distribution maps
of TCM, images of Chinese herbal medicines, quality control standards of TCM
and compound prescriptions, quantitative information of index ingredients,
ADME parameters of ingredients, drug similarity evaluation, link to ChEMBL
and PubChem databases, network construction and analysis, etc.

3.1.2 SymMap: Integrated TCM Database Focusing
on the Association of Syndromes

SymMap [4] is an integrated TCM database that focuses on the association of
syndromes. The database includes TCM syndromes, Chinese herbal medicines,
Western medicine symptoms, syndrome-associated diseases, Chinese herbal medi-
cine ingredients, and drug targets. The association between these six entities gener-
ates a heterogeneous network. In this way, SymMap associates TCM with modern
medicine at both the phenotypic and molecular level. SymMap analyzes and grades
the associations between the six types of entities based on statistical tests, aiding
pharmacists in screening the entities based on their importance and thus regulating
drug discovery.

3.1.2.1 Data Structure

The six types of entity libraries of SymMap include 1717 types of TCM syndromes,
961 types of western medical symptoms, 499 types of Chinese herbs, 19,595 types of
drug ingredients, 4302 types of drug targets, and 5235 types of diseases. The direct
association among the six types of entities in SymMap includes 6638 types of
Chinese herbal medicines–TCM syndrome association, 2978 types of TCM
syndromes–Western medicine symptom association, 48,372 types of Chinese herbal
medicines–medicine ingredient association, 12,107 types of Western medicine
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symptoms–disease association, 29,370 types of medicine ingredients–drug target
association, and 7256 types of genes–disease association (as shown in Fig. 3.3 [4]).
For example, under the TCM symptom–Chinese herbal medicine association, each
Chinese herbal medicine appears associated with an average of 13.30 types of TCM
syndromes, and each TCM symptom appears associated with an average of 3.87
types of Chinese herbal medicines. Under the association set of TCM syndromes–
Western medicine symptoms provided by SymMap, each TCM syndrome appears
associated with 1.74 types of Western medicine symptoms, and each Western
medicine symptom appears associated with 3.13 types of TCM syndromes.

In the middle of the picture are the six entity sets included in SymMap. The blue
associations between the six categories of entities represent the six direct entity
associations, whose names and numbers are listed on the left. Nine indirect entity
associations between six types of entities are listed on the right.

3.1.2.2 Function Introduction

(1) Retrieval Methods

Users can browse, search, and download SymMap’s six sections and interrelation-
ships through the SymMap webpage. One can click the search button on the home
page and enter a search item to complete the search. Each part of the SymMap is
capable of providing a multi-type search box with different keywords. For example,
on searching for specific western medicine symptoms, three different keywords are
allowed, including the name of the symptom, the symptom ID included in other
public databases, and the synonyms of the symptom. Users are also allowed to
download the search results of SymMap. Additionally, after entering the search item,
SymMap’s automatic search function provides related entries for users to choose
from, and then complete the SymMap search.

(2) SymMap Retrieval Results

After completing a SymMap search, the items that meet the criteria are displayed
in a summary table at the bottom of the search interface; the first column is the
SymMap ID. Users can click on the SymMap ID hyperlink in order to get detailed
information about that item. In the detail interface, SymMap consists of detailed
description information and searches the network visualization images and tables
associated with the other five parts, by retrieving entries. Furthermore, the list of all
items in the six sections can be viewed in the browsing interface, and all the lists can
be downloaded from the webpage.

After browsing or searching SymMap, users can click on the SymMap ID of each
specific entry to enter the details interface. The interface provides a summary of the
entry, a web panel that visualizes the relationship between the six parts, and a list
displaying the association between the searched item and the other five entities.
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(3) Summary Panel

The summary panel displays the summary information of the retrieved items, as
shown in Fig. 3.4 [4]. The SymMap database generates three kinds of information:
(1) name and gene symbol; (2) explanation information (definition and classifica-
tion); (3) external links for other databases, which are directly accessible.

(4) Network Panel

The network panel provides a visual interface of the network associated with the
retrieval items and other entities, as shown in Fig. 3.5 [4]. Nodes in the network are
marked with different colors in accordance with their types and assigned different
positions. The size of a node is determined by the range of its connectivity in the
network. When the user hovers the mouse over a node, the node is expanded and its
related associations are highlighted. In addition, the name of the node is displayed in
a balloon textbox next to it.

Each node in the image is linked to the detailed information interface of its
corresponding entity via hyperlinks. Users can change the layout of the network
using the control panel, zoom in and out of the whole network, as well as download
network images. To avoid having plenty of nodes in the network, SymMap tends to
show only the indirect association between entities with FDR (BH)< 0.05 [8], in the
network panel.

(5) Association List

The association list provides information on network visualization, including the
association information between its retrieval items and the other five types of
entities, as shown in Fig. 3.6 [4]. Firstly, users can choose to view the association
between the retrieval item and one of the other five types of entities. Second, they can
select statistical analysis results of different strictness levels to the present associa-
tion. Thirdly, users can also sort out the results according to SymMap IDs, P-values,
FDRs (BH), and FDRs (Bonferroni). Finally, clicking on the “download” button,
users can download the adjusted association list.

Fig. 3.4 Summary panel of retrieval result page [4]
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3.1.2.3 Characteristics

SymMap centers around the association between syndromes and Chinese medicine
data. Establishment of the relationship between TCM syndromes and Western
medicine symptoms and Western medicine diseases gives rise to the bridge between
TCM and modern medicine. Furthermore, SymMap also quantitatively illustrates the
relationship between entity data, and offers quantitative association data for the
association study amid the entity data of Chinese medicine.

3.1.3 BATMAN-TCM: Bioinformatics Analysis Platform
for the Molecular Mechanism of Traditional Chinese
Medicine

BATMAN-TCM [7] is an online bioinformatics analysis platform for evaluating the
action mechanism of TCM, and is used to reveal the complex interaction between the
material basis of TCM and the physiological process of the human body. The main
functions of BATMAN-TCM include: 1. Target prediction of TCM ingredients;
2. Target functional analysis; 3. Visualization of the interaction network of
ingredient–target–pathway/disease; 4. Comparative analysis of multiple Traditional
Chinese Medicines. The BATMAN-TCM tool was successfully applied to predict
the possible effect of Qishen Yiqi Droplet on the renin–angiotensin system. Subse-
quent experimental verification revealed that Qishen Yiqi Droplet provided myo-
cardial protective function by regulating the renin–angiotensin system. The
BATMAN-TCM platform is committed to revealing the action mechanism of
TCM by engaging the integrated strategy of “multi-component, multi-target, and
multi-pathway.” The prediction of this platform is anticipated to provide valuable
clues for subsequent experimental verification, thereby endorsing the research
endeavors on the action mechanism of TCM.

3.1.3.1 Data Structure

BATMAN-TCM supports three kinds of input: 1. Pinyin names of Chinese herbal
compound prescription, for example, Huo Xiang Zheng Qi San; 2. A list of Chinese
herbal medicine with various Pinyin, English, or Latin names (Ren Shen, Ginseng,
or Panax Ginseng); 3. List of compound prescriptions that requires the input of the
compound structures in the PubChem_CID or InChI format. For the above three
input types, including compound prescription, Chinese herbal medicine, and com-
pound structure, BATMAN-TCM further retrieves their constituent compounds
from the background database, for subsequent analysis.

Parameter setting: Score cut-off: Default value is considered to be 20. For each
compound, the predicted candidate targets are assigned a target predicted score with
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a score range of [0,1000]. Only potential targets (including known targets) with a
score greater than 20 are included in the subsequent functional analysis.

Adjusted P-Value: Default value is considered to be 0.05. Functional items with
statistically significant enrichment are determined based on this parameter. The
enrichment of a feature entry is considered statistically significant only if the
adjusted P-value is less than the value set by the user. Adjusted P-value refers to
the P-value obtained after correction, employing various Benjamini–Hochberg
tests [8].

3.1.3.2 Function Introduction

(1) Function 1: Target Prediction of TCM Ingredients

For the Chinese medicinal compounds entered by the users, a list of targets with a
score greater than the score cut-off is obtained after BATMAN-TCM predicts the
ingredients through the target. These targets are considered as potential targets that
satisfy the screening requirements (as shown in Fig. 3.7 [7]). All subsequent analyses
depend on the potential target results of this step. Score cut-off can be fixed by the
user while submitting the analysis, or can be adjusted on the results page.

(2) Function 2: Functional Analysis of Potential Targets

This function undertakes the enrichment analysis of KEGG pathway, GO func-
tion entries, and OMIM/TTD disease phenotypes for potential targets (as shown in
Fig. 3.8 [7]). Adjusted P-value parameter set by the user is used to decide whether an
item is enriched or not. The result table of functional enrichment analysis enlists
details on the adjusted P-value corresponding to the enriched item and the number
and list of potential targets contained in a particular item. In response to the
enrichment results of the KEGG pathway, an additional coverage map of potential
targets in this pathway is also provided.

(3) Function 3: Visualization of Ingredient–target–pathway/disease Interaction
Network

In the ingredient–target–pathway/disease interaction network view, three types of
associations are displayed, namely, the association between the user’s input of TCM
ingredients and their potential targets, the association between the potential targets
and biological pathways, and the association between the potential targets and the
enriched disease entries (as shown in Fig. 3.9 [7]). The visualization network can
also be adjusted by modifying the number of associated compounds of potential
targets, in order to focus on the association between crucial targets and their related
functions.

(4) Function 4: Comparative Analysis

Users can submit multiple tasks for analysis simultaneously, and the Batman-
TCM tool compares the calculation results from target, function, network, and other
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aspects. In BATMAN-TCM, each submitted task is defined as a cluster. The Venn
diagram of target comparison between different clusters can be viewed on the target
prediction results page. The enrichment and coverage of different clusters on the
same functional item are displayed on the function enrichment analysis result page.

Fig. 3.7 TCM target prediction results page [7]. (a) Both the parameters, Score cut-off and
Adjusted P-value cut-off, can be reset on this page. Once the above two parameters are adjusted,
the analysis results of all the tests are updated accordingly. (b) User inputs overview, including user
input of compound prescription name, composition of Chinese herbal medicine, and retrieval of
compound list (c) Target prediction table: In this table, each ingredient lists its potential target and
predicted score. In addition, potential targets listed in DrugBank, KEGG, or TTD databases are
marked as known targets
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(5) Function 5: Retrieving TCM Through Function

By clicking the Function2TCM button on the home page, users can view a list of
TCM compound prescriptions and Chinese herbal medicines associated with a
particular pathway, disease, or GO entry.

Fig. 3.9 Ingredient–target–pathway–disease association network [7]. In this network, TCM ingre-
dients, potential targets, pathways, and diseases are classified into four different types of nodes,
which are distinguished by different colors and shapes. In addition, there are three types of
associations, namely, the association between the user input of TCM ingredients and their potential
targets, the association between the potential targets and biological pathways, and the association
between the potential targets and the enriched disease entries
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3.1.3.3 Characteristics

BATMAN-TCM is an online bioinformatics analysis tool used to evaluate the action
mechanism of TCM. It is developed by a team led by distinguished Academician He
Fuchu of the Academy of Military Medical Sciences. It is a highly proficient data
analysis tool that is capable of completing target prediction and functional analysis
of TCM with just one click. Moreover, the system provides a comparative analysis
between different drugs, which facilitates the comparison of drugs with different
roles in TCM formulation, as well as a retrieval function of TCM through pathways.

3.1.4 TCMID: TCM Integrated Database for Molecular
Mechanism Analysis of TCM

TCMID [2, 3] records TCM-related information derived from different resources via
text mining. TCMID consists of six data fields: prescription, medicinal material,
ingredient, target, drug, and disease. The main goal is to establish a relationship
between Chinese herbal medicinal ingredients and diseases through disease genes/
proteins, which may also serve as potential drug targets. The platform’s web-based
software represents an integrated relationships network portraying the association
between Chinese herbal medicines and the diseases they treat, and the active
ingredients and their targets, which greatly assists in the research of combination
therapies and provides a comprehensive approach to study the underlying mecha-
nisms of TCM at the molecular level. The main networks TCMID has built are:
1. Chinese herbal medicine–disease network; 2. Ingredients of Chinese herbal
medicine–target interaction network; 3. Chinese herbal medicine–target–disease–
medicine network.

3.1.4.1 Data Structure

The internal relationship of the six data fields in the database system is shown in
Fig. 3.10 [3]. The prescription is mainly composed of herbs and the herbal drugs are
known to contain various ingredients (compounds). Any ingredient (or drug) can
interact with its target (protein), and the disease may be caused by gene/protein
function.

Database structure: A–E: six data fields for prescriptions, medicinal materials,
ingredients, diseases, targets, and drugs.

1–5: 1. The prescription is composed of Chinese herbal medicine. 2. Chinese
herbal medicine contains ingredients. 3. Interaction between ingredients and targets.
4. Target determination of drugs. 5. Target causes disease.
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Since the information and data derived from six different fields is connected,
users can utilize any of the data fields to generate an inquiry into the database and
follow the link to retrieve relevant information.

For example, the user can select herb as the entry point and use the English name
of the herb to make an inquiry; the result page displays the information of the
Chinese herbal medicine inquired, and display its links to the prescription and herbal
ingredients, which enables the user to interact with the target through these
hyperlinks.

3.1.4.2 Function Introduction

(1) Function 1: Chinese Herbal Medicine–Disease Network

In the TCM framework, Chinese herbal medicines or prescriptions are formulated
under a specific “mode” (called “syndrome” in Chinese), which is a description of a
specific functional state, while modern medicinal drugs are designed to treat only
certain diseases. Therefore, it proves to be highly beneficial to associate Chinese
herbal medicines or prescriptions with the diseases they treat. Since a certain disease-
causing gene/protein may be the target of a certain herb component, TCMID
developed a Chinese herbal medicine–disease network based upon this view.

(2) Function 2: Chinese Herbal Medicine Ingredient–Target Interaction Network

The network emerges as a medium to explore the interactions between the
ingredients and enhance research methods on combination treatments. In this net-
work, if these ingredients are able to act onto their target protein and the activity is
supported by experimental data or calculation methods, then the protein and the
ingredient are said to be related to each other. Therefore, based on the network, if
both the ingredients can interact with the same protein or different proteins interact
with each other, users can infer the potential synergy/antagonism between the two
ingredients. However, TCMID exhibits a shortcoming concerning the association
between ingredients and targets, that is, the corresponding ingredients can only be
identified by inputting the target, but the targets of TCM or the ingredient cannot be
identified.

(3) Function 3: Chinese Herbal Medicine Ingredients–Target–Disease–Drug
Network

With the aim of exploring the potential action mechanisms of Chinese herbal
ingredients, the network connects these ingredients to their potential targets, related
diseases, and related medicines. In addition, a tool is established to reveal relation-
ships in a network. This tool provides the users with an intuitive perspective in order
to conclude the mechanism of disease treatment and identify potential component
targets through their connections. If an ingredient of a Chinese herbal medicine is
able to interact with protein targets associated with a disease, it indicates that the
ingredient exhibits a potential mechanism for treating the disease. Besides, if a
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Chinese herbal ingredient has the same target as a medicine, it implies that the
ingredient has a potential pharmacological effect.

3.1.4.3 Characteristics

TCMID proves immensely valuable as it contains a relatively comprehensive variety
of Traditional Chinese Medicines and ingredients; it contains 8159 Traditional
Chinese Medicines and 43,413 chemical components. Although the current version
of the TCMID database displays the “target” option, it can only be used to inquire
about compounds by means of targets. It can neither be used to inquire through
Chinese herbal medicine or compounds, nor can it display the Chinese herbal
medicine–target–disease network. The TCMID system gives rise to novel research
ideas for studying the molecular level mechanism of Chinese medicine moderniza-
tion. As the TCM treatment of diseases tends to become more comprehensive,
adopting a systematic approach to explore the potential mechanisms and therapeutic
effects of TCM becomes even more essential. Therefore, this system strives to merge
the knowledge accumulated over 2000 years of clinical practices with the modern
experiences or calculation methods, by uniting the common features of modern
Western medicine and TCM—Chinese herbal medicine ingredients/compounds
with their goals. This comprehensive information is not only conducive to the
moderate development of TCM, but also facilitates the development of network
pharmacology. Moreover, with the progress of system biology, several new omics
methods, such as proteomics and metabolomics, have been gradually embraced in
TCM research. As a result, the amalgamation of such information proves immensely
beneficial in promoting the systematic research of TCM.

3.1.5 Other TCM Databases

TCMID [9] serves as an information platform, it provides information on all aspects
of TCM, including prescriptions, Chinese herbal medicine that constitutes each
prescription, Chinese herbal medicine ingredients, molecular structure and func-
tional properties of active compounds, clinical indications and applications of each
prescription, efficacy and toxic effects of Chinese herbal medicine ingredients, and
related literature. Currently, TCMID contains information on 1588 prescriptions,
1313 Chinese herbal medicines, 5669 Chinese herbal ingredients, and 3725 3D
structures of drug ingredients. The value of the data in TCMID lies in that it can
help solve problems such as active constituents identification and the molecular
mechanism research of TCM to a certain extent [10]. To solve this problem, two
separate studies used some data from TCMID. Firstly, the three-dimensional struc-
tures of specific herbal ingredients were used to predict their molecular targets
through computer simulation. The identified targets were further tested to determine
whether the known therapeutic effects of these ingredients could be explained by
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interfering with the intended effects of these targets. Secondly, we developed an
artificial intelligence (AI) system to verify the new TCM compound preparations
using known TCM prescriptions. The AI system used some newly published TCM
prescriptions that have not been included in TCMID, for testing.

In TCMSP [6], the systematic pharmacology of TCM is used as the framework to
establish a systematic TCM pharmacology database and analysis platform. It con-
tains the drug target and disease action of each active compound, and can automat-
ically establish the compound target and target disease network, allowing users to
view and analyze the drug action mechanism. TCMSP aims to promote the devel-
opment of Chinese herbal medicines, the integration of modern and traditional
medicine, and the discovery and development of medicines. TCMSP contains a
large number of Chinese herbal ingredients and can be used to identify drug target
networks and drug disease networks, which is helpful in revealing the mechanism of
action of TCM and its formulation, and to discover drugs and drug combinations.

TCMGeneDIT [5] is a database that provides association relationships among
TCM, genes, diseases, TCM functions, and TCM ingredients, which have been
mined from a large number of biomedical documents by researchers from Taiwan
University. The relationship between TCM, genes, and diseases can be examined by
transmission of intermediate objects. Information on the interaction between
integrins and proteins and biological pathways is also used to investigate gene
regulation relationships related to the effects of Chinese medicine. TCMGeneDIT
helps people understand the possible mechanism of action of TCM through gene
regulation relationships and the contribution of synergistic and antagonistic effects.

3.2 Biological Databases Commonly Used in Network
Pharmacology

In recent years, the establishment of various biological databases has provided
reliable and powerful data support for network pharmacology research. Biological
databases commonly used in network pharmacology include disease phenotype and
genotype association databases (OMIM, HPO, DisGeNET), drug target information
databases (TTD, PDB, KEGG), and biological molecular interaction databases
(BioGRID, DIP, IntAct, MINT, STRING). Based on these biological databases
containing clinical and basic research results, network pharmacology research can
be used to construct the “disease phenotype–gene–target–drug” interaction network,
and investigate the characteristics and mechanism of drug intervention on the disease
network.
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3.2.1 Online Mendelian Inheritance in Man-OMIM

3.2.1.1 Database Content and Its Application in Network Pharmacology
Research

The OMIM database is a comprehensive and authoritative database on human genes
and hereditary traits. This database focuses on the relationship between disease
phenotypes and genotypes [11, 12], and contains information on all Mendelian
genetic diseases and more than 15,000 human genes, including all known genetic
diseases, genetically determined traits, and their genes. In addition to briefly describ-
ing the clinical characteristics, diagnosis, differential diagnosis, treatment, and
prevention of various diseases, the linkage relationship of known pathogenic
genes, chromosomal location, composition structure and function, animal model,
and other information are also provided, with reference to related literature that have
been manually checked and verified [11]. The genetic diseases, traits, and genes
established in OMIM (data classification and entries are detailed, as shown in
Table 3.1) are classified with OMIM numbers. Reports about diseases must be
prefixed with the appropriate OMIM numbers to clarify which genetic disease is
being discussed [12]. The OMIM database provides detailed, updated, real-time, and
freely downloadable data on disease-related genes for network pharmacology
research, and provides reliable data support for constructing and mining the inter-
action between disease-related genes and drug-target genes.

3.2.1.2 Data Structure

OMIM not only contains the related data of all single-gene diseases that follow the
Mendelian inheritance pattern, but also contains the data of chromosomal diseases,

Table 3.1 Overall OMIM data status

MIM identifier
Autosomal
inheritance

X-linked
inheritance

Y-linked
inheritance

Mitochondrial
inheritance Total

Well-defined locus 15,281 733 49 37 16,100

Locus of known
phenotypes

44 0 0 0 44

Descriptions that usually
have phenotypes

5195 336 5 33 5569

Mendelian genetic traits
with unknown molecular
mechanism

1438 119 4 0 1561

Whether the main pheno-
type is Mendelian pheno-
type has not been
determined

1644 105 3 0 1752

Total 23,602 1293 61 70 25,026
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polygenetic diseases, and mitochondrial diseases, covering an unusually wide range
of diseases. OMIM provides information on everything from the basics to the
clinical aspects of every item, that is, every disease. The specific information
includes Description (basic description), Mapping (genetic positioning), Molecular
Genetics, Inheritance (mode of Inheritance), Mapping (genetic positioning), Molec-
ular Genetics, and Population Genetics. Each aspect of the description provides links
to the corresponding reference literature.

3.2.1.3 Function Introduction

There are many types of genetic diseases, but they are relatively rare, and it is
difficult for clinicians and geneticists to know every genetic disease. OMIM pro-
vides a large amount of information on clinical features, diagnosis, clinical manage-
ment, and gene therapy of Mendelian genetic diseases. It also provides a concise and
pragmatic clinical synopsis, and more relevant information can be obtained through
the references links connected to other databases such as GeneTests, which can
provide diagnostic test information on a variety of genetic diseases. OMIM is a
powerful tool for clinical and genetic counseling professionals. At the same time,
OMIM can provide information on clinical phenotypes and pathogenic genes of
specific diseases (such as polygenic diseases), including gene positioning, molecular
mechanism, pathology, animal model, mode of inheritance, etc. The description of
each aspect includes a link to the corresponding literature, so that researchers can
quickly and comprehensively grasp the main information and the latest develop-
ments in the disease.

3.2.1.4 Characteristics

OMIM is a comprehensive database of human genes and genetic diseases; it contains
information on all Mendelian inherited diseases and human genetics, in addition to a
brief description of the clinical features, diagnosis, treatment, and preventive mea-
sures of various diseases. It also provides information on the linkage relationship,
chromosome positioning, function, and animal model of known disease-causing
genes, and provides reference to relevant carefully curated literature. OMIM pro-
vides real-time, authoritative, comprehensive, and practical information. However,
the OMIM database schema and data model are not open, hence, SQL query
statements cannot be used to write your own query statements to query information
in the database. For complex diseases such as asthma, due to the extremely complex
types of data that need to be analyzed, the solutions currently provided by OMIM are
unable to meet the growing research needs. Moreover, OMIM does not contain as
much information as the Locus-Specific Database: mutation data is not comprehen-
sive, and the database lacks primer design information, gene expression profiles, etc.
Furthermore, data annotation is limited to genetics.
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3.2.2 Human Phenotypic Ontology Database-HPO

3.2.2.1 Database Content and Its Application in Network Pharmacology
Research

The HPO database was established in 2007 by Peter N Robinson and Sebastian
Köhler of the Charité University Hospital in Berlin. It provides information on
medical-related phenotypes, disease phenotype annotations, and ontology informa-
tion based on phenotypes. HPO covers more than 13,000 terms and more than
156,000 genetic disease annotations in several fields such as anatomy, cell types,
biological functions, embryology, and pathology. Most of the ontological informa-
tion is in the form of Directed Acyclic Graphs (DAG), for example, the term
metatarsal hypoplasia/dysplasia refers to the hypoplasia/dysplasia and abnormal
metatarsal morphology that involve children’s foot bones. Encoding multiple parent
terms in DAG increases the flexibility and descriptiveness of the ontology informa-
tion. The term “parent–child relationship” is transitive, which means that annotations
inherit all paths to the root, for example, abnormal left ventricular morphology—
abnormal ventricular morphology. At present, HPO is widely used in computing
deep phenotype and precision medicine, integrating clinical data into translational
research, and has been used as the criteria for determining phenotypic abnormalities
by multiple international organizations for rare diseases, registration authorities,
clinical laboratories, biomedical resources, clinical software tools, and other groups
[13–15]. In network pharmacology research, HPO can provide specific phenotype
description of disease symptoms and related gene sets, which can help users to
collect relevant gene information based on the pathological link of the target disease,
so as to explore the network regulation mechanism of drugs to a certain pathological
link in the progression of the target disease. The phenotypic classifications covered
by HPO are listed in Table 3.2 [13–15].

Table 3.2 Phenotypic classifications covered by HPO

Phenotypic type Examples of entries

Morphological Abnormality Arachnodactyly (HP:0001166)

Abnormal Process (organ) Epistaxis (HP:0000421)

Abnormal Process (cellular) Abnormality of Krebs Cycle

Metabolism (HP:0000816)

Abnormal Laboratory Finding Glycosuria (HP:0003076)

Electrophysiological Abnormality Hypsarrhythmia (HP:0002521)

Abnormality by Medical Imaging Choroid Plexus Cyst (HP:0002190)

Behavioral Abnormality Self-Mutilation (HP:0000742)
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3.2.2.2 Data Structure

Each term in HPO describes a clinical phenotype. These terms may be general terms,
such as abnormal ear morphology, or specialized terms, such as chorioretinal
atrophy. Each term is also assigned to five sub-ontology information, namely
phenotypic abnormality, mode of inheritance, clinical modifier, clinical course,
and frequency of phenotype. Each of these terms has a unique identity, namely an
HPO label, for example “HP:0001140” for “globular ectoderm.” The database has
specific definitions and descriptions for most phenotypes and provides sources of
evidence. For example, bulbar epithelioma is a benign tumor usually found at the
junction of the cornea and the sclera (limbal epithelioma of the cornea).

3.2.2.3 Function Introduction

HPO is often used in clinical diagnosis, phenotypic genomic diagnosis, bioinfor-
matics data mining, and other tools and algorithms [16]. Commonly used tools
include: ① Clinical diagnostic tools: HPO provides a calculation basis for fuzzy
and specific weighted phenotype matching algorithms to support differential diag-
nosis. Users can click on the representative phenotypic abnormalities (signs, symp-
toms, laboratory measurements, etc.) in the HPO term list to query. ② Exome/
genome diagnosis and research tools: HPO includes a series of algorithm-based Java
tools to achieve phenotype-driven optimization of Mendelian disease variants. These
tools can be used to export VCF files and HPO term lists extracted from exomes or
genomes related to phenotypic abnormalities. ③ Copy number variation diagnostic
tools: Microarray comparative genomic hybridization and related tests are often used
as screening tests for indications such as developmental retardation and congenital
malformations. These tests can detect copy number variation (deletion and replica-
tion). Several copy number variations are found in all individuals, so it is difficult to
determine whether copy number variations are associated with disease. Based on
HPO, it is possible to analyze whether the gene copy number variation is related to
the phenotypic abnormalities observed in patients, and then determine the correla-
tion between copy number variation and disease. ④ Clinical phenotype tools: HPO
focuses on accurate clinical phenotyping to facilitate disease classification and the
discovery of candidate marker genes.

3.2.2.4 Characteristics and Deficiencies

HPO provides researchers and clinicians with well-defined, comprehensive, and
interoperable resources for computational analysis of human disease phenotypes. It
is used as a basic tool for disease phenotype analysis in clinical and research
environments, and integrates complex phenotype information from different disci-
plines and databases. At first, HPO terms focused on rare diseases, mainly
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Mendelian genetic diseases. Although HPO terms can now also be used for common
diseases, its resources also cover precision medicine, cancer, and non-Mendelian
genetic diseases; however, the coverage needs to be further extended.

3.2.3 Disease Gene Association Database-DisGeNET

The DisGeNET database is an open source database that integrates disease and gene-
related information and related drug information, and links to other source databases
and literature. The current version of DisGeNET (V6.0) contains 17,549 genes
associated with 24,166 diseases, abnormalities, traits, and clinical or abnormal
human phenotypes, totaling 628,685 gene–disease associations (GDAs). There are
also 210,498 mutation–disease associations (VDAs) consisting of 117,337 variants
and 10,358 diseases, traits, and phenotypes. The information sources of GDAs are
mainly composed of the following 4 parts: ① CURATED: GDA information
provided by UniProt, PsyGeNET, Orphanet, CGI, CTD (Human Data), ClinGen,
and Genomics England PanelApp professional databases; ② ANIMAL MODELS:
RGD, MGD, and CTD (mouse and rat data). These data include GDAs provided by
disease information resources of animal models (currently rats and mice), and
homology analysis is used to map the association with human genes. The data
includes GDAs provided by animal model (currently for rats and mice) disease
information resources, and use homology analysis to map the association with
human genes; ③ INFERRED: This part of the data refers to GDAs inferred from
Human Phenotype Ontology (HPO) and VDAs. Its database sources include HPO,
CLINVAR, GWAS Catalog, and GWAS DB; ④ LITERATURE: Including
LHGDN and BeFree databases. Information sources of VDAs mainly include: ①
CURATED: Including UniProt, ClinVar, GWAS Catalog, and GWAS db databases;
② INFERRED: SETH tool. As a multifunctional information platform, the
DisGeNET database is being widely used in basic molecular research of human
diseases and their complications, the mining of disease gene characteristics, the
biological basic research on drug therapy effect and adverse drug reactions, as well
as for the validation of calculated predicted disease genes and the evaluation of the
performance of text mining methods [17, 18].

3.2.3.1 Data Structure

To integrate gene–disease association data, the DisGeNET database has developed
association type ontology. If there is a relationship between gene/protein and
disease, then all association types found in the original source database are formally
constructed by the parent gene–disease association class and expressed as ontology
classes. It is an OWL Ontology that has been integrated into the Sematic Science
Integrated Ontology (SIO), and provides necessary types and relationships for the
description of abundant objects, processes, and their properties.
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3.2.3.2 Function Introduction

In the DisGeNET database, most GDAs are identified through BeFree text mining
literature and are integrated with human genetics databases from various authorita-
tive sources. Each GDA is clearly annotated with its supporting evidence sources,
which makes DisGeNET a reference resource for evidence-based knowledge dis-
covery [19, 20]. DisGeNET contains a compilation of disease-related genes from
different open source databases. DiGeNet can be used to obtain disease information
related to gene mutations, information related to diseases and genes, types of
associations between specific genes and disease, and newly discovered information
on related genes and mutations for a particular disease.

3.2.3.3 Characteristics

The major feature of the DisGeNET database is data integration, standardization,
and tracking and querying of evidence sources. The integration is performed through
gene and disease vocabulary mapping and the use of the DisGeNET associated type
ontology. In addition, GDAs are organized according to their types and levels of
evidence, such as CURATED, PREDICTED, and LITERATURE, and are also
graded according to supporting evidence, to prioritize and simplify their exploration.
The goal of DisGeNET is to integrate the basic genetic information of all diseases for
reference in a knowledgebase, to fill in genotype and phenotype differences. Cur-
rently, the DisGeNET platform is used to study biomedical problems.

3.2.4 Disease Information Data—MalaCards

The MalaCards Human Disease Database is a comprehensive searchable database
integrating human diseases and their annotations from major database websites
[21]. It has been jointly developed by Weizmann Institute of Science, the world’s
leading interdisciplinary basic research institution for natural and precision sciences
in Israel, and Utah Valley University. The database is a comprehensive disease
summary mined from 68 data sources and contains 20,000 disease entries in
6 categories worldwide. Each disease contains 15 small notes, including a summary,
symptoms, anatomical background, drugs, genetic testing, mutation information,
and some literature related to the disease. The database integrates information from
complementary sources, and through its sophisticated search capabilities, relational
database structure, and convenient data transfer capabilities, enables the processing
of a large number of disease annotation resources. It also facilitates functions such as
system analysis and genome sequence interpretation.
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3.2.4.1 Introduction and Usage of the Database

(1) Disease Query

The database integrates the information of 68 databases, and users only need to input
the disease name to search the corresponding diseases. The search interface is shown
in Fig. 3.11 [21].

Take any disease as an example. MalaCards divides the search results about the
disease into 14 sections (as shown in Fig. 3.12 [21]). Click “Jump to Section” to
navigate to that section. At the same time, you can use the Summaries section to
view the summary of the disease in multiple databases (as shown in Fig. 3.13 [21]).

(2) Network Analysis

MalaCards is a phenotypic disease network. We can see the relationship between
interconnected diseases in Fig. 3.14 [21].

(3) Expansion of Disease-related Knowledge

(1) Some drugs and treatment methods currently being studied to treat diseases
are shown in Fig. 3.15 [21].

(2) Articles related to heart failure are shown in Fig. 3.16 [21].
(3) MalaCards provides information on key genes related to the disease, as shown

in Fig. 3.17 [21].
(4) Disease-related website entries are shown in Fig. 3.18 [21].

3.2.4.2 Characteristics

(1) Abundant database resources—72 databases.
(2) Extensive information on disease-related expansions, and provides further infor-

mation on the disease from multiple aspects, including literature.

3.3 Related Databases of Commonly Used Gene Targets
in Network Pharmacology

3.3.1 Therapeutic Target Database—TTD

The TTD was established by the Bioinformatics & Drug Design (BIDD) research
group of the Faculty of Science, National University of Singapore. The database was
last updated on September 15th, 2017. According to the 2018 TTD update statistics,
the database covers a total of 3101 drug targets, among which 445 have been
successfully verified, 1121 have been used for clinical treatment, and 1535 are in
the research stage. There are a total of 34,019 drugs in the database, including 8103
drugs approved for clinical use, 18,923 drugs under study, 26,459 kinds of
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Fig. 3.12 14 sections for the disease [21]

Fig. 3.13 Disease summary [21]

Fig. 3.14 Phenotypic disease network [21]

Fig. 3.15 Known disease treatment methods and drugs [21]

3 Common Network Pharmacology Databases 105



multi-target preparations, 158 drugs withdrawn from the market, 2349 kinds of
drugs suspended for clinical use, 417 pre-clinical trial drugs, 1929 drugs terminated
during unspecified study phase, 21,936 kinds of effective small molecule drugs,
2326 approved drugs with effective structures, 4258 kinds of drugs that can be used
in clinical trial structures, and 15,352 kinds of drugs under existing structural
research. In addition, 21 bispecific antibodies and 10 stem cell drugs are included
in the updated database. The database provides information about known or under
exploration therapeutic protein targets and nucleic acid targets, the diseases targeted
by such targets, pathway information, and corresponding drug ligand molecules.
TTD also provides links to related databases, including target function, sequence,

Fig. 3.16 Articles related to the disease [21]

Fig. 3.17 Key genes of the disease [21]
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three-dimensional structure, ligand binding characteristics, enzyme naming and drug
structure, treatment category, clinical development status, etc. [22]. In network
pharmacology research, the known drug structure and target information contained
in TTD can be used as a positive control data set for predicting unknown drug
targets. The candidate target spectrum of unknown drugs can be obtained through
the comparison of compound structure and function similarity.

3.3.1.1 Data Structure

QSAR models developed to understand different molecular scaffolds for different
targets are incredibly useful in facilitating drug development and optimization.
Currently, TTD has 841 ligand based QSAR models for 228 chemically active
compounds against 121 targets; the specific architecture of the models can be
accessed on the related page.

3.3.1.2 Function Introduction

With the rapid development of bioinformatics, database technology plays an impor-
tant role in bioinformatics. The difficulty of drug research lies in the discovery and
determination of targets. TTD collects three types of validation data: Efficacy of
drugs on their main targets through experiments, efficacy or effect of drugs on
disease models (cell lines, in vitro, and in vivo models) related to their main targets,
and observed effects of in vivo models of target knockout, RNA interference, and
transgenic therapy.

Fig. 3.18 Disease-related website entries [21]
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3.3.1.3 Characteristics

The architecture and interface design of TTD are user friendly, and provide easy
access to updated data and previous version data. TTD has been developed using the
Drupal content management system (CMS) and provides easy and convenient data
access. In the new TTD interface, the newly added resistance mutation and target
expression data can be accessed through the patient data column, and the target
combination information can be accessed through the target drug column. The Drugs
Group column also includes search options for multi-target preparations and natu-
rally derived drugs. The advanced search bar includes custom search, target simi-
larity search, drug similarity search, and path search options. In addition, a JSME
molecular editor has been added to facilitate users to draw molecules and then search
for TTD drug entries with a similar structure to the input molecules. At present, the
database is constantly updated and improved. There is an increasing amount of target
information, which has great significance for the discovery of new drug targets, drug
screening, disease treatment, and pharmacological mechanism research.

3.3.2 Protein Data Bank—PDB

The PDB is a biological macromolecular structure database initially established by
Dr. Walter Hamilton of Brookhaven National Laboratory in the United States in
1971, and was officially made accessible to relevant laboratories around the world in
1973 [23]. In October 1998, PDB was transferred to the Research Collaboratory for
Structural Bioinformatics (RCSB) and the transfer was completed in June 1999.
RCSB is responsible for maintaining PDB. RCSB’s main server and mirror servers
all over the world provide database retrieval and download services. PDB collects
three-dimensional structure data of 153,085 biomacromolecules determined by
experiments (X-ray crystal diffraction, nuclear magnetic resonance, electron micros-
copy, etc.), proteins, including nucleic acids, polysaccharides, protein and nucleic
acid compounds, and various compounds determined by X-ray crystal diffraction
and nuclear magnetic resonance analysis methods. Irrespective of the way the
structural data is obtained, it is stored in a spatial structure database in the same
format in PDB, and is referred to as an entry. Each entry has its own unique PDB-ID,
which is composed of four characters (capital letters A–Z and four digits 0–9), for
example, 6A21. Users can query relevant information in PDB by entering the
PDB-ID, including molecular name, date of inclusion of the molecule, source of
sample, name of author, ID number, sequence, primary structure, secondary struc-
ture (α-helix, β-fold, and β-turn), heterogeneity (description of non-standard amino
acid residues), connecting part (disulfide bond and some other chemical conditions),
spatial coordinates and terminal composition of atoms, experimental methods used
to determine the structure, resolution of diffraction data, relevant literature, and other
information, as shown in Fig. 3.19 [24, 25]. All the data in the PDB can be accessed
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online for free, and can also be accessed from CDs that are available. Data support is
provided in the form of structure analysis and function mining of the network target.

3.3.2.1 Data Structure

The structure of biomolecules in PDB is expressed in terms of atomic space
coordinate values and descriptions of their connection forms, connection orders,
etc., in a specific format. Through specific software, such as PyMol, RasMol,
Chimera, VMD, Swiss-PdbViewer, etc., the three-dimensional structure of the
biological macromolecules can be visualized based on the PDB file, and the structure
can be viewed and edited in detail, to apply for further research.

Users submit data to the PDB in mmCIF or PDB format via PDB’s online
AutoDep facility (see Fig. 3.20 [24]). AutoDep then calls a set of validators and
returns the output diagnostic file online to the user within minutes of the data being
sent to the PDB. The entries that pass the validation are published as LAYER-1. The
PDB staff then evaluate the entries and output files that need to be validated,
complete the annotations and return them to the user for comment and approval.
After user approval and corrections, the final entry is published as Layer-2.

The three-dimensional structure records in PDB can be divided into two types:
dominant sequence information and recessive sequence information. Both can be

Fig. 3.19 6GS6 query result in PDB [24, 25]
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used to reconstruct chemical images of biopolymers. The dominant sequence is
stored line by line in the PDB file starting with the keyword SEQRES. Unlike other
sequential databases, PDB records use three-letter amino acid codes (as shown in
Fig. 3.21 [24, 25]). The recessive sequence in the PDB record is the stereochemical
information, which is contained in the ATOM record in the PDB file and the
corresponding (X, Y, Z ) three-dimensional coordinate structure. The ATOM record
lists the atom name, residue name, residue sequence number, X, Y, and Z coordinates
of each atom, occupancy rate, and temperature factor (as shown in Fig. 3.22
[24, 25]), which roughly account for more than 90% of the total number of records
in each data file [26].

Fig. 3.20 Hierarchical submission method based on online AutoDep [24]
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3.3.2.2 Function Introduction

(1) Prediction of secondary structure of proteins

Some researchers have used the protein secondary structure information available in
the PDB to try to generalize more reliable secondary structure prediction methods,

Fig. 3.21 Partial image of dominant sequence of 6QA8 PDB file [24, 25]

Fig. 3.22 Partial image of hidden sequence of 6QA8 PDB file [24, 25]
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and many results have been published. With technological advances and emergence
of new technologies, there may be a breakthrough in the near future in prediction.

(2) Research on protein evolution

In the past, the similarities and differences of sequences were mainly analyzed
from the perspective of the primary structure. With the massive increase in protein
stereostructure information in the PDB, some researchers are currently trying to
study protein evolution based on the structural correlation of the stereostructure.

(3) Simulation of protein curing process

Researchers have proposed various possible curling paths and theoretically
simulated the curling process, but the correctness of these hypotheses must be
determined by comparison with an already clearly defined protein spatial structure.
The PDB provides such a comparison standard, allowing researchers to modify the
hypothesis based on the comparison results, to make it more in line with the actual
situation.

3.3.2.3 Characteristics and Deficiencies

Unlike other databases on molecular stereostructure, most of the data available in
PDB have not been published, but are directly provided by laboratories to PDB;
whereas the data in other databases are mainly from information available in the
public domain.

Although PDB’s processing program has been greatly improved, there are still
many errors that cannot be found by the system, and all entries need to be checked
manually. Some types of problems still need manual intervention and processing,
such as: dealing with heterogeneous (small molecules with complex structure)
structures and solving the problem of crystal accumulation, and conflicts between
the submitted amino acid sequences and the amino acid sequences found in the
database. Sometimes it is necessary to refer to other publications and materials to
clarify information such as crystal data, biological details, etc. It is necessary to
further extend and improve the input and verification program components of
AutoDep to meet the needs of some conflicts between information providers and
users, and ensure the accuracy of information.

3.3.3 Gene Information Database—GeneCards

The GeneCards database covers the analysis data of human genes in various
professional databases [27]; it is a relatively comprehensive and easy-to-use
human genome annotation database. The GeneCards database was established in
1997 by the Crown Human Genome Center of the Weizmann Institute of Science in
Israel. The initial goal of the database was to reasonably and systematically integrate
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the fragmented information in various databases. Through more than 20 years of
research and development and maintenance, the GeneCards database has overcome
the limitations of different database formats. It can automatically mine and integrate
tens of thousands of human gene expressions, functions, positions, pathways,
mutations, homologous genes, diseases, and related references from more than
190 databases. and integrate them into gene network cards for researchers to use
for reference and application. As of November 2019, the GeneCards database has
data on 268,549 human genes. This database is not only up to date, but also free
to view.

The GeneCards database is a human genome compendium, containing genome,
transcriptome, proteome, heredity, clinical, functional, and other gene-centric infor-
mation [28]. To make the database website more compact, the detailed information,
diagrams, tables, and references of some entries in GeneCards database can be
viewed by clicking on the hyperlink, to see all available information of related genes.

3.3.3.1 Data Structure

Each gene entry in the GeneCards database is divided into 17 main chapters in the
form of electronic web cards. Each gene card in the GeneCards database automat-
ically integrates and annotates the genetic information of the original database to the
corresponding section of the GeneCards database by compiling the genetic infor-
mation of various databases. The GeneCards database has been updated to version
4.0, and while retaining the original information and functions, it provides a better
user experience by improving the integration of data and information.

3.3.3.2 Applications/Functions in the Field of Molecular Biology

Each gene is described in detail in GeneCards database. In terms of genetic func-
tions: ① Molecular function: The molecular function in the GeneCards database
comes from other databases. The molecular function table of gene ontology has GO
IDs, GO terms, evidence, and PubMed IDs. In addition, hyperlinks allow users to
view other genes sharing the gene ontology.② Phenotypes and animal models: This
section lists the related phenotypes of human and mouse genes. Hyperlinks not only
allow users to view other genes sharing this gene phenotype, but also enable users to
navigate to animal models, such as mouse models with knockout genes. ③
Function-related products: This section provides product links to animal models,
clones, and cell lines related to the gene. Pathways and interactions: ① Super
metabolic pathways: The table of super metabolic pathways shows the pathways
and dynamic links that may be involved in this gene, where G is KEGG pathway
information and R is REACTOME pathway information. ② Pathway source: This
part of the content is classified according to the pathway information source data-
base. Only five related pathways are displayed in each database unit. Information of
all pathways can be viewed by clicking the link.③ Interacting proteins: The protein

3 Common Network Pharmacology Databases 113



interaction network is shown in the form of pictures. Click the link to view the
network pictures with more complex and interaction information. In addition, the
interaction protein information is listed in table form, including the link to the gene
name and gene card of each interacting protein, the link to the ID of interaction
proteins and external databases, and the link to the interaction information in the
protein interaction network. ④ Signaling Network Open Resource (SIGNOR):
Displays the open resource link to the interaction signaling network, and the link
to the interaction gene list and gene card.⑤ Gene ontology biological process: This
part shows the gene ontology biological process, including the gene GO ID, GO
terms, evidence, and PubMed ID [29].

3.3.3.3 Characteristics and Deficiencies

Over the course of 20 years of development and dozens of revisions, the GeneCards
database currently contains 268,549 human gene expressions, functions, positions,
pathways, mutations, homologous genes, diseases, and related references, from
more than 190 databases, which are integrated into gene network cards for
researchers to use for reference. It is a comprehensive database of human genes
that integrates a variety of professional database functions.

Although the gene information in the GeneCards database is rich and diverse, to
make website more compact, the detailed information, diagrams, tables, and refer-
ences of entries can be viewed by clicking on the appropriate hyperlink, to see all
available information of related genes. This means that users need to frequently click
hyperlinks or navigate to other databases to obtain comprehensive information of
genes, which indirectly wastes the user’s research time.

3.3.4 Kyoto Encyclopedia of Genes and Genomes—KEGG

One of the major challenges in the post-genomic era is how to fully display the
biological information contained in cells and organisms with the help of computers.
Scientists need to be able to calculate or predict complex cellular pathways or
biological responses based on information in the genome. To this end, the Kyoto
Encyclopedia of Genes and Genomes (KEGG Database) was established by
Kanehisa Laboratory of Bioinformatics Center of Kyoto University in 1995. The
database was last updated on May 1st, 2019, and the latest version is 90.1. KEGG is
an integrated database divided into system information, genomic information, chem-
ical information, and health information. KEGG combines genes, genomic informa-
tion, and higher-level functional information to systematically analyze gene
functions through the computerization of known biological processes in cells and
standardization of the interpretation of existing gene function information [30]. It has
many functions, such as describing of metabolic pathway, predicting gene function,
accessing genomic information, identifying homology, and analyzing the interaction
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between proteins and other macromolecules. Researchers can not only obtain the
data from the database for free, but also access the genome map and compare the
genome map and transcriptome expression map using Java-based graphical tools.

3.3.4.1 Data Structure

So far, the KEGG database has 18 sub-databases, among which the 4 main databases
are PATHWAY, GENES, LIGAND, and BRITE; the other sub-databases are
derived from these 4 databases. The PATHWAY database provides artificial path-
way maps of various reactions occurring in cells, presented in the form of a network.
The GENES database stores the sequenced genome information registered in
KEGG. The LIGAND database can be used to query information about compounds,
polysaccharides, and enzymatic reactions. BRITE is a database that classifies and
summarizes biological information according to hierarchy, and the KEGG
ORTHOLOGY (KO) contained in it, is a system for gene homology
identification [31].

3.3.4.2 Function Introduction

As a reference knowledgebase, KEGG is widely used for integrating and interpreting
large-scale data sets obtained by genome sequencing and other high-throughput
experimental techniques [32]. Its applications in bioinformatics include:① Analysis
of metabolic network: KEGG pathway map, BRITE hierarchical entries, and KEGG
modules constituting KEGG reference information. By using the KEGG mapper to
label the pathway, we can color the compounds or enzymes needed in the metabolic
pathway, which is beneficial for the analysis of the metabolic pathway. In addition,
the gene chip data can also be analyzed. For example, when analyzing the gene chip
data in the KEGG Expression database, KegArray can be used to represent the
expression changes of each gene in the pathway with different colors, with red
indicating up-regulation and green indicating down-regulation. ② Application of
disease and drug metabolism network analysis: The disease and drug information
integrated using KEGG Mapping are widely used in related research. All known
disease genes collected in KEGG DISEASE and all drug targets collected in KEGG
DRUG are merged into KEGG PATHWAY and BRITE databases. KEGG mapping
can be used to mark corresponding genes in different colors in the metabolic map. In
the disease/drug map in the metabolic pathway map of diseases, the disease-related
genes are shown in a pink box, and drug targets are shown in a bright blue box. ③
Genome comparison and merging: On the KEGG GENOME page, users can not
only use Mapping to compare the metabolic capacity of different species, but also
check the complementarity of human-pathogen and human-microform metabolism,
and check the common characteristics between species. ④ Reconstruction of met-
abolic network and construction of enzyme database of target species: A list of all
genes-enzymes and enzymes-reactions in the metabolic network of the reconstructed
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target species can be obtained from the ligand database. Among them, enzymes play
a key role in connecting genes and corresponding metabolic reactions. Since the EC
number of enzymes is unique, a list containing all metabolic components involved in
cell metabolism and their metabolic reactions can be established accordingly. Then,
through the information-assisted reference optimization of other databases, a data-
base of all enzymes and reactions of the target species can be constructed. After
obtaining a high-quality database, the metabolic network can be reconstructed by
relevant software [33]. Therefore, the KEGG database can be widely used in
constructing a metabolic network.

3.3.4.3 Characteristics and Deficiencies

The KEGG database is a large-scale comprehensive database that connects genes,
enzymes, and reactions to construct the metabolic network. Its graphical interface for
analysis and interpretation provides a good platform for the study of genes, enzymes,
and their metabolic networks. In terms of biosynthesis, the output of the target
product can be increased by controlling the metabolic flow. Not only that, the disease
metabolism network developed by KEGG can help in studying the pathogenesis of
diseases and the target of drug action.

KECG is a comprehensive database that includes data on metabolic pathways,
genetic information, and compound reactions, but there are also some omissions. For
example, the colored input boxes are case sensitive, incorrect data when starting
KegArray, some enzymatic reactions have been recorded in the LIGAND database
but do not occur in the specified species, so the reconstructed network contains false
edges, etc. In the case of reconstructing multiple metabolic networks, in order to read
data, we must visit KEGG’s remote server frequently, which is very time-
consuming.

3.4 Protein Interaction Databases Commonly Used
in Network Pharmacology

3.4.1 Biological Universal Interaction Database—BioGRID

BioGRID is a free and open interactive repository dedicated to the management and
storage of protein information, genetic material, and chemical interactions of all
biological species and humans. BioGRID was initially established in 2003 as a
general interactive dataset repository and later renamed as BioGRID [34]. The
current version of BioGRID is 3.5.173. In this version, 1,690,901 protein–gene
interaction information, 28,093 chemical associations, and 726,378 protein post-
transcriptional modification information are sorted out from 69,644 literature
sources, covering animals (including: human, zebrafish, mouse, fruit bat fly,
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Anopheles gambiae, European bee, cattle, dog, guinea pig, monkey, horse, chicken,
rabbit, sheep, orangutan, pig, Xenopus laevis, sea urchin, etc.), plants (including
Arabidopsis thaliana, honeysuckle, soybean, rice, tomato, potato, grape, corn,
castor, etc.), bacterial viruses (including: Bacillus subtilis, Candida albicans,
Escherichia coli, hepatitis virus, herpes virus, HIV virus, human papillomavirus,
Mycobacterium tuberculosis, Neurospora crassa, tobacco mosaic virus, corn smut,
Vaccinia virus), and others including Caenorhabditis elegans, amoeba, lice, Plas-
modium, yeast, lichen, etc. All information can be viewed and downloaded free of
charge through the search engine provided by the website. The database also pro-
vides several online analysis and visualization tools.

The homepage of the BioGRID website is shown in Fig. 3.23 [34]. It is relatively
easy to use. You only need to enter a gene ID, keyword, or gene name, select the
species, and click Search to get the gene interaction result. The search results mainly
consist of 3 parts: ① Description of basic information: including retrieved protein
names, aliases, post-transcriptional modifications, GO annotation information, and
links to other databases; ② Information statistics: Statistics of each interaction type
and proportion; ③ Detailed results display: Protein interaction information, interac-
tion network of the protein, etc.

3.4.1.1 Data Structure

BioGRID is also developing related projects in areas related to biomedical science,
such as ubiquitin–proteasome systems and interaction networks associated with
various human diseases. The BioGRID strategy is coordinated through the Interac-
tive Management System (IMS), which facilitates the compilation of interactive
records through structured evidence codes, phenotypic ontologies, and gene anno-
tations. The BioGRID structure has been improved to support a wider range of
interactions and post-translational modification types, allowing for more complex
representations of polygene/protein interactions.

Fig. 3.23 Homepage of the BioGRID website [34]
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3.4.1.2 Function Introduction

With advancements in the post-genomic era, protein research has become more
extensive and in-depth. BioGRID currently has more than 1,670,000 interactions
composed of high-throughput data sets and independent research, and more than
68,000 interactions from various literature sources. There are comprehensive liter-
ature reports on budding yeast (S. cerevisiae), fission yeast (S. pombe), and
Arabidopsis (A. thaliana). BioGRID continues to expand the screening of proteins
and genetic interactions from biomedical literature, as well as related attributes, such
as protein variations, phenotypes, and chemical or drug interactions. The integration
of these network datasets with other data types (including expression data, quanti-
tative phenotypic data, and high-resolution sequence data) can help predict medicine
and future drug discovery work.

3.4.1.3 Characteristics

The current focus is on specific areas of biology, and efforts are being made to
expand the management of a variety of metazoans in order to gain insight into
conservative networks and pathways related to human health. The BioGRID 3.5 web
interface includes new search and display functions for quick queries across multiple
data types and sources. BioGRID provides interactive data for several model bio-
logical databases, such as Entrez-gene, SGD, TAIR, FlyBase, and other interactive
metadatabases. The entire BioGRID 3.2 dataset can be downloaded in a variety of
file formats, including IMEx-compatible PSI-MI XML. For developers, BioGRID
interaction is also available through REST-based web services and the Cytoscape
plug-in. All BioGRID documents are available online in the BioGRID Wiki.

3.4.2 Database of Interacting Proteins—DIP

The Database of Interacting Proteins (DIP) was founded in August 1999 by the
Laboratory of Structural Biology and Molecular Medicine of the Institute of Molec-
ular Biology, UCLA. It aims to integrate various experimental evidence of protein–
protein interaction (PPI) into an easily accessible online database to establish a
simple and easy-to-use PPI public database. In addition, the DIP database is one of
the member databases of the International Molecular Exchange Consortium (IMEx).

3.4.2.1 Data Structure

The DIP database contains experimentally confirmed PPI information and protein
complexes from the PDB (Protein Data Bank) database, and contains the most
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reliable PPI data obtained by manual mining or calculation by experts [35–37]. As of
the latest update on February 13th, 2017, DIP has collected and classified 81,923
PPIs involving 28,850 proteins from 834 species, and 82,143 experiments from 8234
data sources.

The DIP database provides a variety of query methods. Users can directly query
PPI based on protein, biological species, protein superfamily, keywords, experimen-
tal techniques, or cited literature, and can also query PPI based on sequence
similarity using BLAST search, pattern search, and motif search. The query result
is listed as two items: Node and Link. Nodes are used to describe the characteristics
of the queried protein, including the functional domain and fingerprint of the protein,
and some also include annotations of the enzyme code or the position in the cell.
Link refers to the interaction relationship between two nodes. For each PPI, DIP
provides evidence (experimental method) and literature, and records the number of
experiments supporting the PPI in addition to providing big data analysis. An
example of the query results is shown in Fig. 3.24 [38]. The DIP database provides
standard data sets, including HiTHR high-throughput (genome scale) dataset, FULL
(complete DIP dataset), SPECIES (specific species set), FASTA (DIP sequence),
and DIP-IMEX dataset [38, 39].

3.4.2.2 Function Introduction

MiSink is a plug-in for the DIP database which can be used in Cytoscape (an open
source platform used for visualization and integration of biological interactive data)
and can be converted into an interactive graphical DIP interface. JDIP is a Java
language-based visualization application tool provided by the DIP database that can
display PPI data more intuitively in the form of a network, and allows users to
integrate their experimental information such as mRNA expression data, function of
functional domains, and post-translational modifications of proteins into the network
of interactions between proteins. In addition, the DIP database has 3 sub-databases

Fig. 3.24 Example of DIP database query results [38]
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[35, 39]: The Database of Ligand-Receptor Partners (DLRP), the LiveDIP database
(LiveDIP), and the PPI database predicted by gene fusion method, Phylogenetic
spectrum method, etc. (Inferring Functional Linkages between Proteins, Prolink).

3.4.2.3 Characteristics

The DIP data are the most reliable PPI data obtained through expert manual mining
or calculation methods. This database has been selected as the gold standard for
evaluating PPIs obtained through high-throughput screening and computer predic-
tion, and for the authenticity assessment of PPIs, including the PVM Method
(Paralogous Verification Method) based on parallel homology, EPR (Expression
Profile Reliability) Method based on expression spectrum analysis, and DPV
(Domain Pair Verification) Method based on structural domain interaction. How-
ever, due to the human intervention and processing, updates to the database are
relatively slow.

3.4.3 Molecular Interaction Database—IntAct

The IntAct database was founded by the European Bioinformatics Institute (EBI) in
2003 [40, 41]. The main goal of this database is to help researchers access public PPI
data, reduce redundancy, and provide a unified query tool to maximize the efficiency
of data storage and retrieval. The IntAct database is one of the member databases of
the IMEx Consortium. At present, this database also integrates all IMEx data. The
IntAct database provides a free and open source database analysis tool for molecular
interactions. All data comes from published literature reports and is manually
annotated by biological experts to ensure high accuracy, and includes experimental
methods, experimental conditions, and functional domains of interactions [41]. The
IntAct database is updated monthly, the latest version is 4.2.12, which was updated
on May 4th, 2019; the species covered include human, yeast, fruit fly, Escherichia
coli, Arabidopsis (A. thaliana), and Caenorhabditis elegans. The database contains
evidence of 585,731 interactions and 889,774 binary interactions of 110,643 pro-
teins or molecules, covering 20,585 publications and 67,624 experiments. A total of
3829 controlled words are used to consistently describe the experimental details used
to generate the data.

There are basic query and advanced query tools in the IntAct database. The basic
query tool can be used to query based on gene name, protein name, PubMed ID, and
biological function; the advanced query tool can be used to query according to
experimental method and controlled vocabularies customized by IntAct; the result
display tool displays the PPI network in a graphical format.
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3.4.3.1 Data Structure

The IntAct database supports multiple formats including PSI-MI XML,
PSI-MITAB, RDF/XML, RDF/ XML-ABBREV, N3, N-Triples, and Turtle. The
IntAct research group suggests that biologists submit PPI information directly to the
database prior to publication (in any format, IMEx format recommended) to facil-
itate the improvement and management of data, in the same manner as the nucleotide
sequence is directly submitted to the GenBank database. The IntAct data can be
retrieved through PSICQUIC service as well as many other data types, including
through predictive interaction and genome and text-based mining for inferring
molecular interactions.

3.4.3.2 Function Introduction

The IntAct database provides online visualization analysis of the PPI network and
supports third-party network construction software such as Cytoscape and Proviz. In
addition to storing and querying the interaction protein information, the IntAct
database also provides the best bait protein information to predict pull-down based
on the pay-as-you-go algorithm.

3.4.4 Database of Gene/Protein Interactions—STRING

The STRING database was established by the European Molecular Biology Labo-
ratory in 2009 to collect and integrate known and predicted protein–protein related
data information of numerous organisms [42–45]. It is a free and open source PPI
search and prediction information database that integrates PPI from high-throughput
experiments, text mining, biological information prediction, and interaction data-
bases (such as BioGRID and IntAct). It uses a scoring system to assign different
weights to the interactions obtained by different methods, and provides a reliability
score of each PPI pair [35, 36]. Version 11.0, released on January 19th, 2019, is the
latest version and covers about 24,600,000 proteins and over 2,000,000,000 inter-
actions in 5090 organisms.

3.4.4.1 Data Structure

The associations in STRING database include direct (physical) and indirect (func-
tional) interactions with specific and biological significance. At the same time, a
scoring system is used to assign different weights to the interactions obtained by
different methods, to provide the reliability score of each PPI pair. In addition to
collecting and reassessing existing PPI data (sources: KEGG, EcoCyc, BIioCyc,
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GO, Reactome, Biocarta, NCI-Nature Pathway Interaction Database, MINT, HPRD,
BIND, DIP, PID, BioGRID), as well as introducing known pathways and protein
complexes into the dataset, interaction predictions are derived from the following
sources: ① System co-expression analysis, ② shared selective detection of cross
genome signals, ③ automatic text mining of scientific literature (source: SGD,
OMIM, FlyBase, PubMed), and ④ computational transfer of knowledge about
interaction between organisms based on genealogy (Neighborhood,
Co-Occurrence, Co-Expression, Gene Fusion).

Users can query by protein name (multiple concurrent input supported), sequence
name (multiple concurrent input supported), organism, or protein family, and the
results are presented in a clickable interactive network diagram of nodes and edges.
Nodes represent proteins, and the connection between nodes represents the interac-
tion between two proteins. Data from specific sources or the extended network graph
can be selected for redrawing according to the user’s requirements. The navigation
options of the results include Viewers, Legend, Settings, Analysis, Exports, Clusters,
and More/Less used to adjust the number of presented nodes in the interactive
network diagram. When a protein is selected at a node, users can view the image
of its crystalline protein (from PDB) and the image of the protein model (from
SwissModel) in a pop-up window. The database supports the following operations:
① Find all proteins in STRING that interact with window proteins; ② Add the
protein that interacts with the window protein to the network;③ Display the protein
sequence;④ The homologue in STRING;⑤ Redirect to the corresponding entry in
the GeneCards database (only for human proteins); and ⑥ Redirect to the
corresponding entry in the SMART database. In the Viewers page, users can get
relevant information such as Network, Neighborhood, Co-occurrence,
Co-expression, Fusion, Experiments, Databases, and Text mining. In the Legend
page, the color of each protein and the score value corresponding to the queried PPI
are displayed. In the Settings page, the user can set the PPI type and display type for
the results. In the Analysis page, the GO and KEGG enrichment analysis results are
provided for genes in the PPI network. In the Clusters page, users can perform
cluster analysis of the genes using kmeans and MCL clustering, and results are
available in a TSV format. An example of the query results is shown in
Fig. 3.25 [46].

3.4.4.2 Function Introduction

The main purpose of the STRING database is to build the PPI network. It can be used
to filter and evaluate functional genomics data and provide an intuitive platform for
annotating the structure, function, and evolution of proteins. It is used to explore
predictive PPI networks, targets new directions for experimental research, and pro-
vides cross-species prediction for interactive mapping. All PPI data are weighted,
integrated, and have a calculated reliable value.
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3.4.4.3 Characteristics

The STRING database is completely pre-calculated, so that all the information in the
network at higher level or in a single PPI interface can be quickly obtained. It
supports individual selection of various evidence types and can perform customized
searches at runtime. At the same time, it includes a dedicated viewer to view all
associated evidence. The STRING database is an exploratory resource that contains
more related data than the basic PPI database. This database is recommended to
quickly obtain preliminary PPI information of the queried protein, especially for
proteins that are not well characterized.

Fig. 3.25 Example of STRING database query results [46]
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Chapter 4
Common Network Pharmacology Software

Xuezhong Zhou, Ning Wang, and Xing Zhai

Abstract As a growing trend in current pharmacology research and an important
medical application in network science research, network pharmacology has become
an indispensable complement to traditional pharmacology research with the
immense accumulation and integration of large-scale pharmacology and disease
molecular network data. In addition to emerging new methods and technologies, a
large number of analytical techniques and methods, such as network analysis and
molecular functional analysis have matured into related software or programs and
are available for researchers to use for free or available as open source, which is an
important factor and condition that has helped network pharmacology’s robust and
rapid development. From the perspective of information processing and computer
systems, this chapter classifies and introduces commonly used network pharmacol-
ogy software by refining the overall functional flow of network pharmacology-
related software or programs and illustrates demonstrative application examples by
combining actual data processing, analysis, and visualization operations. The prac-
tical steps and contents in this chapter, combined with the theoretical analysis,
analysis methods, and research cases of network pharmacology in other chapters,
can provide researchers or students with relevant software tools and practical
operation methods that can be used for reference, as well as provide rapid and
convenient software tool selection and practical guidance for actual research on
network pharmacology.
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4.1 Software Functional Framework and Classification
of Network Pharmacology

4.1.1 Overall Software Functional Requirements

Network pharmacology [1] uses network relationship data such as drug-target
relationships, interaction group networks, and phenotype–genotype associations,
with the goal of analyzing the regulatory role of drug intervention in molecular
networks and using corresponding data analysis models and methods such as
complex network, machine learning, and molecular functional analysis, to determine
the research direction for the interpretation and discovery of drug molecular mech-
anisms. The focus of pharmacological research is to find the target of drugs and how
to regulate the corresponding targets to achieve the effect of disease treatment.
Network pharmacology research focuses on discovering and confirming the multi-
target effect of drugs and their network pharmacodynamic mechanisms and analyz-
ing and discovering the systemic therapeutic effect of drugs and their combination
on diseases, by analyzing the overall effect of network regulation.

In general, classic network pharmacology research cases involve main links such
as network data collection and integration, network structure analysis and prediction,
molecular and network function analysis, drug-target (target) relationship analysis,
drug interaction or combination analysis, and drug indication analysis. The first three
links are the common steps and methods in classic network pharmacology research,
while the last three links are typical tasks for specific applications. The core data
involved in relevant links are described in detail in other chapters of this book,
including the clinical efficacy information of drugs, drug composition structure and
its interaction, drug-target relationship, interaction group network, phenotypic geno-
type association, drug side effects, and drug indications.

Network data collection and integration: Targeting research problems of specific
drugs’ action mechanism, the lack or limitation of main target relationship data, such
as drug-target relationship, is relatively common. In addition to generating the
corresponding target data through wet tests, network pharmacology research often
uses automatic data extraction or generation methods to collect the target relation-
ship data. At the same time, the integration of network data from different sources
(medical literature, structured database, etc.) and different types (drug-target rela-
tionship, drug side effect relationship, disease gene relationship, etc.) is often used to
integrate network data resources for specific research objectives. For example, as the
core research task of network pharmacology, the prediction of drug-target relation-
ship usually adopts relatively single data types in the initial stage, such as drug
chemical structure information, drug-target relationship information, etc. However,
due to the incompleteness and complementary characteristics of various types of
information, in recent years, use of multi-source network data integration to con-
struct the basic network pharmacology data resources has become a guiding research
direction. In the following foreseeable future, network data integration will become
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the basic research method and foundation. Therefore, network data integration is one
of the basic functional requirements of network pharmacology methods or software.

Network structure analysis and prediction: From the perspective of network
science or complex network [2, 3], network pharmacology is a classic application
of complex network in the pharmacology field, and its wider medical applications
can be considered as network medicine [4]. Therefore, analysis methods and models
based on complex networks such as node or edge centrality measure, shortest path,
link prediction, and community analysis [5, 6] (community detection), and various
statistical graph generation models (such as random graph [7], small world network
[8], and scale-free network [9]) are the main supporting analysis methods in network
pharmacology. For example, the problem of edge prediction using the adjacent
structure of the network, the path connection mode of the network, or the attribute
information of the node is called link prediction. Its most direct application is drug-
target prediction (to determine whether the relationship between a specific drug node
and a target node exists). The direct application of community analysis with rela-
tively dense internal connections and relatively sparse external sub-network struc-
tures obtained from the overall network is the discovery and confirmation of the
disease module [10] or drug-target module. Therefore, the above two methods
naturally become the core complex network analysis methods in network pharma-
cology. In addition, due to the above two kinds of network analysis problems, we
can also directly model typical machine learning problems [11], such as the drug-
target relationship problem can be regarded as an information recommendation
problem [12], a binary classification problem of edge judgment, or a corresponding
sorting learning problem [13], and the analysis of disease module can be regarded as
a clustering problem of network data. Therefore, supervised learning methods [11]
such as regression analysis, support vector machine, Bayesian network, and deep
neural network in machine learning can be used in drug-target prediction. However,
unsupervised learning methods, such as k-means, spectral clustering, and hierarchi-
cal clustering, can be applied to the discovery of disease modules. Moreover, all
kinds of community analysis methods, such as graph partition-based method and
modularity evaluation-based optimization method, can be considered as clustering
methods based on network data. Common complex network analysis and even some
machine learning software based on network data are tools and methods that can be
used in network pharmacology research.

Molecular and network function analysis: Determining the specific biological
functions of drug-targets and their molecular networks is an important task for
analyzing drug molecular mechanisms and their pharmacodynamic effects. There-
fore, systematic molecular function analysis methods have become an important
technical means in network pharmacology to further explain the drug effects and
pharmacokinetic mechanisms from the multi-tiered levels of molecules, cells, tis-
sues, organs, and systems, as well as adverse drug reactions and side effects. Among
them, gene ontology (GO) analysis is the main functional analysis at the gene or
protein level, while molecular pathway analysis can be combined with
corresponding pathway databases such as KEGG and Reactome for molecular
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function analysis of metabolic pathways, signal transduction pathways, and protein
complexes.

Analysis and prediction of drug-target relationship: Drug-target analysis is net-
work pharmacology’s core analysis task and goal. Judging from the types of drugs
involved and the scope of research, it can be divided into two main research
approaches. The first category focuses on drug-target discovery of specific drugs
(or TCM compound prescriptions) or diseases. The purpose of this task is to identify
novel binding relationship between drugs (corresponding small-molecule chemical
components) and targets by means of virtual screening, manual compilation, and
review of literature and information extraction or wet tests, using clinical efficacy or
phenotype information of specific drugs, to form relatively reliable research results
through the interaction information between the target in the molecular network and
disease-related genes or biomarkers. The second category focuses on the R&D of
large-scale drug-target relationship prediction methods using integrated network
pharmacology data or drug association attributes. The first type of research is
actually a case-based drug-target relationship study based on network pharmacol-
ogy, which aims to analyze the mechanism of clinically effective drugs and pre-
scriptions, provide an understanding and interpretation of pharmacological
mechanisms, and provide a new record for drug-target relationship data resources.
This kind of research is extensively practiced and has varied applications in the field
of TCM network pharmacology. Especially in the research of the target of Chinese
medicine compound prescriptions and their molecular network, this research type
has generated practical results and research value. The second type of research aims
at the development of new analytical methods and models, which is one of the core
research tasks of network pharmacology. This method mainly includes two kinds of
models: complex network analysis and machine learning. So far, researchers have
implemented a variety of related drug-target prediction algorithms and models that
promote the progress of network pharmacology research. Various algorithms and
models for related drug-target prediction implemented by researchers have also
promoted network pharmacology research development. In view of the significant
performance advantages of deep representation learning and deep neural network
models where there is sufficient data volume, the current algorithm and its software
research and development has formed a tide and trend that is focused on the deep
learning model.

Analysis of drug interactions and combinations: Drug interactions (drug–drug
interaction) refer to the mutual influence and action between ingredients caused by
simultaneous use of food, beverages, food supplements, and other drugs in the
process of drug use. These interactions often lead to side effects and adverse
reactions, but may also lead to beneficial medicinal effects [14]. Drug combination
analysis refers to the analysis and study of the clinical situation of complex diseases
such as co-diseases and concomitant diseases, as well as complex chronic diseases
such as cancer and complex infectious diseases such as HIV. It is necessary to
analyze and study the simultaneous listing and administration of multiple drugs for
the same patient (especially the elderly), so as to find the best combination of drugs
and identify the combination of drugs that cause serious side effects. Therefore,
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given the widespread use of combination drugs (or even compound drugs), drug
interaction analysis has become an important research direction, and drug interaction
analysis is also an important cross-sectional research area in the R&D of combina-
tion drugs within the network pharmacology framework. The above two research
tasks complement each other. As network pharmacology focuses on the multi-target
and molecular network effects of drugs, drug interaction and combinatorial analysis
have become important applications of network pharmacology methods, as they can
help discover and confirm more systematic drug interactions and effective combi-
nation drugs. At the same time, network pharmacology research of TCM itself is a
compound-oriented pharmacological research. The diversity of compound medicine
ingredients makes the systematic research of drug interactions and combined drug
mechanisms a research task and scientific problem that is both important and
promising for breakthroughs. The discovery and conformation network effect
index of optimal combination drugs [15] and even a compound network drug
efficacy index that reflects the compatibility of TCM formulation is an important
basic research task in TCM network pharmacology.

Analysis and prediction of drug indications: Drug indication analysis is the final
goal of network pharmacology research, that is, determining the disease or clinical
phenotype that can eventually be effectively treated by drugs. From the perspective
of analysis methods, the analysis and prediction of drug indications and the very
important drug repositioning (or drug repurposing) [16] issue in the context of new
drug research and development are the same issue. For a given drug, to predict its
total pharmacophore spectrum (disease or phenotype treated or acted upon), the
novel pharmacodynamic phenotype is the target of drug redirection analysis [16]. In
addition, in this sense, the side effects and adverse reactions of a drug can also be
considered as an effector phenotype in the broad sense of the drug, but the side
effects and adverse reactions of the drug are only an unexpected effector phenotype.
In view of the concept of drug action based on extensive systematic data integration
and network regulation, network pharmacology has natural advantages and charac-
teristics in the overall analysis of drug indications. Therefore, drug redirection
research based on network method and network pharmacology has become a widely
recognized new idea and method in the research and development of new drugs.

4.1.2 Software Functional Framework and Classification
of Network Pharmacology

In the previous section, the data processing and analysis requirements of network
pharmacology research were briefly summarized. Network pharmacology research
involves data resource collection and integration, network construction and analysis,
drug-target relationship prediction, and other diverse methods and software func-
tional requirements. From its functional framework and classification, it basically
includes the data processing and analysis function module, as shown in Fig. 4.1. In
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fact, the current research and development of network pharmacology methods and
software research and development mainly focus on the following four aspects of
functional requirements. For example, in terms of the formation and integration of
network pharmacology data resources, a large number of network pharmacology
databases have been constructed, such as DrugBank [17], STITCH [18], SIDER
[19], PubChem, etc., as well as a large number of high-quality databases of func-
tional genomics and interaction groups. Specifically, in the field of TCM network
pharmacology, a database resource platform, including the relationship of
TCM-chemical ingredients-targets has also been constructed, which is of immense
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help in the research and development of TCM network pharmacology. In addition,
drug-target prediction methods and online software for specific diseases such as rare
diseases, psychiatric diseases, and cancer, drug interaction prediction, drug combi-
nation analysis, drug redirection, and drug side effect analysis software are seeing
rapid growth and development. At the same time, as complex networks, machine
learning software, and programming language for big data analysis (such as Python)
mature further, the applications in the biological field can provide strong technical
support for network pharmacology research. The subsequent chapters illustrate and
introduce typical methods, software, and practical programming operations related
to the above aspects.

4.2 Online Software Commonly Used in Network
Pharmacology

Based on the requirements of network pharmacology analysis introduced in the
previous section, it can be seen that drug-target and drug indications are important
applications. The research and development of convenient and fast online software is
an important means to promote drug-target analysis, indication analysis, and other
pharmacology research, especially for researchers who are new to network pharma-
cology technologies and methods. At present, several excellent online analysis tools
have been developed for researchers. This section introduces the analysis tools from
the perspective of established online software.

4.2.1 Online Software for Drug-Target Prediction

The design and development of new drugs has always been a complex, expensive,
and time-consuming process. Moreover, the success rate of new drug research and
development is quite low. Usually, only a few drugs can finally pass the FDA
evaluation every year and be commercially available for treatment. Therefore,
drug research faces problems of low drug development efficiency, rising demand
for treatment, and serious shortage of existing therapeutic drugs. The determination
of drug-target relationship is an important link in the development of new drugs;
however, the screening method based on wet tests is still extremely challenging and
difficult, therefore, drug-target prediction analysis is a hot research topic. Teams
from research institutions and scientific research institutes around the world have
made extensive research and contributions in this respect and have developed
various computational models to predict potential drug-target relationships on a
large scale. The prediction analysis methods introduced in previous chapters are
mainly based on algorithms. In addition, there are also convenient and practical

4 Common Network Pharmacology Software 133



web-based service tools that can provide online drug-target prediction services, such
as DINIES [20], SuperPred [21], and SwissTargetPrediction [22].

DINIES (Drug–Target Interaction Network Inference Engine based on Super-
vised Analysis) is an online platform that is used to infer potential drug–target
interaction networks. DINIES can accept a variety of input data, such as chemical
structures, side effects, amino acids, or protein domains. In addition, each dataset is
converted into a nuclear similarity, and multiple state-of-the-art machine learning
methods are used to predict the drug–target interactions.

SuperPred is an online platform used to predict the structure of small molecular
targets. In SuperPred, drug-target prediction is based on similarity distribution
through four input options (including the name of the compound searched in the
PubChem database, the structure of the compound created through Simplified
Molecular Input Line Entry Specification (SMILES), the structure diagram drawn
with ChemDoodle, and the uploaded molecular file) to estimate individual threshold
value and probability of a specific target.

SwissTargetPrediction is an online platform that is used to infer bioactive small
molecular targets based on the two-dimensional and three-dimensional similarity
values of known ligands. In addition, it can provide prediction results for five
different biological tissues (human, house mouse, rat, cattle, and horse).

We use SwissTargetPrediction as an example to demonstrate the specific opera-
tion. First, the user can customize the species to be analyzed (in the case of humans,
select homo sapiens) (as shown in Fig. 4.2); then, the user can enter the molecular
structure of the compound and search for the specific SMILES string of the com-
pound as the input on the ChEMBL website. Here, we take GINSENOSIDE RG1 as
an example (as shown in Fig. 4.3); finally, the user can click the “Predict targets”
button; the platform runs the calculations and finally the corresponding target
prediction analysis results are displayed on the prediction interface (as shown in
Fig. 4.4).

4.2.2 Online Software for Drug Indication Analysis

Indication is the phenotypic spectrum of the disease treated by drugs. The main goal
of drug indication prediction is to establish the relationship between drugs and the
indication spectrum, that is, to determine what is the complete spectrum of disease
phenotypes that a specific drug can treat. In view of the different granularity of
disease classification, there are two problems in the analysis of drug indications:
Optimization of the classification of diseases that have been treated and prediction of
new diseases. The view that predicted disease phenotype spectrum contains new
major diseases is a widely studied drug repurposing or drug repositioning problem.
The drug repositioning method has been successfully applied to the R&D of a
variety of disease treatment drugs [23], which can shorten the time of drug R&D
and reduce the cost and risk of drug R&D. Drug repositioning can not only expand
the application scope of drugs and extend their service life, but also enable the reuse
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of withdrawn drugs. For example, the original intention of developing sildenafil was
to treat cardiovascular diseases such as angina pectoris and hypertension, but it was
unexpectedly found in clinical tests that it can be used to treat male erectile
dysfunction [24]. Subsequent studies have shown that low doses of sildenafil can

Fig. 4.2 SwissTargetPrediction front-page interface

Fig. 4.3 ChEMBL search page

4 Common Network Pharmacology Software 135



also be used for the treatment of pulmonary hypertension in rare cases [24]. The
discovery of new uses for the above mentioned known drugs is mostly accidental,
and not the result of rational design. Due to the large number of types of diseases and
the number of known drugs, the cost of screening new uses of known drugs through
experiments is still quite high. With the accumulation of omics data and the rapid
development of various drug-related databases, such as DrugBank [17] and SIDER
[19], drug repositioning prediction by computational methods has become a hot
topic in computational biology and systems biology research in recent years
[23]. The rational design of the clinical research scheme of drug repositioning
assisted by computational methods can provide clues for large-scale experimental
screening, further reduce the cost, and make drug repositioning enter the stage of
combining rational design and experimental screening.

In recent years, there has been a growing trend in software R&D related to drug
indication analysis, such as MeSHDD [25] and RE: fine Drugs [26]. Using the above
software, researchers can analyze the properties of existing drugs through online
methods to determine whether related drugs can be safely and effectively applied to
specific diseases. The next section introduces a typical online tool: MeSHDD [25].

MeSHDD clusters drugs based on the drug–drug similarity of the Medical
Subject Heading (MeSH) and then predicts new indications of the drug. Specifically,

Fig. 4.4 Prediction result page
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MeSHDD uses hypergeometric distribution to calculate the degree of co-occurrence
of drug terms in MeSH and performs Bonferroni correction. Then, the drug–drug
similarity is calculated by converting the above calculation result (represented by the
P value) to the bit-by-bit distance obtained by the binary representation. Finally,
pairing distance and clustering method are used to cluster the drugs, and the
enrichment of disease indications is evaluated across multiple categories by com-
paring with data from TTD. In the verification experiment conducted by the author, it
can be seen that MeSHDD can infer the indications for cystic fibrosis of antidiabetic
drugs. The specific operation is as follows. First, navigate to the homepage of the
official website (as shown in Fig. 4.5) and select the drug to be redirected from the
drop-down list on the drug-centered page. Take quinine as an example, the indica-
tions corresponding to the drug can be obtained (as shown in Fig. 4.6), and related
similar drugs can also be obtained (as shown in Fig. 4.7).

4.2.3 Online Software for Gene Function Enrichment
Analysis

Several related gene expressions and interaction group data generated by
high-throughput sequencing can provide abundant functional data resources for
phenotypic genotype association research, however, they also put forward new
requirements for efficient molecular function analysis. Enrichment analysis [27] is
the main method to determine the common biological mechanism and medical
phenotype association of batch differences or related genes by leveraging existing
databases of gene function attributes, phenotypic genotype association data, and
interaction group databases (such as molecular pathway database). According to the
different related molecular function data used, enrichment analysis is mainly divided
into GO enrichment analysis, pathway analysis, and differential gene enrichment
analysis. Through gene function enrichment analysis, it is possible to discover the
key biological pathways in the biological process in which gene sets are involved,
which is an important analysis link in exploring the common rules from the complex
omics data.

In short, gene enrichment analysis involves finding gene sets with certain gene
functional characteristics and biological processes in a group of genes, which are
often used in the follow-up analysis of differentially expressed genes and screened

Fig. 4.5 Homepage of MeSHDD’s official website
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genes. At present, there are nearly 100 kinds of enrichment analysis tools developed
by different research institutes. At present, many open source websites have inte-
grated GO enrichment and KEGG pathway analysis functions, such as DAVID [28],
KOBAS [29], and STRING [30]. In this section, we introduce DAVID, a well-
known and commonly used enrichment analysis tool.

DAVID is taken as an example to conduct GO enrichment and pathway analysis
for a given gene set. The homepage of the website is shown in Fig. 4.8. Step 1:
Navigate to the Start Analysis page and input the gene set to be analyzed under Enter
Gene List. Select Affy_ID under Select Identifier, then select the Gene List in List
Type, and click the Submit List button, as shown in Fig. 4.9. Step 2: Select homo
sapiens corresponding to the gene set under Select Species, then press the Use button
under Select List and then click Functional Annotation Chart to initiate the analysis,
as shown in Fig. 4.10; Step 3: Select the content to be analyzed, as shown in
Fig. 4.11; select Gene_Ontology and Pathways, and click Functional Annotation
Chart to display the analysis result, as shown in Fig. 4.12. The corresponding GO
enrichment analysis and KEGG path analysis results can be obtained at the bottom of
the analysis page, and the above analysis results can be downloaded by clicking the
appropriate button.

4.2.4 Online Software for Constructing Protein Interaction
Network

Proteins and their interactions are the pillars of cellular mechanism. Proteins are
important macromolecules that constitute organisms and regulate a large number of
basic life activities and biological behavior of organisms [31]. The protein interac-
tion network is composed of individual proteins and their interactions, which can
participate in all aspects of life processes such as biological signal transmission, gene
expression regulation, energy and substance metabolism, and cell cycle regulation
[32]. In network pharmacology correlation analysis, the protein interaction network
is often used in drug-target and gene enrichment analysis and other studies and is of
great significance for understanding the working principle of proteins in biological
systems, the reaction mechanism of biological signals, the energy substance metab-
olism, as well as the functional connection between proteins. At present, there are
many databases that provide protein interaction relationships, such as STRING,
MINT [33], and BioGRID [34]. In this section, we introduce the STRING database
that is well known and commonly used in research.

Currently, the STRING database has been updated to version 11, which includes
known and predicted protein interaction relationships. The database contains 5090
species, 24.58 million proteins, and 3123.05 million protein interactions. The inter-
action relationships are derived from high-throughput experiments, text mining,
other database data, and bioinformatics prediction data.
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Users can query a single protein or a collection of multiple proteins. A sample
operation for querying a single protein is as follows: Navigate to the website’s
homepage; the default page has the query tool for a single protein. Enter the gene
to be analyzed (CASP3 as an example) into the Protein Name text box, select Homo
sapiens under Organism, and then click the Search button, as shown in Fig. 4.13.
Click the Continue button in the next page (as shown in Fig. 4.14) to display the
analysis results; the protein interaction relationship related to the input gene can be
obtained, as shown in Fig. 4.15. You can also click the Exports button to download
the corresponding analysis results, as shown in Fig. 4.16.

A sample operation for querying a collection of multiple proteins is as follows:
Navigate to the website’s homepage and click the Multiple Proteins button. Then,
enter the gene set or gene list to be analyzed into the List Of Names text box, select
Homo sapiens under Organism, and click the Search button, as shown in Fig. 4.17.
Click the Continue button in the next page (as shown in Fig. 4.18) to display the
analysis results; the protein interaction relationship related to the input gene set is
displayed, as shown in Fig. 4.19. Similarly, you can also click the Exports button to
download the corresponding analysis results, as shown in Fig. 4.20.

Fig. 4.9 Input data interface display
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Fig. 4.10 Interface display for selecting and analyzing species

Fig. 4.11 Interface display for selecting and analyzing contents
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Fig. 4.12 Analysis results interface display

Fig. 4.13 Single gene query homepage
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4.3 Software Based on Graphical Interface Operation

Based on the network pharmacology analysis requirements introduced in the first
section, we know that a complex network is one of the important methods. A
complex network is not only a formal tool but also a scientific research method.
Due to its universality for solving problems in various fields, it has been widely used
in the fields of medicine, sociology, physics, information science, and ecology. At
present, the accumulation of network data in various fields, such as protein interac-
tion network [35], disease relation network [36], social network [37], power net-
work, aviation network, and transportation network, has further promoted research
on complex network methods. For example, in social network research, we study the
law of group behavior [38] and the law of information dissemination [39] by
constructing a social network, whereas in the biomedical field, we study drug
interaction [40] and drug-target relationship [41] by using complex network
methods. At present, a large amount of network data has a large scale and many
network nodes and edges. Therefore, it is necessary to rely on visual network
analysis methods to obtain effective results. In view of this, researchers have
developed several excellent visual network analysis tools, including visual software
based on graphical interfaces and software that can be programmed to call the
package (For example: Python package, R language package, Java package, etc.),

Fig. 4.14 Single gene query information confirmation page
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among them, a visualization tool based on a graphical interface is easy to install and
operate and is more intuitive to operate than a programming language package. Next,
this section briefly introduces and demonstrates an independent system software
from two aspects: differential gene enrichment analysis and network analysis.

4.3.1 Differential Gene Enrichment Analysis Software

The GO function and KEGG pathway enrichment analysis introduced in the previ-
ous section aims to discover the characteristic molecular function and pathway
information of the identified gene set. In addition, another type of enrichment
analysis is mainly used to identify differential genes for specific conditions such as
phenotypes. For example: Gene Set Enrichment Analysis (GSEA) [42] is a widely
used method that can be used to assess the distribution trend of genes in a gene set in
phenotypic correlation ranking and determine their association with a specific
phenotype. Different from KEGG pathway analysis, GSEA considers the influence
of genes with little expression difference but important functions, on the pathway,
and compared with KEGG pathway analysis, it can retain more relevant information.

Fig. 4.15 Single gene query result page
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The GSEA algorithm and software were developed by the Broad Institute in the
USA. The installation and analysis process of GSEA software is introduced below.

4.3.1.1 Software Installation

Two methods are officially recommended. The first is the Java-based GSEA desktop
application. Navigate to the GSEA official download page and click the Launch icon
on the right to download (as shown in Fig. 4.21), however, the installation requires
an internet connection. The second type is the Java-based GSEA application pack-
age. Click download on the right to download. The installation does not require an
internet connection and starts quickly. The software startup interface is shown in
Fig. 4.22. We use the second method as an example in the following analysis and
introduction.

4.3.1.2 Data Preparation and Import

GSEA provides the sample dataset on its official website, as shown in Fig. 4.23.
Users can download a selected gene expression matrix file and sample grouping
information file for analysis.

Fig. 4.16 Single gene query download page
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The gene expression matrix Diabetes_collapsed_symbols.gct, sample grouping
information Diabetes.cls, and gene function classification data c5.all.v6.2.symbols.
gmt provided by the GSEA website are selected here as an example. According to
the steps shown in Fig. 4.24, click Load data—> Browse for File—> find the file to
be imported in the pop-up box, select and click open to import data.

4.3.1.3 Setting Parameters and Running the Software

Click Run GSEA on the left panel of the interface; the parameter selection bar pops
up. Parameter settings are divided into three parts: Mandatory parameter settings,
basic parameter settings, and advanced parameter setting. Generally, the latter two
parameters do not need to be modified, and the default value can be used. The
following is a brief description of the fields in the mandatory parameter settings
(as shown in Fig. 4.25).

Select the expression dataset file Diabetes_collapsed_symbols.gct in the Expres-
sion dataset field. Select the gene function set database c5.all.v6.2.symbols.gmt in
the Gene sets database field. Number of permutations indicates the number of
permutation tests, and the default value is 1000. Select the comparison method in
the Phenotype labels field. GSEA automatically extracts the corresponding data from
the expression dataset file for comparison based on the group information during the

Fig. 4.17 Multiple gene query homepage
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analysis process. Select true in the Collapse dataset to gene symbols field. As the
number of samples in each group is greater than 7, select phenotype in the Permu-
tation type field. The Chip platform option is for the annotation conversion of the ID,
which is not required in this example.

After the above parameters are set, click the Run button under the parameter
settings column; the running status is displayed in the GSEA reports at the bottom
left of the interface. If it displays Running, it means the operation is successful, and if
it displays Error, it means the operation failed, as shown in Fig. 4.26. In case of an
error, click Error to view the Error report.

4.3.1.4 View Results

The results of data analysis are saved to the set path. Click index.html to view the
web version of the analysis report, as shown in Fig. 4.27.

Fig. 4.18 Multiple gene query information confirmation page
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4.3.2 Network Analysis Software

At present, there are many open source and commercial-use complex network
construction and network analysis software. For example, Gephi [43] and Cytoscape
[44] are open source and free, as shown in Table 4.1. These powerful software not
only provide network graph creation, visualization, and abundant network graph
layout methods, but also provide large-scale network analysis algorithms, such as
community division algorithm, centrality measurement algorithm, and shortest path
calculation method. Cytoscape currently has 14,650 citations and Gephi has 4704.
Ruth et al. used Cytoscape to analyze the evolutionary network of mammals and
their gut microbes [45], Zhong et al. used Cytoscape to analyze the overall distri-
bution of Saccharomyces cerevisiae protein complex [46], Barberán et al. used
Gephi to use network analysis to explore the symbiosis mode of soil microbial
communities [47]. In this section, we imitate and introduce two common complex
network visualization analysis software: Cytoscape and Gephi. To more intuitively
and pragmatically explain the basic functions of software data processing and
analysis, we use a small amount of Protein–Protein Interaction (PPI) network dataset
(as shown in Table 4.2) to carry out a practical operation and demonstration in

Fig. 4.19 Multiple gene query result page
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combination with the functions of the corresponding software and generate relatively
intuitive analysis results.

4.3.2.1 Cytoscape

Cytoscape is an open source software platform (latest version is 3.7.1) for visualizing
molecular interaction networks and biological pathways, and integrating these
networks with annotations, gene expression profiles, and other status data. Although
Cytoscape was originally designed for biological research, it has become a universal
platform for complex network analysis and visualization. Its dominant function is to
analyze the relationships among large-scale protein interactions, protein–DNA, and
genetic interactions. Cytoscape’s core functions provide the basic components for
data integration, analysis, and visualization. Additional extended functions are
provided in the form of small programs (apps, formerly called plug-ins). Various
apps can be used for molecular network analysis, new layouts, additional file format
support, script writing, and connection with databases. The system also supports the
development of open APIs based on Java, which can be published to the Cytoscape
application store for free download or installation by users. As the software is
developed and run on Java, the corresponding Java runtime library needs to be

Fig. 4.20 Multiple gene query download page
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installed beforehand. Cytoscape’s main interface after an operation is shown in
Fig. 4.28.

Basic Use

Launch the software, you can see the upper menu bar, select import under File to
import the network; the imported data format for Cytoscape is as shown in Table 4.3.
Interaction represents the relationship between nodes; this option can be defined
according to actual data. Network layout can be selected as the Layout and includes
grid layout, hierarchical layout, and circular layout. In addition to some basic
software functions you can also search and install corresponding app plug-ins
based on your needs. Cytoscape’s core functions are also provided in the form of
plug-ins. After importing the network diagram, you can select the layout mode and
set the color, size, and shape of the nodes. The operation process is shown in
Fig. 4.29.

Fig. 4.21 GSEA official download page
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Exemplary Functional Components

Common requirements in biological network analysis are analysis of network
topology characteristics, community analysis, etc. To introduce the functions of
Cytoscape more clearly, this chapter demonstrates the practical operation of apps
such as CentiScaPe [49] and MCODE [50]. The data used in this section is the PPI
network data, as shown in Table 4.3. The following is the actual operation of the
above two components combined with PPI data:

Analysis of centrality measurement using CentiScaPe:
CentiScaPe is an app for network centrality measurement calculation, which can

be used for analyzing undirected and directed networks. The supported centrality
metrics can be divided into three aspects: network, node, and edge and include
Network Diameter, Degree, Strength, Betweenness, Closeness, Eccentricity, etc. A
simple operation demonstration of CentiScaPe is shown in Fig. 4.30.

Launch the Cytoscape software, select CentiScaPe from the Apps menu bar, the
CentiScaPe menu is displayed. In this menu, select the network characteristics that
need to be calculated, such as network diameter, node degree, etc. Then select
undirected graph or directed graph and press the start button to start the calculation.
Each indicator has a corresponding meaning and function. Click the button to the
right of the indicator to view the details of that indicator.

Using MCODE for community analysis:

Fig. 4.22 GSEA software startup interface
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The MCODE plug-in adopts a Molecular Complex Detection algorithm, which is
used to detect the closely connected subnet structure (highly inter-connected local
network structures) in the network. This closely connected subnet is also known as
community. Communities usually have different practical meanings in different
networks. The communities in protein interaction networks are usually part of
protein complexes and molecular pathways, whereas the communities in similar
networks of protein structures usually represent the protein family. With respect to
community extraction, MCODE also supports visualization analysis of the commu-
nity structure. A simple operation demonstration of MCODE is shown in Fig. 4.31.

Launch the Cytoscape software and import the network. Select the MCODE plug-
in from the Apps menu bar. Then select and set the relevant parameters, such as
degree coefficient, etc. Click clustering; the corresponding clustering results are
displayed in the right panel. Click the appropriate category to display the specific
community analysis results in the graph.

Fig. 4.23 GSEA sample data download page
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4.3.2.2 Gephi Visualization Software

Gephi is a free and open source network analysis and visualization software devel-
oped on Java. It supports three different operating systems, Mac OS, Windows, and
Linux, and supports interfaces in different languages such as English, Simplified
Chinese, and French. Gephi was first released in 2006, and the latest version is
V0.92. Gephi can visualize any network data represented by nodes and edges, such
as social networks, power networks, disease transmission networks, protein interac-
tion networks, etc. At the same time, Gephi supports dozens of algorithms in the
form of an extended library, which can be used to calculate the average degree, graph
density, and average clustering coefficient of a network and to screen the network
according to various criteria, such as edge weight, node degree, etc. Gephi can also
be used for community division and visualization of networks. The division algo-
rithms include Fast Unfolding of Communities in Large Networks (BGLL) [51], etc.
Table 4.4 shows the data format of the data imported in Gephi. The naming of the
node name field should strictly include the Source and Target. Select the appropriate
value in the Type field; the available options are undirected graph and directed
graph.

Next, we take PPI network data import and analysis in Table 4.4 as an example to
demonstrate the corresponding functions of Gephi software. Network data import is
the first step in the analysis. Network data can be imported using the main function
interfaces by selecting the file menu in the Gephi interface based on different file
formats (the data format is shown in Table 4.4 and Fig. 4.32). After the data is

Fig. 4.25 Mandatory parameter setting interface

Fig. 4.26 Running status interface
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imported, the main interface can be selected through the corresponding properties to
flexibly view the network diagram. For example, multiple network layouts and styles
can be selected (such as Fruchterman Reingold), and then the corresponding visu-
alization effect can be obtained by running the operation. In addition, the color and
size of nodes in the network and the color and size of edges can be adjusted and
processed accordingly (as shown in Fig. 4.33). Various topological statistical

Fig. 4.27 Analysis result page
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features of the network, such as average degree, network diameter, and betweenness,
can be conveniently calculated and displayed (as shown in Fig. 4.34). Community
analysis is an important algorithm for complex network analysis and is also one of
the basic functions. Gephi integrates the classic community analysis method into a
toolbar called “statistics.” After clicking and running, the results of the community
structure analysis in the network are displayed. The visualization of specific com-
munity structure can be classified and displayed (as shown in Fig. 4.35) through the
color rendering mode (the selection is based on modules) of nodes in the menu on the
left side of the main interface. It is worth noting that several other Gephi analysis
functions are integrated in the form of plug-ins; users can load the corresponding
plug-ins through the menu to obtain new analysis functions.

4.3.2.3 Pajek Complex Network Visualization Software

Among the more complex network analysis software, Pajek is a free large-scale
complex network analysis tool with a more than two decade-long research and
development history (since 1996). Compared with other software, most network

Table 4.1 Network analysis software

Three commonly used visualization software

Directory Cytoscape Gephi Pajek [48]

Developer UCSD Mathieu Jacomy, Sebastien
Heymann

eytanAdar

Development
language

Java Java Java

Supported
Platforms

Mac OS, Windows,
Linux

Mac OS, Windows, Linux Mac OS, Windows,
Linux

Supported
languages

English English, Simplified Chinese,
etc.

English

Open source and
free

Yes Yes Yes

Table 4.2 Examples of PPI
network data

Source Target Weight

FKBP4 HSP90AA1 1

CFTR HSPA8 1

CFTR SLC9A3R1 1

CFTR UBC 1

CYP51A1 LSS 1

USH1C CDH23 1

RALA RALBP1 1

RALA EXOC2 1

RALA EXOC8 1

CX3CL1 CX3CR1 1
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analysis algorithms implemented in Pajek have a low computational time complex-
ity. Therefore, an ultra-large-scale network that can handle hundreds of millions of
nodes is a powerful analysis tool for developing various large-scale complex
nonlinear networks. The latest version of Pajek is V5.08 (supports 32-bit and
64-bit operating systems), with Windows, Linux, andMac versions. Pajek is updated
on a regular basis. It uses network exploratory analysis methods such as centrality
measurement and community analysis; however, it has poor visualization effect. In
addition, through the recent development (2019) of the R language interface pack-
age, the statistical analysis function of the R language can be used to create powerful
network structure statistical analysis capability.

4.4 Toolkit Based on Programming Languages

Current visualization toolkits based on programming language calls basically use the
network topology statistical measurement, classic graph algorithms, community
division, and link prediction analysis methods. They are more flexible in terms of
network operations, can accurately control nodes and edges, and can easily adjust the
corresponding calculation functions as required. However, in general, programming
language-call-based tools are suitable for backend batch computing and system
integration. Based on the programming language, we have selected a representative
common network visualization package for C++, Java, Python, and R programming
language. Some common visualization toolkits are listed in Table 4.5.

C++ and Java toolkits are briefly introduced below:

1. Boost Graph Library: A C++ Network Visualization Toolkit

The Boost Graph Library (BGL) is a C++ visualization toolkit that provides
generic interfaces that can access the internal structure of a graph while hiding
implementation details. It has an open interface and the graph library that

Table 4.3 Import data format
of cytoscape

source interaction target

FKBP4 Pp HSP90AA1

CFTR pp HSPA8

CFTR pp SLC9A3R1

CFTR pp UBC

CYP51A1 pp LSS

USH1C pp CDH23

RALA pp RALBP1

RALA pp EXOC2

RALA pp EXOC8

CX3CL1 pp CX3CR1

TRAPPC6A pp TRAPPC3

NDUFAB1 pp NDUFB7
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implements this interface can interoperate with the BGL algorithm and other algo-
rithms that implement this structure. It supports three kinds of data format—adja-
cency list, adjacency matrix, and edge list. BGL can be used for visualization and
provides many graph-related algorithms, such as Dijkstra algorithm for the shortest
path, Kruskal algorithm for the minimum spanning tree, topological sorting, etc.

2. GraphStream: A Java Network Visualization Toolkit

GraphStream is a graph library for processing Java which focuses on the dynamic
representation of graphs. The main research object of this library is the modeling of
dynamic interactive networks of various scales. The goal of this library is to provide
a method to represent graphs and process them. To this end, GraphStream provides
several graph classes that allow directed and undirected, 1-graph, or P-graph (that is,
multiple graphs, graphs that can have multiple edges between two nodes) modeling.
GraphStream allows any type of data attributes to be stored on graph elements:
numbers, strings, or any objects. In addition, the graphic flow also provides a method
to process graph evolution over time, which can be used to display the way in which
nodes and edges are added and removed, and the possible way data attributes can
appear, disappear, and evolve.

The following is a brief introduction and operation demonstration of Python and
R toolkit combined with some cases.

4.4.1 NetworkX

The first version of NetworkX was released in May 2002, and the current number of
citations has reached 2149. It is a graph theory and complex network modeling tool
developed in Python language. It has built-in commonly used graphs and complex
network analysis algorithms that can easily carry out complex network data analysis,
simulation modeling, and other work. NetworkX makes it easy to generate both
classical and random graphs, such as scale-free networks (where a few nodes have
several), which is convenient for carrying out some network analysis without data.
NetworkX supports the creation of simple undirected graphs, directed graphs, and

Fig. 4.30 Use of Centiscape plug-in
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Table 4.4 Gehpi data format Source Target Weight

FKBP4 HSP90AA1 1

CFTR HSPA8 1

CFTR SLC9A3R1 1

CFTR UBC 1

CYP51A1 LSS 1

USH1C CDH23 1

RALA RALBP1 1

RALA EXOC2 1

RALA EXOC8 1

CX3CL1 CX3CR1 1

Fig. 4.32 Gephi import network
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multiple graphs. It has many standard graph theory algorithms built-in, and the nodes
can be any data. It has rich functions and is easy to use. For programmers who are
familiar with Python, the NetworkX visualization Python package is a very conve-
nient tool with simple and efficient operation. Table 4.6 shows some basic functions
of NetworkX in the Python environment. For detailed functions, please check the
documents on the official website.

To more vividly demonstrate the visualization effect of NetworkX, this chapter
uses an exemplary small amount of clinical disease merger relational data and uses
Python code to generate a visualized network diagram. The disease merger relational
network data contains 51 disease nodes and 150 disease merger relational edges
(as shown in Table 4.7). The core codes are shown in Table 4.8. The visualization
result is shown in Fig. 4.36. The case diagram uses a circular layout. The larger
the node degree in the network, the larger the node. The color is also set according to
the node degree. The larger the node degree, the closer the node color is to blue. The
greater the weight of the edge between the two nodes, the wider the line of the edge;
the width of the edge between hypertension and renal insufficiency in the merger
disease network is the widest, as hypertension and renal insufficiency are more likely
to occur as co-morbidity.

4.4.2 igraph

igraph is a simple and easy-to-use network analysis tool. Several of its functions are
developed using C language. It has high computing efficiency and is highly suitable
for solving large and complex network problems. R, Python, and C/C++ can be used
to call the corresponding packages for visualization. The latest version is V1.0.0. In

Fig. 4.33 Network layout and node edge settings
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the igraph network graph we can set the node color and calculate node degree, edge
density, clustering coefficient, and other statistics and their distribution and can also
cluster the network and visualize each category. In this section, we first call the
igraph R language package with the R language to create a visualization example.
Table 4.9 lists the basic functions of the igraph R package.

To show the visualization effect of igraph, we perform a simple operation
demonstration using the disease network dataset. First, install RStudio, and then
install the igraph R package. Table 4.10 shows the core codes of the case (based on R
language), and Fig. 4.37 shows the visualization effect of the case. Different colors
in the figure represent different communities, and each community represents a set of
closely related diseases.

Taking into account the wide range of network pharmacology applications, this
chapter only provides a high-level introduction to the main network pharmacology
methods and software. It focuses on introducing common software and methods
such as common complex network analysis and visualization, molecular and net-
work function analysis, drug-target prediction, and drug indication prediction that

Fig. 4.34 Statistical index of the Gephi diagram
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Fig. 4.35 Gephi module rendering

Table 4.5 Common web visualization toolkits

Name
NetworkX
[52] igraph [53] Boost Graph Library [54]

GraphStream
[55]

Developers Aric
Hagberg,
Pieter
J. Swart

Szabolcs
Horvát

Douglas Gregor Andrew
Lumsdaine

Julien Baudry
Antoine
Dutot

Programming
languages

Python R, Python,
C/C++

C++ Java

Open source and
free

Yes Yes Yes Yes

Latest versions 2.3 1.0.0 1.70.0 1.3

Table 4.6 NetworkX functions

Functions Description

add_node(node) Add node to graph

get_node_attributes(G, name) Get node attributes from graph

all_neighbors(G, node) Return to neighboring node of the node

common_neighbors(G, u, v) Return to common neighbor of the two nodes

is_directed(G) Judge whether graph is a directed graph

nodes(G) Return to nodes of the graph

number_of_nodes(G) Find the number of graph nodes of the graph

add_edge(node1, node2) Add edge

get_edge_attributes(G, name) Get edge attributes

number_of_edges(G) Return to number of edges

clear() Delete nodes and edges in the graph
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are unique to network pharmacology. Traditional computational pharmacology
software such as virtual screening (Docking) software is not involved [56]. At the
same time, this chapter provides some further details from the perspective of network
pharmacology technology and application scope including the construction methods
of network pharmacology-related resources, such as the information extraction
method of drug-target and drug side effect relationship [57], the transformation
network pharmacology method combining clinical and basic medicine [58], the
network pharmacology prediction method based on deep learning, etc., which
have become new and key research topics [59]. This chapter does not elaborate
much on the above aspects. Particularly, there are several important studies in the

Table 4.7 Dataset of diabetes with combination of diseases

Disease 1 (node 1) Disease 2(node 2) Weight (Weight)

Hypertension Renal insufficiency 1

Lipid metabolism disorder Hypertension 0.995283019

Hypertension Heart disease 0.872641509

Cerebral infarction Hypertension 0.613207547

Hypertension Hepatic disease 0.514150943

Lipid metabolism disorder Hepatic disease 0.504716981

Lipid metabolism disorder Renal insufficiency 0.367924528

Gastrointestinal lesions Hypertension 0.29245283

Lipid metabolism disorder Cerebral infarction 0.245283019

Retinopathy Renal insufficiency 0.240566038

Hypertension Cervical spondylosis 0.240566038

Heart disease Renal insufficiency 0.231132075

Neuropathy Hypertension 0.202830189

Cerebral infarction Heart disease 0.202830189

Table 4.8 NetworkX drawing core codes

Core Codes of NetworkX Drawing Network Diagram

import networkx as nx # Import networkx package
import matplotlib.pyplot as plt # Import drawing kit
G ¼ nx.Graph() # Create a graph

G.add_nodes_from(nodes) #Add nodes to graph, nodes are edge list of the graph

G.add_weighted_edges_from(edges)# Add edges to graph, edges are edge list of the graph

de ¼ G.degree() # Calculate degree of graph

node_color ¼ [convert_to_hex(de[i]) for i in nodes]#Set node color according to degree

node_size ¼ [de[i]*30 for i in nodes]#Set node size according to degree

widths ¼ [int(line[2])/50 for line in data]#Set width of edge according to weight of edge

nx.draw(G,pos¼nx.spring_layout(nodes), with_labels ¼ True,font_size¼10,
node_size¼node_size,width¼widths,node_color¼node_color)

plt.rcParams['font.sans-serif'] ¼ ['SimHei'] #Display Chinese tag

plt.savefig("ba.png") #Save figure

plt.show() #Display
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prediction and analysis of adverse drug reactions and drug side effects, as well as the
prediction method of drug interaction relationship. The related research plays a vital
role in network pharmacology research. However, this chapter does not cover the
methods and software information from this aspect. Readers who are interested can
refer to other research works [60, 61].

Conversely, current network pharmacology software and analysis processing
algorithms are focused on the functions of independent technical links, such as

Fig. 4.36 NetworkX graph visualization display

Table 4.9 igraph basic functions

Functions Description

nodes<-read.table("nodes.txt") Read information of the node

links<-read.table("links.txt") Read information of the edge

net<-graph_from_data_frame(d ¼ links,
vertices ¼ nodes,
directed ¼ F)

Create network

E(net)$color<- "red" Designate node color

plot(net,vertex.color¼"gray50",edge.color ¼ E(net)
$color)

Graph visualization

plot(net, layout ¼ layout_in_circle) Layout

degree(g, mode¼"all") Compute all node degrees in the graph

edge_density(net) Calculate edge density

transitivity(g, type¼"global") Calculate clustering coefficient

cfg <- cluster_fast_greedy(net) Clustering, mining community in the
network
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network analysis and visualization, drug-target relationship prediction, etc. How-
ever, as network pharmacology research involves many upstream and downstream
technologies and functional links, researchers need to combine and apply different
software and algorithms to generate corresponding research results. To this end, in
order to improve the effectiveness of network pharmacology research, there is an
urgent need to develop an integrated, high-performance, and service-oriented net-
work pharmacology software platform. The platform needs to include network data
integration, network analysis and prediction, visualization processing, functional
enrichment analysis, and related literature validation, to support the integrated
network pharmacology research process.

Table 4.10 igraph visualization core codes

Core codes: igraph visualization

library(igraph)#load igraph package

net <- graph_from_data_frame(relation, directed¼FALSE)#Create graph

cfg <- cluster_fast_greedy(net)#Community division algorithm

plot(cfg, net)#visualization

Degree(net)#Add up node degree

edge_density(net)#Calculate edge density

transitivity(net, type¼"global")#Calculate clustering coefficient

Fig. 4.37 igraph disease network visualization
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Chapter 5
Case Study of Network Pharmacology
and Modernization of Traditional Chinese
Medicine

Shibing Su, Yuanjia Hu, and Huali Zuo

5.1 Guide to this Chapter

Pioneering work in the early stages [1, 2] on network pharmacology and integration
of TCM theory and modern chemistry, systems biology, and information science has
resulted in modernization of TCM. Network pharmacology has developed rapidly in
the past 10 years and is on the rise. As a result several high quality academic
achievements have emerged.

Network pharmacology combines system and reduction theories, macro and
micro research, and in vivo and in vitro research. The basic research concepts are
consistent with the TCM philosophy. Gauging by the current research, network
pharmacology will undoubtedly herald new opportunities in the development of
TCM [3], especially in the research of syndromes, TCM prescriptions (compatibil-
ity, efficacy), new drug discovery, national and international traditional medicine
research, etc. This chapter explores relevant studies in recent years, and also
summarizes and concludes results, thus helping readers to get familiar with network
pharmacology. This chapter also covers major aspects of TCM modernization
research and hopes to enhance readers’ understanding of TCM science, based on
network analysis and by reviewing specific application examples. For each achieve-
ment, this chapter analyzes the research purpose, data sources, network construction
and visualization, analysis index and algorithm, experimental verification, and
conclusions, to facilitate a clearer and structured understanding of the case, as well
as to highlight the comparison between cases.
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5.2 Study of Network Pharmacology and TCM syndromes

The clinical manifestations of diseases are ever-changing and complicated. Syn-
drome is a certain stage in the process of disease occurrence and evolution. Based on
the “Four Diagnostic Methods” of TCM, the etiology, pathogenesis, disease loca-
tion, and disease progress are revealed in varying degrees, thus providing a rationale
for treatment [4]. In long-term clinical practice, TCM doctors have summarized a
methodology: Eight Principal Syndromes, namely, data obtained from the four
diagnostic methods (observation, auscultation and olfaction, inquiry, pulse diagno-
sis). Based on the rise and fall of healthy qi, the nature of pathogens, and position and
progress of disease, comprehensive analysis can be summarized into eight syn-
dromes: yin, yang, external, internal, cold, heat, deficiency, and excess. Yin and
yang can be used to determine the type of disease and nature of cold and heat to
illustrate the nature of the disease. Disease location and progress can be reflected
externally and internally. The strengths and weaknesses of vital qi and pathogens can
be explained by deficiency and excess.

The core idea of TCM lies in its holistic view and treatment, based on syndrome
differentiation. The main objective of TCM intervention is syndrome management,
which is characterized by an integrated diagnosis and treatment of “disease-syn-
drome-prescription,” which is a combination of disease and syndrome and the
corresponding prescription. Syndrome forms the core of the diagnosis and treatment
system of TCM, and is the summary of disease complexity and long-term clinical
practice in TCM. Understanding the biological basis for syndrome is the key to
explaining traditional concepts and efficacy of TCM, and integrating it with modern
medicinal practices. Since long, the clinical practice of TCM lacked scientific and
objective standards and basis. TCM research often follows the reductionism thinking
approach of western medicinal research and ignores its holistic features. A prescrip-
tion is often characterized by a few simple index models, due to which, it is difficult
to reflect the holistic characteristics of TCM. Due to the complex characteristics of
diseases and TCM, the scientific interpretation of syndrome theory, material basis of
prescriptions, and the mechanism of action have become key problems restricting
the modernization of TCM.

Unclear biological mechanism of syndrome hinders the understanding of efficacy
of TCM prescriptions, as well as the expansion and application of TCM prescrip-
tions in the modern medical system. At a molecular level and considering the
complex biological systems, the biomolecular network is an important system in
maintaining body homeostasis. However, the theory of nonspecific holistic regula-
tion of TCM is similar to the regulation of biomolecular networks in modern
medicine. Therefore, it is a new research strategy [5], in line with the holistic
characteristics of TCM, which helps in carrying out syndrome research, and analyzes
the association of “disease-syndrome-prescription” by using network analysis
method.

In November 2002, the National Natural Science Foundation of China launched a
major plan for research on TCM—“Modern Research on Several Key Scientific
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Issues in Traditional Chinese Medicine.” A key funding project is the “Research on
Syndrome Genomics and Syndrome Proteomics,” which indicates that systems
biology research based on syndrome genomics and syndrome proteomics is set to
enter a new phase [6]. With the development of network pharmacology supported by
systems biology, complex network analysis methods can be applied in TCM
research.

The development of systems biology, bioinformatics, and network pharmacology
provides feasible options for the study of complex systems in TCM. A complex
network is an abstract model with objective systems. It is essentially a big data set
with systematic characteristics that can bridge TCM with modern science. In recent
years, network analysis has been widely used in the study of TCM syndromes and
some progress has been made. Li et al. [7, 8] used network pharmacology to carry
out syndrome-related research. The biomolecular network of cold and hot syn-
dromes is constructed and network analysis is conducted based on the Neuro-
Endocrine-Immune (NEI) system. Research results indicate that the cold syndrome
mainly manifests in the hormone function module, the hot syndrome manifests in the
cytokine function module, and the neurotransmitter function module is distributed
simultaneously in both cold and hot networks. Also, network topology analysis
shows that there is a scale-free attribute in the biomolecular network of cold and hot
syndromes, that is, the functions of the network depend on some key nodes, which
are expected to become the syndrome classification markers of the biological
molecular network. Wutou Decoction (WTD) has good therapeutic effects on the
Rheumatoid Arthritis (RA) cold syndrome model. It is a mechanism used to regulate
the thermogenesis pathway of PPAR-γ co-activator, which reflects the principle of
“cold syndrome hot treatment” in TCM theory. Su et al. [9] studied HBV Causing
Cirrhosis (HBC) as a research topic based on the network pharmacology and clinical
transcriptome data. They found that some miRNAs are related to deficiency and
excess, resulting in chronic hepatitis B, which laid the foundation for “same disease
with different treatment” for HBC. By analyzing the drug target network and
biomolecular network related to RA hot syndrome, Lv et al. [10] discovered
common biological pathways involved in the molecular network of RA hot syn-
drome and TCM targets: GM-CSF signaling pathway, CTLA4 signaling pathway, T
cell receptor signaling pathway, and CD28 signaling pathway in helper T cells, may
be molecular biological mechanisms of “drug-syndrome correspondence” in the
TCM treatment of RA hot syndrome. They may also be the molecular biological
mechanisms of “drug-syndrome correspondence” treatment for RA hot syndrome.
Network pharmacology has also made some progress in the study of syndrome of
other diseases, such as RA deficiency syndrome [11], liver cancer deficiency syn-
drome [12], etc. The biomolecular network and drug target network are predictive
studies based on several databases and algorithms, which provide a new channel for
basic TCM syndrome research differentiation, treatment, and “drug-syndrome
correspondence.”

A brief summary of some related studies is shown in Table 5.1:
Network pharmacology in TCM syndrome research elaborates conventional

TCM theories from a modern science perspective, by exploring syndrome
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differences at the molecular level. It is possible to clarify the scientific rationale for
TCM Syndrome Differentiation Treatment at multiple levels by establishing char-
acteristic gene expression profiles or functional gene regulatory networks of differ-
ent syndromes, and combining the identification of differential proteomics and key
functional proteins of different syndrome types with traditional TCM theories. Also,
it is possible to find the specific gene and functional protein markers corresponding
to the syndrome, to further provide the scientific basis for the clinical syndrome
differentiation in TCM and the establishment of the TCM “prescription-syndrome
correspondence” model.

The following two specific research cases were selected for analysis.

5.2.1 Case Analysis of Network Pharmacology Research
on Cold and Hot Syndromes and Corresponding
Prescriptions

In clinical practice using TCM, treatment of the same disease requires the use of
different TCM prescriptions based on different syndromes. For example, for the cold
syndrome, hot-type Chinese medicine is used for treatment, while for the hot-type
syndrome, cold-type Chinese medicine is used for treatment, namely as described in
TCM theories: cold syndrome hot treatment, hot syndrome cold treatment. The
differentiation of cold and hot syndromes mainly reflects the different nature of the
disease. Although long-term clinical experience with TCM can help to accurately
distinguish between the two syndromes, however, this experience-based method is
difficult to be understood by modern science.

Currently, there are a lot of studies on cold and hot syndromes, and these studies
are still growing. Most of these research results are isolated results, for example,
functions of a single gene or a few interactions. Literature mining technology
combined with network analysis can discover the potential holistic and common
characteristics hidden in isolated studies. Based on the above research foundation, Li
et al. [7] studied the molecular characteristics of cold and hot syndromes based on
the background of the Neuro-Endocrine-Immune (NEI) system by using
co-occurrence literature mining method and network analysis method.

5.2.1.1 Research Objective

Cold and hot syndromes are two common clinical syndromes. From the perspective
of Western medicine, most diseases such as inflammation, infection, stress, and
autoimmune diseases are related to interactions between NEI systems. The NEI
system plays an important role in the occurrence and development of various
diseases, and its abnormality is an important cause of related diseases. Therefore,
the NEI system can provide a breakthrough in modern medicine to explore the
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syndrome mechanism and to communicate the concept of TCM and modern
medicine.

Previous studies have shown that the NEI system of patients with cold and hot
syndromes exhibits abnormal functions. In the TCM diagnosis and treatment pro-
cess, most RA patients can be divided into cold and hot syndrome types, and
correspondingly, hot or cold Chinese medicine is used for treatment. Therefore,
the purpose of this study is to explore the molecular characteristics of cold and hot
syndromes using the NEI system based on network analysis, to provide reference for
modern research of cold and hot syndromes.

5.2.1.2 Data Source

Chemical Messengers (CMs) such as hormones, cytokines, and neurotransmitters in
the NEI system act as hubs for host regulation during their complex interaction
processes, thereby maintaining the stability of the NEI system and health of the
organism. If CMs are regarded as a component of the NEI system, the genes that
encode CMs (directly or indirectly) can be considered as related genes. These genes
and CMs are the basis of network construction in this study. The data acquisition and
processing methods are as follows:

(1) The synonyms of NEI determined by searching Medical Subject Headings
(MeSH), and the relevant abstracts retrieved and downloaded from the PubMed
database were used as the literature summary pool of the NEI PubMed;
NEI-related genes in the HUGO database were retrieved, to obtain the inter-
relationship between genes. In addition, the CMs related to the NEI system were
manually collected from English literature (published from September 30, 2000
to September 30, 2005), with keywords including “hormone”, “cytokine”, and
“neuro-transmitter”; as well by using the keyword “disease” to search relevant
CMs in the literature abstract pool of NEI PubMed. Comprehensive database
HUGO and NEI-related genes and CMs in literature were also searched.

(2) Related literature on cold and hot syndromes was searched in the abstract pool of
NEI PubMed based on keywords of cold and hot syndromes, and the literature
pools for cold and hot syndromes were established.

(3) Syndrome-related disease data sets and syndrome-related NEI pathways were
obtained using the TCM online database (containing more than 4,000 kinds of
disease information) established by the China Academy of Chinese Medical
Sciences. This research selection was usually diagnosed as a typical disease with
cold or hot syndromes. Genes related to cold and hot syndrome-related diseases
were obtained from the OMIM database; these genes were enriched through
DAVID and the NEI-related KEGG pathway information was screened (In the
DAVID gene annotation system, Fisher’s test is used to measure whether the
proportion of genes in a specific pathway in the enrichment result is significantly
higher than the background genes of the human genome).
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5.2.1.3 Network Construction and Visualization

The NEI-related gene/CMs network was constructed based on the literature
co-occurrence mining method. The nodes are biomolecules (genes or CMs) and
the edges are the connections based on the literature co-occurrence relationships. If
two biomolecules appear in the same literature at the same time, then they are
related. Graphviz software was used for network visualization.

5.2.1.4 Analysis Index and Algorithm

The network constructed using the above method was analyzed. The topological
structure feature of node i in the network is represented by the topological vector in
formula (5.1):

vi Wð Þ ¼ ci1, ci2, . . . , cin½ �T ð5:1Þ

In formula (5.1), n represents the sum of the special nodes of the cold and
hot syndromes; W ¼ {C,H} represents the network of the cold and hot syndromes,
cij is the indicator variable between node i and node j (if cij ¼ 1, i 6¼ j, it means
there is a connection between i and j, and cij¼ 0, i 6¼ jmeans there is no connection
between i and j).

The topological distance between the cold and hot syndromes is defined as
follows:

di ¼ vi Hð Þ � vi Cð Þ
� �T � e ð5:2Þ

In formula (5.2), vi is the topological vector of node i, and e is the unit vector. The
topological distance is standardized by the following formula, so that its value range
is [�1, 1].

di ¼ di

vi Hð Þ þ vi Cð Þ
� �T � e ¼

vi Hð Þ � vi Cð Þ
� �T � e
vi Hð Þ þ vi Cð Þ
� �T � e ð5:3Þ

In formula (5.3), if di > 0, node i is classified as a hot syndrome node; if di < 0,
then node i is classified as a cold syndrome node. Then, the proportion of cold
and hot syndrome nodes observed under each NEI category was analyzed by using
cumulative binomial distribution:

P c � c0ð Þ ¼
Xc0
c¼0

N

c

� �
1
2

� �N

ð5:4Þ
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In formula (5.4), N is the number of nodes in the cold and hot syndromes,
excluding nodes with di ¼ 0, c0 is the smaller of the node number of the cold and
hot syndromes.

5.2.1.5 Experimental Verification

RA was selected as the disease model as it has been widely studied in Chinese and
Western medicine and exhibits typical cold and hot syndromes. Experiments were
carried out on CIA rat models (most widely used RA model) to study the therapeutic
effects of Wenluo decoction (HCHF is composed of aconite, Atractylodes
macrocephala, cassia twig, and Selaginella) and Qingluo decoction (CWHF is
composed of radix sophorae flavescentis, cortex phellodendri, caulis sinomenii,
and rhizoma dioscoreae) on the central nodes of the NEI network.

Therapeutic effects of CWHF and HCHF were explored on prescriptions for
syndrome, by observing the effects of CWHF and HCHF (two prescriptions that
have proven to be effective for RA) on the central node of the NEI network for cold
and hot syndromes, respectively. The experiment involved rats that were randomly
divided into four groups: normal group, CIA model group, HCHF treatment group,
and CWHF treatment group. Radioimmunoassay was used to determine the concen-
tration levels of important CMs in both the cold and hot syndrome networks in the
four groups of mice, every 6 h from 0:00 (midnight) to 24:00. Unilateral analysis of
variance was used to analyze the differences between CIA rat and normal rat, and
CIA rat and the two other groups of treatment rats. Bonferroni post-hoc test was
carried out later, where p < 0.05 was regarded as significant difference.

5.2.1.6 Conclusion

(1) Analysis of the network topology structure shows that the biological molecular
network of cold and hot syndromes has scale-free properties, that is, the func-
tional realization of the network is mainly dependent on some central nodes,
thought to be the syndrome classification markers of the biomolecular network.

(2) Compared to the cold syndrome, hot syndrome-related biomolecules exhibit
significant cytokine–cytokine receptor interaction in the pathway. Overall, the
cold syndrome is characterized by the hormone function module, hot syndrome
is characterized by the cytokine function module, and neurotransmitter function
module is distributed in both cold and hot networks at the same time.
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5.2.2 Case Study and Analysis of “Same Disease with Varying
Syndromes” in Hepatic Fibrosis Caused by Chronic
Hepatitis B

HBC is a common stage in chronic hepatitis B development before progressing into
liver cirrhosis or even liver cancer, and an important link that seriously affects the
prognosis of chronic hepatitis B disease. The 5-year survival rate of patients with
severe HBC is only 50%, and Hepatocellular Carcinoma (HCC) occurs in almost all
HBC patients. In the past few decades, there has been a lack of clinically effective
methods for the treatment of HBC in Western medicine. TCM has shown adequate
therapeutic benefits in the treatment of HBC. In the preliminary study of this research
group, it was found that PNP (Purine Nucleoside Phosphorylase), AQP7
(Aquaporin-7), and PSMD2 (26S Proteasome non-ATPase Regulatory Subunit 2)
correlated with HBC’s TCM syndrome differentiation. However, the characteristics
of TCM syndrome development in HBC are not clear, especially from liver and
gallbladder damp heat syndrome (LGDHS) progression to liver depression and
spleen deficiency syndrome (LDSDS), and LDSDS progression into liver kidney
yin deficiency syndrome (LKYDS).

miRNA is associated with several liver diseases, including liver metabolism,
fibrosis, regeneration, and HCC. miRNA has excellent stability in serum or plasma,
making it valuable in clinical research. For example, it can be used as a biomarker to
distinguish chronic hepatitis B, liver cirrhosis, and HCC. This section introduces the
related network analysis research carried out by Su et al. [9] based on different
syndromes of HBC.

5.2.2.1 Research Objective

In the clinical diagnosis and treatment of HBC, syndromes are helpful to understand
the homeostasis of the human body and guide individualized treatment. However,
the scientific rationale for syndrome classification of chronic hepatitis B and the
mechanism of “treating the same disease with different methods” are still unclear.
This study analyzes the expression levels of miRNA transcription profiles of differ-
ent syndrome samples during the development of chronic hepatitis B, and then
explores the biological basis of TCM syndrome differentiation in chronic hepatitis
B-induced hepatic fibrosis, and consequent progression to chronic hepatitis B
syndrome.

5.2.2.2 Data Source

One hundred and sixty-two clinical serum samples were collected from a hospital,
including LGDHS (n ¼ 36), LDSDS (n ¼ 62), LKYDS (n ¼ 34), and normal
controls (n ¼ 30). The diagnostic criteria of HBC in Western medicine follow the
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guiding principles formulated by the Chinese Association of Hepatology and Chi-
nese Society of Infectious Diseases in 2005. To study miRNA profiles, miRNA
microarray analysis was performed on nine HBC serum samples (LGDHS, n ¼ 3;
LDSDS, n ¼ 3; LKYDS, n ¼ 3) and 7 healthy samples. Further, human miRNA
microarray V3 was used for differential expression analysis.

miRNA targets were predicted using TarBase (v7.0), miRecords, and
miRTarBase databases. In addition, miRanda, miRDB, miRWalk, and RNAhybrid
programs were used to predict non-experimental targets. The gene ontology, path-
way, and disease information of target-related genes were obtained by David online
enrichment analysis.

5.2.2.3 Network Construction and Visualization

The relationship between differentially expressed miRNAs and their predicted
targets was used to construct a “miRNA target” network. miRNAs were then
weighted by difference multiple (|log2|), and target genes were weighted based on
degree distribution. Then, all nodes were sorted based on the weight. Similarity was
tested and the nodes obtained were used to reconstruct the network. In the new
network, nodes represented miRNAs or targets, and edges represented connection
strength.

5.2.2.4 Analysis Index and Algorithm

Network Analysis

The common network was knocked out from the original network (common network
refers to the same part of the “miRNA-target” network of LGDHS, LDSDS, and
LKYDS), and the stability of the network with robustness was evaluated, as shown
in the following formula (5.5):

R ¼ C
N � Nτð Þ ð5:5Þ

In formula (5.5), C is the maximum connectivity after network knockout, N is the
number of original network nodes, and Nτ is the number of knockout nodes. In
addition, continuous parameters of the network such as betweenness centrality (BC),
compactness centrality (CC), and degree centrality (DC) were discussed. During
network analysis, the core nodes in the network were defined as the nodes of
BC � BC , CC � CC , and DC � DC . The core node miRNAs are important
miRNAs and play an important role in different HBC syndromes.
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Analysis of Clinical Experimental Data

RT-qPCR was used to detect co-expression miRNAs and important miRNAs in
162 serum samples. The stepwise logistic regression model was used to screen for
the diagnosis of the miRNA group (which is considered as a potential marker in the
development of HBC syndrome).

5.2.2.5 Main Conclusion

(1) The “miRNA-target” network (referred to as “original network”) of LGDHS,
LDSDS, and LKYDS of different syndromes of HBC is shown in Fig. 5.1a–c
[9]. The common network of the three syndromes is shown in Fig. 5.1d. The
original network in the three syndromes replaced by the common network is
shown in Fig. 5.1f, g. The three syndromes (network centralization (NC),
characteristic path length (CPL), and network heterogeneity (NH)) were com-
pared before and after the original network replaced the common network.
Results show that in LGDHS and LKYDS networks, the change rate of NC is
30.57% and 38.52%, CPL is 3.79% and 4.58%, NH is 8.26% and 8.30%,
respectively. Relevant parameters of LDSDS network are only 1.50%, 0.17%,
and 0.26%, as shown in Fig. 5.1h. In addition, robustness calculation results
show that LDSDS network (R ¼ 0.87) is more stable than LGDHS (R ¼ 0.68)
and LKYDS network (R¼ 0.64), as shown in Fig. 5.1i. The results show that the
co-expression of miRNA in the three syndromes may be closely related to
LGDHS and LKYDS, in the development of HBC syndromes.

(2) The signal pathway that regulates the pluripotency of stem cells and the
Transforming Growth Factor-β (TGF-β) signal pathway is closely related to
the development of HBC syndromes (LGDHS, LDSDS, and LKYDS). Previous
studies have shown that as a central regulator, TGF-β is involved in the pro-
gression of many diseases of chronic liver disease, from initial liver injury to
inflammation/fibrosis, to liver cirrhosis or hepatocellular carcinoma.
Overexpression of TGF-β is also associated with tumor development, metasta-
sis, angiogenesis, and poor prognosis, suggesting that these pathways are impor-
tant for understanding the mechanisms of HBC syndrome development.

(3) In HBC syndrome, six co-expressed miRNAs including LGDHS, LDSDS, and
LKYDS may have a greater relationship with the HBC syndrome development.

(4) LDSDS is an important link in the development of chronic hepatitis B liver
fibrosis. LDSDS can be mutually converted to LGDHS or LKYDS under certain
conditions. Based on significant statistical analysis results, four important
miRNAs are found in the process of LKYDS developing into LDSDS, includ-
ing: hsa-miR-17-3p, -377-3p, -410-3p, and -495; and five important miRNAs are
found in the process of LDSDS developing into LKYDS, including hsa-miR-
377-3p, - 410-3p, -149-5p, 27a-3p, and -940.
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5.3 Case Study of Network Pharmacology and TCM
Prescriptions

TCM prescriptions are used to prevent and treat diseases. They are based on
conventional theories (for example: TCM medicinal properties, prescription com-
patibility, etc.) of TCM, and composed of various kinds of Chinese herbs with
specific therapeutic effects. TCM prescriptions have definite curative effects and
less side effects in the treatment of complex diseases. However, compared to
Western medicine, TCM prescriptions contain various ingredients and interactions.
There also exists a problem of unclear drug targets and mechanisms. Therefore,
clarifying the scientific basis of compatibility in TCM prescriptions is a key issue in
the modernization of TCM. TCM prescriptions are characterized by personalized
treatment and overall regulation of patients’ organ functions, analysis of interactions
between networks by medicinal substances in the prescriptions, and the biological
molecules in the organism while exploring the comprehensive effects and holistic
regulation mechanisms of the respective prescriptions. Designing new principles for
formulating drugs from network regulation perspective is a key issue and difficulty
in this field. Clarifying the mechanism of action of TCM under the background of
modern science remains a huge challenge.

In recent years and with the rise of multi-target drug discovery concepts, network
pharmacology has gradually become a popular research model that may have a
profound impact on contemporary TCM research. The quantity, proportion of the
constituent substances in the prescriptions, and their relationship with patients’
organs are highly complex. It is imperative to understand this complex relationship
from a network perspective. Network ideas and analysis are being applied to the
study of TCM prescriptions, to understand the compatibility of Chinese medicines
using multi-target synergy and to study the action mechanisms of TCM prescriptions
at the molecular level. Several research breakthroughs have been made in this
process.

The compatibility principles of TCM, such as “Traditional Chinese Medicine
Formulation”, “Qiqing Hehe” etc., reflect regulating patient health holistically,
which is consistent with the research ideology of systems biology and network
pharmacology. Prescriptions provide fodder for the study of the relevant theories
in Chinese medicine for network analysis. Based on TCM research, Li first proposed
the concepts of “network target” and “TCM Network Pharmacology,” and studied
the molecular mechanism of compound action based on this concept [18, 19]. “Net-
work target” considers the core link of “disease-syndrome” biological molecular
network as the main target. Medicinal substances and the mechanism of action of
TCM prescriptions are found by measuring the relationship between the target
spectrum of prescription ingredients and the key links of the disease-syndrome
molecular network. This paper explores the network characteristics of “Traditional
Chinese Medicine Formulation” by analyzing the distribution of targets contained in
prescriptions, on the network. Furthermore, this network feature is used to predict
clinical biomarkers of prescription drugs, and this knowledge is used to rationally
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formulate prescription drugs. At present, network targets are being explored in TCM
prescriptions. For example, Li et al. [20] analyzed the compatibility of TCM pre-
scriptions by analyzing the joint module of “TCM network-target network-disease
network.” In this study, a DMIMmodel (Distance-based Mutual Information Model)
of TCM was established. The model combined the average amount of interactive
information and the spacing between TCM formulation in the TCM prescription to
identify TCM combinations with similar efficacy across other prescriptions. DMIM
method was used to analyze the TCM network of 3865 traditional prescriptions, drug
pair compatibility, and its therapeutic characteristics. At the same time, new drug
pairs with synergistic or incompatible effects were also found [20]. Furthermore,
considering Liuwei Dihuang Decoction (LWDH) as an example, a novel “Co-
module” was proposed, that is, the compatibility mechanism of TCM prescriptions
was explored using multi-layer network joint module analysis of “TCM-target-
disease.” In the disease phenotype analysis of LWDH prescription and LWDH
treatment, it was found that diseases treated by LWDH have statistically significant
similar phenotypes, and these co-modules were enriched in multiple pathways such
as metabolism and immunity, thus providing a new explanation on the traditional
efficacy of LWDH for nourishing yin and the clinical mechanism of “homotherapy
for heteropathy.” [21]

Bai et al analyzed the main chemical components of Qingfei Xiaoyan Pill by
UPLC-MS, then simulated and predicted its acting target based on the database, and
then observed its effect on the expression of pneumonia-related genes through
animal model and cell model experiments [22]. Research results showed that some
representative components of Qingfei Xiaoyan Pill have anti-inflammatory effects
by participating in Fc epsilon RI signaling pathway, toll-like receptor signaling
pathway, NK cell (natural killer cell) mediated cytotoxicity, and ERK/MAPK
signaling pathway. Hu et al. explored the possibility of establishing the chemical
composition inter-relationship based on the prescription compatibility frequency. A
chemical composition network of prescription was constructed for coronary heart
disease, to provide a basis for further optimizing the complex network of “compo-
nent-target-effect.” [23] At the same time, the network mode conversion was applied
to transform the two-mode network into the one-mode network, and then the deep
connotation of TCM-related data was mined through the new network. For example,
take Xuefu Zhuyu Decoction (XZD) and Gualou Xiebai Banxia Decoction (GXBD),
which are commonly used clinical prescriptions for coronary heart disease “treating
the same disease with different methods,” as examples. Constructing a model
network with the target as the network node component, and using the approved
drug target for the treatment of coronary heart disease as a reference, it is more likely
to result in the discovery of a common target in the two prescriptions [24]. Using Yu
ping feng San (YPF) as an example, a target network was constructed with targets as
nodes and the common pathway relationship between targets as edges. After divid-
ing the network modules, a scoring algorithm was established to evaluate the
strength of the relationship between each module and the disease, to find out the
target modules that are closely related to the immune-related effects of Yu ping feng
San [25].
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In recent years, some concepts similar to network pharmacology have been
proposed, such as network toxicology [26], network formulaology [27], integrated
pharmacology [28], and modular pharmacology [29], all of which are characterized
by adopting the idea and method of network analysis. These are combined with other
methods, to carry out grid and systematic integrated research, and to study the
biological effects and efficacy mechanism of TCM prescriptions. The application
of network pharmacology in the relevant research of TCM prescriptions can effec-
tively combine macro-integration and micro-mechanisms, to help reveal the scien-
tific connotation of prescriptions, provide a scientific basis for the clinical rational
use of Chinese medicines, and to conduct the research and development of innova-
tive Chinese medicines. It is also beneficial to enrich TCM prescription research,
promote solutions to key scientific problems of prescriptions, and cultivate ideas of
modern drug research and development.

A brief summary of some relevant studies is shown in Table 5.2:
There are abundant studies on network pharmacology in the field of TCM

prescription that explore active ingredients, potential drug targets, mechanism of
action, and compatibility of the prescriptions, which effectively combine macro-
integration and micro-mechanisms. This paper attempts to use the network analysis
method to explain the complex system of TCM and its modernization, which will
ultimately help to reveal the scientific basis of prescriptions, clinical application, and
the creation of new Chinese medicines. It is also conducive to enriching the research
on TCM prescriptions, thereby promoting solutions to key scientific problems while
using these prescriptions, and thus expanding modern drug research and
development.

The following two specific research cases are selected for analysis.

5.3.1 Research and Analysis of DMIM: An Interactive
Information Model Based on the Spacing of TCM
Compound Prescriptions

The long-term clinical practice of TCM has proved that there are potential interac-
tions, both beneficial and detrimental, between TCM and their components. In the
conventional application of TCM prescriptions, different TCM prescriptions play
different roles in terms of compatibility: principle drug, assistant drug, adjuvant
drug, and envoy drug. Understanding the compatibility mechanism of TCM is not
only conducive to the modernization of TCM, but also contributes to the develop-
ment of modern drugs.

Based on long-term application of TCM, it has been found that some Chinese
medicine have been clearly effective in inhibiting angiogenesis. This pathological
angiogenesis is closely related to various diseases, especially cancer and rheumatoid
arthritis. More than 60% of cancer chemotherapeutic agents are natural products or
small molecules based on natural products. Many pro-angiogenic and anti-
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angiogenic plant components may be used to treat angiogenesis disorders and are
well tolerated. In particular, the “activating collaterals” in TCM have been found to
be effective for angiogenesis disorders [33]. Based on these studies, Li et al. [20]
applied complex networks combined with mutual information-based DMIM
methods to screen effective TCM combinations for the angiogenesis activity. The
following is the detailed introduction of relevant studies.

5.3.1.1 Research Objective

TCM prescription is an empirical system of multi-component therapy. Complex
Chinese medicine can be used in combination under certain compatibility rules to
meet the needs of the treatment of complex diseases. To explore the relationship
between TCM prescriptions and complex diseases, it is important to establish a
method to bridge the conventional understanding of TCM and modern science. In
this study, the research team established a DMIM model to extract the compatibility
relationship among different traditional Chinese medicines from a large repository of
TCM prescriptions. Taking the classic prescription Liuwei Dihuang (LWDH) as an
example, a network analysis was conducted, followed by in vitro experiments, to
evaluate the pharmacological and synergistic effects of LWDH prescription, which
is closely related to the compatibility network on angiogenesis. Furthermore, a new
concept of “co-module” was proposed, and network analysis was carried out to
explore the potential synergistic mechanism of networked TCM prescriptions.

5.3.1.2 Data Source

DMIM Analysis-Related Data

The SIRC-TCM Chinese medicine information system established by Shanghai
TCM Data Center was searched using “collateral” (Luo) as the keyword. A total
of 3865 TCM prescriptions with names, functions, and “meridian tropism” infor-
mation were collected. All polysemous words, synonyms, and acronyms of Chinese
medicines were replaced in the data set by using a standardized list of Chinese
medicine names. After the names of Chinese medicines were standardized, 3,865
prescriptions containing a total of 737 Chinese medicines were sorted.

Related LWDH Data

The target sources affected by several Chinese medicines for LWDH were obtained
from PubMed and CNKI, and then the PPI network of these targets was obtained
through the HPRD database. There were a total of 146 LWDH-related targets, 127 of
which have interaction relationships.
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5.3.1.3 Network Construction and Visualization

1. The DMIM algorithm was used to calculate the Chinese drug pairs with “close
spacing” (closely related), and the network was built according to the connections
between these pairs.

2. Multi-layer Network of “Chinese medicine-target-disease” taking LWDH as an
example.

To further explore the mechanism of prescription combination predicted by DMIM,
the concept of “joint module” was proposed. Based on the fact that the prescription
combinations may have consistent or common biological patterns, they can be used
as “joint modules,” and can be used as the basis for interpreting TCM and treating
diseases at the same time. After DMIM analysis, six Chinese medicines (Cornus
officinalis, Alisma orientalis, Cortex Moutan, Rehmannia glutinosa, Poria cocos,
and yam) for LWDH were found to be closely related, thus LWDH was selected for
joint module analysis.

Chinese medicine joint module: If two Chinese medicines have a common acting
target, there is a connection between the two medicines, forming a “joint module”;
Disease module: Indicates common related genes between the two diseases; Chinese
medicine-related targets and disease genes were revealed through the PPI network.
The “Traditional Chinese Medicine-Target-Disease” multi-layer network was visu-
alized based on the inter-relationship between TCM, target, and disease.

5.3.1.4 Analysis Index and Algorithm

1) Mathematical Expression of TCM Prescriptions

Firstly, the prescription was expressed in matrix. Suppose there are n kinds of
traditional Chinese medicine and m kinds of prescription, which can be expressed
in matrix form. A ¼ (aij)m�n represents the entire matrix. The serial number of TCM
is from 1 ~ n, the serial number of the prescription is from 1 ~ m, i stands for a
specific prescription, j stands for a specific TCM, aij stands for the ordinal position of
TCM j in prescription i, aij ¼ 0 means that TCM j is not included in prescription i. In
order to eliminate the influence of the amount of TCM in the prescription, set matrix
B ¼ (bij), bij ¼ aij

max
1�k�n

aik
, k represents the amount of TCM in the prescription. Here bij

represents the relative spacing of Chinese medicine j in prescription i. In actual
research, these data form a 3865 � 737 matrix.

The following examples are provided for ease of understanding. As shown in
Table 5.3, the matrix contains ten Chinese medicines: Chinese medicine1, Chinese
medicine2...Chinese medicine10 ( j ¼ 1, 2. . ., 10), three kinds of prescriptions:
prescription1, prescription2, and prescription3 (i ¼ 1, 2, 3). Their compatibility is
in the following Chinese medicine order: prescription1 (TCM4, TCM2, TCM9, and
TCM6; k ¼ 4); prescription2: (TCM4, TCM8, TCM1, TCM10, TCM2, TCM5, TCM3,
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and TCM7; k ¼ 8); prescription3: (TCM1 and TCM6; k ¼ 2). In prescription1, TCM4

ranks as 1, a14 ¼ 1, there are 4 TCMs in total, so b14 ¼ 0.25, i.e., the spacing of
TCM4 in prescription1 is 0.25. Similarly, the spacing of TCM in prescriptions 1, 2,
and 3 were calculated.

For the given two kinds of TCM x and y, it is inferred that the trend of forming
drug pair of x and y depends on two factors: mutual information entropy character-
istics and the average spacing between TCM.

Mutual Information Entropy

The mutual information entropy of TCM x and y is calculated as follows:

MI x, yð Þ ¼ P x, yð Þ � log P x, yð Þ
P xð Þ � P yð Þ

� �
ð5:6Þ

In formula (5.6), P x, yð Þ ¼
Pm
i¼1

I x, y, ið Þ
m represents the occurrence frequency of TCM

x and y, the function I(x,y,i) ¼ 1 means that x and y appear in prescription i at the

same time, otherwise it means that x and y do not appear at the same time. P xð Þ ¼Pm
i¼1

I x, ið Þ
m represents the occurrence frequency of TCMx; similarly, P yð Þ ¼

Pm
i¼1

I y, ið Þ
m

represents the occurrence frequency of TCMy. The higher the value of MI(x, y),
the closer the connection between TCMx and TCMy.

Spacing of Chinese Medicine Between Prescriptions

According to the TCM formulation compatibility law, in the TCM prescriptions
composed of multiple herbs, the lower the order of Chinese medicine, the less
importance it has. Therefore, it is assumed that the farther the spacing between the
two herbs in the prescription, the less likely they are related. Hence, the TCM
spacing between prescriptions is defined as follows: d(x, y, i) ¼ |B(x, i) � B(y, i)|,
in the formula, where x and y appear at the same time; their average spacing is shown
in formula (5.7):

dðx, yÞ ¼
Pm
i¼1

Iðx, y, iÞ � dðx, y, iÞ
Pm
i¼1

Iðx, y, iÞ
ð5:7Þ
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DMIM Scoring System

The DMIM score integrates two important scores—the mutual information entropy
score and the spacing score of TCM between prescriptions: score x, yð Þ ¼ MI x, yð Þ

d x, yð Þ ;
DMIM score reflects the tendency level of x and y to form a drug pair.

5.3.1.5 Experimental Verification

The Angiogenesis Activity of Chinese Medicines Screened by DMIM System
was Evaluated Through In Vitro Experiments

According to the scoring results of DMIM, the ingredients of main Chinese medi-
cines were selected to evaluate angiogenesis activity. Two endothelial cell prolifer-
ation tests, with or without VEGF stimulation, were used to evaluate the anti-
angiogenesis or pro-angiogenesis activity of Chinese herbal medicine ingredients,
respectively.

Experiment of Traditional Chinese Drug Pairs Predicted by DMIM

To verify whether the drug pair predicted by DMIM produces a synergistic effect,
the highest single compound model [34] was used as an experimental reference
model to determine the interaction of TCM, such as synergy or incompatibility.

5.3.1.6 Main Conclusion

(1) The DMIM algorithm established in this study considers and balances the
frequency, relative independence, and spacing between prescriptions in the
process of TCM prescription compatibility, which is an effective method to
explore the compatibility rules of TCM.

(2) Through DMIM analysis of 3865 kinds of TCM prescriptions related to “acti-
vating collaterals” the drug pairs with greater connection were selected and a
network was built. The constructed network can reproduce the traditional appli-
cation of drug pairs or prescriptions, as shown in Fig. 5.2 [20]. The TCM
network in the figure was constructed from the first 100 traditional Chinese
drug pairs extracted by DMIM, showing Chinese medicines with different
medicinal properties (chilly, cold, smooth, warm, hot) and composed of six
classical compound prescriptions. New drug pairs with synergistic or incompat-
ible effects were also found.

(3) Taking LWDH prescription as an example, through the joint module analysis of
“TCM-target disease” multi-layer network (as shown in Fig. 5.3 [20]) and the
disease phenotype analysis of LWDH treatment, it was found that the diseases

204 S. Su et al.



treated with LWDH have statistically significant similar phenotypes, and these
joint modules are enriched in multiple pathways such as metabolic and immune
pathways, thus providing a new interpretation of LWDH’s traditional Yin
nourishing effect and the clinical mechanism of “treating the same disease
with different methods.”

In the TCM module, if the traditional Chinese medicine shares a common target,
then the two kinds of traditional Chinese medicine of Liuwei Dihuang are interre-
lated. For the disease module, if there is a common disease target between diseases,
then there is a link between the two diseases. The width of the solid line reflects the
number of the same target or disease target between TCM. All Chinese medicine
targets and disease targets are mapped to the protein-protein interaction network.
The part connected by dotted line is the common network target module associated
with the TCM module and disease module.

5.3.2 Network Pharmacology Analysis of Liuwei Dihuang
Prescription

The LWDH prescription is a classic prescription for “tonifying Yin deficiency” in
TCM theory and practice. In modern clinical treatment, LWDH mainly treats a
variety of complex diseases, such as hypertension and esophageal cancer. In

Fig. 5.2 TCM network based on DMIM extraction of 3865 TCM prescriptions [20]
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previous studies, we explained the traditional efficacy of LWDH for nourishing Yin
through multi-layer “TCM�target�disease” network analysis. In this study [21], the
mechanism of action of LWDH was further analyzed based on network
pharmacology.

5.3.2.1 Research Objective

To better understand the therapeutic mechanism of the LWDH prescription.

5.3.2.2 Data Source

The compound data of LWDH were obtained from HerBioMap, TCM
Database@Taiwan, and relevant literature. The target information source of
LWDH comes from the predication of drugCIPHER; target-related pathways and
related biological processes and disease data of LWDH were from the DAVID
online tool.

Fig. 5.3 Joint module of Liuwei Dihuang prescription and disease [20]

206 S. Su et al.



5.3.2.3 Network Construction and Visualization

(1) “Compound-Target-Disease” Network
Based on the compound and target of LWDH and the relationship between target
and disease, a multi-layer network of “compound-target-disease” was
constructed. The establishment of “compound-target” link was based on
DrugCIPHER and optimized through relevant algorithms (Please refer to the
following “4. Analysis Index and Algorithm”). The “target-disease” link was
derived from the DAVID online analysis tool.

(2) PPI network
(3) “Compound-biological process-disease” network

The biological process information of the LWDH target set was obtained
through the DAVID online analysis tool, and the “compound-biological pro-
cess” link was established through the “compound-target” link and the “target-
biological process” link. Then, the “biological process-disease” link was
established through the “disease-related target-disease” and “target-biological
process” link, i.e., if the biological process and the disease have a common
target, they were linked. Thus the “compound-biological process-disease” net-
work was constructed.

(4) Analysis index and algorithm

a. Target screening
Assumptions: Some targets may be acted on by many ingredients in TCM

prescriptions. It is assumed that this kind of target protein is likely to be the
key point of pharmacological action of TCM prescriptions, and there may be
synergistic effect of ingredients of TCM prescriptions on these targets.

After DrugCIPHER predicted targets of LWDH ingredients, to assess the
probability that the target is associated with the pharmacological effects of
LWDH, we compared the number of occurrences of each target protein in the
target set of all ingredients in LWDH with a purely random process,
represented by the Poisson binomial statistical model.

Pr K ¼ kð Þ ¼
X
A2Fk

Y
i2A

pi
Y
j2Ac

1� p j

� � ð5:8Þ

In formula (5.8), Pr(K ¼ k) is the probability of the target appearing in the target
set of the k ingredient, Fk is the set of all target subsets of the k ingredient, A is a
specific target subset of the k ingredient, Ac is the complement set of A. pi and pj are
the probability that the target is contained in a set of ingredient targets. In random
cases, the value of p is m/n, wherein m is the number of targets of the prescription
ingredients, n is the total number of targets in the drugCIPHER database. After
adjustment using the Bonferroni method, under random conditions, P value, Pr(K>
k) represents the probability of target occurrence in a target set with more than
k ingredients. The P value indicates the relative importance of the target protein to
LWDH (significant when p < 0.01).
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b. Ingredient score
To evaluate the effectiveness of ingredients in LWDH, the ingredient scores

were defined as follows:

Scoreingredient i ¼ 1
Ni

XNi

j¼1

� 1
rij

log 10 P kð Þ j
h i

� I j ð5:9Þ

In formula (5.9), Ni is the number of targets in ingredient i, rij is the grade of the
target j of ingredient i in all targets, Pr(k)j is the P value of the target calculated using
the Poisson binomial model. k is the number of ingredients that can act on target j,
and Ij is an indicator function that shows whether target j is in the selected target set:

I j ¼
1, The jthtarget is in the set of selected targets

0, The jthtarget is not in the set of selected targets

�

This score considers the specificity of ingredients and their relationship with
important target proteins. The ingredients were ranked according to the scoring
results, and it was found that the top 25% of the ingredients can cover 90% of the
selected targets. Therefore, these chemical ingredients were subsequently selected as
representative ingredients for network construction in LWDH.

5.3.2.4 Experimental Verification

The effect of compounds on the expression levels of related proteins was analyzed
by using Western blot method. Based on the results of network analysis, four
proteins were selected for experimental verification: including PPARG (Peroxisome
Proliferator-Activated Receptor Gamma), RARA (Retinoic Acid Receptor Alpha),
CCR2 (C-C Chemokine Receptor type 2), and ESR1 (estrogen receptor). The reason
for choosing PPARG, RARA, and CCR2 is that they have different functions, are
acted on by different groups of compounds, and are associated with esophageal
cancer, esophagitis, and colon cancer (these diseases are potential and special
therapeutic indications for LWDH). ESR1 is the hub node of the network. According
to the related compounds of the selected target, 6 compounds were selected for
experimental verification through their composition score. Their effects on the same
kind of protein were analyzed based on the distribution of the compounds in the
network cluster and the sources of different Chinese medicines.
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5.3.2.5 Main Conclusion

(1) The selected targets of LWDH can be found to be closely related to each other
through the PPI network, which means that the selected targets reflect the core
molecular basis of the LWDH effect.

(2) WB experiments show that coumarin can reduce the expression of RARA, while
caffeic acid increases the expression of RARA; caffeic acid increases the
expression of PPARG; betulin, α-amylase, β-amino acid, and fucitol all down-
regulate the expression of CCR2; Betulin, fucitol, and caffeic acid down-
regulate the expression of ESR1. The results also show that there are complex
interactions between the effects of different ingredients of TCM prescriptions.

(3) The network analysis results show that LWDH mainly acts on the pathways
related to the endocrine and immune system, for example, PPAR signaling
pathway, which is used to treat osteoporosis. This study not only explains the
molecular mechanism of the traditional medicinal function of LWDH, but also
provides the basis for the new use of old drugs. Arthritis and other diseases
related to Yin deficiency, and esophageal cancer, colon cancer, and other types
of diseases can all be treated.

5.4 Research Case on Network Pharmacology and TCM
Formulation

From 1981 to 2014, among the 1211 small molecule new drugs approved by the
FDA in the USA, 6% were natural products and 26% were derived from natural
products. In addition, most anti-cancer drugs and anti-infective drugs are derived
from natural products [35, 36]. As an important source of natural products, TCM can
provide an abundant material basis for the research and development of new drugs.

At present, there are two main R&D models for new TCM drugs, one is the
reduction analysis model based on theWestern drug R&Dmodel, and the other is the
holistic development model. Artemisinin, Ginkgo biloba extract, tea polyphenols,
and PHY906 (a new drug researched and developed on the basis of Classical TCM
prescription Huangqin Decoction for the treatment of toxic reactions of chemother-
apy drugs) developed by these two models have been internationally recognized.
Taking the discovery of artemisinin as a typical case, the reduction analysis method
aims at screening out monomer compounds with specific activity from several
traditional Chinese medicines. This research model is characterized by heavy work-
load, low success rate, and low replicability. Therefore, this R&D model has become
increasingly challenging in the current research stage, especially for TCM prescrip-
tions with more herbal medicines.

As a holistic research and development model, network pharmacology differs
from the conventional holistic research and development model. It focuses more on
using computational methods to mine valuable information from existing data and
provides reference for further traditional holistic research and development, as well
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as explores the complex mechanisms of drug action based on sorting. At present,
research in this field mainly involves the interaction of compounds (synergism,
incompatibility, etc.), the exploration of the pharmacodynamic mechanism, the
screening of active ingredients, new prescriptions, drug repositioning, and other
studies. In clinical practice, TCM is mainly used to achieve therapeutic effect
through the compatibility of multiple traditional Chinese medicines. Exploring the
compatibility relationship of “Traditional Chinese medicine formulation” between
traditional Chinese medicines is conducive to explaining the concept of TCM from
the perspective of modern medicine. The exploration of network pharmacology with
respect to compound interaction is highlighted by Li et al. [19] based on the NIMS
identification method, which can screen and optimize the combination of multi-
component synergistic effects in TCM or compound prescriptions on a large scale.

The exploration of the multi-target pharmacodynamic mechanism of TCM ingre-
dients is represented by artemisinin. Artemisinin is extracted from Artemisia annua
and is currently the most effective anti-malaria drug, which has significantly reduced
the mortality rate of malaria patients. However, the mechanism by which artemisinin
and its derivatives kill malaria parasites is not completely clear. Researchers from
National University of Singapore and Nanjing University conducted in-depth
research on this and found the important mechanism of artemisinin’s action against
plasmodium falciparum [37].

The identification of effective TCM ingredients is particularly important in the
process of TCM modernization. Based on network pharmacology analysis and
combined with composition content analysis and screening, Fan et al. [38] studied
the therapeutic effect of Xuesaitong (XST) injection on myocardial infarction; they
screened out part of the potential active ingredients and verified the same in a rat
model for myocardial infarction.

There have been several studies on exploring new prescriptions based on TCM
prescriptions such as based on a large number of pharmacological experimental
studies, Zhou et al. [39] found that LW-AFC, a new Chinese medicine composed of
LWDH active ingredients, can improve the behavior and pathological injury of AD
model mice by overall regulating, restoring, and maintaining the balance of neuro-
endocrine and immune regulatory network, suggesting that LW-AFC has potential
clinical value and good development prospect in preventing and treating AD. Zhou
et al. [40] integrated tendentious case matching, complex network analysis, and
enrichment analysis of TCM sets, and proposed a multi-stage analysis method to
screen effective Chinese medicine combinations for treating specific diseases.

The same TCM prescription has therapeutic effect on different diseases, i.e.,
“treating different diseases with the same treatment,” and is a multi-component
and multi-target holistic medical treatment. Therefore, TCM and TCM prescriptions
are rich sources for multi-target drug R&D and drug repositioning. The R&D
concept of highly selective single-target drugs has certain limitations in the R&D
of new Chinese medicines. Therefore, repositioning drugs with reliable clinical
efficacy can not only effectively reduce the cost and shorten the period of research
and development, but also effectively control the safety and pharmacokinetics,
which is a good drug R&D strategy with a relatively good risk/benefit ratio at
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present. Network pharmacology’s multi-level research strategy is similar to the
holistic treatment balance and coordination of TCM, which provides new hope for
the exploration of new drug compatibility and targets for TCM prescriptions and
Chinese patent medicines, with a view to implementing “new use of old medicine.”
For example, by integrating the “drug-target” network and the protein–protein
interactions of known cardiovascular disease-related proteins, Cheng et al. [41]
established a computational model to predict the potential association between
approved drugs and natural products in cardiovascular diseases, and based on this,
predicted the potential anti-cardiovascular mechanism of action of TCM compounds
and the potential side effect targets of anti-cardiovascular drugs.

A brief summary of some relevant studies is shown in Table 5.4:

5.4.1 Multi-component Synergy Recognition Method Based
on Network Target

There are potential interactions between TCM and TCM prescriptions, including
synergism, incompatibility, and mutual restraint [47]. For example, a synergistic
effect occurs when the efficacy of a combination of Chinese medicines
(or ingredients) is greater than the sum response of separate individuals. The
combination of TCM ingredients can effectively reduce side effects, improve adapt-
ability, and reduce drug resistance, thus increasing the possibility of treating com-
plex diseases in a synergistic manner. TCM is a typical representative of a multi-
component complex system, and its multi-component synergistic therapy provides
hope for the treatment of complex diseases. How to screen a combination of
compounds with potential therapeutic effects from several compounds continues to
remain a challenging research direction.

The evaluation of multi-component synergy is usually carried out through exper-
iments in case studies. However, such a method is suitable for in-depth verification
research on the ingredients with synergistic effect. For complex systems like TCM,
even in the case of a small number of compounds, a large number of possible
composition combinations are formed, which increases the workload of experimen-
tal methods. Therefore, the high-throughput evaluation of compound synergies by
system-based network pharmacology method is a research area that needs further
attention. Li et al. [19] established a NIMS scoring algorithm based on a large
amount of data and rapid accumulation of calculation methods, which provides a
more promising method for multi-component drug research.

5.4.1.1 Research Objective

The NIMS method established in this study aims to provide a method for evaluating
the synergistic effect of multi-component therapy and drug combination, to

5 Case Study of Network Pharmacology and Modernization of Traditional. . . 211



T
ab

le
5.
4

A
pp

lic
at
io
n
of

ty
pi
ca
l
ne
tw
or
k
ph

ar
m
ac
ol
og

y
in

ne
w
dr
ug

fo
rm

ul
at
io
n

R
es
ea
rc
h
ob

je
ct

C
or
re
sp
on

di
ng

di
se
as
es
/

fu
nc
tio

n
D
at
a
so
ur
ce

R
es
ea
rc
h
m
et
ho

d
R
es
ea
rc
h
co
nc
lu
si
on

L
ite
ra
tu
re

S
yn

er
gi
st
ic
ef
fe
ct
of

dr
ug

s
A
nt
i-

an
gi
og

en
es
is

L
ite
ra
tu
re

D
at
ab
as
e

N
IM

S
co
op

er
at
iv
e
co
ef
fi
ci
en
t

al
go

ri
th
m

ba
se
d
on

ne
tw
or
k.

B
as
ed

on
th
e
co
nc
ep
to

f
ne
t-

w
or
k
ta
rg
et
an
d
bi
om

ol
ec
ul
ar

ne
tw
or
k,

N
IM

S
pr
ed
ic
ts
th
e

sy
ne
rg
is
tic

dr
ug

co
m
bi
na
tio

n
fr
om

m
an
y
dr
ug

m
ol
ec
ul
es
,a
nd

qu
an
tit
at
iv
el
y
re
pr
es
en
ts
th
e

sy
ne
rg
is
tic

ef
fe
ct
of

dr
ug

co
m
-

bi
na
tio

n.
A
t
th
e
sa
m
e
tim

e,
th
e

m
ol
ec
ul
ar

m
ec
ha
ni
sm

of
its

sy
ne
rg
is
tic

ef
fe
ct
is
ex
pl
ai
ne
d
at

th
e
m
ol
ec
ul
ar

le
ve
l,
w
hi
ch

ca
n

ef
fe
ct
iv
el
y
re
du

ce
th
e
co
st
of

sc
re
en
in
g
ef
fe
ct
iv
e
dr
ug

co
m
bi
na
tio

ns

[1
9]

F
uz
he
ng

T
C
M

T
um

or
D
at
ab
as
e

D
ru
g
C
IP
H
E
R

L
ite
ra
tu
re

G
en
e
ex
pr
es
si
on

hi
gh

-
th
ro
ug

hp
ut

de
te
ct
io
n
te
ch
no

l-
og

y
H
T
S
2
of

hi
gh

-t
hr
ou

gh
pu

t
se
qu

en
ci
ng

,m
ol
ec
ul
ar

m
ap

of
tu
m
or

an
d
im

m
un

e-
re
la
te
d
bi
o-

lo
gi
ca
l
ne
tw
or
ks

re
gu

la
te
d
by

T
C
M

in
gr
ed
ie
nt
s

T
he

ta
rg
et
s
of

F
uz
he
ng

T
C
M

in
gr
ed
ie
nt
s
ar
e
m
ai
nl
y
en
ri
ch
ed

in
na
tu
ra
l
ki
lle
r
ce
ll-
m
ed
ia
te
d

cy
to
to
xi
ci
ty
,a
nt
ig
en

pr
es
en
ta
-

tio
n,

an
d
ot
he
r
im

m
un

e-
re
la
te
d

pa
th
w
ay
s.
T
he

co
m
po

ne
nt
s
of

gi
ns
en
g,

A
st
ra
ga
lu
s

m
em

br
an
ac
eu
s,
an
d
L
iu
w
ei

D
ih
ua
ng

ca
n
si
gn

ifi
ca
nt
ly

up
-r
eg
ul
at
e
th
e
ge
ne

ex
pr
es
si
on

of
im

m
un

e-
re
la
te
d
pa
th
w
ay
s

su
ch

as
na
tu
ra
l
ki
lle
r
ce
lls
,T

ce
lls
,e
tc
.S

om
e
in
gr
ed
ie
nt
s
of

F
uz
he
ng

T
C
M

ca
n
in
hi
bi
tt
he

[4
2]

212 S. Su et al.



ge
ne

ex
pr
es
si
on

of
tu
m
or

si
gn

al
pa
th
w
ay
s
su
ch

as
ce
ll
cy
cl
e
an
d

ap
op

to
si
s.
T
hi
s
st
ud

y
re
ve
al
ed

th
e
m
ec
ha
ni
sm

of
ac
tio

n
of

F
uz
he
ng

T
C
M

to
a
ce
rt
ai
n

ex
te
nt
,s
ug

ge
st
in
g
th
at
it
ha
s

gr
ea
t
R
&
D

va
lu
e
in

tu
m
or

pr
e-

ve
nt
io
n
an
d
tu
m
or

im
m
un

e
re
gu

la
tio

n,
an
d
pr
ov

id
es

a
di
re
ct
io
n
fo
r
th
e
m
od

er
ni
za
tio

n
of

T
C
M

A
rt
em

is
in
in

M
al
ar
ia

S
cr
ee
ni
ng

of
po

te
nt
ia
l

ta
rg
et
s
of

ar
te
m
is
in
in

by
co
va
le
nt

bi
nd

in
g

m
et
ho

d

N
o
pr
ef
er
en
ce

ch
em

ic
al
pr
ot
e-

om
ic
s
an
al
ys
is

T
he

st
ud

y
co
m
bi
ne
d

ar
te
m
is
in
in

la
be
le
d
by

al
ky

ne
s

w
ith

a
fl
uo

re
sc
en
t
dy

e
to

m
on

i-
to
r
th
e
bi
nd

in
g
of

ar
te
m
is
in
in

to
pr
ot
ei
ns
,a
nd

fo
un

d
12

4
co
va
-

le
nt
ly

bo
un

d
ar
te
m
is
in
in

pr
o-

te
in
s
th
at
w
er
e
an
al
yz
ed

th
ro
ug

h
th
e
ne
tw
or
k,

m
an
y
of

w
hi
ch

ar
e
in
vo

lv
ed

in
th
e
ba
si
c

lif
e
pa
th
w
ay

of
th
e
P
la
sm

od
iu
m

fa
lc
ip
ar
um

.I
n
ad
di
tio

n,
th
e

re
su
lts

su
gg

es
t
th
at
ha
em

is
th
e

m
ai
n
ca
us
e
of

ar
te
m
is
in
in

ac
ti-

va
tio

n,
no

t
fr
ee

ir
on

.H
ae
m

is
m
ai
nl
y
de
ri
ve
d
fr
om

th
e
ha
em

bi
os
yn

th
es
is
pa
th
w
ay

of
P
la
s-

m
od

iu
m

fa
lc
ip
ar
um

(t
he

ea
rl
y

ri
ng

st
ag
e)

an
d
la
te
r
he
m
og

lo
-

bi
n
di
ge
st
io
n

[3
7]

X
ue
sa
ito

ng
(X

S
T
)

C
V
D

H
P
L
C
co
nd

uc
ts
in
gr
ed
ie
nt

id
en
tifi

ca
tio

n
an
d

T
he

st
ud

y
ta
ke
s
th
e
th
er
ap
eu
tic

ef
fe
ct
of

X
ue
sa
ito

ng
(X

S
T
)

[3
8]

(c
on

tin
ue
d)

5 Case Study of Network Pharmacology and Modernization of Traditional. . . 213



T
ab

le
5.
4

(c
on

tin
ue
d)

R
es
ea
rc
h
ob

je
ct

C
or
re
sp
on

di
ng

di
se
as
es
/

fu
nc
tio

n
D
at
a
so
ur
ce

R
es
ea
rc
h
m
et
ho

d
R
es
ea
rc
h
co
nc
lu
si
on

L
ite
ra
tu
re

E
xp

er
im

en
t

L
ite
ra
tu
re

P
ha
rm

M
ap
pe
r

qu
an
tifi

ca
tio

n,
P
ha
rM

ap
pe
r

pr
ed
ic
ts
th
e
ta
rg
et
of

th
e
in
gr
e-

di
en
t,
in
gr
ed
ie
nt

co
nt
en
t-

w
ei
gh

te
d
“
co
m
po

un
d-
ta
rg
et
”

ne
tw
or
k
an
d
ne
tw
or
k
ef
fi
ci
en
cy

an
al
ys
is
,a
ni
m
al
ex
pe
ri
m
en
ts

in
je
ct
io
n
on

m
yo

ca
rd
ia
l
in
fa
rc
-

tio
n
as

an
ex
am

pl
e
to

de
te
rm

in
e

th
e
co
nt
en
t
of

in
gr
ed
ie
nt
s,
an
d

ap
pl
ie
s
th
e
re
su
lts

to
ne
tw
or
k

an
al
ys
is
to

sc
re
en

ou
t
so
m
e

po
te
nt
ia
l
ac
tiv

e
in
gr
ed
ie
nt
s:

no
to
gi
ns
en
os
id
e
R
1,

gi
ns
en
os
id
e
R
g1

,R
b1

,R
d,

an
d

R
e.
T
he

ac
tiv

ity
of

th
es
e
in
gr
e-

di
en
ts
w
as

ve
ri
fi
ed

in
a
ra
t

m
od

el
fo
rm

yo
ca
rd
ia
li
nf
ar
ct
io
n

C
lin

ic
al
pr
es
cr
ip
tio

n
of

T
C
M

In
so
m
ni
a

C
lin

ic
al
pr
es
cr
ip
tio

n
T
en
de
nt
io
us

ca
se

m
at
ch
in
g,

co
re

T
C
M

ne
tw
or
k
ex
tr
ac
tio

n,
T
C
M

en
ri
ch
m
en
t
an
al
ys
is
,a
nd

ef
fi
ca
cy
-b
as
ed

in
te
ra
ct
iv
e

in
fo
rm

at
io
n
al
go

ri
th
m

fo
r
id
en
-

tif
yi
ng

th
e
re
la
tio

ns
hi
p
be
tw
ee
n

T
C
M

an
d
sy
m
pt
om

s

T
he

re
se
ar
ch

re
su
lts

sh
ow

th
at

co
m
pa
re
d
w
ith

th
e
or
ig
in
al

pr
es
cr
ip
tio

n,
th
e
op

tim
iz
ed

T
C
M

pr
es
cr
ip
tio

n
ha
s
hi
gh

er
ef
fi
ci
en
cy
.A

t
th
e
sa
m
e
tim

e,
th
e
st
ud

y
al
so

id
en
tifi

ed
a
sp
e-

ci
fi
c
gr
ou

p
of

pa
tie
nt
s
w
ith

sy
m
pt
om

s,
w
hi
ch

is
co
nd

uc
iv
e

to
su
bs
eq
ue
nt

re
se
ar
ch

on
th
e

in
di
ca
tio

ns
of

ef
fe
ct
iv
e
C
hi
ne
se

m
ed
ic
in
e
pr
es
cr
ip
tio

ns

[4
0]

A
pp

ro
ve
d
an
ti
co
ro
na
ry

he
ar
t

di
se
as
e
(C
A
D
)
dr
ug

s
an
d
C
hi
-

ne
se

m
ed
ic
in
es

fo
r
th
e
tr
ea
t-

m
en
t
of

C
A
D

C
A
D

D
at
ab
as
e

“
D
ru
g/
co
m
po

un
d�

ta
rg
et
”
ne
t-

w
or
k,

dr
ug

re
po

si
tio

ni
ng

al
go

-
ri
th
m

ba
se
d
on

ne
tw
or
k

B
y
in
te
gr
at
in
g
th
e
dr
ug

-t
ar
ge
t

ne
tw
or
k
w
ith

kn
ow

n
C
A
D

pr
ot
ei
n-
pr
ot
ei
n
in
te
ra
ct
io
ns
,a

co
m
pu

ta
tio

na
l
m
od

el
w
as

es
ta
bl
is
he
d
to

pr
ed
ic
t
th
e

po
te
nt
ia
l
as
so
ci
at
io
n
be
tw
ee
n

[4
1]

214 S. Su et al.



ap
pr
ov

ed
dr
ug

s
an
d
na
tu
ra
l

pr
od

uc
ts
on

C
A
D
,a
nd

ba
se
d
on

th
is
m
od

el
,t
he

po
te
nt
ia
l
m
ec
h-

an
is
m

of
ac
tio

n
of

T
C
M

co
m
-

po
un

ds
an
d
po

te
nt
ia
ls
id
e
ef
fe
ct

ta
rg
et
s
of

an
ti-
C
A
D
dr
ug

s
w
er
e

pr
ed
ic
te
d.

K
ey

po
in
ts
in
cl
ud

e-
m
ec
ha
ni
sm

of
ac
tio

n
of

ap
pr
ov

ed
dr
ug

s
(f
as
ud

il,
pa
re
co
xi
b,

an
d
de
xa
m
et
ha
so
ne
)

an
d
na
tu
ra
l
pr
od

uc
ts
(r
es
ve
ra
-

tr
ol
,l
ut
eo
lin

,d
ai
dz
ei
n,

an
d

ca
ff
ei
c
ac
id
)
in

th
e
tr
ea
tm

en
t
of

C
A
D

Q
iji
an

de
co
ct
io
n
(A

st
ra
ga
lu
s,

G
ui
jia
ny

u,
C
op

tis
,P

ue
ra
ri
a

lo
ba
ta
)
(Q

JM
)

T
yp

e
2
di
ab
et
es

C
N
K
I
D
at
ab
as
e

M
et
ab
on

om
ic
s,
sy
st
em

ph
ar
-

m
ac
ol
og

y,
an
im

al
ex
pe
ri
m
en
ts

T
he

ne
w
co
m
po

un
d
pr
es
cr
ip
-

tio
n
Q
JM

is
ob

ta
in
ed

by
E
pi
da
ta
3.
1
an
al
ys
is
of

th
e

T
C
M

pr
es
cr
ip
tio

n
w
ith

T
2D

th
er
ap
eu
tic

ef
fe
ct
.R

es
ul
ts
of

an
im

al
ex
pe
ri
m
en
ts
sh
ow

th
at

Q
JM

co
ul
d
sa
fe
ly

an
d
ef
fe
c-

tiv
el
y
re
gu

la
te
bl
oo

d
gl
uc
os
e

le
ve
l.
A
lth

ou
gh

th
e
ef
fe
ct
of

Q
JM

is
no

ta
s
go

od
as

m
et
fo
r-

m
in
hy

dr
oc
hl
or
id
e,
bo

th
sh
ow

a
si
m
ila
r
tr
en
d
of

re
du

ci
ng

bl
oo

d
gl
uc
os
e.
M
et
ab
ol
ite
s
w
ith

de
ep

ch
an
ge
s
in

Q
JM

tr
ea
tm

en
t

gr
ou

p
w
er
e
id
en
tifi

ed
ba
se
d
on

m
et
ab
on

om
ic
s
st
ud

ie
s.
T
he
re

ar
e
55

pr
ot
ei
ns

an
d
4
si
gn

al
in
g

pa
th
w
ay
s
re
la
te
d
to

Q
JM

,

[4
3]

(c
on

tin
ue
d)

5 Case Study of Network Pharmacology and Modernization of Traditional. . . 215



T
ab

le
5.
4

(c
on

tin
ue
d)

R
es
ea
rc
h
ob

je
ct

C
or
re
sp
on

di
ng

di
se
as
es
/

fu
nc
tio

n
D
at
a
so
ur
ce

R
es
ea
rc
h
m
et
ho

d
R
es
ea
rc
h
co
nc
lu
si
on

L
ite
ra
tu
re

in
cl
ud

in
g
ga
la
ct
os
e
m
et
ab
o-

lis
m
,v

al
in
e,
le
uc
in
e,
an
d
is
o-

le
uc
in
e
de
gr
ad
at
io
n

m
et
ab
ol
is
m
,a
m
in
oa
cy
l
tR
N
A

bi
os
yn

th
es
is
an
d
al
an
in
e,

as
pa
rt
ic
ac
id
,a
nd

gl
ut
am

ic
ac
id

m
et
ab
ol
ic
pa
th
w
ay
s.
T
he

re
su
lts

of
P
C
oA

an
al
ys
is
of

in
te
st
in
al
m
ic
ro
bi
ot
a
sh
ow

th
at

th
e
st
ru
ct
ur
e
of

in
te
st
in
al

m
ic
ro
fl
or
a
in

Q
JM

an
d
m
et
fo
r-

m
in

gr
ou

ps
sh
ow

si
m
ila
r
tr
en
d.

S
ys
te
m
at
ic
ph

ar
m
ac
ol
og

y
Q
JM

m
ay

ac
t
th
ro
ug

h
T
P
53

,A
K
T
1,

an
d
P
P
A
R
A

pr
ot
ei
ns

Y
in
ch
en
ha
o
T
an
g
(Y

C
H
T
)

H
ep
at
ic
in
ju
ry

A
ni
m
al
ex
pe
ri
m
en
ts

IP
A

Im
m
un

oh
is
to
ch
em

is
tr
y,

bi
o-

ch
em

is
tr
y,

m
et
ab
ol
om

ic
s,
an
d

pr
ot
eo
m
ic
s

D
R
G
,t
he

m
ai
n
ac
tiv

e
in
gr
ed
i-

en
tc
om

bi
na
tio

n
in

Y
C
H
T
,m

ay
pl
ay

a
m
or
e
po

w
er
fu
l
th
er
a-

pe
ut
ic
ef
fe
ct
th
an

an
y
on

e
or

tw
o
of

th
e
th
re
e
si
ng

le
co
m
-

po
un

ds
by

ac
tin

g
on

m
ul
tip

le
ta
rg
et
s
in

ra
t
m
od

el
s
w
ith

liv
er

in
ju
ry
.T

he
co
m
bi
na
tio

n
of

D
G
R
ca
n
ca
us
e
st
ro
ng

dy
na
m
ic

ch
an
ge
s
of

m
et
ab
ol
ic
bi
o-

m
ar
ke
rs
an
d
ex
er
t
sy
ne
rg
is
tic

ef
fe
ct
by

re
gu

la
tin

g
th
e
m
ol
ec
-

ul
ar

ne
tw
or
k
of

ta
rg
et
pr
ot
ei
ns

[4
4]

216 S. Su et al.



A
nt
ic
oa
gu

la
nt

co
m
po

un
ds

B
lo
od

co
ag
ul
at
io
n

L
ite
ra
tu
re

D
at
ab
as
e

M
ol
ec
ul
ar

do
ck
in
g

T
on

gl
uo

ne
tw
or
k
co
ns
tr
uc
tio

n
an
d
ne
tw
or
k
ef
fi
ci
en
cy
,n

et
-

w
or
k
fl
ux

al
go

ri
th
m
,i
n
vi
tr
o

co
ag
ul
at
io
n
ex
pe
ri
m
en
t

ve
ri
fi
ca
tio

n.

T
he

co
ag
ul
at
io
n
T
on

gl
uo

ne
t-

w
or
k
is
a
sc
al
e-
fr
ee

ne
tw
or
k

w
ith

st
ro
ng

ro
bu

st
ne
ss
.T

he
re
su
lts

of
ne
tw
or
k
an
al
ys
is

co
m
bi
ne
d
w
ith

ex
pe
ri
m
en
ta
l

ve
ri
fi
ca
tio

n
sh
ow

th
at
th
e

an
tip

la
te
le
t
ag
gr
eg
at
io
n
ac
tiv

i-
tie
s
of

pa
pa
ve
ri
ne

an
d
si
ly
bi
n,

w
hi
ch

ha
ve

gr
ea
t
in
fl
ue
nc
e
on

ne
tw
or
k
ef
fi
ci
en
cy
,r
eq
ui
re

gr
ea
te
r
at
te
nt
io
n

[4
5]

X
ia
oc
ha
ih
u
T
an
g
(X

C
H
T
)

A
nt
i-
ca
nc
er

D
at
ab
as
e

M
ol
ec
ul
ar

do
ck
in
g

N
et
w
or
k
co
ns
tr
uc
tio

n
of

“
co
m
-

po
un

d-
co
m
po

un
d”

an
d
“
co
m
-

po
un

d-
ta
rg
et
”

T
he

“
co
m
po

un
d-
ta
rg
et
”
ne
t-

w
or
k
an
al
ys
is
re
su
lts

sh
ow

th
at

th
e
po

te
nt
ia
l
ac
tiv

e
co
m
po

un
ds

of
X
C
H
T
ar
e
di
ve
rs
e
an
d
ha
ve

sy
ne
rg
is
tic

ef
fe
ct
s.
T
he

“
co
m
-

po
un

d-
co
m
po

un
d”

ne
tw
or
k
is

di
vi
de
d
in
to

fo
ur

cl
us
te
rs
,a
nd

di
ff
er
en
t
cl
us
te
rs
co
nt
ai
n
co
m
-

po
un

d
co
m
bi
na
tio

ns
th
at
ac
to

n
di
ff
er
en
t
ta
rg
et
s.
It
sh
ow

s
th
at

X
C
H
T
ha
s
a
va
ri
et
y
of

ph
ar
-

m
ac
ol
og

ic
al
ef
fe
ct
s
in

th
e

tr
ea
tm

en
t
of

ca
nc
er

[4
6]

5 Case Study of Network Pharmacology and Modernization of Traditional. . . 217



effectively identify the synergistic effect of multi-component therapy. The use of
computational methods and the current research data can provide a more promising
method for multi-component drug research. At present, computing-related research
used to evaluate multi-component therapy mainly focuses on two directions. The
first approach is to identify and optimize the influence of multiple targets by
modeling signal pathways or specific biological processes, which are usually used
to solve small-scale problems. The limitation is that cross-feedback, feedback, or
interaction in the pathway widely exists in complex diseases and isolating the
pathway may cause a certain degree of deviation. The other approach is to use
network analysis to predict the efficacy of drugs, especially multi-target drugs.

5.4.1.2 Data Source

Forty-nine Chinese medicines with potential anti-inflammatory, anti-angiogenesis,
or anti-tumor activities were selected from the Chinese Pharmacopoeia, along with
12 Chinese medicine-derived compounds, and 2 Western medicine ingredients: 5-
fluorouracil and rapamycin, totaling 63 agents. The five drug pairs that have been
reported to have a synergistic effect were used as the benchmark of the NIMS
algorithm. Drug targets and phenotypes were manually collected from more than
2000 related literature on PubMed and CNKI.

5.4.1.3 Network Construction and Visualization

The angiogenesis network was constructed using the LMMA method [48] that was
published by the team earlier. Using keywords such as “angiogenesis” or
“neovascularization” we retrieved relevant literature from PubMed and 49,885
related abstracts (as of February 9, 2007), which involve 2707 genes. These genes
act as network nodes; if any two genes are connected in the HPRD database or have a
connection on a pathway, then an edge is formed in the network, from which a PPI
network was established. In the study, three types of global networks, namely PPI
network and two types of global pathway networks were used to evaluate the
network robustness of NIMS. In KEGG, a node in KO (KEGG Orthology) can
represent a group of genes/proteins, and a gene can belong to different KOs. For
example, k01090 contains 26 human genes, and CDKN3 is classified as K01090 and
K01104. Therefore, we constructed two different pathway networks: Keep Node
Content Pathway Network (KNC) and Merge Node Content Pathway Network
(MNC). The original nodes were consistent in the KNC network, whereas different
KOs with one or more overlapping genes were merged into one node in the MNC
network.
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5.4.1.4 Analysis Index and Algorithm

Under the context of the biological network of a specific disease or pathological
process, the concept of network targets and the basic principle of NIMS are related to
transfer of the relationship between drugs to the interaction between targets or the
gene products affected by the drugs. In NIMS, a group of genes or gene products
acted upon by drugs are called drug targets; the biological network of a specific
disease was used as the background network for NIMS evaluation. Therefore, two
NIMS-based elements: Topology Score (TS) and Agent Score (AS) were proposed
to evaluate the synergy of drugs.

TS mainly comes from the topological characteristics of background networks
related to specific diseases and drug effects. From the perspective of network target,
the “Achilles’ heel” of a specific disease biological network is more likely to become
the action site of drugs. Therefore, the more important the topological properties of
drug-related targets as a network node in the network, the greater the impact of the
drug. In order to determine the importance of drug targets as network nodes, a node
importance score IP(v) was proposed by integrating DC, BC, and CC of the network
nodes, where v refers to the network node. In addition, it was assumed that if a pair of
drugs have a synergistic effect, their drug targets are adjacent in the network.
Therefore, for candidate drug pairs: drug 1 and drug 2, topological score TS was
defined to evaluate the importance score (IP(v)) of drug 1 target and drug 2 target,
and the network distance between the two target groups.

TS1,2 ¼ 1
2

�

P
i
IP1 ið Þ � exp � min di,j

� �
P
i
IP1 ið Þ þ

P
j
IP2 jð Þ � exp � min d j,i

� �
P
j
IP2 jð Þ

0
B@

1
CA

ð5:10Þ

In formula (5.10), IP1(i) represents the importance of related targets of drug
1, IP2( j) represents the importance of the relevant targets of drug 2, IP1(i) and
IP2( j) are calculated by principal ingredient analysis, combining BC, CC, and
variation eigenvectors. The negative exponential function is used to measure the
interaction between two drugs based on the shortest distance. min(di, j) is the shortest
path from the target of drug 1 to all targets of drug 2, and min(dj, i) is the shortest path
from the target of drug 2 to all targets of drug 1.

Drugs that have independent mechanisms of action and treat similar diseases have
a higher chance to produce synergistic effects. Therefore, the study also introduced
AS, whose algorithm was inspired by the similarity of disease phenotypes. If a drug
target is included in the target set of an OMIM phenotype, the phenotype is called a
drug phenotype, and the similarity between the two drug phenotypes quantifies the
overlap of their OMIM descriptions. AS was calculated by referring to the study by
Van Driel et al. [49], the formula is as follows:
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AS1,2 ¼

P
i, j
Pi,j

N
ð5:11Þ

In formula (5.11), Pi,j represents the similarity between phenotype i of drug 1 and
phenotype j of drug 2, and N represents the number of phenotype pairs.

Finally, the synergy coefficient between network-based drug 1 and drug 2 is
calculated by NIMS algorithm, as shown in formula (5.12) below:

S1,2 ¼ TS1,2 � AS1,2 ð5:12Þ

The algorithm takes into account the importance of drug 1 and drug 2 targets in
the network, the distance between adjacent network nodes, and the functional
similarity of drug 1 and drug 2 targets. In general, the synergy coefficient S is
0–0.9. The higher the score, the greater the synergistic potential between the two
drugs.

NIMS schematic diagram is shown in Fig. 5.4 [19].

5.4.1.5 Experimental Verification

The study used the endothelial cell proliferation test to verify the synergistic effect of
the drug combination predicted by NIMS on angiogenesis. Endothelial cell division
and proliferation are the material basis for tumor angiogenesis. The research used the
HUVEC model.

Fig. 5.4 Schematic diagram of multi-component synergetic identification method based on net-
work targets [19]
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5.4.1.6 Main Conclusion

(1) NIMS is a method for predicting synergistic drug combinations from several
drug molecules based on the concept of network targets and biomolecular
networks, and for quantitatively expressing the synergistic effects of drug
combinations. In this study, NIMS was applied to evaluate the synergistic effect
scores of 63 drugs. Based on the evaluation results, firstly, the synergy coeffi-
cients of five drug pairs with known synergistic effects were ranked; the synergy
coefficients of 5-fluorouracil (5-FU) and vinblastine, and 5-FU and rapamycin
are among the top three; the other three are vinblastine and camptothecin,
genistein and camptothecin, and genistein and rapamycin. The synergy coeffi-
cient score ranks first in NIMS algorithm. Then, the synergy coefficient was
calculated in three global background networks, including global PPI network,
KNC, and MNC. The results show that in these cases, NIMS calculation results
are relatively reliable and robust under different background networks.

(2) Based on the angiogenesis network target, NIMS was used to calculate the
synergy scores of three groups of drugs. The three groups of drugs include:
5-FU and vinblastine, sinomenine and matrine, and sinomenine and
paeoniflorin; NIMS calculation results show that the three groups of drugs
exhibit different synergistic effects. From the perspective of ingredient action
targets: 5-FU and vinblastine act on the interaction between the KDR protein
complex, AKT1 and MAPK1 pathways, the PTEN feedback loop, the two
biological processes of endothelial cell proliferation and apoptosis, and the
four central nodes (KDR, MAPK1, JUN, and TP53). The network targets
affected by sinomenine and matrine include interactions with EGFR, KDR,
and TNFRSF1A pathways, PTEN feedback loop, four biological processes,
and two central nodes (Jun and TP53) closely related to angiogenesis. However,
sinomenine and paeoniflorin with lower scores of synergistic effects could only
affect two biological processes and one central node (TP53).
The detailed results are shown in Fig. 5.5a–c:

(3) The mechanism of multi-component synergy was evaluated from the perspective
of network targets. First of all, in the NIMS scoring algorithm, the shortest path
distance of two targets for drug/TCM ingredients is one of the key factors, as
shown in Fig. 5.6a [19], the two drugs/TCM ingredients acting on the protein
complex in the left figure have a smaller shortest path distance in the network,
and vice versa, as shown in the right figure; under the same conditions, the
combination of drugs/TCM ingredients with the action characteristics shown in
the left picture has a higher NIMS score. Secondly, the two drugs/TCM ingre-
dients acting on the central node or high-density centrality node may produce
higher synergistic effect than the combination acting on the peripheral nodes, as
shown in Fig. 5.6b [19]. In addition, two drugs/TCM ingredients acting on two
complementary modules related to the same disease or similar disease produce
higher synergistic effects than two drugs/TCM ingredients acting on two
unrelated modules unrelated to any diseases, as shown in Fig. 5.6c [19].
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(4) The synergic intensity of sinomenine, luteolin, quercetin, magnolol, matrine,
and paeoniflorin decreased successively in the HUVEC model, which is consis-
tent with the results predicted by NIMS. The background network of NIMS also
provides molecular-level explanations for the mechanism of synergistic drugs.

5.4.2 Study on the Multi-target Mechanism of Artemisinin
Against Plasmodium Falciparum

Plasmodium falciparum infection is a serious public health threat. To deal with this
problem, the most effective treatment at present is the antimalarial drug artemisinin
and its derivatives. Artemisinin is a sesquiterpene lactone in terms of its structure,
and has an endoperoxide bridge. The activation of artemisinin is marked by the
production of highly reactive free radicals in the carbon center through the cleavage
of endoperoxides. Over the past several decades of research, two key issues
concerning the mechanism of action of artemisinin remain unresolved: (1) The
source of iron needed for the activation of artemisinin. Studies have suggested that
free ferrous iron and haem may be the main source of iron for its activation.

Fig. 5.5 Synergistic drug combination characteristics based on angiogenesis network targets
[19]. (a) 5-FU and vincristine with synergistic effect; (b) Sinomenine and matrine with a higher
NIMS synergy score; (c) Sinomenine and paeoniflorin with low NIMS synergy score. The nodes in
red and blue represent targets with different drug and TCM ingredients, respectively
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(2) Acting target for activation of artemisinin. Several proteins have been reported as
potential acting targets of artemisinin, but none of them can explain its rapid and
highly efficient pharmacological action. Due to the complexity of free radicals,

Fig. 5.6 Understanding the mechanism of multi-component synergy from the perspective of
network targets [19]. (a) The two drugs/TCM ingredients acting on the protein complex in the
left figure have a smaller shortest path distance in the network, and vice versa, as shown in the right
figure; (b) The two drugs/TCM ingredients acting on the central node or high-density centrality
node (left figure) may produce higher synergistic effect than the combination acting on the
peripheral nodes (right figure). (c) The two drugs/TCM ingredients (left figure) acting on two
complementary modules related to the same disease or similar disease produce higher synergistic
effects (right figure) than the two drugs/TCM ingredients acting on two unrelated modules unrelated
to any diseases. The dotted line indicates the direct or indirect connection in the network; the blue
and red nodes indicate the targets of the two drugs and TCM ingredients, respectively
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activated artemisinin may have many other direct targets. This section introduces the
multi-target characteristics of artemisinin explored by Lin et al. and Wang et al.
based on network pharmacology combination experiments [37].

5.4.2.1 Research Objective

To explore and explain the sources of iron required for activation of artemisinin and
the action targets of artemisinin activation. This is of great significance to clarify the
mechanism of action of artemisinin.

5.4.2.2 Data Source

To explore the potential acting proteins of artemisinin, an alkyne-labeled artemisinin
activity probe (AP1) was designed and synthesized, and further combined with a
fluorescent dye or biotin, so that the AP1 covalent binding target can be observed on
SDS-PAGE, or affinity purified, for mass spectrometry identification.

Firstly, it was confirmed that the activity of AP1 is consistent with that of the
unmodified artemisinin, and then AP1 was used to replace the unmodified
artemisinin to identify the target protein that could covalently bind to it. Live
parasites were incubated with 500 nM AP1 (a clinically achievable dose of
artemisinin) for 4 hours to prepare a crude protein extract, and then labeled with
alkyne biotin. Through Streptomyces avidinii protein beads, the AP1 target protein
was affinity purified and identified by using tandem mass spectrometry. A total of
124 parasite proteins were identified as direct targets of artemisinin in three separate
experiments, including a reported artemisinin target, SERCA/PfATP6 (Calcium-
Transporting ATPase).

5.4.2.3 Network Construction and Visualization

Based on 124 related target proteins found in the study, the ClueGO plug-in of
Cytoscape was used for relevant functional enrichment analysis and network
visualization.

5.4.2.4 Analysis Index and Algorithm

In the network diagram constructed by the ClueGO plug-in, each node represents a
functional group, and the Kappa statistics based on the same target protein between
functional groups was taken as the index and as the assigned value of the lines
between nodes. According to the functional groups that the nodes belong to, the
enrichment and classification of nodes were analyzed and represented by different
colors of nodes.
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5.4.2.5 Experimental Verification

(1) Western Blot (WB) was used to verify the potential acting targets of AP1: OAT
(Ornithine Aminotransferase), PyrK (Pyruvate Kinase), LDH (L-Lactate Dehy-
drogenase), SpdSyn (Spermidine Synthase), and SAMS (S-Adenosylmethionine
Synthetase).

(2) GO functional enrichment analysis revealed that the target protein of AP1 is
involved in many basic biological processes of the parasite, including hemoglo-
bin catabolism. In addition, through cell location analysis, it was found that
hemoglobin digestion provides a source of amino acids needed to maintain
intracellular osmotic pressure during the rapid growth of parasites. Through
experiments, it was found that haem has a greater contribution in the activation
of artemisinin, hence, the HCT116 model was used to further verify the main
role of haem in the activation of artemisinin.

5.4.2.6 Main Conclusion

(1) In this study, alkyne-labeled artemisinin was combined with fluorescent dyes to
monitor the binding of artemisinin to proteins. One hundred and twenty-four
proteins covalently bound to artemisinin were found. Through network analysis,
many of them were found to be involved in the basic biological processes of
Plasmodium falciparum, including carboxylic acid metabolism, cellular
bioamines metabolism, nucleoside metabolism, ribonucleoside biosynthesis,
and hemoglobin catabolism process. The combination of experiments and net-
work analysis provides a more complete picture of the mechanism of action of
artemisinin and its derivatives.

(2) In addition, the results suggest that haem is the main cause of artemisinin
activation and not free iron. Haem mainly comes from the haem biosynthesis
pathway of Plasmodium (the early ring stage), or from hemoglobin digestion at a
later stage.

5.5 Network Pharmacology and Ethnic Medicine Research
Cases

Ethnic medicine is an important component of the country’s traditional medicine,
and has unique curative advantages in the prevention and treatment of difficult and
frequently occurring diseases. The current network pharmacology research cases in
ethnic medicine mainly include the anti-cancer activity mechanism of Hedyotis
diffusa, prediction of its potential active ingredients and targets by network analysis,
and verification of its effect on activity related pathways through in vitro cell
experiments by Wang et al. [50]. In addition, the potential active ingredients of
galleon were predicted through network analysis, the active part containing active
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ingredients was used for experimental verification, and the mechanism of its treat-
ment for ulcerative colitis was explored [51]. Hu and Yu also used network analysis
combined with in vitro cell experiments to compare the chemical composition and
biological mechanism of anti-rheumatoid arthritis of Siegesbeckiae (including
Siegesbeckia orientalis, Siegesbeckia pubescens, and Siegesbeckia glabrescens)
from different plant origins [52]. The summary of application cases is shown in
Table 5.5:

The research on ethnic drugs through network pharmacology can on the one hand
promote the development of ethnic drugs, which are an integral component of TCM
and an important source of new drug innovation, on the other hand, it can provide
certain reference for quality control. For example, the Siegesbeckia orientalis
included in Chinese Pharmacopoeia (2015 Edition) contains three kinds of plant
origins. Although their therapeutic effects are similar, research has revealed that
there are some differences in composition and mechanism of action between
Siegesbeckia orientalis with different plant origins.

The following two specific research cases are selected for analysis.

5.5.1 Comparative Study and Analysis on Chemical
Components and Pharmacological Effects of Three
Species of Siegesbeckia

First published in Xinxiu Bencao, Siegesbeckia Herba (SH) is a traditional Chinese
herbal medicine prescribed for rheumatoid arthritis. It has anti-inflammatory, hypo-
tensive, vasodilatory, and other pharmacological effects, and is often used to treat
rheumatic arthralgia. Plant sources of Siegesbeckia Herba included in the Chinese
pharmacopoeia include SO (Siegesbeckia orientalis L.), SP (S. pubescens Markino),
and SG (S. glabrescens Markino). Although the therapeutic effects of these
Siegesbeckia species on RA are similar, their differences in chemical composition
suggest that their anti-rheumatoid mechanisms may be different. This section intro-
duces the comparative study of Hu and Yu on network pharmacology of these three
species of Siegesbeckia, combined with experimental verification [52].

5.5.1.1 Research Objective

This study aims to compare the chemical and biological similarities and differences
between Siegesbeckiae (SO, SP, and SG) with different plant origins in the treatment
of RA through the combination of computational prediction and biological experi-
mental research.

226 S. Su et al.



T
ab

le
5.
5

R
es
ea
rc
h
an
d
ap
pl
ic
at
io
n
of

ne
tw
or
k
ph

ar
m
ac
ol
og

y
in

et
hn

ic
m
ed
ic
in
e

E
th
ni
c
m
ed
ic
in
e

C
or
re
sp
on

di
ng

di
se
as
e/

fu
nc
tio

n
D
at
a
so
ur
ce

R
es
ea
rc
h
m
et
ho

d
R
es
ea
rc
h
co
nc
lu
si
on

L
ite
ra
tu
re

H
ed
yo

tis
di
ff
us
a
W
ill
d
(H

D
W
)

N
on

-s
m
al
l
ce
ll

liv
er

ca
nc
er

D
at
ab
as
e

A
na
ly
si
s
of

“
co
m
po

un
d�

ta
rg
et
”

ne
tw
or
k,

“
ta
rg
et
�p

at
hw

ay
”
ne
t-

w
or
k,

in
vi
vo

an
im

al
ex
pe
ri
m
en
t,

in
vi
tr
o
ce
ll
ex
pe
ri
m
en
t.

S
tu
di
es

in
m
ou

se
m
od

el
s
ha
ve

sh
ow

n
th
at
H
D
W

si
gn

ifi
ca
nt
ly

in
hi
bi
ts
tu
m
or

gr
ow

th
,i
m
pr
ov

es
tu
m
or

m
ic
ro
en
vi
ro
nm

en
t,
an
d
ac
ti-

va
te
s
im

m
un

e
re
sp
on

se
,t
he
re
by

pr
ol
on

ga
tin

g
su
rv
iv
al
.Q

ue
rc
et
in

an
d
ka
em

pf
er
ol

ha
ve

hi
gh

er
no

de
de
gr
ee
s
in

th
e
“
co
m
po

un
d-
ta
rg
et
”

ne
tw
or
k,
an
d
ar
e
pr
ed
ic
te
d
to
be

ke
y

co
m
po

un
ds
.T

he
“
ta
rg
et
-p
at
hw

ay
”

ne
tw
or
k
su
gg

es
ts
th
at
H
D
W

m
ay

ac
t
on

a
va
ri
et
y
of

si
gn

al
in
g
pa
th
-

w
ay
s
to

in
hi
bi
t
in
fl
am

m
at
io
n,

en
ha
nc
e
im

m
un

e
re
sp
on

se
,a
nd

in
hi
bi
t
an
gi
og

en
es
is
.U

si
ng

ka
em

pf
er
ol

fo
r
in

vi
tr
o
ce
ll
ex
pe
ri
-

m
en
ts
,k

ae
m
pf
er
ol

in
hi
bi
ts
th
e
pr
o-

lif
er
at
io
n
of

tu
m
or

ce
lls

by
re
gu

la
tin

g
th
e
P
I3
K
/A
K
T
,M

A
P
K
,

an
d
V
E
G
F
pa
th
w
ay
s,
w
hi
le
do

w
n-

re
gu

la
tin

g
th
e
in
fl
am

m
at
or
y
fa
ct
or
s

iN
O
S
,C

O
X
2,

an
d
in
hi
bi
tin

g
th
e

in
fl
am

m
at
or
y
re
sp
on

se

[5
0]

S
ie
ge
sb
ec
ki
a
or
ie
nt
al
is
(S
O
),

S
ie
ge
sb
ec
ki
a
pu

be
sc
en
s
(S
P
),

S
ie
ge
sb
ec
ki
a
gl
ab
re
sc
en
s
(S
G
)

R
he
um

at
oi
d

ar
th
ri
tis

D
at
ab
as
e

“
C
om

po
un

d�
ta
rg
et
”
ne
tw
or
k
an
al
-

ys
is
,i
n
vi
tr
o
ce
ll
ex
pe
ri
m
en
t

S
O
,S

P
,a
nd

S
G
di
ff
er

si
gn

ifi
ca
nt
ly

in
ch
em

ic
al
co
m
po

si
tio

n
le
ve
ls
.T

he
re
su
lts

of
ce
llu

la
r
ex
pe
ri
m
en
ts

ba
se
d
on

th
e
po

te
nt
ia
l
pr
ot
ei
n
ta
r-

ge
ts
pr
ed
ic
te
d
by

ne
tw
or
k
an
al
ys
is

[5
2]

(c
on

tin
ue
d)

5 Case Study of Network Pharmacology and Modernization of Traditional. . . 227



T
ab

le
5.
5

(c
on

tin
ue
d)

E
th
ni
c
m
ed
ic
in
e

C
or
re
sp
on

di
ng

di
se
as
e/

fu
nc
tio

n
D
at
a
so
ur
ce

R
es
ea
rc
h
m
et
ho

d
R
es
ea
rc
h
co
nc
lu
si
on

L
ite
ra
tu
re

sh
ow

th
at
al
th
ou

gh
th
e
th
er
ap
eu
tic

ef
fe
ct
s
of

S
O
,S

P
,a
nd

S
G

ar
e
ve
ry

si
m
ila
r
in

th
e
tr
ea
tm

en
t
of

rh
eu
m
a-

to
id

ar
th
ri
tis
,t
he

po
te
nt
ia
l
bi
ol
og

i-
ca
lm

ec
ha
ni
sm

s
of

di
ff
er
en
tt
yp

es
of

S
ie
ge
sb
ec
ki
a
or
ie
nt
al
is
ar
e
qu

ite
di
ff
er
en
t

N
ut
ga
ll

U
lc
er
at
iv
e

co
lit
is

E
xp

er
im

en
t

da
ta
ba
se

L
iq
ui
d
ch
ro
m
at
og

ra
ph

y-
m
as
s
sp
ec
-

tr
om

et
ry

(L
C
-M

S
),

“
C
om

po
un

d�
ta
rg
et
�p

at
hw

ay
”
ne
t-

w
or
k
an
al
ys
is
,i
n
vi
tr
o
ce
ll
ex
pe
ri
-

m
en
t,
in

vi
vo

an
im

al
ex
pe
ri
m
en
t

T
hr
ou

gh
vi
rt
ua
l
co
m
pu

te
r
si
m
ul
a-

tio
n
re
se
ar
ch

an
d
ne
tw
or
k
an
al
ys
is
,

it
w
as

fo
un

d
th
at
th
e
ac
tiv

e
in
gr
ed
i-

en
ts
m
ay

sh
ow

th
er
ap
eu
tic

ef
fe
ct
on

ul
ce
ra
tiv

e
co
lit
is
(U

C
)
by

ac
tin

g
on

m
ul
tip

le
ta
rg
et
s
an
d
re
gu

la
tin

g
m
ul
tip

le
pa
th
w
ay
s.
R
el
ev
an
tt
ar
ge
ts

m
ai
nl
y
in
vo

lv
ed

in
th
e
N
F
-κ
B

pa
th
w
ay

w
er
e
se
le
ct
ed

fo
r
ve
ri
fi
ca
-

tio
n.

B
y
co
m
pa
ri
ng

th
e
cy
to
to
xi
ci
ty

an
d
de
te
ct
in
g
th
e
le
ve
ls
of

pr
o-
in
fl
am

m
at
or
y
fa
ct
or
s
of

ni
ne

ki
nd

s
of

in
gr
ed
ie
nt
s
th
ro
ug

h
in
vi
tr
o

st
ud

ie
s,
fi
ve

ty
pe
s
of

in
gr
ed
ie
nt
s

w
er
e
fi
na
lly

sc
re
en
ed

as
ac
tiv

e
in
gr
ed
ie
nt
s.
In

vi
vo

,t
he

ac
tiv

e
in
gr
ed
ie
nt
s
sh
ow

a
si
gn

ifi
ca
nt

im
pr
ov

em
en
t
in

U
C
m
ic
e
in
du

ce
d

by
de
xt
ra
n
su
lf
at
e
so
di
um

(D
S
S
).

T
he

re
su
lts

sh
ow

th
at
th
e
ac
tiv

e
pa
rt

co
nt
ai
ni
ng

ga
lli
ci
n,

ox
al
ic
ac
id
,

[5
1]

228 S. Su et al.



di
-O

-g
al
lo
yl
-β
-D

-g
lu
co
se
,a
nd

tr
i-
O
-g
al
lo
yl
-β
-D

-g
lu
co
se

m
ai
nl
y

co
nt
ri
bu

te
d
to

th
e
tr
ea
tm

en
t
of

U
C
.I
n
ad
di
tio

n,
th
e
ac
tiv

e
in
gr
ed
i-

en
ts
al
so

in
hi
bi
t
th
e
ph

os
ph

or
yl
a-

tio
n
le
ve
l
of

IK
K
β,

th
er
eb
y

in
hi
bi
tin

g
th
e
do

w
ns
tr
ea
m

N
F
-κ
B

si
gn

al
in
g
pa
th
w
ay

5 Case Study of Network Pharmacology and Modernization of Traditional. . . 229



5.5.1.2 Data Source

The compound information of the three SH plants was obtained from SciFinder,
CCD V2009, DNP, and chemical database of Chinese Academy of Sciences.
Furthermore, proteins associated with NF-κB, oxidative stress, and autophagy, as
well as RA-related proteins from KEGG and Biocarta databases were collected.

5.5.1.3 Network Construction and Visualization

The connection between the compound and the target protein was established
through molecular docking, and the “compound-target protein” network was
constructed; the network visualization was carried out using Cytoscape.

5.5.1.4 Analysis Index and Algorithm

Compound similarity algorithm

Tanimoto similarity coefficient (Tc) was used to evaluate the level of similarity
between any two Siegesbeckiae species.

Tc ¼ c
aþ b� c

ð5:13Þ

wherein a and b represent the number of set A and set B (in this study, it refers to the
number of compounds of the two Siegesbeckiae species), and c represents the
intersection of set A and set B (in this study, it refers to the number of the same
compounds of the two Siegesbeckiae species). The Tc value ranges from 0 to 1. The
higher the value, the higher the similarity, while the lower the value, the lower
similarity, i.e., higher the difference.

Network Analysis

The topological structure (node degree) analysis of the network assumes that
compounds with high node degree or RA-related protein nodes in different SO,
SP, and SG, are of great significance for further experimental study.

5.5.1.5 Experimental Verification

Through network analysis, protein targets with higher centrality were selected: BTK
(Tyrosine-Protein Kinase BTK), SYK (Tyrosine-Protein Kinase SYK), MAPK8
(Mitogen-Activated Protein Kinase 8), PIK3C3 (Phosphatidylinositol 3-Kinase
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Catalytic Subunit Type 3), and KEAP1 (Kelch-like ECH-associated Protein 1) were
selected for experimental verification. The effects of 50% ethanol extracts of SO, SP,
and SG on the predicted target proteins were studied by WB on RAW264.7
macrophages induced by lipopolysaccharide (LPS).

5.5.1.6 Main Conclusion

(1) Based on the study of reported compounds of the three Siegesbeckiae varieties,
there are 112, 130, and 23 compounds in SO, SP, and SG, respectively. The Tc
values of the three siegesbeckiae varieties between SG/SO, SO/SP, and SP/SG
are 0.0714, 0.0614, and 0.0625, respectively. This indicates that there are large
differences among the compounds of the three Siegesbeckiae species.

(2) Although all three Siegesbeckiae species are used to treat RA clinically, this
study found that their potential mechanisms of action are somewhat different.
Compared with the control group, LPS (200 ng/mL) significantly induces
phosphorylation of BTK, SYK, MAPK8, and PIK3C3, and decreases the
expression of BTK and KEAP1, but does not affect the expression of PIK3C3
in RAW 264.7 cells. However, after being treated with SO, SP or SG extracts, a
series of protein changes occurred: SO restores the lPS-induced decrease in
KEAP1 expression in a dose-dependent manner, but does not affect the phos-
phorylation or expression of BTK and PIK3C3; SP inhibits the phosphorylation
of PIK3C3 induced by LPS in a dose-dependent manner, and has no significant
effect on the phosphorylation or expression of BTK and KEAP1. In addition, SG
inhibits LPS-induced MAPK8 phosphorylation in a dose-dependent manner but
has no effect on the phosphorylation or expression of BTK and SYK.

5.5.2 Study and Analysis on the Mechanism of Hedyotis
Diffusa Willd against Non-small Cell Lung Cancer

First published in the Guangxi Journal of Traditional Chinese Medicine, Hedyotis
Diffusa Wild (HDW) is an important ethnic medicine. It has functions of clearing
heat and detoxifying, promoting blood circulation and relieving pain, and
antibacterial, anti-inflammatory, and anti-tumor effects. It is mainly used for the
clinical treatment of malignant tumors. However, the underlying mechanism of
action remains unclear. It has been reported that HDW has anti-tumor effects on a
variety of cancers. It has been reported that the extract of HDW shows effective
inhibition on human lung cancer cells by inhibiting cell proliferation and reducing
cell activity in a concentration-dependent manner. This section introduces the
research of Wang et al. [50] on the application of network pharmacology to explore
the pharmacological mechanism of HDW.
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5.5.2.1 Research Objective

This study aims to systematically reveal the pharmacological mechanism of HDW in
the treatment of non-small cell lung cancer (NSCLC) at the molecular, target, and
pathway levels, using the systemic pharmacology platform.

5.5.2.2 Data Source

The compound information source of HDW is the TCMSP database, and computer
models were used to predict the absorption, distribution, metabolism, and excretion
of compounds (ADME). Two indicators were selected—Oral Bioavailability
(OB) and Druglikeness (DL), which were used to evaluate the pharmacokinetics
and drug properties of HDW compounds. The following two factors were consid-
ered: (1) The related compounds were comprehensively studied by using as few
compounds as possible; (2) The reported pharmacological data was used to explain
and establish the model more reasonably. In addition to screening candidate com-
pounds, compounds with OB > 26% and DL � 0.18 (Drugbank drug DL average
value) can continue to be used as candidate compounds for subsequent studies.

After the candidate compound was selected, the study used the System Drug
Targeting Tool (SysDT) and the Weighted Set Similarity (WES) algorithm to predict
the target of the compound. In addition, NSCLC-related proteins were obtained from
the TTD database, CTD database, and PharmGKB database.

The biological functions of potential targets were analyzed by GO and the
biological processes of several genes were analyzed by the GlueGO plug-in of
Cytoscape.

5.5.2.3 Network Construction and Visualization

Two networks were constructed in this study: “compound�target” network and
“target�pathway” network. In these two networks, the nodes are compounds,
targets, and pathways, and the edges represent their interactions.

5.5.2.4 Analysis Index and Algorithm

The CentiScaPe 1.2 plug-in of Cytoscape was used to analyze the topological
properties of the network.
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5.5.2.5 Experimental Verification

Animal Experiments

Firstly, in order to evaluate whether HDW has anti-tumor effect, C57BL/6 tumor-
bearing mice model1 was constructed. The tumor-bearing mice were divided into
two groups: the blank control group and the HDW administration group. The
changes in tumor size, weight, and survival rate of the tumor-bearing mice after
HDW administration were observed. Secondly, in order to detect whether HDW
affects the tumor microenvironment, flow cytometry was used to detect the tumor
microenvironment after HDW treatment. The tumor tissues of the mice in the blank
group or HDW treatment group were cut into thin slices, and the tumor dissociation
kit was used to lyse the tumor tissues, which were then filtered on a 70 μm nylon
mesh filter, and the cell suspension was collected. TILs (Tumor Infiltrating Lym-
phocytes) from tumors were isolated using percoll (GE, 17-0891-02) prior to
detection of CD8 (T Cell Surface Glycoprotein CD8) and Treg (Regulatory Cells)
cells. Then, MDSC (Myeloid-Derived Suppressor Cell), NK, and TAM (Tumor-
Associated Macrophage) were tested by fluorescence-labeled antibody staining.

Cell Experiments

The effects of the main active compounds of HDW on the main proteins of related
pathways verified at the cellular level. Mouse macrophages RAW264.7 and human
NSCLC cell line H1975 were cultured by treating RAW264.7 cells with kaempferol
at different concentrations, then incubated with 0.1μg/mL LPS; the cells were
collected for WB analysis to detect the inflammatory mediators at the end of the
culture and to explore their effects on PI3K/AKT signaling pathway. As mentioned
above, H1975 cells were treated with kaempferol at different concentrations, and the
expression of related proteins was detected by WB analysis to explore its effects on
PI3K/AKT and VEGF pathways.

5.5.2.6 Main Conclusion

(1) The anti-tumor effect of HDW on C57BL/6 mice was analyzed. Compared with
the blank control, the HDW extract significantly reduced tumor growth, the
tumor weight of tumor-bearing mice in the HDW treatment group was lower
than that of the blank control group, and the tumor growth in the treatment group
was significantly reduced. Compared with the blank control tumor-bearing mice,

1C57BL/6 is often called “C57 black 6,” “C57,” or “black 6” (standard abbreviated as B6) and is a
common inbred strain of laboratory mice. It is a commonly used strain in oncology, physiology,
immunology, and genetics research.
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the mice in the HDW treatment group showed a significant increase in the
proportion of intracellular cytotoxic CD8+ T cells, and the average fluorescence
intensity of IFNγ+ CD8+ T cells also significantly increased. In addition, the
expression of NK cells in the tumors of HDW-treated mice significantly
increased, indicating the activation of innate immunity. In conclusion, the
study showed that HDW has anti-tumor activity and prolongs the life cycle of
tumor-bearing mice. At the same time, it affects the tumor microenvironment
and can activate immunity.

(2) Through node degree analysis of the “compound�target” network, the study
assumes that compounds with higher nodes in the network are more likely to
play a key role in the mechanism of HDW. The compounds with higher degree
of nodes in the network are quercetin (DC ¼ 73), kaempferol (DC ¼ 47), and
2-hydroxy-1-methoxyanthraquinone (DC ¼ 40). According to the hypothesis,
the first two components may be the key compounds in the treatment of NSCLC.
The “target-pathway” network suggests that HDW may act on a variety of
signaling pathways to inhibit inflammation, enhance immune response, and
inhibit angiogenesis.

(3) The results of the cell experiment show that the levels of Bcl2 (Antiapoptotic B
Cell Lymphoma 2), p-Akt (Activated Akt), and CDK2 (Cyclin-Dependent
Kinase 2) in H1975 cells treated with kaempferol are significantly decreased,
suggesting that kaempferol may regulate H1975 cell growth inhibition through
the PI3/AKT pathway; kaempferol can significantly reduce the inflammatory
factors of RAW264.7 macrophages cells stimulated by LPS: COX-2 (Prosta-
glandin G/H Synthase 2), iNOS (Nitric Oxide Synthase), and IKK (IκB Kinase
Complex). It is speculated that it may reduce the expression of inflammatory
mediators induced by RAW264.7 cells mainly through the PI3/AKT pathway.
Compared with the control group, the kaempferol treatment group has fewer
expressions of p-STAT3, p-p38, and eNOS (Endothelial Nitric Oxide Synthase)
in the cells, STAT3-mediated inflammatory factor expressions, and
corresponding immune responses, and also plays an important role in tumor
cell migration. It is inferred that kaempferol may inhibit cell migration by
inhibiting VEGF pathway and related downstream protein kinase activity.

5.6 Network Pharmacology and International Traditional
Medicine Research Cases

Traditional medicine is not fully recognized in many countries due to the great
challenge of providing a comprehensive and scientific explanation for the material
basis and pharmacological mechanism of traditional medicine using existing
methods. The emergence of network pharmacology provides technical support for
the modernization of traditional medicine by establishing a multi-dimensional data
network, and enabling the study of traditional medicine from a systematic perspec-
tive and effectively explaining its “ingredient-target” relationship and
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pharmacological mechanism with modern scientific thinking. At present, there has
been increasing influence of TCM internationally, and the world has gradually begun
to pay attention to traditional medicine. In November 2017, the Journal of the
National Cancer Institute published a special issue with the theme “Advancing the
Global Impact of Integrated Oncology,” and published a white paper issued by the
National Institutes of Health (NIH)/National Cancer Institute (NCI) on complemen-
tary and alternative cancer medicine research, which emphasized the importance [3]
of computational methods such as network pharmacology and data analysis methods
for revealing the complex mechanism of traditional drugs and designing effective
clinical schemes. At present, relevant studies include the study by Gómez-Verjan
et al. [53] on the coumarin compounds in Calophyllum brasiliense leaf extract using
network pharmacology and experimental research to carry out an in-depth explana-
tion of the compounds’ anti-cancer mechanism; the study by Jin et al. [54] on the
effectiveness of Peucedanum Japonicum extract for the treatment of Osteoarthritis
(OA) on an animal model, and their study of the potential active ingredients and
acting targets of the extracts’ efficacy through network pharmacology research; the
study by Wang et al. [55] on potential types of active components (terpene lactones
and flavonoids) through network analysis, and verification of the role of ginkgolide
A (GA), ginkgolide B (GB), and ginkgolide C (GC), as well as the combination of
these compounds GDJ, on a mouse model. Detailed contents are summarized, as
shown in Table 5.6:

At present, although the application of network pharmacology in countries
around the world other than in China is not as prevalent, the application difficulty
of the network analysis algorithm and methodology are relatively basic. With the
gradual recognition of traditional medicine, network pharmacology will gradually
penetrate all aspects of medicinal research. The research on the material basis and
pharmacological mechanism of traditional medicine will be increased, and their
therapeutic effect will be accepted and promoted further.

The following two specific research cases are selected for analysis.

5.6.1 Study and Analysis on Anti-cancer Activity
of Calophyllum Brasiliense

Coumarins contain a large group of secondary metabolites with a phenolic structure,
and are composed of molten benzene and α-pyrrolidone. Mammea-type coumarin is
a special type of secondary metabolite bio-synthesized by the tropical rainforest
tree Calophyllum Brasiliense, mainly distributed in South America and Mexico.
Some studies have shown that coumarin compounds have a wide range of pharma-
cological properties, including anticoagulant, anti-inflammatory, antiviral, and anti-
cancer. In particular, mammea A/BA and A/BB (either alone or as a mixture) have
strong anti-tumor activity. However, most of their molecular targets remain
unknown. This section introduces the network pharmacology study and
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experimental verification of coumarin components in Calophyllum brasiliense
leaves conducted by Reyes-Chilpa et al. [53].

5.6.1.1 Research Objective

Explore the acting target of mammea-type coumarin of Calophyllum brasiliense
leaves based on network pharmacology, and verify the relevant network prediction
results through K562 cancer cell in vitro experiments.

5.6.1.2 Data Source

Coumarin-type compounds (MABB) from the extracts of Calophyllum brasiliense
leaves were separated and structural identification was conducted by 1H-NMR.
Target prediction of compounds was based on the following methods: DRAR-CPI,
SEA, SwissTarget, and STITCH. CTD, GSEAPY software package of Python and
DAVID were then used for enrichment analysis of potential acting targets (the first
50 related targets interacting with each compound).

5.6.1.3 Network Construction and Visualization

GeneMania plug-in of Cytoscape was used to construct the target protein interaction
network. The nodes are the first 50 related target proteins that interact with each
compound of MABB through prediction, and the edges represent the connections
between the nodes.

5.6.1.4 Analysis Index and Algorithm

The target protein interaction constructed using the GeneMania plug-in of Cytoscape
essentially reflects the interaction between target proteins. In this study, the associ-
ations between nodes (different colored edges) include physical interactions between
nodes, predicted interactions, and interactions based on common signal pathways.
The different colored edges between the target proteins reflect different inter-
relationships.

5.6.1.5 Experimental Verification

Cell Experiment Verification

A K562 cell model was used to study the role of MABB in apoptosis, by fluores-
cence analysis of Bcl-2, Bax (Apoptosis Regulator BAX), and Bak (Bcl-2
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Homologous Antagonist/Killer) proteins in K562 cells; Transmission electron
microscope was used to further explore whether MABB produces mitochondrial
damage concurrently. WB was used to detect the expression of LC3-II and p62 to
verify the effect of MABB on the related pathways.

Virtual Docking

According to literature reports, several synthetic coumarins exert anti-cancer effects
by inhibiting the PI3K-AKT-mTOR pathway or act as inhibitors of mTOR. mTOR is
the central protein in the signal transduction pathway. In addition, some of these
compounds have been patented, such as CN103254203, therefore, the study
explores whether MABB might interact with mTOR through virtual docking. ICM
software was used to predict the interaction between coumarin and its related
allosteric binding sites.

5.6.1.6 Main Conclusion

(1) In this study, the network pharmacology approach was used to predict the
MABB targets and to identify unknown signal transduction pathways that
interact with compounds. Research data shows that MABB interacts with
apoptosis and the PI3K/AKT, MAPK, Ras, and Erb pathways, most of which
have tyrosine kinase characteristics; the PI3K/AKT pathway is related to
autophagy. Disease enrichment analysis indicates that MABB may be related
to cancer pathways, indicating its potential as an anti-tumor compound.

(2) Immunofluorescence studies show that MABB treatment-induced
overexpression of Bax and Bak significantly reduces the fluorescence of Bcl-2.
These results indicate that MABB can induce apoptosis through the expression
of pro-apoptotic proteins Bax and Bak; by detecting the expression of LC3-II
and p62 proteins, acidic vesicle accumulation and autophagy volume aggrega-
tion can be observed, suggesting that MABB can induce apoptosis by destroying
autophagy flux.

(3) The analysis of docking results suggests that MABB could inhibit autophagy
flux and induce apoptosis by interacting with mTOR.

5.6.2 Protective Effect of Peucedanum Japonicum Extracts
on Osteoarthritis

Osteoarthritis (OA) is a common degenerative inflammatory arthritis, characterized
by articular cartilage degeneration, subchondral osteosclerosis, osteophyte forma-
tion, and joint tissue inflammation. The pathogenesis of OA has not been fully
elucidated. There are related therapies for OA to relieve joint pain and stiffness,
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reduce inflammation, and prevent joint injury, but there is no cure for OA. As a
chronic and complex disease, people are increasingly pay more attention to the use
of Chinese herbal medicine to treat or alleviate OA symptoms. Many studies have
reported that Peucedanum Japonicum, a kind of Chinese herbal medicine used to
treat neuralgia, rheumatoid arthritis, and inflammation related diseases, has the
potential to treat OA. This section introduces the discussion on the mechanism of
Peucedanum Japonicum in the treatment of OA based on network pharmacology
conducted by Chun et al. [54].

5.6.2.1 Research Objective

Although there have been studies on the chemical components and effects of
peucedanum japonicum, there is no network pharmacology analysis on its effect
on OA from a holistic perspective. Therefore, in this study, pharmacological net-
work analysis was used to comprehensively evaluate the regulatory mechanism of
peucedanum japonicum extracts, to identify potential active compounds and
OA-related target genes. In addition, the pharmacological effects of peucedanum
japonicum extract (PJE) by its inhibitory effect in model rats induced by
monosodium iodoacetic acid (MIA) were also studied.

5.6.2.2 Data Source

For network pharmacology research, the chemical components of peucedanum
japonicum were collected by retrieving literature, PubMed database, and the
KTKP database. The ADME properties of the compounds were predicted by the
TCMSP database. The compounds with Oral Bioavailability (OB) >30% and
Druglikeness (DL) >0.18 were selected as the potential active components of
peucedanum japonicum for subsequent studies. The potential acting targets of the
compound were obtained from the STITCH database, and then the TTD database
was used to determine whether the targets are related to OA.

5.6.2.3 Network Construction and Visualization

A “compound-target” network was constructed by using Cytoscape (node: com-
pound or target, edge: inter-relationship between compound and target). Then, the
enrichment analysis was performed by using the DAVID database.

5.6.2.4 Analysis Index and Algorithm

Topological (degree) analysis of “compound-target” network.
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5.6.2.5 Experimental Verification

An MIA-induced OA rat model was constructed, and the load-bearing level of hind
paw of the mice between the PJE treatment group and the control group was
compared, as a measure of OA progression and a reflection of the efficacy of anti-
inflammatory compounds. Histopathological analysis: the cartilage degeneration of
OA rats was observed to verify whether PJE plays a therapeutic role in the
MIA-induced OA rat model; measurement of serum cytokines and inflammatory
mediator level: various inflammatory mediators in OA may participate in the path-
ogenesis. Therefore, this study determined the effects of PJE on serum levels of
TNF-α (Tumor Necrosis Factor), IL-6 (Interleukin-6), LTB4 (Leukotriene B4), and
5-LOX (5-Lipoxygenase) in MIA-induced OA model rats. OA is a chronic disease
affecting joints. It can promote the emergence of various inflammatory mediators
and it is known that cytokine interaction plays a vital role. Therefore, this study
determines the effect of PJE on the mRNA expression levels of inflammatory
mediators (IL-1β, IL-6, TNF-α, COX-2, and iNOS).

5.6.2.6 Main Conclusion

(1) Through hind paw load-bearing experiments, it was found that on the 7th day
after MIA injection, the MIA group showed a significantly lower load-bearing
distribution and maintained at this level for at least 21 days. However, in the PJE
administration group, load-bearing levels of mice gradually increased and
recovered 21 days after MIA injection. The results show that PJE therapy
could restore balance and relieve joint discomfort. In addition, histological
features show that PJE can reverse cartilage damage caused by MIA injection.
In contrast, the levels of IL-6 and LTB4 in the PJE treatment group were lower,
and TNF-α and 5-LOX were slightly lower; the mRNA expression levels of
inflammatory factors and levels of 5 kinds of inflammatory factors in the MIA
group were significantly increased, while the mRNA expression levels of IL-1β,
IL-6, COX-2, and iNOS in the PJE treatment group were significantly lower.

(2) To explore the potential active components and targets of PJE, the main (DC �
6) compound nodes were found through network analysis: Rutin (DC ¼ 20),
inositol (DC ¼ 7), chlorogenic acid (DC ¼ 6), and methoxypsoralen (DC ¼ 6).
In addition, the major targets are CASP3 (Caspase-3, acts with rutin, chlorogenic
acid, and isoquercetin), CASP7 (Caspase-3, acts with rutin and chlorogenic
acid), and CYP2D6 (Cytochrome P450 Proteins 2D6, acts with
methoxypsoralen and alloisoimperarorin). These major compounds and targets
may play an important role in the progression of OA.

TCM network pharmacology breaks through the current mainstream R&D thinking
of Western medicine, tries to interpret the therapeutic mechanism of TCM from the
perspective of system and molecular network balance, and explores the occurrence
and development process of complex diseases, to understand the interaction between

242 S. Su et al.



TCM ingredients and the organism and guide the discovery of new drugs. TCM
network pharmacology represents philosophical ideas and research model transfor-
mation in the modernization of TCM, and has made remarkable progress in the
above five aspects. Based on existing research, we can find that the direction that is
more closely integrated with clinical research is research on TCM syndromes, such
as discovering syndrome markers, and the biological basis of “treating the same
disease with different methods.” The growing trend in research is the exploration of
active ingredients and potential mechanism of action of Chinese medicine prescrip-
tions. The research in the direction of new drug development based on TCM can be
better integrated with the development of modern new drugs, and at the same time,
the R&D of new Chinese medicine is also the fundamental driving force of TCM
research. Compared with the first three directions, the research of network pharma-
cology in ethnic medicine and international traditional medicine is still relatively
poor, but it is believed that with the growing recognition of traditional medicine and
the in-depth application of modern omics research and complex system research,
research in these two directions will continue to grow.

In the past few decades, TCM has focused on the separation of chemical
components and the activity detection of chemical components, and has accumulated
a lot of information for the development of network pharmacology. Moreover, with
the rapid development of modern medicine, people have a more in-depth under-
standing of single molecular targets and their relationship with diseases and drugs. In
addition, the continuous development of high-throughput omics data analysis,
computer virtual computing, and artificial intelligence provides support for the
in-depth study of the scientific connotation of Chinese medicine from a system
perspective.

As an emerging subject integrating multi-disciplinary knowledge and methods,
network pharmacology in TCM reveals more complex and systematic scientific laws
and modern expression of TCM philosophies, ideas, and laws, rather than just the
“single compound-single target-single effect.” Both, the research on the mechanism
of action of TCM based on network and the R&D of new drugs based on network
target represent the new research mode in the modernization of TCM. Network
pharmacology in TCM is consistently moving forward with a steady accumulation
of relevant data such as diseases and TCM, and with the ongoing development and
improvement of network analysis and software, artificial intelligence, machine
learning, and other technologies, it will definitely provide more valuable information
to reveal the complex disease mechanism and R&D of new TCM drugs. This new
model of drug and pharmacology research based on network analysis and network
target is going to provide a major breakthrough in the modernization of TCM.
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Chapter 6
Network Pharmacology and Modern Drug
R&D Cases

Weidong Zhang and Jing Zhao

6.1 Guide to this Chapter

Drug discovery has predominantly followed the concept of “one drug, one target,
one disease” for an extended period, case in point, to design chemical entities that
can specifically bind to one key target related to a specific disease [1]. Collateral
pharmacology aims to develop drugs that earmark multiple proteins or networks
connected to diseases. It also demonstrates the possibility of finding multi-target and
multi-component drugs that earmark disease-related networks at the system level
[2]. Network pharmacology research integrates the data of various public databases,
high-throughput screening (HTS), genome-wide association studies (GWAS), and
large-scale omics (such as genomics, transcriptomics, metabonomics, and proteo-
mics) to construct a network prediction or inference model. The analysis of the
complex biological pathways influenced by drug therapy at different biological
levels (molecules, cells, tissues, organs, and phenotypes) has given a boost to
cognition of the biological mechanisms of complex diseases, the systemic mecha-
nism of the impact of drugs, and the development of multi-target, multi-component
drugs. This chapter selects some exceptional results of network pharmacology in the
R&D and application of modern drugs in recent years, and analyzes the results from
the dimensions of research purpose, data source, analysis index and algorithm,
analysis results, experimental verification, and main conclusion, as a means to
introduce the principal research contents, ideas, and procedures of frontier research
in network pharmacology, for readers.
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6.2 Internal Mechanism and Intervention Targets
of Complex Diseases

The incidence and progress of complex diseases are not only caused by changes in a
single gene or protein, but are related to a series of interacting genes or proteins.
Therefore, in their research and treatment, one must not only consider the function of
a single gene, but also the interactions between genes or gene products. The network
pharmacology method has inevitably become a powerful tool for the study of
complex diseases and their intervention targets. These methods are chiefly based
on the “Guilt-by-Association” principle [3], particularly the pathogenic genes of the
same or related diseases are interrelated in function, hence their positions in biolog-
ical networks are adjacent and close, and they are similar in network topology.

One of the most important aspects of the research of complex diseases is the
prediction of disease-related genes. The local similarity and global similarity
between candidate genes and known disease genes on the network, functional
similarity between genes, and phenotypic similarity between diseases are all
employed in the design of prediction algorithms. For example, the CIPHER algo-
rithm proposed by Wu et al. defined phenotypic similarity vector and gene proximity
vector, and utilized the consistency score of these two vectors to predict the disease
genes [4]; Lin et al. integrated phenotypic similarity information with PPI back-
ground network to construct a phenotypic-specific network as the background
network for prediction, and then the topological similarity and functional similarity
of the network between genes were combined using the gravity-similar indexes to
predict disease genes [5].

A variety of data that constitute genome, transcriptome, and proteome are inte-
grated with several diverse mathematical models and calculation procedures. The
establishment of regulatory networks related to complex diseases and the identifi-
cation of key regulatory genes are important to deduce the mechanism of complex
diseases and to subsequently develop corresponding drugs. For example, Zhang
et al. constructed a molecular network of LOAD by using the genome-wide gene
expression profile and genotyping data obtained from hundreds of patients with
Late-Onset Alzheimer’s Disease (LOAD) and 1647 autopsy brain tissue samples
from non-dementia subjects. This resulted in the discovery of several distinct
functional categories and cell-specific modules, many of which displayed an enor-
mous reconstruction effect on LOAD brains. They applied a comprehensive
network-based procedure to grade the correlation between these modules and
LOAD pathology, and used Bayesian inference to identify the key causal regulators
in these networks [6]. Mani et al. proposed the Interactome Dysregulation Enrich-
ment Analysis (IDEA) algorithm [7] to identify the carcinogenic lesions of lym-
phoma. This procedure initially integrated different types of experimental and
predicted molecular interactions to construct a “priori” network model of B cells.
Subsequently, the gene expression profiles of B cell populations from patients with
lymphoma and B cell populations from normal people were used to calculate the
differences in gene co-regulation between the two expression profile data sets.
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Mutual information indicators were used to identify ill-adjusted signal pathways in
the disease.

Diseases are typically classified according to the physiological system they affect
and the phenotypic symptoms they exhibit. At the molecular level, on account of
possessing identical disease-causing genes, their mutual association, or their
involvement in common biological processes, diseases with distinct phenotypes
may lead to comorbidities. Network-based disease research helps to ascertain the
interconnection between different diseases at the molecular level, understand the
relationship between diseases at the molecular level, improve the level of disease
diagnosis and treatment, and accelerate the progress of drug development. For
example, Menche et al. used the method of network analysis to find that the network
position of the disease module determines its pathobiological relationship with other
diseases. Diseases with network module overlap show significant symptom similar-
ities and comorbidities, while diseases separated by network module are clinically
different types of diseases [8].

The following two specific research cases are selected for analysis.

6.2.1 Transcription Factor POU3F2 Regulates the Gene
Co-expression Networks in the Brain Tissues of Patients
With Mental Disorders

Schizophrenia (SCZ) and Bipolar Disorder (BD) are complex mental disorders and
are associated with the dysfunctions of multiple gene expressions. However, the
related procurable facts are minimal. Precursory research has reported anomalies in
the gene expression network in brain tissue of postmortem patients with SCZ or
BD. However, this research is predominantly related to networks with single dimen-
sion, which cannot analyze the driving nodes in the network module, or the regula-
tory relationship. A majority of the research results are expressed as the correlation
between genes rather than the causal relationship of gene regulation.

In this research, multi-dimensional data sets were integrated to construct a
genome-wide co-expression network comprising microRNA (miRNA), and a
co-expression module with differential expression in the brain tissue of patients
was identified [9]. The module comprised genes that are primarily involved in the
generation of glial and nerve cells and the differentiation of glial cells, which
incorporates schizophrenia-risk genes that carry atypical mutations. By means of
network analysis and experimental verification, it was established that POU3F2 is
the primary regulatory factor of the co-expression network module, which plays a
crucial role in the incidence and progress of psychiatric disorders.
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6.2.1.1 Research Objective

Based on the hypothesis that co-expression means co-regulation and that the hub
genes in the co-expression module are likely to be the key regulating factors of gene
co-expression, this study integrated the genotype, mRNA, and miRNA data from
brain tissue samples from patients with SCZ and BD, searched transcription factors
and miRNAs as hub nodes in disease-related co-expression modules, and substan-
tiated the predicted regulatory relationship by virtue of experimental verification.

6.2.1.2 Data Source

Data Set Discovery

The tissue samples of Parietal Cortex (PC) were from the Stanley Medical Research
Institute (SMRI) and Neuropathology Consortium and Array Collections [10],
containing SCZ, BD, and control samples. Excluding the non-European, duplicate,
the missing mRNA, miRNA, or genotyping data samples, a total of 75 samples were
procured, including 51 disease samples and 24 control samples.

Duplicate Data Set

A total of 2 duplicate data sets: the gene chip data GSE15745 in GEO, including
138 samples of Frontal Cortex Tissue (FCTX) from normal nervous system in
Caucasians, and RNA-seq data from BrainGVEX dataset of PsychENCODE [11],
including samples from SMRI, were used. After removing duplicate samples,
70 SCZ, 48 BD, and 63 control samples were procured.

6.2.1.3 Analysis Index and Algorithm

Module Construction and Maintaining Statistics

Weighted gene co-expression network analysis (WGCNA) method was used to
identify mRNA and miRNA with related expression patterns [12]. The correlation
matrix was calculated for all possible node pairs (mRNA and miRNA), and the
power value was 6, so that the network constructed by the correlation matrix had a
scale-free network topology. The minimum module size was set to 30 and a
co-expression network with double-weighted median correlation was constructed.
The dynamic tree cutting algorithm was used to identify the network module, in
which the parameter mergeCutHeight was 0.05, and deepSplit was 2. WGCNA and
dynamic tree cutting algorithm were executed using the corresponding packages of
R language. The unsigned network was used to represent the negative regulatory
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relationship between miRNA and mRNA. The Cytoscape software was used for
network visualization.

As the sample size was relatively small, two other duplicate data sets were used to
evaluate the module retention. The verification dataset contained samples from
BrainGVEX and GSE15745. Zsummary was used to test and evaluate the module
retention between expression profile datasets. The recommended threshold value is:
Zsummary < 2 is no proof of module retention; 2< Zsummary < 10 is weak to moderate
evidence; Zsummary > 10 is strong evidence of module retention.

Network Edge Orienting (NEO) Analysis of miRNA Interactions
of Transcriptional Factors

In addition to combining information, the modified NEO analysis was used to
investigate the causal relationship between transcriptional factors and miRNAs
[13]. The input data were the expression data of transcriptional factors and miRNAs,
as well as genotype data. NEO analysis uses the likelihood degree of local structural
equation model to integrate selected features and markers, to evaluate the causal
relationship between related variables. The output was the edge orientation score of
the local structure. Genotype data of eQTL containing transcriptional factors and
miRNAs from the analysis of SMRI samples, GTEx portal site, CommonMind
Consortium, and UK Brain Expression Consortium were selected. A total of
901 SNPs were included in the NEO analysis. The CPA model was used to test
the edge orientation of a single marker, and the OCAmodel was used to test multiple
genetic markers. The likelihood-based CPA score was used to evaluate whether the
selected model produces a higher likelihood than the alternative model. According to
the software, the threshold value is 0.8, which means that the model likelihood score
of the causal model is 100.8 ¼ 6.3 times higher than that of the next best model. For
the OCA score, the threshold value is 0.3 according to the software, which means
that the model likelihood score of the causal model is 100.3¼ 2 times higher than that
of the next best model.

6.2.1.4 Analysis Result

Identify Disease-Related miRNA and mRNA Co-expression Network
Modules

First, mRNA and miRNA expression in PC tissue samples from SMRI were
analyzed using WGCNA. Diseases (including SCZ and BD) were combined with
control samples to construct a co-expression network, and a total of 46 co-expression
modules were found. After correcting for the influence of gender, age, brain tissue
pH, RNA integrity number, and death interval, a disease-associated module (daM)
was found. The module contained 5 miRNAs and 545 genes. DAVID enrichment
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analysis revealed that these genes were enriched in three biological processes: glial
formation, glial cell differentiation, and neurogenesis.

Module Retention in an Independent Data Set

Two independent duplicate data sets were used to test the module retention of daM.
Zsummary ¼ 36.8 between the daM of SMRI’s PC tissue sample data and the FCTX
sample data of GSE15745, and Zsummary ¼ 10.9 between the FCTX sample data of
the BrainGVEX database. The results show that the genes and connection relation-
ships in daM were well maintained in different data sets.

Enrichment of Genetic Variation Associated with SCZ or BD in daM

Whether the genes in daM are genetically related to SCZ or BD was tested. For
genetic variation, the test focused on the common or rare single nucleotide variation
and copy number variation (CNV). For common variations, MAGMA [14] and
INRICH [15] were used to detect the enrichment of genes in daM in Genome-
Wide Association Study (GWAS) of SCZ or BD, but no significant enrichment was
detected. For rare variations, based on the data from two exome sequencing studies
[16, 17] and data from the NPdenovo database [18], using hypergeometric method, it
was found that the genes in daM were significantly enriched in these three data sets.
When the data of the three data sets are merged, the gene enrichment in daM is more
significant.

Potential Key Regulatory Factors and Their Roles in daM

This section involved the research on the transcriptional factors and miRNAs that
may be major regulatory factors in daM and involved the study of their functional
roles. There were five miRNAs in daM: hsa-miR-585, hsa-miR-320b, hsa-miR-
320c, hsa-miR-320d, and hsamiR-320e, as well as 6 transcriptional factors:
POU3F2, EPAS1, PAX6, ZNF423, SOX5, and SOX9 (as shown in Fig. 6.1).

This network shows all mRNA, miRNAs and their co-expression in daM. Six
transcriptional factors (POU3F2, PAX6, EPAS1, ZNF423, SOX5, and SOX9), their
targets, and the names of five miRNAs are shown in the figure. The other genes are
represented by dots. Six transcriptional factors and their corresponding targets are
shown in six boxes with different colors.

In this module, 87.3% of the mRNA expression was negatively correlated with
the miRNA in it, indicating that the regulation of miRNA on transcription was
achieved by directly downregulating their mRNA target genes. The most connected
node in the module is miR-320e, which connects 68 nodes.

Using the transcriptional factor binding information provided by the studies done
by Fuxman [19] and Kheradpour [20], it was found that the six transcriptional factors
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in daM have a total of 101 targets in the module, among which POU3F2 has the most
potential targets in the module, a total of 26, including transcriptional factors PAX6
and SOX9. Other transcriptional factors EPAS1, PAX6, ZNF423, and SOX9 have
9, 21, 24, 10, and 11 potential targets, respectively, in the module.

Causal Relationship Between Key Regulatory Factors in daM

Whether transcriptional factors are the upstream or downstream regulators of
miRNA, or whether they are regulated by other transcriptional factors was detected
by integrating genetic markers. The NEO method was used to infer the causal
relationship between the related nodes (i.e., miRNA, transcriptional factors, and
their targets). As the main interest lies in the causal relationship between five
miRNAs and six transcriptional factors, only miRNA Quantitative Trait Locus
(miQTL) signals associated with five miRNAs and expression QTLs (eQTL) signals
associated with six transcriptional factors were used here. Among the five miRNAs,
only hsamiR-320e had significant miQTL signals (P < 0.05, FDR q < 0.05), hence,
this miRNA and six transcriptional factors were selected to identify the regulatory
direction.

Fig. 6.1 Transcriptional factors and their targets in daM [9]
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An improved NEOmethod was used to establish a local structural equation model
to obtain the Edge Orienting fraction. If the Orthogonal Causal Anchors (OCAs)
meet LEO.NB.OCA(A!B) > 0.3 and the Candidate Pleiotropic Anchor (CPA)
meets LEO.NB.CPA(A!B) > 0.8 at the same time, it means that the adjustment
direction is A to B. If it is observed that LEO.NB.OCA (POU3F2!hsamiR-320e)¼
0.526, LEO.NB.CPA (POU3F2!hsa-miR-320e) ¼ 1.55, it indicates that POU3F2
may be an upstream regulatory factor affecting the expression of hsa-miR-320e. At
the same time, NEO results show that POU3F2 is an upstream regulatory factor of
other transcriptional factors (PAX6, ZNF423, and SOX9). These results suggest that
POU3F2 may be a key regulatory factor in daM.

6.2.1.5 Experimental Verification

Experimental Verification of the Potential Causal Regulatory Relationship
in daM

POU3F2 and hsa-miR-320e are in the hub position in daM. Here, this suggested
relationship is confirmed by in vitro experiments. The expression changes of
POU3F2 and hsa-miR-320e in SH-SY5Y neuroblastoma cells were induced by
using RNA interference (RNAi) and gene overexpression agents, and the expression
changes of their predicted targets were examined.

After conducting RNA interference in SH-SY5Y, the expression of POU3F2
decreased by 41%, while the expression of hsa-miR-320e increased by 170%. In the
overexpression experiment, the expression of POU3F2 increased nearly 10 times
(P < 0.001), while the expression of hsa-miR-320e decreased significantly by 33%.
In the case where hsa-miR-320e was knocked out, the expression of hsa-miR-320e
reduced by 33%, but the expression of POU3F2 was not affected; overexpression of
hsa-miR-320e (increased by 120%) did not change the expression of POU3F2.
These in vitro experiment results confirm that POU3F2 is an upstream regulatory
factor of hsa-miR-320e.

Effects of POU3F2 on Proliferation and Differentiation of Neural
Progenitor Cells

After knocking out POU3F2 in human neural progenitor cells (NPC), it was found
that the proliferation rate from EdU+ cells (5-ethynyl-20-deoxyuridine; a marker of
proliferating cells) to DAPI+ cells (40,6-Diamidino-2-phenylindole; a live cell
marker) significantly increased. Next, the differentiation of NPC to neurons was
analyzed, and it was found that the ratio of Tuj1+ cells (a marker of immature
neurons) and MAP2+ cells (a marker of mature neurons) significantly reduced.
These results indicate that knocking out POU3F2 can promote the proliferation
ability of NPC and inhibit NPC differentiation into neurons.
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To study how POU3F2 affects the cell proliferation and differentiation abilities,
the expression changes of POU3F2 in six predicted targets (SOX9, PAX6, ZNF423,
NOTCH2, CLU, and TRIM8) in daM were examined after POU3F2 was knocked
out or overexpressed. It was found that the expression of SOX9, ZNF423, NOTCH2,
CLU, and TRIM8 decreased significantly after POU3F2 knockout; and their expres-
sion increased significantly after POU3F2 was overexpressed. The expression of
PAX6 did not increase significantly after overexpression of POU3F2, indicating that
it may not be regulated by POU3F2 in the NPC model.

6.2.1.6 Main Conclusion

Starting from the transcriptome data of neurological diseases, this study constructed
a gene co-expression network. A disease-related module containing 5 miRNAs and
545 mRNAs was identified from the network, among which 6 transcriptional factors
were the central genes of the module. The genes in the module were enriched in the
three biological processes: glial formation, glial cell differentiation, and
neurogenesis. Integrating a variety of data, and through network analysis, it was
found that the central node in this module—the transcriptional factor POU3F2—can
regulate miRNA hsa-miR-320e and other predicted target mRNAs. In vitro exper-
iments and gene knockout verified the regulatory effects of POU3F2 on hsa-miR-
320e and the other five predicted targets, and confirmed the influence of POU3F2 on
the proliferation and differentiation of neural progenitor cells. These results indicate
that POU3F2 plays a key role in the occurrence and development of neurological
diseases.

6.2.2 Network-Based CRISPR-Cas9 Combinatorial
Screening and Recognition of Synergistic Modules
in Human Cells

Tumorigenesis is a complex biological process driven by a series of genes and
environmental factors. Inflammation-induced tumorigenesis (IIT),
i.e. inflammation-mediated cancer transformation, is the main driving factor of
tumorigenesis. It is rarely caused by a single gene mutation, but by the disturbance
of a complex gene network. A thorough understanding of the functional network of
IIT is essential for preventing the occurrence of inflammation-mediated cancer
transformation, especially for early diagnosis. However, so far there have not been
any effective methods to do so.

In this study, Li et al. proposed a comprehensive network-based strategy to
systematically discover the functional synergistic modules [21] that play a decisive
role in IIT. This method first integrated experimental and computational methods to
predict candidate genes related to IIT in the whole genome. On this basis, a
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differential gene interaction network of IIT was constructed using TGFβ1-induced
colon epithelial cell transformation model, combined with a new combination
CRISPR-Cas9 screening strategy. In addition, the differential gene interaction of
opposite IIT in the network was identified—synergistic promotion and inhibition.
The synergistic promotion is mainly caused by the loss of immune and metabolic
modules, and the synergistic inhibition is mainly induced by the loss of proliferation
and immune modules or proliferation and metabolism modules. These results help to
understand the possible early combination targets and biomarkers of IIT, especially
the synergistic effects among immune, proliferative, and metabolic modules.

6.2.2.1 Research Objective

Identifying the functional networks that drive IIT, especially the transformation from
inflammation to cancer associated with colitis, is the main focus of current cancer
research. This study combines the experimental method with the network-based
computing method to systematically discover the functional synergistic modules that
plays a decisive role in IIT.

6.2.2.2 Data Source

Collection of Genes Associated with IIT:

(1) Using the CIPHER method [4], the top 100 candidate disease genes of inflam-
matory bowel disease (Inflammatory Bowel Disease 1, IBD1; OMIM ID
266600) and colorectal cancer (Colorectal Cancer, CRC; OMIM ID 114500)
were predicted.

(2) Among the candidate genes selected using CIPHER, 59 genes were selected in
the following 12 KEGG signaling pathways linking inflammation and cancer:
[1] Inflammatory bowel disease [IBD]; [2] RAS signaling pathway; [3] Toll-like
receptor signaling pathway; [4] NF-kappa B signaling pathway; [5] JAK-STAT
signaling pathway; [6] HIF-1 signaling pathway; [7] PPAR signaling pathway;
[8] MAPK signaling pathway; [9] TGF-beta signaling pathway; [10] mTOR
signaling pathway; [11] TNF signaling pathway; and [12] PI3K-Akt signaling
pathway.

(3) Thirty candidate genes were manually collected from the literature.
(4) From the gene expression data set GSE4183 of the GEO (Gene Expression

Omnibus) database, a total of 38 differentially expressed genes were collected
from IBD compared to normal tissues, and CRC compared to normal tissues.

Combining the genes collected from (1) to (4), a total of 84 non-repetitive genes
were collected, which are the candidate genes related to IIT.
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Design and Synthesis of sgRNA

For each of the 84 candidate genes associated with inflammation-mediated cancer
transformation, three sgRNA targets were designed to target inflammation-mediated
cancer transformation by using the CRISPR-era sgRNA design tool. At the same
time, 20 negative control sgRNA without targeting human genomic loci were
designed.

6.2.2.3 Analysis Index and Network Construction

Research Process

As shown in Fig. 6.2.

Construction of Gene Co-expression Network

The GEO database was searched to obtain gene expression data of three tissues
(colon, stomach, and liver), and these expression data were used to construct a gene
co-expression network among 84 candidate genes related to IIT.

Then, enrichment analysis of GO and KEGG pathways was conducted. Signifi-
cant overexpression pathways include signal transduction and immune system-
related signaling pathways, such as sphingolipid signaling pathway and chemokine

Fig. 6.2 Process of identifying system policies for synergistic modules [21]. (a) Prediction of
genes related to IIT based on data and network; (b) a new CRISPR-Cas9 combination screening
strategy for identifying synergistic modules
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signaling pathway. Enriched GO items include cell cycle related items, such as
positive regulation of cell proliferation, programmed cell death, cell differentiation,
and metabolic and immune related items, such as positive regulation of cell metab-
olism process, positive regulation of cytokine production, positive regulation of
immune response, inflammatory response. To sum up, there were two significantly
enriched modules in the gene co-expression network of the colon, namely immune
process and metabolic process. Here, the module identified using Pearson’s correla-
tion coefficient analysis corresponds to the function-related gene clusters.

Determining the Differential Gene Interaction Network by Using Double
Knockout Technique Based on CRISPR

To study the 84 kinds of candidate genes that are crucial to IIT, a differential gene
interaction network (Genetic Interaction Network) was established using the
CRISPR-based double knockout method.

To determine the new genes involved in IIT and their functional relationships, a
CRISPR-based double knockout method was used to perform functional screening
of the NCM460 cell line, and an inflammation-related cancer cell model was used to
simulate the cell transformation phenomenon of colonic epithelial cell malignant
proliferation caused by IBD [22]. This screening measured all possible interactions
among 104 genes (including 84 candidate genes and 20 negative control genes). To
confirm the role of 84 candidate genes in IIT, a double sgRNAwas used to knock out
all possible interactions in NCM460 cells, and a differential Genetic Interaction map
(dGImap) of these genes was constructed to reveal their functional relationship. The
sgRNA lentivirus library was used to infect a modified NCM460 cell line, to stably
express cas9 protein, and then the obtained cell population was divided into an
experimental group and a control group. The experimental group was treated with
TGFβ1, and the control group was not treated. After the cells were cultured for
10 days, two groups of cell populations were collected, and their genomic DNA was
extracted. Next, the counts of different sgRNA combinations were measured by deep
sequencing. The number of viable cells under normal condition and in the inflam-
matory microenvironment induced by TGFβ1 for 10 days were measured to deter-
mine the cell growth rate.

The cell growth rate induced by TGFβ1 was evaluated by ρ value, which
quantifies the difference of cell growth rate between the experimental group and
the control group [23, 24]. If the presence of TGFβ1 does not affect the growth of
sgRNA, its ρ value is 0; if sgRNA gives TGFβ1-induced cell growth, it has a positive
ρ value; if sgRNA is sensitive to TGFβ1-induced cell growth, it has a negative ρ
value. Then, the sequencing data was standardized and statistically analyzed to
obtain the quantitative difference GI score (DGI) of the double mutation. An
accelerated double mutation growth rate shows that the two genes have synergistic
effect, and the dGI score is positive; on the contrary, the inhibition of growth rate
after double mutation shows that the two genes have antagonistic effect, and their
dGI score is negative. The differential genetic interaction network of the 84 genes
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contains the quantitative DGI scores of a total of 7056 gene pairs. By analyzing the
distribution of dGI scores, the gene pairs satisfying dGI<�0.84 or dGI> 1.11 were
selected as having extremely significant interactions, and 39 positive gene pairs and
45 negative gene pairs with significant differences were identified, which revealed
the significant differences between TGFβ1-induced and normal colon epithelial
cells.

Exploring Specific Mechanisms of IIT Through Different Interaction Modes

To identify significantly different gene interaction patterns (as shown in Fig. 6.3a), the
authors constructed a significantly different gene interaction network (as shown in
Fig. 6.3b) based on the previously determined differential genetic interaction relation-
ships. The network consists of 63 gene interactions among 84 candidate genes. To
determine the correlation between different interaction patterns and the specific
mechanisms of IIT, functional enrichment analysis of the 63 genes was performed.
It was found that these genes were mainly enriched in three pathways of IIT: namely
immune related pathways (such as innate immune response, positive regulation of
immune response, immune system development), metabolic pathways (such as pos-
itive regulation of cellular metabolic process, positive regulation of macromolecular
metabolism, positive regulation of nitrogen compound metabolism), and proliferation
related pathways (such as positive regulation of cell proliferation).

There are reports in literature that the possibility of differential genetic interaction
between genes in different modules is greater than that between genes in the same

Fig. 6.3 Modularization of differential genetic interaction network [21]. (a) The differential
genetic interaction network was constructed by analyzing the differences of cell growth rate
between single mutation and double mutation. (b) Differential genetic interaction network. The
network includes positive interaction (red edge) and negative interaction (blue edge) of differences,
in which the modules are divided according to the biological processes involved by genes in the
network
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module [25]. Therefore, the authors carried out a correlation analysis between
biological processes and differential genetic interactions, and found that the differ-
ential genetic interactions are enriched among modules, indicating that the differen-
tial genetic interactions between these biological functional modules are
reprogrammed after inflammatory stimulation (as shown in Fig. 6.3b). Based on
this analysis, a functional network was constructed to show the differential genetic
interactions among biological functional modules after inflammatory stimulation
(as shown in Fig. 6.3b). This network shows that there are three kinds of module
combinations that strongly affect IIT, i.e., the synergistic effects between prolifera-
tion and immune modules or between proliferation and metabolism modules can
inhibit the process of IIT, and the synergistic effects between the metabolic and
immune modules can promote the occurrence of IIT. Therefore, the interactions
between immune and proliferation modules, or between metabolism and prolifera-
tion modules, provide possible targets for the occurrence of early IIT, whereas the
interactions between immune and metabolic modules may be an early biomarker for
the risk of IIT (as shown in Fig. 6.3b).

Prediction of Drugs Intervening in IIT Based on Synergistic Module

Given compound k, the following formula was used to calculate the drug score DS
for the differential Genetic Interaction of IIT:

DS kð Þ ¼
XN
i¼1

K ið ÞS i, kð Þ

wherein S(i, k) is the drug CIPHER score of compound k to target i, and N is the total
number of targets. K(i) is calculated as follows:

K ið Þ ¼
XM
j¼1

ρ jð ÞdGI i, jð Þ

wherein ρ( j) is the phenotypic value of gene j, dGI(i, j) is the differential Genetic
Interaction score between gene i and gene j, and M is the total number of genes.

The compounds in Liuwei Dihuang pill compound prescription were obtained
from HerbBioMap, a Chinese medicine database. For each compound, the target
profile was predicted with drugCIPHER, and its drug score was calculated for the
differential genetic interaction of IIT. The drug scores were sorted from high to low,
and the top four compounds quercetin, isorhamnetin, kaempferol, and resveratrol,
which are the predicted drugs used for intervention in IIT, were selected.
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6.2.2.4 Experimental Verification

Experimental Verification of the Differential Genetic Interaction Relationships

To assess the quality of differential genetic interactions determined by sgRNA, RNA
interference (shRNA) was used to confirm the phenotype based on screening.
Experiments confirmed that when used in combination with corresponding sgRNA
pairs, three specific shRNA pairs targeting MYC-CDK4, IL6R-TNF, and PIK3CA-
NFKB1 lead to synergistic changes in cell growth. Similarly, sgRNA pairs and
shRNA pairs that simultaneously target these three specific gene pairs show similar
synergistic or antagonistic effects. These results indicate that the differential genetic
interactions detected in this study indeed capture the underlying molecular basis
of IIT.

Experimental Verification of Drugs that Intervene in IIT

Cell viability analysis (MTT assay) was used to evaluate the inhibitory effects of the
four compounds that are predicted for TGFβ1-induced colonic epithelial cells
(NCM460). Four compounds (quercetin, kaempferol, isorhamnetin, and resveratrol)
were observed to inhibit the occurrence of IIT, with IC50 values of 64.79, 139.9,
232.4, and 464 μM, respectively. These results indicate that the computational
analysis of this study can predict the compounds that mitigate IIT.

6.2.2.5 Main Conclusion

This study first integrated a variety of data sources and prediction methods to obtain
84 candidate genes related to IIT. Then, the differential genetic interaction network
among 63 candidate genes was constructed using the TGFβ1-induced cell transfor-
mation model and combined CRISPR-Cas9 screening strategy. It was found that
these 63 genes are mainly enriched in three biological pathways: immunity, prolif-
eration, and metabolism, and the interaction between genes was mainly enriched
between different modules: the interactions between proliferation and immune
modules or between proliferation and metabolism modules were mainly negative,
that is, the interaction that inhibits IIT; and the interactions between metabolism and
immunity modules were mainly positive, that is, the interaction that promotes IIT.
On this basis, it is predicted that quercetin, kaempferol, isorhamnetin, and resveratrol
in the compound prescription of Liuwei Dihuang pills can inhibit the occurrence of
IIT, and the prediction is confirmed with cell survival rate analysis. This work has
deepened the understanding of the potential mechanism by which inflammation
increases the risk of malignant transformation of cells and has important significance
for the identification of related biomarkers and the development of related drugs.
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6.3 Systemic Mechanism of Action of Drugs

Network pharmacology studies the effects of small molecules on molecular net-
works by using the network method to elucidate the mechanism of action and
determine new therapies. In addition to the targets that directly interact with drugs,
known as on-target, and are direct targets for drug indications, there are also
off-targets, since other unforeseen targets exist that interact directly with drugs.
When the drug acts on these direct targets, its effects on target proteins spread to
other proteins through intracellular signal transmission, resulting in a series of
physiological reactions. Due to the complex interactions between disease-related
genes and proteins, the effects of drugs on targets spread to other proteins through
signal transmission and interaction between genes and proteins. These molecular
networks have thus become a powerful tool for studying the mechanism of action of
drugs on the human body.

In studies, various molecular networks (such as transcriptional regulatory net-
work, gene co-expression network, protein interaction network, signal network, drug
association network, etc.) have been constructed based on experimental data, data-
bases, and literature mining. Then corresponding algorithms are designed to analyze
the effects of diseases and drugs on molecular networks and signal pathways, as well
as the relationship between drug targets and disease genes in molecular networks.
This helps in inferring the effects of drugs on diseases and the mechanisms of drug
action. The CMAP (Connectivity Map) online platform is widely used for network-
based drug research [26, 27]. This platform searches for disease–gene–drug relation-
ships based on the similarity of gene expression profiles. The CMAP database
contains several gene expression profiles of human cell lines treated with drugs or
bioactive compounds. Users can compare gene expression profiles after drug treat-
ment in the database, and find compounds with similar effects at the transcriptional
level to infer the effects of the drug under study, using the online software tool
provided by CMAP. For example, Iwata et al. proposed a strategy to study the
mechanism of action (MoA) of small bioactive molecules based on gene expression
profiles and identified the signal pathways of activation and inhibition of small
molecules based on the gene expression profile of 16,268 small molecules acting
on 68 human cell lines. Targets and new indications of small molecules were
predicted based on the latest version of CMap, namely L1000 v1 [27]. Some of
the predicted results were verified using in vitro cell tests [28].

The following two specific research cases are selected for analysis.

6.3.1 Network-Based Computational Drug Efficacy
Screening

Currently, drug development is expensive and the number of new drug approvals has
decreased significantly. Drug development tends to shift from focusing on individual
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genes that carry diseases, to changes in disease mechanisms at the network level.
Therefore, there is a greater demand for developing newer low-cost and higher
efficiency methods based on networks, for drug-target identification and drug
efficacy prediction.

In this study, Barabasi et al. developed a network-based method. In the human
protein–protein interaction network, a network proximity index was used to quantify
the distance relationship between drug targets and disease proteins. This index is
helpful to reveal therapeutic effects of drugs and distinguish palliative treatment
from effective drugs [29].

6.3.1.1 Research Objectives

Recent studies have shown that genes associated with the same disease cluster in the
same region of the network to form a disease module. Thus, for a drug to be effective
against a disease, it should target proteins inside or next to the corresponding disease
module. To verify this hypothesis, integrating protein–protein interaction, drug-
disease association, and drug-target association data were used to analyze the
topological relationship between drug targets and disease proteins in the network.
A drug-disease network proximity index was proposed to quantify the therapeutic
effects of drugs, thus distinguishing the non-etiological palliative treatment from
effective treatment method based on etiology.

6.3.1.2 Data Sources

Disease-Gene Association

Disease-gene association relationship comes from the group's previous work [8]. In
other words, OMIM and GWAS data were obtained from UniProtKB and PheGenI,
respectively, and only data with genome-wide significance meeting p < 5.0 � 10�8

were extracted from PheGenI. The Medical Subject Headings (MeSH) hierarchical
tree organization was used to organize and standardize the disease names, thus
combining data from the two databases. Only diseases corresponding to at least
20 disease genes in the protein interactome were retained.

Drug-Disease Data

For each disease, the corresponding FDA-approved drug was searched in the
DrugBank database. Using MEDI-HPS [30] (using the file MEDI_01212013_
UMLS.csv)and Metab2Mesh [31], 79 diseases were obtained, where each disease
was associated with at least one drug, with a total of 402 drug-disease associations.
MEDI-HPS contains drug–disease relationships integrated from RxNorm,
MedlinePlus, SIDER, and Wikipedia. Only data with drug-disease association that
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strongly correlated in the Metab2Mesh text mining were accepted, of which
337 drugs were obtained. A total of 99 drugs that have no known targets in the
interaction group or have the same target of another drug for the same disease were
removed, and finally 238 different drugs and 384 targets were obtained. Only
pharmacological targets have been considered here (the “Targets” chapter in
DrugBank), also excluding drug metabolism enzymes, carriers, and transporters.
To ensure accuracy of the drug-disease association, the information of these drugs
were downloaded from DailyMed and the indications were checked to remove any
inconsistent information. To calculate the enrichment of neighboring drug-disease
pairs in clinical trials, information about these drugs and the diseases they act on in
various trials were extracted from clinicaltrials.gov.

Classification of Known Drug-Disease Pairs

Three data sets were constructed: (1) Label: for the known 402 drug-disease pairs,
the labeling information was extracted from DailyMed, and the corresponding
diseases were fetched from the indication column. Two hundred and sixty-nine
drug-disease associations were found and considered as labeled pairs. The remaining
133 drug-disease associations were considered as unlabeled pairs. (2) Palliative
treatment: for each labeled pair, the indication column of DailyMed was reviewed
for any statement of non-etiological use of the drug in the disease (e.g., management,
remission, palliation, etc.), resulting in 50 palliative drug-diseases. The remaining
219 drug-disease pairs were classified as non-palliative. (3) Drug efficacy: side
effects and efficacy report were gleaned from the FDA’s adverse event reporting
system. The report listed patients’ responses to a given drug-disease, including
“pain,” “nausea,” “drug failure,” etc. 204 drug-disease pairs involving at least
10 reports were obtained from the open FDA application interface to extract the
corresponding information. The relative effectiveness score RE is defined as:

RE ¼ 1� ninefficient
ntop

where ninefficient and ntop are the number of the drug-disease pairs containing “drug
failure” reports and the total number of reports, respectively.

Human Protein–Protein Interaction Network

Human protein–protein interaction network data is from the previous work of this
team [8]. This data was integrated from TRANSFAC, IntAct, MINT, BioGRID,
HPRD, KEGG, BIGG, CORUM, and PhosphoSitePlus, with experimental evidence
from a large-scale signal network. The largest branch of this interaction group was
used here, which contains 141,150 pairs of interactions among 13,329 proteins.
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6.3.1.3 Analysis Index and Algorithm

Network Proximity Between Drugs and Diseases

Suppose S and T are the disease gene set and drug-target set, respectively, and d(s, t)
is the shortest distance between nodes s and t in the PPI network. Different network
distances are defined as follows:

Closest distance : dc S,Tð Þ ¼ 1
Tk k

X
t2T

min s2Sd s, tð Þ

Shortest distance : ds S,Tð Þ ¼ 1
Tk k

X
t2T

1
Sk k

X
s2S

d s, tð Þ

Kernel distance : dk S,Tð Þ ¼ �1
Tk k

X
t2T

ln
X
s2S

e� d s,tð Þþ1ð Þ

Sk k

Centre distance : dcc S, Tð Þ ¼ 1
Tk k d centres, tð Þ

wherein centers is the topological center of S, which is defined as: centres ¼
argmin u2S

P
s2S

d s, uð Þ
When centers is not unique, all nodes are used to define centers, and the shortest

path length to these nodes is averaged.

Separation distance : dss S, Tð Þ ¼ dispersion S,Tð Þ � d0c S, Sð Þ þ d0c T ,Tð Þ
2

wherein dispersion S,Tð Þ ¼ Tk kdc S,Tð Þþ Sk kdc T , Sð Þ
Tk kþ Sk k , d0c is the nearest correction distance,

where the shortest distance from a node to itself is set to infinity.
To evaluate the statistical significance of the network proximity between drugs

and diseases, 1000 sets of random nodes with the same number of disease genes and
drug targets, and the same node connectivity distribution were constructed, and the
distance between them was calculated. Thus, the mean value μd(S, T ) and standard
deviation σd(S, T ) of the randomized control proximity could be obtained. The
Z-score of the distance between the disease protein and drug target set can then be
calculated as a measure of the network proximity between the disease and drug:

z S, Tð Þ ¼ d S,Tð Þ � μd S,Tð Þ
σd S,Tð Þ
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Threshold Analysis of the Area Under the ROC Curve and the Optimal
Proximity

The Area Under ROC Curve (AUC) was used to evaluate the network proximity
between known and unknown drug-disease pairs. For a set of known positive drug-
disease associations (i.e., drugs that are known to be effective against the disease)
and a set of negative drug-disease associations (i.e., drugs that have no effect on the
disease), the true positive rate and false positive rate can be calculated at different
thresholds to draw the ROC curve and calculate the AUC. Here, the corresponding
relationship between drugs and diseases other than known drug-disease association
is considered as the negative control. Due to the imbalance in the scale of known and
unknown drug-disease associations, 402 pairs of unknown drug-disease associations
were randomly selected as negative controls in the calculation of AUC. This process
was repeated 100 times and the average AUC value was used to compare different
network proximity values. Also, all unknown drug-disease associations were used as
negative controls to calculate AUC. The results of the two methods were consistent
and the network proximity zc was defined by the closest distance that can best
distinguish positive from the negative samples.

The optimal threshold (zthresholdc ) of network proximity was discovered, such that
when the network proximity of a drug to a disease is less than this threshold, the drug
has a very high probability of acting on the disease by using Sensitivity and
Specificity curves of proximity. Sensitivity refers to the proportion of positive
drug-disease association having proximity in all positive drug-disease pairs. Spec-
ificity refers to the proportion of negative drug-disease association that does not meet
proximity in all negative drug-disease pairs. Thus, the network proximity threshold
zthresholdc that can result in a high coverage rate (evaluated by Sensitivity) and a low
false positive rate (evaluated by 1-specificity) was defined as the zc value at the
intersection of the Sensitivity and Specificity curves. Through analysis, the threshold
value was set as zthresholdc ¼ �0:15.

6.3.1.4 Analysis Results

Proximity Analysis of Drugs and Diseases in the PPI Network

A total of 238 drugs were collected in this study, corresponding to 78 indications.
There were a total of 18,564 possible drug-disease association pairs among them, of
which 402 were known drug-disease association pairs, and the remaining 18,162
drug-disease association pairs were unknown.

The 402 known drug-disease association pairs and the 18,162 unknown pairs
were treated as positive and negative groups, respectively, and the ability of network
proximity defined by five distances (dc, ds, dk, dcc, dss) were compared to distinguish
between the two groups. It was found that the performance of network proximity
defined by the nearest distance dc has the best distinguishing ability (AUCzc ¼ 0:66),
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which is better than that defined by the shortest distance (AUCzs ¼ 0:58 ), core
distance (AUCzk ¼ 0:61), centre distance (AUCzk ¼ 0:61) and separation distance
(AUCzcc ¼ 0:58).

If the network proximity between the target proteins of a drug and the disease
protein of a disease satisfies: zc � � 0.15, the drug is defined to be close to the
disease. The findings are as follows:

(1) Known drugs are closer to their indications: 237 pairs of 402 known drug-
disease associations are close (59%); of 18,162 unknown drug-disease associa-
tions, 7276 pairs are close (40%), which contain several potential candidates for
drug repositioning.

(2) Drug-disease pairs that tend to be closer in clinical trials: Compared with distant
unknown drug-disease pairs, close and currently unknown drug-disease pairs are
significantly enriched in clinical trials.

(3) Most known drugs are not specific (exclusive): Among the drug-disease pairs
significantly close to each other (zc � � 2), there are more known drug-disease
pairs than unknown ones. However, of 402 known drug-disease pairs, only
79 are significantly close. Thus, known drugs are sufficiently high in selectivity
(i.e., close to disease), but not necessarily specific (i.e., significantly close to
disease).

(4) Proximity can emphasize non-trivial associations: Among 402 pairs of known
drug-disease associations, 18 pairs of drug targets are disease proteins. Among
the 44 pairs of drug targets, there are non-disease proteins but at least one of
them is a disease protein, and only one drug is not close to the corresponding
disease (disopyramide-arrhythmia). Of the remaining 340 pairs, 176 of the drug
targets are not the same as the disease protein of the corresponding disease
(as shown in Fig. 6.4). This shows that the network method can find non-trivial
drug-disease association, that is, the situation where the drug does not target any
related disease protein.

Determining Palliative Treatment with Network Proximity

The distribution of RE values of palliative drug-disease pairs was observed and from
the remaining known drug-disease pairs, it was found that the RE values of palliative
drug-disease pairs was significantly smaller. RE, the value of the drug’s relative
efficacy score, ranges from 0 to 1, with 0 and 1 representing the worst and best
relative efficacy, respectively. It shows that palliative drugs are less effective in
treating diseases.

Next, the network proximity of different types of known drug-disease pairs was
compared, and it was observed that the network proximity of non-palliative drug-
disease pairs and unlabeled drug-disease pairs was smaller than that of palliative
drug-disease pairs. It suggests that network proximity can distinguish palliative from
non-palliative drug-disease pairs, and that unlabeled drug-disease pairs may contain
drugs that are more effective than the palliative ones.
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Finally, the distribution of RE scores for the close and distant drug-disease pairs
was examined and it was found that the close drug-disease pairs had significantly
higher RE scores.

Fig. 6.4 Known drug-disease association [29]. The triangular and circular nodes represent drugs
and diseases, respectively, and the node size is proportional to the number of corresponding drug
targets and disease proteins. The connecting edge represents the relationship between drugs and
diseases, and the solid line and the dashed line indicate that the drug and the disease are close and
distant, respectively. The color of the line represents the number of overlapped drug targets and
disease proteins (0, gray; 6, dark green)
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These results indicate that network proximity is a good index to measure the
efficacy of drugs.

Treatment Bottleneck

Drugs of diseases that met the network proximity index were observed and it was
found that:

(1) Most of the drugs used for asthma, Alzheimer’s disease, heart disease, arrhyth-
mia, cardiovascular disease, diabetes, epilepsy, allergy, kidney disease, liver
cirrhosis, systemic lupus erythematosus, and ulcerative colitis have low network
proximity to their indications. Similarly, among the antineoplastic drugs, drugs
for treating prostate cancer, breast cancer, and lymphoma tend to be close to their
indications.

(2) For inflammatory diseases such as Crohn’s disease, psoriasis, and rheumatoid
arthritis, the network proximity of current drugs to diseases is high. It shows that
most of the drugs used in these immune system-related diseases are inflamma-
tion management or symptom relief drugs. Similarly, most drugs for Parkinson's
disease are usually away from the disease on the network.

By examining the Anatomical Therapeutic Chemical Classification (ATC) of
these drugs, it was found that drugs that are close to diseases tend to involve more
intervention mechanisms on the endocrine system and metabolic process, while
drugs for distant diseases are richer in anti-inflammatory and analgesic categories.

6.3.1.5 Main Conclusion

In this study, a network-based algorithm was proposed to calculate the proximity
between drug targets, and between drug targets and disease genes on the network.
Accordingly, six network modes of drug-drug-disease combination were obtained.
By using a statistical method, it is inferred that two of the modes are related to the
positive effects and side effects of the drug combination, respectively, hence
predicting an effective drug combination.

The results of this study suggest that network-based drug and disease proximity
provide an unbiased evaluation of drug treatment effects, and can be used as an
effective tool to identify an effective treatment and palliative regimen. Although
proximity can provide system level quantitative indexes to explain the effects of
drugs, understanding therapeutic effects of drugs on individuals (that is, patients
with different genetic predispositions) needs to incorporate large-scale patient-level
data, such as electronic health records and personal genomes, which is still the goal
of future work in this field.
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6.3.2 Discovery of Mechanism of Drug Action and Drug
Repositioning Through Transcriptional Response

One of the bottlenecks in drug discovery is to recognize the molecular target and
off-target effects of compounds, i.e. Mode of Action (MoA). Methods to elucidate
drug MoA include analyzing chemical structure of compounds, transcriptional
response after treatment, and text mining. Among them, the transcriptional
response-based method needs the least amount of information and can be quickly
applied to new compounds. However, there is a lack of good algorithms and tools to
make effective use of transcriptional data for drug discovery.

In this study, Iorio et al. developed a method to predict the effects and mecha-
nisms of drugs by using the similarity of gene expression profiles after drug
treatment [32]. Based on the transcriptional profile data in CMap [26], they
constructed a drug network composed of 1302 drugs based on the similarities
between their transcriptional profiles. These were then decomposed into communi-
ties, and compounds with similar MoA or action effects were found to be signifi-
cantly enriched in the same community. They integrated the new compounds into the
drug network to predict its treatment and off-target effects, while also predicting
drug repositioning in the network.

6.3.2.1 Research Objectives

CMap database is useful for predicting the MoA and drug repositioning of new
compounds based on expression profiles. The Build 02 version of the database
contains expression profile data obtained from 1309 drugs with different doses
acting on 5 different cell lines. By comparing the “Gene Signatures” (i.e., the list
of differentially expressed genes) of the sample after treatment with the new
compound, similar expression profiles were found in the database, which infers the
MoA of the new compound. Problems affecting the accuracy of gene signature
methods are choosing genes that constitute the signature and proper processing of
multiple expression profiles obtained from the same drug intervention in different
cell lines from the database. Choosing the wrong genetic signature will result in
capturing similarities in the experimental setting (such as same cell lines) rather than
the similarities in drug MoA.

They integrated the expression profiles of the same drug in the same cell line
and/or different doses into a “consensus” transcriptional response profile,
constructed a drug network based on the similarity of the consensus response profile
of the drug, and then used the network analysis method to predict the MoA of the
new compound.
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6.3.2.2 Data Sources

CMap Data

Downloaded from the CMap website, it includes a total of 6100 expression profile
data obtained from 1309 drugs with different doses acting on 5 different human cell
lines.

Drug Information

The ATC codes and target genes of 1309 drugs in CMap were extracted from
DrugBank and ChemBank databases, from which the ATC codes of 768 drugs
and target gene information of 535 drugs were obtained.

Transcriptome Data of the Test Drug

Nine types of anti-cancer compounds (HSP90 inhibitor Tanespimycin,
NVP-AUY922, NMS-E973; topoisomerase inhibitor SN-38, and doxorubicin;
Cyclin-dependent kinases (CDKs), inhibitors such as Flavopiridol, PHA-848125,
PHA-690509, and PHA-793887, were used to treat MCF7 and A2780 cell lines,
respectively. Transcriptome experiments were performed in the treatment and the
control groups; data is stored in the GEO database with GSE18552 as the ID. In the
nine drugs used, some (e.g. Tanespimycin) were included in CMap as controls.

6.3.2.3 Analysis Index and Algorithm

Overview of Methods

As shown in Fig. 6.5.

Calculation of Prototype Ranked List (PRL)

Since the same drug in CMap was used to treat different cell lines at different
concentrations, multiple sorting sequences of gene expression profiles were gener-
ated (that is, genes are ordered from high to low expression levels). Here, the Kruskal
algorithm [33] was used to obtain a final PRL according to multiple sorting
sequences of the same drug. The algorithm steps are as follows: firstly, the
Spearman's Footrule Distance [34] was calculated between every neighboring
pairs of all sorting sequences of the same drug; then, the Borda combination method
[35] was used by merging the two sequences that are closest to each other into a new
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sequence. Then the new sequence was used to replace the original two sequences,
and Spearman's Footrule Distance was recalculated between every neighboring pair
of sequences. This process was repeated until all the sequences merged into one.

Calculation of the Distance Between Drugs

For the PRL of each drug, the top and last 250 genes (i.e., 250 genes with the highest
expression and 250 genes with the lowest expression) were selected as p and q,
respectively, and {p, q} were used as the gene marker of the corresponding drug.

Suppose the gene marker of drug d be {p, q}, p ¼ {p1, . . ., pn}, q¼{q1, . . ., qn},
the Inverse Total Enrichment Score (TES) of drug d marker relative to the PRL of
drug x is defined as follows:

TESd,x ¼ 1� ESpx � ESqx
2

Here ESrx (r is p or q) is the calculated enrichment score of rmarker of d relative to
PRL of x based on Kolmogorov–Smirnov statistics. It measures whether a group of
genes are distributed at the top of a gene sequence, and its value is within [�1, 1]. A
value close to 1 indicates that these genes are close to the top of the sequence, and
close to�1 indicates that these genes are close to the bottom of the sequence. TESd, x
measures the degree to which the p set of drug d are placed at the top of the PRL of
drug x, and the degree to which the q set of d are placed at the bottom of PRL of x. the
values are within [0, 2].

The distance between drug A and drug B is defined as follows:
Average enrichment score distance: D A,Bð Þ ¼ TESA,BþTESB,A

2

Maximum enrichment score distance: D A,Bð Þ ¼ min TESA,B, TESB,Að Þ
2

Threshold for estimating the significance of drug distance

The distance between every neighboring pairs of all 1309 drugs in CMap was
calculated—a total of 856,086 distances. Using a 5% quantile as the significant
truncation, the corresponding average enrichment score distance and maximum
enrichment score distance thresholds were 0.8339 and 0.8056, respectively. That
is, if the distance between two drugs is less than the threshold, they are similar.

Network Community Identification

Affinity propagation algorithm was used to identify communities [36] in drug
networks.
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Distance Between Drugs and Community

Suppose x is a test drug, C is a network community, Cx is a subset of C, Cx contains
at least two drugs and they are both connected to x through a significant edge (that is,
an edge whose weight is lower than the significance threshold), the distance between
x and C is defined as:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiY
d2Cx

D d, xð Þ= Cxj jCxj j

s

where D(d,x) is the maximum enrichment score distance between drug d and x. If
|Cx| < 2, set the distance between x and C as 1.

6.3.2.4 Analysis Result

Drug Network and Community

By calculating the pairwise distances of 1309 drugs in CMap, edges of drug pairs
were connected whose distances were less than the significance threshold, and a drug
network was constructed with 1309 drugs and 41,047 edges. The largest connected
component contains 1302 drugs. The affinity propagation algorithm was used to
decompose the drug network and [106] network communities were identified.

To determine whether the drugs in the same community have the same MoA, the
ATC codes and target genes of drugs were mapped to the drugs of each community.
A total of 804 drugs have known MoA (i.e., there are known ATC codes or target
genes). For each community, the number of drugs with the same MoA was calcu-
lated and the statistical significance was analyzed. It was found that among
92 evaluable communities (in which at least 2 drugs have known MoA), 52 commu-
nities significantly enriched drugs with similar MoA, and 3 communities enriched
the same target gene. Twenty-eight communities enriched the same ATC code, and
21 communities simultaneously enriched the same target gene and ATC code. In
addition, literature reveals that 43 communities contain several drugs with the same
MoA, and none of the drugs in 9 communities has known ATC codes or target genes.
Therefore, 61 communities are significantly enriched in drugs with the same MoA.

Predicting MoA of Drugs

Nine types of anti-cancer drugs not included in CMap were used as test drugs. For
each drug tested, its PRL and the distance from each of the 1039 drugs were
calculated in CMap. If the distance between the tested drug and the drug in CMap
is less than the significance threshold, they are edged; this method integrates the
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tested drug into the drug network. Then, the distance from each test drug to each
community was calculated. The results are shown in Fig. 6.6.

Figure 6.6a shows the position of three HSP90 inhibitors in the drug network. The
closest community to the three drugs is No. 28, which contains HSP90 inhibitor in
cMap and antiestrogenic drug fulvestrant (this drug is known to bind to estrogen
receptors, dissociate HSP90, and initiate intracellular degradation). These three
drugs can be identified as HSP90 inhibitors.

Figure 6.6c shows that the closest community of the four CDK inhibitors is
No. 14, followed by No. 32. These two communities contain many CDK inhibitors
and topoisomerase inhibitors, wherein these two inhibitors account for about 80% of
the total in No. 14 community. Figure 6.6b also shows that the closest communities
of the two topoisomerase inhibitors are No. 14 and No. 32. This suggests that
although the CDK inhibitor and topoisomerase inhibitor may have similar effects
at the transcriptional level, they have different intracellular protein targets. To
confirm this, CMap’s own transcriptional profiles of SN-38 (the active metabolite
of irinotecan, a Topo I inhibitor) and doxorubicin (Topo II inhibitor) were used to
analyze the drug network. It was found that the transcriptional profiles of SN-38 and
doxorubicin are close to those of community No. 14 and No. 32 in the network.

Predicting Unique Clinical Application of Known Drugs

Drug network method can be used to find candidates for drug repositioning, that is,
to determine the unique clinical application of known drugs. Here we focus on
identifying drugs that can enhance autophagy. Autophagy is a key biological process
involved in cancer, infectious diseases, and neurodegenerative diseases.

To this end, drugs similar to drug 2-deoxy-D-glucose (2DOG) that induce
molecular autophagy were retrieved from the drug network. 2DOG was positioned

Fig. 6.6 Classifying test drugs with drug network [32]. According to the distance between drugs,
the tested drugs relate to the drugs in the original network, and the tested drugs (cyan nodes) are
integrated into the drug network. The color represents the community and the thickness of the edge
is inversely proportional to the distance between the drugs. For clarity, only drugs with a distance of
less than 0.8 ((a, c)) or 0.72 (b) from the drug under test are included. (a) HSP90 inhibitor; (b) Topo
inhibitor; (c) CDK inhibitor
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in the No. 1 community. Its neighboring drugs in the community were arranged in
ascending order of distance, including fasudil, sodium phenylbutyrate, tamoxifen,
arachidyl trifluoromethane, and novobiocin. In the No. 1 community, two drugs
(2DOG and tamoxifen) were known autophagy inducers, and fasudil was the closest
drug to 2DOG. In addition, the compounds closest to 2DOG in the whole network, in
ascending order of distance, are fasudil, tazarotene, trifluoperazine, and gossypol.
Among them, tazarotene, trifluoperazine, and gossypol are well-known autophagy
inducible factors, but the relationship between fasudil and autophagy has not been
reported. Therefore, it has been predicted that fasudil can induce autophagy.

6.3.2.5 Experimental Verification

Verifying that the CDK Inhibitor and Topoisomerase Inhibitor Have Similar
Effects at the Transcriptional Level

Firstly, it has been verified that the topoisomerase inhibitor SN-38 (the active
metabolite of Topo I inhibitor irinotecan) and adriamycin (Topo II inhibitor) have
no direct inhibitory effects on CDK. The CDK inhibitor flavopiridol could not
interfere with the ATPase activity of Topo II. MCF7 cells were treated with
PHA-793887 (CDK inhibitor), adriamycin, or SN-38 for 6h, respectively, and
protein cell lysates were analyzed byWestern Blot. The experimental results indicate
that the observed transcriptional effects induced by Topo I and Topo II inhibitors are
mediated by (indirect) inhibition of CDK2 (and other possible CDK, i.e. CDK4)
through p21 induction. These results explain the reason why the topoisomerase
inhibitor and CDK inhibitor have similar effects at the transcriptional level.

Experimental Verification of Fasudil Induced Autophagy

Western Blot (WB) test with anti-LC3 antibody was used to evaluate the level of
LC3-II in wild-type human fibroblasts treated with fasudil. Measurements show that
treatment with fasudil, trifluoperazine, and two well-known autophagy inducers,
2DOG and rapamycin, all significantly increase the LC3-II levels of fibroblasts. The
results of WB analysis were further confirmed by immunostaining with LC3 anti-
body. The effects of fasudil on autophagy enhancement were further confirmed
using HeLa cells.

6.3.2.6 Main Conclusion

In this study, a general computational method was developed to predict the molec-
ular effects and MoA of new compounds, and to identify previously unknown
applications of well-known drugs. This method uses information hidden in the
gene expression profile after drug treatment to capture the similarity of drug MoA.
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When using gene expression profiles of mammalian cells after drug treatment,
previous studies did not consider the changes in the transcriptional response to
drugs under different cell lines, different doses, and different experimental settings.
Moreover, previous studies did not fully mine the global structural information of
drug similarity networks. The method proposed in this study captures the “consen-
sus” transcriptional reactions of compounds in various cell lines and doses, auto-
matically extracts the gene signature of each compound, and calculates the similarity
between neighboring pairs of all compounds based on the gene signature. The MoA
of new compounds and repositioning information of well-known drugs were suc-
cessfully predicted by network community analysis.

6.4 R&D of Multi-target Drugs

Drug discovery usually follows the concept of “one drug, one target, one disease,”
that is, to search for the “pathogenic gene” of the disease, and to design a “Magic
Bullet” that can specifically combine with the target protein corresponding to the
gene. The drawback of a single target drug is that it ignores the complexity and
robustness of the disease as a system, that is, the disease network has redundancy and
alternative compensation signal pathways like other molecular networks. In many
cases, inhibition of a target protein does not cause phenotypic changes and may even
activate other related proteins in the disease system to protect the stability of system
functions, resulting in the drug's loss of efficacy or toxic side effects. Studies have
shown that in most cases, inhibition of a single protein has little effect on the disease
network, while the regulation of multiple proteins at the same time will have an
effect on the robust phenotype of the disease [37]. The drug discovery concept of
multi-target drugs has gradually become a new trend [2, 37–39].

There are two ways to achieve multi-target therapy: one is to use existing drugs to
act on different targets at the same time to produce a combination effect, called drug
combination research and development; the other is to design a new chemical entity,
using a small molecule to simultaneously block multiple targets related to the
disease, to achieve better therapeutic effects. Ramsay et al. systematically analyzed
the categories of 101 new molecular entities approved by FDA from 2015 to 2017
[40]. It was found that the proportion of small molecule single targets, multi-targets,
and drug combinations are 34%, 21%, and 10% respectively. The proportion of
newly approved multi-ingredient and multi-target small molecule drugs (31%) is
equivalent to that of single target small molecule drugs. This indicates the develop-
mental trend of the multi-target drug strategy.

However, whether in terms of target selection or discovery of targeted small
molecules, finding multi-target drugs remains a great challenge. To select a target
combination for a certain disease, we need to deeply understand the relationship of
target-disease, pathway-target-drug-disease, and the side effects of drugs. We also
need to consider whether the selected target combination can produce synergistic
effects. These problems are easier to solve in molecular networks; hence, network
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pharmacology plays an increasingly important role in multi-target drug discovery.
For example, in order to discover multi-target anti-inflammatory drugs, Meng et al.
constructed a metabolism network of arachidonic acid and established a Multi-
Target Optimal Intervention (MTOI) method to search and identify an effective
and safe anti-inflammatory multi-target combination in the network [41]. Keane
et al. constructed a protein–protein interaction network related to mitochondrial
dysfunction and autophagy disorder, and predicted the proteins P62, GABARAP,
GBRL1, and GBRL2 corresponding to the four nodes with the largest betweenness
centrality in the network as key proteins of MPP+ cytotoxicity, in Parkinson's
disease. Experimental verification confirmed that high expressions of multiple
combinations (rather than a single) of these four proteins would lead to a decrease
of MPP+ cytotoxin [42].

The following two specific research cases are selected for analysis.

6.4.1 Ischemic Stroke: From Single Drug Target
to Synergistic Network Pharmacology

In order to develop multi-target drugs, this study used the treatment of ischemic
stroke as an example, and establishes a set of systematic methods combining
computational prediction with experimental verification [43]. First, starting from
the known single target, the network pharmacology method was used to predict
multiple targets, then a single drug corresponding to the predicted target was used for
combination therapy, and both in vivo and in vitro experiments were carried out to
verify the curative effect of multi-target drugs.

6.4.1.1 Research Objectives

In the past, the developmental strategies of multi-target drugs were mainly based on
directly studying different drug combinations and the results of many ab initio
prediction methods, which were not verified by experiments. This study aimed to
develop a target-based method. Firstly, network pharmacology method was used to
predict reliable target combinations, and then existing drugs that act on these targets
were combined and experimentally verified.

6.4.1.2 Data Sources

(1) Protein–protein interaction: the integrated interactions database (IID) [44]; only
the interactions detected in the experiments were extracted.

(2) Protein-metabolite interactions: the human metabolome database (HMDB) [45]
(3) Drug target proteins: the therapeutic target database (TTD) [46]
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6.4.1.3 Algorithm and Results

The analysis process is shown in Fig. 6.7.
The algorithm process considers NOX4 as the initial target protein related to

stroke. The goal is to identify more relevant target proteins using the public database.
The calculation is based on the Guilt-by-Association algorithm. This process con-
sists of three interdependent modules. Steps for calculation are as follows:

(1) Starting from seed NOX4, a total of three metabolites were extracted from
module one that interact with protein NOX4 from the HMDB database
[47]. Then, two main substrate oxygen (O2) and product hydrogen peroxide
(H2O2) of NOX4 were obtained using methods described in literature, and a total
of five metabolites related to NOX4 were obtained. 537 proteins associated with
these five metabolites were extracted from the HMDB database. From the
intersections of these 537 proteins and the target proteins in TTD, a total of
166 proteins were obtained.

(2) The IID database was used in module 2 to extract the interactions between
166 proteins produced by module 1, and a PPI network was constructed;
166 proteins with protein-metabolites and protein–protein association relation-
ships of five metabolites were integrated, to construct a double-layer network. In
this network, the proximity of connection between proteins in the network and
NOX4 was scored by using the Guilt-by-Association algorithm.

(3) GOSim in R-package was used in module 3 to calculate the semantic similarity
scores based on GO molecular function (MF) between 166 proteins and NOX4,
and the proteins were ranked from high to low according to similarity score.

The nine proteins with the highest scores obtained from modules 2 and 3 were
extracted. Four proteins were obtained after getting intersection: CYBB, NOS2,
NOS3, and NOS1. These four proteins are the predicted potential therapeutic targets
for stroke.

6.4.1.4 Network Construction and Visualization

The association between NOX4 and 5 metabolites, the association between 5 metab-
olites and 166 target proteins, and the association between 166 proteins were
integrated to construct a double-layer molecular network (as shown in Fig. 6.8).

6.4.1.5 Experimental Verification

In Vitro Experimental Verification

Two models are used: organotypic Hippocampal Culture (OHC) and the blood–brain
barrier model constructed by human brain microvascular endothelial cells. Oxygen
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Fig. 6.8 Integrated multi-layer molecular interaction network using NOX4 as the seed for
obtaining candidate target proteins [43]. (a) A double-layer network of integrin-metabolite and
protein–protein interaction is constructed starting from seed NOX4. (b) The list of semantic
similarity between protein and NOX4 based on GO molecular function. (c) Simplified network.
Only seed protein, top 4 similar proteins, and related metabolites are shown separately, while the
rest of the proteins and interactions are combined
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and Glucose Deprivation (OGD) was performed on the OHC model before applying
oxygen treatment. The detection was performed at 2, 4, 8, 12, and 24 h after
performing OGD. Higher expressions of all different subtypes of NOX4 and NOS
were thus found. Cell death was significantly reduced 24 h after OGD, followed by
the combination treatment with a sub-threshold concentration of NOX4 inhibitor
GKT136901 (0.1 μM) and NOS inhibitor L-NAME (0.3 μM), and Reactive Oxygen
Species (ROS) and Reactive Nitrogen Species (RNS) were formed. Similarly, in the
human blood–brain barrier model, the same combination therapy reduced cell death
and prevented increased permeability caused by hypoxia.

In Vivo Experimental Verification

Mouse occlusion of the middle cerebral artery (MCAO) model was used to compare
the treatment using GKT136901 (10 mg/kg) or L-NAME (3 mg/kg) with the control
group. According to the guidelines developed by the stroke treatment academic
industry roundtable (STAIR), transient and permanent, female and male, and old and
young rat models were evaluated. Firstly, single drug sub-threshold treatment did not
show neuroprotective effects on transient MCAO. However, compared to the control
group, the infarct area was significantly reduced in the combined treatment group at
1 h and 3 h after stroke. Similar effects were also confirmed in permanent MCAO
models, as well as in older female and younger male mice. In addition, in adult mice,
three independent neuromotor function tests were conducted at 1 and 3 h after stroke:
Bederson scoring, elevated body sway test, and limb suspension test. All three
indexes significantly improved at 1 h post-stroke and Bederson and limb test also
improved at 3 h.

Experiments to Prevent the Destruction of Blood–Brain Barrier and ROS
Formation in Stroke Treatment

Experiments revealed that, compared with untreated mice, combined treatment after
stroke significantly reduced the destruction of the blood–brain barrier. Next, oxida-
tive stress and N-Tyr production were measured in brain tissue slices, and it was
found that ROS and N-Tyr production were significantly reduced 24 h after combi-
nation treatment.

6.4.1.6 Main Conclusion

Considering the development of multi-target drugs for stroke as an example, this
study developed a calculation method based on the initial target NADPH oxidase
type 4 (NOX4) and predicted the related target-nitric oxide synthase (NOS) from the
network pharmacological mechanism. In vivo and in vitro experiments confirm that
NOX4 and NOS inhibition is highly synergistic, simultaneously inhibiting multiple
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related targets and leads to a significant reduction in infarct size. It also plays a direct
role in neuroprotection and blood–brain barrier stabilization.

This network pharmacology method can develop multi-target drugs according to
the mechanism-based synergy, which can improve the therapeutic effect, and reduce
single drug dosage, side effects, and the risk of failure of drug development based on
a single target. This method can be extended to the study of multi-target therapy for
other complex diseases.

6.4.2 Combining Network Pharmacology and Phenotype
Screening to Develop New Analgesic Drugs

Phenotypic drug screening is a method based on biological phenotypes. That is, drug
screening and design are carried out based on phenotypic data of diseases, given that
there are no clear disease targets and relevant mechanisms of action. When a certain
small molecule is found to reverse the phenotype of a disease, the molecule may
have potential therapeutic effects on the respective disease. Phenotypic drug screen-
ing provides a framework for identifying compounds that are effective for disease
systems and has received extensive attention in the field of drug discovery. However,
a certain small molecule obtained by phenotypic screening may regulate the disease
system, but its mechanism is not clear. It is time-consuming and expensive to clarify
the mechanism. In general, based on the transcription profile of the compound and
the disease, the activity of the compound is linked with the biological process of the
disease.

This study explored the combination of phenotypic screening and network
pharmacology to develop analgesic drugs [48]. Firstly, a reasonable method was
proposed to select and screen compounds with enough throughput and multiple
pharmacological characteristics to improve screening ability of small molecules.
This was for the phenotype of active molecules in complex diseases. Network
pharmacology was used to construct the disease network of target disease, and
related protein information of compounds obtained from the selected phenotype
screening, which was added into the disease network. The network algorithm was
then used to screen out compounds with significant influence on the disease. The
mechanism of the compound on the disease obtained this way can be elucidated by
network pharmacology.

6.4.2.1 Research Objective

Chronic pain is a complex disorder whose etiology involves many molecular
mechanisms but is often characterized by neuronal hyperexcitability. Existing treat-
ments still do not control pain well and have many side effects. The subjectivity of
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individual patients and the differences in pain sensitivity make the development of
new therapies time-consuming, expensive, and prone to failure.

This study combines phenotypic screening with pain network to construct a new
phenotype model of neuronal excitability for the discovery of new multi-target drugs
for chronic pain.

6.4.2.2 Data Sources

(1) Pain network: The chronic pain-specific disease network [49] was constructed
by the group in the past. Firstly, 765,692 pain-related papers were collected, and
93,271 pairs of different protein–protein interactions were obtained from the
papers by literature mining. PPI was then sorted based on conditional correlation
score value and literature evaluation and the first 3000 pairs were manually
annotated and verified. Finally, a pain network consisting of 822 pairs of PPI
between 583 different proteins was constructed.

(2) Normal network: constructed by extracting protein–protein interaction from the
IRefIndex database [50].

(3) Compound-target information: High-throughput screening data for small mole-
cule compound targets-specificity from Pfizer. A total of 2869 compounds and
2322 target specificity were analyzed. For each compound, analysis was
conducted to obtain a target with IC50 < 10 μM. Among 583 proteins in the
pain network, 233 such targets were found.

6.4.2.3 Algorithm and Results

In this study, a method was proposed to evaluate network integrity while screening
compounds that have the greatest impact on the pain network. Network integrity is
defined as the ratio of the number of edges left in the network after being attacked
(i.e., removing some nodes and edges). The normal network was used as the control
network of the pain network. The algorithm steps are as follows:

(1) For each compound, the targets with their IC50 < 10 μM in the pain and control
networks were found, and all the targets and their associated edges were
removed from the network.

(2) The number of edges remaining in the network and their integrity were calcu-
lated, to define the changes as the influence of drugs.

6.4.2.4 Results

Impact Prediction of Single Compound

Based on the calculation, the biggest impact of a single compound on the pain
network was to reduce its integrity by 16.55%, and had comparatively little impact
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on the normal network. Table 6.1 lists the 10 compounds predicted to have the
greatest impact on the pain network. In contrast, Sutent, a single compound, had the
greatest impact on the normal network, reducing its integrity by 6%.

Impact Prediction of Combining Two Compounds

Using calculation methods, it was predicted that the effects of drug combination
pairs on the pain network are more than 30% and greater than that of any single drug
in the combination.

Comparison of Prediction Results with Past Experimental Screening Results

Prediction results of 107 compounds were compared with the inhibition levels
measured by neuron excitations in the past. It was found that these results were
moderately positively correlated with the experimental results (Spearman’s correla-
tion coefficient for ranked data ¼ 0.58), while the prediction results in the normal
network had no correlation with the experimental results (Spearman’s correlation
coefficient for ranked data ¼ 0.22).

6.4.2.5 Experimental Verification

Sixty-six compounds were selected from the predicted single compounds for phe-
notypic screening and verification. Firstly, 29 compounds, predicted to have an
impact on the pain network greater than 10% and less than 1% on the normal
network, were removed. Then 37 compounds with predicted activity greater than
3.8% and those that have chemical structural diversity were added.

Phenotypic analysis was carried out on the selected compounds (10 μM single
target screening). It was found that 28 compounds had more than 75% inhibitory

Table 6.1 Ten compounds predicted to have the greatest impact on the pain network

Compound No. targets Pain network (% change) Control network (% change)

Apomorphine 14 16.55 0.84

SNX2112 24 16.55 5.14

Chlorpromazine 31 15.09 0.78

Loperamide 24 13.5 0.3

Hypericin 14 13.26 1.89

Flunarizine 23 13.26 0.43

Ruboxistaurin 17 13.02 1.71

Haloperidol 29 12.9 0.38

Sertraline 21 12.77 0.41

Pimozide 22 12.65 0.44
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effects on neuronal excitability, that is, the accuracy of this group of compounds
was 42%.

6.4.2.6 Main Conclusion

In this study, an algorithm based on network pharmacology was proposed to
calculate the effects of compounds on the integrity of the pain network. This was
done by establishing a compound-target relationship obtained by high-throughput
phenotypic screening. Among the compounds predicted to have the greatest impact
on the integrity of the pain network, D2 dopamine receptor antagonists and dopa-
mine inhibitors were included, which are known pain-related drugs. 66 predicted
single compounds were selected for phenotypic screening and verification and the
correct rate was 42%. This indicates that the prediction based on network integrity
algorithm is of great value for the development of multi-target drugs.

6.5 Drug Repositioning

Drug repositioning (drug repurposing, reprofiling, or re-tasking) is also called “new
use of old drugs” or “drug reuse,” which refers to the discovery of new uses of drugs
already in the market or in the stage of clinical research. Since drugs for
repositioning studies have been used in the clinic or have passed several stages of
clinical trials, their safety risks have been significantly reduced, reducing R&D costs
and shortening the R&D cycle. Therefore, drug repositioning is one of the best
strategies with good risk/benefit ratio in drug development strategies. In the past,
drug repositioning came largely from accidental discovery, and by far the most
successful examples of drug reuse have not involved a systematic approach [51]. For
example, reuse of the antihypertensive drug sildenafil citrate for treatment of erectile
dysfunction relied on retrospective clinical studies. The reuse of sedative thalido-
mide for treatment of multiple myeloma was based on accidental discovery. At
present, there are some technical platforms and methods specially established for
drug repositioning R&D. One is the experimental screening method based on high-
throughput technology, and the other is computational method based on computer
virtual screening, computational biology, and bioinformatics.

In drug development, drugs that can be combined with multiple targets are called
dirty drugs. Off-target proteins in dirty drugs, that is, proteins that are not the exact
targets (on-target) for the current indications of the drug, are often considered to be
associated with toxic side effects. From the perspective of drug repositioning,
deviation from the target may lead to the treatment of other diseases. Network
pharmacology is widely used in the study of drug repositioning due to its systematic
analysis of multiple targets. This kind of research usually predicts drug repositioning
by analyzing drug similarity, target similarity, and network similarity [52]. For
example, based on the similarity of the 2D structure of drugs, gene sequence
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similarity of target, and structural similarity of drug-target bipartite network, Cheng
et al. proposed methods of drug-based similarity inference (DBSI), target-based
similarity inference (TBSI) and network-based inference (NBI), to predict unknown
targets of drugs and drug reposition. Among them, NBI showed the best perfor-
mance in all four test data sets [53]. Iorio et al. used CMap data to build a drug
similarity network based on the “transcription label” of drugs, and predicted and
verified the effects of fasudil on autophagy induction [54]. Luo et al. integrated drug-
drug similarity, disease-disease similarity, and drug-disease association into a hybrid
double-layer network. A “Bi-random Walk” algorithm was then used to predict the
new drug-disease association relationship [55].

The following two specific research cases are selected for analysis.

6.5.1 Network-Based Drug Repositioning Prediction
and Population-Based Verification

In drug repositioning studies, predicted new usage of known drugs must be strictly
verified. Since drug repositioning studies mainly focus on drugs that have been
approved and used in clinical practice, large-scale patient-level data accumulated in
health care can be used for this kind of verification. Conventional medical health
care data contains clinical diagnosis and treatment, combid conditions, demo-
graphics, public health monitoring, and other data from many patient groups.
These enriched data sets make them an ideal choice for verifying network-based
assumptions.

In this study, Barabasi et al. developed a method based on network pharmacology
to quantify the relationship between disease proteins and drug targets in the human
genome-wide protein–protein interaction for drug repositioning [56]. They used
conventional health care data from more than 220 million patients to test the
predictive effects, and conducted in vitro pharmacological experiments to test the
potential mechanisms for repositioning drugs. They selected drug repositioning for
cardiovascular diseases as an example of an approach to study the association
between drugs for non-heart related disease and cardiovascular outcomes. Research
results indicated the effectiveness of such comprehensive methods and can be
extended to drug repositioning for other types of diseases.

6.5.1.1 Research Objectives

In the study of network pharmacology, the strength of the relationship between the
subjects is usually measured by the distance in the genome-wide protein–protein
interaction network of the subjects (such as diseases and drug-target genes). Large-
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scale health care data may be an ideal choice to verify the results based on the
network.

In this study, a network-based algorithm was proposed to calculate the network
proximity between drug targets and disease genes, to predict the repositioning of
drugs and use the data from two large-scale health insurance claim databases in the
US to verify the repositioning of the predicted cardiovascular drugs.

6.5.1.2 Data Sources

Human Protein–Protein Interaction Network

The human protein–protein interaction network was constructed by integrating data
from 15 databases. Specifically, data resources were as follows:

1. Binary protein–protein interaction data from two high-quality Yeast-two-Hybrid
(Y2H) high-throughput experiments [57, 58] and Barabasi laboratory website.

2. Kinase–substrate interaction data from low-and-high-throughput experiments
recorded in the KinomeNetworkX [59], Human Protein Resource Database
(HPRD) [60], PhosphoNetworks [61], PhosphositePlus [62], dbPTM 3.0 [63],
and Phospho.ELM [64] database.

3. PPI data recorded by affinity purification and mass spectrometry (AP-MS) iden-
tification in literature as well as low-throughput experimental data reported in
literature that are recorded in the BioGRID [65], PINA [66], HPRD [60], MINT
[67], IntAct [68], and InnateDB [69] database.

4. High quality PPI obtained by analyzing the three-dimensional structure of pro-
teins recorded in the Instruct database [70].

5. Signaling network obtained by low-throughput experiment reported in literature
that are recorded in SignaLink database [71].

Data from evolutionary analysis, gene expression profiles, metabolic associations
were deleted. Each ID of protein was mapped to the corresponding Entrez ID of the
coding genes. The finally constructed PPI network contained 16,677 nodes and
243,603 edges.

Cardiovascular Disease Genes

Firstly, about 50 cardiovascular (CV) events were collected from Medline MeSH
(Medical Subject Headings) and UMLS (Unified Medical Language System) data-
bases [72]. For each CV event, disease-related genes from 8 data sources were
collected: OMIM (Online Mendelian Inheritance in Man) [73], CTD (comparative
toxicogenomics database) [74], HuGE Navigator [75], DisGeNET [76], ClinVar
[77], GWAS Catalog [78], GWASdb [79], and PheWAS Catalog [80]. A total of
23 cardiovascular events were selected with at least 10 disease-related genes in the
human protein–protein interaction network for subsequent research.
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Drug-Target Network

Drug-target interaction data were obtained from DrugBank [81], TTD (the Thera-
peutic Target Database) [46], and PharmGKB [82] database. Drug-target binding
affinity data are from ChEMBL [83], BindingDB [84], and IUPHAR/BPS Pharma-
cological guidelines [85]. Only drug-target pairs with affinity indexes Ki, Kd, IC50, or
EC50 not greater than 10 μM and the target was a human protein were retained.

Tissue-Specific Expression Genes

RNA-seq data (RPKM values) of 32 tissues were downloaded from the GTEx
database [86]. For each tissue (e.g., blood vessel), genes with RPKM�1 in more
than 80% of the samples were selected as the genes specifically expressed in the
tissue.

Conventional Medical Health Care Data

Data comes from two large-scale health insurance claim databases in the USA:
Truven MarketScan (2003–2014, containing data of 173 million patients) and
Optum Clinformatics (2004–2013, containing data of 55 million patients)
[87]. These data sources include demographic data of patients, comprehensive
information on inpatient and outpatient diagnosis, and outpatient prescriptions, and
medications. All personal identifications of the data included were removed and it
was approved by the Institutional Review Board of Brigham and Women's Hospital
in Boston, Massachusetts.

6.5.1.3 Analysis Index and Algorithm

Network Proximity

Let S and T be the set of disease protein and drug target, respectively. The closest
distance of these two sets on human PPI network is defined as:

d S,Tð Þ ¼ 1
Tk k

X
t2T

min s2Sd s, tð Þ

where d(s, t) is the shortest path length between nodes s and t in the PPI network. To
evaluate the statistical significance of the network proximity between drugs and
diseases, 1000 random node sets with the same number of disease protein and drug
targets and the same node degree distribution were constructed, and the nearest
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distance between them was calculated. Therefore, the Z-score of the nearest distance
between the disease protein and the drug-target set can be calculated. This was used
to represent the network proximity between the corresponding drug and disease.

Significance of Tissue-Specific Expression Genes

The significance of specific expression of gene i in tissue t is calculated as follows:

zE i, tð Þ ¼ E i, tð Þ� < E ið Þ >
δE ið Þ

wherein <E(i)> and δE(i) are the mean and standard deviations of the expression
levels of gene i in all other tissues considered, respectively.

6.5.1.4 Network Construction and Visualization

In the constructed human protein–protein interaction network, the network proxim-
ity between 984 FDA-approved western drugs (including 177 cardiovascular drugs
and 807 non-cardiovascular drugs) and 23 cardiovascular diseases (outcomes) was
calculated. Proximity index Z-score <�0.4 was considered as highly reliable, hence
it was predicted that 431 FDA-approved non-cardiovascular drugs can be
repositioned as cardiovascular drugs. The network in Fig. 6.9 shows the predicted
associations between these 431 drugs and 22 cardiovascular diseases.

To reveal the mechanism of action of the effect of anti-rheumatoid drug
hydroxychloroquine on coronary artery disease, a sub-network was constructed by
the following methods (as shown in Fig. 6.10):

(1) In the human protein–protein interaction network, proteins encoded by the genes
specifically expressed in blood vessels and the edges between them were
selected to construct a vascular specific sub-network.

(2) In the blood vessel-specific sub-network, the shortest paths from the targets
TLR7 and TLR9 of hydroxychloroquine to other nodes was identified. On the
shortest path, the protein that simultaneously satisfies conditions (3) and (4) was
selected and a sub-network was established.

(3) Selected proteins were encoded by genes related to known coronary artery
disease (CAD) or cardiovascular disease (CVD).

(4) Proteins that are supported by in vivo and in vitro experiments reported in
literature were selected.
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Fig. 6.9 Drug-disease association network between predicted outcomes of 22 cardiovascular
diseases with high credibility and 431 non-cardiovascular drugs approved by the FDA [56]. The
color of the drug node represents the first code of the ATC (Anatomical Therapeutic Chemical) drug
classification system. The size of the node is proportional to its connection degree in the network.
The thickness of the edge represents the network proximity between the drug and the disease
(represented as Z-score)
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6.5.1.5 Experimental Verification

Selection of Objects for Experimental Verification at a Later Stage

For the prediction results shown in Fig. 6.9, some individual results were selected
based on the following five aspects for experimental verification:

(1) The strength of the associations predicted by the network-based method.
(2) After excluding non-cardiovascular drugs with known cardiovascular (CV) side

effects, novel prediction results were selected.
(3) Sufficient patient data was obtained for verification (excluding infrequently used

drugs).
(4) Availability of an appropiate comparative treatment data that is used for the

same underlying (non-CV) indication as the drug of interest and predicted to
have no association with the intended CV diseases by the network method.

Fig. 6.10 The sub-network constructed by network analysis reveals the mechanism of action of
anti-rheumatoid drug hydroxychloroquine on coronary artery disease [56]. Node size represents the
blood vessel-specific expression level of the gene
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(5) The fidelity with which the predicted CV outcomes were recorded in the
insurance claims database.

Based on the above criteria, four groups of results were selected for subsequent
verification:

(1) Correlation of epilepsy drug carbamazepine (Z ¼ �2.36) and levetiracetam
(comparator control, Z ¼ �0.07) with CAD.

(2) Correlation of inflammatory colonic disease medication mesalazine (Z¼�6.10)
and azathioprine (comparator control, Z ¼ �0.09) with CAD.

(3) Correlation of rheumatoid arthritis medication quinine (Z ¼ �3.85) and meth-
otrexate (comparator control, Z ¼ �1.87) with CAD.

(4) Correlation of bipolar disorder medication lithium salt (Z ¼ �5.97) and
lamotrigine (comparator control, Z ¼ �0.19) with CAD.

Verification of Pharmacoepidemiological Methods

Two large American commercial health insurance claim databases linked to Aetion
evidence platform were used to carry out four cohort studies. The correlation
between the four predicted drugs and cardiovascular events was assessed based on
individual level longitudinal patient data and pharmacoepidemiological methods.

By studying large-scale patient data, two of the four predicted correlations were
verified to be significantly associated with cardiovascular outcome, in which quinine
was found to reduce CAD risk, while carbamazepine increased it. The verification
results support the network-based prediction.

In Vitro Verification of the Mechanism of Action of Quinine

Based on the constructed sub-network of blood vessel-specific expression proteins
related to quinine targets, the authors proposed a possible mechanism of action in the
treatment of CAD as follows:

(1) The activation of ERK5, a protein encoded by MAPK7, further inhibited the
expression of cell adhesion molecules VCAM-1 and ICAM-1, and prevented
vascular endothelial inflammation.

(2) Inhibition of pro-inflammatory cytokines TNF-α and IL-1β.
(3) By activating endothelial nitric oxide synthase (NOS3), nitric oxide production

increased, thus improving vascular endothelial dysfunction.

The authors conducted in vitro experiments to verify these mechanisms. The
expression of VCAM1, IL1B, and NOS3 genes was monitored in the presence and
absence of the cytokine TNF-α after treating human aortic endothelial cells with
10–50 μM quinine. It was found that TNF-α (5, 10, 20 ng/ml) caused a strong
increase of VCAM1 and IL1B expression, and this pro-inflammatory effect was
significantly reduced by all doses of hydroxychloroquine. TNF-α significantly
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inhibited the expression of NOS3, while 50 μM quinine significantly reversed the
inhibition.

6.5.1.6 Main Conclusion

This study shows that the molecular network method combined with the
pharmacoepidemiological method could identify drug repositioning and side effects.
Using large-scale patient data, it was verified that quinine is associated with a 24%
reduction in CAD risk compared to methotrexate, and this effect was also confirmed
by subsequent in vitro experiments. At the same time, carbamazepine is associated
with a 56% increased risk of CAD compared to levetiracetam. The widely used
application of these methods proposed in this study is expected to promote the
innovation of drug discovery and development.

6.5.2 Discovery of New Antidepressant Drugs by Drug
Repositioning Based on Network Pharmacology

Depression is a serious and complex mental disease with high incidence, recurrence,
and suicide rates, and has a serious family and social burden. Existing antidepres-
sants have disadvantages such as late onset, high toxicity, and side effects; hence, the
development of new antidepressants has high social value and economic benefits.
However, the current target-oriented drug discovery model has repeatedly failed to
develop new antidepressants, resulting in huge economic losses. Although there is a
wealth of disease-related genes and drug targets, application of these resources to
new drug discovery remains a huge challenge.

In this study, Li et al. proposed a new network-based drug repositioning method,
and predicted the potential antidepressant drugs and their molecular targets from the
drugs included in the DrugBank database [88]. This method firstly integrates
chemical similarities, therapeutic similarities, and protein–protein interaction of
drugs by using a network-based method, to predict the relationship between drugs
and targets. Then, drugs related to known targets were screened for antidepressants.
The potential antidepressant effects of six drugs were predicted using this method,
and it was verified that the gastrointestinal antispasmodic drug alverine may be an
effective antidepressant, as indicated in the experiments.

6.5.2.1 Research Objectives

Drug repositioning is one of the most economical strategies for new drug develop-
ment as it can reduce costs and risk of failure due to adverse side effects. Tradition-
ally, drug repositioning has been largely dependent on “happy surprises” that do not
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happen very often. The method based on network pharmacology provides a more
rapid and effective method for drug repositioning by predicting the association
between the drug and the target. At the same time, network-based drug repositioning
is helpful for understanding the mechanism of action of drugs, and the drugs
predicted by this method can reduce the risk caused by side effects.

In this study, the target prediction algorithm drugCIPHER [89] developed previ-
ously by the research group, was used to predict the targets of all small molecule
drugs in DrugBank, and to establish connections between other types of drugs and
known antidepressants through the targets, thereby predicting new antidepressant
drugs.

6.5.2.2 Data Sources

All information related to all drugs from the DrugBank database was downloaded,
totaling 3,817 drugs, among which 34 are FDA-approved antidepressants.

6.5.2.3 Analysis Index and Algorithm

(1) For 3817 downloaded drugs, the drug CIPHER algorithm developed by the
research group in the past was used to predict the target of each drug, and the
target list vector of each drug was obtained.

(2) For any pair of drugs, the consistency score of their biological activity similarity
was calculated according to their target vectors.

(3) Hierarchical clustering analysis was carried out based on similarities in biolog-
ical activity of drug pairs.

Two clusters containing 16 known antidepressants were obtained by clustering
analysis (as shown in Fig. 6.11). The other 14 drugs in these two clusters may
have had antidepressant effects. The pharmacological and toxicological information
of these 14 drugs were extracted, and drugs that could not pass through the blood–
brain barrier or induce serious side effects after long-term use were excluded. Six
drugs were screened out for further experimental verification (red font in Fig. 6.11).

6.5.2.4 Network Construction and Visualization

To illustrate the antidepressant effects of the predicted drug alverine, the drug-target
network of alverine and other similar antidepressants were constructed (as shown in
Fig. 6.12). Figure 6.12a shows that the targets for antidepressants are also targets of
alverine. Figure 6.12b shows that the predicted alverine target can directly or
indirectly regulate depression-related molecules through protein–protein interactions
or signal transduction pathways. From the network in Fig. 6.12b, four important
targets of alverine-SLC6A2, SLC6A4, HTR1A, and HTR2A were selected, which
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are not only the disease genes related to depression, but also known targets for
antidepressants. Also, they are in the top 100 in the prediction results. Experimental
verification was further carried out on these four important targets.

6.5.2.5 Experimental Verification

(1) For the predicted six drugs, the results of tail suspension test (TST) and forced
swimming test (FST) of mice verified that the six drugs have antidepressant
effects.

(2) Alverine, a gastrointestinal antispasmodic drug was further used to verify its
own antidepressant effects by using the learning helplessness model of depres-
sion and the chronic unpredictable stress model.

(3) Four important targets of alverine were verified by in vitro experiments, and the
results show that avirin has medium-strength binding affinity with their encoded
proteins.

6.5.2.6 Main Conclusion

This study used a network-based approach to predict potential antidepressants and
verified their efficacy using a classic depression experimental model. It was observed
that alverine, FDA-approved drug for irritable bowel syndrome, could be
repositioned as an antidepressant. In addition, four predicted targets, namely SERT
(SLC6A4), NET (SLC6A2), 5-HT1AR (HTR1A), and 5-HT2AR (HTR2A), were
verified by biological experiments.

Fig. 6.11 Two clusters containing a large number of known antidepressants obtained by drug
hierarchical clustering analysis [88]. Among them, the black font is known antidepressants, others
are predicted potential antidepressants. The red font is for the drug selected for further experimental
verification
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6.6 R&D of Drug Combination

Drug combination refers to a multi-ingredient, multi-targeted drug formed by com-
bining two or more drugs with a clear mechanism of action and different targets, or
after the effective ingredients are compatible in a reasonable dosage, for the treat-
ment of diseases. As the human body can be regarded as a complex network system,
the occurrence and development of diseases are the result of the comprehensive
effects of multiple factors on the network of the human body. This complex
mechanism makes the single target drug therapy model subject to certain limitations,
which cannot comprehensively satisfy the treatment requirements of complex dis-
eases. The development and application of drug combinations effectively make up
for the defects of single target drugs. In recent years, the US Food and Drug
Administration (FDA) has approved several drug combinations for clinical applica-
tions, especially for cardiovascular diseases, AIDS, neurodegenerative diseases,
metabolic diseases, cancer, and other complex diseases. Clinical studies have
shown that drug combinations are not a combination of single drug efficacy, but
are based on a synergy of multiple drugs to achieve better efficacy and lower toxic
side effects than single target drugs.

Most of the effective drug combinations used in clinical practice are driven by
intuition and experience rather than by established principles. One method is to test
pairwise drug combinations in a high-throughput, systematic manner, however, this
method faces combinatorial challenges. For example, there are 499,500 possible
pairwise combinations of 1,000 FDA-approved drugs, which require multiple dose
combinations to be tested on about 3000 human diseases [90]. With the development
of systems biology and network pharmacology, there are many network modeling
methods for predicting drug combinations. These methods predict synergistic drug
combinations based on drug-drug association, drug-target interaction, and multi-
level drug–target–disease–gene interaction [91]. The method based on drug-drug
association comprehensively takes advantage of multiple aspects of drug similarity
information, including drug structure similarity, treatment spectrum similarity, target
similarity, adverse reaction similarity, etc., to construct a similarity network between
drugs and predict interactions between drugs, for example, the drug cocktail network
method proposed by Wang et al. [92], the heterogeneous network-aided inference
framework proposed by Cheng et al. [93], the prediction method of antibiotic drug
combination based on chemical genomics data proposed by Chandrasekaran et al.
[94], etc. Based on information such as drug-target correlation, topological structure
similarity of target proteins, biological function of target, and position relationship
on PPI network, the method based on drug–target interactions predicts drug inter-
actions or infers the mode of action of drugs in the body. For example, the NIMS
(Network Target-based Identification of Multicomponent Synergy) algorithm pro-
posed by Li Shao et al. defines the agent score according to the relationship between
the diseases treated by the drugs and the topology score according to the relationship
of drug targets in the PPI network, and then integrates these two scores to predict the
synergy of drug pairs [95]. TIMMA (Target Inhibition Interaction using
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Maximization and Minimization Averaging) algorithm developed by He et al.
combines the drug–target interaction network with a single drug sensitivity spectrum
data from cell samples, to predict synergistic multi-target drug combinations
[96]. Some other studies integrate the multi-dimensional relationship among drug-
target-disease-gene to study the synergistic effect of drugs. For example, the
DrugComboRanker algorithm developed by Huang et al. constructs the drug func-
tion association network and the disease-specific gene association network, decom-
poses the drug network into connected functional modules, and predicts the
synergistic effect of drugs based on the inhibition of the drug function module on
the disease network [97].

The following two specific research cases are selected for analysis.

6.6.1 Drug Combination Prediction Based on Network

Combination therapy is the co-use of multiple drugs, which has higher efficacy than
single drug use. Also, by reducing the dose of single drug, the risk of adverse
reactions can be reduced. However, there is still a lack of principles to systematically
determine drug combinations with high efficacy and low toxicity.

In this study, Barabasi et al. developed a network-based method to quantify the
relationships between drug targets and disease proteins in the human protein–protein
interaction network, so as to design a reasonable and network-based drug combina-
tion discovery strategy [90].

6.6.1.1 Research Objectives

In network pharmacology research, the distance between research objects (such as
diseases and drug target genes) in the whole genome protein–protein interaction
network is usually used to measure the strength of the relationship between objects.
In this study, the network proximity between drug targets and disease proteins is
applied to the discovery of effective drug combinations.

6.6.1.2 Data Sources

Human Protein–Protein Interaction Network

By integrating the data construction of 15 databases, the same as Sect. 6.4.1.
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Drug-Target Network

Drug-target interaction data was obtained from DrugBank, TTD (the Therapeutic
Target Database) and PharmGKB Database [98]. Drug-target binding affinity data
are from ChEMBL [99], BindingDB [100], and IUPHAR/BPS [101] Pharmacolog-
ical guidelines. Only drug-target pairs with affinity indexes Ki, Kd, IC50, or EC50
no greater than 10 μM, in which the targets were human proteins were retained. A
total of 15,051 high-quality interactions between 4428 drugs and 2256 human
protein targets were obtained. Among them, 1978 drugs have at least two experi-
mentally verified targets.

Gold Standard of Drug Combination Pairs

Clinical data were integrated from multiple data sources to obtain effective drug
combination pairs. Each drug in the combination pair was required to have exper-
imentally verified target information: EC50, IC50, Ki, or Kd � 10 μM. The drug name
was standardized with MeSH and UMLS terms, and then converted into DrugBank
ID. A total of 681 different drug combination pairs containing 362 drugs were
obtained.

Adverse Drug–Drug Interactions

Clinically reported adverse Drug–Drug Interactions (DDIs) were collected from the
DrugBank database. Only drugs with experimentally verified target information
were collected. A total of 13,397 clinically reported adverse DDIs among 658 dif-
ferent drugs were obtained. In addition, cardiovascular event-specific adverse DDIs
were collected from the TWOSIDE database [102]. TWOSIDE contains 59,220 drug
combinations and 1301 adverse reaction events, totaling more than 868,221 signif-
icant adverse reaction related events. This study mainly focused on four cardiovas-
cular events: arrhythmia (MeSH ID: D001145), heart failure (MeSH ID: D006333),
myocardial infarction (MeSH ID: D009203), and hypertension (MeSH ID:
D006973).

Disease-Related Genes

The disease-related genes were collected from 8 data sources and duplicate records
were removed. The disease-related genes from 4 cardiovascular events were col-
lected: arrhythmia (MeSH ID: D001145), heart failure (MeSH ID: D006333),
myocardial infarction (MeSH ID: D009203), and hypertension (MeSH ID:
D006973).
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6.6.1.3 Analysis Index and Algorithm

Chemical Similarity of Drugs

The SMILES structural formula of each drug was downloaded from the DrugBank
database and their MACCS fingerprints were calculated with Open Babel software.
The Tanimoto coefficient was used to calculate the chemical similarity between a
pair of drugs.

T ¼ c
aþ b� c

wherein a and b are the total number of digits in the fingerprints of the two drugs, and
c is the same number of digits in their fingerprints.

Sequence Similarity of Target Proteins

The sequence of the target protein was downloaded from the UniProt database. The
local sequence alignment algorithm, Smith–Waterman algorithm, was used to cal-
culate the protein sequence similarity SP(a, b) between the two target proteins a and
b. The sequence similarity of the targets of drugs A and B is defined as the average
value of the similarities between their different target pairs:

< Sp >¼ 1
npairs

X
fa, bg

Spða, bÞ

wherein a 2 A, b 2 B, a 6¼ b.

Gene Co-expression Similarity

RNA-seq data (RPKM values) for 32 tissues was obtained from the GTEx database.
For each tissue, genes with RPKM�1 in more than 80% of the samples were
selected as the genes specifically expressed in the tissue. The co-expression levels
between two drug target encoding genes a and b were measured by the Pearson
correlation coefficient PCC(a,b) of their expression profiles. The co-expression
similarity of targets of drug A and B is defined as the average value of the Pearson
correlation coefficient between their target gene pairs:

< Sco >¼ 1
npairs

X
fa, bg

PCCða, bÞ

wherein a 2 A, b 2 B.
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Gene Ontology (GO) Similarity

The GO information (Gene Ontology) of all drug target encoding genes was
downloaded from the GO database and the GO annotation information predicted
by the calculation was removed. The GO similarity SGO(a,b) between two drug
target encoding genes a and b was calculated by using R-package GOSemSim. The
GO similarity of the targets of drug A and B is defined as the average value of the
GO similarity between their target gene pairs:

< SGO >¼ 1
npairs

X
fa, bg

SGOða, bÞ

wherein a 2 A, b 2 B.

6.6.1.4 Clinical Similarity of Drugs

The Anatomical Therapeutic Chemical codes (ATC) of all FDA-approved drugs in
this study were downloaded from DrugBank. The k-level clinical similarity Sk(A,B)
of drugs A and B is defined as follows:

Sk A,Bð Þ ¼ ATCk Að Þ \ ATCk Bð Þ
ATCk Að Þ [ ATCk Bð Þ

wherein ATCk represents all ATC codes at the kth level. The clinical similarity
Satc(A,B) of drug A and B is defined as follows:

Satc A,Bð Þ ¼
Pn

k¼1Sk A,Bð Þ
n

where n represents the five levels of ATC codes (ranging from 1 to 5). For drugs with
multiple ATC codes, the similarity for each ATC code was calculated and then
averaged.

Network Proximity Between Drugs

Suppose A and B are the drug-target sets of drug A and B, respectively (as shown in
Fig. 6.13a). The separation of these two sets on the human PPI network can be
divided into:
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sAB ¼< dAB > �< dAA > þ < dBB >
2

where <dAB> is the average shortest path length between targets in set A and B. It
can be seen from this definition that if sAB < 0, then the targets of drug A and drug B
are adjacent on the network, and drug A and drug B topologically overlap (as shown

Fig. 6.13 Network model of relationship between drugs [90]. (a) The relationship between the
target sets of the three drugs (imatinib [I], tandutinib [T], natalizumab [N]) in the human protein–
protein interaction network. (b, c) are the definition of drug pairs with topological overlap (sAB< 0)
and topological separation (sAB � 0). The correlation between the network proximity of (d–j) drug
pairs and the similarity of five types of drugs: Drug-drug chemical similarity (d); Co-expression
similarity of drug target genes in different human tissues (e); The sequence similarity of drug target
protein (f); The GO similarity of drug target genes based on biological process similarity (g), cell
component similarity (h), and molecular function similarity (i); as well as clinical similarity of drugs
(j). In the graph, the background color of drug pair (sAB < 0) with topological overlap is pink, and
that of drug pair (sAB < 0) with topological separation is blue
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in Fig. 6.13b). If sAB � 0, then the targets of drugs A and B are separated in the
network, and drugs A and B are topologically separated (as shown in Fig. 6.13c).

Network Proximity Between Drugs and Diseases

Suppose X and Y are the drug target and disease protein sets of drug X and
disease Y, respectively. The nearest distance between these two sets on the human
PPI network is defined as:

d X,Yð Þ ¼ 1
Yk k

X
y2Y

min x2Xd x, yð Þ

where d(x, y) is the shortest path length between nodes x and y on the PPI network. In
order to evaluate the statistical significance of the network proximity between drugs
and diseases, 1000 sets of random nodes with the same number of disease genes and
drug targets, and the same node degree distribution were constructed. The distance
between them was calculated. The Z-score: the nearest distance between the disease
protein and the drug-target set was calculated: z ¼ d�μ

σ and it was used to represent
the network proximity between the corresponding drug X and disease Y. If z <
0, then the drug-target module and disease module overlap on the network; If z �
0, then the drug target and disease modules are separated on the network (as shown
in Fig. 6.13a–f).

6.6.1.5 Analysis Results

Correlation Between Network Proximity Index of Drugs and DRUG
SIMILARITY

For every drug pair between the 1978 drugs with at least two experimentally verified
targets, their network proximity, chemical similarity, clinical similarity, sequence
similarity of target proteins, co-expression similarity of target protein encoding
genes, and GO similarity were calculated. It was observed that the network proxim-
ity of the drug pairs has a negative correlation with the chemical, biological,
functional, and clinical similarities of the drug pairs represented by the
corresponding indexes (as shown in Fig. 6.13d–j). That is, drugs that are close to
each other on the network have higher similarities in chemical, biological, func-
tional, and clinical aspects. Therefore, the network proximity indexes of drugs can be
used in the study of drug relationships.
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Network Structure of Drug-Drug-Disease Combination

The network relationship between two drug target modules and one disease module
(i.e. drug-drug-disease combination) was analyzed and it was found that this com-
bination has six different network structure relationships:

(1) Overlapping exposure: two overlapping drug target modules simultaneously
overlap with the disease module (P1 in Fig. 6.14a);

(2) Complementary exposure: two separated drug target modules overlap with the
disease module (P2 in Fig. 6.14b);

(3) Indirect exposure: one of the two overlapping drug target modules overlaps with
the disease module (P3 in Fig. 6.14c);

(4) Single exposure: two drug target modules are separated from each other, and one
overlaps with the disease module (P4 in Fig. 6.14d);

(5) Non-exposure: two overlapping drug target modules are both separated from the
disease module (P5 in Fig. 6.14e);

(6) Independent action: two drug target modules and one disease module are
topologically separated from each other (P6 in Fig. 6.14f).

Through statistical analysis of the FDA-approved drug combination pairs for
hypertension and cancer treatment (as shown in the bar graph on the right of
Fig. 6.14), the following rules are found:

(1) Only when the two drug target modules overlap with the disease module, can the
drug pair produce treatment-related effects.

(2) The therapeutic effect of overlapping exposure drug pairs (Fig. 6.14a) is not as
good as that of single drug and has significant side effects.

(3) Only drug pairs with complementary exposure (Fig. 6.14b) have a significant
therapeutic effect compared to the single drug.

6.6.1.6 Experimental Verification

For each pair between the 65 antihypertensive drugs approved by the FDA, its
separation score SAB was calculated and all the scores were then arranged in
ascending order. Drug pair combinations with SAB< 0 and complementary exposure
to the hypertension disease module were identified. This method successfully
predicted 24 antihypertensive drug combinations approved by the FDA, with an
accuracy of 59%.

Next, the focus was on drug combinations involving hydrochlorothiazide. Hydro-
chlorothiazide is an FDA-approved antihypertensive sodium chloride co-transporter
inhibitor. Drug combination pairs containing hydrochlorothiazide with complemen-
tary exposure to the hypertensive disease module were extracted. SAB was ranked in
ascending order and the top 30 combinations were considered. It was found that
21 cases (70% success rate) were supported by evidence, including FDA approval,
clinical trial records, or reported preclinical data.
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Fig. 6.14 Efficacy of hypertension drug interactions [90]. (a)–(f) Six different kinds of network
structure relationships of drug-drug-disease combination. The purple and blue colored histogram
represents the antihypertensive combinations and clinically reported adverse drug interactions on
high blood pressure, respectively. The gray histogram shows the random control and the error bar
represents the standard deviation
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In this study, a total of 1455 kinds of potential drug combinations including
65 hypertensive drugs that meet the complementary exposure relationship were
identified through calculations. In addition, an exhaustive list containing predicted
drug combinations that were not used for hypertension and meet the complementary
exposure relationship, as well as drug side effect combination pairs that meet the
overlapping exposure relationship was also provided. This data provides potential
drug combinations for hypertension for future experimental verification and pro-
spective clinical trials.

6.6.1.7 Main Conclusion

In this study, a network-based algorithm was proposed to calculate the proximity
between drug targets and disease genes on the network. Six network patterns of
drug-drug-disease combination were obtained. By using the statistical method, two
of them were inferred to be related to positive and negative side effects of drug
combination, respectively, thus the effective drug combinations were predicted.

The relationship between drug targets and disease modules was explored in the
human genome protein–protein interaction network. The method proposed in this
study is useful in discovering effective drug combinations. If the network tools
developed here can be widely used, they will help to develop novel and effective
combination therapies for complex diseases.

6.6.2 Prediction of Synergistic Anti-cancer Drug
Combinations Based on Genome and Network
Characteristics

Cancer is a complex disease involving many factors and multiple biological pro-
cesses. In clinical practice, single drug anti-cancer therapy is prone to drug resistance
and side effects, while combination therapy has been widely considered as a better
alternative. In recent years, synergistic drug combination has received special
attention. It can achieve better curative effects than the sum of the effects of single
drugs. Since each ingredient has a lower dose compared to a single therapy, side
effects are greatly reduced. Some high-throughput screening platforms have been
established to identify potential synergistic drug combinations. The calculation
method is expected to provide more economical and rapid screening.

In this study, Cao et al. developed a computational model based on genome
information and network characteristics, ranked the potential synergistic effects of
drug pairs with unknown synergistic effects (unlabeled drug pairs) using drug pairs
with known synergy (labeled drug pairs) as seeds, and predicted the synergistic
combination of anti-cancer drugs [103].
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6.6.2.1 Research Objectives

Currently, some known synergistic drug combinations have been recorded in data-
bases or anti-cancer literature. Moreover, the molecular mechanisms underlying
different aspects of existing synergistic drugs have been partially understood. For
example, synergistic drugs may target multiple proteins in a pathway and its cross-
talked pathways. In addition, compensatory pathway interactions, adaptive resis-
tance, as well as molecular, pharmacological, and gene expression similarities were
also related with drug synergy. Based on drug pairs with known synergistic effects,
this study extracted the possible characteristics of synergistic drugs, constructed
prediction models, and predicted more drug combinations with synergistic effects.

6.6.2.2 Data Source

Drug Pair Data

(1) A total of 41 kinds of synergistic anti-cancer agent combination pairs that have
conducted clinical trials were obtained by using literature retrieval in Drug
Combination Database (DCDB) [104] and PubMed. The drug pairs whose
targets could not be mapped to KEGG signaling pathway were deleted, and
the remaining 26 pairs were used as positive/marker samples for further
modeling.

(2) 14 individual drugs or compounds were obtained from the NCI-DREAM con-
sortium data set [105], of which only 13 have known protein targets. Seventy-
eight kinds of paired combinations of these thirteen reagents were used as test
data sets to interfere with human B cell lymphoma cell line OCI-LY3.

(3) 142 anti-cancer drugs that are approved by the FDA or have already entered
clinical trials were obtained from DrugBank version 3.0, TTD, and PubMed.
118 anti-cancer drugs were obtained by deleting the drugs in which the target
does not have the gene ontology (GO) annotation or KEGG information. These
118 drugs were combined to produce 6877 unlabeled drug pairs as test data sets
for lung adenocarcinoma cell line A549 and ER positive breast cancer cell line
MCF7. The target protein information of all research drugs was extracted from
DrugBank version 3.0, TTD, and PubMed.

Network data

(1) Background protein–protein interaction network: the network was constructed
with data from HPRD, MINT, Inact, BioGRID, DIP, and MIPS database, and
the largest connected sub-network was obtained.

(2) Cancer Network (CN): Using all the genes in the “pathways in cancer” signaling
in KEGG and cancer-related genes in literature, genes were connected in the
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background, to construct a sub-network using protein–protein network
interaction.

(3) Specific cancer signaling pathway (take breast cancer MCF7 as an example):
The gene expression profile of MCF7 cancer cell line was obtained from CCLE
(Cancer Cell Line Encyclopedia) [106]. Expression data of all other cell lines in
the database was used as the control group, and differential expression genes of
MCF7 were obtained based on the standards of |log2foldchange| > 0.5. These
differential expression genes were connected through the background network to
form the breast cancer pathway.

Gene Expression Data

(1) Array data of labeled drugs: Gene expression profiles of each single drug in the
labeled drug pairs were searched from CMAP, ArrayExpress, and GEO. Since
these synergistic drug combinations are applicable to different cancer types,
gene expression profiles on the same cell line of the specified cancer type were
searched for each drug pair. Finally, the gene expression profiles of 9 pairs of
labeled drug pairs (including 11 drugs) were found.

(2) Array data of cell line Ly3 of β-cell lymphoma: the expression profile data of this
cell line treated with single drug was downloaded from the DREAM
website [105].

(3) Array data of lung adenocarcinoma cell line A549 and ER positive breast cancer
cell line MCF7: The expression profile data of the test drug acting on these two
cell lines were also obtained from CMAP, ArrayExpress, and GEO.

6.6.2.3 Analysis Index and Algorithm

In this study, a semi-supervised learning model, which is called ranking system of
anti-cancer synergy (RACS), was constructed, and its workflow is shown in
Fig. 6.15.

Characteristics of the primary ranking model: Originally, 14 characteristics
describing drug synergy were proposed. Then, the Z-score test was carried out to
select the following seven characteristics (|Z-score| > 3), which make a significant
difference between synergistic drug pairs and unlabeled drug pairs.

(1) Mutual information entropy (MI) based on GO: this characteristic represents the
similarity between biological processes (BP) regulated by the target of two
drugs. The calculation method is as follows:

a. All the genes in the “Pathways in cancer” signaling pathway in KEGG were
input into DAVID to conduct GO enrichment analysis, and 1,006 GO BP
entries with significant enrichment (P < 0.05) were obtained, which are
cancer-related BP.
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b. A 0–1 binary vector was constructed with 1006 dimensions for each drug. If
the drug target is in a certain BP, the corresponding component is 1.

c. Mutual information entropy was used to calculate the similarity between
cancer-related BP vectors of drug pair (x, y):

MI x, yð Þ ¼ P x, yð Þ � log
P x, yð Þ

P xð Þ � P yð Þ

wherein P(x) is the ratio of mapped GO terms in cancer-related BPs for agent x, and
P(x, y) is the ratio of the common GO terms mapped to cancer-related BPs between
x and y.

(2) Distance (Dis) describes the average distance between the target proteins of the
two drugs in the protein–protein interaction network.

Dis x, yð Þ ¼
PM

i¼1

PN
j¼1dis i, jð Þ

M � N

wherein dis(i, j) is the shortest distance between the i-th target of drug x and the j-th
target of drug y in the background protein–protein interaction network. M and N are
the number of targets of drug x and y, respectively.

(3) Drug combination interference (DCI) describes the variance of the effect of the
combination of drugs and single drugs on the efficiency of network information
transmission.

DCI x, yð Þ ¼ ΔExþy � ΔEx þ ΔEy

� �
wherein ΔEx ¼ E�Ex

E , E represents the information transfer efficiency of the cancer
network in the absence of drug disturbance, and is the average shortest path between
node pairs in the network. Ex is the network information transmission efficiency
calculated after removing all targets of drug x from the cancer network.

(4) Efficacy (Eff.D, Eff.B, and Eff.E): these characteristics represent the efficacy of
drug combination pairs when both efficacy and additional efficacy are consid-
ered. The calculation of Eff.D, Eff.B, and Eff.E is based on the degree, between-
ness, eigenvector centrality of the drug targets in the network, respectively. The
design of the three characteristics follows the assumption that a good combina-
tion produces the greatest therapeutic effect and the least additional impact. The
design concept of Efficacy (Eff) is that the drug combination should hit the key
target of the cancer network and avoid hitting the target in the non-cancer
network.
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Eff ¼ λ

P
i2CNWiP
i2BDWi

� 1� λð Þ
P

i2NCNWiP
i2VWi

Eff ¼ λ

P
i2CNWiP
i2BDWi

� 1� λð Þ
P

i2NCNWiP
i2VWi

The first and second parts of the formula represent the therapeutic effect and the
additional effect, respectively. The parameter λ 2 [0, 1] is used to balance the two
parts of the formula, here it is taken as 0.1. For three different kinds of efficacy—Eff.
D, Eff.B, and Eff.E, the weight Wi of node i takes the degree, betweenness, and
eigenvector centrality of the node in the corresponding network, respectively.

CN: Target proteins in cancer networks.
BD: Target proteins in background PPI network, including CN.
NCN: Target proteins in BD but outside of CN.
V: All nodes in the background PPI network, including CN.

(5) Mapped unrelated pathway pairs (MP.U): first, all genes in the “Pathways in
cancer” signaling pathway in KEGG were input into DAVID for KEGG path-
way enrichment analysis, and 132 pathways with significant enrichment (P <
0.05) were obtained, which are cancer-related pathways. Then, the target of a
drug was mapped to 132 cancer-related pathways; the pathways on the target
map constitute the pathway set of the drug. One pathway was taken from the
pathway sets of drug pairs x, y, respectively, to form a pathway pair; the pathway
pair has the following four types:

a. Identical pathway pair.
b. Cross-talking pathway pair: two different pathways share at least one gene in

common.
c. Interaction pathway pair: the two pathways are neither identical nor

intersecting, but there is interaction between the genes in the two pathways
on the PPI network.

d. Unrelated path pair: a path pair that does not fall into any of the above three
categories.

MP.U is defined as the proportion of unrelated path pairs to the total path pairs of
x and y.

Primary ranking system: Each drug pair (including positive and unlabeled drug
pairs) is represented by the 7-dimensional eigenvectors of the above-mentioned
seven characteristics, and all drug pairs were arranged into a list:

X ¼ x1, . . . , xq, xqþ1, . . ., xn
� �

wherein x1, . . ., xq are labeled drug pairs, followed by the unlabeled drug pairs. Then
the drug pairs were sorted by Manifold Ranking, a semi-supervised learning algo-
rithm. The steps are as follows:
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(1) The Euclidean distance d(xi, xj) of every neighboring pair of drugs was calcu-
lated, the distances were arranged in descending order, and the drug pairs were
connected in order, until a connected network formed.

(2) The edge weight of the network is defined as: Wij ¼ 1/d(xi, xj).
(3) The scoring function is defined as: f(t + 1) ¼ αSf(t) + (1 � α)y.

Wherein: S ¼ D�1
2WD�1

2 , y is the initial vector, whose first q components are
1, and the following components are 0.

The scoring function iterates to convergence, and each component is the score of
the corresponding drug pair.

Secondary filtering system: Two indexes—DEG_Overlap and
Pathway_Coverage, derived from the gene expression profile were used to further
filter the ranking obtained by the primary ranking system.

DEG Overlap x, yð Þ ¼ A \ Bj jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Aj j � Bj jp

Pathway Coverage x, yð Þ ¼ A [ Bð Þ \ Nj j
Nj j

wherein A and B represent the differentially expressed gene (DEG) set caused by
drug x and y intervention, respectively, and N represents all genes in the specific
cancer signaling pathway.

These two indexes were calculated for each drug pair, and the drug pair with a p
value of less than 0.05 for both indexes was retained.

6.6.2.4 Analysis Result

RACS System Significantly Improves DREAM Data on DLBCL Cells

To assess the predictive ability, RACS was applied to the standard data obtained
from the DREAM Consortium. This experimental data uses a binary combination of
14 different drugs/compounds in the human Diffuse Large B-Cell Lymphoma
(DLBCL) cell line OCI-LY3 to detect the activity of the combination and gene
expression profile. As the target of the DNA cross-linker mitomycin C is as yet
unclear, 78 drug pairs formed by combining the remaining 13 drugs as unlabeled
combinations were tested using RACS and compared with the peering methods. The
comparative methods include DIGRE (the best performing method in the DREAM
Report), SynGen (the method proposed by the DREAM Organizer),
DrugComboRanker [97], and Zhao [107]. The comparison indexes are area under
ROC curve (AUC) value, true positive rate, and PC-index. The results show that the
RACS system performs best on these three indexes; at the same time, based on the
primary ranking, the secondary filtering based on the transcriptional profile data
significantly improves the performance of the RACS system.
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The RACS System has a Significant Ranking Ability to the Drug Pairs Acting
on Breast Cancer and Lung Cancer Cells

The RACS system was further evaluated using the ER positive breast cancer cell line
MCF7. A total of 118 anti-cancer drugs were combined into binary pairs, 26 known
synergistic pairs were deleted, and the remaining 6877 pairs were unlabeled combi-
nations. RACS was run 30 times using a different number of labeled pairs. For the
combination that consistently appeared in the top 1% of the ranking, the consensus
ranking containing 41 drug pairs was obtained by Spearman’s Footrule Distance,
which is the preliminary ranking list. After secondary filtering of drug-interfered
transcriptional profile data based on cell line MCF7, 33 of the 41 drug pairs remained
in the final ranking list. Literature search shows that there are five kinds of drugs that
have a synergistic combined anti-cancer effect, including combined intervention of
curcumin and resveratrol for colorectal cancer, trastuzumab and erlotinib in the
treatment of breast cancer, topotecan and vorinostat in the treatment of small cell
lung cancer, estramustine and docetaxel in the treatment of breast cancer, and
bleomycin and etoposide in the treatment of endometrial carcinoma. From the
remaining 28 combinations, the combinations containing antibody drugs and
non-commercial drugs were removed, and subsequent in vitro experimental verifi-
cation was conducted on the remaining 17 drug pairs.

Then, the RACS system was further verified using human lung adenocarcinoma
cell line A549. Based on gene expression profiles and target information, 55 combi-
nations of 11 drugs were analyzed, and these 55 drug pairs were ranked by the same
procedure and criteria. The top 10% and bottom 10% of the drug pairs were verified
through experiments.

6.6.2.5 Experimental Verification

Verifying the Synergistic Effect of Drug Pairs Through in vitro Experiments

For the remaining 17 pairs of drugs based on MCF7 cell line ranking, the
corresponding drugs were purchased and verified by using human MCF7 cell line
in vitro experiments. In this study, the synergestic effect was measured according to
the Combination Index (CI) proposed by Chou and Talalay. Only when the CI values
of a pair of drugs in the four combination concentrations are less than 0.9, they can
be accepted as synergistic effects. Based on this criterion, 9 out of 17 pairs (52.94%)
were newly identified as having synergistic effects of inhibiting MCF7 cell
proliferation.

In vitro experimental verification was conducted on the top 10% and bottom 10%
drug pairs obtained based on A549 cell line ranking. The results show that the top
10% of the two drug pairs (33.33%), namely gefitinib and quinacrine, and erlotinib
and quinacrine, have synergistic effects of inhibiting A549 cell proliferation (CI <
0.3). In contrast, none of the six pairs ranked at the bottom showed synergy.
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Verifying the Synergistic Effect and Potential Toxicity of Drug Pairs Through
In Vivo Experiments

As anti-cancer effects usually involve cytotoxicity, further screening needs to be
conducted to determine whether strong synergistic combinations are less toxic to
normal cells or organs and have fewer side effects. To verify the results obtained
in vivo, four drugs were selected, namely gefitinib, erlotinib, sorafenib, and tamox-
ifen, and a zebrafish-based toxicity model of human cancer cell xenografts was used
to evaluate the synergistic effects and potential toxicity of the drugs. It was observed
that the tolerance of zebrafish to the individual treatment of gefitinib or erlotinib
alone was the same as the concentration used in cell experiments; however, the
combined use of tamoxifen and sorafenib in the zebrafish model showed severe
toxicity. The combination of erlotinib and sorafenib showed significant synergistic
effect on inhibiting the proliferation of xenografted MCF-7 cells in zebrafish and had
no obvious side effects; on the contrary, single drug treatment had no effect on
tumors.

6.6.2.6 Main Conclusion

In this study, a set of characteristics related to the synergistic effects of anti-cancer
drugs were proposed, and an effective model RACS was constructed to predict the
synergistic effects of the drug combinations for cancer treatment. By verifying the
predicted synergistic effects on three cancer cell lines and a zebrafish model, it is
shown that RACS has a good effect in ranking drug combinations with potential
synergistic anti-cancer effects.

At present, it is becoming increasingly difficult to find new single drugs. The
combination use of existing drugs provides new opportunities for the treatment of
cancer. With the accumulation of growing amounts of TCGA data and xenotrans-
plantation (PDX) models, the process of predicting drug combinations from RACS,
then using cell line for verification, and further screening with in vivo models
proposed in this study is expected to accelerate the development of personalized
combination therapy.

From the perspective of systems biology, a life form can be seen as a complex
network formed by the interaction of various molecules, while drugs can change
their functional state by acting on some nodes of the network, thereby intervening in
the occurrence and development of diseases and achieve curative effects. Network
pharmacology studies complex diseases and drug development at the genome-wide
system level, and studies the role and relationship between multiple genes and drug
targets of diseases under the context of various regulatory networks at different
biological levels, to systematically predict and explain the role of drugs, discover the
factors affecting the efficacy and safety of drugs, and propose new strategies for
treatment of complex diseases. Network pharmacology is a transformation in the
philosophy and research model of drug development, and has made significant
progress in the five aspects introduced in this chapter. With the further improvement
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of various biological databases, a deeper understanding of molecular networks and
signaling pathways involved in disease processes, as well as the introduction of
pioneering experimental technologies (such as single cell sequencing, gene knock-
out, etc.) and computational technologies (such as artificial intelligence, machine
learning, etc.) into network biology research, network pharmacology is expected to
make greater progress in the understanding and treatment of complex diseases.
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Chapter 7
Drug-Based Network
Pharmacology Practice Process

Xiaobo Sun, Xiaoyan Xing, and Min Wang

7.1 Guide to this Chapter

TCM has a long history and notable therapeutic effect in China [1, 2]. Starting from
the holistic and systematic of drug–target–disease interactions, network pharmacol-
ogy employs complex network models to enunciate and scrutinize drug–target–
disease network relationships [3]. The holistic and methodical characteristics of
network pharmacology coincide with the holistic view of TCM theory and the
principle of syndrome differentiation and treatment, which provides new ideas and
perspectives for the systematic research of TCM [4].

Considering the classic and reputed Guanxin Danshen Formulation and the
commonly used Chinese medicines Ginseng Radix et Rhizoma, Notoginseng
Radix et Rhizoma, and Salviae miltiorrhizae Radix et Rhizoma as examples, this
chapter introduces the practice process of network pharmacology based on drugs
from six aspects: active ingredients identification, mechanism analysis, compatibil-
ity theory of TCM, interaction between Chinese and Western medicines, drug
repurposing, and multi-targets drug development, and attempts to provide clues
with reference value for the application of network pharmacology in TCM research.
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7.2 Finding the Active Ingredients of a Single Chinese
Medicine or Prescription

Indefinite material basis and indefinite mechanism of action are the salient hurdles to
the wider acceptance of TCM in the international community. Therefore, the iden-
tification of active ingredients in TCM is a crucial challenge to be decoded in the
modernization of traditional Chinese medicine. The typical measures for network
pharmacology to identify the effective ingredients of TCM are as follows: Primarily,
the information related to chemical components, chemical component targets, and
disease targets of TCM are collated based on database retrieval and computer
simulation technology. Subsequently, these data are taken as nodes in the network,
and the “TCM–component” network, the “component–target” network, and the
“disease–gene” network are constructed based on the interconnection between the
nodes. Finally, the overall “TCM–component–target–disease” network is fabricated
by a network composite. The interconnection between the elements is scrutinized
based on the overall network, in order to detect the potential effective component
group of TCM for the treatment of specific diseases.

Guanxin Danshen Formulation (GXDSF) is a classic prescription commonly used
in clinical practice. It consists of three Chinese herbs: Salvia miltiorrhiza, Panax
notoginseng, and Dalbergia odorifera oil. It is effective in improving blood circula-
tion and disperse stasis, regulating qi and relieving pain. It is predominantly used in
the treatment of coronary heart disease with qi stagnation and blood stasis. Modern
compound preparations developed on the basis of GXDSF, such as Guanxin
Danshen tablet, Guanxin Danshen capsule, and Guanxin Danshen dripping pills,
have significant clinical efficacy and are widely used in the prevention and treatment
of coronary heart disease [5]. Expounding the active ingredient basis of GXDSF can
provide expedient clues for the R&D of new drugs in the treatment of cardiovascular
disease (CVD). Therefore, case in point of GXDSF, identifying the effective com-
ponent groups of TCM prescriptions based on network pharmacology is introduced
exhaustively below. The research flow is as demonstrated in Fig. 7.1.

7.2.1 Data Acquisition and Processing

7.2.1.1 Chemical Component Collection of Complete GXDSF
Prescription

The chemical components of the complete GXDSF prescription were assembled
based on two classic Chinese herbal medicine databases—ETCM and TCM-MESH.
The “Herbs” option was selected under the MENU option of the ETCM database
menu bar, and “Salvia miltiorrhiza” was entered in the search box to obtain the
chemical composition list 1 of radix Salviae Miltiorrhizae. “Herb” was selected
under the Search Type option of TCM-MESH database, “Pinyin name” was selected
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under Herb Name Type option, and “Dan Shen” entered in the search box to obtain
the chemical composition list two of radix Salviae Miltiorrhizae. The two chemical
component lists of Danshen assembled based on the ETCM and TCM-MESH
databases were integrated and deduplication processing was performed to obtain a
complete chemical component list of Salvia miltiorrhiza medicinal materials. The
chemical components of the two medicinal materials of Panax notoginseng and
Dalbergia odorifera were assembled using the same method. The corresponding
relationship between each Chinese medicine and its chemical composition was
saved in the form of a two-dimensional table.

7.2.1.2 Collection of Chemical Component Targets

The “Chemicals” option was selected under the Keyword Search option of the CTD
database, the appropriate English name of each chemical component was entered in
the search box, and the target data of each chemical component was assembled. The
corresponding relationship between each chemical component and its target was
saved in the form of a two-dimensional table. The mass search function provided by

Fig. 7.1 Research ideas and processes
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the CTD database can also be used to retrieve the target data of each chemical
component.

7.2.1.3 Collection of CVD-Related Disease Genes

The “Search” option was selected in the menu bar of the DisGeNET database, the
search type was set to “diseases,” and cardiovascular disease was entered in the
search box, to assemble the CVD-related target gene data. The corresponding
relationship between the disease and its related genes was saved in the form of a
two-dimensional table.

7.2.2 Network Construction and Visualization

The “TCM–ingredient” list, “ingredient–target” list, and “disease–gene” list
obtained in the data source were entered into Cytoscape 3.5.0 network analysis
and visualization software. The merge function under the “Tools” option in the menu
bar was used to superimpose networks to construct a “TCM–ingredient–disease–
target” network. To increase the self-evidence of the network, different attributes
(shape, size, color, font, etc.) can be set for different nodes in the network. At the
same time, the visualization effect of the network can be adjusted through the
network layout function under the “Layout” option in the menu bar.

The Network Analyzer function under the “Tools” option in the Cytoscape 3.5.0
menu bar was used to analyze the topological attributes (connectivity) of each node
in the network.

7.2.3 Network Analysis and Prediction

7.2.3.1 Chemical Components of Complete GXDSF Prescription and Its
Targets

Based on the ETCM and TCM-MESH database, there are a total of 115 chemical
components of Salvia miltiorrhiza, 121 chemical components of Panax notoginseng,
and 35 chemical components of Dalbergia odorifera assembled in this study. By
means of chemical component deduplication treatment, a total of 267 chemical
components of Complete GXDSF Prescription are collected. The number of chem-
ical component targets corresponding to Salvia miltiorrhiza, Panax notoginseng,
Dalbergia odorifera, and GXDSF is 241, 215, 101, and 398, respectively (as shown
in Table 7.1). The Venn diagram distribution shows that there are pronounced
differences in the chemical composition of the three medicinal materials of salvia
miltiorrhiza, Panax notoginseng, and Dalbergia odorifera (As shown in Fig. 7.2).
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7.2.3.2 Analysis of TCM–Ingredient–Disease Target Network

Figure 7.3 shows the TCM–component–disease target network of GXDSF for CVD
treatment. As demonstrated in Fig. 7.3, the three traditional Chinese medicines
Salvia miltiorrhiza, Panax notoginseng, and Dalbergia odorifera have certain regu-
latory effects on CVD-related genes. A total of 37 ingredients in GXDSF are
associated in the regulation of CVD. Among them, 21 ingredients are from Salvia
miltiorrhiza, 2 ingredients are from Dalbergia odorifera, and 16 ingredients are from
Panax notoginseng. The results confirm that Salvia miltiorrhiza, Dalbergia odorifera,
and Panax notoginseng execute a synergistic role in the treatment of CVD by means
of distinct active components.

Yellow, green, and red round nodes represent TCM, TCM chemical components,
and disease targets, respectively. The size of each node is adjusted according to
the topology parameter—connectivity of nodes in the network. The larger the node,
the greater the connectivity of the node in the network, and vice versa. The size of the
node reflects the importance of the node in the network to a certain extent. The gray
edge represents the inclusive or regulating relationship between the two nodes.

By and large, kaempferol, luteolin, palmitic acid, tanshinone IIB, tanshinone IIA,
tanshinone I, and other ingredients, together totaling 37 ingredients, constitute the
effective ingredient group of GXDSF that plays a synergistic role in the treatment of
CVD. Table 7.2 shows the source, English name, Chinese name, CAS number, and

Table 7.1 Chemical components of complete GXDSF prescription and its targets

Data type

Traditional Chinese medicine

TotalSalvia miltiorrhiza Panax notoginseng Dalbergia odorifera

Chemical composition 115 121 35 267

Targets 241 215 101 398

Fig. 7.2 Venn diagram—

chemical composition of
GXDSF
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topological parameter information of each component in the GXDSF effective
ingredient group.

7.2.4 Verification and Summary

Integrating the content of each chemical component in the medicinal components
and its topological parameter—connectivity in the network, we hand-picked nine
components (Kaempferol, luteolin, tanshinone IIA, quercetin, Notoginsenoside R1,
salvianolic acid B, Ginsenoside Rg1, ginsenoside Rb1, and salvianolic acid A) from
the above 37 to verify the activity of cardiovascular protection.

Through experiments, we verified that (1) Protective effects of tanshinone IIA,
salvianolic acid B, Notoginsenoside R1, ginsenoside Rb1, quercetin, and luteolin on
H2O2 induced H9c2 myocardial cell injury; (2) Protective effects of
Notoginsenoside R1 and ginsenoside Rg1 on H9c2 cardiomyocytes injury were
induced by hypoxia reoxygenation; (3) Protective effects of salvianolic acid A on
oxidative low-density lipoprotein (ox-LDL) induced injury of human umbilical vein
endothelial cells; (4) Protective effects of kaempferol on doxorubicin-induced H9c2

Fig. 7.3 TCM–component–disease target network
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Table 7.2 Effective component group of GXDSF

Serial
No.

Source of medicinal
materials

Chemical
compound Chinese name CAS Connectivity

1 Panax notoginseng Kaempferol Kaempferol 520-18-
3

44

2 Dalbergia odorifera Luteolin Luteolin 491-70-
3

36

3 Panax notoginseng Hexadecanoic acid Palmitic acid 1957-
10-3

26

4 Salvia miltiorrhiza Tanshinone IIb Tanshinone IIB 17397-
93-2

19

5 Salvia miltiorrhiza Tanshinone IIa Tanshinone IIA 568-72-
9

19

6 Salvia miltiorrhiza Tanshinone I Tanshinone I 568-73-
0

19

7 Salvia miltiorrhiza Rutin Rutin 153-18-
4

15

8 Salvia miltiorrhiza Oleanolic acid Oleanolic acid 508-02-
1

12

9 Panax notoginseng Quercetin Quercetin 117-39-
5

8

10 Salvia miltiorrhiza Ursolic acid Ursolic acid 77-52-1 8

11 Panax notoginseng Notoginsenoside
R1

Notoginsenoside
R1

80418-
24-2

8

12 Salvia miltiorrhiza,
Panax notoginseng

Stigmasterol Stigmasterol 83-48-7 7

13 Salvia miltiorrhiza Ferulic acid Ferulic acid 1135-
24-6

6

14 Salvia miltiorrhiza Protocatechuic acid Protocatechuic acid 99-50-3 5

15 Dalbergia odorifera Liquiritigenin Liquiritigenin 578-86-
9

5

16 Salvia miltiorrhiza Salvianolic acid B Salvianolic acid B 115939-
25-8

4

17 Salvia miltiorrhiza Protocatechuic
aldehyde

Protocatechuic
aldehyde

139-85-
5

4

18 Panax notoginseng Ginsenoside Rg1 Ginsenoside Rg1 22427-
39-0

4

19 Salvia miltiorrhiza Cryptotanshinone Cryptotanshinone 35825-
57-1

4

20 Salvia miltiorrhiza 3-O-
Acetyloleanolic
acid

Oleanolic acid
3-acetate

4339-
72-4

4

21 Salvia miltiorrhiza Rosmarinic acid Rosmarinic acid 537-15-
5

4

22 Panax notoginseng Hexadecane N-hexadecane 544-76-
3

3

23 Panax notoginseng Tetradecane N-tetradecane 629-59-
4

3

24 Panax notoginseng Acetophenone Acetophenone 98-86-2 3

(continued)
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cardiomyocyte injury. By and large, the effective component group of GXDSF was
identified by using the network pharmacology method, and the cardiovascular
protective effects of some components were verified by different in vitro cell models.
The results of network analysis are highly consistent with the experimental results,
which signify that network pharmacology is an effective means to identify the
material basis of traditional Chinese medicines/TCM compound prescriptions.

7.2.4.1 Effects of Tanshinone IIA, Salvianolic Acid B, Notoginsenoside
R1, Ginsenoside Rb1, Quercetin, and Luteolin on H2O2 Induced
H9c2 Myocardial Cell Injury; Protective Effect of H2O2 on H9c2
Myocardial Cell Injury

After pre-incubating different concentrations of tanshinone IIA, salvianolic acid B,
notoginsenoside R1, ginsenoside Rb1, and luteolin for a corresponding time,
150 μM H2O2 was allowed to react for 6 h. The MTT method was employed to
detect the consequences of each active ingredient on H9c2 myocardial cell activity.

Table 7.2 (continued)

Serial
No.

Source of medicinal
materials

Chemical
compound Chinese name CAS Connectivity

25 Panax notoginseng Ginsenoside Rb1 Ginsenoside Rb1 41753-
43-9

3

26 Salvia miltiorrhiza Isoimperatorin Isoimperatorin 482-45-
1

3

27 Panax notoginseng Nonanoic acid Nonanoic acid 112-05-
0

2

28 Panax notoginseng Methyl palmitate Methyl palmitate 112-39-
0

2

29 Salvia miltiorrhiza Baicalin Baicalin 21967-
41-9

2

30 Salvia miltiorrhiza Danshensu Tanshinol 23028-
17-3

2

31 Salvia miltiorrhiza Salvianolic acid A Salvianolic acid A 96574-
01-5

2

32 Salvia miltiorrhiza, Panax
notoginseng

Sitosterol β-sitosterol 83-46-5 2

33 Panax notoginseng Panaxadiol Panaxadiol 19666-
76-3

1

34 Salvia miltiorrhiza Miltirone Miltirone 27210-
57-7

1

35 Panax notoginseng Panaxatriol Panaxatriol 32791-
84-7

1

36 Panax notoginseng Panaxydol Panaxydol 72800-
72-7

1

37 Salvia miltiorrhiza Salvianolic acid C Salvianolic acid C 115841-
09-3

1
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The results demonstrate that: Tanshinone IIA, a fat-soluble component of Salvia
miltiorrhiza, exhibits significant myocardial cell protective effect at 50 μg/ml and
25 μg/ml (as shown in Fig. 7.4). Salvianolic acid B, a water-soluble component, has
protective effects on myocardial cells at 12.5 μg/ml and 6.25 μg/ml (as shown in
Fig. 7.5). Ginsenoside Rb1 in Panax notoginseng has a significant inhibitory effect
on H2O2-induced decline in myocardial cell activity at 50 μg/ml and 25 μg/ml
(as shown in Fig. 7.6). However, notoginsenoside R1 has no significant effect on
H2O2-induced H9c2 cell damage within the detection concentration range
(3.125–200 μg/ml) (as shown in Fig. 7.7). Luteolin, a flavonoid from Dalbergia
odorifera, has significant protective effects on myocardial cells. The cardiomyocyte
activity in the model group is 52.7%�1.1% of that in the normal group, while that in
the luteolin 12.5 μg/ml and 25 μg/ml pre-incubation groups are 81.9%�1.4% and
89.2%�1.4%, respectively. The cardiomyocyte activity in the luteolin group is
significantly higher than that in the model group (as shown in Fig. 7.8). Quercetin
shows significant protective effects on myocardial cells at concentrations of 20 μg/
ml and 40 μg/ml. In the same dose, its protective effect on myocardial cells is
significantly higher than that of tanshinone IIA, ginsenoside Rb1, and
notoginsenoside R1 (as shown in Figs. 7.4, 7.6, and 7.7).

7.2.4.2 Protective Effects of Notoginsenoside R1 and Ginsenoside Rg1
on H9c2 Myocardial Cell Injury Induced by Hypoxia
Reoxygenation

After pre-incubation with different concentrations of notoginsenoside R1 and
ginsenoside Rg1 for a corresponding time, hypoxia reoxygenation damage occurred
on myocardial cells. The CCK-8 method was employed to detect the activity of
myocardial cells. Compared to the control group, the survival rate of H9c2 cells was
significantly reduced due to 6 h of hypoxia and 12 h of reoxygenation. After

Control H2O2 IIA(12.5μg/ml) IIA(25μg/ml) IIA(50μg/ml) Que(20μg/ml)
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Fig. 7.4 Effect of tanshinone IIA on H2O2-induced H9c2 myocardial cell injury. IIA tanshinone
IIA, Que quercetin, #P < 0.01 (model group vs control group), **P < 0.01 (processing group vs
model group)
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pre-incubation with different concentrations of notoginsenoside R1 and ginsenoside
Rg1 (2.5, 5, 10, 20, 40, 80 μmol/L) for 24 h, they all demonstrated sublime cell
protective effects, and significantly enhanced the cell survival rate, demonstrating a
dose-dependent trend (as shown in Fig. 7.9).
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Fig. 7.5 Effect of salvianolic acid B on H2O2-induced H9c2 myocardial cell injury. B salvianolic
acid B, Que quercetin, #P < 0.01 (model group vs control group), **P < 0.01 (processing group vs
model group)
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Fig. 7.6 Effects of ginsenoside Rb1 on H2O2-induced H9c2 myocardial cell injury. Rb1
ginsenoside Rb1, Que quercetin, #P< 0.01 (model group vs control group), **P< 0.01 (processing
group vs model group)
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7.2.4.3 Protective Effects of Salvianolic Acid A on ox-LDL-Induced
Injury of Human Umbilical Vein Endothelial Cells

After 12 h pre-incubation with different concentrations of salvianolic acid A, 70 μg/
ml ox-LDL was allowed to react for 24 h. The CCK-8 method was employed to
detect the activity of cells. The results demonstrate that salvianolic acid A protects
ox-LDL-induced injury to human umbilical vein endothelial cells, in acceptable
doses. At the outset, the effective concentration of salvianolic acid A is low, and it
significantly reduce the ox-LDL-induced injury to human umbilical vein endothelial
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Fig. 7.7 Effects of notoginsenoside R1 on H2O2-induced H9c2 myocardial cell injury. R1
notoginsenoside R1, Que quercetin, #P < 0.01 (model group vs control group), **P < 0.01
(processing group vs model group)
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Fig. 7.8 Effects of luteolin on H2O2-induced H9c2 myocardial cell injury. Lut luteolin, Que
quercetin, ##P < 0.01 (model group vs control group), **P < 0.01 (Processing group vs model
group)
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cell at a concentration of 0.2 μm. However, salvianolic acid A shows obvious
cytotoxic effects at concentrations above 25 μmol (as shown in Fig. 7.10).

7.2.4.4 Protective Effects of Kaempferol on h9c2 Cardiomyocyte Injury
Induced by Doxorubicin

After 24 h pre-incubation with different concentrations of kaempferol, 1 μM doxo-
rubicin was allowed to react for 4 h. The MTT method was employed to detect the
effects of different concentrations of kaempferol on H9c2 myocardial cell activity.
The results demonstrate that kaempferol at different concentrations significantly
reduced the doxorubicin-induced H9c2 cardiomyocyte injury (as shown in
Fig. 7.11).

Fig. 7.9 Effects of notoginsenoside R1 and ginsenoside Rg1 on H9c2 myocardial cell injury
induced by hypoxia reoxygenation. R1 notoginsenoside R1, Rg1 ginsenoside Rg1. ###P < 0.001
(model group vs control group), *P < 0.05 (processing group vs model group), **P < 0.01
(processing group vs model group), ***P < 0.001 (processing group vs model group)
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Fig. 7.10 Effect of salvianolic acid A on ox-LDL-induced injury of human umbilical vein
endothelial cells. Sal.A salvianolic acid A, #P < 0.001 (model group vs control group), *P < 0.05
(processing group vs model group), **P < 0.01 (processing group vs model group)
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7.2.4.5 Summary

Taking Guanxin Danshen Formulation (GXDSF), a classic and famous prescription
as an example, this section exhaustively introduces the experimental reasoning and
measures of identifying the effective component groups of TCM/TCM compound
prescriptions based on the network pharmacology method, in an attempt to provide
reference for the application of network pharmacology in the research of the
component basis of TCM/TCM compound prescriptions. Contingent on ETCM,
TCM-MESH, CTD, and DisGeNET databases, this section constructs a TCM–

ingredient–disease target network of GXDSF in the treatment of CVD diseases
based on the network pharmacology method. By means of network analysis, we
identified 37 monomer chemical components, which collectively constitute the
active component group of GXDSF. Based on the component of each chemical
component in the medicinal ingredients and its topological parameter—connectivity
in the network, we hand-picked 9 components (kaempferol, luteolin, tanshinone IIA,
quercetin, Notoginsenoside R1, salvianolic acid B, Ginsenoside Rg1, ginsenoside
Rb1, and salvianolic acid A) from the above 37 to verify the activity of cardiovas-
cular protection. The results demonstrate that tanshinone IIA, salvianolic acid B,
ginsenoside Rb1, quercetin, and luteolin have protective effects on H2O2-induced
H9c2 myocardial cell injury. Ginsenoside Rg1 has protective effect on H9c2 myo-
cardial cell injury induced by anoxic reoxygenation. Albeit notoginsenoside R1 has
no significant consequence on H2O2-induced H9c2 cell injury, it could significantly
enhance H9c2 myocardial cell injury induced by hypoxia reoxygenation. Different
concentrations of kaempferol can significantly enhance doxorubicin-induced H9c2
myocardial cell injury. Based on the ox-LDL-induced injury model of human
umbilical vein endothelial cells, we verified the effect of salvianolic acid A
pretreatment on cell activity. The results demonstrate that salvianolic acid A can
protect ox-LDL-induced human umbilical vein endothelial cells from damage in a
dose-dependent manner. By and large, we detected the effective component group of
GXDSF based on the network pharmacology method, and the cardiovascular

Fig. 7.11 Effect of
kaempferol on doxorubicin-
induced H9c2
cardiomyocyte injury. #P <
0.05 (model group vs
control group), **P < 0.05
(processing group vs model
group)
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protective effects of some components were verified by different in vitro cell models.
The results of network analysis have high consistency with the experimental results,
which signifies that network pharmacology is an effective means to identify the
material basis of traditional Chinese medicines/TCM compound prescriptions.

7.3 Expounding the Pharmacodynamic Mechanism
of Single Chinese Medicine or Prescription

Traditional Chinese medicine and TCM prescriptions have multi-component, multi-
target, and multi-pathway functional characteristics, and have significant advantages
in the treatment of complex diseases. Traditional research procedures predominantly
employ phytochemical separation, extraction, identification, and other technologies
to explore the primary effective components in TCM or compound prescriptions,
and subsequently employ modern pharmacological means to investigate the primary
action target and signaling pathway, as a means to explore its mechanism of action.
However, this “single target–single component” chemical drug development model
is inconsistent with the application of synergistic compatibility of TCM and their
compounds, and cannot comprehensively explain the clinical effect of TCM and its
compound prescription. The emergence of network pharmacology promotes the
discovery, research, and development of drugs and the elucidation of therapeutic
mechanism [6], providing a new research idea and method for TCM and its com-
pounds [7–9].

Guanxin Danshen Formulation is a classic compound prescription composed of
Salvia miltiorrhiza, Panax notoginseng, and Dalbergia odorifera oil. In the preceding
research of its protective effect on Ischemia-Reperfusion Injury-Induced Left Myo-
cardial Ventricular Remodeling (MIRI-LVR), the author discovered that Guanxin
Danshen Formulation can enhance the cardiac systolic function of MIRI-LVR model
rats in acceptable doses, and demonstrates a significant inhibitory effect on MIRI-
LVR, however, its mechanism of action is not comprehensible. Although the
pharmacological action and mechanism of action of certain chemical components
in Guanxin Danshen Formulation have been researched and documented, the joint
action mechanism of several complex components in the compound cannot be
validated. In this section, we employ the network pharmacology method to predict
the possible action targets and mechanism of action of Guanxin Danshen Formula-
tion on MIRI-LVR, providing research ideas for elucidating the complex mechanism
of action of TCM compounds.

7.3.1 Data Acquisition and Processing

The research ideas and processes are shown in Fig. 7.12.
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7.3.1.1 Chemical Component Collection of GXDSF Prescription

Based on two classic Chinese herbal medicine databases, ETCM and TCM-MESH,
the chemical ingredients of GXDSF prescription were assembled. (1) The “Herbs”
option is selected under the MENU option in the ETCM database menu bar, and
“danshen” is entered in the search box, to obtain chemical composition list 1 of
Radix Salviae Miltiorrhizae. (2) “Herb” is selected under the Search Type option in
the TCM-MESH database, the “Pinyin Name” option is selected under Herb Name
Type option, and “Dan Shen” is entered in the search box to get the chemical
composition list 2 of Radix Salviae Miltiorrhizae. (3) The two chemical composition
lists of Salviae Miltiorrhizae collected based on ETCM and TCM-MESH databases
are integrated and de-duplicated, creating the complete chemical composition list of
Radix Salviae Miltiorrhizae. (4) The chemical components of panax notoginseng
and dalbergia odorifera are assembled employing the same method. The
corresponding relationship between each traditional Chinese medicine and its chem-
ical components are saved in the form of a two-dimensional list.

7.3.1.2 Collection of Chemical Component Targets

The “Chemicals” option was selected under Keyword Search in the CTD database
and the English name of each chemical component was entered in the search box, to

Fig. 7.12 Research ideas and processes
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assemble the target data of each chemical component. The corresponding relation-
ship between each chemical component and its target was saved in the form of a
two-dimensional list. The mass search function provided by the CTD database can
also be employed to retrieve the target data of each chemical component.

7.3.1.3 Collection of VR-Related Disease Genes

The “Search” option was selected under the menu bar in the CTD database,
the search type was set to “diseases,” and Ventricular remodeling was entered in
the search box to assemble the top 100 VR-related genes in the Inference Score. The
corresponding relationship between the disease and its related genes was saved in the
form of a two-dimensional list.

7.3.2 Network Construction and Visualization

7.3.2.1 Pathway Enrichment Analysis

The “set analyzer” option was selected under the “analyze” option in the CTD
database, Genes was selected as the input type, and the abbreviation of the target
gene entered in the input box. “Enriched pathways” was selected as the analysis
type, and the corrected P-value threshold value was set to 0.001.

7.3.2.2 TCM–Target Network

The corresponding relationships between various TCM and VR-related genes in
GXDSF were saved in the form of a two-dimensional list. Cytoscape 3.5.0 software
was used to realize the visualization of the TCM–target network.

The NetworkAnalyzer function under the “Tools” option under the menu bar in
Cytoscape 3.5.0 was employed to analyze the topology attributes (connectivity) of
each node in the network.

7.3.3 Network Analysis and Prediction

7.3.3.1 Coincidence Degree Between GXDSF Component Target
Proteins and VR-Related Genes

By implementing the consistency analysis of the chemical composition target pro-
teins of the complete GXDSF prescription and VR-related genes, it was established
that a total of 56 target proteins in GXDSF appear in the list of VR-related genes,
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accounting for 56% (56/100) of all VR-related genes. GXDSF may achieve direct
regulation of VR by means of these target proteins.

7.3.3.2 TCM–Target Network of GXDSF in the Treatment of VR

By means of the connectivity analysis of the TCM–target network, it was established
that among the 56 genes involved in regulation by GXDSF, the number of genes
with connectivity degrees 1, 2, and 3 are 20, 15, and 21, respectively (as shown in
Fig. 7.13). This implies that in GXDSF, there are 21 VR-related genes that 3 Chinese
herbs act on concurrently, 15 VR-related genes that at least two kinds of Chinese
herbs act on concurrently, and 20 VR-related genes that only 1 kind of Chinese herb
acts upon.

Fig. 7.13 TCM–target network of GXDSF in the treatment of VR. The yellow square nodes
represent TCM. The red, green, and blue circular nodes represent VR-related genes with connec-
tivity degrees 1, 2, and 3, respectively. The size of connectivity represents the number of Chinese
medicines involved in the regulation of this gene in GXDSF. The genes in black circles are ESR1
and ESR2
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7.3.3.3 Discovery of the Potential Pathway of GXDSF in the Treatment
of VR

The KEGG pathway enrichment analysis was implemented using GXDSF target
protein overlapped with VR-related genes as the input. The results demonstrate that
there are 75 VR-related pathways involved in the regulation through GXDSF.
Table 7.3 provides the names, the corrected P-values, and the involved VR-related
genes of each pathway. The results of pathway enrichment analysis reflect the
characteristics of multi-target and multi-channel treatment of TCM compound
prescriptions.

7.3.4 Verification and Summary

Through experimental research in the initial stage, the authors found that a variety of
main active ingredients in Guanxin Danshen Formulation can combine with estrogen
receptor to produce an estrogen like effect, and exhibit anti-inflammatory, antioxi-
dant, anti-apoptotic [4], and neuroprotective effects [10] by regulating ERs-PI3K/
Akt signaling pathway. Based on the results of pathway enrichment and its topo-
logical parameter—connectivity in the network, and combined with previous stud-
ies, we hand-picked ERs-PI3K/Akt signaling pathway from the above 75 pathways
to verify the pharmacodynamic mechanism of action of ERs-PI3K/Akt signaling
pathway in the Guanxin Danshen Formulation against MIRI-LVR.

7.3.4.1 Expression of ERs-PI3K/Akt Signaling Pathway-Related
Proteins of Guanxin Danshen Formulation Against MirI-LVR
Rat Myocardial Tissue

Western Blot results demonstrate that compared to the sham-operated group, the
expression quantity of estrogen receptor α and β in the MIRI-LVR model group
increased, but there was no significant difference. Simvastatin also had no significant
effect on the expression of estrogen receptors. Upon being treated with Guanxin
Danshen Formulation, the expression of ERα in myocardial tissue was not signifi-
cantly affected either, however, the expression quantity of Erβ increased in accept-
able doses. Correspondingly, with the increase of ERβ expression quantity, the
phosphorylation level of PI3K/Akt in the downstream signaling pathway protein
PI3K/Akt in myocardial tissue increased significantly. The results are shown in
Fig. 7.14.

The effect of Guanxin Danshen Formulation on the distribution of ERβ/α-SMA in
myocardial tissue of MIRI-LVR model rats was investigated by immunofluores-
cence double staining. The results demonstrate that the expression of ERβ in the
MIRI-LVR model group did not significantly increase compared to the
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Table 7.3 Potential Pathway of GXDSF in the Treatment of VR

Serial
No. Pathway

Corrected
P-value Related genes

1 AGE-RAGE signaling
pathway in diabetic
complications

5.72 �
10�55

AKT1|BAX|BCL2|CASP3|CCL2|COL1A1|
EDN1|EGR1|FN1|ICAM1|IL1A|IL1B|IL6|
MAPK1|MAPK3|MMP2|NFKB1|NOS3|
PRKCA|RELA|SERPINE1|SMAD3|
STAT3|TGFB1|TNF|VCAM1|VEGFA

2 Fluid shear stress and
atherosclerosis

2.82 �
10�33

AKT1|BCL2|CCL2|EDN1|FOS|HMOX1|
ICAM1|IFNG|IL1A|IL1B|MMP2|MMP9|
NFKB1|NOS3|PLAT|RELA|SQSTM1|TNF|
VCAM1|VEGFA

3 HIF-1 signaling pathway 1.27 �
10�31

AKT1|BCL2|EDN1|EGFR|HMOX1|IFNG|
IL6|MAPK1|MAPK3|NFKB1|NOS2|NOS3|
PRKCA|RELA|SERPINE1|STAT3|TIMP1|
VEGFA

4 TNF signaling pathway 1.03 �
10�28

AKT1|CASP3|CCL2|CCL5|EDN1|FOS|
ICAM1|IL1B|IL6|MAPK1|MAPK3|MMP9|
NFKB1|PTGS2|RELA|TNF|VCAM1

5 IL-17 signaling pathway 1.12 �
10�20

CASP3|CCL2|FOS|IFNG|IL1B|IL6|
MAPK1|MAPK3|MMP9|NFKB1|PTGS2|
RELA|TNF

6 Colorectal cancer 1.42 �
10�18

AKT1|BAX|BCL2|CASP3|CASP9|FOS|
MAPK1|MAPK3|MYC|SMAD3|TGFB1

7 PI3K-Akt signaling
pathway

3.64 �
10�18

AKT1|BCL2|BCL2L1|CASP9|COL1A1|
EGFR|FN1|IL6|MAPK1|MAPK3|MYC|
NFKB1|NOS3|PRKCA|RELA|VEGFA

8 Inflammatory bowel dis-
ease (IBD)

3.70 �
10�18

IFNG|IL10|IL1A|IL1B|IL6|NFKB1|RELA|
SMAD3|STAT3|TGFB1|TNF

9 EGFR tyrosine kinase
inhibitor resistance

3.6 �
10�17

AKT1|BAX|BCL2|BCL2L1|EGFR|IL6|
MAPK1|MAPK3|PRKCA|STAT3|VEGFA

10 MAPK signaling pathway 1.46 �
10�16

AKT1|CASP3|EGFR|FOS|IL1A|IL1B|
MAPK1|MAPK3|MYC|NFKB1|PRKCA|
RELA|TGFB1|TNF

11 Apoptosis 2.46 �
10�16

AKT1|BAX|BCL2|BCL2L1|CASP3|
CASP9|FOS|MAPK1|MAPK3|NFKB1|
RELA|TNF

12 Prion diseases 2.56 �
10�16

BAX|CCL5|EGR1|IL1A|IL1B|IL6|MAPK1|
MAPK3|SOD1

13 Endocrine resistance 3.13 �
10�16

AKT1|BAX|BCL2|EGFR|ESR1|ESR2|FOS|
MAPK1|MAPK3|MMP2|MMP9

14 Th17 cell differentiation 1.23 �
10�15

FOS|IFNG|IL1B|IL6|MAPK1|MAPK3|
NFKB1|RELA|SMAD3|STAT3|TGFB1

15 NOD-like receptor signal-
ing pathway

3.20 �
10�15

ATG5|BCL2|BCL2L1|CCL2|CCL5|IL1B|
IL6|MAPK1|MAPK3|NFKB1|RELA|TNF

16 Small cell lung cancer 1.05 �
10�14

AKT1|BCL2|BCL2L1|CASP9|FN1|MYC|
NFKB1|NOS2|PTGS2|RELA

17 FoxO signaling pathway 1.34 �
10�14

AKT1|CAT|EGFR|IL10|IL6|MAPK1|
MAPK3|SMAD3|SOD2|STAT3|TGFB1

(continued)
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sham-operated group, but the expression distribution of α-SMA in the myocardial
infarction area and the infarction boundary area significantly increased. Compared to
the model group, the expression distribution of α-SMA in the infarct zone and the
infarct border zone of the simvastatin group decreased; the expression of ERβ in
myocardial tissue in the border zone of infarction increased with the increase of dose
in low, medium, and high dose groups of Guanxin Danshen Formulation. Concur-
rently, the expression of α-SMA in the infarct area and infarct border area decreased
with the increase of dose. The results are demonstrated in Fig. 7.15.

The results advocate that the Guanxin Danshen Formulation can promote the
expression of ERβ in myocardial tissue in acceptable doses, and in the interim,
increase the phosphorylation of PI3K/Akt in its downstream signaling pathway. It
indicates that the myocardial protective effect of Guanxin Danshen Formulation may
be related to the selective activation of ERβ/PI3K/Akt signaling pathway.

7.3.4.2 Verification of the Pharmacodynamic Mechanism of Action
of ERs-PI3K/Akt Signaling Pathway in Guanxin Danshen
Formulation Against MIRI-LVR

Effect of Inhibiting ERβ on the Therapeutic Effect of Guanxin Danshen
Prescription Against MIRI-LVR

The test results of myocardial three enzymes show that the levels of myocardial three
enzymes do not change significantly after MIRI-LVR model rats are treated with
PHTPP alone. Compared with the Guanxin Danshen Formulation treatment group,
the LDH (P< 0.001) and CK-MB (P< 0.05) increased significantly in the +PHTPP
Guanxin Danshen Formulation treatment group. The results are shown in Fig. 7.16.

The results of Masson staining demonstrate that there is no significant change in
the area of myocardial fibrosis in MIRI-LVR model rats after being treated with
PHTPP. Compared to the Guanxin Danshen Formulation treatment group, the area
of myocardial fibrosis increased significantly in the +PHTPP Guanxin Danshen
Formulation treatment group (P < 0.01). Western Blot testing of α-SMA expression
level in myocardial tissue exhibits no significant change in the expression level of
α-SMA in MIRI-LVR model rats treated with PHTPP. Compared to the Guanxin

Table 7.3 (continued)

Serial
No. Pathway

Corrected
P-value Related genes

18 Apelin signaling pathway 2.22 �
10�14

ACTA2|AKT1|EGR1|MAPK1|MAPK3|
NOS2|NOS3|PLAT|PPARGC1A|
SERPINE1|SMAD3

19 Estrogen signaling
pathway

5.23 �
10�14

AKT1|EGFR|ESR1|ESR2|FOS|MAPK1|
MAPK3|MMP2|MMP9|NOS3

20 Non-alcoholic fatty liver
disease (NAFLD)

5.26 �
10�14

AKT1|BAX|CASP3|IL1A|IL1B|IL6|
NFKB1|PPARA|RELA|TGFB1|TNF
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Danshen Formulation treatment group, the expression level of α-SMA increased
significantly in the +PHTPP Guanxin Danshen Formulation treatment group (P <
0.001). The results are shown in Fig. 7.17.

The shown heart function test results of Hemodynamics (as shown in Fig. 7.18)
and echocardiography (as shown in Fig. 7.19) indicate that there are no significant
changes in the LVSP, +DP/DT, LVEF, and LVFS of MIRI-LVR model rats after
being treated with PHTPP. Compared to the Guanxin Danshen Formulation treat-
ment group, the LVSP (P < 0.05), +dp/dt (P < 0.05), LVEF (P < 0.01), and LVFS

Fig. 7.15 Effect of Guanxin Danshen formulation on expression and distribution of ERβ/α-SMA in
myocardial tissues (the bar value of (a, c, e, g, i, and k) is 100 μm, and that of (b, d, f, h, j, and i) is
25 μm)

Fig. 7.16 Effect of ERβ inhibitor PHTPP on the expression of three enzymes in myocardium of
Guanxin Danshen formulation
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Fig. 7.17 Effect of ERβ Inhibitor PHTPP on reversing myocardial fibrosis of Guanxin Danshen
formulation. (a) Results of Masson staining in myocardial tissue sections; (b) Statistical results of
fibrotic area in Masson staining sections; (c) Western blot detection of α-SMA expression quantity
results in myocardial tissue
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(P < 0.05) decreased significantly in the +PHTPP Guanxin Danshen formulation
treatment group. There are significant differences when comparing LVEF (P< 0.05)
and LVFS (P < 0.05) between 17β-estradiol group and Guanxin Danshen formula-
tion group.

Fig. 7.18 Effect of Erβ inhibitor PHTPP on Guanxin Danshen formulation in improving the
hemodynamic indexes
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Effects of Inhibiting ERβ on the Protein and Signaling Pathway that Guanxin
Danshen Formulation Acts Upon

The results of expression of estrogen receptor β and its downstream signaling
pathway PI3K/Akt detected by Western Blot indicate that, compared to the
sham-operated group, Guanxin Danshen Formulation has no significant effect on
the expression of estrogen receptor β and its downstream signaling pathway PI3K/
Akt in normal rat myocardial tissue. Upon PHTPP treatment, compared to the
Guanxin Danshen Formulation treatment group, the expression of estrogen receptor
β in the +PHTPP group of Guanxin Danshen Formulation significantly decreased
(P < 0.001), and its phosphorylation level of PI3K/Akt in downstream signaling
pathway also significantly decreased (P< 0.001). The results are shown in Fig. 7.20.

Fig. 7.19 Effect of Erβ inhibitor PHTPP on Guanxin Danshen formulation in improving the
echocardiographic indexes
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Fig. 7.20 Effect of ERβ Inhibitor PHTPP on the protein and signaling pathway that Guanxin
Danshen formulation acts upon
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The effects of PHTPP on the expression distribution of ERβ/α-SMA tested by
immunofluorescence double staining indicate that, after treatment with PHTPP, the
expression of estrogen receptor β in the infarct area and the infarct border area of
MIRI-LVR rats significantly decreased, and the expression of α-SMA in the infarct
area and the infarct border area significantly increased. Compared to the Guanxin
Danshen Formulation treatment group, the expression of ERβ in the myocardial
tissue of infarction area and infarct boundary area was significantly inhibited in the
+PHTPP Guanxin Danshen Formulation treatment group, and in the interim, a large
number of expression and distribution of α-SMA can be observed. The results are
shown in Fig. 7.21.
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7.3.4.3 Summary

This section cites the classic and famous GXDSF Formulation as an example to
exhaustively introduce the experimental reasoning and measures of investigating the
efficacy mechanism of Chinese herbal compound prescriptions based on the network
pharmacology method, with a view to provide research reasoning and reference for
the investigation of the mechanism of action of TCM/TCM compound prescriptions.
Contingent on ETCM, TCM-MESH, CTD database, and Cytoscape analysis soft-
ware, this section constructs a TCM–target–disease network of GXDSF against
MIRI-LVR based on the network pharmacology method. Using network analysis,
we identified 75 signaling pathways, which collectively constitute the pharmacody-
namic network of GXDSF. The pathway enrichment results and topological param-
eters—connectivity in the network, were integrated and combined with the basis of
previous research, and we hand-picked the ERs-PI3K/Akt signaling pathway from
the above 75 pathways to verify the pharmacodynamic mechanism of GXDSF
against MIRI-LVR through experiments. The verification results demonstrated that
Guanxin Danshen Formulation could significantly promote the expression of ERβ

Fig. 7.21 Effect of ERβ Inhibitor PHTPP on the Expression Distribution of ERβ/α-SMA (the bar
value of (a, c, e, g, i, k, and m) is 100 μm, and that of (b, d, f, h, j, i, and n) is 25 μm)
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and its downstream signaling pathway protein PI3K/Akt in the myocardial tissue of
MIRI-LVR model rats in acceptable doses. PHTPP, a specific inhibitor of ERβ in
rats, was rendered to verify the role of ERβ in the myocardial protection capabilities
of Guanxin Danshen Formulation. The results demonstrated that PHTPP could
significantly aggravate the improvement of three myocardial enzymes and the
improvement of cardiac structure and function by Guanxin Danshen Formulation.
It indicates that the myocardial protective effect of Guanxin Danshen Formulation is
closely related to the activation of ERβ/PI3K/Akt signaling pathway. In summation,
we discovered the pharmacodynamic mechanism network of GXDSF by employing
the analysis method of network pharmacology, and verified the significant function
of ERβ/PI3K/Akt signaling pathway in the pharmacodynamics of GXDSF by means
of animal model experiments [11]. The results of network analysis are highly
consistent with the experimental results, which indicate that network pharmacology
is an effective means to investigate the pharmacodynamic mechanism of TCM/TCM
compound prescriptions.

7.4 Explanation of the Interaction Between TCM
and Western Medicine: Combined Use of Chinese
and Western Medicines Enhances Efficacy and Reduces
Toxicity

Ischemic stroke is a global health problem, accounting for more than 77% of all
strokes, and is the leading cause of disability and the second leading cause of
mortality globally, with a growing mortality rate [12]. Although great progress has
been made in the pathophysiological mechanism of ischemic stroke in China and
overseas in recent years, there are still very limited clinical drugs for the treatment of
ischemic stroke. So far, the only drug approved for the treatment of acute ischemic
stroke is recombinant tissue plasminogen activator (rt-PA). However, the application
of rt-PA is limited due to the short treatment time window (3 h) and potential side
effects (intracranial hemorrhage) [13]. Thrombolytic therapy is only suitable for
acute stage of ischemic stroke. At present, aspirin, which is commonly used in
clinical treatment and prevention of cerebrovascular disease, is only effective for
patients with mild stroke, and the therapeutic effect is not satisfactory. The
CHANCE study conducted by Professor Wang Yong-jun found that, for patients
with mild stroke and TIA within 24 h of onset, giving them a combination of aspirin
and clopidogrel for 21 consecutive days (grade B evidence, grade IIb recommenda-
tion) was effective in reducing stroke recurrence within 90 days, confirming that the
combined use of aspirin and clopidogrel is more effective than using aspirin alone.
Although the efficacy of combined antiplatelet therapy is better than that of aspirin
alone, combined antiplatelet therapy also has limitations related to the appropriate
population, bleeding risk, and gastrointestinal mucosal injury. As existing clinical
drugs have not yet met the clinical needs, there is an urgent need for new treatment
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strategies for acute ischemic stroke. The activating blood and removing blood stasis
agent, clearing heat and resuscitating agent, replenishing qi and promoting blood
circulation agent among Chinese patent medicines, such as Panax notoginseng,
Salvia miltiorrhiza, Ligusticum chuanxiong, and Ginkgo biloba preparations with
clinically definite curative effects, have received increasing attention recently due to
their unique effects. Therefore, finding more effective treatment methods and drugs
for stroke has become a key topic of discussion in the field of pharmaceutical
research.

Panax notoginseng is a traditional and precious traditional Chinese medicine in
China, enjoying the reputation of “Jinbuchang,” “Magic medicine from Nan’guo,”
“King of Ginseng,” and “surgical elixir.” [14] The Supplement to Compendium of
Materia Medica records that: “Ginseng supplements qi first, panax notoginseng
supplements blood first, having the same taste but different functions, thus it is
called panax notoginseng, the most precious of Traditional Chinese medicine.” [15]
Panax notoginseng is the root of the perennial herbaceous plant Araliaceae. It is
sweet and slightly bitter in taste, wet in nature, and attributive to liver, and stomach
channels. Raw Panax notoginseng reduces blood stasis and stops bleeding, and can
be used for hemoptysis, vomiting blood, bruises, swelling and pain, and traumatic
bleeding; cooked Panax notoginseng replenishes blood and promotes blood circu-
lation, and is used for blood loss and anemia [16]. By constructing an integrated
pharmacology based on the integration of network pharmacology, genomics, sys-
tematic pharmacology, and other technologies, this research group analyzed the
multi-level research technology of the mechanism of action of panax notoginseng,
promoted the clinical positioning and re-evaluation of original new drugs, and
clarified panax notoginseng’s pharmacodynamic material basis. Xuesaitong is devel-
oped from the effective active ingredients in Panax notoginseng. In vivo and in vitro
studies in China and overseas have proved that it has definite cardioprotective effect,
such as inhibiting platelet aggregation, reducing blood viscosity, antithrombotic
effect, improving microcirculation, inhibiting inflammatory reaction, activating
estrogen receptor in playing an anti-apoptosis role, etc. [17] The Xuesaitong Soft
Capsule has the effect of promoting blood circulation and removing blood stasis,
dredging blood vessels, and activating collaterals. It is mainly used during the
recovery period of the meridian in stroke for the blood stasis and closed channels
and collaterals syndrome. Symptoms include hemiplegia, askew tongue, hard
tongue, tough pronunciation of words, or inability to speak. Symptoms include
hemiplegic paralysis, hemiparalysis, deviation of the eye and mouth, stiff tongue.
In vitro and in vivo studies in China and overseas have proved that it has anti-
oxidative stress and anti-inflammatory effects, and has definite neuroprotective
effects.

According to the big data analysis of clinical data, at present, the traditional
Chinese patent medicines for the treatment of acute ischemic stroke are mainly drugs
for promoting blood circulation and removing blood stasis. To achieve symptomatic
treatment, it is supplemented by Huatan Xingnao Kaiqiao medicine, while the use of
Western medicine is recommended according to the guidelines for diagnosis and
treatment of acute ischemic stroke. The combination of Chinese patent medicine and
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Western medicine is mostly blood activating and stasis removing drugs + antiplatelet
drugs [18]. Clinical findings show that the efficacy of using aspirin alone and the
combined use of aspirin and clopidogrel could not meet the clinical needs. More-
over, due to the side effects of long-term use of aspirin, such as gastrointestinal
mucosal injury and the risk of bleeding, antiplatelet drugs are not used alone in
clinical use. Although it was found that the effect of combined use of Chinese patent
medicine and antiplatelet drug is better than that of single use, there is a lack of
quantitative data support for combined applications, and its action link, efficacy
target, use dosage, multi-target synergistic effect enhancement, and toxicity reduc-
tion mechanism are as yet unclear. Therefore, we chose to adopt MCAO/R
model rats.

7.4.1 Data Acquisition and Processing

The research idea and process are shown in Fig. 7.22.

Fig. 7.22 Research ideas and processes
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7.4.1.1 Selection of Target Components

Based on references and our previous experimental results, five main effective
ingredients—notoginsenoside R1, ginsenoside Rg1, ginsenoside Rb1, ginsenoside
Rd, and ginsenoside Re (as shown in Table 7.4) were selected as the representative
ingredients of Xuesaitong for carrying out the subsequent study.

7.4.1.2 Collection of Chemical Composition Targets

“Chemicals” was selected under the Keyword Search option of the CTD database,
the English name of each chemical component was entered in the search box, and the
target data of each chemical component collected. The corresponding relationship
between each chemical component and its targets was saved in the form of a
two-dimensional list.

7.4.1.3 Gene Collection of Ischemic Stroke-Related Diseases

“Diseases” was selected under the Keyword Search option of the CTD database, and
“Cerebral infarction/Brain infarction” was entered in the search box to collect the
gene data related to ischemic stroke. The corresponding relationship between each
gene and ischemic stroke was saved in the form of a two-dimensional list.

Table 7.4 Main effective ingredients of Xuesaitong

Serial
No. Compound

Chinese
name CAS

Molecular
formula

Molecular
weight

1 Notoginsenoside
R1

三七皂苷

R1
80418-
24-2

C47H80O18 933.139

2 Ginsenoside Rg1 人参皂苷

Rg1
22427-
39-0

C42H72O14 801.024

3 Ginsenoside Rb1 人参皂苷

Rb1
41753-
43-9

C54H92O23 1109.307

4 Ginsenoside Rd 人参皂苷

Rd
52705-
93-8

C48H82O18 947.15

5 Ginsenoside Re 人参皂苷

Re
52286-
59-6

C48H82O18 947.15
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7.4.2 Network Construction and Visualization

7.4.2.1 Network Construction and Visualization

The “component–target” list and “disease–gene” list obtained from the data source
were entered into the Cytoscape 3.5.0 network analysis and visualization software.
The merge function under the “Tools” in the menu bar was used to superimpose the
network, and construct “Xuesaitong-ischemic stroke target network,” “Aspirin-
ischemic stroke target network,” and “Xuesaitong and Aspirin-Ischemic Stroke
target network.” Based on the drug–target network, the target profiles and the
interaction between Xuesaitong and Aspirin were analyzed.

7.4.2.2 Analysis Index and Algorithm

The NetworkAnalyzer function under the “Tools” option in the Cytoscape 3.5.0
menu bar was used to analyze the topological attributes (connectivity) of each node
in the network.

7.4.3 Network Analysis and Prediction

7.4.3.1 Target Network of Xuesaitong in the Treatment of Ischemic
Stroke

Figure 7.23 shows the target network of Xuesaitong in the treatment of ischemic
stroke. Notoginsenoside R1, Ginsenoside Rg1, ginsenoside Rb1, ginsenoside Rd,
and ginsenoside Re regulate ischemic stroke by regulating 29, 18, 8, 9, and 23 genes
related to ischemic stroke, respectively. There is a certain degree of crossover
between the genes related to ischemic stroke regulated by each component. At the
same time, each component has its specific regulatory target, reflecting the multi-
component and multi-target characteristics of TCM. The genes with connectivity
greater than 3 in the network are CASP3, CAT, TNF, BAX, BCL2, MAPK3, IL6,
and MAPK1. These genes may be the key targets of Xuesaitong in the treatment of
ischemic stroke.

7.4.3.2 Target Network of Aspirin in the Treatment of Ischemic Stroke

In treating ischemic stroke, aspirin regulates 62 genes related to ischemic stroke
(as shown in Fig. 7.24). CASP3, CAT, TNF, BAX, BCL2, MAPK3, IL6, and
MAPK1, which are regulated by Xuesaitong, are all reflected in the aspirin-ischemic
stroke-related gene network, which further demonstrates the important role of these
genes in the treatment process of ischemic stroke.

7 Drug-Based Network Pharmacology Practice Process 353



7.4.3.3 The Combined Use of Xuesaitong and Aspirin Enhances
the Effect of Aspirin in Treating Ischemic Stroke

Figure 7.25 shows the molecular target network of combined use of aspirin and
Xuesaitong. There is a high degree of overlap between aspirin and ischemic stroke-
related genes regulated by Xuesaitong. Among the 37 genes regulated by
Xuesaitong, 31 genes are overlapped with those regulated by aspirin, suggesting
that the combined use of Xuesaitong and aspirin may have the potential to enhance
the effect of aspirin in the treatment of ischemic stroke (as shown in Fig. 7.26).
Compared with using aspirin alone, ischemic stroke-related genes regulated by the
combined use of aspirin and Xuesaitong increased by 6 genes (CYP3A4, NRI12,
NGF, CYP1A2, SERP1NE1, and ADIPOQ). However, the specific role of these
genes in the combined use of aspirin and Xuesaitong still needs further research.

Fig. 7.23 Xuesaitong-ischemic stroke-related gene network. The green and red round nodes
represent the main components of Xuesaitong and genes related to ischemic stroke, respectively
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7.4.4 Verification and Summary

7.4.4.1 Clinical Therapeutic Effect

A total of 120 patients with cerebral infarction treated from August 2015 to October
2017 were taken as research subjects and randomly divided into the treatment group
and the control group with 60 cases each [19]. The treatment group was treated with
the combined use of panax notoginseng saponins and aspirin, while the control
group was treated with aspirin only. The therapeutic effect, platelet aggregation rate,
recurrence rate, and complication rate of the two groups were compared. The total
effective rate of 86.67% (52/60) in the treatment group was significantly higher than
that of 71.67% (43/60) in the control group (P < 0.05). After treatment, the NIHSS
score of the treatment group was significantly lower than that of the control group,
the platelet aggregation rate was significantly lower than that of the control group,

Fig. 7.24 Aspirin-ischemic stroke-related gene network. Green and red round nodes represent
aspirin and ischemic stroke-related genes, respectively

7 Drug-Based Network Pharmacology Practice Process 355



the recurrence rate was significantly lower than that of the control group, and the
incidence of complications was also significantly lower than that of the control group
(P < 0.05). The combined use of panax notoginseng saponins and aspirin can
achieve a certain preventive effect, which is safe and has a remarkable therapeutic
effect on cerebral infarction.

Fig. 7.25 Aspirin and Xuesaitong-ischemic stroke-related gene network. The green round nodes
represent the main components of Xuesaitong, and the blue round nodes represent aspirin; the red
V-shaped nodes represent genes associated with ischemic stroke. The blue, red, purple, yellow,
green, and blue edges connect to the ischemic stroke-related genes associated with aspirin,
notoginsenoside R1, ginsenoside Rd, ginsenoside Re, ginsenoside Rg1, and ginsenoside Rb1,
respectively
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7.4.4.2 Combined Use of Xuesaitong and Antiplatelet Drugs can
Significantly Reduce the Neurological Deficit Score of MCAO/R
Model Rats

As shown in Fig. 7.27, compared with the sham-operated group, the neurological
deficit score of rats in the MCAO/R model group is increased significantly (P <
0.05); compared with the MCAO/R model group, Xuesaitong, aspirin, combined use
of Xuesaitong and aspirin, combined use of clopidogrel and aspirin, combined use of
Xuesaitong, aspirin, and clopidogrel, all significantly reduced the neurological

Fig. 7.26 Venn diagram—

aspirin vs Xuesaitong (genes
associated with ischemic
stroke)

Fig. 7.27 Combined use of
Xuesaitong and antiplatelet
drugs significantly reduces
the neurological deficit
score of MCAO/R model
rats. Note: ##, P < 0.01 vs
sham-operated group; *,
P < 0.05 vs MCAO/R
Model group; △, P < 0.05
vs ASA group; &, P < 0.05
vs ASA+CLP group
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deficit score of rats (P < 0.05). Compared with aspirin (8.1 mg/kg) group, the
combined use of Xuesaitong (25 mg/kg) and aspirin (8.1 mg/kg) significantly
reduces neurological deficit score of rats (P < 0.05). Compared with the group
using aspirin (8.1 mg/kg) and clopidogrel (7.5 mg/kg), the neurological deficit score
of rats with the combined use of Xuesaitong (25 mg/kg), aspirin (8.1 mg/kg), and
clopidogrel (7.5 mg/kg) is significantly decreased (P < 0.05).

7.4.4.3 Combined Use of Xuesaitong and Antiplatelet Drugs
Significantly Reduces the Cerebral Infarction Volume
in MCAO/R Model Rats

As shown in Fig. 7.28, compared with the sham-operated group, the cerebral
infarction volume of rats in the MCAO/R model group is significantly increased
(P < 0.05); compared with the MCAO/R model group, Xuesaitong, aspirin, com-
bined use of Xuesaitong and aspirin, combined use of clopidogrel and aspirin, and
combined use of Xuesaitong, aspirin, and clopidogrel, all significantly reduce the
cerebral infarction volume (P< 0.05). Compared with the aspirin (8.1 mg/kg) group,
the combined use of Xuesaitong (25 mg/kg) and aspirin (8.1 mg/kg) significantly
reduces the cerebral infarction volume (P < 0.05). Compared with the group using
aspirin (8.1 mg/kg) and clopidogrel (7.5 mg/kg), the cerebral infarction volume of
rats with the combined use of Xuesaitong (25 mg/kg), aspirin (8.1 mg/kg), and
clopidogrel (7.5 mg/kg) is significantly decreased (P < 0.05).

7.4.4.4 Combined Use of Xuesaitong and Antiplatelet Drugs Improves
the Inhibitory Effect of Aspirin or Penicillin-Streptomycin
on Platelets

As shown in Fig. 7.29, compared with the sham-operated group, the maximum
platelet aggregation rate of the MCAO/R model group is significantly increased.
Compared with the MCAO/R model group, use of aspirin, or combined use of
clopidogrel and aspirin significantly reduces the maximum platelet aggregation
rate. Combined use of Xuesaitong and aspirin, and combined use of Xuesaitong,
aspirin, and clopidogrel significantly improve the inhibition of aspirin on platelets.

7.4.4.5 Xuesaitong Significantly Reduces Aspirin-Induced Gastric
Mucosal Damage in Rats

As shown in Fig. 7.30, compared with the control group, gastric mucosal epithelial
cells of rats are necrotic and inflammatory cells are infiltrated in the aspirin group.
Compared with the aspirin group, Xuesaitong significantly reduces gastric mucosal
epithelial cell necrosis and inflammatory cell infiltration induced by aspirin. Using
Xuesaitong alone has no significant effect on the gastric mucosa of rats.
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Fig. 7.29 Combined use of Xuesaitong and antiplatelet drugs improves the inhibitory effect of
aspirin or penicillin-streptomycin on platelets. Note: ##, P < 0.01 vs sham-operated group; *, P <
0.05 vs MCAO/R Model group; **, P < 0.01 vs MCAO/R Model group; △, P < 0.05 vs ASA
group; &, P < 0.05 vs ASA+CLP group

Fig. 7.30 Xuesaitong significantly reduces aspirin-induced gastric mucosal damage in rats
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7.4.4.6 Xuesaitong Significantly Reduces Aspirin-Induced Duodenal
Microvilli Injury in Rats

As shown in Fig. 7.31, compared with the control group, the number of microvilli on
the surface of rat duodenum in the aspirin group significantly reduces. Compared
with the aspirin group, Xuesaitong significantly reduces the decrease in microvilli on
the duodenum surface induced by aspirin, however, using Xuesaitong alone has no
significant effect on microvilli on the surface of rat duodenum.

7.4.4.7 Combined Use of Xuesaitong and Aspirin has Synergistic Effect
on the Influence of Gene Expression of MCAO Model Rats

As shown in Fig. 7.32, aspirin has little influence on gene expression of MCAO
model rats, while Xuesaitong has significant influence on gene expression of MCAO
model rats. The combined use of Xuesaitong and aspirin has synergistic effect on the
influence of gene expression of MCAO model rats.

7.4.4.8 Combined Use of Xuesaitong and Aspirin Significantly Affects
the Gene Expression of MCAO Model Rats

As shown in Fig. 7.33, compared with the MCAO model group, aspirin causes
58 differential gene expressions, PNS (Panax notoginseng saponins) administration
causes 267 differential gene expressions, and ALI Therapy causes 677 differential

Fig. 7.31 Xuesaitong significantly reduces aspirin-induced duodenal microvilli injury in rats
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Fig. 7.32 Differential gene cluster diagram of ALI therapy

Fig. 7.33 Differential gene venn diagram of ALI therapy
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gene expressions; Compared with aspirin, ALI Therapy causes 32 differential gene
expressions; Compared with Panax notoginseng saponins, ALI Therapy causes
132 differential gene expressions.

7.4.4.9 Summary

Taking the combined use of Xuesaitong and aspirin as an example, this section
comprehensively introduces the experimental ideas and processes of the interaction
between TCM and Western medicine based on network pharmacology, and tries to
provide reference for the application of network pharmacology in the study of
interaction between Chinese and Western medicine. Based on the results of the
CTD database and literature research, this section constructs the molecular target
networks of Xuesaitong and aspirin in regulating ischemic stroke using network
pharmacology. The consistency analysis of the target spectrum of Xuesaitong and
aspirin is carried out through the network superposition technology. It was found
that there is a high degree of overlap in the ischemic stroke-related genes regulated
by aspirin and Xuesaitong. Among the 37 genes regulated by Xuesaitong, 31 genes
are completely consistent with those regulated by aspirin, suggesting that
the combined use of the two has the potential to enhance the effect of aspirin in
the treatment of ischemic stroke. Based on the MCAO/R model of SD rats, we tested
the effects of Xuesaitong, aspirin, and Xuesaitong + aspirin on the neurological
deficit score and cerebral infarction volume. The results showed that the effect of the
combined use of aspirin and Xuesetong is better than using aspirin or Xuesetong
alone. In addition, Xuesaitong has a certain alleviating effect on gastrointestinal
mucosal damage caused by aspirin or penicillin-streptomycin. In general, based on
network pharmacology, this section infers from the drug–target level that the
combined use of Xuesaitong and aspirin has the potential to enhance the effect of
aspirin in the treatment of ischemic stroke; the network analysis results were verified
from the overall level based on the MCAO/R rat model. The experimental results are
highly consistent with the network analysis results, indicating that network pharma-
cology has broad application prospects in explaining the interaction between Chi-
nese and Western medicines.

7.5 Repositioning of Clinical Application of Drugs: New
Uses of TCM Ingredients in Protecting Cerebral
Ischemia-Reperfusion Injury

Thrombolytic therapy is still the main treatment methodology for acute ischemic
stroke. However, cerebral ischemia-reperfusion injury that is a side effect of throm-
bolytic therapy hinders the successful treatment of acute ischemic stroke. Although
reperfusion is the key to the recovery of brain function, reperfusion leads to
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excessive production of reactive oxygen species (free radicals), which leads to
oxidative stress and further deterioration of brain injury [20]. Elimination of the
produced free radicals seems to be a therapeutic strategy for treating acute ischemic
stroke. Although pre-clinical experiments proved effective antioxidants that remove
active oxygen, the results of clinical trials did not support the same. Nevertheless, the
disappointing clinical trial results cannot deny the important role of oxidative stress
in cerebral ischemia-reperfusion injury. Targeting the source of free radicals may be
a new therapeutic strategy. Although the source of free radicals has not been
completely determined, many studies show that NADPH oxidase and mitochondria
are the main sources of free radicals in the pathological process of cerebral ischemia-
reperfusion [21, 22].

There is increasing evidence that phytoestrogens and notoginseng have protective
effects on neurodegenerative diseases including on acute ischemic stroke.
Phytoestrogens ginsenoside Rg1 and Rb1 isolated from notoginseng have significant
neuroprotective effects on cerebral ischemia-reperfusion injury [23, 24]. Our recent
study found that notoginsenoside R1 activates the Akt/Nrf2/HO-1 signaling pathway
through an estrogen receptor-dependent pathway and inhibits oxidative stress in
PC12 cells [10]. Moreover, HO-1 inhibits the activity of NADPH oxidase and
mitochondrial dysfunction [25]. Based on the above research results, we speculate
that notoginsenoside R1 may inhibit NADPH oxidase activity and mitochondrial
dysfunction by inducing the expression of HO-1, thus playing a neuroprotective role
in cerebral ischemia-reperfusion injury.

We used both in vivo and in vitro cerebral ischemia-reperfusion injury models,
namely the rat middle cerebral artery occlusion reperfusion model and oxygen
glucose deprivation in primary cortical neuronal cells, to evaluate the
neuroprotective effects of notoginsenoside R1. In addition, we elucidated the
neuroprotective mechanism of Notoginsenoside R1, that is, Notoginsenoside R1
activates Akt/Nrf2 signaling pathway through estrogen receptor-dependent pathway,
thus inhibiting NADPH oxidase activity and mitochondrial dysfunction. The
research idea and process are shown in Fig. 7.34.

7.5.1 Data Acquisition and Processing

7.5.1.1 Collection of Chemical Component Targets

“Chemicals” was selected under the Keyword Search option of the CTD database,
and Notoginsenoside R1 entered in the search box to collect target data of
Notoginsenoside R1. “Chemicals” was selected under the Menu option in the
ETCM Database menu bar and “Notoginsenoside R1” was entered in the search
box, to collect the target data of Notoginsenoside R1. The target data of
Notoginsenoside R1 collected from the CTD and ETCM databases were integrated
for deduplication processing. The correspondence between Notoginsenoside R1 and
its targets was saved in the form of a two-dimensional list.
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7.5.1.2 Disease Ontology Enrichment Analysis

“Set Analyzer”was selected under the Analyze option of the CTD database, “Genes”
was selected as the input type, and the abbreviation of the target gene was entered in
the input box. “Enriched diseases” was selected as the analysis type, and the
corrected P-value threshold was set to 0.01.

7.5.2 Network Construction and Visualization

7.5.2.1 Network Construction and Visualization

The disease spectrum of notoginsenoside R1 obtained through the enrichment
analysis of the disease ontology was entered into Cytoscape 3.5.0, to visualize the
disease spectrum of notoginsenoside R1. The nervous system diseases and disease-
related genes related to notoginsenoside R1 were imported into Cytoscape 3.5.0 to
construct a molecular network of “notoginsenoside R1–target–nervous system
disease.”

Fig. 7.34 Research ideas
and process
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7.5.2.2 Analysis Index and Algorithm

The diseases with significant differences were screened and selected according to the
corrected p-value (Corrected P-value< 0.01) of each disease in the disease ontology
enrichment analysis results.

7.5.3 Network Analysis and Prediction

7.5.3.1 Disease Spectrum Analysis of Notoginsenoside R1

The disease spectrum (as shown in Fig. 7.35) of Notoginsenoside R1 was drawn by
selecting the top 60 diseases in the results of disease ontology enrichment analysis,
involving 19 disease types (as shown in Fig. 7.36). The top five disease types are
cancer, cardiovascular disease, digestive system disease, urogenital disease (male
and female), and nervous system disease. In recent years, researchers in China and
overseas have reported on the neuroprotective effects of Panax notoginseng,

Fig. 7.35 Disease spectrum of notoginsenoside R1. Green and red V-shaped nodes represent
Notoginsenoside R1 and diseases related to Notoginsenoside R1, respectively
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however, the material basis of neuroprotective activity of Panax notoginseng has not
been systematically studied, let alone its mechanism of action. The results of disease
spectrum analysis show that Notoginsenoside R1 may play an important role in the
neuroprotective effect of Panax notoginseng.

7.5.3.2 Discovery of New Uses of Notoginsenoside R1 in Protecting
Cerebral Ischemia-Reperfusion Injury

Figure 7.37 shows the molecular network of Notoginsenoside R1 regulating neuro-
logical diseases, the involved disease kinds include cerebral ischemia, cerebrovas-
cular diseases, brain diseases, nervous system manifestations, central nervous
system diseases, and hyperalgesia. In addition to cerebral ischemia, the other five
disease types (cerebrovascular disease, brain disease, nervous system performance,
central nervous system disease, and hyperalgesia) are collectively referred to as a
class of diseases. Considering the feasibility and rationality of experimental verifi-
cation, we next verified the protective effect of Notoginsenoside R1 on cerebral
ischemia.

Fig. 7.36 Statistical analysis of panax notoginsenoside R1-related disease types (TOP60). Fre-
quency represents the kinds of diseases involved in each disease type
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7.5.4 Verification and Summary

7.5.4.1 Notoginsenoside R1 Reduces Neurological Impairment
and Cerebral Infarction Volume Caused by Cerebral
Ischemia-Reperfusion

It has been reported that Notoginsenoside R1 can reduce the neurological impair-
ment and cerebral infarction volume caused by cerebral ischemia-reperfusion
[26]. As shown in Fig. 7.38, the rats in the sham and the NGR1-treated group
presented no neurologic deficits and infarction volumes. After 48-h reperfusion, the
rats that received I/R treatment displayed a marked increase in neurologic deficit
score (Fig. 7.38c, n ¼ 10, P < 0.01), and a well-defined infarct involving both
ischemic core and penumbra (Fig. 7.38a, b, n ¼ 10, P < 0.01). However, NGR1

Fig. 7.37 Notoginsenoside R1–target–neural system disease molecular network. The green and red
round nodes represent the nervous system diseases related to Notoginsenoside R1 and the nervous
system disease-related genes regulated by Notoginsenoside R1, respectively. The orange, blue, red,
green, blue, and purple edges are connected to disease genes associated with cerebral ischemia,
brain diseases, nervous system manifestations, central nervous system diseases, cerebrovascular
disease, and hyperalgesia, respectively

368 X. Sun et al.



pretreatment provided a significant improvement in neurologic deficit score and
remarkably reduced infarct volumes (Fig. 7.38a–c, n ¼ 10, P < 0.01).

7.5.4.2 Notoginsenoside R1 Increases the Expression of HO-1 in Rat
Cerebral Cortex

HO-1 is an antioxidant enzyme with neuroprotective effect. As shown in Fig. 7.39a,
b, both histo-cytometer analysis and Western blot analysis show that there are few
HO-1 positive cells in the cortex of rats in the sham-operated group, while the
expression of HO-1 around the lesions in the I/R model group increases, however,
most of them are weak positive cells. Compared with the I/R model group, higher
HO-1 level was noted in the NGR1+ I/R group. Interestingly, administration of
Notoginsenoside R1 alone significantly increases HO-1 immunoreactivity. We fur-
ther detected the activity of HO-1. The results show that the HO-1 activity was also

Fig. 7.38 Notoginsenoside R1 reduces neurological impairment and cerebral infarction volume
caused by cerebral ischemia-reperfusion. (a) TTC staining method to detect cerebral infarction
volume. (b) Statistical results of cerebral infarction volume. (c) Neurological function score
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Fig. 7.39 Notoginsenoside R1 increases the expression of HO-1 in rat cerebral cortex. (a) Detect
the expression of HO-1 in cerebral cortex tissue of rats by immunohistochemistry (left) and analyze
the expression level of HO-1 by flow-like analysis (right). (b) Statistical map of HO-1 expression

370 X. Sun et al.



increased in the I/R, NGR1+ I/R, and NGR1-treated groups (as shown in Fig. 7.39c,
n ¼ 6, P < 0.01).

7.5.4.3 Notoginsenoside R1 Activates Estrogen Receptor-Dependent
Akt/Nrf2 Signaling Pathway

Western blot results show that in the I/R model group, the protein expression of
HO-1 is significantly up-regulated in the NGR1+ I/R and the NGR1-treated groups,
respectively (as shown in Fig. 7.40b, n ¼ 6, P < 0.01). Moreover, Notoginsenoside
R1 significantly increases nuclear accumulation of Nrf2 (as shown in Fig. 7.40b, n¼
6, P < 0.01). We investigated the estrogen receptor and Akt/GSK-3β signaling
pathway to clarify the mechanism of Nrf2 activation. As shown in Fig. 7.40a,
Notoginsenoside R1 significantly increases the expression of ERα and ERβ proteins
and the phosphorylation of Akt and GSK-3β (n ¼ 6, P < 0.01).

Notosaponin R1 up-regulates HO-1 protein expression and activity by activating
the estrogen-receptor-dependent Akt/Nrf2 signaling pathway both in vitro and
in vivo, and inhibits NADPH oxidase activity and mitochondrial dysfunction,

⁄�

Fig. 7.39 (continued) level in cerebral cortex tissue of rats. (c) Notoginsenoside R1 increases the
activity of HO-1 in cerebral cortex tissue of rats

Fig. 7.40 Notoginsenoside R1 activates estrogen receptor-dependent Akt/Nrf2 signaling pathway.
(a) Notoginsenoside R1 increases the protein expression of ERα and ERβ and the phosphorylation
of Akt in the cerebral cortex tissues of rats. (b) Notoginsenoside R1 increases the phosphorylation
of GSK-3β, accumulation of Nrf2 in nucleus, and protein expression of HO-1 in the cerebral cortex
tissues of rats
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thereby inhibiting cerebral ischemia-reperfusion injury and oxygen glucose depri-
vation reperfusion injury (as shown in Fig. 7.41).

7.5.4.4 Study on Other Mechanisms of the Neuroprotective Effect
of Notoginsenoside R1

In-depth studies have been conducted on the neuroprotective mechanism of action of
Notoginsenoside R1 in China and overseas. Notoginsenoside R1 activates estrogen
receptors, causing crosstalk between Akt and ERK1/2 signaling pathways, thereby
activating Nrf2/ARE signaling pathway [10]. Through the estrogen receptor-
mediated endoplasmic reticulum, panax Notoginseng saponin R1 stress plays an
anti-neonatal cerebral ischemia and hypoxia injury role [27], and the release of stress
calcium plays a neuroprotective role by inhibiting the endoplasmic reticulum
through PLC [28].

Fig. 7.41 Molecular mechanism illustration of notoginsenoside R1 against cerebral ischemia
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7.5.4.5 Summary

Taking Notoginsenoside R1 as an example, this section comprehensively introduces
the experimental ideas and processes of drug repositioning based on network
pharmacology, with the aim to provide reference for the application of network
pharmacology in drug repositioning research. Based on the CTD database, we
collected the target data of Notoginsenoside R1 and predicted the disease spectrum
of Notoginsenoside R1 through disease ontology enrichment. The results of disease
ontology enrichment indicate that Notoginsenoside R1 has protective effect on
nervous system diseases such as cerebral ischemia. To investigate the reliability of
the prediction results, we tested the protective effect of Notoginsenoside R1 on
cerebral ischemia based on the MCAO model. The results show that:
Notoginsenoside R1 activates the Akt/Nrf2/HO-1 pathway in an estrogen receptor-
dependent manner, and inhibits NADPH oxidase activity and mitochondrial dys-
function, thereby inhibiting the production of peroxides, and finally plays a
neuroprotective role in cerebral ischemia-reperfusion injury. In general, based on
network pharmacology, this section predicts the disease spectrum of
Notoginsenoside R1, and discovers a new use of Notoginsenoside R1 in protecting
against cerebral ischemia. This use of Notoginsenoside R1 has been verified on the
MCAO model, indicating that network pharmacology is an effective method and
strategy for drug relocation research.

7.6 Development of Multi-target Drugs: Low-Density
Lipoprotein-Induced Endothelial Cell Injury Protected
by Synergistic Compatibility of TCM Ingredients

As a complex disease, the occurrence and development of atherosclerosis involves
multiple targets, and the commercially available single-target drugs have limited
therapeutic effects [29]. The traditional drug development concept of “one gene, one
disease, one drug” is facing great challenges in the prevention and treatment of
atherosclerosis. In recent years, the rise of the “multi-gene, multi-target” drug
development model has pointed the way for new drug development in atheroscle-
rosis. TCM has rich practical experience in the treatment of complex diseases, and
has been widely recognized for its multi-channel, multi-target, and low toxicity
treatment features. However, due to the complex ingredients, slow onset of action,
difficulty in quality control, and lack of systematic toxicological studies, it is difficult
to determine the material basis of its efficacy. Both, the unclear mechanism of action,
and unclear target of action, limit the promotion and application of TCM in the
international community. Therefore, developing innovative TCM prescriptions with
definite curative effect, controllable quality, and clear mechanism of action has
become a critical requirement in the treatment of atherosclerosis.
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Network pharmacology is a novel method developed on the basis of systems
biology and multidirectional pharmacology [30]. By integrating the drug–target
protein interaction network and the biological network, it analyzes the interaction
between drugs and other nodes in the network, and then analyzes the effectiveness
and toxicity of drugs. Guanxin Danshen Formulation is an effective prescription for
the treatment of coronary cardiovascular diseases developed by our research group.
It is mainly composed of three herbs: Salvia miltiorrhiza, Panax notoginseng, and
Dalbergia odorifera. Clinically, it is effective in treating coronary cardiovascular
disease caused by qi stagnation and blood stasis, but there have been few studies on
its efficacy in treating atherosclerosis. In recent years, relevant experimental studies
have shown that salvianolic acid B, the main water-soluble component of Salvia
miltiorrhiza, can effectively reduce blood lipids, reduce lipid content in plaque,
reduce plaque area, increase fiber thickness, and reduce plaque erosion and angio-
genesis in plaque [31], thus effectively preventing the occurrence of atherosclerosis
and stabilizing atherosclerotic plaque. Although ginsenoside Re in Panax
notoginseng has not been reported directly in the prevention and treatment of
atherosclerosis, it can effectively reduce the content of malondialdehyde (MDA),
enhance the activities of superoxide dismutase (SOD) and glutathione (GSH-Px),
reduce the release of lactate dehydrogenase (LDH), and enhance the scavenging of
DPPH free radicals, thereby reducing oxidative damage. In addition, ginsenoside Re
effectively reduces the secretion of IL-6, TNF-α, IL-10, and other related inflamma-
tory factors in serum, and inhibit inflammation [32]. The role of ginsenoside Re in
regulating apoptosis-related proteins has also been reported. [33] Previous studies
suggest that ginsenoside Re can exert anti-atherosclerotic effects through its anti-
inflammatory, antioxidant, and anti-apoptotic effects.

Based on network pharmacology, this section investigates the overall protective
effect of salvianolic acid B (Sal B) and ginsenoside Re (Re) on oxidative low-density
lipoprotein (Ox-LDL)-induced injury of human umbilical vein endothelial cells
(HUVECs) through multiple targets and pathways.

7.6.1 Data Acquisition and Processing

First, the pathological database of atherosclerosis, the Ox-LDL-induced HAEC cell
damage expression profile database, and the Ox-LDL-induced HUVECs damage
protein chip database were constructed. Then, using the molecular docking technol-
ogy combined with literature statistics, the direct-action targets of salvianolic acid B
and ginsenoside Re were determined. The targets of salvianolic acid B (Sal B) and
ginsenoside Re (RE) were imported into the constructed disease pathology database,
to find overlapping targets. Finally, through relevant GO function annotation, KEGG
pathway analysis, and protein interaction analysis the mechanism of action of the
two compounds’ cooperative protection of Ox-LDL-induced HUVECs damage was
explored, to provide research ideas and technical support for the in-depth develop-
ment of Guanxin Danshen Formulation (as shown in Fig. 7.42).
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7.6.1.1 Collection of Chemical Component Targets

Using salvianolic acid B and ginsenoside Re as keywords, we searched the CNKI,
Pubmed, SCI, ScienceDirect, and Springer databases to obtain related literature on
salvianolic acid B and ginsenoside Re. The end date for the literature search was
2016-6-17. We extracted the relevant targets of salvianolic acid B and ginsenoside
Re by reading the full text. We used PharmMapper and idTarget to predict the
potential action targets of salvianolic acid B and ginsenoside Re, and all the docking
parameters were set according to the default values on the website. Finally, we
integrated the literature search results with the molecular docking prediction results.

7.6.1.2 Atherosclerosis-Related Genes

We searched genes related to atherosclerosis diseases based on the GeneCards
database, the end date was 2016-6-30.

7.6.1.3 Differential Gene Analysis Based on Gene Expression Profile

We downloaded GSE13139 gene expression profile data based on NCBI’s GEO
database. This group of data contains five groups of data: inducing HAEC cell
damage without adding Ox-LDL, and inducing HAEC cells for 2 h, 6 h, 12 h, and

Literature
research AS related

targetsSalB:84
Re:43

SalB: up-regulate 65;
down-regulate 55
Re: up-regulate 35;
down-regulate 35

Molecular
countermeasures

Forward docking reverse docking

SalB:7SalB:20 Re:26 Re:4

Ox-LDL-induced
HAEC damage

SalB-specific
targets 74

Re-specific
targets 32

Common
targets 37
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1350

Fig. 7.42 Research ideas and processes
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24 h with Ox-LDL. The data was normalized based on the R language bioconductor
toolkit, and differentially expressed genes were determined.

7.6.1.4 Analysis of Apoptosis Targets and Inflammatory Factors
in Ox-LDL-Induced HUVECs Damage

This part mainly includes the data on apoptosis and inflammatory factors: inducing
HUVECs cell damage without adding Ox-LDL and inducing HUVECs cells for 12 h
with Ox-LDL. Human apoptotic protein chip (RayBiotech, USA) and human
inflammatory factor protein chip (RayBiotech, USA) were used to detect apoptotic
proteins and inflammatory factors.

7.6.2 Network Construction and Visualization

Each network involved in this study was drawn by using Cytoscape 3.5.0.

7.6.2.1 GO Function Enrichment Analysis

The online enrichment analysis tool DAVID was used to perform Gene Ontology
(GO) enrichment analysis. GO enrichment analysis mainly includes three parts:
Molecular Function (MF), Cellular Component (CC), and Biological Process (BP).

7.6.2.2 KEGG Pathway Analysis

In this experiment, the Cluster Profiler package and Kobas2.0 were used to analyze
the KEGG pathway of target genes, and the obtained data were imported into
Cytoscape, to construct the compound–target gene–pathway–disease network
diagram.

7.6.2.3 Analysis Index and Algorithm

Differential gene expression analysis, KEGG analysis, and GO function analysis all
use false discovery rate (FDR) test. When FDR< 0.05 or P < 0.05, the difference is
considered significant and statistically significant.
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7.6.3 Network Analysis and Prediction

7.6.3.1 Statistics of Potential Target Genes on the Protective Effects
of SalB and Re on Ox-LDL-Induced Endothelial Cell Damage

After standardizing the targets of salvianolic acid B and ginsenoside Re retrieved
from CNKI, Pubmed, SCI, ScienceDirect, and Springer databases by NCBI gene
data and correlated with protein chip data, 120 target genes related to salvianolic acid
B and 70 target genes related to ginsenoside Re were finally obtained. The obtained
target genes were correlated with the atherosclerotic disease gene library and the
differential genes of Ox-LDL-induced HAEC cell damage; the overlapping target
genes were removed, and finally there are 84 target genes related to salvianolic acid
B and 43 target genes related to ginsenoside Re [32].

According to the pharmacophore simulation docking and reverse docking, two
molecular docking databases of both salvianolic acid B and ginsenoside Re were
obtained. According to the scoring and ranking rules of their respective websites, the
top 100 proteins with the docking scores were taken, and their protein names were
converted into gene names, and finally associated with the atherosclerosis disease
gene library, to find the overlapping parts. Finally, 27 target genes related to
salvianolic acid B and 30 target genes of ginsenoside Re were obtained.

By integrating the target genes and molecular docking results of database three, a
total of 111 target genes related to salvianolic acid B and 69 target genes of
ginsenoside Re were obtained. Further analysis shows that salvianolic acid B and
ginsenoside Re have a common target gene 37. Therefore, the specific target of
salvianolic acid B is 74, and the specific target gene of ginsenoside Re is 32.

7.6.3.2 Go Enrichment Analysis of Potential Target Genes
on the Protective Effects of SalB and Re on Ox-LDL-Induced
Endothelial Cell Damage

First, the GO function enrichment analysis on the common target genes between
salvianolic acid B and ginsenoside Re was performed, and the common 37 target
genes between them were imported into the DAVID web database. A total of
376 annotations were obtained with respect to cell components, molecular functions,
and biological processes. With FDR < 0.05 as the screening condition, 69 annota-
tions were finally obtained. As shown in Fig. 7.43, the common target genes mainly
play an antioxidant role in the cell fluid and extracellular sites. The biological
process mainly involves antioxidant, anti-apoptotic, and maintenance of cell ion
balance; the key genes are GPX and SOD.

Next, the GO function enrichment analysis was performed on the specific target
genes of salvianolic acid B, and its specific 74 target genes were imported into the
DAVID web database. A total of 684 annotations were obtained with respect to cell
components, molecular functions, and biological processes. With FDR< 0.05 as the
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screening condition, 113 annotations were finally obtained. As shown in Fig. 7.44,
the common target genes mainly play antioxidant and electron transport functions in
the cytoplasmic membrane and extracellular sites, and biological processes mainly
involve antioxidant, cell proliferation, cell migration, anti-inflammatory, and other
functions; the key genes are GSR, NOX5, NOX1, and NOS3.

Lastly, the GO function enrichment analysis was performed on the specific target
genes of ginsenoside Re, and the specific 32 target genes were imported into the
DAVID web database. A total of 282 annotations were obtained with respect to cell
components, molecular functions, and biological processes. With FDR< 0.05 as the
screening condition, 16 annotations were finally obtained. As shown in Fig. 7.45, the
common target genes mainly play the role of steroid hormone in cell processes, and

Fig. 7.43 GO function enrichment analysis on the common target genes between salvianolic acid B
and Ginsenoside Re

378 X. Sun et al.



the main biological processes mainly involve hormone stimulation, cell prolifera-
tion, insulin stimulation, etc.; the key genes are AR, RXRB, RXRA, ESR1, and
ESR2.

Fig. 7.44 GO function enrichment analysis on the specific target genes of salvianolic acid B
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7.6.3.3 KEGG Pathway Analysis of Potential Target Genes
on the Protective Effects of SalB and Re on Ox-LDL-Induced
Endothelial Cell Damage

First, KEGG Pathway analysis was performed on the common target genes between
salvianolic acid B and ginsenoside Re, and the common 37 target genes between
them were imported into the Cluster Profiler package and Kobas 2.0, using FDR <
0.05 or P < 0.05 as the screening condition. The results are shown in Fig. 7.46.
These target genes are mainly enriched in Toll-like receptor pathway, NF-κB
pathway, MAPK signaling pathway, viral and bacterial disease-related pathway,
and energy metabolism. The 37 target genes are involved in a total of 71 pathways,
and many genes are involved in multiple signaling pathways concurrently. For

Fig. 7.45 GO function enrichment analysis on the specific target genes of ginsenoside Re
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example, CD14 gene plays a role in Toll-like receptor pathway, NF-κB pathway, and
MAPK signaling pathway.

Next, the KEGG Pathway analysis was performed on the specific target genes of
salvianolic acid B, and the specific 74 target genes were imported into the Cluster
Profiler package and Kobas 2.0, using FDR < 0.05 or P < 0.05 as the screening
condition. The results are shown in Fig. 7.47. These target genes are mainly enriched
in TNF signaling pathway, AGE-RAGE signaling pathway, Ras signaling pathway,
monocyte migration, and local adhesion signaling pathways. The 74 target genes are
involved in a total of 34 pathways, and many genes are involved in multiple
signaling pathways concurrently. For example, PIK3CD gene plays a role in Toll-
like receptor pathway, TNF signaling pathway, and AGE-RAGE signaling pathway.

Last, the KEGG Pathway analysis was performed on the specific target genes of
ginsenoside Re, and the specific 32 target genes were imported into the Cluster
Profiler package and Kobas 2.0, using FDR < 0.05 or P < 0.05 as the screening
condition. The results are shown in Fig. 7.48. These target genes are mainly enriched
in adipocytokine signaling pathway, hormone signaling pathway, insulin resistance
signaling pathway, and PPAR signaling pathway. The 32 target genes are involved
in a total of 21 pathways, and many genes are involved in multiple signaling

Fig. 7.46 KEGG pathway analysis of the common target genes between salvianolic acid B and
Ginsenoside Re
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pathways concurrently. For example, RXRB gene plays a role in adipocytokine
signaling pathway, hormone signaling pathway, insulin resistance signaling path-
way, and PPAR.

7.6.3.4 Related Network Construction and Analysis of Potential Target
Genes on the Protective Effects of SalB and Re
on Ox-LDL-Induced Endothelial Cell Damage

Drug targets are the active sites of direct action of drugs in organisms, including gene
sites, nucleic acids, various enzymes, ion channels, membrane proteins, and other
biological macromolecules. Strictly speaking, drug targets refer to
biomacromolecules with specific drugs in the market. The key to new drug research
and development is to determine potential drug targets and lead compounds, which
is also the key to researching drug molecules that can play a role in the treatment of
diseases. In this experiment, Cytoscape 3.4.0 was used to construct and analyze the
“compound–target–pathway–disease” network by analyzing the common and spe-
cific target gene pathway annotations and corresponding diseases of salvianolic acid
B and ginsenoside Re. The network map of specific target genes shows that there are

Fig. 7.47 KEGG pathway analysis of the specific target genes of salvianolic acid B
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five target genes that are only involved in the regulation of pathways, but not that of
cardiovascular-related diseases; 23 genes are only involved in regulating cardiovas-
cular diseases, without specific pathway positioning; and there are 9 genes involved
in both regulation of cardiovascular disease and that of related pathways (as shown
in Fig. 7.49) [32].

Next, the “compound–target–pathway–disease” network of each specific target
gene of salvianolic acid B and ginsenoside Re was analyzed. The results are shown
in Fig. 7.50 [32]. The regulation pathways of specific target genes of salvianolic acid
B and ginsenoside Re and diseases have both commonness and specificity. They
both regulate insulin resistance and monocyte migration-related pathways and
immune-related diseases. The difference is that the regulation pathway of salvianolic
acid B is mainly related to the inflammation and energy metabolism, while
ginsenoside Re focuses on regulating the signal pathway related to fat metabolism.
In terms of disease regulation, salvianolic acid B mainly regulates cardiovascular
diseases, but ginsenoside Re mainly regulates vascular inflammation diseases.

Fig. 7.48 KEGG pathway analysis of the specific target genes of Ginsenoside Re
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7.6.4 Verification and Summary

Network pharmacology was used to mine the action target information of salvianolic
acid B and ginsenoside Re. The results revealed the mode of action between
salvianolic acid B and ginsenoside Re synergy anti-Ox-LDL-induced HUVECs
injury through multi-targets and multi-pathways, at the molecular network level.
The molecular mechanism of salvianolic acid B and ginsenoside Re in synergistic
protection of ox-LDL-induced HUVECs injury through multi-targets and multi-
pathways was verified in vitro.

7.6.4.1 SalB, Re, and SR Inhibited Ox-LDL-Induced HUVECs
Oxidative Stress Injury

In this study, flow cytometry was used to analyze the effects of Ox-LDL-induced
intracellular ROS levels in HUVECs. The experimental results show that after
Ox-LDL treatment, intracellular ROS levels increase significantly, which is
manifested by increased fluorescence of carboxy-H2DCF (Fig. 7.51a) [32]. The
statistical results (Fig. 7.51b) show that compared with the control group, Ox-LDL
treatment can cause significant increase in the intracellular ROS level. Compared
with the model group, the intracellular ROS levels of SalB, Re, and SR pretreatment
decrease significantly. However, the SR group has the strongest inhibitory effect on
ROS production in Ox-LDL-induced HUVECs, which is more statistically signifi-
cant compared with the two monomers. Between the two monomers, the inhibitory
effect of SalB on ROS in HUVECs is stronger than that of Re (Fig. 7.51b) [32].

Intracellular antioxidant enzyme activity detection showed that compared with
the control group, the Ox-LDL treatment caused a significant decrease in intracel-
lular CAT, SOD, and GSH-Px enzyme activities; compared with the model group,
the activities of CAT, SOD, and GSH-Px increase after pretreatment with SalB, Re,
and SR. The enhanced enzyme activities of CAT, SOD, and GSH-px in the SR group
are stronger than those of the two monomers, between the two monomers, the
enhancing effect of SalB on CAT, SOD, and GSH-Px-enhanced enzyme activities
is stronger than that of Re (Fig. 7.51c–e) [32]. The results of intracellular antioxidant
enzyme activities are consistent with the results of intracellular ROS level detection.

7.6.4.2 Effects of SalB, Re, and SR on the Expression
of Cytoinflammatory Factors and Adhesion Molecules
in HUVECs Damage Induced by Ox-LDL

In this study, the ELISA method was used to analyze the expression of inflammatory
factors in HUVECs cells induced by Ox-LDL. The research results show that the
secretion of inflammatory factors IL-6 and TNF-α in the cells increases significantly
after Ox-LDL treatment. Compared with the model group, the secretion of

386 X. Sun et al.



100 80 60 40 20 10
0

10
1

10
3

1.
5

& **
**

*
**

*
**

*

$$
&

&
&

80
30

0
15

0

10
0 50 0

20
0

10
0 0

60 40 20

SOD activity
(U/mg protein)

GSH-Px activity
(U/mg protein)

CAT activity
(U/mg protein)

0

1.
0

0.
5

0.
0

ROS activity
(fold over Ox-LDL)

Contro
l

Contro
l

Ox-
LDL

SalB

Re

SR

Contro
l

Ox-
LDL

SalB

Re

SR

Contro
l

Ox-
LDL

SalB

Re

SR

Ox-
LDL

SalB
+O

x-
LDL Re+

Ox-
LDL

SR+O
x-

LDL
NAC+O

x-
LDL

F
L1

-H

K
ey

N
am

e
C

on
tr

ol
O

x-
LD

L
S

al
B

R
e

S
R

N
A

C

Counts

10
2

&

&
&

&
&

&
&

&
& &

&
&

&
&

$

$$

$$
$

##
#

##
#

##
#

##
#

**
*

**
*

**
*

**
*

**
*

**
*

*

**
*

**
*

10
4

0

a
b

c
d

e

F
ig
.7
.5
1

P
ro
te
ct
iv
e
ef
fe
ct
s
of

S
al
B
,R

e,
an
d
S
R
on

O
x-
L
D
L
-i
nd

uc
ed

ox
id
at
iv
e
st
re
ss
in
H
U
V
E
C
s
[3
2]
.(
a)

P
ro
te
ct
iv
e
ef
fe
ct
of

S
al
B
,R

e,
an
d
S
R
pr
e-
in
cu
ba
tio

n
fo
r1

2
h
on

O
x-
L
D
L
-i
nd

uc
ed

ov
er
-p
ro
du

ct
io
n
in
H
U
V
E
C
s
ce
ll
R
O
S
;(
b)

S
ta
tis
tic
al
di
ag
ra
m
of

R
O
S
ov

er
-p
ro
du

ct
io
n
in
H
U
V
E
C
s
ce
lls

in
du

ce
d
by

O
x-
L
D
L
;(
c)

P
ro
te
ct
iv
e
ef
fe
ct
of

S
al
B
,R

e,
an
d
S
R
pr
e-
in
cu
ba
tio

n
fo
r
12

h
on

O
x-
L
D
L
-i
nd

uc
ed

pr
od

uc
tio

n
in

H
U
V
E
C
s
ce
ll
S
O
D
;(
d)

P
ro
te
ct
iv
e
ef
fe
ct
of

S
al
B
,R

e,
an
d
S
R

pr
e-
in
cu
ba
tio

n
fo
r1

2
h
on

O
x-
L
D
L
-i
nd

uc
ed

pr
od

uc
tio

n
in
H
U
V
E
C
s
ce
ll
G
S
H
-P
x;

(e
)P

ro
te
ct
iv
e
ef
fe
ct
of

S
al
B
,R

e,
an
d
S
R
pr
e-
in
cu
ba
tio

n
fo
r1

2
h
on

O
x-
L
D
L

in
du

ce
d
pr
od

uc
tio

n
in
H
U
V
E
C
s
ce
ll
C
A
T
.*
**

P
<
0.
00

1,
**

P
<
0.
01

,*
P
<
0.
05

co
m
pa
re
d
w
ith

O
x-
L
D
L
;#

#
#
P
<
0.
00

1
co
m
pa
re
d
w
ith

C
on

tr
ol
;$

$
$
P
<
0.
00

1,
$
$
P
<

0.
01

,$
P
<

0.
05

an
d
S
al
B
;
&
&
&
P
<

0.
00

1,
&
&
P
<

0.
01

,&
P
<

0.
05

co
m
pa
re
d
w
ith

S
R

7 Drug-Based Network Pharmacology Practice Process 387



intracellular inflammatory factors significantly reduces after SalB, Re, and SR
pretreatment. However, the SR group has the strongest reducing effect on the
secretion of inflammatory factors, followed by SalB, and Re, which is the weakest.
The comparison between every neighboring two groups is statistically significant
(as shown in Fig. 7.52a–c) [32].

Western blot is used to study the effects of SalB, Re, and SR on the expression of
adhesion molecules (as shown in Fig. 7.52d–f). Compared with the control group,
Ox-LDL significantly up-regulates the expression of adhesion molecules ICAM-1
and VCAM-1, while SalB and SR pretreatment can reverse the expression of ICAM-
1 and VCAM-1. When adding p38MAPK agonist and PI3K inhibitor, it can block
the protective effects of SalB and SR. Studies have shown that Re has no effect on
the expression of adhesion molecules ICAM-1 and VCAM-1 [32]. At the same time,
the results of MCP-1 secretion analysis using the ELISA method show that after
Ox-LDL treatment, intracellular MCP-1 secretion increases significantly. Compared
with the model group, the secretion of intracellular MCP-1 reduces significantly after
SalB, Re, and SR pretreatment. However, the SR group has the strongest reducing
effect on the secretion of MCP-1, followed by SalB, and Re, which is the weakest.
Re has a significant effect on the secretion of McP-1, and the comparison between
every neighboring two groups is statistically significant.

7.6.4.3 SalB, Re, and SR Regulate the Expression of Apoptosis-Related
Proteins in the Damage Process of Ox-LDL-Induced HUVECs
Through PI3K/Akt Pathway and p38MAPK/NF-κB Pathway

Western blot is used to study the effects of SalB, Re, and SR on apoptosis-related
protein expression (as shown in Fig. 7.53a–d) [32]. Compared with the blank control
group, Ox-LDL significantly inhibits the expression of anti-apoptotic proteins Bcl-2
and cIAP2. While up-regulating the expression of pro-apoptotic protein Bax and
Smac and down-regulating the ratio of Bcl-2/Bax, the pretreatment with SalB, Re,
and SR significantly inhibits the effect of Ox-LDL on Bcl-2 family proteins.
Increasing the ratio of Bcl-2/Bax and reversing the expression of cIAP2 and Smac,
the SR group has strongest regulatory effect, followed by SalB group, and the Re
group being the weakest, however, they all have significant differences. After adding
PI3K-specific inhibitor LY294002 or p38MAPK agonist, the regulatory effect of SR
on apoptosis protein expression in HUVECs significantly reduces, thus suggesting
that the regulation of SR on apoptotic proteins in HUVECs’ injury induced by
OX-LDL is regulated by the PI3K/Akt pathway and the p38MAPK/NF-κB pathway.
At the same time, SalB, Re, and SR can inhibit the increased activity of the
pro-apoptotic protein cleaved Caspase3 caused by Ox-LDL (as shown in
Fig. 7.53e, f) [32].
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7.6.4.4 Summary

This section takes the combined use of salvianolic acid B and ginsenoside Re as an
example, to introduce in detail the experimental ideas and procedures for the
development of multi-target drugs based on the network pharmacology method,
and provides reference for the application of network pharmacology in multi-target
drug research. Relying on literature and database retrieval technologies, this section
constructs a molecular target network based on the network pharmacology method
to protect endothelial cell damage induced by low-density lipoprotein by combining
salvianolic acid B and ginsenoside Re, and analyzes the rationality of multi-target
drug development based on the combined use of drugs from three different levels,
i.e. target, gene ontology, and KEGG pathway. Finally, using oxidative low-density
lipoprotein-induced human umbilical cord vein endothelial cell injury as a model,
and by adopting relevant effect indicators such as oxidative stress, inflammatory
response, and endothelial cell apoptosis, this section verifies the protective effects of
salvianolic acid B, ginsenoside Re monomer, and their compatibility on oxidized
low-density lipoprotein-induced human umbilical cord vein endothelial cell injury.
The results show that salvianolic acid B, ginsenoside Re monomer, and their
compatibility play a role in protecting endothelial cells by interfering with the
oxidative stress, inflammation, and apoptosis in the process of oxidized
low-density lipoprotein-induced human umbilical cord vein endothelial cell injury.
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Chapter 8
Disease-Based Network Pharmacology
Practice Process

Xiaohui Fan and Xiang Li

Guide to This Chapter
Network pharmacology is a new research strategy [1] to understand the molecular
and drug mechanisms of complex diseases based on the structure and function of the
“molecular biological network.” The network-based method is a powerful tool for
studying complex diseases and the nonlinear modes of drug-disease interactions
[2]. The WHO drafted guidelines for traditional medicine from 2014 to 2023.
Traditional Chinese Medicine (TCM), as important inheritance of the Chinese nation
and the critical constituent of China’s existing medical and health care system, play
great role in the field of healthcare of Chinese people [3]. Currently, researches on
modernization of traditional medicine, including TCM, have attracted increasing
attention both at home and abroad. Based on network visions and methods, it can
facilitate the systematically understanding of the mechanism of disease pathology
from biological network equilibrium view, promoting study of the relationships
among different diseases and also the study of drug repositioning. What’s more,
network visions and methods could also promote the systematic deciphering of
complex interactions between TCM and disease biomolecular network, and enhance
the R&D on combinatorial drugs.

Fan’s research group from Zhejiang University focus on key scientific issues such
as network regulation of TCM Formulae’s components compatibility. With appli-
cation of omics technologies including transcriptomics, several research strategies
for TCM network pharmacology with disease network as core have been established,
which contributed to the formation of the concept of network formulaology [4, 5]. A
series of significant progresses have made, including establishment of several basic
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databases, such as TCM-PTD, which is a database of potential TCM targets. Based
on the characteristics of integrated regulation of TCM, Fan’s research group pro-
posed a TCM Formulae’s components compatibility optimization strategy according
to their network balance construction algorithm, after which a series of experimental
studies were conducted to establish a comprehensive evaluation method for TCM
efficacy analysis. They also created a multi-component/multi-target/multi-pathway
network construction method for TCM, and the method was successfully applied for
the study of integrated regulation mechanism of TCM, such as Shengmai and Qishen
Yiqi Formulae [6–27]. This chapter took ischemic heart disease as an example,
together with several research examples [12, 13, 15, 18, 19] to introduce disease-
based network pharmacology research, which can provide references for the devel-
opment and application of network pharmacology associated research works.

8.1 Disease Network Construction and Analysis
of Coronary Heart Disease

Coronary heart disease (CHD), as a chronic and complex disease, its occurrence and
development involves multi-genes, multi-signaling pathways, and multi-links. The
construction of disease network could fully integrate the disease-related gene–gene
interactions, and the interactions were abstractly presented as network in the way of
network visualization. Meanwhile, network analysis technology helps study of
disease-associated gene groups and biological pathways at a holistic level. There-
fore, disease networks provide a platform for systematically study interactions
among molecules, which shows important scientific research and application value
for understanding the pathogenesis of CHD and drug development.

8.1.1 Data Acquisition and Processing

8.1.1.1 Text Mining of CHD-Related Genes

The keywords “Coronary heart disease” were applied to searched in the PubMed
database with year limited from 2000/1/1 to 2013/1/23. The search retrieved about
110,000 literatures. In the PubMed retrieved panel, select “Send to” ! “Choose
Destination” ! “File” ! “Format” ! “Abstract (text)” ! “Create File” from pull-
down menu to save the .txt file containing abstracts. The abstracts information can be
extracted using text mining technology.

Words were extracted from abstracts and the ArrayTrack (V 3.5.0) gene database
was queried to get the potentially related genes, and these genes were retrieved in the
obtained abstracts to attain genes with literatures support. Three researchers then
independently carried out manual confirmations work. Genes associated with CHD
were determined by reading relevant abstracts, full text, and other related references
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to acquire CHD-related genes. The researchers retained 660 CHD-related genes for
further research.

8.1.1.2 Extraction of CHD-Related Genes by Manually Reading
of Literatures

Compared to text mining technology, manual literature mining is time-consuming
and labor-consuming, but it has a high accuracy rate. According to JCR Science
Edition report published by Thomson Reuters, Circulation is the most authoritative
professional journal in the field of cardiac & cardiovascular systems. Therefore,
Circulationwas selected as the literature source, with the year set from 2006 to 2011.
By reading literature abstracts, gene and protein information were extracted from
151 abstracts and inconsistent formats were standardized. Official names of genes
(Official Symbol) and gene numbers Entrez ID in NCBI were applied to normaliza-
tion of gene names. Standard protein names adopted were “UniProt ID” and
“UniProt Consortium Protein Name.” Finally, 252 related genes were obtained.

8.1.1.3 Mining CHD-Related Genes from Public Databases

Public databases, containing information on cardiovascular disease-related genes
and proteins, are important resources to study the pathogenesis of cardiovascular
diseases and the mechanism of drug action. Cardiovascular disease-related genes
were selected from the rat genome research database (RGD) [28] by February 11th,
2014. 161 genes related to the cardiovascular disease portal and myocardial ischemia
were selected. These genes were extracted and removed duplications for the con-
struction of CHD@ZJU research platform.

8.1.1.4 Integration of CHD-Related Genes from Different Sources

CHD-related genes were normalized through the three methods by application of
their official names (official symbol) and gene Entrez ID in NCBI, after integration
and removal of duplicated genes, 1073 genes were finally identified. Compared with
the CHD@ZJU version 1.0, 413 new genes were added. Further gene-related
information was annotated, including gene name, gene Entrez Gene ID, and gene
description, literature evidence of the genes, other literature information related to
CHD, PPI relationship information related with the genes, and FDA drug informa-
tion of the genes, etc., new genes in version 2.0 were especially highlighted in red.
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8.1.2 Network Construction and Visualization

CHD@ZJU V2.0 integrates PPI-related information from databases HPRD and
BioGRID. We optimized the internal data structure of the CHD@ZJU database
and the computation and access speed of the website was improved.

Pairwise relationships of 1073 genes were extracted from the integrated PPI
relationships to generate a gene–gene interaction relationship table, including 4030
pairs. Cytoscape Web [29] was used to construct a CHD disease network. The
network model includes 1073 nodes and 4030 edges, with the largest sub-network
containing 819 nodes and 3988 edges.

In disease network, gene groups with similar biological functions (corresponding
to the sub-network or sub-cluster in the network), also known as biological function
modules, can concurrently involve in certain phase of disease biogenesis. Thus,
further analysis of biological functional modules is expected to reveal the pathogen-
esis of complex diseases and to provide support for the design and R&D of
therapeutic drugs.

8.1.3 Network Analysis and Prediction

Network analysis was conducted using network topological attribute analysis, clus-
ter analysis of sub-network/sub-cluster, and biological function gene ontology
(GO) analysis.

8.1.3.1 Network Topological Attribute Analysis

The topological properties of the disease network were evaluated, and results
showed that the distribution of node connectivity of the constructed disease network
conformed to the power-law distribution (R2 ¼ 0.890), that is, the CHD network
indicated scale-free properties and obtain the general characteristics of biological
network.

The network analyzer plug-in in Cytoscape software was applied to calculate the
node degree (Degree) and betweenness (Betweenness Centrality) of disease net-
work. In biological networks, nodes with large degrees are usually considered as
“Hubs” of the network, while nodes with high betweenness are called “bottleneck”
(Bottleneck Node). These topological properties represent the importance of nodes
in the network [30]. In addition, some studies showed that important genes related to
diseases usually tend to form hub nodes in biological networks [31–34].

The degree and betweenness of nodes in disease network can be calculated and
two strategies were adopted for node ranking analysis:
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Betweenness as the Screening Criteria

23 network nodes were obtained with betweenness greater than 0.02 and sorted from
large to small according to betweenness values from the CHD-related gene network
topology parameters (betweenness > 0.02).

23 genes were imported into ArrayTrack 3.5, “Pathway Enrichment Analysis”
was performed to retrieve 32 signaling pathways. Pathways were divided into six
categories according to their biological functions: cell adhesion and connection,
apoptosis, myocardial and smooth muscle contraction, energy metabolism, immune
inflammation, and cell signal transduction-related pathways.

If the threshold value of betweenness is set at 0.01, 65 nodes can be obtained. The
signaling pathway enrichment analysis revealed 32 pathways in 7 types. These
pathways were basically the same as those obtained when the betweenness threshold
was set at 0.02. Three new signaling pathways were different, i.e., Cytosolic
DNA-sensing pathway ( p ¼ 0.025) related to immune inflammation and RIG-I-
like receptor signaling pathway ( p ¼ 0.046); Signal molecular related pathways of
extracellular matrix: ECM-receptor interaction ( p ¼ 0.002).

Degree as the Screening Standard

Nodes with degrees greater than 10 were sorted in descending order of degree value.
Simultaneously, the betweenness was greater than 0.02, and 22 nodes were obtained
for the topological parameters of CHD-related gene network (degree > 10,
betweenness > 0.02).

The signaling pathway enrichment analysis of these 22 genes indicated that there
were mainly 32 signaling pathways in 6 categories.

If the degree is set as greater than 10, it returned 221 nodes meeting the criteria.
Signaling pathway enrichment analysis of these genes can be performed to get
35 signaling pathways in 7 categories with 5 newly-added signaling pathways, i.e.,
PPAR signaling pathway related to energy metabolism (P ¼ 0.019); Immune
inflammation-related signaling pathway RIG-I-like receptor signaling pathway
( p ¼ 0.000), Cytosolic DNA-sensing pathway ( p ¼ 0.006); Extracellular signal
molecule related signaling pathway ECM-receptor interaction ( p ¼ 0.002),
Cytokine-cytokine receptor interaction ( p ¼ 0.002).

The pathways enriched using the key genes can reflect the biological functions of
the gene group and can provide support for explanation of CHD pathogenesis. Our
network analysis results indicated that the abnormal function of one or several
signaling pathways in the biological pathways, such as cell adhesion and connection,
apoptosis, contraction of myocardium and smooth muscle, energy metabolism,
immune inflammation, cell signal transduction, and so on, may be related to the
pathogenesis of CHD.
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8.1.3.2 Cluster Analysis of Sub-Network/Sub-Cluster

Network medicine investigates human diseases in the view of network. Its theories
and methods are based on the associations between human diseases occurrence and
the disturbance of the disease module. The tacit hypothesis is that “Topological
Modules,” “Functional Modules,” and “Disease Modules” could overlap in the
network. Therefore, functional modules are equivalent to topological modules, and
disease can be regarded as disturbance and disruption of functional modules [35].

The topological module can be obtained by applying a network clustering
algorithm. MCODE plug-in in Cytoscape was adopted to analyze the network
topological properties to discover highly interactive areas, namely clusters
[36]. The MCODE sub-cluster analysis was carried out for the entire CHD disease
network, and a total of 38 sub-clusters were returned. These sub-clusters were further
analyzed for their biological functions (GO_Biological_Process, GO_BP).

8.1.3.3 GO Analysis of Biological Functions

BiNGO, another plug-in in Cytoscape, can integrate the molecular interaction
networks, visualize and analyze the GO categories of genes in biological networks
to discover functional modules of the network [37].

GO_BP analysis was performed on the top 15 sub-clusters obtained from the
extraction and analysis of the MCODE sub-clusters. Homo sapiens was selected as
the species with other parameters in BiNGO settings dialog box setting to the
default, i.e., the statistical significance level is set as 0.05, the whole annotation is
taken as the reference set for analysis. Finally, a total of 13 sub-cluster GO analysis
results were returned, however, results for sub-cluster 9 were not returned, and
sub-cluster 15 had only 2 nodes, hence GO analysis was not performed.

This chapter set sub-clusters 1, 2, and 3 as examples to conduct GO_BP analysis.
The analysis results and discussion are listed as follows:

1. Sub-cluster 1, cluster genes included E2F1, IRS2, RELA, SOCS1, ESR1, RB1,
SIRT1, IRS1, STAT3, BRCA1, STAT6, HIF1A, HDAC1, JAK1, PARP1,
PIK3R1, and GHR. GO_BP analysis found that the functions of these genes
were involved in three aspects: intracellular and extracellular stimulation signals,
synthesis and metabolism of biological molecules in the body, regulation of cell
proliferation and apoptosis.

(a) The responses to intracellular and extracellular stimulation signals may be
mainly due to the organisms response to various biomolecules (hormones,
cytokines, etc.) during the occurrence and developmental stages of CHD.

(b) The synthesis and metabolic regulation of biomolecules, including glycolipid
metabolism and other processes related to body energy metabolism. For
example, insulin-related signaling pathways in sub-cluster 1 were involved
in regulating the transport and metabolism of glucose, β-oxidation of fatty
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acids, etc., which show important role in the pathogenesis of CHD. The
related GO_BP categories included: GO-ID 10907, positive regulation of
glucose metabolic process; GO-ID 45913, positive regulation of carbohydrate
metabolic process; GO-ID 10828, positive regulation of glucose transport;
GO-ID 19216, regulation of lipid metabolic process; GO-ID 32000, positive
regulation of fatty acid beta-oxidation; GO-ID 43550, regulation of lipid
kinase activity; GO-ID46321, positive regulation of fatty acid oxidation, etc.

(c) Cell proliferation and apoptosis are involved in the pathological process of
myocardial infarction. The main related GO_BP categories included: GO-ID
42127, regulation of cell proliferation; GO-ID 8284, positive regulation of
cell proliferation; GO-ID 42981, regulation of apoptosis; GO-ID 43067,
regulation of programmed cell death; GO-ID 10,941, regulation of cell
death, etc.

2. Sub-cluster 2, cluster genes included PPARA, CAV1, TNF, IL6ST, GRB2,
PPARG, NFKBIA, FOXO1, NR3C1, CTNNB1, RPA1, FOS, GATA2, CD44,
RAC1, RUNX1, MYC, CCNA2, CHUK, HSPA8, AKT2, NFATC1, IRAK1,
MAP 2K1, RXRA, SMAD5, TP53, SMAD3, SMAD1, CDK4, PRKCD, KDR,
HDAC4, HDAC3, CDKN1A, ETS1, MAPK3, MAPK8, and MDM4. GO_BP
analysis found that the functions of these genes were mainly involved in the
responses to intracellular and extracellular stimulation signals, regulation of cell
proliferation, differentiation, and apoptosis, and the regulation of immune inflam-
matory related processes:

(a) The responses to intracellular and extracellular stimulation signals may be
produced by the corresponding response of the body caused by myocardial
infarction, for example: GO-ID 9611 response to wounding.

(b) Cell proliferation, differentiation, and apoptosis are involved in the patholog-
ical process of myocardial ischemia and infarction. The corresponding
GO_BP categories are: GO-ID 42127, regulation of cell proliferation;
GO-ID 8285, negative regulation of cell proliferation; GO-ID 45595, regu-
lation of cell differentiation; GO-ID 43069, negative regulation of
programmed cell death; GO-ID 42981, regulation of apoptosis; GO-ID
43067, regulation of programmed cell death; GO-ID 10941, regulation of
cell death; GO-ID 45767, regulation of anti-apoptosis; GO-ID 51726, regu-
lation of cell cycle, etc.

(c) Immune inflammatory reaction occurs throughout the development of CHD,
the main GO_BP categories include: GO-ID 2376, immune system process;
GO-ID 2682, regulation of immune system process; GO-ID 2520, immune
system development; GO-ID 6954, inflammatory response; GO-ID 2673,
regulation of acute inflammatory response; GO-ID 50727, regulation of
inflammatory response, etc.

3. Sub-cluster 3, cluster genes included: BID, TRAF1, THRA, ERBB2, NFKB1,
BCL2L1, FOXO3, SRC, ATF2, IGF1R, VDR, CSNK2A1, CXCR4, RHOA,
FAS, APEX1, AR, SOCS3, SMAD2, PTPN11, CCND1, TNFRSF10B, EP300,

8 Disease-Based Network Pharmacology Practice Process 401



HDAC2, JUN, MDM2, JAK2, PTPN1, and TNFAIP3. GO_BP analysis found
that the main functions of these genes are regulation of cell proliferation, differ-
entiation and apoptosis, and regulation of hypoxic and oxidative stress.

(a) In myocardial infarction, cell proliferation, differentiation, and apoptosis
involve myocardial cells, endothelial cells, smooth muscle cells, immune
inflammatory cells, etc. The main GO_BP categories include: GO-ID
42981, regulation of apoptosis; GO-ID 43067, regulation of programmed
cell death; GO-ID 10941, regulation of cell death; GO-ID 45595, regulation
of cell differentiation; GO-ID 8219, cell death; GO-ID 6915, apoptosis;
GO-ID 12501, programmed cell death; GO-ID 6916, anti-apoptosis; GO-ID
42127, regulation of cell proliferation; GO-ID 8633, activation of
pro-apoptotic gene products; GO-ID 51726, regulation of cell cycle; GO-ID
6917, induction of apoptosis; GO-ID 12502, induction of programmed cell
death, etc.

(b) Hypoxia and oxidative stress play an important role in the occurrence and
development of systolic heart disease. The GO_BP categories include:
GO-ID 51341, regulation of oxidoreductase activity; GO-ID 1666, response
to hypoxia; GO-ID 70482, response to oxygen levels; GO-ID 42542, response
to hydrogen peroxide; GO-ID 6979, response to oxidative stress; GO-ID
302, response to reactive oxygen species, etc.

Similarly, this chapter also conducted GO_BP analysis of the other
10 sub-clusters, results mainly involving angiogenesis, leukocyte chemotactic
migration, and cell apoptosis; oxidative stress injury, damage repair; cell prolifera-
tion, migration and apoptosis, fatty acid oxidative metabolism; immune
inflammation-related biological processes; calcium ion channel regulation; Cell-
extracellular matrix interaction regulation; coagulation function cascade reaction,
and other biological pathways.

8.1.4 Validation and Summary

8.1.4.1 Enrichment Results Discussion

Functions of signaling pathways enriched through disease network analysis and their
association relationships with diseases are discussed and analyzed as follows:

1. The role of apoptosis and necrosis in CHD: In acute myocardial infarction (AMI),
cardiomyocyte apoptosis and necrosis occur rapidly, and the related signaling
pathways like cell cycle, apoptosis, and p53 signaling pathway play a key role in
the pathological process of cardiomyocyte apoptosis and necrosis [38–40].

2. The immune inflammatory response involves throughout the entire occurrence
and development process of atherosclerosis (AS), and is the key biological
process of CHD [41–44]. Inflammatory response involves throughout the entire
process of AMI. Hypoxia is one of the causes of inflammation. Inflammation
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involves all stages of ischemic injury [45]. Of all the 37 enriched signaling
pathways, 11 are associated with immune inflammation, including: T cell recep-
tor signaling pathway, Chemokine signaling pathway, B cell receptor signaling
pathway, Fc epsilon RI signaling pathway, Fc gamma R-mediated phagocytosis,
natural killer cell mediated cytotoxicity, toll-like receptor signaling pathway,
leukocyte transendothelial migration, NOD-like receptor signaling pathway,
cytosolic DNA-sensing pathway, RIG-I-like receptor signaling pathway. Studies
indicate that MAPK signaling pathway, with regulatory effects on cell prolifer-
ation, differentiation, and apoptosis, plays an important role in inflammatory
response, and is a potential target of anti-inflammatory therapy [46].

3. Energy metabolism plays an essential role in the occurrence and development of
CHD. Myocardial energy metabolism includes the metabolism and utilization of
fatty acids and glucose. Cardiac insulin promotes cardiomyocytes to utilize fatty
acids and glucose for ATP synthesis, while myocardial ischemia inhibits normal
conduction of insulin signaling pathway [47], with subsequent inducing of the
occurrence of adverse left ventricular remodeling after myocardial infarction.
This process is related to the decreased function of mitochondrial fatty acid
oxidation in cardiomyocytes [48]. For PPAR signaling pathway, it can inhibit
myocardial ischemia by promoting glucose utilization and anti-inflammatory
effects [49], in which adiponectin is a key adipocytokine that can promote fatty
acids β-oxidation and increase the utilization of glucose [50].

4. The role of angiogenesis in CHD: VEGF signaling pathway regulates the prolif-
eration, migration or cell viability of vascular endothelial cells, promotes vaso-
dilation, and improves blood supply post-myocardial infarction [51–53]. The
mTOR signaling pathway has a regulatory effect on hypoxia induced angiogen-
esis, and can promote the recovery of blood flow supply to ischemic myocardium
post-myocardial infarction [54, 55].

5. The role of cell adhesion and junction in CHD: Focal adhesion is the medium for
cells to connect with the ECM through the cytoskeleton, while AS is the internal
pathological basis of CHD. The disturbance of blood “Fluid Shear Stress” at the
bifurcation point of arteries is transmitted through focal adhesion and causes
morphological and functional changes of endothelial cells, which promotes the
occurrence and development of AS [56]. At the same time, focal adhesion also
mediates endothelial injury due to lipoproteins and promotes the progress of AS
[57]. The integrity of the structure and function of endothelial cells is an vital
basis for maintaining the normal functions of the cardiovascular system.
Adherens junction, Gap junction, and Tight junction are three critical connections
between endothelial cells. Abnormal connection between these cells changes the
morphology and function of the endothelium, increases the permeability of the
endothelium, and promotes the occurrence and development of AS [58]. In
addition, injury to endothelial cells causes pro-inflammatory cells to adhere to
the surface of damaged endothelial cells, and to migrate and invade farther into
the blood vessel wall in the endothelium, participating in the formation of
atherosclerotic plaques together with the involving of actin cytoskeleton
[59]. Endothelial tissue is a continuous monolayer structure of endothelial cells
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in the inner wall of blood vessels, which plays the role of a functional barrier
between blood and vascular smooth muscle. The changes in endothelial structure
and function directly affect the contraction function of blood vessels. On one
hand, the functional barrier of endothelial tissue is changed with increased
permeability, which induces some vasoactive substances in blood circulation to
invade into the vascular wall. On the other hand, the injured endothelium
synthesizes and secretes vasoactive substances (such as endothelin), or metabo-
lizes the precursor substances in the blood circulation into vasoactive substances
(such as AngI transforming to AngII), which cause vasoconstriction and affect the
blood and oxygen supply to the myocardium [60].

6. The role of ventricular remodeling and myocardial injury repair in CHD: The
TGF-beta signaling pathway is activated in the repair process post-myocardial
infarction, which has a pleiotropic and multifunctional regulatory effect on
different types of cells involved in the repair [61]. Myocardial infarction triggers
inflammation, which eventually forms scar tissue. In the early stage of infarction
repair, TGF-β inhibits the activity of macrophages with subsequent inhibition of
synthesis of chemokines and cytokines by endothelial cells to show anti-
inflammatory effects. In the followed process, TGF-β causes ECM deposition,
activates the fibrosis signaling pathway, and induces fibrosis and hypertrophy of
non-infarcted myocardium, which all contribute to left ventricular remodeling
[62]. The notch signaling pathway plays a key role in mammalian heart devel-
opment [63] as well as in the myocardial repair [64] and regeneration process
after infarction. The hedgehog signaling pathway, another signaling pathway
regulating the development and formation of tissues and organs, plays an impor-
tant role in cardiac repair post-myocardial infarction. Erythropoietin (EPO) can
promote angiogenesis through the hedgehog signaling pathway and plays a
protective role [65] in the heart after infarction. Another mechanism of the
hedgehog signaling pathway on cardiac function recovery post-myocardial
infarction is to upregulate the expression of angiogenic genes and to enhance
the migration of bone marrow progenitor cells to the infarcted myocardium [66].

7. The role of other biological processes in CHD: ErbB and Wnt signaling pathways
have multiple roles in regulating biological processes, including cardiac devel-
opment, cardiomyocyte proliferation, myocardial cell viability, etc. ErbB signal-
ing pathway is especially vital for cardiac development and can regulate the
balance of both sympathetic vagus nerve and hemodynamics. The activation of
ErbB signaling pathway can reverse the declining cardiac function post-
myocardial infarction [67]. Wnt signaling pathway plays an significant role in
stem cell biological activity, cardiac development and differentiation, angiogen-
esis, etc. [68–70] What’s more, the Jak-STAT signaling pathway has a versatile
biological functions, involving cell proliferation, differentiation, migration, and
apoptosis, and is an essential signaling cascade for organisms [71]. Studies have
found that under pathological conditions, the renin-angiotensin system (RAS) is
activated, and Ang II binds to its receptor to further activate Jak-STAT signaling
pathway, participating in cardiac dysfunction caused by myocardial ischemia-
reperfusion [72]; In addition, the Jak-STAT signaling pathway plays an important
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role in the occurrence of myocardial infarction and post-myocardial infarction
ventricular remodeling, which may be related to the activation of the
pro-inflammatory signaling pathway of Jak-STAT signaling pathway [73].

The abovementioned analysis indicates that the pathogenesis of CHD involves
immune inflammatory reaction, apoptosis and necrosis, energy metabolism of cells,
cell adhesion and connection, angiogenesis, myocardial injury repair, ventricular
remodeling, and other related biological processes.

8.1.4.2 Conclusion

1. The disease network of CHD was improved and the CHD@ZJU2.0 disease
network research platform was established through application of the integrated
text knowledge mining, manually literature validation and public database knowl-
edge methods. With the guidance of network biology, network pharmacology and
network medicine concepts and methods, network analysis was applied to iden-
tify key genes and biological pathways of the CHD disease network. CHD@ZJU,
the disease network research platform, has currently been updated to version 3.0.

2. The results of network analysis preliminarily show that CHD is a polygenic,
multi-biological pathways associated disease. Pathogenesis related biological
processes mainly include: Immune inflammatory response, cell proliferation,
differentiation and apoptosis-related processes, angiogenesis, hypoxia and oxi-
dative stress response, glucose and fatty acid related energy metabolism, myo-
cardial injury repair, and ventricular remodeling. The construction and
improvement of the CHD disease network research model can facilitate the
subsequent experimental research works.

8.2 Research Practice of the Application of Disease
Network in TCM Prescriptions

8.2.1 Integrated Mechanism Study of TCM Prescriptions
Modes of Action

The Qishen Yiqi formulae mainly contain water-soluble components from Radix
Astragali, Salvia Miltiorrhiza, and Panax Notoginseng, together with volatile oil
components from Dalbergia Odorifera. Our previous research results [74, 75] show
that the pharmacodynamic material basis for Qishen Yiqi formulae are mainly
saponins from Radix Astragali, phenolic acids from Salvia Miltiorrhiza, saponins
from Panax Notoginseng, and volatile oil components from Dalbergia Odorifera. Shi
Pei-ying [75] studied the non-volatile and volatile chemical constituents of Qishen
Yiqi formulae by application of liquid chromatography mass spectrometry
(LC/TOF/MS), liquid chromatography ion trap mass spectrometry (LC/IT/MS),
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and gas chromatography mass spectrometry (GC/MS). A total of 35 non-volatile
components were identified, and the compounds with highest contents were of
danshensu, salvianolic acid B, salvianolic acid A, isosalvianolic acid C, ginsenoside
Rb1, and ginsenoside Rd. 24 volatile components were identified in the Qishen Yiqi
extract. By comparing the total ion flow diagram of Qishen Yiqi and Dalbergia
Odorifera extracts, 5 volatile components with high content amount were obtained,
notably cis-α-santalol, nerolidol, E-nerolidol (ENL), (3S,6R,7R)-3,7,11-trimethyl-
3,6-epoxy-1,10-dodecadien-7-ol (RDL), and (3S,6S,7R)-3,7,11-trimethyl-3,6-
epoxy-1,10-dodecadien-7-ol (SDL), respectively. Analysis of plasma samples of
SD rats after intragastric administration of Qishen Yiqi extract (6 g/kg) revealed
that the constituents absorbed into the blood were four phenolic acid compounds and
seven saponins compounds.

In addition, our research group’s Li et al. [76, 77] used HPLC-UV-ELSD and
HPLC-DAD-ESI-MSn methods to study the content of related components in
Qishen Yiqi dropping pills. Combined with results of this study, Shi Pei-ying
suggested that astragaloside IV (Ast), Danshensu (DSS), Ginsenoside Rg1 (Rg1),
and ginsenoside Rb1 (Rb1) in the Qishen Yiqi formulae may be its representative
effective components in blood corresponding to drugs in Qishen Yiqi. Other domes-
tic research groups have also conducted research on the pharmacodynamic material
basis of Qishen Yiqi formulae [78].

Based on the research results of the chemical composition of TCM prescription
and in vivo pharmacokinetics, effective components of the Qishen Yiqi formulae are
the saponins of Radix Astragali, phenolic acids of Salvia Miltiorrhiza, saponins of
Panax Notoginseng, and volatile oil of Dalbergia Odorifera. Representative com-
pounds were selected from corresponding TCM fractions, i.e., Ast, DSS, Rg1, and
ENL were identified as the four main active compounds. Study was designed to
investigate the effects of single compound administration and combined compounds
administration on rat AMI models. Gene chip technology and network pharmacol-
ogy methods were used, together with CHD@ZJU V2.0 ischemic heart disease
network, and the synergistic mechanism of four main active components of the
Qishen Yiqi formulae against the rat AMI at the transcriptional level.

8.2.1.1 Data Acquisition and Processing

Left Anterior Descending Coronary Artery (LAD) ligation was done under anesthe-
sia in rats. Myocardial infarction model rats were randomly divided into groups with
intragastric administration (i.g) on every morning for 7 consecutive days (i.g volume
10 ml/kg). The sham operation group (1% sodium carboxymethyl cellulose solution,
1% CMCNa), model group (1% CMCNa), Ast group (80 mg/kg), DSS group
(44 mg/kg), Rg1 group (8 mg/kg), ENL (53.3 mg/kg), 4H group, Qishen Yiqi
decoction group (QSYQ). Five rats in each group were used for gene chip research,
i.e., sham, model, Ast, DSS, Rg1, ENL, and 4H.

Extraction of rat myocardial tissue for gene chip detection required surgical
instruments with DEPC RNase-free water treatment, autoclaved, and dried.

406 X. Fan and X. Li



Ophthalmic scissors and ophthalmic tweezers were used to obtain about 300 mg of
myocardial tissue at the junction between the infarcted and normal myocardium
below the site of ligation. The Affymetrix Rat Genome 230 2.0 chip was selected and
entrusted to the chip company for testing. The company used Affymetrix GeneChip
Command Console software (version 4.0, Affymetrix) to process and extracts the
original data from the scanned original images.

The original data document was downloaded from the Arraytrack server, and
Excel was used to standardize with median set as 1000 for all data. The standardized
calculation is as follows:

Probe expression value after standardization
¼ original expression value in the chip=median� 1000:

The average value of probe expression was calculated. The expression value
obtained after normalization was further calculated through a logarithm of base
2 (Log2expression value) to attain the average log2 value of each probe. 1073 ischemic
heart disease-related genes were downloaded from the CHD disease network plat-
form CHD@ZJUV2.0, constructed in Sect. 8.1, and 902 ischemic heart disease-
related genes were extracted and returned from the 26,430 genes on the chip.
Reverse Rate (RR) of each gene was calculated, and finally the signaling pathway
enrichment analysis was done in Arraytrack.

The formula for calculating the gene callback rate is as follows:

RR ¼ D�Mð Þ= S�Mð Þ

where RR stands for the callback rate, that is, the ability of drug to regulate gene
expression in the opposite direction of the model’s change against the sham opera-
tion group, so it can return to the sham operation level. D stands for component or
component combination, M stands for model, and S stands for sham operation.

Where a gene is up-regulated relative to the sham operation after LAD ligation,
i.e., M > S, the effective callback condition is M > D � S, then the callback rate is
0 < RR � 1. If the gene is down-regulated relative to the sham operation after LAD
ligation, i.e., S>M, the effective callback condition is S� D>M, then the callback
rate is 0 < RR � 1, that is, the closer the RR value getting to 1, the stronger the
callback effect shows.

However, callback rate RR> 1 indicates the over-callback effect, that is, the gene
continues to be regulated in the direction of sham surgery after the gene was recalled
to the level of sham surgery due to drug intervention, and the callback rate RR � 0
indicates no callback effect.
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8.2.1.2 Network Analysis and Prediction

ArrayTrack software was used to conduct signaling pathway enrichment analysis of
those effective callback genes. There were 466 effective callback genes for Ast,
365 effective callback genes for DSS, 495 effective callback genes for Rg1,
425 effective callback genes for ENL, and 444 effective callback genes for the 4H
group. The respective groups of regulated signaling pathways and signaling pathway
network were constructed and referred to as the drug-signaling pathway network.
The network attributes included 49 nodes, 179 edges, and 44 signaling pathways.
There were 26 signaling pathways with significant regulation of single administra-
tion of the four components and combined administration of the four components,
accounting for 59.1% of the total enriched signaling pathways. These signaling
pathways mainly involved biological processes such as immune inflammation, cell
adhesion and connection, angiogenesis, ventricular remodeling and myocardial
repair, and energy metabolism. There were 34 signaling pathways that are signifi-
cantly regulated by Ast ( p < 0.05), 35 by Rg1 ( p < 0.05), 39 by DSS ( p < 0.05),
36 by ENL ( p < 0.05), and 35 by 4H ( p < 0.05).

The results of network analysis show that each component can regulate multiple
ischemic heart disease-related signaling pathways. Some signaling pathways are
regulated by only one component, while others are regulated by two to four
components simultaneously.

Glycerolipid metabolism signaling pathway is only regulated by Ast, while the
three signaling pathways of nicotinate and nicotinamide metabolism, steroid bio-
synthesis, and cell cycle are only modulated by DSS. And methane metabolism
signaling pathway is only regulated by ENL.

Ast and Rg1 can significantly regulate PPAR signaling pathway and pyruvate
metabolism. DSS and ENL can both significantly regulate p53 signaling pathway,
tight junction, and RIG-I-like receptor signaling pathway.

The three components of Ast, DSS, and Rg1 can significantly regulate cardiac
muscle contraction and Fc gamma R-mediated phagocytosis. Ast, DSS, and ENL
can significantly regulate ABC transporters; Ast, Rg1, and ENL can significantly
regulate ECM-receptor interaction; DSS, Rg1, and ENL can significantly regulate
Leukocyte transendothelial migration, Hematopoietic cell lineage, and natural killer
cell mediated cytotoxicity.

The four components of Ast, DSS, Rg1, and ENL can significantly regulate
arachidonic acid metabolism.

There are 26 signaling pathways with significant regulation of single and com-
bined administration of the four components, including: adherens junction,
adipocytokine signaling pathway, apoptosis, B cell receptor signaling pathway,
calcium signaling pathway, chemokine signaling pathway, complement and coagu-
lation cascades, cytokine-cytokine receptor interaction, ErbB signaling pathway, Fc
epsilon RI signaling pathway, focal adhesion, gap junction, GnRH signaling path-
way, insulin signaling pathway, Jak-STAT signaling pathway, MAPK signaling
pathway, mTOR signaling pathway, NOD-like receptor signaling pathway,
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regulation of actin cytoskeleton, renin-angiotensin system, T cell receptor signaling
pathway, TGF-beta signaling pathway, toll-like receptor signaling pathway, vascular
smooth muscle contraction, VEGF signaling pathway, and Wnt signaling pathway.

8.2.1.3 Validation and Summary

Experimental Validation

Lipopolysaccharide (LPS)-induced inflammatory cellular model in RAW264.7
mouse mononuclear macrophages was applied to study the anti-inflammatory effect
and mechanism of ENL (the main component of the volatile oil of Dalbergia
Odorifera) and the two components SDL and RDL (isolated from the oil of
Dalbergia Odorifera for the first time). Meanwhile, the synergistic anti-inflammatory
effects of the four main components of QSYQ, i.e., Ast, DSS, Rg1, and ENL, were
studied.

The effects of ENL, SDL, and RDL were investigated in order to identify their
safety concentration ranges which would have no affections to the viability of
RAW264.7 cells, and the inhibitory effect of these compounds against the produc-
tion of NO in RAW264.7 cells induced by LPS was evaluated. The synergistic
inhibitory effects of sodium danshensu and ginsenoside Rg1 against LPS-induced
secretion of NO in RAW264.7 were also investigated. The inhibitory effects of the
combined treatment of the four components against LPS induced NO secretion in
RAW264.7 were detected by the Griess method. Further, the effects of small
molecule (Tool Compound), i.e., U0126, T0070907, Pioglitazone hydrochloride
(Pio), ZnPPIX on the NO secretion in LPS stimulated RAW264.7 were investigated.
Among them, U0126 is a selective ERK1/2 phosphorylation inhibitor, T0070907 is
an inhibitor of PPARγ phosphorylation, Pio is a PPARγ agonist, and ZnPPIX is a
specific inhibitor of HO-1. Western blot method was selected to detect the protein
expression levels of ERK1/2, phospho-ERK1/2, PPARγ, and HO-1.

Main Conclusions

1. Gene chip technology and network pharmacology method were applied, the
synergetic mechanisms of the four main components of the QSYQ against AMI
in rats were studied at the transcriptome level, and the four main components have
regulatory effects on multiple genes related to ischemic heart disease. Among the
genes with effective callbacks from the combination of the four components,
more than 50% of genes are involved in effective callbacks by at least two
components, reflecting the synergistic effects of all four active components on
the regulation of related genes. In the component combination administration
group, there were 40 genes that are up-regulated and the four components had
synergistic effects against LAD ligation. 36 genes that were down-regulated
indicated synergistic effects by the four components after modeling. Biological
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function and signaling pathway enrichment analysis of these genes revealed
several pathways, including immune inflammation, angiogenesis, ventricular
remodeling and myocardial repair, energy metabolism, etc., which may be the
key biological pathways for the four components of the QSYQ to play a multi-
target and multi-pathway integrated synergy against rat AMI.

2. Experimental verification studies revealed that ENL, SDL, and RDL inhibit the
secretion of NO in LPS-induced RAW264.7 monocytes macrophages. The
mechanism of action of the three components (especially ENL and SDL) may
be partly through inhibition of ERK1/2 and PPARγ phosphorylation, and
increase of PPARγ and HO-1 expression involving NF-κB, ROS, iNOS, and so
on, which all contributed to inhibition of LPS-induced NO production in
RAW264.7 macrophages. The combined co-culture of DSS and Rg1 with
RAW264.7 could synergistically enhance the inhibition effects of LPS induced
NO secretion in a dose-effect relationship. This effect of DSS and Rg1 could be
attenuated or even abolished by ZnPPIX, an HO-1-specific inhibitor. Thus, DSS
and Rg1 may play an anti-inflammatory role by partially promoting the expres-
sion of HO-1. Meanwhile, compared to the single component administration
group, the combined administration of Ast, DSS, Rg1, and ENL of the four
components could synergistically enhance the inhibition effects on the
LPS-induced NO secretion and exhibited a good dose-response relationship.

3. The component-target-pathway network of the main pharmacodynamic sub-
stance of the QSYQ was constructed, and experimental data revealed that the
regulation network of Qishen Yiqi dropping pills consist of 12 effective compo-
nents and 55 targets acting on 17 pathways, involving both AMI stage (Vasodi-
lation, anti-myocardial apoptosis, anti-inflammatory protection of the
endothelium, and improved energy metabolism) and ventricular remodeling
stage (promoting angiogenesis, improving cardiac function, anti-myocardial
fibrosis, and anti-platelet aggregation). This indicated the integrative regulation
effects of QSYQ as multi-components, multi-targets, and multi-pathways modes
of action.

8.2.2 Compatibility Law:
“Sovereign-Minister-Assistant-Courier” in TCM
Formulae

Network pharmacology technology provides a new perspective for the systematic
exploration of integrated regulation modes of TCM formulae. Qishen Yiqi formulae
were set as an example to explain the scientific connotation of its compatibility law
in combating AMI. This section proposes a new research model of integrated
regulation of TCM based on biological network equilibrium analysis. Firstly, the
Organism Disturbed Network (ODN) model was constructed by integrating disease-
related gene information, transcriptome expression, and interaction related
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information. We also analyze the ability of the Qishen Yiqi formulae and its
components of Radix Astragali, Salvia Miltiorrhiza, Panax Notoginseng, and
Dalbergia Odorifera on recovering and regulating of the ODN. The network recov-
ery ability algorithm was improved and applied to quantitatively evaluate the
efficacy of Qishen Yiqi formulae. Results indicated that the Qishen Yiqi formulae
was significantly better than the four TCM drugs of QSYQ administered alone
against AMI, and had a synergistic mode of effect. As for the ability of network
recovery, the sovereign drug and minister drug (Radix Astragali and Salvia
Miltiorrhiza) is significantly better than that of the assistant drug and courier drug
(Panax Notoginseng and Dalbergia Odorifera), which complies with the compati-
bility law of “sovereign-minister-assistant-courier or Jun-Chen-Zuo-Shi rules.”
Pathway enrichment analysis sheds light on the compatibility rules of the Qishen
Yiqi formulae and its components at the pathway level.

8.2.2.1 Data Acquisition and Processing

Preparation of Myocardial Tissue Samples from AMI Rats

The AMI rat myocardial tissue samples were provided by the Institute of Pharmaco-
informatics, Zhejiang University. A total of seven groups of samples were involved
in this study, including normal group (Ctrl), model group (MI), Qishen Yiqi Decoc-
tion group (QSYQ), Salvia Miltiorrhiza group (DS), Radix Astragali group (HQ),
Panax Notoginseng group (SQ), and Dalbergia Odorifera group (JX). Three biolog-
ical replicate samples were included in each group.

Chip Experiment and Data Preprocessing

RNA extraction, purification, sample quality inspection, chip experiment, and data
acquisition were completed by chip company. The Affymetrix Rat 230 2.0 chip was
used, and the final chip data was saved in the .CEL format files. ArrayTrack software
was applied to read the .CEL files and the chip data was exported to Excel in .txt
format files for normalization processing. Data from 21 chips was processed for data
standardization. The median expression value for each chip was set to 1.000
(Median ¼ 1000) by multiplying with the weight coefficient.

8.2.2.2 Network Construction and Visualization

Construction of Organism Disturbed Network (ODN)

The whole process can be divided into four parts: data collection, data arrangement,
network construction and visualization, and network analysis.
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In the data collection process, the AMI-related gene information, correlation, and
expression profile information were collected through knowledge mining techniques
and transcriptomics experiments. In the data management process, genes related to
CHD and myocardial ischemia in CHD@ZJU and RGD databases were integrated.
Protein–protein interaction (PPI) relationship information in both HPRD and
BioGRID databases was also integrated. Gene expression information was attained
through chip expression data processing using data normalization. AMI disease
biological network was constructed by using integrated genetic information and
PPI relationship as nodes and edges, respectively. Each node in the network repre-
sents a gene, and each edge represents the interaction relationship between the
corresponding proteins of two genes. Then, the gene expression profile information
of AMI was obtained by transcriptomics technology, and it was combined with the
disease biological network in the form of network annotation (including node
annotation and edge annotation) to form ODN. Cytoscape software was applied to
conduct visualization research of the ODN.

Calculation of Network Recovery Index (NRI) of ODN Model

NRI-ODN, which is oriented to the Organism Disturbed Network model, enables to
integrate node topology attributes and callback efficiency, to comprehensively
evaluate the ability of network recovery regulation of drugs. In this study, node
topology attributes are defined by the degree of nodes. The node callback efficiency
is evaluated by “Efficiency of Recovery regulation” (EoR).

EoR is an index describing the callback efficiency of a node based on a quanti-
tative callback state (RL0). RL0 is a continuous variable form of the callback state
index RL, and the calculation is shown in Formula 8.1. The EoR calculation is
shown in Formula 8.2, and its maximum value is 100%, that is, the drug can
eliminate the expression change caused by the AMI modeling. For example, if the
mean Log2 value of expression intensity in the normal control group is 5, and that in
the model group is 10. EoR ¼ 50% indicates that the expression intensity of this
gene was regulated in recovery by 50% (value ¼ 7.5) or over-regulated by 50%
(value¼ 12.5) after drug administration. While EoR ¼ 100% indicates that the gene
expression intensity returned to the normal control state after administration
(value ¼ 10). If EoR < 0, it means that the drug does not have a callback effect
(value< 5) or produces an excessive over-callback effect (>15) on the gene, and this
type of gene does not contribute to the efficacy of the drug.

RL0 ¼ LogEdrug � LogEdisease

LogEcontrol � LogEdisease
, ð8:1Þ

EoR ¼ 100%� 100%� RL0j j, ð8:2Þ

NRIODN was calculated by Formula 8.4. The callback level (Recovery
Regulation-ODN, RRODN) comprehensively considers the influence of node

412 X. Fan and X. Li



topology and callback efficiency on the callback level, as shown in Formula 8.3.
Where Wtopo represents the degree of the node and EoRpositive indicates that only
those nodes with positive EoR (value > 0) are used in the RRODN calculation.
Finally, NRIODN was obtained by calculating the overall network, the sum of the
RRODN of significantly up-regulated genes and significantly down-regulated genes.

RRODN ¼
X

W topo � EoRpositive, ð8:3Þ
NRIODN ¼ RRODNall þ RRODNup þ RRODNdown, ð8:4Þ

8.2.2.3 Network Analysis and Prediction

The study applied the NRI-ODN to evaluate the efficacy of the Qishen Yiqi formulae
against AMI, and analyzed the impact of the node’s Fold Change (FC) on the
callback level RRODN and NRIODN. The callback efficiency of Qishen Yiqi and
its single drugs to the nodes of the ODN were calculated through EoR. The genes
with effective callback ability were defined with EoR > 50% as the threshold, and
the effective callback genes lists of Qishen Yiqi and its four drugs were obtained.

Pathway enrichment analysis methods were used to analyze the biological sig-
naling pathways involved in each gene list. ArrayTrack (version 3.5.0) software was
cited to analyze the pathway of the effective callback gene list. The KEGG pathway
database was selected as the pathway information source, and fisher p value < 0.05
was set as the standard to identify the significant pathways. The KEGG pathway
database contains cellular processes, environmental information processes, metabo-
lism, human diseases, etc. Considering the relevance with PPI, only cellular and
environmental information processes were studied in this research.

8.2.2.4 Validation and Summary

Network Construction and EoR Calculation Results

The AMI-related disease biological network based on the Qishen Yiqi data involves
a total of 324 genes and 623 pairs of interaction relationships. The largest
sub-network is the ODN, involving 281 genes and 616 interaction relationships.
Each node represents a gene, and each edge represents an interaction relationship
between the corresponding proteins of the genes. The color of the nodes represents
the changed state of expression in the modeling group, where red represents the
up-regulated expression of the modeling group as compared to the normal group;
and green represents the down-regulated expression of the modeling group versus
the normal group (as shown in Fig. 8.1a).

The EoR index was used to annotate the callback ability of the Qishen Yiqi
decoction after administration (as shown in Fig. 8.1b). A blue node indicated that the
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Qishen Yiqi formulae could callback the expression imbalance caused by AMI after
its administration, while a gray node indicated that there was no callback effect. The
four drugs of Qishen Yiqi formulae—Salvia Miltiorrhiza (Salvia), Radix Astragali
(Astragalus), Panax Notoginseng (Notoginseng), and Dalbergia Odorifera
(Dalbergia), are shown in Fig. 8.1c.

Fig. 8.1 Graph of the AMI-related Organism Disturbed Network (ODN) (Qishen Yiqi network)
based on the Qishen Yiqi gene chip expression data
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Calculation Results of RRODN and NRIODN of Qishen Yiqi Formulae

Among the four drugs, the NRIODN index of Salvia Miltiorrhiza and Radix Astragali
was higher than that of Panax Notoginseng and Dalbergia Odorifera. The Qishen
Yiqi formulae, Radix Astragali, and Salvia Miltiorrhiza had a very significant
callback effect on the ODN ( p < 0.01). Dalbergia Odorifera had a significant
callback effect ( p< 0.05), and the Panax Notoginseng alone showed an insignificant
callback effect on the ODN ( p > 0.1).

Results of Network Recovery Regulation Ability

In this study, the absolute value of FC > 0.5 was used as the screening criterion for
significantly up-regulated and down-regulated genes, and the influence of this
screening criterion on the calculation results of RRODN was investigated. The RR
value of Qishen Yiqi formulae is always higher than those of its four drugs alone.
When the FC threshold is greater than 1, the RRODN levels of Salvia Miltiorrhiza
and Radix Astragali are higher than those of Panax Notoginseng and Dalbergia
Odorifera. When the FC is greater than 1, the significant RRODN value of Qishen
Yiqi formulae shows little difference with that of Salvia Miltiorrhiza, while the
significant RRODN values corresponding to Radix Astragali, Panax Notoginseng,
and Dalbergia Odorifera are similar.

Compatibility Rules of Qishen Yiqi at the Pathway Level

EoR > 50% was used as the threshold value to define the effective callback genes of
the Qishen Yiqi formulae and its four drugs against ODN, and the biological
pathway enrichment of the genes with EoR > 50% were counted and analyzed.
The results indicated that Radix Astragali could affect more pathways, while the
other three drugs had similar number of signaling pathways. The 14 pathways
regulated by the Qishen Yiqi formulae can be also regulated by at least one of its
drugs. Radix Astragali and Salvia Miltiorrhiza could both regulate 10 pathways of
the 14 pathways, Panax Notoginseng could regulate 8 pathways, while Dalbergia
Odorifera could only regulate 5 pathways, which all indicates that Radix Astragali
and Salvia Miltiorrhiza may play a major role in the regulation effects of Qishen Yiqi
formulae at the pathway level.
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8.2.3 Study of “Tonifying Qi and Activating Blood” Efficacy
in TCM Formulae

The Qishen Yiqi formulae is composed of Salvia Miltiorrhiza, Radix Astragali,
Panax Notoginseng, and Dalbergia Odorifera, and it is prescribed for treatment of
ischemic heart disease [79]. The Qishen Yiqi dripping pills manufactured according
to Qishen Yiqi formulae [80] are clinically used for the treatment of CHD due to Qi
deficiency and blood stasis with definite curative effects. The four herbs are formu-
lated in accordance with the prescription of “sovereign-minister-assistant-courier,”
however, their mechanism of the treatment of ischemic heart disease and related
complications needs to be further studied [81]. The preparation was originally called
Huangqi Danshen Dropping Pills [82–84], and then renamed as Qishen Yiqi
dropping pills. TCM theory indicates that Qi deficiency and blood stasis lead to
the pathogenesis of ischemic heart disease. Tonifying Qi and activating blood
circulation is the basic treatment regimen for ischemic heart disease. Therefore,
research on the efficacy of Qi tonifying and blood activating could conducted from
the view of the Qi tonifying and blood activating of Radix Astragali and Salvia
Miltiorrhiza. Based on the ischemic heart disease network, with the regulation of
Salvia Miltiorrhiza and Radix Astragali and network regulation analysis method, it is
feasible to carry out research of efficacy of Qi tonifying and blood activating on the
disease molecular network view. What’s more, further cellular and molecular biol-
ogy experiments are warranted to verify related molecular mechanisms.

8.2.3.1 Data Acquisition and Processing

Construction of Ischemic Heart Disease Network

The disease network was constructed with application of CHD@ZJU cardiovascular
disease network pharmacology research platform, which was used to investigate the
efficacy of the Qishen Yiqi formulae of its Qi tonifying and blood circulation
promoting.

Construction of Molecular Network of Radix Astragali and Salvia Miltiorrhiza
for Regulating of Ischemic Heart Disease

The myocardial tissue samples of AMI rats were provided by the Institute of
Pharmacoinformatics, Zhejiang University. A total of seven groups of samples
were involved in this study, including normal group (Ctrl), model group (MI),
Qishen Yiqi Decoction group (QSYQ), Salvia Miltiorrhiza group (DS), Radix
Astragali group (HQ), Panax Notoginseng group (SQ), and Dalbergia Odorifera
group (JX). Three biological replicate samples were included in each group.
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RNA extraction, purification, sample quality inspection, chip experiment, and
data acquisition were completed by chip company. The Affymetrix Rat 230 2.0 chip
was used, and the final chip data was saved in the. CEL format files. ArrayTrack
software was applied to read the. CEL files and the chip data was exported to Excel
in .txt format files for normalization processing. Data from 21 chips was processed
for data standardization. The median expression value for each chip was set to 1.000
(Median ¼ 1000) by multiplying with the weight coefficient.

8.2.3.2 Network Construction and Visualization

In the network modeling process, the PPI relationships were obtained with integra-
tion of HPRD and BioGRID databases. As for disease-associated genes collection,
CHD@ZJU was applied, together with CHD and myocardial ischemia related genes
from RGD database were also used. The chip expression data was processed with
normalization to attain gene expression information. Gene expression profile infor-
mation of AMI was obtained through transcriptomics technology, then Cytoscape
software (version 3.0.1) was used to conduct the research on visualization of
the ODN.

8.2.3.3 Network Analysis and Prediction

Efficacy exploration of Radix Astragali and Salvia Miltiorrhiza in “tonifying Qi and
promoting blood circulation” in ischemic heart disease at molecular network level.

In Sect. 8.2.2, the NRIODN was used to study the compatibility rules of the Qishen
Yiqi formulae with “sovereign-minister-assistant-courier.”At the molecular network
level, the network recovery regulation ability of the sovereign and minister drugs
(Radix Astragali and Salvia Miltiorrhiza) is significantly better than that of assistant
and courier drugs (Panax Notoginseng and Dalbergia Odorifera), which is accord
with the compatibility rules “sovereign-minister-assistant-courier” of these drugs. In
our previous pharmacodynamic and proteomics research, results showed that Radix
Astragali and Salvia Miltiorrhiza, the sovereign and minister drugs in Qishen Yiqi
formulae, targeted on the energy metabolism and blood circulation pathways of the
imbalance network, respectively, which was consistent with the traditional efficacy
of “replenishing Qi and promoting blood circulation.”

In this section, NRI-ODN algorithm was cited to calculate the callback ability of
the drug to the organisms network balance, and the drug efficacy was evaluated
systematically. The NRI-ODN algorithm further considered the influence of network
topology and node callback efficiency on the overall recovery regulation ability, so it
could reflect the influence of TCM drugs on the network more reasonably.

Further pathway enrichment analysis was carried out. Effective callback genes
with a threshold value (EoR > 50%) were defined and obtained for Qishen Yiqi
formulae and its constituent drugs. ArrayTrack (version 3.5.0) software was cited to
analyze the pathway of the effective callback gene list. The KEGG pathway database
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was selected as the pathway information source, and fisher p value< 0.05 was set as
the standard to identify the significant pathways. The KEGG pathway database
contains cellular processes, environmental information processes, metabolism,
human diseases, etc. Considering the relevance with PPI, only cellular and environ-
mental information processes were studied in this research.

8.2.3.4 Validation and Summary

“Tonifying Qi” Effects of Radix Astragali: Detecting Energy
Metabolism-Related Indicators

The rats LAD ligation model was used on under anesthesia. Myocardial infarction
Rats were divided randomly into different groups with intragastric administration of
TCM every morning for 7 consecutive days. The rats were administered 10 ml/kg in
the Sham operation group (1% CMCNa), model group model (1% CMCNa), high-
dose Radix Astragali group (200 mg/kg/day, ARE-H), and Radix Astragali low-dose
group (100 mg/kg/day, ARE-L). Radix Astragali extract was provided by Tianjin
Tasly Pharmaceutical Co., Ltd.

After 7 days of administration, the rats were anesthetized by intraperitoneal
injection of 360 mg/kg chloral hydrate. Blood was collected from the abdominal
aorta and allowed to stand for 30 min at room temperature, then was centrifuged at
4000 rpm for 15 min. The supernatant was collected and stored in the refrigerator at
�80 �C. Then the heart was perfused with 20 ml of precooled normal saline, and was
cut off and washed in precooled normal saline. The connective tissue and right
ventricle were removed. Myocardium below the ligation site were placed in a
precooled 2 ml cryopreservation tube and stored at �80 �C.

The test kit was used to measure biochemical indicators in the serum and
myocardial tissue, HPLC chromatography method was used to detect the content
of high-energy phosphate compounds in myocardial tissue, and Western Blot was
used to detect the expression of proteins related to energy metabolism in the
myocardial tissue.

Serum and myocardial tissue homogenate: detecting of content or activity of
lactate dehydrogenase (LDH), pyruvate (PA), lactic acid (LD), creatine kinase (CK),
and free fatty acid (FFA).

Effects of Representative Ingredients of Radix Astragali on Energy
Metabolism of Hypoxic Cardiomyocytes

The effects of the three representative compounds, i.e. Astragaloside IV, calycosin,
and formononetin, against ATPase activity in H9c2 cardiomyocytes were detected
respectively. The hypoxic device consists of a hypoxic culture chamber (Modular
Incubator Chamber, Billups-Rothenberg). Hypoxic conditions were created by using
mixed air to replace the air in the hypoxic culture chamber (ventilate mixed air for

418 X. Fan and X. Li



about 15 min). The culture chamber was placed in a 37 �C, 5% CO2 incubator for
12 h. The ATP content of cardiomyocytes was detected using the CellTiter-Glo™
reagent, and the luminescence intensity was measured with a fluorescence chemilu-
minescence analyzer (Tecan F200, USA).

At the same time, the effects of the three representative compounds against
ATPase activity in cardiomyocytes were detected, using a reference ultra-trace
ATPase test kit according to kit instructions.

Finally, Western Blot was conducted to detect the effects of the three active
compounds on the expression of the PGC-1 and PPAR-α, two proteins which are
associated with energy metabolism in hypoxic cardiomyocytes.

Main Conclusions

1. Based on the ischemic heart disease network and transcriptomics information,
NRI-ODN algorithm application can reflect the recovery regulation ability of
Radix Astragali and Salvia Miltiorrhiza on the organisms network balance and is
able to evaluate TCM drug efficacy systematically. Pathway level studies indi-
cated that the “Qi tonifying and blood circulation activating” of Radix Astragali
and Salvia Miltiorrhiza may be associated with the regulation of myocardial
energy metabolism and blood circulation.

2. Radix Astragali extract showed effects on LDH activity and CK, FFA, PA, and
LA levels in the serum and myocardial tissue of AMI rats. Compared to the sham
operation group, the LDH activity and CK level in the serum and ischemic
myocardial tissue were significantly increased. After administration of Radix
Astragali extract (200 mg/kg/day, 100 mg/kg/day), the LDH activity and CK
level in the serum and ischemic myocardium significantly decreased compared to
those of the model group. The serum LDH activity and CK levels of ischemic
myocardial tissue in the high-dose group were significantly different from those
in the model group (P< 0.05). These results show that the Radix Astragali extract
could effectively alleviate ischemic injury of AMI rats. Compared with the sham
operation group, the levels of FFA, PA, and LA in serum and ischemic myocar-
dial tissue were significantly increased. After intragastric administration of the
Radix Astragali extract (200 mg/kg/day, 100 mg/kg/day), the levels of FFA, PA,
and LA in serum and ischemic myocardial tissue decreased compared to those in
the model group. The levels of FFA, PA, and LA in serum and ischemic
myocardium of the high-dose group (200 mg/kg/day) significantly decreased
(P < 0.01, P < 0.05), while the FFA level in ischemic myocardium with the
low-dose administration (100 mg/kg/day) showed significantly decreased
(P < 0.05). The results showed that the Radix Astragali extract could effectively
regulate the energy metabolism-related metabolites in serum and myocardial
tissue of AMI rats.

3. Effects of Radix Astragali extract on high-energy phosphate compounds in
ischemic myocardial tissues of rats with myocardial ischemia. The HPLC detec-
tion showed that after LAD ligation, the levels of ATP, ADP, AMP, and TAN in
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myocardial tissue decreased. Compared to the model group, the concentrations of
ATP, ADP, AMP, and TAN increased with treatment of Radix Astragali extract
of high and low dosages.

4. Effects of active compounds of Radix Astragali on ATP level of hypoxic
cardiomyocytes. Ast can promote the production of ATP in H9c2 cardiomyocytes
under hypoxic conditions in a dose-dependent manner. Compounds Cal and For
can also increase the production of ATP, showing a good dose-effect relationship.

5. Effects of Radix Astragali active compounds on ATPase activity of hypoxic
cardiomyocytes. Compounds Ast, Cal, and For can enhance the activities of
Na+-K+-ATPase and Ca2+-Mg2+-ATPase of H9c2 under hypoxic conditions
with a good dose-effect relationship.

6. Effects of active compounds of Radix Astragali on PGC-1 and PPAR-α in
hypoxic cardiomyocytes. Compared with the normal group, the protein expres-
sion of PPAR-α decreased significantly while protein expression of PGC-1
decreased a little. Ast, Cal, and For can significantly promote the expression of
PGC-1, but the expression of PPAR-α increases slightly.

In summary, Radix Astragali can improve the energy metabolism of ischemic
myocardium, and PPAR pathway activation may be the involved mode of action.

8.3 Practice of Disease Network Application for Holistic
Efficacy Evaluation of TCM Drug

The rational application of network pharmacology techniques in the field of TCM
research and the development of TCM network pharmacology are currently hotspots
of TCM drug research. Currently, the applications of network pharmacology in
TCM research mainly involve the construction of TCM information database,
construction of TCM network model, study of the TCM components-target relation-
ships, analysis of TCM biological network, and so on. Establishing a scientific and
systematic evaluation system to conduct activity evaluation of TCM is a key
technical link [85] in the creation and optimal design of modern new TCM drugs,
which is also a difficult point in the current research. With the discovery of drug
multi-target effects, drug optimization design strategy based on multiple targets is
able to more reasonably reflect drug efficacy, side effects, in vivo processes, and
other characteristics [86]. Network pharmacology research has further developed the
concept of multi-objective optimization. The effects of a drug on the overall network
as a comprehensive evaluation index to replace the traditional single-indicator or
multi-objective evaluation system, in which pharmacodynamic evaluation based on
system biology data has made remarkable progresses [87, 88] in the field of the drug
repositioning. By constructing the system network model, drug actions were
represented as the characteristics of the holistic network, which makes breakthrough
against the bottleneck that single target could not fully represent the overall effects of
drugs against the biological system, while it also solves the faced problem of multi-
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objective optimization when using multi-efficacy indicators for evaluation. What’s
more, the network model also reflects changes in the biological system responding to
diseases and drugs at the molecular level. This allows for further research on the
mode of action and reveals the biological pathways and molecular mechanisms
involved during the drug treatment process. This type of research does not rely on
the drug structural characteristics, nor does it aim to a specific disease target, which
reduces the research limitations. Therefore, compared to the structure-dependent
traditional chemical medicine research, it is more suitable for the development of
holistic Chinese medicine research.

Holistic biological network analysis is different from the study of drug-target
network, which adopts homogeneous network or a hybrid network model integrating
both homogeneous and heterogeneous networks to replace the heterogeneous drug-
target network. More emphasis is placed on the relationship within the biological
system together with the impact of drugs on the whole biological network, rather
than only focusing on the direct effect and impact of drugs on the target.

Considering Shenmai injection as an example, the Network Recovery Index
(NRI) was used to quantitatively to evaluate the callback effect of Shenmai Injection
on acute myocardial ischemia imbalance network.

8.3.1 Data Acquisition and Processing

8.3.1.1 Research on Acute Myocardial Ischemia in Rats

Male SD rats were subjected to LAD ligation, and divided into three groups, sham,
model, and drug. The dosage of Shenmai injection was 10 ml/kg, and the rats were
intraperitoneally injected for 7 consecutive days (n ¼ 8 in each group). After 7 days
of administration, rat cardiac function was evaluated by echocardiography. The
ischemic penumbra area between the necrotic area and normal tissue in the myocar-
dium were sampled and used for mRNA extraction and chip analysis research. The
animal experiment was conducted by the department of pharmacology, the second
military medical university, and the echocardiography measurement results were
processed by Zhongshan Hospital affiliated to Fudan University.

8.3.1.2 Chip Experiments and Data Preprocessing

The chip used in this study was the Affymetrix Rat 230 2.0 chip based on rat
genome-wide chip, including 31,099 probes. There were 24 samples, n ¼ 4 for red
ginseng group, and n ¼ 5 for the Ophiopogon japonicus group, Shenmai injection
group, normal group, and model group. Affymetrix expression profiling chip
matching kit—GeneChip 30IVT Express Kit (Cat#901229, Affymetrix, Santa
Clara, CA, US) and standard operating procedures (SOPs) were applied to amplify,
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label, and purify mRNA in the total RNA of the samples to obtain Biotin-labeled
cRNAs.

According to the hybrid standard procedure and matching kit provided by the
Affymetrix expression profile chip—GeneChip® Hybridization, Wash and Stain Kit
(Cat#900720, Affymetrix, Santa Clara, CA, US), rolling hybridization was carried
out for 16 h in a 45 �C Hybridization Oven 645 (Cat#00-0331-220V, Affymetrix,
Santa Clara, CA, US). After the hybridization was completed, the chip was then
washed in a Fluidics Station 450 (Cat#00-0079, Affymetrix, Santa Clara, CA, US)
according to the SOPs provided by Affymetrix.

The chip results were scanned by GeneChip® Scanner 3000 (Cat#00-00212,
Affymetrix, Santa Clara, CA, US). The original data were read by Command
Console Software 3.1 (Affymetrix, Santa Clara, CA, US). Qualified data was
normalized using Gene Spring Software 11.0 (Agilent technologies, Santa Clara,
CA, US) with application of MAS 5.0 as the algorithm.

The chip experiments were completed by the Shanghai Biotechnology
Corporation.

8.3.2 Network Construction and Visualization

The network model, used to evaluate the effects of Shenmai injection against AMI, is
referred to the enriched pathway network model, and was mainly based on the
significantly enriched signaling pathways and related gene-association information
in AMI. The specific construction process is as follows: (1) P value < 0.01 and Fold
change > 1.5 were selected as the threshold, the genes were extracted and pathway
enrichment analysis was conducted to obtain the corresponding information.
(2) KEGG database was used to retrieve all of the genes contained in these pathways.
(3) The HPRD database was used to acquire the correlation relationships between
these genes, and network model was constructed.

With p value < 0.01 and fold change > 1.5 as the threshold, a total of 1957
probes, with differential expressions produced with comparing of the model and
control groups, were obtained and involved a total of 1376 related genes. Pathway
enrichment analysis was performed on these genes, and 27 enriched KEGG signal-
ing pathways (Fisher P value < 0.05) were obtained, including 10 metabolism
pathways and 10 cellular process pathways, 2 environmental signal transduction
pathways, 4 disease pathways, and DNA replication pathway. These pathways
involve a total of 1478 related genes. By searching the HPRD database, 905 genes
were found to have at least one PPI association with other genes (or themselves),
involving a total of 2618 PPIs. 700 genes were found to form the largest
sub-network. The enriched pathway network diagram was generated, in which
nodes of different colors represented that they belong to different signaling path-
ways. Network parameter analysis showed that the connectivity distribution is in
accordance with the characteristics of scale-free network (R2 ¼ 0.868), indicating
that it has the properties of general biological network.
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8.3.3 Network Analysis and Prediction

Analysis of the alleviation effects of Shenmai injection against network imbalance
induced by AMI.

Changes of gene expression levels were used to create networks to reflect the
status of the network before and post-modeling and Shenmai injection administra-
tion, as well as the recovery regulation trend post-Shenmai injection administration.
In the drug regulation network, the red node represents the up-regulated expression
level, while the green node represents the down-regulated node. By conducting
network comparing, i.e., Model vs sham, Shenmai vs sham, Shenmai vs Model,
holistic network expression changes were analyzed both for post-AMI and
post-Shenmai injection administration treatments. Information on regulation of the
overall network expression on MI was obtained, and efficacy associated mechanism
post-Shenmai administration was found.

Shenmai injection shows the ability to make recovery regulation effects against
the network imbalance caused by ischemic modeling. What’s more, NRI index was
applied to evaluate the network recovery capability. For NRI calculation, refer to
Sect. 8.2.2.

8.3.4 Main Conclusions

1. Echocardiography evaluation of left ventricular function in the rats was done
7 days after AMI as the apparent pharmacodynamic index of Shenmai injection,
to calculate the evaluation indexes of left ventricular function, including Ejection
Fraction (EF) and Fractional Shortening (FS). The EF and FS values of rats in the
modeling group decreased significantly after 7 days of AMI and increased
significantly after Shenmai injection administration (P < 0.05), showing myo-
cardial repair effects. However, the changes of EF and FS values after adminis-
tration of red ginseng and Ophiopogon japonicus alone, respectively, were not
statistically significant ( p > 0.05).

2. The administration of Shenmai injection alleviates network disorders caused by
AMI. It was found that the holistic network expression change-related trend is
similar to that of after the administration of the Shenmai injection, that is,
the injection does not produce excessively strong regulatory effects that affect
the balance of the organisms. Compared to the regulatory trend of MI modeling,
the change in expression levels of the Shenmai injection is almost opposite, that
is, the Shenmai injection could alleviate the imbalance of the enrichment pathway
network caused by AMI and regulate it back to a normal status.

3. By analyzing the expression levels of the top 10 genes with the most significant
expression imbalance after MI modeling, it was found that the expression levels
of all nodes that were significantly regulated were recalled after the administra-
tion of the Shenmai injection, which further confirms the conclusion that the
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Shenmai injection has a callback to the network imbalance caused by ischemic
modeling.

4. Shenmai injection has over 90% recovery regulation ability for genes that are
significantly dysregulated after AMI, and the overall network callback ability was
77.9%. In contrast, the network callback ability of red ginseng and Ophiopogon
japonicus is relatively weak. Red ginseng can only callback about 50% of the
ODN, while the effect of Ophiopogon japonicus is even lower, with only about
16.4–35.4%. Finally, the NRI score of Shenmai injection was 0.876, much higher
than the NRI scores of red ginseng and Ophiopogon japonicus (0.498 and 0.269,
respectively), indicating that red ginseng and Ophiopogon japonicus have a
significant synergistic enhancing effect when administered concurrently in
Shenmai injection. They also produce a stronger callback effect on the expression
imbalance that occurs in the enriched pathway network.

Human disease spectrum has changed from communicable diseases to
non-communicable diseases (NCDs). The mortality and disability rate of NCDs
has brought severe challenges to the human medical and health system. The occur-
rence and development of diseases are often not limited to a single gene, but a
manifestation of the interactions among internally associated multi-molecular pro-
cesses. Humans have made new progress in understanding complex diseases. From
the view of structure and function of the “molecular biological network” to system-
atically reveal the molecular mechanisms of complex diseases, the internal relation-
ships between disease and disease, and the modes of action of drugs is a new
research strategy.

Humanity’s understanding of the role of drugs has changed from the traditional
“one drug, one target” model to the “network target, multi-component treatment”
pattern. As a historical heritage and treasure of China, TCM plays an important role
in China’s medical and health care system, and thus makes positive contributions to
the world’s medical and health system. TCM is the most important way for
preventing and treating diseases in China. As a complex system with multiple
ingredients, TCM has a nonlinear interaction relationship with complex diseases.
Therefore, the understanding and analysis of this mode of action need to break
through the traditional pharmacological research methods. With the rapid develop-
ment of bioinformatics, systems biology, and polypharmacology, web-based
methods have become a powerful tool for the study of complex diseases and
nonlinear drug-disease complex modes of action.

In summary, this chapter studies cardiovascular disease, which is rank first in the
diseases to cause human deaths, and analyzes the occurrence and development of
ischemic heart disease through disease network construction and analysis. Based on
the disease network, we conducted the research on the integrated mechanisms of
TCM, the law of compatibility, the efficacy of “supplementing Qi and promoting
blood circulation,” and the regulation of ODN. In the research process, pharmaco-
dynamics, pharmacokinetics, transcriptomics, proteomics, metabolomics, bioinfor-
matics, network pharmacology, and other methods and technologies were integrated
to design experimental studies at the organism, cellular, molecular, and other levels.
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Examples of several famous TCM products mentioned in this chapter, namely
Qishen Yiqi dropping pills, Xuesaitong injection, and Shenmai injection, have
obvious clinical efficacy and social benefits. They play integrated regulation roles,
including multi-components, multi-targets, and multi-pathways in the prevention
and treatment of ischemic heart disease. Therefore, the research in this chapter was
also designed and carried out based on a systematic and integrated perspective. The
research concepts and methods in this chapter can provide references for the study of
other diseases and the effects of other drugs.

Certainly, for disease-based network pharmacology study there will be more
extended applications, including deciphering of disease–disease associations
(DDAs), drug repositioning research, drug-target prediction, and research on net-
work toxicology of TCM. Future research also needs to integrate multi-dimensional
“-omics” information, including genes, RNA, proteins, endogenous metabolites,
etc., which could facilitate the network-based research to play a key role in the
modernization and internationalization of TCM.
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Chapter 9
Drug-Disease-Based Network
Pharmacology Practice Process

Weiwei Su and Panlin Li

Abstract The chemical composition of traditional Chinese medicine (TCM) is
inordinately complex; therefore, it is a daunting task to reflect on its integrity and
methodology by means of adopting the reductionist philosophy of western medicine.
It cannot quintessentially manifest the scientific nature of TCM. The augmentation
of modern scientific research and the introduction of network pharmacology have
gradually transformed the research idea of single component and single target to the
overall regulation of a complex system. Network pharmacology studies problems
from the perspective of interrelation, which coincides with the core holistic view of
Chinese medicine. Therefore, the application of network pharmacology in the study
of TCM has unique advantages, and is conducive to a thorough understanding of the
value and significance of the overall view of TCM. Several related studies have also
emerged. In this chapter, single medicinal components and compound preparations
are taken as examples to demonstrate the commonly used drug-disease-based net-
work pharmacology analysis methods from two research examples.

9.1 Study on Network Pharmacology of Exocarpium Citri
Grandis in the Treatment of Respiratory Diseases

Exocarpium Citri Grandis is an authentic medicinal materials in Lingnan. It has a
significant effect on relieving cough and reducing phlegm and has a history of
thousands of years of clinical application. Studies have validated that Exocarpium
Citri Grandis not only has antitussive and expectorant effects, but also has an
obvious inhibitory effect on acute and chronic respiratory inflammation, and can
also promote the regression of inflammation [1–3]. However, due to the complexity
of the ingredients and mechanism of action of TCM, it is difficult to carry out
in-depth research on the pharmacodynamic mechanism of Exocarpium Citri
Grandis, and such research conducted so far has lacked pertinence. Network
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pharmacology provides new research ideas and technical channels to resolve this
issue. The overall research idea is first, clarify the chemical component basis of TCM
by means of HPLC-MS and construct a library of chemical ingredients. At the same
time, use data mining methodology to collect disease-related protein targets and
construct a protein target library. Subsequently, calculate the correlation between
ingredients and targets by means of molecular docking, and construct the
component-target network. Furthermore, employ proteomics, transcriptomics, and
disease-related biochemical indicators to verify the prediction results, and establish a
regulatory network linking ingredients, targets, pathways, and efficacy of TCM, to
explore the complex mechanism of TCM from the holistic perspective.

9.1.1 Prediction of Action Target of Exocarpium Citri
Grandis in the Treatment of Respiratory Diseases

9.1.1.1 Analysis of Chemical Ingredients in Exocarpium Citri Grandis
Based on UFLC-Triple TOF-MS/MS

We implemented a systematic online separation and identification of chemical
components in medicinal components of Exocarpium Citri Grandis by employing
UFLC-Triple TOF-MS/MS technology. By comparing with reference substances,
accurate molecular weight, and analysis of mass spectrometry cracking behavior, a
total of 48 compounds were confirmed and indicated, including 19 flavonoids,
16 coumarins, eight limonoids, and five organic acid compounds (as shown in
Fig. 9.1). In addition, the flavonoid components in Exocarpium Citri Grandis mostly
exist in the form of glycosides. After oral administration, flavonoid glycosides
rapidly remove the glycosylates and turn into corresponding glycosides [4] under
the action of intestinal flora β-glucosidase. Therefore, when the molecules are
docked, the corresponding aglycones can be used for calculation. The chemical
structure of each compound (shown in Table 9.1) was saved in the MOL file format,
and used as the ligand for molecular docking calculation.

9.1.1.2 Construction of Target Database for Respiratory Diseases

Protein target information related to respiratory diseases were mined and sorted from
multiple public databases such as ChEMBL, DrugBank, ClinicalTrials, BindingDB,
Scifinder, SuperTarget, Protein Data Bank, KEGG, and other literature. At present,
there are 426 protein targets included in the database, which are divided into the
following categories: (1) 153 enzymes, such as 6-phosphate glucose dehydrogenase,
histone deacetylase, and arachidonic acid-5-lipoxygenase, phosphodiesterase, etc.;
(2) 105 membrane receptors, such as adenosine receptors, adrenergic receptors,
chemokine receptors, etc.; (3) 73 unclassified proteins, such as calmodulin protein,

432 W. Su and P. Li



integrin protein, heat shock protein, etc.; (4) 37 ion channel proteins, such as
voltage-dependent potassium channel, calcium-activated potassium ion channel,
sodium channel proteins, etc.; (5) 19 transcription factors, such as peroxisome
proliferator activated receptor, glucocorticoid receptor, etc.; (6) 15 secretory

Fig. 9.1 Chemical components of Exocarpium Citri Grandis
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proteins, such as tumor necrosis factor, interleukin, chemokine, etc.; (7) 14 trans-
porter proteins, such as solute transporter, ATP binding cassette, etc.; (8) seven
adhesion proteins, such as intercellular adhesion molecules, selectins, etc.; (9) three
surface antigen proteins, such as T cell wall glycoprotein, T lymphocyte activation
antibody, etc. The three-dimensional structure of each protein was downloaded from
the Protein Data Bank as a receptor for the molecular docking calculations.

9.1.1.3 Target Prediction and Network Analysis

AutoDock Vina software was employed in molecular docking calculation. The
docking score was evaluated and ranked based on the interaction between the
compound molecule and the target protein structure, as in the case of hydrogen
bonding, van der Waals force, hydrophobic interaction, etc. The docking score
represents the predicted value of �log10 (Kd) between the compound and the target
protein. The target with the docking score >6, that is, the protein dissociation
constant Kd value <10�6, was selected as the potential action target of the target
compound. Cytoscape software was employed to visualize the results of molecular
docking. Nodes represent chemical components, action targets, and signaling path-
ways, and the connecting lines represent the connections between components,

Table 9.1 Compounds used for molecular docking calculation

No. Compounds No. Compounds

F01 Naringenin (Naringin, Narirutin, Melitidin) C11 Imperatorin

F02 Apigenin (Rhoifolin, Isorhoifolin) C12 Osthole

F03 Eriodictyol (Eriocitrin, Neoeriocitrin) C13 Isoimperatorin

F04 Luteolin (Isoorientin, Lonicerin) C14 Epoxybergamottin

F05 Diosmetin (Neodiosmin) C15 Auraptene

F06 Hesperetin (Hesperidin) C16 Bergamottin

F07 Isosakuranetin (Poncirin) L01 Limonin

F08 Kaempferol L02 Ichangin

F09 Lucenin-2 40-methyl ether L03 Nomilin

F10 Vicenin-2 L04 Deacetylnomilin acid

C01 Bergaptol L05 Isoobacunoic acid

C02 Meranzin hydrate L06 Nomilinic acid

C03 Oxypeucedanin L07 Obacunone

C04 Bergaptene L08 Nootkatone

C05 Mexoticin O01 Protocatechuic acid

C06 Meranzin O02 Veratric acid

C07 Hydroxyisohesperidin O03 Caffeic acid

C08 Isomeranzin O04 Coumaric acid

C09 Hydroxycoumarin O04 Palmitic acid

C10 Epoxyaurapten

Note: F flavone, C coumarin, L limonin, O organic acid. The flavone glycosides represented by
aglycones are in brackets
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targets, and pathways to construct a network diagram (as shown in Fig. 9.2). The
signaling pathway information was obtained using DAVID analysis tools [5, 6], and
all the targets in the respiratory disease target library were used as the background;
the calculated potential targets of the compounds were subjected to KEGG signaling
pathway enrichment analysis.

The results demonstrate that most flavonoids and coumarins have more targets
that associate with each other, with all the organic acids, and with most of the
limonin and individual coumarin components. A total of 19 compounds were
excluded due to fewer related targets (<5). Hence, flavonoids and coumarins are
the main active components of Exocarpium Citri Grandis in the treatment of
respiratory diseases. The chemical components with the largest number of related
targets are diosmetin (F05), imperatorin (C11), luteolin (F04), oxypeucedanin (C03),
and eriodictyol (F03). The targets with the largest number of related compounds
include MAPK14, AOFB, ESR1, ESR2, AOFA, and PK3CG. The interactions

Fig. 9.2 Component-target-pathway network diagram of Exocarpium Citri Grandis
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between a handful of ingredients and targets have been confirmed in literature and
are shown in pink lines in Fig. 9.2. The potential targets of Exocarpium Citri Grandis
are closely related to many signaling pathways, including key inflammatory signal
transduction pathways such as TNF signaling pathway, PI3K-Akt signaling path-
way, and MAPK signaling pathway; and cell connection-related pathways such as
Ras signaling pathway, Rap1 signaling pathway, and Focal adhesion. The calcula-
tion results were combined with the experimental verification data for a comprehen-
sive analysis.

9.1.2 Verification of the Action Targets of Exocarpium Citri
Grandis in the Treatment of Respiratory Diseases

Due to the complexity of target prediction results, high-throughput iTRAQ quanti-
tative proteomics technology was employed for experimental verification.
Employing a mouse model of acute lung inflammation caused by cigarette smoke,
iTRAQ was used to investigate the regulatory effect of Exocarpium Citri Grandis on
the overall protein expression level, and to comprehensively analyze the mechanism
of action of Exocarpium Citri Grandis in the treatment of respiratory diseases by
combining with the target prediction results.

9.1.2.1 Animal Model

The stimulation of cigarette smoke can initiate various pathological changes in the
respiratory system, such as increasing parasympathetic excitability,
bronchoconstriction and spasms, mucosal hyperemia, edema and increased secre-
tion, inflammation, etc. Therefore, the mouse model of acute pulmonary inflamma-
tion caused by cigarette smoke was selected for the experiments. The Balb/c mice
were divided into six groups randomly, each with ten mice, namely: normal group,
model group, positive drug dexamethasone (DEX) group (5 mg/kg), and
Exocarpium Citri Grandis extract (CGE) group (80 mg/kg). Intragastric administra-
tion was given 1 h before the first cigarette smoking event every day. The intragastric
administration volume was 0.1 mL/10 g body weight. The normal group and the
model group were given an identical amount of normal saline.

The animals were first adapted to the new environment and raised for 7 days
before initiating the smoking events and modeling. The smoking events were
conducted twice a day, with an interval of 4 h. During each smoking event, eight
cigarettes were smoked for 1 h, for five consecutive days. The mice were sacrificed
by removing the cervical vertebrae 16 h after the last smoking event; the thorax was
incised, and the left and right lung tissues were removed, quickly placed on ice, and
washed with PBS buffer solution. The right lung was fixed with 4%
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paraformaldehyde after cleaning and used to make hematoxylin-eosin-stained tissue
sections. The left lung was cut into pieces with small scissors, the residual blood was
fully washed, and it was then stored in a sealed bag in at refrigerator at �80 �C, for
proteomics analysis.

9.1.2.2 Histopathological Examination

First, the pathological changes in the lung tissue of the mouse caused by the cigarette
smoke were observed in the pathological sections. As shown in Fig. 9.3, the results
of hematoxylin-eosin-stained lung tissue slices of mice after the acute smoking
model demonstrate that compared to the normal group, the alveolar cavity of the
model group was reduced, and the alveolar wall and alveolar compartment were
thickened. There was proliferation of fibrous tissue and normal alveolar tissue had
changed. At the same time, thickening of bronchiole wall, inflammatory cell infil-
tration, and exudation of inflammatory cells in the lumen were also observed
(as shown by the arrow). After administration of positive drug and Exocarpium
Citri Grandis, the thickening of alveolar wall and bronchial wall was reduced to
various degrees and the degree of pulmonary edema and lesion level alleviated.

Fig. 9.3 Hematoxylin-eosin staining results of mouse lung tissue. (a) Normal group; (b) Model
group; (c) Dexamethasone group; (d) Exocarpium Citri Grandis group
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9.1.2.3 Proteomic Analysis of iTRAQ

Protein Identification and Differential Protein Expression Analysis

The iTRAQ kit (AB Sciex) was employed for proteomics detection. There are four
groups of samples, namely the normal group (CON), the model group (MOD), the
dexamethasone group (DEX), and the Exocarpium Citri Grandis extract group
(CGE), and each set has one technical replicate. A total of 12,232 peptides and
3528 proteins were identified. IQuant (BGI) software was used for quantitative
analysis. The results of each pair of neighboring samples of the four groups of
samples were compared. According to the volcanogram of protein expression
differential distribution (as shown in Fig. 9.4), proteins with differential expression
Q value <0.05 were selected as differential proteins (as shown in Table 9.2).

Bioinformatics Analysis of Differentially Expressed Proteins

Cluster analysis: Cluster analysis was performed on differential proteins, and maps
were employed for visualization processing (as shown in Fig. 9.5) to investigate the

Fig. 9.4 Volcanogram of differential distribution of protein expression between groups

Table 9.2 Statistics of differentially expressed proteins between groups

Comparison
group

Up-regulated protein
number

Down-regulated protein
number

Total number of
differential proteins

MOD/CON 57 60 117

DEX/MOD 119 113 232

CGE/MOD 63 58 121

DEX/CON 94 86 180

CGE/CON 46 41 87

DEX/CGE 79 57 136
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correlation and difference of differential proteins between different groups. The
results demonstrate that the positive drug dexamethasone (DEX) has distinct degrees
of callback to the differential expression protein (MOD/CON) caused by modeling,
which indicates that dexamethasone had a wide, rapid, and powerful therapeutic
effect on acute inflammation. Exocarpium Citri Grandis (CGE) has similar regula-
tion effect to dexamethasone on differential proteins related to cell junction and
metabolism but has no effect on mitochondrial function and histone-related differ-
ential proteins.

Gene Ontology (GO) enrichment analysis: The enrichment results are demon-
strated in Table 9.3. The enrichment results of different proteins between the model
group and the normal group in terms of biological processes show the presence of
stimulation of the mouse lung tissue by the cigarette smoke and activation of the
metabolism process of exogenous small molecules. At the same time, the smoke
stimulation also affects the process of actin, which may be related to the morpho-
logical changes of pulmonary vascular smooth muscle cells. In terms of molecular

Fig. 9.5 Cluster analysis of differentially expressed proteins
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functions, differential proteins are mainly enriched in calcium ion binding activities.
On the one hand, calcium ions directly act on actin, and are also important second
messengers, participating in various signal regulation processes including the release
of inflammatory factors. In terms of cellular components, the differentially expressed
proteins are mainly enriched in the actin cytoskeleton and myosin structure, which
indicates that the smoking modeling may also affect the proliferation and migration
of pulmonary vascular smooth muscle cells and the integrity of epithelial cells. The
differentially expressed proteins affected by dexamethasone are involved in the
response to glucocorticoids in biological processes, including regulating the synthe-
sis and metabolism of nutrients such as lipids and purine compounds, and regulating
the immune response induced by endogenous and extracellular response. In terms of
cellular components, there is enrichment of extracellular components and compart-
ments and the myosin complex, which may be related to the pharmacological effects
in regulating vascular permeability and inhibiting the directional migration of
inflammatory cells. The enrichment results of Exocarpium Citri Grandis show that
its effect is mainly reflected in the regulation of cytoskeleton and amino acid
modification binding activity.

Enrichment analysis of KEGG signaling pathway: Proteins usually perform
certain biological functions through mutual connection. Based on the KEGG data-
base, differentially expressed proteins were analyzed for signaling pathway enrich-
ment. The enrichment results are shown in Table 9.4. The signaling pathways
closely related to the differential proteins between the model group and the normal
group include: Metabolism of xenobiotics by cytochrome P450 related to the
metabolism of exogenous substances, tight junction pathways associated with cel-
lular connectivity and barrier function, focal adhesion pathways, leukocyte

Table 9.3 Enrichment analysis results of differentially expressed protein GO

Group
Cellular
component Molecular function Biological process

MOD/
CON

Actin cytoskele-
ton
Myosin complex
Filamentous actin

Calcium ion binding Generation of precursor metabo-
lites and energy
Small molecule metabolic process
Response to chemical stimulus
Muscle system process

DEX/
MOD

Extracellular
region part
Myosin complex
Extracellular
space

Oxygen binding Response to lipid
Response to extracellular stimulus
Response to purine-containing
compound
Response to nutrient levels
Response to glucocorticoid stimu-
lus
Response to endogenous stimulus

CGE/
MOD

Contractile fiber
Actin cytoskele-
ton
Myosin complex

Modified amino acid bind-
ing
Structural constituent of
cytoskeleton

Muscle system process
Cellular amino acid metabolic
process
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transendothelial migration, material and energy metabolism related pathways, car-
bon metabolism, biosynthesis of amino acids, and glycolysis/gluconeogenesis. The
enrichment results of dexamethasone show that its effect is related to maintaining the
stability of actin filament, which is the specific protective effect of the glucocorticoid
[7]. At the same time, it may also play a role in reducing vascular permeability,
reducing tissue congestion and leucocyte exudation, and recruitment of white blood
cells through adhesion plaques, extracellular matrix receptors, and leukocyte migra-
tion signaling pathways across the endothelium, in order to reduce tissue inflamma-
tion reaction, which is consistent with its known mechanism of action. There are
many signaling pathways enriched by the differentially expressed proteins caused by

Table 9.4 Enrichment analysis results of KEGG signaling pathway of differentially expressed
proteins

Group Pathway
DEPs with pathway
annotation P value

MOD/
CON

Carbon metabolism 10 1.41E-04

Biosynthesis of amino acids 9 1.90E-04

Focal adhesion 9 1.29E-03

Tight junction 8 1.45E-02

Metabolism of xenobiotics by cyto-
chrome P450

7 1.48E-03

Glycolysis/gluconeogenesis 5 4.74E-03

Leukocyte transendothelial migration 5 3.65E-02

DEX/
MOD

Carbon metabolism 14 6.86E-05

Focal adhesion 14 7.54E-03

Biosynthesis of amino acids 11 2.36E-04

Glycolysis/gluconeogenesis 8 9.04E-03

ECM-receptor interaction 8 2.79E-02

Leukocyte transendothelial migration 8 9.39E-03

Metabolism of xenobiotics by cyto-
chrome P450

7 3.54E-02

Small cell lung cancer 6 2.40E-02

CGE/
MOD

Carbon metabolism 14 1.20E-10

Biosynthesis of amino acids 11 5.00E-09

Glycolysis/gluconeogenesis 10 1.80E-08

Tight junction 8 5.20E-04

Focal adhesion 8 5.10E-03

Adrenergic signaling in cardiomyocytes 6 1.80E-02

Metabolism of xenobiotics by cyto-
chrome P450

6 1.20E-02

Glutathione metabolism 5 2.30E-03

Leukocyte transendothelial migration 5 3.50E-02

Dilated cardiomyopathy 5 1.00E-02

Cardiac muscle contraction 4 4.40E-02
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Exocarpium Citri Grandis, which reflects the complexity of the regulation methods
of multi-component drugs. The role of Exocarpium Citri Grandis is related to
pathways such as tight junctions, focal adhesion, and actin cytoskeleton regulation.
In addition, it is also involved in the process of muscle excitation and contraction.

9.1.3 Analysis of the Regulatory Network of Exocarpium Citri
Grandis in the Treatment of Respiratory Diseases

The overall regulatory network of Exocarpium Citri Grandis in the treatment of
respiratory diseases is discussed combining the results of molecular docking, iTRAQ
proteomics testing, and reported pharmacological experiment results (as shown in
Fig. 9.6). In terms of antitussive effect, the mechanism may be related to airway
smooth muscle relaxation related to cGMP level, wherein the PDE5 is the key target.
At the same time, it may also act on PP2A and CALM in the tight junction pathway
to maintain the stability of the airway barrier function, thereby reducing the exposure
of peripheral RARs receptors, inhibiting the release of substance P, and reducing
cough. In addition, the predicted major potential targets of Exocarpium Citri Grandis
are the upstream regulatory molecules of PI3K-Akt and Mapk14 pathway. There
have been several studies that demonstrate that Exocarpium Citri Grandis has an
agreeable anti-inflammatory effect on respiratory inflammation [1–3], and can affect
the gene expression of inflammatory cytokines such as TNF-α. Therefore, based on
comprehensive analysis it is speculated that the regulatory network is associated
with anti-respiratory inflammation in Exocarpium Citri Grandis. Adhesion spot
pathway and other cell connection-related pathways can mediate cell adhesion and
migration and are closely related to promoting the release of inflammatory factors
and the development of tissue inflammation. They may also be a key link in the anti-
inflammatory mechanism of Exocarpium Citri Grandis. Inflammation also has a vast
impact on the secretion of mucin in sputum. Our previous research demonstrated that
naringin, the main active ingredient of Exocarpium Citri Grandis, can inhibit the
increase of MUC5AC content and goblet cell proliferation by inhibiting MAPKs-
AP-1 and IKKs-IkB-NF-κB B pathways [1–3], which is consistent with the specu-
lated regulatory network of Exocarpium Citri Grandis, and can also explain the
mechanism of Exocarpium Citri Grandis in relieving of cough and phlegm.

The association between the binding ingredients and the target was analyzed. The
key proteins ITGB, RhoA, and PP2A in the adhesion junction regulation pathway
have flavonoids acting on their own, suggesting that flavonoids may play a major
role in maintaining the airway barrier function. At the same time, CALM, the target
of coumarins acting on their own may affect actin synthesis through calcium ion
signals, and on the other hand, affect barrier function. Most of the targets in
inflammation-related signaling pathways are common targets of flavonoids and
coumarins. This also reflects several possible mechanisms of multi-component
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synergistic action of TCM, including different components acting on the same target,
acting on different targets of the same signaling pathway, or interrelated different
signaling pathway targets. The results of this study provide an important basis for
further exploration of the mechanism of action of Exocarpium Citri Grandis and its
active ingredients and guide the clinical application of Exocarpium Citri Grandis.

9.2 Network Pharmacological Study on the Treatment
of Cardiovascular Diseases with Danhong Injection

Danhong injection is a TCM preparation composed of Salvia miltiorrhiza and
safflower. It is widely used clinically in the treatment of coronary heart disease,
angina pectoris, myocardial infarction, and other cardiovascular diseases. The

Fig. 9.6 Regulatory network of Exocarpium Citri Grandis in the treatment of respiratory diseases
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pathogenesis of cardiovascular disease is complex, involving coagulation, inflam-
mation, oxidative stress, and other systems; at the same time, Danhong injection is a
complex mixture. Network pharmacology provides a new method to resolve such
complex problems. This section employs network pharmacology technology to
study the overall regulatory mechanism of Danhong injection in the treatment of
cardiovascular disease and the scientific compatibility of its prescription.

9.2.1 Prediction of Action Targets of Danhong Injection
in the Treatment of Cardiovascular Diseases

9.2.1.1 Chemical Composition Analysis of Danhong Injection Based
on UFLC-Triple ToF-MS/MS

The chemical components of Danhong injection were detected online and sorted
using UFLC-DAD-Q-TOF-MS/MS technology. Through comparison of reference
substances, precise molecular weight search, and secondary lysis pattern analysis, a
total of 82 chemical components were confirmed and identified in Danhong injec-
tion, including two alkaloids, three nucleosides, six amino acids, five organic acids,
four iridoid glycosides, seven flavonoids, five quinone chalcones, 39 phenolic acids,
eight tanshinone, and three other compounds. At the same time, the attribution of
each component was determined by comparing with a single medicinal component.
There are 17 components in both salvia and Carthamus tinctorius, mainly amino
acids and nucleosides; there are 32 components only attributable to Salvia, mainly
including phenolic acids and tanshinones; and there are 22 components only attrib-
utable to Carthamus tinctorius, mainly flavonoids, quinone chalcones, and iridoid
glycosides. In addition, 11 kinds of phenolic acids were not detected in the two
medicinal components, and were newly generated during the production process.
The molecular structure of each compound is stored in MOL format as a ligand for
molecular docking.

9.2.1.2 Action Target Prediction and Network Construction Analysis
of Danhong Injection

The existing cardiovascular and cerebrovascular disease target database was
employed for molecular docking calculation. The database includes 984 candidate
protein targets and involves multiple pathophysiological processes such as throm-
bosis, endothelial function, energy metabolism, inflammation reaction, oxidative
stress, etc. [8] The 82 chemical components of Danhong injection were molecularly
docked with 984 protein targets, and a total of 64 active chemical components and
470 potential action targets were screened. The higher the number of components
associated with the target, the stronger the influence of the components of Danhong,
therefore it may be the main target of Danhong. The targets ranked high in the
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number of associated compounds are shown in Table 9.5, and mainly include:
PDE5A, PDE4D, and MK14 that are associated with inflammatory response; ACE
related to renin angiotensin system (angiotensin-converting enzyme); Reni (renin),
FA10 (coagulation factor X), ANT3 (SERPINC1, antithrombin), PAFA, and PROC
(protein C—coagulation factor VA and VIIIA inhibitors) associated with fibrinolysis
system; HMDH associated with lipid metabolism; NOS3 (endothelial nitric oxide
synthase) associated with endothelial function; and HMOX1 (heme oxygenase gene
1) associated with blood oxygen metabolism. Similarly, the more targets the com-
pound is associated with, the stronger the regulatory activity of the component, thus
it may be the main active component of Danhong. As shown in Table 9.6, the
components with a large number of related targets are mainly salvianolic acid H,
salvianolic acid I, and salvianolic acid A, followed by flavonoids such as
Kaempferol-O-rutinoside, Kaempferol-di-O-glucoside, etc., as well as quinone
chalcone such as Cartormin and Isocarthamin.

The correlation between the calculated components and targets was visualized by
employing Cytoscape software. At the same time, the ClueGO plug-in was used to
analyze the KEGG signal pathway of the targets in the network, to interpret the
biological significance of the calculation results and the correlation between the
targets, and to construct a component-target-signal pathway network. The results
demonstrate that the potential action targets of Danhong injection are mainly
enriched in antigen processing and presentation, B cell receptor signaling pathway
and other pathways related to inflammation and immunity, complement and coag-
ulation cascades signaling pathway related to the coagulation process, fluid shear
stress and atherosclerosis pathway associated with cardiovascular disease, focal
adhesion and other pathways related to endothelial function, and the key signal
transduction pathways, namely PI3K Akt signaling pathway, MAPK signaling
pathway, TNF signaling pathway, and Rap1 signaling pathway.

Table 9.5 Potential action targets of chemical components of Danhong Injection (number of
associated compounds �34)

No. Target Target name
Number of associated
compounds

1 RENI Renin 45

2 PDE5A cGMP-specific 30,50-cyclic phosphodiesterase 45

3 HMDH 3-hydroxy-3-methylglutaryl-coenzyme A
reductase

43

4 GDN Glia-derived nexin 43

5 PDE4D cAMP-specific 30,50-cyclic phosphodiesterase
4D

41

6 FOLH1 Glutamate carboxypeptidase 2 41

7 ACE Angiotensin-converting enzyme 37

8 DPP4 Dipeptidyl peptidase 4 35

9 ANT3 Antithrombin-III 35

10 MK14 Mitogen-activated protein kinase 14 34
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Furthermore, the associations between Danhong injection components and sig-
naling pathways were explored by analyzing the number of targets associated with
components in each signaling pathway. The results are shown in Fig. 9.7. The key
signal transduction pathways, namely PI3K Akt signaling pathway, MAPK signal-
ing pathway, TNF signaling pathway, Rap1 signaling pathway, and HIF-1 signaling
pathway are strongly related to phenolic acids, flavonoids, and other ingredients. In
addition, phenolic acids are also closely related to inflammation and immune-related
pathways, such as antigen processing and presentation, B cell receptor signaling
pathway, etc.; flavonoids are closely related to complement and coagulation cas-
cades. The amino acids, nucleosides, organic acids, tanshinones, and other compo-
nents in Danhong injection are associated with fewer targets, suggesting that the
drug efficacy is also weak.

In summary, through molecular docking and network pharmacology analysis, the
main active ingredients of Danhong injection in the treatment of cardiovascular
diseases may be salvianolic acid H, salvianolic acid I, salvianolic acid A, and other
salvianolic acids, as well as flavonoids such as Kaempferol-O-rutinoside and
Kaempferol-di-O-glucoside, and quinoid chalcones such as Cartormin and
Isocarthamin. The targets of these ingredients are enriched in the key signal trans-
duction pathways PI3K-Akt and the MAPK signal pathway. In addition, the action
target of Danhong injection is firmly correlated with inflammation, immunity,
coagulation, endothelial function, and other related pathways. The phenolic acids
derived from salvia focus more on inflammation and immune-related pathways,
while the flavonoids derived from Carthamus tinctorius focus more on blood
coagulation-related pathways, suggesting a mutual collaboration between the two
herbs.

Table 9.6 Potential active ingredients of Danhong Injection (number of associated targets �100)

Compound serial no. Compound name Number of associated targets

SR-52 Salvianolic acid H 203

SR-53 Salvianolic acid I 199

SR-70 Salvianolic acid A 196

SR-65 Salvianolic acid E 174

SR-66 Salvianolic acid B 160

SR-56 Salvianolic acid D 157

SR-50 Salvianolic acid K 152

SR-59 Monomethyl lithospermate 152

SR-58 Salvianolic acid G 145

SR-62 Lithospermic acid 142

SR-61 Rosmarinic acid 109

SR-76 Salvianolic acid C 105

SR-67 Ethyl lithospermate 101
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9.2.2 Verification of Action Targets of Danhong Injection
in the Treatment of Cardiovascular Diseases

9.2.2.1 Investigation of the Effect of Danhong Injection on Gene
Expression in Rats with Acute Blood Stasis Based
on Transcriptome

Animal Model

The SD rats were randomly divided into three groups: blank group (control), acute
blood stasis model group (model), and Danhong injection group (3 mL/kg/d) (DHI),
respectively, with three rats in each group. The Danhong injection group was
administered intramuscular injection; and the blank control group and model
group were injected with the same volume of normal saline, once a day for a period
of ten consecutive days.

Thirty minutes after the last administration, except in the blank control group, rats
in the other groups were injected subcutaneously with adrenaline hydrochloride
0.8 mg/kg, and rats in the blank group were injected subcutaneously with the same
amount of normal saline. After 2 h, the rats in each group except the blank control
group were immersed in ice water at 0–4 �C for 5 min. After 2 h, they were injected
with adrenaline hydrochloride 0.8 mg/kg again [9]. After treatment, rats in each
group were kept on fasting for 12 h and then administered with DHI or normal saline,
respectively. And 15 min later, the rats were anesthetized by intraperitoneal injection
of 10% chloral hydrate 0.35 mL/100 g, and blood was taken from the heart and they
were sacrificed. One milliliter of whole blood was taken from each rat; three times
the amount of trizol was added to the blood and it stored in a refrigerator at �80 �C
for transcriptome detection.

Analysis of Amount of Gene Expression and Detection of Differentially
Expressed Genes

Employing the BGISEQ-500RS sequencing platform, quantitative gene analysis and
differential gene screening were conducted on the samples. The genes with Fold
Change �4.00 and Adjusted P value �0.001 were employed as differentially
expressed genes, and bioinformatics analysis was performed on them. The test
results demonstrate that the average output of each sample is 23.70 M of data, the
average comparison rate of the sample comparison genome is 96.24%, and the
average comparison rate of the comparison gene set is 94.08%; a total of 13,416
genes were detected. The percentage of bases after filtering low-quality data was
>90%, indicating that the sequencing quality is good. Compared to the model group,
a total of 176 up-regulated genes and 145 down-regulated genes were detected in the
blank group; compared to the Danhong group, a total of 1671 up-regulated genes and
14 down-regulated genes were detected in the model group.
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Accuracy Verification of Transcriptome Sequencing

RT-qPCR method was employed to detect and calculate the relative expression
amount of 15 genes, namely FN1, TLR4, PIK3cb, iNOS, IL-1R1, ITGB3, AP-1,
JNK, NFκB, MHCII, IL-6R, Hif-1α, Ctsb, Xop7, and Retn, and the difference
multiple of relative expression amount between the Danhong group and model
group (as shown in Fig. 9.8), where Log2 Fold Change (DHI/model) ¼ Log2
(Relative expression amount of Danhong group/relative expression amount of
model group). The results demonstrate that the relative expression trend of each
gene in qPCR results is consistent with that of transcriptome, signifying the accuracy
and reliability of the transcriptome results.

Bioinformatics Analysis of Differentially Expressed Genes

Gene Ontology (GO) enrichment analysis: Go function enrichment analysis was
conducted for the differentially expressed genes with respect to three aspects—
molecular function, cell composition, and biological process. When comparing the
model group and Danhong group (Model-VS-DHI) (as shown in Fig. 9.9), in terms
of molecular functions, the differentially expressed genes were significantly
enriched in adenyl ribonucleotide binding, kinase binding, transcription factor
binding, and cation binding; in terms of cell composition, the differentially
expressed genes were significantly enriched in MHC protein complex, cell surface,
and vacuole; in terms of biological processes, the differentially expressed genes were
significantly enriched in response to host immune response, response to cytokine,
toll-like receptor signaling pathway, immune response-activating cell surface recep-
tor signaling pathway, macrophage activation, antigen processing and presentation,
regulation of MAPK cascade, and cellular protein modification process. It is
suggested that upon administration of Danhong injection, the processes of RNA
processing in cells, intracellular antigen presentation, MAPK cascade reaction, etc.,
are affected.

Fig. 9.8 qPCR-verified transcriptome sequencing results
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Enrichment analysis of KEGG signaling pathway: KEGG signal pathway enrich-
ment analysis was conducted for differentially expressed genes, and the results of
signal pathways with significant enrichment of differential genes among groups are
as shown in Tables 9.7 and 9.8. The results demonstrate that the key pathways
involved in the pharmacodynamic effect of Danhong injection are immune
inflammation-related pathways such as antigen processing and presentation, platelet
activation, T cell receptor signaling pathway, Fc epsilon RI signaling pathway,
leukocyte transendothelial migration, chemokine signaling pathway, cell community
pathway such as focal adhesion and regulation of actin cytoskeleton, and signal
transduction pathways such as TNF signaling pathway, PI3K-Akt signaling path-
way, MAPK signaling pathway, and Jak-STAT signaling.

Association Analysis Between Differentially Expressed Genes and Prediction
Targets

By comparing and analyzing the obtained target predicted by network pharmacology
with the differentially expressed genes in transcriptomics, it was found that in the

Fig. 9.9 GO Term network relationship diagram of Model group vs. Danhong group (Model-VS-
DHI)
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component-target-pathway network of the under-construction Danhong injection,
25.1% (118/470) of the targets were verified by transcriptomics (as shown in
Fig. 9.10). The signaling pathways enriched by verified targets (as shown in
Table 9.9) mainly involve biological processes such as cell signal transduction,
inflammation and immunity, cytoskeleton morphological adhesion, and cell apopto-
sis. The components that have interaction with the verified targets are mentioned
below according to the number of associated targets (numbers in brackets), from
high to low: Salvianolic acid A (19), Salvianolic acid I (18), Salvianolic acid B (17),
Salvianolic acid H (16), Lithospermic acid (16), Salvianolic acid K (16),
Monomethyl lithospermate (15), Salvianolic acid E (15), Salvianolic acid G (14),
Salvianolic acid D (11), Rosmarinic acid (10), Ethyl lithospermate (9), Salvianolic
acid C (9), and Kaempferol-O-rutinoside (8).

9.2.2.2 Effect of Danhong Injection on Biochemical Indexes in Rats
with Acute Blood Stasis

Animal Model

The SD rats were randomly divided into eight groups: blank control group, acute
blood stasis model group, positive drug low molecular weight heparin calcium group
(50μL/kg/d), positive drug aspirin group (10 mg/kg/d), Danhong injection low-dose

Table 9.7 Enrichment results of differentially expressed gene signaling pathways in blank
group vs. model group (Control-VS-Model)

Pathway

Control-
VS-Model
(297)

All-
gene
(15026) P value Q value Level 1 Level 2

Antigen
processing and
presentation

16 134 9.06E-09 2.39E-07 Organismal
systems

Immune system

Fluid shear
stress and
atherosclerosis

13 214 0.000341 3.56E-03 Human diseases Cardiovascular
diseases

TNF signaling
pathway

9 138 0.00169 1.35E-02 Environmental
information
processing

Signal
transduction

Chemokine sig-
naling pathway

11 212 0.003351 2.37E-02 Organismal
systems

Immune system

Focal adhesion 12 265 0.006594 3.96E-02 Cellular
processes

Cellular
community

PI3K-Akt sig-
naling pathway

15 386 0.010052 5.88E-02 Environmental
information
processing

Signal
transduction
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group (0.75 mL/kg/d) (Clinical dose), medium dose group (1.5 mL/kg/d), and high-
dose group (3 mL/kg/d), with ten rats in each group. Aspirin was given by gavage
and Danhong injection was given intramuscularly. The blank control group and
model group were intramuscularly injected with the same volume of normal saline
once a day for ten consecutive days. After the last administration for 30 min, except
for the blank control group, acute blood stasis modeling was performed on all rats in
all the other groups, using the same method as mentioned in Sect. 6.2.2. After
treatment, animals were put on fasting for 12 h and then administered once with
DHI or normal saline, respectively; 15 min later, they were anesthetized with an
intraperitoneal injection of 10% chloral hydrate 0.35 mL/100 g, and blood was taken
from the heart, and they were sacrificed.

The collected rat whole blood was tested with a coagulation analyzer, blood
rheometer, dynamic erythrocyte sedimentation rate tester, and platelet aggregation
meter, to detect related indexes of hemorheology and coagulation function. Auto-
matic biochemical analyzer, colorimetric kit, and ELISA determination kit were used
to detect glutamic-pyruvic transaminase (ALT), glutamic oxaloacetic transaminase

Fig. 9.10 Target verified by transcriptome in component-target-pathway network of Danhong
injection (marked in purple)
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(AST), alkaline phosphatase (ALP), total protein (TP), creatinine (Cr), uric acid
(UA), lactate dehydrogenase (LDH), creatine kinase isoenzymes (CK-MB),
α-hydroxybutyrate dehydrogenase (α-HBDH), superoxide dismutase (SOD),
malondialdehyde (MDA), myeloperoxidase (MPO), nitric oxide (NO), platelet acti-
vating factor (PAF), hypersensitive C-reactive protein (hs-CRP), interleukin1β
(IL-1β), interleukin-6 (IL-6), interleukin-8 (IL-8), tumor necrosis factor-α
(TNF-α), immunoglobulin A (IgA), immunoglobulin G (IgG), and immunoglobulin
M (IgM). The measurement data obtained are all expressed as mean � standard
deviation. SPSS version 18.0 was used to analyze the data using One-Way ANOVA
and T testing methods. P values <0.05 and P values <0.01 are considered statisti-
cally different.

Detection Results of Multiple Biochemical Indexes

In acute blood stasis rats, obvious abnormalities were found in inflammation and
immune response, vascular endothelial function, oxidative stress, platelet aggrega-
tion, myocardial energy metabolism, and liver and kidney function. Danhong injec-
tion was significantly effective for 19 indexes of IgM, IgA, IgG, IL-1β, TNF-α, IL-6,
IL-8, LDH, CK-MB, PAF, SOD, MDA, MPO, hs-CRP, NO, TP, ALP, Cr, and UA,
indicating that Danhong injection can inhibit the inflammatory response in rats with
acute blood stasis, improve immune function, protect cardiomyocytes, reduce body
peroxidation damage, protect liver and kidney function, inhibit platelet aggregation,
and improve vascular function (as shown in Table 9.10).

Most of the pharmacodynamic indicators investigated are representative indica-
tors in the pathological process. The signal pathways where these indicators are

Table 9.9 Signaling pathways enriched by verified targets

Enrichment pathway
Number of enriched
targets Biological process

PI3K-Akt signaling pathway 15 Cell signal transduction

Jak-STAT signaling pathway 7

Ras signaling pathway 7

HIF-1 signaling pathway 6

TNF signaling pathway 6

Cytokine-cytokine receptor
interaction

8 Signal molecular
interaction

B cell receptor signaling pathway 8 Inflammation and
immunityNatural killer cell mediated

cytotoxicity
8

Fc gamma R-mediated phagocytosis 7

Antigen processing and presentation 6

Focal adhesion 7 Cell community

Regulation of actin cytoskeleton 8 Cytoskeleton morphology

Apoptosis 4 Cell apoptosis
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located were fairly consistent with the predicted targets and the signal pathways
enriched in transcriptomics, differentially expressed the genes. For example,
Danhong injection can regulate the expression of pro-inflammatory factors by
activating the TNF signaling pathway; The fluid shear stress and atherosclerosis
pathway regulate the expression of eNOS, thereby affecting the production of NO
and endothelial function.

9.2.3 Analysis of Regulatory Network of Danhong Injection
in the Treatment of Cardiovascular Diseases

The regulatory network of Danhong injection in the treatment of cardiovascular
diseases was analyzed after integrating target prediction, transcriptome detection,
and measurement results of multiple biochemical indexes in rats with acute blood
stasis (as shown in Fig. 9.11). The mechanism mainly involves the following
aspects:

Table 9.10 Effects of Danhong injection on several biochemical indexes in rats

Efficacy Index
Effect of Danhong
injection

Hemorheology Whole blood viscosity #
Erythrocyte aggregation, electrophoresis,
rigidity index

#

Maximum platelet aggregation rate #
PAF #

Immune response IgG #
IgM #
IgA #

Inflammatory response IL-1β #
TNF-α #
IL-6 #
IL-8 #

Myocardial enzyme
spectrum

LDH #
CK-MB #

Oxidative stress MDA #
Endothelial function NO "
Liver function TP "

ALP #
Renal function Cr #

UA "
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Fig. 9.11 Molecular mechanism of Danhong injection based on network pharmacology and
transcriptomics
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9.2.3.1 Improving Hemorheology

Danhong injection can bind to F2R receptors, chemokine receptors, and integrins
through F2 (coagulation factor II), chemokines, and extracellular matrix, respec-
tively, to activate the regulation of actin cytoskeleton, adhesion plaques, and PI3K-
Akt signaling pathway, which plays a role in reducing red blood cell aggregation,
electrophoresis, rigidity index, whole blood viscosity, and platelet aggregation. At
the same time, chemokine receptors and integrins can also activate the PI3K-Akt
signaling pathway and mediate inflammation response. Inflammation response is
closely related to platelet activation and atherosclerotic disease progression. There-
fore, Danhong injection inhibits platelet activation and reduces whole blood viscos-
ity, which may be related to the regulation of PI3K-Akt pathway-related gene
expression.

9.2.3.2 Modulating Immune Response

Danhong injection can inhibit the abnormal increase of immunoglobulin. On the one
hand, its mechanism may regulate the expression of MHCI and MHCII on the cell
surface by regulating the related genes in the antigen processing and presentation
pathway, thus affecting the B cell and T cell receptor signaling pathways and
regulating the immune response. On the other hand, it may also affect the activation
of MAPK cascade reaction and the transcriptional regulation of immunoglobulin by
NFAT through the TNFR1 receptor in the TNF signaling pathway, in order to
regulate the immune response.

9.2.3.3 Inhibiting Inflammatory Response

The action target of Danhong injection is closely related to the TNF signaling
pathway, PI3K-Akt signaling pathway, and MAPK signaling pathway, and can
regulate the expression of inflammatory cytokines IL-1β, TNF-α, IL-6, and IL-8
by affecting the transcriptional regulation of AP-1 and NFκB nuclear transcription
factors.

9.2.3.4 Reducing Oxidative Stress

Danhong injection can regulate the expression of related genes in the HIF-1 signal-
ing pathway and fluid shear stress and atherosclerosis pathway, especially the key
gene NOX. NOX is a key source of reactive oxygen species in the body, thus,
regulating its expression can regulate the degree of oxidative stress in the body,
affecting the expression of SOD, MDA, and other efficacy indicators. In addition,
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inflammatory factors such as IL-1β and TNF-α can activate NOX, therefore, a
decrease in inflammatory levels also reduces oxidative stress levels.

9.2.3.5 Protecting Endothelial Function

Similar to the effect of oxidative stress, the mechanism of Danhong injection in
protecting and improving endothelial function may be related to the regulation of
HIF-1 signaling pathway and fluid shear stress and the expression of related genes in
the atherosclerotic pathway. Among them, NOX can reduce the degradation of
eNOS and reduce the level of NO in cells, while NO can in turn inhibit the activity
of NOX, alleviating oxidative stress and vascular endothelial damage from the
source [10]. NO has been proven to protect endothelial cells, improve endothelial
cell function, and at the same time promote angiogenesis, and plays an important
protective role in ischemic injury. In addition, Danhong injection may induce the
production of HIF-1α by activating the PI3K or MAPK pathway. HIF-1α can
activate the transcription of eNOS in endothelial cells, thereby promoting the
production of NO. The biochemical index test results also show that the level of
NO increases correspondingly after the administration of Danhong injection.

9.2.3.6 Protecting Myocardial, Liver, and Kidney Function

Danhong injection is closely related to PI3K-Akt signaling pathway and cell apo-
ptosis pathway. These pathways not only regulate cell apoptosis, proliferation, and
differentiation, but also participate in the regulation of oxidative stress and inflam-
matory response. Therefore, the protective effect of Danhong injection on myocar-
dium, liver, kidney, and other organs may be related to the reduction of cell
apoptosis, the alleviation of inflammation, and tissue damage caused by oxidative
stress.

To sum up, this section adopts the network pharmacology method to establish the
composition-target-pathway network of Danhong injection, and further experimen-
tally verifies the prediction results through transcriptomics analysis and multiple
biochemical indicator tests, and comprehensively analyzes and clarifies the molec-
ular mechanism and regulatory network of Danhong injection.

Due to the complexity of components and functions of TCM, the limitations of
technology in the past added to the lack of overall understanding of the mechanism
of its action led to an unclear direction for in-depth research as well as lack of
pertinence. Network pharmacology, which has developed strongly in recent years,
aims to study complex issues from the holistic perspective and internal relevance. It
coincides with the core ideas of Chinese medicine and has become a new strategy
[11] for scientifically explaining the effectiveness of Chinese medicine. This chapter
introduces the common methods of network pharmacology in the TCM research by
taking Exocarpium Citri Grandis and Danhong injection as examples. It mainly
includes the construction of component and target data, the prediction and analysis

9 Drug-Disease-Based Network Pharmacology Practice Process 459



of active components and potential action targets, as well as the comprehensive
analysis of the relationship between components, targets, pathways, and efficacy, in
order to explore the overall complex mechanism of action of TCM. The develop-
ment of network pharmacology research will provide an important basis for guiding
the in-depth research and development and clinical application of Chinese medicine.
With the development of network pharmacology and its integration with new
technologies, network analysis methods will also have broader application prospects
in Chinese medicine research.
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Afterword

With the advent of biomedical big data and the artificial intelligence era, network
pharmacology has huge growth potential and extensive application prospects in drug
research and development, elucidation of disease mechanism, efficacy evaluation,
precision medicine, and other aspects. Network pharmacology has dynamic inter-
disciplinary characteristics, involving systems biology, bioinformatics, network
science, multi-direction pharmacology, systems pharmacology, and other related
disciplines. Individuals engaged or interested in network pharmacology research
also come from different fields, and there are varied opinions and viewpoints. This
book systematically introduces the theory, method, and application of network
pharmacology, focusing on the originality of the theory, the systematic methodol-
ogy, and the intersection of application cases. Using a large number of cases, this
paper introduces the details of the network pharmacology analysis process in detail,
guides readers in quickly understanding the practice of network pharmacology, and
strives to make readers from different fields gain new insights.

Each chapter of this book is drafted by experts and scholars with distinct
professional backgrounds. The research groups involved in each chapter have
distinct characteristics. Different groups are skilled in software, experiments, calcu-
lations, Western medicine, and Traditional Chinese Medicine. Attentive readers may
ascertain the nuance during their perusal of each chapter. In the end, we did not
format the content of each chapter, rather retained the characteristic features of each
chapter. We don’t avoid shortcomings when we develop our strengths, since this is
the appeal of network pharmacology. As an interdisciplinary approach, we hope that
experts and scholars from different backgrounds and fields can showcase their
talents, as in the real world of network pharmacology, one can learn from others,
thereby effectuating mutual development.

In fact, it is relatively rudimentary to render suggestions to incorporate calcula-
tions to chapters that focus on experiments, or to incorporate experiments to chapters
that focus on calculations. However, network pharmacology is considerably young,
and in the process of continuous development. The rapid growth of research has
taken place in a span of 10–20 years; with a considerable number of results presented
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every year, or every month. We hope that readers will acknowledge the notable
particulars of each chapter, and that in the future these points will make up for the
ineffectual particulars. That being the case, we have taken the unusual step of
revealing the true face of this newly written book first to readers. It is a book of
the moment. It is a book that reflects the real world of pharmacological research on
the network.

At the editorial meeting, everyone was enthusiastically and unanimously opposed
to the “routinization” of network pharmacological analysis. Scientific research only
seeks truth, and scientific methods are highly crucial, however, everything revolves
around problems that need to be resolved through research, therefore problem
orientation (clinical problems, scientific research issues, industrial issues, discipline
development issues, etc.) is critical. At present, network pharmacological research
evidently has varying challenges and therefore it is necessary to establish appropriate
guidelines and norms. We have also attached to this book the first international
standard Network Pharmacology Evaluation Method Guide (see Appendix A) in the
field of network pharmacology of the World Federation of Chinese Medicine
Societies, for our readers’ reference.

We welcome interested research groups to join the book and make collective
efforts to collaboratively publish the second and the third edition in the future, and to
also co-compile a textbook when the network pharmacological research comes
of age.

Editorial Committee
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Appendix A: Network Pharmacology Evaluation
Method Guide

Network pharmacology is an interdisciplinary discipline newly developed in the
systematic research of drugs based on artificial intelligence and Big Data. It stresses
the holistic system-level and biological networks when analyzing the molecular
association laws between drugs and treatment objects. Focusing on studying
drugs, it provides new ideas, especially for Chinese medicine research, which is
based on a complex system. It is also widely applied to explore the active com-
pounds of drugs and Chinese medicine, explain the overall action mechanisms, and
analyze the compatibility regularity of drug pairs and formulas. It has provided new
scientific and technological support for the rational clinical use of drugs and drug
development.

With an increasing influence and application in the Big Data era, network
pharmacology now faces great development opportunities and challenges in terms
of theoretical analyses, algorithm development, and applications. The issue of
integrating massive clinical and experimental data and combining scientific verifi-
cation to reveal the regulation mechanisms of network pharmacology to carry out its
research more effectively has become the main concern of researchers. In addition,
there are multiple problems in the current network pharmacology studies, such as
uneven research quality, lack of data standardization, and insufficient scientific
verification. Establishing a rigorous, scientific, and unified standard for evaluating
network pharmacology studies is urgently required to ensure this emerging disci-
pline’s healthy development.

Therefore, a normative evaluation standard of network pharmacology has been
established to build association between drugs and diseases in biomolecular net-
works based on the “network target,” the main theory of network pharmacology, and
forms a “network target-system regulation”-based research mode and method that
provides a new way to understand and explain the interactions between drugs and
biological systems. The standard aims to make the “network target-system
regulation”-based research mode, a new generation of drug research paradigm
which is more rigorous and scientific and is widely recognized and promotes the
standardized application of network pharmacology in drug analysis and experiment,

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2021
S. Li (ed.), Network Pharmacology, https://doi.org/10.1007/978-981-16-0753-0

463

https://doi.org/10.1007/978-981-16-0753-0#DOI


and clinical pharmacological studies, thus promoting the rapid, healthy, and orderly
development of the discipline. The network pharmacology standard is as follows:

Li S. Network pharmacology evaluation method guidance-Draft. World J Tradit
Chin Med. 2021;7(1):146–154 (https://www.wjtcm.net/aheadofprint.asp)
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Appendix B: The Pioneering Contribution
of Chinese Medicine in the Origin
and Development of Network Pharmacology

1. Evaluation of the original theory, method, and application of “Network target”:

(a) Academician of Chinese Academy of Engineering, Yong-yan Wang
wrote: “Network pharmacology represents a new research concept and
method in line with the overall characteristics of traditional Chinese
medicine. . . It is expected to make the research of traditional Chinese med-
icine prescriptions join the forefront of contemporary science and technology
and provide strong support for source innovation.” (Journal of Traditional
Chinese Medical Sciences 2019, 6:195–200)

(b) Academician of the Chinese Academy of Engineering, Bo-li Zhang spoke
highly inTwenty Years of Modernization of Traditional Chinese Medicine:
“In 2007, Shao Li of Tsinghua University first proposed the research frame-
work of traditional Chinese medicine prescriptions based on biological net-
work. By means of constructing the key technology platform of network
pharmacology, it has broken through the key technologies of network-based
disease gene and traditional Chinese medicine target prediction, traditional
Chinese medicine discovery and compatibility screening, and biological
network construction and analysis of disease and syndrome prescriptions.”
(Shanghai Science and Technology Press, 2016, p. 62)

(c) Academician of the Chinese Academy of Engineering, Chang-xiao Liu
wrote: “Network pharmacology arises at a historic moment based on the
modern research of Chinese medicine. . . and has made great contributions to
the interpretation of the connotation of traditional Chinese medicine, promot-
ing the research of new traditional Chinese medicine drugs, and enhancing
the achievements of modern research of traditional Chinese medicine.” (Drug
Evaluation Research 2018; 41:709–715). Innovative ideas of network targets
and network analysis methods have opened a new avenue for the research of
traditional Chinese medicine (CHM 2015; 7:3–17, CHM 2015; 7:27–38).

(d) Academician of Chinese Academy of Sciences, Ke-ji Chen wrote: “The
network target method is ‘a significant change in drug discovery research,’
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and the above network analysis method is a ‘systematic approach’ to drug
research, a potentially more effective strategy.” (Chin J Integr Med 2012;
18:883–890)

(e) The review article written by Pei-gen Xiao et. al, Academicians of The
Institute of Medicinal Plant Development, cited the Network Pharmacol-
ogy research results of Liuwei Dihuang prescription, Qingluo Decoction, and
Gegen Qinlian Decoction by Shao Li’s research group, and believed that the
Network Pharmacology research of traditional Chinese medicine has the
potential to bridge the gap between traditional and modern medicine (Drug
Development Research 2014; 75:299–312).

(f) In the cover article of Nature Reviews Genetics, the founder of network
biology and Academician of European Academy of Sciences, Barabási
evaluated the representative algorithm based on network target theory as “a
network pharmacology method that in fact goes deep into the field of drug
research.” (Nature Rev Genet 2011;12:56–68)

(g) Director of the Department of Pharmaceutical Biology, University of
Mainz, Germany, Phytomedicine Editor-in-Chief Professor Efferth T
commented: “Network pharmacology methods can bring about a revolution
from single target–single drug to network target-multi-component regulation
(Applying these methods will lead to a shift. . .).” (Dawood et al. Front
Pharmacol. 2018; 9:143)

(h) A long review of Encyclopedia of Systems Biologypublished by Springer
Press holds that “representative algorithms based on network targets are
perfect examples of the concept of Network Pharmacology.” (Encyclopedia
of Systems Biology. 2013: 2106–2108)

(i) Chairman of the Advisory Committee of the Office of Alternative Med-
icine of the NIH in the United States, Berman B used the network target
method as a representative case of network pharmacology (Front Physiol
2015; 6:225).

(j) Gerard Bodeker, Chairman of the Global Initiative for Traditional
Health Systems, Editor-in-chief ofWHOGlobal Atlas of Traditional, Com-
plementary and Alternative Medicineand professor at Oxford University
Medical School, believes that Asia has instigated a new approach to tradi-
tional medicine research, that is, network pharmacology. This new direction
of understanding the complexity of traditional medicine is based on the
concept of “network target” and is employed to understand the pharmaco-
logical mechanism of Qingluo Decoction and Liuwei Dihuang prescription
(NWFP update 2015).

2. The pioneering contribution of Chinese medicine in the field of network
pharmacology:

(a) The expert group led by Academician Bo-li Zhang evaluated in the
appraisal of scientific research results: “The pioneering achievements of
network pharmacology have accomplished a major innovation of indepen-
dent core technology of traditional Chinese medicine, provided a new
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perspective and method for the modernization and internationalization of
traditional Chinese medicine, significantly promoted the heritage and devel-
opment of traditional Chinese medicine and industrial upgrade, provided a
new mode for the study of the complex system of traditional Chinese
medicine, and opened up a new international frontier in the key technology
of traditional Chinese medicine. This is a landmark achievement of the
original innovation of traditional Chinese medicine, and has been highlighted
at the international level.” (Scientific and Technological Achievements
Report, No. 201911ZK3557)

(b) Member of the Indian National Academy of Medical Sciences,
Patwardhan, commented: “Shao Li pioneered the use of network pharma-
cology in Chinese medicine research. . .” (Indian J Tradit Know 2015, 14
(4):574–580). “Shao Li pioneered this endeavor and proposed using the
network to provide new ways to understand diseases and drug
intervention. . .” (Innovative Approaches in Drug Discovery. 2017:127–164)
The important contribution of TCM in the field of network pharmacology.

(c) Master of traditional Chinese medicine, Zhong-ying Zhou wrote: “From
the perspective of “relationship-network-function,” Shao Li et al. studied the
new strategies of “information integration-computational modeling-generat-
ing hypothesis-experimental verification. . .” This kind of thinking and
method will enlighten and promote the progressive and detailed research on
the nature of syndromes in the future. The key is that its research is based on
the level of basic pathogenesis.” (中医杂志, 2014, 55(14): 1171–1175)

(d) Master of traditional Chinese medicine Jia-xiang Liu wrote: “Shao Li
et al. studied 1,446 kinds of traditional Chinese medicine ingredients. . . It
will show great development potential in the field of cancer prevention and
treatment.” (World Science and Technology-Modernization of Traditional
Chinese Medicine, 2019, 21(5): 943–948)

(e) Professor Xiao-ming Wu and Professor Chun-fu Wu, editor-in-chief
ofChinese Natural Medicinesand Vice-Chairman of the Chinese Pharma-
ceutical Association, believe that “in the era of big data, Chinese scientists
have led a new interdisciplinary frontier of great prominence—TCM network
pharmacology,” and evaluated Shao Li as a “Pioneer of TCM Network
Pharmacology.” (Chinese Journal of Natural Medicines 2015:13:1–2)

(f) Dan Xi, an expert in the office of complementary and alternative medi-
cine of NIH/NRI, and others evaluated Shao Li as a “Pioneer and expert in
the study of traditional Chinese medicine with systems biology in China.”
(International Journal of Functional Informatics and Personalized Medicine
2009; 2:244–247)

(g) Dan Xi, Director of the Research Development and Support Program of
the Office of Complementary and Alternative Medicine at NIH/NCI in
the United States, evaluated the related methods and applications of network
pharmacology: “It helps immensely to comprehend the complex mechanism
of action and transformation of natural products.” (JNCI Monographs. 2017;
52: lgx003)
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(h) In the supplement of Traditional Asian Medicine published by Nature in
2011, Professor Greef from the Netherlands evaluated the research on cold
and heat syndromes based on biological networks (Li et al. IET Systems
Biology 2007) as “the precedent-setting systematic biological research of
traditional Chinese medicine” and “indicating that Chinese medicine can
become the driving force of personalized medicine.” (Greef. Nature 2011;
480:S87)

(i) The research results of research on biomolecular network of cold and heat
syndromes evaluated by the national Progress Report on TCM Metrology
and Its Modern Research as “For the first time, it provides an additional
explanation and basis for the internal mechanism of TCM syndromes from
the perspective of biological network, and provides a new perspective for the
multi-target integration and regulation effect of TCM compound prescrip-
tion.” (Progress Report on TCM Metrology and Its Modern Research
2009:54)
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