
Ant Colony Optimization for Traveling
Salesman Problem with Modified
Pheromone Update Formula

Rahil Parmar , Naitik Panchal , Dhruval Patel , and Uttam Chauhan

Abstract Traveling Salesman Problem is a combinatorial problem from which
various other problems have been derived in the real-world application. It is a well-
known NP-complete problem. Its instances are used in various fields around the
globe. There have been various optimization techniques that are used to solve this
problem. The Ant Colony Optimization (ACO) is an optimization method that is
very useful in solving various artificial intelligence problems and obtaining the opti-
mized solution. There have been methods proposed after its introduction in 1991.
When using the traditional ACO pheromone update formula on the large dataset
of Traveling Salesman Problem, one might get an optimal solution at the cost of a
great amount of time. In this paper, we have proposed a modification in the basic Ant
Colony Optimization pheromone update formula for discovering the optimized solu-
tion for the Traveling Salesman Problem using the probability from the pheromone
value from succeeding nodes. This updated formula also helps in reducing the time
to obtain the optimal solution as compared to the traditional formula.

Keywords Artificial intelligence · Ant colony optimization · Traveling salesman
problem

1 Introduction

Artificial Intelligence (AI) can be described as intelligence in machines that can
resemble human intelligence and can perform some tasks, which requires logical
thinking to solve the problem. Some of the tasks can be categorized from everyday
tasks like speech, translation, generation of language to expert level tasks like manu-
facturing planning, scientific analysis, etc. Now for solving these tasks, theAI system
needs some dataset, which it can process and find the solution. These processes
require searching and optimizing. For example, the AI system which is designed to
solve the single-player tic tac toe game, two-player chess or to get the shortest path

R. Parmar (B) · N. Panchal · D. Patel · U. Chauhan
Vishwakarma Government Engineering College, 382424 Ahmedabad, Gujarat, India

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2021
P. K. Singh et al. (eds.), Proceedings of Second International Conference on Computing,
Communications, and Cyber-Security, Lecture Notes in Networks and Systems 203,
https://doi.org/10.1007/978-981-16-0733-2_2

23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-16-0733-2_2&domain=pdf
http://orcid.org/0000-0002-3042-0378
http://orcid.org/0000-0001-8037-6507
http://orcid.org/0000-0001-8716-0303
http://orcid.org/0000-0003-4373-2132
https://doi.org/10.1007/978-981-16-0733-2_2


24 R. Parmar et al.

in the graph, the system needs to search the input dataset to achieve the required
outcome. For searching in the dataset, the AI system uses various search algorithms
like Depth First Search (DFS), Breadth First Search (BFS), Iterative DeepeningDFS,
bi-directional search or A* search, etc. [8].

The efficiency of these algorithms may depend on the size of the search state
space generated from the given input. As the size of the obtained search space state
becomes larger, these algorithms can take a very long time to generate the solution
[2]. Besides, the solutions may become less accurate and less efficient. Heuristic
methods are used for increasing the efficiency of these algorithms by optimizing the
generated path to a solution. It can be done by finding such solutions that decrease
the size of the search state space and the time required to achieve these results.
Heuristic techniques often generate good-enough solutions, but it does not guarantee
the optimal solution [4].

Optimization algorithms are important to the variousfields in real life. Examples of
the practical implementation of the optimization algorithm include train scheduling,
telecommunication, shape formation, routing technique, dronepathfinding, andmany
more.

1.1 Meta-Heuristic Methods in AI

The term meta-heuristic is composed of two Greek words, the suffix meta means
“more organized” and the heuristics mean “to find”. A meta-heuristic procedure
is used to find the best solutions from the set of feasible solutions. Meta-heuristic
can be used in combinatorial optimization to generate a better solution with more
efficiency than simpler heuristic methods. Combinatorial optimization is to find the
near-optimum solution from the set of feasible solutions. The Traveling Salesman
Problem is a good example of NP-hard problems in combinatorial optimization [4].

The Particle Swarm Optimization (PSO), Genetic Algorithm (GA), and Simu-
lated Annealing are the fields where the meta-heuristic methods are used widely.
Genetic Algorithms are the search-based optimization techniques that are based on
the concept of natural selection and genetics. The Genetic Algorithms can be briefly
summarized as follows [10]:

1. First, a node is selected at random from the given nodes.
2. Then the pool of possible solutions is evaluated from the current node.
3. These solutions then undergo various recombinations and mutations which

produce the new children.
4. This process is repeated for various generations. The fitness value is assigned

to each child solution obtained.
5. The node with a better solution is more likely to produce an optimized path.

This way the Genetic Algorithm is implemented on various problem domains.
The SimulatedAnnealing has been developed by taking inspiration from themetal

annealing. The annealing method involves the heating and cooling of the metal to



Ant Colony Optimization for Traveling Salesman Problem … 25

change its physical property by changing its inner structure. As the metal cools, its
new structure becomes fixed and retains its new property. Suppose S is a set of obtain-
able solutions. The initial start point is selected at random from the set of obtainable
solutions. Now from the currently selected solution, the cost function to other solu-
tions is calculated using the gradient descent which is, in this case is performed on
the temperature. If the calculated cost function is reduced, then the current solution
is replaced by the generated solution. Otherwise, the generated solution is rejected.
This process is carried out until the optimal solution is obtained. This technique is
used in various other fields like Machine Learning and Deep Learning to train the
model to predict the result and learn to optimize.

Particle Swarm Intelligence is an algorithm that is derived from the social behavior
of the flock of birds, schools of fish, and the ant colony [17]. This algorithm emulates
the interaction between the members to share the information among them. The
individual solution in these methods is considered as a particle. Each individual
in PSO flies with the velocity that is dynamically adjusted according to its own
experience and the experience of its companion [22]. Given the solution set S with
the position of each solution in sample space, we can obtain the optimal solution
using PSO. From the current position of the swarm, the fitness of the particle can be
calculated by using the objective function. The solution with a better fitness value
is selected, and the optimal solution is created. While creating the optimal solution,
the previous best solutions are remembered for the backtracking.

This paper is further organized as follows: Sect. 2 explains the famous Traveling
Salesman Problem, it also involves how to solve Traveling Salesman Problem using
Ant Colony Optimization. Section 3 describes the variants in the Ant Colony Opti-
mization. Following this, we have listed the current state-of-the-art techniques in
Sect. 4. Next, we have presented modified formula along with the necessary pseu-
docode in Sect. 5. In Sect. 6, we have showcased our experimental results in the
form of a graph, where we have compared the proposed approach with Ant Colony
System. Finally, we present some concluding remarks in Sect. 7.

2 Traveling Salesman Problem (TSP)-NP-Hard

The TSP is a very well-known NP-hard problem in computer science. The TSP is an
NP-Hard problem so it means that to solve this problem, there is no direct efficient
way. If the solution of TSP is found, then it is possible to find the solution of the
famous P versus NP problem. Besides, there are other applications of TSP, so we
decided to apply Ant Colony Optimization (ACO) on TSP.

The problem can be described as there is a list of cities which are to be visited
by the traveling salesman, the distance between the cities are given. The traveling
salesman has to visit every city on the list and return to the original city, but he can
only visit each city only once and after visiting a city he cannot re-visit the city.
The main aim of the TSP is to find the shortest route to visit each city once. TSP



26 R. Parmar et al.

is a problem of combinatorial optimization [19]. The TSP can be defined by the
Hamiltonian cycle problem.

In a directed or undirected graph, there may exist a path that visits each node in
the graph exactly once this type of path is called the Hamiltonian path, when the
Hamiltonian path forms a cycle it is called the Hamiltonian cycle. In TSP, we need
to find the Hamiltonian cycle with the smallest cost. Many problems are similar or
related to the original TSP such as Generalized TSP, Bottleneck TSP, Steiner TSP,
etc. The generalized TSP is known as the SetTSP [1]. In the generalized TSP, there
are sets of nodes of the graph and from each set, we have to visit at least one node and
we need to visit each set to find the smallest cost Hamiltonian cycle. The TSP can be
called the specialized case of the Generalized TSP in which each set contains exactly
one city [12]. In the figure given below, each node represents the city in a graph. The
ACO is implemented on the symmetric TSP here in this case. In symmetric TSP, the
distance from city A to city B and from city B to city A is the same. So, it can be
represented as dAB = dBA, where d is the distance between these two cities, which
forms an undirected graph. In asymmetric TSP, the distance from city A to city B
and from city B to city A can be different because the graph for asymmetric TSP is
directed graph so the path between two cities may be in one direction only (Fig. 1).

The TSP is a problem of combinatorial optimization. It is observed that TSP
having 20 or fewer numbers of cities can be solved using the specific techniques
like dynamic programming or branch and bound method. It can provide the optimal
solutions efficiently [20], butwhen the number of cities increases, the combinations to
search the feasible solution also increases. So for a larger number of cities, AI search
optimization techniques likeSwarm Intelligence,ArtificialBeeColony (ABC),ACO,
or genetic algorithm can be applied to solve the TSP efficiently.

TSP is directly applied in logistics and transportations. Additionally, TSP can be
applied in many areas such as the production of ICs and PCBs, where it is used in
drillingmachines for decreasing the timeof these processes. TSP is used in computing
the DNA sequencing. In finding the shortest path between airports, the TSP can be

Fig. 1 Traveling salesman problem



Ant Colony Optimization for Traveling Salesman Problem … 27

applied. Moreover, The TSP can be applied to deliver the power to home using the
fiber optics network designing.

There are many state-of-the-art methods to solve the TSP. These methods include
some complete algorithms for solving the TSP, most of the algorithms are based
on branch and cut methods. The Concorde TSP solver has solved almost all of
the TSPLIB instances. The current largest solved TSPLIB instance includes 85,900
cities. Other state-of-the-art methods are the type of Stochastic Local Search (SLS)
algorithms, these are Construction heuristic, Hybrid methods, Population-based
methods. Population-based algorithms are mostly used as a basis for developing
more efficient TSP algorithms. There are a few limitations of SLS algorithms. SLS
algorithms can sometimes get into the Stagnation situation, it is difficult to know if
the algorithm is in stagnation or not. It is also not guaranteed to find a solution.

2.1 TSP using ACO

ACO was developed from the foraging behavior of the real ants [5]. The first
application of ACO that successfully had an advantage over Simulated Annealing
and Genetic Algorithm approaches that were aimed to solve this type of dynamic
problems. The efficient ACO algorithms adjust between search intensification and
diversification.

But in ACO, there exist problems of stagnation situation and premature conver-
gence. Furthermore, the convergence speed of ACO is slow, and as the size of the
problem increases, these problems become more obvious. Hence, the ACO algo-
rithm needs more improvement [18]. Initially, the ants move in a random direction
in search of the food near their nest. The ants leave behind the special type of chem-
ical known as pheromone due to ant’s weak perception about the environment, to
communicate to the other ants. The ant travels from its nest to the food source by
finding the optimal path and leaving the traces of pheromone for the other ants to
follow. As more amount of pheromone is accumulated on the path, the ants will start
following the same path [9]. In the ACO algorithm, ants are the agents that search
for the solution in the available solutions and then try to optimize the path to reach
the solution. The biologists have described the foraging behavior of ants composed
of three mechanisms. (1) Selection Mechanism: If more information is on the path,
then the probability of choosing that path is higher. (2) Update Mechanism: The
amount of pheromone increases with the number of ants and decreases with time.
(3) Co-ordination Mechanism: The communication between the ants is carried out
in coordination [21] (Fig. 2).

While traveling through the solutions, the (artificial) ants deposit the trail of (artifi-
cial) pheromone on the edges. The solution of the problem depends on the quality and
distance of the solution of the previous solution [19]. After certain iteration, the ants
travel through the same path and show the little deviation in the path, providing the
optimized solution to the problem. The Ant System algorithm was originally a set of
three algorithms based on their implementation. Those algorithms were Ant-Cycle,



28 R. Parmar et al.

Fig. 2 Ant colony system

Ant-Density, and Ant-Quantity. The difference between these three was the updating
of the pheromone at the nodes. In the Ant-Cycle algorithm, the pheromone update
was done at the end of each ant’s tour while in the latter two, the pheromone was
updated at each subsequent step. In Ant-Cycle, the pheromone is updated depending
on the length of the tour completed by the individual ant, while in the other two
algorithms the pheromone is updated according to distance between two cities [3].

Given the weighted graph G = (V, E) of n cities, the TSP can be stated as the
smallest tour length of the agent based on the Hamiltonian distance. TheHamiltonian
distance between the two cities city i and city j can be given by dij. The ant k at the
city i chooses the city j through probability pki j , which is calculated as the function
of the city distance and the pheromone amount at that city [15]. The probability for
choosing the next city j can be given as:

P (t)
i j =

⎧
⎨

⎩

(
τα
i j

)(
η

β

i j

)

∑
τα
i j

)(
η

β

i j

) , if j /∈ tabu list

0, otherwise
(1)

Here, τ is the pheromone value at city j and η is the visibility of the city j from
city i (i.e., the inverse of the distance between the cities). The pheromone value τ is
updated at every edge according to Eq. (2).

τi j (t + 1) = ρ
(
τi j (t)

) + τ k
i j (t) (2)

where ρ is the rate of evaporation and its range is in 0 < ρ ≤ 1. Here the evaporation
rate ρ is used for avoiding the unlimited deposition of the pheromone. It allows the
ants to improvise the path rather than being stuck up in the local best option. Here
Δτ ij is the pheromone the previously visited ants accumulated on the node and it is
given as follow:

�τ k
i j (t) =

{ Q
Lk , if j is visited
0, otherwise

(3)



Ant Colony Optimization for Traveling Salesman Problem … 29

where Lk is the distance traveled by the ant so far. Q is the positive constant. From
Eq. (3), it can be seen that better the tour of the ant, the more amount of pheromone
is deposited by the ant at the node. After some iterations, the path chosen by many
ants will contain more amount of pheromone and therefore it has more probability
of being chosen by the ants in upcoming iterations.

3 Variants in ACO

Originally, the ACO algorithm was known as Ant System (AS) which was presented
by Dorigo et al. in the early 90 s. Later there were some improvements introduced
over the AS. These improvements include the Elitist Ant System (EAS), Rank-Based
Ant System (RBAS), MAX–MIN Ant System(MMAS), and Ant Colony System
(ACS). In these improvements, the methods for solution generation and pheromone
evaporationwere similar but the pheromone update and pheromone trailmanagement
were improved. In all the systems, the evaporation factor is usedwhich evaporates the
pheromone at the nodes at the predetermined rate, which in turn helps the algorithm to
explore new paths and enables it to escape the premature convergence to the optimal
solution. Over the years, many improvements are added to the original algorithm.

Elitist AS: It was the first improvement over the AS. In EAS, the best optimal tour
traveled obtained since the start is dispensed with additional reinforcements. This is
done by pheromone sublimated by the additional ant called best-so-far ant and the
tour is called tbs (best-so-far-tour) [6].

Rank Based AS: The rank-based Ant System improvement was done by
Bullnheimer et al. In RBAS each individual ant deposits a certain amount of
pheromone which decreases with its range and the ant with the best-so-far tour
will deposit the colossal amount of pheromone in each iteration. As a result, RBAS
provides a moderately better result than EAS and significantly better results than AS
[6].

MMAS: The MIN–MAX Ant System was introduced by Stützle and Hoos. The
MMAS has four modifications over the AS. The first modification is that either only
the ant which has produced the best tour in the current iteration, which is called
iteration-best ant or the best-so-far ant is allowed to change or add the pheromone
to the nodes. This may direct result in a stagnation situation. In this situation, all the
ants follow only one path or tour because it has an excessive amount of pheromone
deposited. This tourmay be good or suboptimal. The stagnation situationmay halt the
exploration of another path that can be optimal. Hence to counteract the stagnation
situation, the second modification was implemented in MMAS [6].

As per the second modification, it limits the pheromone trails’ possible range
in the interval [τmin, τmax]. The third modification was to initialize the pheromone
value to the upper limit. Along with a compact pheromone evaporation rate, the
exploration rate of other tours from the beginning of the search is increased. The
fourth modification was that the pheromone values are to be reinitialized whenever



30 R. Parmar et al.

the system is stuck in a stagnation situation or when no enhanced tour is obtained
for some consecutive iterations.

Based on experimental results, it is seen that for TSP having a small number of
cities, the iteration-best ant should modify the pheromone values and for TSP having
a larger number of cities pheromone on the best-so-far tour is updated only.

ACS: Ant Colony System differs from AS in three respects. Primarily, ACS uses
more belligerent action choice rule than AS. Subsequently, global pheromone update
and local pheromone update. In tour construction, ACS ants use the pseudorandom-
proportional action choice rule, it is given by:

j =
{

−argmaxL∈Nk
i
τil

(
η

β

il

)
, if q ≤ q0

0, otherwise
(4)

where q is randomly distributed variable in the range [0, 1]. q0 (0 ≤ q0 ≤ 1) is a
parameter, J is calculated by (α = 1). If the probability is q0, then the ant selects the
best possible solution learned from previous pheromone trails information. Here the
antmakes use of the previously acquired knowledge. The tour is constructed based on
best-so-far tours or to reconnoiter other tours. If the probability is (1–q0) the biased
exploration is done. In global pheromone update, only the ant with a best-so-far tour
is allowed to update the pheromone over the best-so-far tour. In the local pheromone
update, it is applied immediately after each arc is crossed. After an arc is visited,
the pheromone value over that arc is reduced, so the exploration rate of other arcs is
increased and it does not result in the stagnation situation.

4 State-of-the-art

Since its development, various research papers and the literature have been published
for the improvements in the ACO. The ACO has been applied to various domains
in the different forms and with the hybridization with various other techniques, the
improvements have been made according to the need. In the latest ACO research,
authors mainly focus on the areas of integrating various algorithms with the ACO
and the application of ACO in various other disciplines.

4.1 Hybrid Method Based on ACO and 3-Opt Algorithm

One of the most common problems faced during the implementation of the ACO is
premature stagnation. The stagnation can be defined as the condition in which all
the ants traverse through the same track and construct the same repercussion, again
and again considering there is no other optimal path. To overcome this problem, the
hybrid algorithmwhich containsmultiple colonies of ants shares the global best tours



Ant Colony Optimization for Traveling Salesman Problem … 31

occasionally to guide to the better solution. If the colony is stuck in the stagnation
condition, the other colonies extricate it from the condition. Thus, this algorithm
provides better and more robust solutions. This algorithm requires the colonies to be
executed independently at the same time to find the optimal tour [11]. This algorithm
considers the tour completed by ant and finds the optimal solution. But it fails to look
at the tour which is yet to be performed. For a very large dataset, we might need large
number of iteration for the maximum number of tours to be exploited.

4.2 Annealing Elitist Ant System with Mutation Operator

In this algorithm proposed byAbdulqaderM.Mohsen, the ant has the two options for
selecting the next city to be visited. Given n ants which are to be traveled through m
cities, the ants will be distributed randomly across the cities. Initially, the pheromone
level at all the cities is initialized to a small positive integer. At every iteration,
an ant will have to choose either mutation operation or simulated annealing, based
on the multifariousness of elitist ant system, to improve the performance of the
algorithm. Mutation Operator is an algorithm in which each ant is provided with the
chance to amend according to the predetermined probability. This operator helps the
algorithm to survey different scope in the search space. If the diversity is greater
than some value, the algorithm needs intensification which can be achieved through
annealing on the ratio of solution pool. If the diversity is less than some value, it
means the algorithm is losing its diversity and there is a probability to be stuck in
local minima. Therefore, the algorithm needs to increase diversity, which can be
attained by applying the mutation operator [16]. The variousness in the fitness of the
ants in the algorithm can be obtained by the Euclidean Distance (ED) which is given
as:

ED = d − dmin

dmax − dmin
(5)

Here,
Here d is the mean of the fitness value of the best ant and fitness value of other

prevailing ants in the solution. dmin is the distances of the worst ant fitness and dmax

is the second-best ant fitness from the best ant respectively. In this algorithm, we
need to tune diversity parameter in order to decide whether the algorithm requires
diversification or intensification based on the dataset provided. This makes the algo-
rithm very tedious to execute on different datasets as we need to reset the value for
different datasets.



32 R. Parmar et al.

4.3 Greedy–Levy Flight ACO

There is always a perplexity in the reinforcement learning of further exploitation
and exploration. To address this dilemma, Greedy–Levy Flight ACOwas developed.
The Greedy–Levy ACO comprises two algorithms, Epsilon Greedy Algorithm and
Levy Flight Algorithm. The Epsilon-Greedy policy is technique of explorationwhich
is used in ACS (Ant Colony System) algorithm [14]. The exploitation in Epsilon-
Greedy policy is done with the probability of epsilon while selecting the best node
available and the exploration is done with the probability of 1-epsilon. In case of
1-epsilon probability, the Levy Flight technique is used to improve the results. In
this algorithm, initially a random number P is generated such that 0 < P < 1. If the
P ≤ ε, the candidate solution with maximum probability is selected. If P > ε, then a
candidate is selected randomly by using the Levy Flight algorithm.

The Greedy–Levy ACO tries to achieve the balance between local search and
global search for generating more optimal results which is very crucial in increasing
efficiency of the algorithm and it is done by implementing the epsilon-greedymethod
and Levy Flight technique [13]. The probability of choosing the next node in the
Greedy–Levy algorithm can be given as follows:

P (t)
i j =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

argmax
{(

τα
i j

)(
η

β

i j

)}
, if P ≤∈

1 − A × 1−Plevy
1−Pthreshold

×
(

1 −
(
τα
i j

)(
η

β

i j

)

∑
τα
i j

)(
η

β

i j

)

)

if P >∈, if Plevy ≥ Pthreshold
(
τα
i j

)(
η

β

i j

)

∑
τα
i j

)(
η

β

i j

) , else

(6)

Here, A = altering ration of Levy Flight.
Plevy = Probability of turning on/off levy Flight altering, 0 < Plevy < 1.
Pthreshold = Parameter for Levy Flight threshold, 0 < Pthreshold < 1.
The Greedy–Levy algorithm improves the program by tuning the exploration and

exploitation of the ants, and hence, it requires more iteration to get to the optimal
solution.

5 Proposed Solution

Ant Colony Optimization is one of the most popular search methods among artificial
intelligence based on the real behavior of ants. There have been various modifica-
tions to the algorithm since its formulation by Dorigo. In this paper, we propose
a modification in the basic ACO’s pheromone update formula which improves the
convergence speed of ACO in comparison to the basic ACOmodel and improves the
time required to get the optimal solution. When an ant travels from city i to city j,



Ant Colony Optimization for Traveling Salesman Problem … 33

the pheromone value of the city j is updated according to the distance traveled by
that ant so far. We propose to add a γ amount of pheromone of the next city k from
the city j, where city k has the maximum amount of pheromone value from the city j.
Hence, the pheromone value at the city j will be updated by the Eq. (5) given below:

τi j (t + 1) = ρ
(
τi j (t)

) + �τ k
i j (t) + γ

(
τ jk(t)

)
(7)

Here τ jk is the pheromone value at the city k from the city j and gamma is the factor
which decides the amount of pheromone value to be added. The city k is selected
based on the following equation:

k = argmax
{
τ jl

}
(8)

The city k is determined based on the next city from city jwhich has themaximum
pheromone value. By adding this modification to the original algorithm, the conver-
gence speed increases, and the amount of time required to reach the optimal solution
decreases greatly. The pseudocode for the ACO is given below:

The reason for this convergence speed and the more optimal solution lies in the
future path of the solution. In the proposed modification, we are adding a certain
portion of the pheromone from the next nearest solutionwhich adds the probability of
the next succeeding path to the current solution. As the number of iteration increases
and the number of ants visiting the nodes increases, the pheromone value from the
succeeding optimal path is accumulated at the node, which increases the probability
of choosing the node with the global best solution.

While in the original Ant Colony System, the ant chooses the next node based on
the local optimal solution. Moreover, as the number of ants increases beyond some
point, the pheromone value from various nodes is repeatedly accumulated at some
nodes, which in turn leads the ants to choose the path with maximum pheromone
amount which is the result of the various repeated pheromone from the succeeding
nodes.



34 R. Parmar et al.

6 Experiments and Results

In this section, we provide the experiments and their results obtained on the execution
the algorithm.The algorithmhas beendeveloped in python andhas been implemented
on the Windows 10 64-bit Operating System, Intel Core i7 2.5 GHz processor and
8 GBRAM.We adjusted the parameters for the comparison of the original algorithm
with the proposed algorithm. Here we have varied the number of cities and the
number of ants to present the difference in the optimal solution and time provided
by the original and the proposed algorithm. In the implementation of the algorithm,
we have used the real data of the TSPlib benchmark libraries which is available on
the web: https://comopt.ifi.uniheidelberg.de/software/TSPLIB95/XML-TSPLIB/ins
tances/.

According to the survey paper published by Dorigo and Stutzle, in 2019, minmax
ACO and Ant Colony System are still the state-of-the-art techniques [7].

Hencewe’ve compared the results obtainedwithAnt Colony System and used it as
a benchmark. To verify the performance of the modified formula, it has been applied
to various TSP instances. The algorithm provides the promising results when used
with the modified pheromone update formula. We have implemented and compared
the results obtained by the ACS algorithm with the traditional pheromone update
formula and the modified pheromone update formula. For the experimentation, we
have initialized the variables as follows: α = 1, β = 2, ρ = 0.5 and γ = 0.4 (Table
1; Figs. 3 and 4).

It can be perceived from the results that the proposed modification generates an
optimized path with a fewer number of ants and less time than the original ACO. It
is due to the consideration of the pheromone value of the next node from the traveled
node which adds the pheromone value of the succeeding node with an optimal solu-
tion from the graph. With the increasing number of iteration, the pheromone value
from the succeeding nodes gets accumulated at the node which provides the optimal
solution according to the global optimal solution. While in traditional ACO, the next
node is selected based on the local best solution. Because of this, the next node

Table 1 Statistical comparison with benchmark algorithm

TSP instances No. of cities ACS with original
formula (s)

ACS with proposed
formula (s)

Percentage change
(%)

berlin52 52 8.13 6.29 22.63

eil76 76 17.01 10.3 39.45

kroA100 100 37.27 22.0 40.97

pr124 124 89.41 41.15 53.98

rat195 195 265.34 156.62 40.97

a280 280 813.57 472.56 41.92

rd400 400 2669.75 1464.34 45.15

ali535 535 6385.28 3184.64 50.12

https://comopt.ifi.uniheidelberg.de/software/TSPLIB95/XML-TSPLIB/instances/


Ant Colony Optimization for Traveling Salesman Problem … 35

Fig. 3 Comparison of algorithm for less than 150 cities

Fig. 4 Comparison of algorithm for more than 150 cities

selected by the ants contains the pheromone value from the optimal node succeeding
that node and ant select the node according to the global best solution. As a result, the
optimal solution obtained in the proposed modification is better than the traditional
ACO algorithm. Also, the experimental results vary when we change the parameters
used in the algorithm. Here, the rate of evaporation also plays an important role in
providing the optimal solution.

7 Conclusion

In this paper, we are proposing the modification in the pheromone update formula
of the ACO. The new pheromone update formula updates the pheromone value of
current node with a certain amount of the pheromone value from the next node with
maximum pheromone from the current node. It can be deduced that the proposed



36 R. Parmar et al.

method performs less computation with less number of ants used for a large number
of cities. Hence, the time for finding the optimal solution decreases notably by 41.9%.
The advantage of using the proposed method is that with a low number of ants and
iterations, the optimal solution is found in a shorter time. Hence, it can be used in
solving the problem which may arise in practical applications that are combinatorial.
Also, it can be implemented in all the new methods proposed to find the optimal
solution.

References

1. Generalized tsp.https://en.wikipedia.org/wiki/Set_TSP_problem. Accessed 14 May 2020
2. State space search. https://en.wikipedia.org/wiki/State_space_search. Accessed 15 Apr 2020
3. Asmar D, Elshamli A, Areibi S (2005) A comparative assessment of aco algorithms within a

tsp environment. Dyn Contin Discr Impul Syst Series B Appl Algorithms 1:462–467
4. BlumC, Roli A (2003)Metaheuristics in combinatorial optimization: overview and conceptual

comparison. ACM Computing Surveys (CSUR) 35(3):268–308
5. Chen H, Tan G, Qian G, Chen R (2018) Ant colony optimization with tabu table to solve tsp

problem. In: 2018 37th Chinese Control Conference (CCC). IEEE, pp 2523–2527
6. DorigoM, and Thomas S (2004) Ant colony optimization algorithms for the traveling salesman

problem
7. Dorigo M, Thomas S (2019) Ant colony optimization: overview and recent advances. In:

Handbook of metaheuristics. Springer, pp 311–351
8. Knight K, Rich E, Nair SB (2009) Problems and search. In: Artificial Intelligence, 3rd edn.

Tata McGraw-Hill
9. Gao W (2020) New ant colony optimization algorithm for the traveling salesman problem. Int

J Computat Intell Syst 13(1):44–55
10. David EG (1989) Genetic algorithms in search. In: Optimization, and Machine Learning
11. Şaban G, Mostafa M, Ömer KB, Halife K (2018) A parallel cooperative hybrid method based

on ant colony optimization and 3-opt algorithm for solving traveling salesman problem. Soft
Comput 22(5):1669–1685

12. Wu J, Ouyang A (2012) A hybrid algorithm of aco and delete-cross method for tsp. In: 2012
International Conference on Industrial Control and Electronics Engineering. IEEE, pp 1694–
1696

13. Liu Y, Cao B (2020) A novel ant colony optimization algorithm with levy flight. IEEE Access
8:67205–67213

14. Liu Y, Cao B, Li H (2020) Improving ant colony optimization algorithm with epsilon greedy
and levy flight. JSP 24(25):54

15. Mavrovouniotis M, Yang S (2013) Ant colony optimization with immigrants schemes for the
dynamic travelling salesman problemwith traffic factors. App Soft Comput 13(10):4023–4037

16. Mohsen AM (2016) Annealing ant colony optimization with mutation operator for solving tsp.
In: Computational intelligence and neuroscience

17. EsterME (2017) Ant colony optimization for predicting gene interactions from expression data
18. Raghavendra BV (2015) Solving traveling salesmen problem using ant colony optimization

algorithm. J Appl Comput Math JACM 4(6):260
19. Stützle T, Dorigo M et al (1999) Aco algorithms for the traveling salesman problem. Evolut

Algorithms Eng Comput Sci 4:163–183
20. Supaporn S, Deacha P (2012) Solving traveling salesman problems via artificial intelligent

search techniques. In: Proceedings of the 11th WSEAS international conference on artifi-
cial intelligence, knowledge engineering and data bases. World Scientific and Engineering
Academy and Society (WSEAS), pp 137–141

https://en.wikipedia.org/wiki/Set_TSP_problem
https://en.wikipedia.org/wiki/State_space_search


Ant Colony Optimization for Traveling Salesman Problem … 37

21. Wang J, Yang X (2016) Application of improved ant colony algorithm on travelling salesman
problem. In: 28th Chinese control and decision conference (CCDC)

22. Liu Y, Hou Z, Jiang C (2005) Unit commitment by binary particle swarm optimization.
In Proceedings of the 7th WSEAS International Conference on Mathematical Methods and
Computational Techniques In Electrical Engineering, pages 372–377. Citeseer, 2005.


	 Ant Colony Optimization for Traveling Salesman Problem with Modified Pheromone Update Formula
	1 Introduction
	1.1 Meta-Heuristic Methods in AI

	2 Traveling Salesman Problem (TSP)-NP-Hard
	2.1 TSP using ACO

	3 Variants in ACO
	4 State-of-the-art
	4.1 Hybrid Method Based on ACO and 3-Opt Algorithm
	4.2 Annealing Elitist Ant System with Mutation Operator
	4.3 Greedy–Levy Flight ACO

	5 Proposed Solution
	6 Experiments and Results
	7 Conclusion
	References




