
Efficiency of Parallelization Using GPU
in Discrete Dynamic Models Construction

Process

Iryna Strubytska1(&) and Pavlo Strubytskyi2

1 Separated Subdivision of National University of Life and Environmental
Sciences of Ukraine “Berezhany Agrotechnical Institute”, Akademichna str.,

22, Berezhany 47500, Ukraine
iryna.str@gmail.com

2 Ternopil National Economic University, Lvivska str., 11,
Ternopil 46004, Ukraine

p.r.strubytsky@gmail.com

Abstract. The objectives of this paper are: (i) to estimate parallelization effi-
ciency of discrete dynamic models constructing process using GPU; (ii) to
compare the execution time of parallel model depending on the order of model,
the number of discrete values, the number of GPU threads and GPU blocks; and
(iii) to compare the execution time on CPU and GPU. A parallel model for the
prediction of sulfur dioxide emissions into the air of Żywiec city (Poland) based
on historical observations is built and researched in this paper. We have
obtained a parallelization efficiency of 78.1% while executing the constructed
parallel model on GPU Nvidia GTS250. The obtained research results suggest
that the constructing discrete dynamical models must include the efficient use of
parallel computing resources nowadays.

Keywords: Discrete dynamic models � Optimization methods � Parallel
computing � Parallelization � GPU � GPGPU

1 Introduction

Construction methods of discrete dynamic models for different systems are sufficiently
developed and widely used. The parametric identification of discrete models was
described in articles by L. Ljung [1], L. Zadeh [2] and Ch. Desoer, V. Strejc [3], V.
Kuntsevych [4]. In terms of computer simulations, the modeling method, which is
based on discrete state equations, is the most promising [5, 6]. In terms of mathematics,
this approach is the most formalized and has practical applications in different areas.

The construction of dynamic models of electrical and electronic circuits was made
using optimization approach. This approach was used by P. Stakhiv and Y. Kozak [7–
9]. This approach makes it possible to build universal models. However, such uni-
versalization leads to the appearance of complex optimization problems that are dif-
ficult to resolve in a reasonable time, even using modern computer technologies.

© Springer Nature Singapore Pte Ltd. 2021
K. K. Patel et al. (Eds.): icSoftComp 2020, CCIS 1374, pp. 101–110, 2021.
https://doi.org/10.1007/978-981-16-0708-0_9

http://orcid.org/0000-0002-6719-2655
http://orcid.org/0000-0002-1743-840X
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-16-0708-0_9&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-16-0708-0_9&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-16-0708-0_9&domain=pdf
https://doi.org/10.1007/978-981-16-0708-0_9

There is an actual problem to develop such construction methods of models that
would be subjected to the implementation on available computer technologies and
provide the necessary performance.

Therefore, there is a need to develop sufficiently universal algorithms for con-
struction of discrete dynamical models using parallelization by which you can effec-
tively build the models for ecological, electricity and other complex systems.

Recently, increasingly researchers use GPUs for accelerating results of mathe-
matical modeling. For examples, A. Kłusek, P. Topa, J. Wąs, R. Lubaś [10] use GPU
for social distances model, B. Hamilton, C. Webb. [11] for room acoustics modelling,
J. Schalkwijk, H. Jonker, A. Siebesma, E. Meijgaard [12] for weather forecast model.

2 Parallelization Method of Optimization Procedures
for Constructing of Discrete Dynamical Models

Let’s consider the generalized mathematical model in the form of state Eqs. (1):

~x kþ 1ð Þ ¼ F~x kð Þ þG~v kð Þ þ U
!

~x kð Þ;~v kð Þ� �
~y kþ 1ð Þ ¼ C~x kþ 1ð Þ þD~v kþ 1ð Þ ;

(
ð1Þ

where ~x kð Þ – the vector of state variables; ~v kð Þ – the input vector; ~y kþ 1ð Þ – the output

vector; F;G;C;D – matrixes with unknown coefficients; U
!

– the nonlinear vector-
function with many variables.

This form of model (1) is characterized by some vector of unknown parameters~k.
This vector for this model consists of the elements of matrixes F;G;C;D and coeffi-

cients of the vector-function U
!

~x kð Þ;~v kð Þ� �
.

Q ~k
� �

[0 is the criterion for the precision measuring of the model, which deter-

mines the deviation of the behavior of the model from the behavior of the simulated

object for the known periods of time. The function Q ~k
� �

is called the objective

function. This function is calculated as a root-mean-square error of model’s values:

Q ~k
� �

¼
X

~y�~y� ~k
� �� �2

; ð2Þ

where~y – known characteristics of modeled object,~y� ~k
� �

– transient response that are

calculated using the model.
Therefore, the construction of the model can be reduced to calculation values of the

vector~k, when the objective function will be minimal. This problem is solved using the
optimization algorithm [13].

The task of finding the minimum point of the nonlinear function Q ~k
� �

with many

variables is difficult. In discrete dynamic models’ construction, the objective function is
a “ravine” with many local minima. For the solution of such problems the Rastrigin’s

102 I. Strubytska and P. Strubytskyi

method of a director cone has the best characteristics [14]. Purposeful scan of local
minima can be done using this approach. It accelerates finding of the global minimum
of the objective function. But the computational complexity of this problem is quite
huge. Also, the significant number of input data is used for the construction of the
qualitative model. Consequently, the execution time of the implementation of opti-
mization procedures is also significant [15].

The time complexity of Rastrigin’s optimization algorithm [14] depends linearly on
the number of known discrete values from in known function. Accordingly, the
computational complexity of the problem will be proportional to the amount of input,
not the order of created model. For building a quality model it’s necessary to use a large
amount of data for calculating the value of the objective function. Therefore, the time
spent of calculation the values of functions will also be significant.

The parallelization of this task using SIMD-architecture was proposed in the article
[16]. This architecture allows performing the same thread of instructions for many
threads of data. Taking into this approach, the objective function for different values of

vector ~k is calculate independently. Each objective function will be calculated on a
separate core of GPU.

The flowchart diagram of the parallelization algorithm is presented on Fig. 1.
Today the available devices with SIMD-architecture and with better ratio

performance/price are the GPUs (Graphics Processing Unit) [17, 18]. Therefore, the
proposed algorithm was adapted for these computing accelerators.

In terms of software implementation, the parallelization does not require large
expenditures through programming architecture of GPU [19, 20].

According to this proposed algorithm, the selection of each point will be made in a
separate thread, which will be executed parallelly. Also, the calculation of the value of

the objective function Q 1ð Þ
iþ 1; . . .;Q

mð Þ
iþ 1 in m points will also be executing out on sep-

arate threads.
Same program code is sent to all threads. The input data for each thread are parameters

of the next hypercone, they are the same for all threads. The value of objective function is
received in each entrance of thread. This value is calculated in random point of hyper-
cone. This value will be different for each thread. All output data is stored in the shared-
memory of threads for further calculation of the minimum [21, 22].

The CUDA (Compute Unified Device Architecture) technology was used for pro-
gramming implementation of parallelization algorithm [20, 23]. Currently the computing
using GPUs and CUDA is an innovative combination of features of new generation of
graphics processors NVIDIA, that process thousands of threads with high information
loading. These features are available through programming language C [17, 24].

3 Discrete Dynamical Model for Sulfur Dioxide Emission
Prediction

Today the problem of environmental protection is becoming one of the most important
tasks of science, the development of which is accelerated rapidly by technological
progress in all countries of the world. The rapid development of industry and the

Efficiency of Parallelization Using GPU in Discrete Dynamic Models 103

significant growth of traffic flows contribute to the emergence of an acute problem - the
protection of ecological systems. In recent decades, ecological systems have been
influenced significantly by anthropogenic factors. Therefore, prediction of character-
istics changes in such systems is an actual task.

A dangerous environmental situation has already emerged today due to the negative
impact of industry in many regions. In particular, pollution of rivers, the air pool,
pollution of the landscape, the destruction of forests, vegetation, wildlife, the fertile
layer, pollution of groundwater, acoustic, electromagnetic and electrostatic pollution.

For example, the air pool is polluted with gas and aerosol emissions (CO2, polycyclic
aromatic hydrocarbons, CO, NOx, SOx, ash, soot and others). Emissions are occurred

Fig. 1. Flowchart of the parallel algorithm of Rastrigin’s director cone [16]

104 I. Strubytska and P. Strubytskyi

during the combustion of liquid and solid fuels, which form aerosols when released into
the atmosphere. Aerosols can be non-toxic (ash) and toxic (C20H12 is a potent carcino-
genic compound). Also, gas emissions can be toxic (NO2, SO2, NO, CO and others) and
non-toxic (CO2, H2O). All triatomic gases (H2O, NO2, SO2, and especially CO2) belong
to “greenhouse gases”. When gas emissions are released into the atmosphere, they have a
complex physicochemical and biological effect on living organisms and humans, the
level and character of which depend on their concentration in the air.

The combined effects of gas and aerosol emissions from energy objects can lead to
various adverse environmental effects, including crises in the biosphere, such as
deterioration of atmospheric transparency, rainfall and acid rain, greenhouse effect.

Therefore, it is important to predict the concentrations of harmful emissions into the
atmosphere to prevent environmental problems and respond promptly.

Let’s build a model for prediction of emissions into the atmosphere. Model inputs
are weekly averages values of emissions of SO2 (sulfur dioxide) into the air in Żywiec
(Poland) in 2018 [25]. It is necessary to create a mathematical model that based on this
data. This model should be able to predict the emission of SO2 into the air in 2019.

Let’s building the autonomous discrete dynamic model of the third order for testing
of the efficiency of the parallel program of calculation of the objective function. This
model has the following form:

x kþ 1ð Þ
1

x kþ 1ð Þ
2

x kþ 1ð Þ
3

0
B@

1
CA ¼

F11 F12 F13

F21 F22 F22

F31 F32 F33

0
@

1
A �

x kð Þ
1

x kð Þ
2

x kð Þ
3

0
B@

1
CA

y kþ 1ð Þ
1

y kþ 1ð Þ
2

y kþ 1ð Þ
3

0
B@

1
CA ¼ C1 C2 C3ð Þ �

x kþ 1ð Þ
1

x kþ 1ð Þ
2

x kþ 1ð Þ
3

0
B@

1
CA

8>>>>>>>><
>>>>>>>>:

; ð3Þ

where k ¼ 1; . . .; 52.
The objective function is:

Q ~ki
� �

¼
X

i

y1
y2
y3

0
@

1
A�

y�1
y�2
y�3

0
@

1
A

������

������

2

: ð4Þ

4 Research of Efficiency of Parallel Model

Let’s test the program for calculation of the objective function. The following hardware
and system software were used for these tests:

• GPU NVIDIA GeForce GTS250 (16 multiprocessors with 8 cores each);
• RAM 1024 MB;
• CPU Core2Duo E8400, 3 GHz;
• motherboard ASRock G41M-S3.

Efficiency of Parallelization Using GPU in Discrete Dynamic Models 105

Let’s considering the performance time of the parallel program for calculation of
the objective function on 128 GPU cores. The average time (with 100 launches) of
parallel computing of the objective function is 2.74 ms.

Then let’s research the change of the execution time of the program respecting the
change of the model order (see on Fig. 2). Obviously, the execution time of parallel
calculation of the objective functions will gradually increase with increase of the order
of the constructed model.

When the number of discrete values will increase, then the execution time of
parallel calculation of the objective function will gradually increase (see on Fig. 3).

It is also interesting to compare the dependence of the execution time of all the
calculations of objective functions on the number of calculations of the objective
function. Namely, with different number of threads on GPU. Obviously, such depen-
dence is linear for sequential calculations. This dependence is shown on Fig. 4.

Fig. 2. Dependence of the execution time of the parallel program on the model order

Fig. 3. Dependence of the execution time of the parallel program on the number of discrete
values of model

106 I. Strubytska and P. Strubytskyi

As it is shown on Fig. 4, this dependence is periodic. Since the execution time was
calculated along with the data transfer, then there are constant delays in each cycle of
optimization algorithm. If we reject these delays then we will see that the periodicity is
repeated every 128 threads. Therefore, it is expedient to use the parallelization when
the number of threads is a multiple number of GPU cores. In this case it is 128 cores.
Then the parallelization will be the most effective.

Build 3D-graph of the dependence of the execution time of the parallel program on
the number of threads and the number of GPU blocks (see on Fig. 5).

The proposed approach of parallel computing can be used with different opti-
mization algorithms. Therefore, the execution time of the algorithm is not taken into

Fig. 4. Dependence of the execution time of the parallel program from the of threads

Fig. 5. Dependence of the execution time of the parallel program on the number of threads and
the number of blocks

Efficiency of Parallelization Using GPU in Discrete Dynamic Models 107

account. In practice, the execution time of the algorithm is less than the required time of
calculations of the objective function.

The CPU performance is much higher than the performance of one GPU core.
However, the parallel realization will be more effective while calculating the objective
function for many sets of the coefficients [20]. Thus, the more calculations of the
objective function we conduct, the more efficient will be the parallelization process of
construction of discrete dynamical models.

The execution time of the parallel program in one core of GPU is shown on Fig. 6.

As it is shown on Fig. 6, parallelization will be effective when there are a large
number of calculations of objective function. Results on Fig. 6 show, that wewere able to
reduce a computational time from 2 ms to 0.02 ms on 1 and 128 GPU cores respectively,
which gives us a speedup = 100 and parallelization efficiency = 78.1%.

The construction of such model was performed on central and graphic processing
units. Let’s compare the execution time of sequential program and parallel program for
constructing a discrete dynamic model. To do this, let's determine the dependence of
the model identification time on the number of points that generated on the hypercone
(Fig. 7).

Figure 7 shows that the time of sequential program with increasing generated
points is increasing gradually, and the time of the parallel program remains constant
relatively.

Also, Fig. 7 confirms that the more calculations of the objective function are
performed then the more efficient will be the parallelization of discrete dynamic models
construction process.

Figure 7 shows the runtime values for one iteration. And for building an accurate
model it is necessary to perform thousands, tens of thousands of iterations of calcu-

lation of objective function Q 1ð Þ
iþ 1; . . .;Q

mð Þ
iþ 1 in m points.

The parallelization coefficient of this algorithm can be estimated from the fact that
the cost of calculation of the value of the objective function significantly exceeds the
computational cost of making decisions according to the optimization algorithm. Since
in the parallel implementation of calculation the value of the objective function in
different points is performed independently, then the parallelization coefficient is close

Fig. 6. Execution time of the parallel program in one core of GPU

108 I. Strubytska and P. Strubytskyi

to the number of processors (provided that the number of calculations of the objective
function is multiplied by one step of the optimization procedure).

5 Conclusions

A parallel model for the prediction of sulfur dioxide emissions into the air of Żywiec
city (Poland) based on historical observations is built and researched in this paper. The
construction of this model using traditional sequential algorithm without its paral-
lelization is failed. Because the construction of such model requires tens of thousands
of iterations of calculations and computer’s RAM is not enough for it. We have
obtained a parallelization efficiency of 78.1% while executing the constructed parallel
model on GPU Nvidia GTS250. We also conducted the comparison of the execution
time of parallel model respecting the model order, the number of discrete values, the
number of GPU threads and the number of GPU blocks. The obtained research results
suggest that the constructing discrete dynamic models must include the efficient use of
parallel computing resources nowadays.

References

1. Ljung, L., Andersson, C., Tiels, K., Schön, T.: Deep learning and system identification. In:
Proceedings of the IFAC World Congress, Berlin (2020)

2. Zadeh, L.A., Desoer, C.A.: Linear System Theory: The State Space Approach Dover Civil
and Mechanical Engineering Series. Dover Publications, New York (2008)

3. Voicu, M.: Advances in Automatic Control. Springer, New York (2004). https://doi.org/10.
1007/978-1-4419-9184-3

Fig. 7. Execution time on CPU and on GPU

Efficiency of Parallelization Using GPU in Discrete Dynamic Models 109

https://doi.org/10.1007/978-1-4419-9184-3
https://doi.org/10.1007/978-1-4419-9184-3

4. Kuntsevich, V.M., Gubarev, V.F., Kondratenko, Y.P., Lebedev, D.V., Lysenko, V.P. (eds.):
Control Systems: Theory and Applications. Automation Control and Robotics. River
Publishers, Gistrup (2018)

5. Hinamoto, T., Lu, W.: Digital Filter Design and Realization. River Publishers, Gistrup
(2017)

6. Isidori, A., Marconi, L.: Adaptive regulation for linear systems with multiple zeros at the
origin. Int. J. Robust Nonlinear Control 23(9), 1013–1032 (2012)

7. Stakhiv, P., Kozak, Y.: Discrete dynamical macromodels and their usage in electrical
engineering. Int. J. Comput. 10(3), 278–284 (2011)

8. Hoholyuk, O., Kozak, Y., Nakonechnyy, T., Stakhiv, P.: Macromodeling as an approach to
short-term load forecasting of electric power system objects. Comput. Probl. Electr. Eng. 7
(1), 25–32 (2017)

9. Stakhiv, P., Hoholyuk, O., Byczkowska-Lipinska, L.: Mathematical models and macro-
models of electric power transformers. Przeglad Electrotechniczny 5, 163–165 (2011)

10. Kłusek, A., Topa, P., Wąs, J., Lubaś, R.: An implementation of the Social Distances Model
using multi–GPU systems. Int. J. High-Perform. Comput. Appl. 32, 482–495 (2016)

11. Hamilton, B., Webb, C.J.: Room acoustics modelling using GPU-accelerated finite
difference and finite volume methods on a face-centered cubic grid. In: Proceeding of
Conference on Digital Audio Effects (DAFx-13), Maynooth, Ireland (2013)

12. Schalkwijk, J., Jonker, H.J.J., Siebesma, A.P., Meijgaard, E.V.: Weather forecasting using
GPU-based large-eddy simulations. Bull. Am. Meteorol. Soc. 96, 715–723 (2015)

13. Stakhiv, P., Strubytska, I., Kozak, Y.: Parallelization of calculations using GPU in
optimization approach for macromodels construction. Przegliad Elektrotechniczny 7(9), 7–9
(2012)

14. Kaladze, V.A.: Adaptation of casual search by the method of the directing cone.
Vesnik VGTU 8(1), 31–37 (2012)

15. Strubytska, I.: Construction of discrete dynamic model of prediction of particulate matter
emission into the air. Comput. Probl. Electr. Eng. 5, 55–59 (2015)

16. Kozak, Y., Stakhiv, P., Strubytska, I.: Parallelizing of algorithm for optimization of
parameters of discrete dynamical models on massively-parallel processor. Inf. Extr. Proces.
32(108), 125–130 (2010)

17. Boreskov, A., Kharlamov, A., Markovskyy, N.: Parallel computations on GPU. Architecture
and program model CUDA. Publication of Moscow University (2012)

18. Nickolls, J., Dally, W.: The GPU computing era. IEEE Micro 30(2), 56–69 (2010)
19. Kirk, D., Hwu, W.-M.: Programming Massively Parallel Processors: A Hands-on Approach.

Morgan Kaufmann, Burlington (2010)
20. Sanders, J., Kandrot, E.: CUDA by Example: An Introduction to General-Purpose GPU

Programming. Addison-Wesley Professional, Boston (2010)
21. Strubytska, I.: Research of the parallelization of minimum value algorithm on the GPU. In:

Materials of the 1st All-Ukrainian School-Seminar for Young Scientists and Students
“Advanced Computer Information Technologies”, pp. 104–106 (2011)

22. Stakhiv, P., Strubytska, I.: Parallelization method of parameters identification of discrete
dynamic macro models on massively parallel processors. Naukovi notatky 27, 300–305
(2010)

23. Farber, R.: CUDA Application Design and Development. Morgan Kaufmann Publishers,
Burlington (2011)

24. Cook, S.: CUDA Programming: A Developer’s Guide to Parallel Computing with GPUs.
Elsevier Inc., Amsterdam (2013)

25. Air Quality Monitoring System. https://powietrze.katowice.wios.gov.pl/stacje. Accessed 15
Aug 2020

110 I. Strubytska and P. Strubytskyi

https://powietrze.katowice.wios.gov.pl/stacje

	Efficiency of Parallelization Using GPU in Discrete Dynamic Models Construction Process
	Abstract
	1 Introduction
	2 Parallelization Method of Optimization Procedures for Constructing of Discrete Dynamical Models
	3 Discrete Dynamical Model for Sulfur Dioxide Emission Prediction
	4 Research of Efficiency of Parallel Model
	5 Conclusions
	References

