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Abstract. Currently, the generation of alternative energy from solar
radiation with photovoltaic systems is growing, its efficiency depends on
internal variables such as powers, voltages, currents; as well as external
variables such as temperatures, irradiance, and load. To maximize per-
formance, this research focused on the application of regularization tech-
niques in a multiparametric linear regression model to predict the active
power levels of a photovoltaic system from 14 variables that model the
system under study. These variables affect the prediction to some degree,
but some of them do not have so much preponderance in the final fore-
cast, so it is convenient to eliminate them so that the processing cost and
time are reduced. For this, we propose a hybrid selection method: first
we apply the elimination of Recursive Feature Elimination (RFE) within
the selection of subsets and then to the obtained results we apply the
following contraction regularization methods: Lasso, Ridge and Bayesian
Ridge; then the results were validated demonstrating linearity, normal-
ity of the error terms, without autocorrelation and homoscedasticity.
All four prediction models had an accuracy greater than 99.97%. Train-
ing time was reduced by 71% and 36% for RFE-Ridge and RFE-OLS
respectively. The variables eliminated with RFE were “Energia total”,
“Energia diaria” e “Irradiancia”, while the variable eliminated by Lasso
was: “Frequencia”. In all cases we see that the root mean square errors
were reduced for RFE.Lasso by 0.15% while for RFE-Bayesian Ridge by
0.06%.

Keywords: Regularization Shrinkage · Lasso · Ridge · Bayesian
Ridge · RFE · Linear regression · Homoscedasticity

1 Introduction

Due to the increasing use of photovoltaic systems in the generation of alternative
energy, it is difficult to obtain mathematical or physical models that result in
the efficient use of such systems. Likewise, the tools and algorithms provided
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by Machine Learning in the use and treatment of data, result in useful tools
to model photovoltaic generation systems. Within the field of data-based fore-
casts we have multiparametric linear regression, which allows forecasts taking
into account a set of independent variables that affect the target or dependent
variable. These variables affect the prediction to some degree, but some of them
do not have so much preponderance in the final forecast, so it is convenient to
eliminate them so that the processing cost and time are reduced. Among some
of the techniques to exclude irrelevant variables or predictors we have: Subset
Selection, Shinkrage Regularization, and Dimension Reduction. Within the first
group that identifies and selects among all the available predictors that are most
related to the target variable, we have: Bestsubset selection and Stepwiese selec-
tion. Within this last group we have: forward, backward, and hybrid. In the
backward method we have the elimination of recursive functions (RFE), which
is the algorithm used in this paper to model the multiparameter photovoltaic
system. RFE is used in various studies such as the selection of attributes in clas-
sifiers based on artificial neural networks in the detection of cyberbullying [1].
In conjunction with other techniques such as SVR for feature selection based on
twin support vector regression [2]; with SVM and Bayes for categorical classifica-
tions [3]. For the modeling of emotions and affective states from EEG, combining
RFE with Random Forest (RF), Support Vector Regression (SVR), Tree-based
bagging [4]. In identifying features for football game earnings forecast, combining
it with were Gradient Boosting and Random Forest [5]. In the prediction of boiler
system failures, using the RFE algorithm in combination with the elimination
of recursive functions by vector machine (SVM-RFE) [6]. In the phenotyping
of high-yield plants [7], to eliminate spectral characteristics, the elimination of
vector-machine recursive characteristics (SVM-RFE), LASSO logistic regression
and random forest are used. To perform the short-term electricity price and
charge forecast using KNN, [8] uses RFE to eliminate redundancy of functions.
To perform heart transplant tests, [9] in pig tests use a combination of RFE-
SVM to select the parameters for the estimation of V0. In the present work,
we perform the combination of RFE with Shinkrage regularization algorithms:
Ridge, Lasso, and Bayesian Ridge, establishing a hybrid algorithm for modeling
the multiparameter photovoltaic system.

2 Methodology

In regression models, a compromise must be made between the bias and the vari-
ance provided by the data to be predicted and the model performed. For this, the
theory provides us with the following variable selection methods (feature selec-
tion): Subset selection, Shrinkage, and Dimension reduction. The first identifies
and selects among all the available predictors those that are most related to the
response variable. Shrinkage or Shrinkage fits the model, including all predic-
tors, but including a method that forces the regression coefficient estimates to
zero. While Dimension Reduction creates a small number of new variables from
combinations of the original variables. Each of them has a subset of techniques
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such as for subset selection: best subselection and stepwiese selection (forward,
backward and hybrid). For Shrinkage: Ridge, Lasso and ElasticNet. For Dimen-
sion Reduction we have Principal components, Partial Last Square and tSNE.
Subset selection is the task of finding a small subset of the most informative
elements in a basic set. In addition to helping reduce computational time and
algorithm memory, due to working on a much smaller representative set, he
has found numerous applications, including image and video summary, voice
and document summary, grouping, feature selection and models, sensor loca-
tion, social media marketing and product recommendation [10]. The recursive
feature removal method (RFE) used works by recursively removing attributes
and building a model on the remaining attributes. Use precision metrics to rank
the feature based on importance. The RFE method takes the model to be used
and the number of characteristics required as input. Then it gives the classifica-
tion of all the variables, 1 being the most important. It also provides support,
True if it is a relevant feature and False if it is an irrelevant feature.

The data was pre-processed by eliminating the null values. Next, the non-
multicollinearity between the predictors was determined using a heat diagram.
Three hybrid methods of variable selection were performed: RFE-Lasso, RFE-
Ridge, RFE-Bayesian Ridge, comparing them with RFE-OLS, it was used as
a baseline for our work. Finally, the results were validated under conditions of
linearity, normality, no autocorrelation of error terms, and homoscedasticity.

3 Methods

3.1 Recursive Feature Elimination

For RFE we will use the following algorithm:

– 1 Refine/Train the model in the training group using all predictors
– 2 Calculate model performance
– 3 Calculate the importance of variables or classifications
– 4 For (for) each subset size Si, i = 1. . . S do (do

• 4.1 Keep the most important variables of Si

• 4.2 Optional: Pre-process the data
• 4.3 Refine/Train the model in the training group using Si predictors
• 4.4 Calculate model performance
• 4.5 Optional: Recalculate rankings for each predictor
• 4.6 End (end)

– 5 Calculate the performance profile on Si

– 6 Determine the appropriate number of predictors
– 7 Use the model corresponding to the optimal Si

The algorithm fits the model to all predictors, each predictor is classified
using its importance for the model. Let S be a sequence of ordered numbers that
are candidate values for the number of predictors to retain (S1,S2, ...). At each
iteration of the feature selection, the highest ranked Si predictors are retained,
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the model is readjusted, and performance is evaluated. The best performing Si
value is determined and the main Si predictors are used to fit the final model.
The algorithm has an optional step just at the end of its sequence (8) where the
predictor ratings recalculate into the reduced feature set model. For the random
forest models, there was a decrease in performance when the rankings were
recalculated at each step. However, in other cases when the initial classifications
are not good (for example, linear models with highly collinear predictors), the
recalculation may slightly improve performance [11].

3.2 Ridge

For Ridge the sum of squared errors for linear regression is defined by Eq. 1:

E =
N∑

i=1

(yi − ŷi)2 (1)

Just as the data set we want to use to make machine learning models must
follow the Gaussian distribution defined by its mean, μ and variance σ2 and is
represented by N(μ, σ2), i.e.,X∼N(μ, σ2) where X is the input matrix.

For any point xi, the probability of xi is given by Eq. 2.

P (xi) =
1

2πσ2
e− 1

2
(xi−μ)2

σ2 (2)

The occurrence of each xi is independent of the occurrence of another, the joint
probability of each of them is given by Eq. 3:

p(x1, x2, ...xN ) =
N∏

i=1

1
2πσ2

e− 1
2

(xi−μ)2

σ2 (3)

Furthermore, linear regression is the solution that gives the maximum likeli-
hood to the line of best fit by Eq. 4:

P (X | μ) = p(x1, x2, ...xN ) =
N∏

i=1

1
2πσ2

e− 1
2

(xi−μ)2

σ2 (4)

Linear regression maximizes this function for the sake of finding the line
of best fit. For this, we take the natural logarithm of the probability function
(likelihood) (L), then differentiate and equal zero by Eq. 5.

ln(P (X | μ)) = ln(p(x1, x2, ...xN )) = (5)

ln

N∏

i=1

1
2πσ2

e− 1
2

(xi−μ)2

σ2 =
N∑

i=1

ln (
1

2πσ2
e− 1

2
(xi−μ)2

σ2 ) = (6)
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N∑

i=1

ln (
1

2πσ2
) −

N∑

i=1

| 1
2

(xi − μ)2

σ2
(7)

∂ ln(P (X | μ)
∂μ

=
∂

∑N
i=1 ln ( 1

2πσ2 )
∂μ

− ∂
∑N

i=1
1
2

(xi−μ)2

σ2

∂μ
(8)

= 0 +
N∑

i=1

(xi − μ)
σ2

=
N∑

i=1

(xi − μ)
σ2

(9)

∂ ln(P (X | μ)
∂μ

=
N∑

i=1

(xi − μ)
σ2

= 0 =⇒ μ =
∑N

i=1 xi

N
(10)

We take into account here is that maximizing the probability function (likeli-
hood) L is equivalent to minimizing the error function E. Furthermore, and it is
Gaussian distributed with mean transposition (w) * X and variance σ2 is show
in Eq. 11.

y∼N(ωT X,σ2) o y = ωT X + ε (11)

Where ε∼N(0, σ2) ε is Gaussian distributed noise with zero mean and vari-
ance σ2. This is equivalent to saying that in linear regression, the errors are
Gaussian and the trend is linear. For new or outliers, the prediction would be
less accurate for least squares, so we would use the L2 regularization method
or Ridge regression. To do this, we modify the cost function and penalize large
weights as follows by Eq. 12:

JRIDGE =
N∑

i=1

(yi − ŷi)2 + λ|w|2 (12)

Where: |w|2 = wT w = w2
1 + w2

2 + · · · + w2
D

We, now have two probabilities:
Posterior:

P (Y |X,w) =
N∏

i=1

1
2πσ2

exp(− 1
2σ2

(yn − wT xn)2) (13)

A priori:

P (w) =
λ√
2π

exp(−λ

2
wT w) (14)

3.3 Ridge-Bayesian

So, applying Bayes

exp(J) =
N∏

n=1

exp(−(yn − wT xn)2)exp(λwT w) (15)



80 J. Cruz et al.

Applying Bayes: J = (Y − Xw)(Y − Xw)T + λwT w

= Y T T − 2Y T Xw + wT XT Xw + λwT w (16)

To minimize J, we use ∂J
∂w and set its value to 0. Therefore, −2XT +2XT Xw+

2λw = 0
So (XT X + λI)w = XT Y or w = (XT Y )

This method encourages weights to be small since P (w) is a Gaussian cen-
tered around 0. The anterior value of w is called the MAP (maximize posterior)
estimate of w.

3.4 Lasso

In the same way for Lasso

JLASSO =
N∑

n=1

(yi − ŷi)2 + λ||w|| (17)

Maximizing the likelihood

P (Y |X,w) =
N∏

n=1

1
2πσ2

exp(− 1
2σ2

(yn − wT xn)2) (18)

and prior (previous) is given by:

P (w) =
λ

2
exp(−λ|w|) (19)

So that J = (Y − Xw)T (Y − Xw) + λ|w|
y ∂J

∂w = −2XT Y + 2XT Y + 2XT Xw + λsign(w) = 0
Where sign(w) = 1 If x > 0 and −1 if x < 0 and 0 if x = 0

4 Data Set

4.1 Data Acquisition

The data was collected in the department of Puno whose coordinates are: 15◦

29′ 27′′ S and 70◦ 07′ 37′′ O. The time period was April and August 2019.
The data to be analyzed were: DC Voltage, AC Voltage, AC Current, Active

Power, Apparent Power, Reactive Power, Frequency, Power Factor, Total Energy,
Daily Energy, DC Voltage, DC Current, and DC Power. Those that were
obtained through the StecaGrid 3010 Inverter. The temperature of the envi-
ronment and the photovoltaic panel were obtained by the PT1000 sensors that
are suitable for temperature-sensitive elements given their special sensitivity,
precision and reliability. Irradiance was obtained through a calibrated Atersa
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brand cell, whose output signal depends exclusively on solar irradiance and not
on temperature. The amount of data is reduced from 331157 to 123120 because
many of the values obtained are null, for example, the values obtained at night
time. Characteristics such as mean, standard deviation, minimum value, maxi-
mum value and percentages of the pre-processed data are presented in Table 1
and Table 2. The statistics of the data obtained are shown as median, standard
deviation, values: maximums, minimums, and interquartile ranges.

Table 1. Statistic table

Statistic Tension

AC

Corriente

AC

Potencia

activa

Potencia

aparente

Potencia

reactiva

Frecuencia Factor de

potencia

Energia

total

mean 235.45 6.965 1,621.97 1,643.26 219.883 60.003 0.951 5,233.50

std 2.944 2.931 708.23 696.367 66.593 0.046 0.189 1,013.13

min 223.9 0.58 0 135 −843.9 59.5 −0.99 3,894.30

25 233.5 4.639 1,071.10 1,091.00 196.2 60 0.983 4,184.70

50% 235.4 7.564 1,764.00 1,779.55 228.4 60 0.991 5,910.30

75% 237.6 9.43 2,219.30 2,232.70 256.2 60 0.994 6,175.40

max 247.9 12.416 2,879.20 2,898.00 485.1 60.5 0.998 6,427.60

Table 2. Statistic table

Statistic Energia diaria Tension DC Corriente DC Potencia DC Irradiancia Temp modulo Temp ambiente

mean 127.683 334.805 5.558 1,831.38 669.007 35.11 16.611

std 86.399 17.334 2.389 737.254 291.94 11.274 3.773

min 0 220.8 0 0 0 2.4 −2

25 56.666 321.9 3.62 1,261.44 432 27.6 14.5

50% 113.423 332.7 5.89 1,973.63 706 37 17.4

75% 190.369 346 7.65 2,450.61 926 44.2 19.4

max 342.906 420.8 10.78 3,142.27 1,522.00 60.3 27.7

5 Results

5.1 Non-multicollinearity Between Predictors - Correlation

The independent variables (predictors) should not be correlated with each other,
as they would cause problems in the interpretation of the coefficients, as well as
the error provided by each one. To determine this, a correlation heat map was
used. Correlation is the basis to eliminate or minimize some variables, this is
done by a variable selection algorithm or by the researcher’s criteria, of course,
advanced methods use an algorithm as will be done later, however, Fig. 1 displays
the matrix to validate subsequent results.
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Fig. 1. Correlation matrix.

5.2 Prediction

First the RFE method was applied for the selection of variables, to the obtained
results we applied the following Shrinkage regularization methods: Lasso, Ridge
and Bayesian Ridge The data set is divided into training data 98496 (80%) and
test data set 24624 (20%), for better performance seeds are also used. The best
seed is also 8849. The RFE algorithm is applied, the following result is obtained:

[‘Tension AC’, ‘Corriente AC’, ‘Potencia aparente’, ‘Potencia reactiva’, ‘Fre-
cuencia’, ‘Factor de potencia’, ‘Energia total’, ‘Energia diaria’, ‘Tension DC’,
‘Corriente DC’, ‘Potencia DC’, ‘Irradiancia’, ‘Temp modulo’, ‘Temp ambiente’]

[True, True, True, True, True, True, False, False, True, True, True, False,
True, True]

[‘Tension AC’, ‘Corriente AC’, ‘Potencia aparente’, ‘Potencia reactiva’, ‘Fre-
cuencia’, ‘Factor de potencia’, ‘Tension DC’, ‘Corriente DC’, ‘Potencia DC’,
‘Temp modulo’, ‘Temp ambiente’]

Of the 14 variables evaluated, for RFE the optimal number of characteristic
variables was 11 with a score of 0.999768. It is important to mention that RFE
discards: “Energia total”, “Energia diaria” e “Irradiancia”. The hyperparame-
ters are then determined for Ridge an alpha value = 1,538 and for Lasso an alpha
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value = 0.01. For the models found, we determined R2 and adjusted R2, the mean
absolute error of R (MAE), the mean square error of R (RMSE) and Score.

Table 3 and Table 4 shows the values obtained for the proposed groups, where
the RFE method with OLS is not part of the research proposal, this result is also
used to compare the research results. The following RFE methods with Lasso,
RFE with Ridge and RFE with Bayesian Ridge; form the proposal of this research.

6 Validation of the Results

To check the results provided by the model, we must check certain assumptions
about linear regression. If they are not fulfilled, the interpretation of results will
not be valid.

6.1 Linearity

There must be a linear relationship between the actual data and the prediction
so that the model does not provide inaccurate predictions. It is checked using a
scatter diagram in which the values or points must be on or around the diagonal
line of the diagram Fig. 2 shows the linear relationship.

(a) Linearity-OLS (b) Linearity-Ridge

(c) Linearity-Lasso (d) Linearity-Bay. Ridge

Fig. 2. RFE-Linearity, (a) Correspond to model OLS, (b) Correspond to model Ridge
(c) Correspond to model Lasso, (d) Correspond to model Bayessian Ridge
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6.2 Normality of Error Terms

The error terms should be distributed normally. The histogram and the proba-
bility graph are shown in Fig. 3.

(a) Res. Distribution-OLS (b) Res. Distribution-Ridge

(c) Res. Distribution-Lasso (d) Res. Distribution-Bay. Ridge

Fig. 3. RFE-Residual Distribution, (a) Correspond to model OLS, (b) Correspond to
model Ridge (c) Correspond to model Lasso, (d) Correspond to model Bayessian Ridge

6.3 No Autocorrelation of the Error Terms

Autocorrelation indicates that some information is missing that the model should
capture. It would be represented by a systematic bias below or above the predic-
tion. For this we will use the Durbin-Watson test. Value from 0 to 2 is positive
autocorrelation and value from 2 to 4 is negative autocorrelation. For RFE -
OLS there is no autocorrelation. Durbin-Watson Test is 2.0037021333412754,
little to no autocorrelation. For RFE - Bayesian Ridge there is no autocorrela-
tion. Durbin-Watson Test is 2.0037008807358965, little to no autocorrelation. For
RFE - Lasso there is no autocorrelation. Durbin-Watson is 2.0037472224605053,
little to no autocorrelation. Have a For RFE - Ridge there is no autocorrelation.
Durbin-Watson is 2.0037017639830537, little to no autocorrelation.

6.4 Homocedasticity

It must be fulfilled that the error made by the model always has the same
variance. It is presented when the model gives too much weight to a subset of
data, particularly where the variance of the error was the greatest: to detect it,
residuals are plotted to see if the variance is uniform (Fig. 4).
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(a) Homoscedasticity OLS (b) Homoscedasticity Ridge

(c) Homoscedasticity Lasso (d) Homoscedasticity Bay. Ridge

Fig. 4. RFE-Homocedasticity, (a) Correspond to model OLS, (b) Correspond to model
Ridge (c) Correspond to model Lasso, (d) Correspond to model Bayessian Ridge

7 Description and Analysis of the Results

In this article we present three hybrid methods for the selection of variables
in the multiparameter regression of photovoltaic systems to predict the levels of
the active power of the photovoltaic system with 14 independent variables, these
methods are RFE - Lasso, RFE - Ridge and RFE - Bayesian Ridge.

Table 3 and Table 4 shows the method comparison, RFE-OLS, which is not
part of our proposal, was compared with OLS to have a benchmark for the fol-
lowing comparisons that are part of the proposal. RFE-Lasso: it has an absolute
error of approximately 0.035% greater than Lasso, which is taken as a disadvan-
tage of the proposal, it has a mean squared error of approximately 0.057% less
than Lasso, which is a significant result considered as a advantage, it has a coef-
ficient of determination of approximately 0.0000309% higher than Lasso, this is
considered greater but almost the same, so it is not considered very advanta-

Table 3. RFE with OLS and Shrinkage

Comparison of methods (%) RFE-OLS vs OLS RFE-Lasso vs Lasso

Mean absolute error R 0.003062198 0.034722952

Square root error R2 −0.068102080 −0.056497772

Determination coefficient 0.000037258 0.000030848

Adj coef of determination 0.000037928 0.000031516

Training time −37.027209963 −30.903451764

Test time 13.394018205 4.161073826
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Table 4. RFE witch OLS and Shrinkage

Comparison of methods (%) RFE-Ridge vs Ridge RFE-Bayesian Ridge vs Bayesian Ridge

Mean absolute error R 0.003071248 0.003841610

Square root error R2 −0.068083868 −0.067919409

Determination coefficient 0.000037248 0.000037158

Adj coef of determination 0.000037918 0.000037828

Training time −24.017312331 −32.443632788

Test time 2.165087957 16.901408451

geous but in no way a disadvantage of the proposal, it has an adjusted coefficient
of determination of approximately 0.0000315% greater than Lasso, this is con-
sidered an advantage as the previous case, the training time is approximately
30,904% less, which is considered a great contribution of this hybrid method,
the test time is approximately 4,161% greater than Lasso, which is considered
a disadvantage of the proposed model. For the following two hybrid RFE-Ridge
methods compared to Ridge and RFE-Bayesian Ridge compared to Bayesian
Ridge, and shown in Table 3 and Table 4. The description and analysis is similar
to RFE-Lasso compared to Lasso.

8 Conclusions

The selection of independent variables of the multi-parameter photovoltaic sys-
tem allowed us to develop four prediction models with an accuracy greater than
99.97% in all cases. Three RFE proposals are presented, RFE-Ridge, RFE-Lasso,
and RFE-Bayesian Ridge; training time was reduced by 71% for RFE-Ridge
over Ridge and and 36% RFE-OLS over OLS. The variables eliminated with
RFE-Ridge and RFE-Bayesian Ridge were: “Energia total”, “Energia diaria” e
“Irradiancia”, and additionaly the variable eliminated by RFE-Lasso was: “Fre-
quencia”. In all cases we see that the root mean square errors were reduced for
RFE-Lasso by 0.15% over Lasso while for RFE-Bayesian Ridge by 0.06% over
Bayesian Ridge. From all that has been done, we note that the proposed hybrid
method, by eliminating variables that are not significant for the system, achieves
a decrease in training times, without losing accuracy in predictions. The results
can be improved by implementing algorithms in pre-processing stages such as
imputation of values; or perform techniques as linear regression such, neural
networks or XGBoost.
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