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Abstract. Analysis of time series information is very interesting as it can be
used to understand the past and to forecast the future. Mainly, the data models of
the time series are based on the normal least square regression (LSR). For handle
the outliers, the least square regression is not efficient. Data from the time series
contains outliers in a notable quantity that may affect the results of the prediction.
The proposed solution will use statistical techniques of quantile regression that
robustly gives insights based on different dimensions as well as treats outliers.
The advantage of quantile regression is to discover more useful predictive rela-
tionships in situations where there is a poor relationship between independent
variables. The paper described the statistics of QRSVM model. The paper dealt
experiments based on time series data and proved that QRSVMmodel is superior
than LSR model in insights generations and for outlier handling.
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1 Introduction

Time series data is very vital for many applications such as economics, medicine,
education, social sciences, epidemiology, weather forecasting, physical sciences etc. to
derive meaningful insights at different points in time. Conventional statistics methods
have several limitations to deal with time series data so specialized methods known as
time series analysis requires predominantly in such cases. The simplest and most
popular method is linear least square method. Least square method gives the trend line
to best fit to a time series data. It exhibits several advantages:

• It is very simple method to understand and derive the prediction
• It is to be applicable for all most all applications
• It gives maximum likelihood solutions if correlate with Markov Conditions.

However, it suffers from several critical limitations:

• Sensitive towards outliers.
• Data needs to be normally distributed for better results.
• It exhibits tendency of outfit data.

© Springer Nature Singapore Pte Ltd. 2021
K. K. Patel et al. (Eds.): icSoftComp 2020, CCIS 1374, pp. 65–74, 2021.
https://doi.org/10.1007/978-981-16-0708-0_6

http://orcid.org/0000-0002-4769-1289
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-16-0708-0_6&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-16-0708-0_6&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-16-0708-0_6&amp;domain=pdf
https://doi.org/10.1007/978-981-16-0708-0_6


Quantile Regressing method by utilizing support vector machine approach is an
idyllic approach to deal with the limitations of least square regression methods. It has
advantages over least square regression. Table 1 describes the comparison between
least square and quantile regression.

Support vector machine in correlation with quantile regression may produce
excellent outcomes for time series analysis. The support vector machine has an ability
to solve nonlinear regression estimate problems so it is the prominent candidate for
time series data analysis. One more significant feature of SVM is that the learning here
is analogous to resolve a problem of linear quadratic optimization. Thus, unlike the
other traditional stochastic or neural network methods, the solution obtained by
applying the SVM method is always unique and globally optimal.

The Sect. 2 of paper will deal with related work in this field. Section 3 will describe
QRSVM model in details. Section 4 will discuss about Experiments and Results of the
model. At Last, Paper provides the conclusions of research work carried out.

2 Related Work

Statistical Methods predominantly used for time series data analysis. Autoregressive
Integrated Moving Average (ARIMA) model is the most prevalent and commonly used
for time series data analysis [6]. Notwithstanding, these sort of models depend on the
hypothesis that take into an account that time series must be linear and follows a
normal distribution of the data. C. Hamzacebi in 2008 [1] proposed a distinction of
ARIMA model called as Seasonal ARIMA (SARIMA). The prototypical produced
good results for seasonal time series data, however it required to undertake linear form
of associated time series data. The limitations of the linear models could be overcome
by non-linear stochastic models [5, 19]. However, the implementation of these kind of
models is very complex.

Table 1. Comparison of least and quantile regression

Parameter Least square regression Quantile regression

Prediction Conditional mean Condition quantiles
Size of data Best suit for small data Requires sufficient data
Distribution
of data

Needs normal distributed
data

It does not require any assumption in
distribution of data. If data is unclear then
also it performs well

Preservation Conditional mean does not
preserve under
transformation

It preserves under transformation

Computation
of data

It does not require rigorous
computation so it is cheap

It is computationally rigorous

Response
assumption

Constant variance for the
response

No constant variance of the response is
required
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Neural Network based time series models have grown as of late and pulled in
expanding considerations [8, 9]. The astounding element of ANNs is their inherent
capability of non-linear modeling with no presupposition about the statistical distri-
bution monitored by the annotations. The incredible highlights about ANN based
models are self-versatile in nature [28]. There is assortment of ANN models exist in the
literature. The Multi-Layer Perceptron (MLP) is the most famous and basic model
dependent on ANN [2, 4, 13, 22]. MLPs contain different layers of computational
components, unified in a feed-forward way [18].MLPs utilize a variety of learning
techniques, the conspicuous is back-propagation [16, 20, 29] where the output esteems
are related with the exact response to compute the value of some foreordained error-
function. The error is then served back through the network. Utilizing this data, the
algorithm controls the degree of each linkage so as to decrease the estimation of the
error function by some insignificant quantity. An overall strategy for non-linear opti-
mization called gradient descent [21, 23] is applied to regulate the degrees. Time
Lagged Neural Network (TLNN) is another variation of Feed Forward way [15, 26].
In TLNN, the input nodes are the time series values at some specific lags. Likewise,
there is a constant input term, which may be expediently taken as 1 and this is linked to
every neuron in the hidden and output layer. The presentation of this constant input unit
circumvents the need of separately introducing a bias term. In 2007, Pang et al. [17]
introduced one model dependent on neural network and efficaciously applied to the
simulation in the rainfall. Li et al. [14], In 2008, presented hybrid model based on AR *
and generalized regression neural network model (GRNN) and that gave respectable
results in the setting to the time series data. Chen and Chang in 2009 [3] came out with
an Evolutionary Artificial Neural Network model (EANN) to build automatically the
architecture and the connections of the weights of the neural network. Khashei and
Bijari in 2010 [11] introduced a new hybrid ANN model, utilizing an ARIMA model to
discover predictions more precise than the model of neural networks. Wu and
Shahidehpour [27] proposed a fusion model based on an adaptive Wavelet Neural
Network (AWNN) and time series models, such as the ARMAX and GARCH, to
predict the day by day estimation of electricity in the market. In [7] researchers pro-
posed a regression neural network model to anticipate widespread time series, which is
a fusion of diverse algorithms for machine learning. Artificial Neural Network based
algorithms are overwhelming for time series data analysis however they show various
constraints such as: appropriate network structure is attained through trial and error,
sometimes mysterious performance of the network, usually require more data to train
the model fittingly, computationally complex and affluent. Support Vector Machine
[12, 24, 25] is the vigorous machine learning technique for the pattern generation and
classification.

The proposed model will use SVM as it isn’t just intended for decent classification
yet additionally expected for an improved speculation of the training data. Solutions
obtained by SVM is always unique as it depends on linearly constrained quadratic
optimization. The model will use the fusion methodology of SVM and Quantile
Regression [10]. Quantile Regression methodology permits for comprehension rela-
tionships between variables outside of the average of the data, making it valuable in
understanding outcomes that are non-normally dispersed and that have nonlinear
relationships with predictor variables.
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3 Quantile Regression Support Vector Machine (QRSVM)
Model

The least square regression model is representing by the Eq. (1).

Y ¼ aþ b Xþ e ð1Þ

Where Y is Dependent Variable whose value is going to be predicted
a is the intercept of Y
b is the slope of line
e represents an error and s identically, independently, and normally distributed with

mean zero and unknown variance r2.
Least square regression model attempt to define conditional distribution by utilizing

the average of a distribution. Another thing is, it assumes that the error term is same across
all values of X in which conditional variable (Y/X) to be assumed a constant variancer2.
When this assumption fail, we must change the LSR algorithm to accommodate condi-
tional mean and scale. The new equation based on conditional scale is:

Y ¼ aþ b X þ ere ð2Þ

Where r is the unknown parameter

Var (Y/X) ¼ r2er ð3Þ

In this also, conditional scale for dependent variable y is not vary with independent
variable X. In order to realize covariate properties in context to dependent variable
Quantile Regressing concept is required.

Y ¼ aðpÞ þ bðpÞXþ eðpÞ ð4Þ

Where p is the probability and it ranges between 0 and 1.
We specify the pth conditional quantile given X with

Q pð Þ Y
X

� �
¼ aðpÞ þ bðpÞX ð5Þ

Least square regression having only one conditional mean while Quantile
Regression contains numerous conditional quantiles. In the nonlinear quantile regres-
sion, the quantile of the dependent variable Y for a given independent attribute X is
assumed to be nonlinearly related to the input vector Xi 2 Rd and represented by
nonlinear mapping function /(…). The new version related to nonlinearity charac-
teristic of quantile function is represented as:

QX ¼ Wh/ðXÞ ð6Þ

Where h 2 (0, 1),
Wh is hth regression quantile.
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Absolute deviation loss will occur in quantile regression so SVM with quantile
regression plays a vital role. The equation of quantile regression with SVM is repre-
sented as:

Minimize12 whk k2þC i ¼ 1nphðY �Wh/ðXÞÞ ð7Þ

for any h 2 (0, 1)
Equation (7) is considered as QRSVM Model.

4 Experiments and Results

Experiments of proposed study is carried out by considering weather data of Anand
District of Gujarat State, India. The sample data is depicted in the Table 1.

Experiment simulation is carried out using R programming language (Figs. 1 and 2).

Table 2. Sample weather data of Anand district

Temperature(in Celsius)/Month January February March April May June

Avg. temperature 20.5 22.9 27.2 31.1 33.4 32.2
Min. temperature 12 14.1 18.5 22.9 26.4 27.2
Max. temperature 29 31.7 35.9 39.4 40.5 37.3
Rain fall(mm) 1 0 1 0 2 92

Fig. 1. Scatter plot temperature vs. rainfall
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The box plot of rainfall data indicates that several values are outliers. For the
accurate prediction of the time series data, outlier values also play an important role.

According to least square regression model, residuals values and Coefficient
statistics, are depicted in Table 2 and Table 3 respectively. They having one value
based on central tendency value.

Quantile Regression SVM model generate coefficient based on quantile value. For
the similar data, the coefficient of the QRSVM Model is depicted in Table 4 (Table 5,
Figs. 3 and 4).

Fig. 2. Box plot for rainfall data

Table 3. Residual values of least square regression

Min First quantile Median Third quantile Max

−7.1849 −2.6955 −0.4849 3.4257 6.8939

Table 4. Coefficient values of least square regression

Estimate Std. error t-value

Intercept 27.674335 0.620280 44.616
X 0.010579 0.004356 2.429
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Table 5. Coefficient values of QRSVM model

Quantile to be estimated Intercept X

0.05 21.96 0.02
0.1 22.279384 0.020616
0.15 23.125537 0.018616
0.2 23.950000 0.016666
0.25 24.182481 0.017518
0.3 24.433580 0.016605
0.35 24.964210 0.017894
0.4 25.165614 0.017193
0.45 26.259859 0.013380
0.5 27.3810526 0.0094737
0.55 28.2936019 0.0063981
0.6 28.7135135 0.0054054
0.65 29.5286956 0.0034782
0.7 31.1000000 0.0035326
0.75 3.219946e+0 5.449591e−04
0.8 32.50027248 −0.00027248
0.85 3.320000e+01 −1.431147e−17
0.9 33.60851063 −0.00094562
0.95 34.4413793 −0.00287356

Fig. 3. Scatter plot quantile vs. intercept value in QRSVM

QRSVM Model for Time Series Data Analysis 71



Fig. 4. Scatter plot quantile vs. X in QRSVM

From the results we can see that Least Square regression distributes Intercept and X
values on central tendencywhere asQRSVMmodel distributes themwithmultiple values
based on the values of percentile so we can understand and explore the insights with
multiple dimensions. The other thing is if outlier exist in the data then central tendency
value might be compromised whereas this situation will not affect in QRSVM Model.

5 Conclusions

In this proposed work, it is concluded that Least Square Regression Model exhibits
several limitations such as it attempts to define conditional distribution by utilizing only
the average of a distribution. Another thing is, it assumes that the error term is same
across all values of X in which conditional variable (Y/X) to be assumed a constant
variance r2. In order to realize covariate properties in context to dependent variable,
Quantile Regressing concept is required. Based on the experiments of time series data
of weather, the paper concluded that QRSVM model distributes Intercept and X values
in multiple values in order to understand and interpret them effectively. Paper also
concluded that the results of LSR model might be compromised to deal to with outliers
whereas this situation does not exist in QRSVM model.
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