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Abstract In the current study, a methodology of dimensional analysis based on
Buckingham-pi theorem is presented to determine the dynamic fracture behavior
of glass filled epoxy composites. Rod shaped glass fillers having an aspect ratio of
80 have been used to reinforce the epoxy matrix. These glass fillers were used in
the volume fraction of 0%, 5%, 10% and 15%. Dynamic fracture toughness index
for crack-opening mode (mode-I) is proposed to find out the fracture toughness of
the Particulate Polymer Composites (PPCs) under different strain rate conditions
of impact loading. The legitimacy of the proposed methodology is supported with
the limited experimental results of dynamic fracture test which was conducted for
varying filler concentration. The influence of various governing factors on the fracture
toughness of the particulate polymer composites is also discussed and shear wave
speed is found to have the most pronounced effect on the dynamic fracture toughness
of the resulting composite.
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1 Introduction

Composite materials have recently grown into the most appropriate alternative mate-
rials to be used by several industries like automobile, marine, aerospace, biomedical
and electrical [5, 13, 20, 31, 48] etc. due to the combination of excellent proper-
ties such as high strength to weight ratio, corrosion resistance, chemical resistance,
adhesion and dielectric properties [2, 10, 12, 24]. Depending upon the choice of rein-
forcement material, there are different types of composites that exist. Among these
different types, Particulate Polymer Composites (PPCs) are easiest to manufacture
and the most common type of composites [34, 36]. PPCs are made up of two or more
constituent materials in which polymer serves as the matrix and some inorganic
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particles serve as the reinforcement. Mica, alumina, zirconia, silica etc. can be used
to reinforce the polymer matrix. The fabrication of PPCs is also relatively cheaper
along with the advantage of achieving tailored properties of the resulting composite
by selecting the suitable filler reinforcement (in terms of type, size and shape), its
volume fraction and the manufacturing process. Another aspect that makes PPCs one
of the most appropriate materials for mechanical structural design is the macroscopic
isotropy that these composites possess. The interfacial strength between the filler and
the matrix is one of the key parameters that determine the overall performance of the
resulting composite [9, 19, 37]. Hence, understanding the role of volume fraction
of the filler and it’s interfacial strength with the polymer matrix in determining the
mechanical properties like strength, stiffness and toughness of the resulting PPC is
critical for strategic engineering applications [21, 23, 41]. Investigating the mechan-
ical behavior of composites corresponding to different design parameters and varying
loading conditions experimentally is a very cumbersome and time consuming task.
This has motivated researchers to look for alternative techniques in order to char-
acterize the composite behavior with limited experimentation when subjected to
different loading conditions [7, 8, 22, 38, 44, 45].

One such technique is the dimensional analysis, more precisely the Buckingham-
1 theorem which has been recognized as a very promising methodology for handling
the intricacies of various physical concepts [4, 28]. This methodology offers certain
process steps in order to develop compatible and meaningful dimensionless factors
using the available set of parameters. The flexibility of the Buckingham-pi theorem
lies in the fact that the characteristic relation between the parameters does not need to
be known. This methodology has an ingrained physical basis because of which it has
been extensively utilized in numerous engineering applications [11, 27]. The appro-
priate dependent and independent parameters obtained from physical experimenta-
tion are selected and using the technique of dimensional analysis, a functional rela-
tionship is established between the dimensionless quantities. Buckingham-7 theorem
has proven to be a very powerful scaling method and engrossed many scientists and
engineers in the field for designing the practical problems. A numerical electroos-
motic flow model was developed by making use of Buckingham-pi theorem in order
to find a correlation between different physiochemical factors [32]. Another research
group [6] performed an analysis of the roller bearings by means of Buckingham-pi
theorem. A full scale test specimen of a simply supported beam made up of isotropic
material was designed based on Buckingham-n theorem [46]. A research group [30]
studied the characteristics of multiple bearing parameters when exposed to different
temperature conditions and used dimensional analysis to determine the most signifi-
cant factor affecting the bearing system. Another group [14] conducted a parametric
study based on Buckingham-pi theorem to investigate the different system geometries
of a composite slab.

In an attempt to solve a problem, analytical relations are usually established but
it becomes very difficult to solve them as the number of parameters increases with
increase in the intricacy of the problem. While in the laboratories, performing exper-
iments that involve impact loading in order to study the fracture response of the
composite materials, is very expensive and laborious [15, 16, 47]. In addition, it is
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a well-established fact that the fracture behavior of composites is non-linear in both
pre- and post-crack initiation stages.

Owing to the potential of Buckingham-pi theorem to predict the material behavior,
it has been implemented in various studies by different researchers. A group of
researchers [39] came up with a model so as to find out the strain analogue to a
very small biaxial loading condition. They derived conditions for the strain analogue
to large biaxial loading by using Buckingham-pi theorem. Another research group
[40] developed a mathematical model again by using Buckingham-pi theorem and
studied the correlation between the different parameters influencing the tribological
performance of the cutting tool. A study [17] was conducted to investigate the wear
behavior of polymer composites reinforced with chopped fibres using the approach
of dimensional analysis. A group of researchers [3] used the methodology of dimen-
sional analysis to comprehend the micromechanics of particulate composites based
on the macroscopic fracture toughness.

In this view, it is desirable to make use of dimensional analysis using the approach
of Buckingham-pi theorem which is a powerful tool for better understanding of
the fracture behavior under impact loading with limited experimentation. A lot of
experimental work has been reported in the purview of dynamic fracture toughness
of particulate polymer composites but the prediction of this dynamic behavior as a
function of filler volume fraction is still ambiguous and requires attention.

Therefore the current work presents an integrated approach to illustrate the fracture
behavior of particulate polymer composites under the effect of impact loading at
varying strain rates. This approach is ingrained based on a similarity condition which
is denoted as ‘dynamic fracture toughness index’. This index represents various
factors like strain rate, material density, filler volume fraction, longitudinal wave
speed and shear wave speed that can affect the crack initiation fracture toughness.
This index is very useful for designing materials which have high resistance to impact
load and hence can be utilized in numerous engineering applications.

The current study focuses on using Buckingham-pi theorem as a powerful tool of
dimensional analysis in order to develop a model which will be used to evaluate the
correlation between the crack-initiation fracture behavior and the dynamic fracture
toughness index. This analysis utilizes the values of stress intensity factor analogue to
different volume fractions of glass fillers obtained through lab experiments. Dynamic
fracture toughness index is determined corresponding to different conditions of strain
rate so as to widen the scope of utilizing the developed model to encounter various
practical problems. Detailed methodology of the determination of this toughness
index is reported elsewhere [18].

2 Experimental Procedure

In the current study, rod-shaped glass fillers of length 800 wm with a diameter of
10 wm (refer to Fig. 3) were used to reinforce the polymer matrix. Epoxy of low
viscosity (Bisphenol-A) was used as the polymer matrix and glass fillers with an
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aspect ratio of 80 were used in a volume fraction of 0%, 5%, 10% and 15%. First of
all, glass-filled epoxy sheets were cast and cured for seven days. Then these sheets
were cut into rectangular test specimens of dimensions 60 mm x 30 mm x 9 mm.
A notch of length, 6 mm was made at the middle of each test specimen with the
help of a circular saw. The density, longitudinal wave speed and shear wave speed
for neat epoxy composite (0% glass fillers) is 1146 kg/m?, 2481 m/s and 1128 m/s
respectively. The material properties of glass filled epoxy composite corresponding
to different volume fraction of the glass fillers is given in Table 1. The detailed
procedure of measuring those material properties is reported in another study [19].
The setup used to conduct the dynamic fracture test is shown in Fig. 1. The
projectile impacted the test specimen at a velocity of around 16 m/s. Three different
values of strain rate (3.7 s7!, 10.7 s~ and 40 s~') were used in the present study.
The in-plane deformation of the test specimen was measured by using the tech-
nique of Digital Image Correlation (DIC). The deformed and undeformed states of
the test specimen were examined by means of a black and white speckled pattern on

Table 1 Material properties of glass filled epoxy composite

Particle type Density, D | Longitudinal Shear wave speed, | Fiber volume

(kg/m3) wave speed, Cp Cs (m/s) fraction, V¢ (%)

(m/s)

Rod shaped glass 1226 2534 1188 5
fillers 1285 2534 1243 10

1375 2598 1286 15
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Fig. 1 Schematic of the setup used for dynamic fracture test [35]
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the surface of the specimen. Further in order to extract the dynamic fracture tough-
ness in terms of stress intensity factor, displacement fields obtained from Williams
expressions were used. The detailed description of the experimental procedure is
reported in a previous study [20].

When Buckingham-pi theorem is used to solve a problem having “x” variables
and “y” dimensions then the variables can be reorganized into “x-y” independent
dimensionless variables. This study deals with using Buckingham-pi theorem so as
to establish the necessary functional relationships [1, 25, 33, 42, 43].

The functional relationship between the governing parameters which significantly
affect the crack-opening mode (mode-I) dynamic fracture toughness under the effect
of impact loading is given in Eq. (1).

K¢ = f(p,Cyor Cp, Vs v,y,8) (1)

where K ;1 is the dynamic fracture toughness, p is the density of the material, v is the
velocity of the crack, Cg is the shear wave speed, C is the longitudinal wave speed,
y is the Poisson ratio, V; is the volume fraction of the glass fillers and, ¢ is the strain
rate.

Using the Buckingham-pi theorem,

o = f (1, m2, 73) (2)

Out of the six governing parameters, Cs or Ci, €, p, v, V¢ and v, three parameters
viz. &, v and p have independent dimensions. Therefore the dimensions of Cs or Cp,
y, and V¢ are given as:

w1 =[Cs or CL] = [v] 3

m = [y] =[1] )

3 = [VI] =[1] (5

mo = K" = K - (8%°/(p - (CL or Cs)™) 6)

where, Ki"¥* js the dynamic fracture toughness index and v"*#* = v/C; or v/Cy,
is the crack velocity index.
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3 Results and Discussion

In order to investigate the fracture behavior of particulate polymer composites, a
mathematical relationship between the dynamic fracture toughness index and crack
velocity index is presented using the approach of dimensional analysis.

When a composite specimen is subjected to impact loading, the material experi-
ences two different types of stress waves namely, longitudinal stress wave and shear
stress wave [20]. Therefore the longitudinal and shear wave speed are included in the
development of the mathematical relationship so as to account for the contribution
of these stress waves in assessing the fracture toughness of the composite.

Figure 2a shows the variation in dynamic fracture toughness with respect to the
crack velocity index for neat epoxy and glass-filled epoxy (V¢ = 10%) composite.
This graph is corresponding to three different strain rates and the longitudinal wave
speed has been used as one of the parameters in the above mentioned mathematical
model. Figure 2b represents the same variation but by utilizing shear wave speed
in the developed model. The variation corresponding to both, the shear wave speed
and longitudinal wave speed is found to be linear. Both the figures clearly show that
the glass filled epoxy possesses a higher value of dynamic fracture toughness index
compared to the neat epoxy composite. This is attributed to the fact that glass fillers
improve the overall strength of the resulting composite.

The slope in the first case corresponding to Fig. 2a is approximately 50 and
the same corresponding to Fig. 2b is around 155, which clearly indicates that the
influence of shear wave speed is much more pronounced on the fracture behavior of
the composite compared to the longitudinal wave speed.

For better understanding of the failure mechanism due to the dynamic fracture,
fractographic examination was done by means of scanning electron microscopy.
Figure 3 shows the fractograph of the glass filled epoxy composite which clearly
demonstrates the crack interaction with the filler reinforcement. Various failure
modes like cracking of matrix, filler breakage and filler pullout are shown in Fig. 3.
Each of these failure modes dissipate energy which consequently enhances the overall
fracture toughness of the composite. At the crack tip, the presence of a substantial
component of the in-plane shear resulted in filler matrix interface separation which
further led to matrix cracking and hence matrix cracking was found to be the most
dominating mode of failure. Similar filler-matrix interface separation as a failure
mode has been reported for PPCs [26].

Figure 4 shows the relationship between the fracture toughness index and the crack
velocity index at a constant strain rate, corresponding to the different filler volume
fraction (5%, 10% and 15%). It was observed that increase in the concentration
(volume fraction) of glass fillers, increases the dynamic fracture toughness of the
composite. But this effect is not as much pronounced as it was due to the shear
wave speed and this can be attributed to the fact that increase in the overall density
and shear wave speed suppresses the effect of filler volume fraction. However, the
contribution of filler concentration can be ascribed to increase the density of the
resulting composite which ultimately makes the composite stiffer and stronger [29].
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Fig.2 Variation in dynamic fracture toughness index with respect to the crack velocity index a with
longitudinal wave speed, b with shear wave speed

During the event of impact, shear stress wave interacts with the matrix and the
fillers at a very high speed and this interaction directs the fracture behavior of the
overall polymer composite. The filler pullout and breakage as shown in Fig. 3 is
also attributed to the shear wave interaction with the fillers present in the glass filled
€poxy composite.
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Fig. 3 Fractograph of rod-shaped glass-filled epoxy composite (scale bar = 100 pum)
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Fig. 4 Variation of dynamic fracture toughness index with respect to the crack velocity index for
glass-filled epoxy

Finally, the developed functional relationship between the dynamic fracture tough-
ness index and the crack velocity index was used to predict the fracture tough-
ness for glass filled epoxy composites with three different volume fractions of the
glass fillers (5%, 10% and 15%). These predicted results were compared with the
experimental ones and the values were found to be close enough. Figure 5 shows
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a good agreement between the two results which encourages to further explore the
possibility of using the proposed approach for predicting dynamic fracture toughness
of PPCs with limited experimentation.

4 Conclusion and Future Perspective

The current study presents a technique to predict the dynamic fracture toughness of
the glass filled epoxy composites under the effect of high strain rate impact loading
by using dimensional analysis based on Buckingham pi-theorem. The legitimacy
of the proposed methodology is supported with the limited experimental results of
dynamic fracture test which was conducted for varying filler concentration. Shear
wave speed is found to have the most significant effect on the dynamic fracture
toughness of particulate polymer composite. The proposed dimensional analysis
is found to be a very reliable and potential methodology to predict the dynamic
fracture behavior of PPCs which is otherwise very tedious to investigate through
multiple experiments. Furthermore, since the methodology has been observed to
perform fairly efficiently, the same can be further extended to investigate the fracture
behavior of composites using biofillers. This would assist in selection of a more
efficient material and development of a robust composite with superior potential to
resist fracture under dynamic loading.
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